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Abstract 

This paper presents FPGA implementations of classical algorithms for computing ln(x) with some 
improvement at the level of the multiplication steps, and step skipping techniques. One starts from 
a practical implementation of ln(x) computation using a convergence method. The function is 
approximated by a multiplicative normalization technique, however, thanks to the peculiarity of the 
multiplicative factor, namely (1 + ai .2-i ), with ai ∈ {-1, 0, 1}, the successive multiplications have 
been replaced by additions. Doing so, one saves the use of LUT’s and eventually reduces 
processing time, as addition is generally faster than multiplication. Further, the acceleration 
technique, based on skipping trivial steps, improves performances. Implementations for FPGA are 
presented with time and slice cost evaluations. The Xilinx Virtex IV has been used for comparative 
analysis of 8 to 64-bit logarithm computing devices. 
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1. INTRODUCTION 

Most often the computation of functions such as logarithms, and exponential or trigonometric 
functions are made through software-implemented algorithms applied to floating-point 
representations. Hardware or micro-programmed systems are mainly justified for special-purpose 
computing devices such as ASIC or embedded systems. As it is generally not possible to get an 
exact result, approximation methods have to be used together with error estimation techniques. 
Newton-Raphson, Goldschmidt algorithm, Taylor MacLaurin series or Polynomial approximations 
are the most common approaches to compute these functions. For trigonometric functions, CORDIC
(linear convergence) algorithms are well suited. Arguments included in the range [1, 2[ - floating-
point IEEE standard - are suitable for most approximation methods that need to limit the range of 
the argument. Whenever a specific range is imposed on the operands, a pre-scaling operation may 
be necessary: so an initial step may be included in the algorithmic procedure. Crucial questions for 
approximation methods are error estimation and effective rounding techniques; these problems start 
from tables design (first approximation LUT) up to the final result. Numerous methods, algorithms 
and implementations are proposed in the literature [1, 2, 3, 4, and 5]; the choice will depend upon 
the speed/cost compromises and other constraints imposed on the designer. Approximations 
methods usually assume available the four basic operations as arithmetic primitives at hand, 
together with look-up tables for a first “reasonably good” approximation to start from. This paper 
presents a practical implementation of ln (x) computation using a convergence method [2]. The 
function is approximated by a multiplicative normalization technique, however, thanks to the 
peculiarity of the multiplicative factor, namely (1 + ai .2-i ), with ai ∈ {-1, 0, 1}, the successive 
multiplications have been replaced by additions. Doing so, one saves the use of LUT’s and 
eventually reduces processing time, as addition is generally faster than multiplication. Furthermore 
an acceleration technique, based on skipping trivial steps, has been taken into account to improve 
performances. Implementations for FPGA are presented with time and slice cost evaluations. The 
Xilinx Virtex IV [6, 7, 8, 9] has been used for comparative analysis of 8 to 64-bit logarithm 
computing devices.  

2. THEORETICAL BACKGROUND - LOGARITHM FUNCTION APPROXIMATION BY 
A CONVERGENCE METHOD USING MULTIPLICATIVE NORMALIZATION 

Convergence methods consist in two parallel processes on two related sequences; typically, one 
sequence converges to 1 (multiplicative normalization) or 0 (additive normalization) while the other 
one converges to the function to approximate. Division using Goldschmidt’s algorithm is an 
example of multiplicative normalization: while the divisor sequence converges to 1, the dividend 
converges to the desired quotient.  

Define  

c(i) = 1 + ai .2-i ,     ai ∈ {-1, 0, 1} (1) 

as the multiplicative normalizing function, where ai is selected in such a way that the sequence  

x(i+1) = x(i).c(i) (auxiliary sequence) x(i)∈B(2n) (2) 

converges towards 1. Then, the sequence 

y(i+1) = y(i) – ln c(i) (3) 
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can be set to converge toward the result ln (x). If y(0) and x(0) are respectively set to 0 and to the 
argument x, and assuming x(p) ≅ 1, one can write 

x(p) = x.Πi c(i) ≅ 1 � 1/x ≅ Πi c(i);  y(p) = y – Σi ln c(i) = - ln Πi c(i) = ln (x). (4)   
                   

To make the convergence of (2) possible, the argument x needs to be in a range such that 
      

x.min (limp
����

∞∞∞∞Π1≤ i ≤p  c(i)) ≤ 1  and   x.max (limp
����

∞∞∞∞Π1≤ i ≤p c(i)) ≥ 1
     

that is  
        

x ≤ 1/limp
����

∞∞∞∞Π 1≤ i ≤p (1 - 2-i) and x ≥ 1/lim p
����

∞∞∞∞Π 1≤ i ≤p (1 + 2-i),  that is  0.42 ≤ x ≤ 3.45. (5)

This means that the argument x could need to be pre-scaled to fall in the range (5). An argument x
in the range [1, 2[ (such as e.g. a floating-point mantissa) fits perfectly; otherwise use a 
straightforward pre-scaling operation that replaces x by x’ such that x = x’.2s (x’ in [1, 2[); the 
algorithm computes ln (x’), then a final additive correction of s.ln (2) is completed. Observe that the 
lower bound of (5) can be lowered to 0.21, as (1+20) can be accepted as a first normalizing factor 
for computing x(1). 

In practical implementations of this algorithm, look-up tables are used to read out the successive 
values of ln (1±2-i), needed to compute y(i+1) of (3). For x in [½, 2[, ai can be selected according to 
the following rules: 

a0 = 0, (6) 

if x(i) > 1,  ai = - x-i (i),   i ≥ 1 (7) 

if x(i) < 1,  ai = + x-i(i).not (x-i-1(i)). i ≥ 1 (8) 

The above rules are justified by the following two lemmas, also showing that the convergence rate 
reaches precision p after p steps (linear convergence). 

Lemma 1. 

Let  

x(k) = 1 + 2-k + ε,           0 ≤ ε ≤ 2-k - 2-n,     k ≤ n, (9) 

be the n-bit auxiliary sequence vector at step k; then 

1 - 2-2k
≤ x(k).(1 - 2-k) < 1 + 2-k. (10) 

Proof  

The left inequality is trivial, it corresponds to ε = 0. The right inequality is deduced from the 
computation of x(k).(1 - 2-k) for ε maximum, i.e. 2-k - 2-n.  
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The practical interpretation of (10) is the impact of rule (7) on x(k+1) whenever x(k) is greater than 
one with a fractional part made up of a (k-1)-zero string and a one at position k. x(k+1) will be either 
greater than one, exhibiting a similar pattern with at least one zero more, or inferior to one (x0(k+1)
= 0) with at least 2k one’s as the header of the fractional part. In both cases, the target value x(p) = 
1 is approximated by x(k+1) with at least one bit more. 

Lemma 2. 

Let  

x(k) = 1 - 2-k + ε,           0 ≤ ε ≤ 2-k - 2-n,     k ≤ n, (11) 

be the n-bit auxiliary sequence vector at step k, then 

1 - 2-2k
≤ x(k).(1 + 2-k) < 1 + 2-k. (12) 

Proof  

The right inequality is trivial, it corresponds to ε = 0. The left inequality is deduced from the 
computation of x(k).(1 + 2-k) for ε maximum, i.e. 2-k - 2-n.  

The practical interpretation of (12) is the impact of rule (8) on x(k+1) whenever x(k) is less than one 
with a fractional part made up of a k-one string and a zero at position k+1. x(k+1) will be either less 
than one, exhibiting a similar pattern with at least 2k one’s as the header of the fractional part, or 
greater than one (x0(k+1) = 1) with at least k+1 zero’s as the header of the fractional part. In both 
cases, the target value x(p) = 1 is approximated by x(k+1) with at least one bit more. 

3. COMMENT  

1   The selection (6) is justified by the fact that a decision about multiplying by ai .2-i + 1 (1) cannot 
be made before knowing the next bit. Actually, considering bit x0 only (either 1 or 0) one cannot 
know whether the sequence x(i) is already 1 (end of convergence process) or not. 
  

2   When x(i) > 1, the strategy described by (7) consists in detecting the first non-zero bit of x(i) then 
multiplying by (-2-i + 1). When x(i) > 1, lemma 1 shows that, at step i, bits x-k > -i (i ) are all 
zero’s.  

3   When x(i) < 1, the strategy described by (8) consists in detecting the last non-zero bit of x(i) then 
multiplying by (2-i + 1). When x(i) ≤ 1, lemma 2 shows that, at step i, bits x-k > -i (i ) are all one’s. 

4. ALGORITHMS 

4.1. Algorithm 1 - Logarithm computation by multiplicative normalization 

The argument x is in [½, 2[: x = x(0).x(1) x(2) … x(n) . Let xx(i,j) be the component j of xx(i) = 
xx(i,0).xx(i,1) xx(i,2) … xx(i,n). Let lut(i) = ln (1+a(i).2-i) read from the table. 

a(0):= 0; c(0):= 1; xx(1):= x; yy(1):= 0; 
for i in 1 .. p-1 loop 
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if xx(i)= 1 then exit; end if; 
if xx(i)> 1 then a(i):= -xx(i,i) else a(i):= xx(i,i)*not(xx(i,i+1)); end if; 
c(i):= 1+a(i)*2**(-i); xx(i+1):= xx(i)*c(i); yy(i+1):= yy(i)-lut(i);  
end loop;

4.2. Algorithm 2 - Logarithm computation by multiplicative, one-shift and add, normalization 

The argument x is in [½, 2[: x = x(0).x(1) x(2) … x(n) . Let xx(i,j) be the component j of xx(i) = 
xx(i,0).xx(i,1) xx(i,2) … xx(i,n). Let lut(i) = ln (1+a(i).2-i) read from the table. 

a(0):= 0; xx(1):= x; yy(1):= 0; 
for i in 1 .. p-1 loop 

if xx(i)= 1 then exit; end if; 
if xx(i)> 1 then a(i):= -xx(i,i) else a(i):= xx(i,i)*not(xx(i,i+1)); end if; 
xx(i+1):= xx(i)+a(i)*xx(i)*2**(-i); yy(i+1):= yy(i)-lut(i); 
end loop;

4.3. Example 1 
  
In the following example the auxiliary sequence x(i) is computed in the binary system, while, for 
readability, the sequence y(i) is computed in decimal; the precision is then readily verified. The 
functional values ln (1±2-i) are assumed given by look-up tables. x is in [1, 2[. 

Let 
x = x(0) = x0. x-1 x-2 x-3 x-4 x-5 = 1.10111 = (1,71875)10 

y(0) = 0 

Compute ln (x) with precision p = 8  

i ai

c(i) 
ai.2

-i + 1 
x (i+1) 
x(i).c(i) ln c(i) 

y(i+1) 
y(i) – ln c(i)

- - - x(0) = 1.10111 - y(0) = 0 

0 a0 = 0 
0.2-0 + 1  
c(0) = 1 

(1.10111).(1)  
x(1) = 1.1011100  0 0

1 a1 = -1
-2-1 + 1  
c(1) = 0.1 

(1.1011100).(0.1) 
x(2) = 0.11011100 -0.69314718 0.69314718 

2 a2 = 1 
2-2 + 1  
c(2) = 1.01 

(0.11011100).(1.01) 
x(3) = 1.00010011 0.223143551 0.470003628 

3 a3 = 0 
0.2-3 + 1  
c(3) = 1 

(1.00010011).1 
x(4) = 1.00010011 0 0.470003628 

4 a4 = -1
-2-4 +1 
c(4) = 0.1111 

(1.00010011).(0.1111) 
 x(5) = 1.00000010 -0.064538521 0.534542149 

5 a5 = 0 
0.2-5 + 1  
c(5) = 1 

(1.00000010).1 
x(6) = 1.00000010 0 0.534542149 

6 a6 = 0 
0.2-6 + 1  
c(6) = 1 

(1.00000010).1 
x(7) = 1.00000010 0 0.534542149 

7 a7 = -1
-2-7 + 1  
c(7) = 0.1111111 

(1.00000010).(0.1111111) 
x(8) = 1 (rounded up) -0.007843177 0.542385326 
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The actual decimal value of ln (1.71875) is 0.541597282 ± 10-9, the difference from the computed 
result is less than 8.10-4

< 2-10.  
As it appears in the preceding example, whenever ai = 0, the only effect of step i on the computation 
process consists in incrementing the step number; both sequences x(i) and y(i) remain unchanged. 
So, by detecting strings of 0 or 1 in x(i), one could readily jump to the next non trivial computation 
step. The following example illustrates this feature. 

4.4. Example 2 
  
As in the preceding example 1, the auxiliary sequence x(i) is computed in the binary system, while 
sequence y(i) is computed in decimal. The functional values ln (1±2-i) are given by look-up tables. x 
is now in [½, 2[. Strings 00.. or 11.. are highlighted. The multiplications by (1±2-i) have been 
replaced by additions: x(i)±x(i)*2-i. 

Let 

x = x(0) = x0. x-1 x-2 x-3 x-4 x-5 = 0.10011 = (0,59375)10 

y(0) = 0 

Compute ln (x) with precision p = 10 

i ai

c(i) 
ai.2

-i + 1 
x (i+1) 
x(i).c(i) ln c(i) 

y(i+1) 
y(i) – ln c(i)

- - - x(0) = 0.1001100000 - y(0) = 0 

0 a0 = 0 
0.2-0 + 1  
c(0) = 1 

(0.10011).(1)  
x(1) = 0.1001100000  0 0

1 a1 = 1 
2-1 + 1  
c(1) = 1.1 

(0.1001100000).(1.1) 
x(2) = 0.1001100000 
       + 0.0100110000 
       = 0.1110010000

0.405465108 0.405465108 

2 a2 = 0 
- - 

x(3) = x(2) 
- - 

3 a3 = 1 
1.2-3 + 1  
c(3) = 1.001 

(0.111001).(1.001) 
x(4) = 0.111001 
       + 0.000111001 
       = 1.0000000010

0.117783035 0.523248143 

4�8 a4�a8

= 0 
- - 

x(9) = x(4) 
- - 

9 a9 = -1
- 2-9 + 1  
c(9) = 
0.111111111 

(1.0000000010) 
.(0.111111111) 
x(10) = 1.0000000010 
         - 0.0000000010 ..
         = 1 (rounded up) 

- 0.001955035 0.521293108 
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The actual decimal value of ln (0.59375) is - 0.521296923 ± 10-9, the difference from the computed 
result is less than 4.10-6 < 2-10.       

4.5. Implementation schemes 

4.5.1. Algorithm 1 

Figure one displays a possible implementation scheme for algorithm 1. The auxiliary sequence is 
computed through successive multiplication by 1, (1+2-i) or (1-2-i) according to the values of ai 

. 

   

LUT
ln (1+2-i)

LUT
ln (1-2-i)

step number
i ≥ 1

subtractor

Acc
cp

 x0 ,

combinational
circuit

x-i(i)

x-1 x-p

x-i(i).not(x-i-1(i))

...

1

0

0 0 0
0 1
1 0
1 1

0

multiplier

LUT
 (1+2-i)

LUT
 (1-2-i)

1 0 0
0 1
1 0
1 1

1

cp

i

+_

Figure 1.  Logarithm computation circuit using multiplicative normalization  

Figure 2 displays a possible implementation scheme for algorithm 2. The auxiliary sequence is 
computed through successive additions of 0, x(i)*2-i or - x(i)*2-i, according to the values of ai . 
Actually the algorithm materialized by figure two is a slight modification of algorithm 2, as follows. 

4.5.2. Modified algorithm 2  

a(0):= 0;  xx(1):= x; yy(1):= 0; 
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for i in 1 .. p-1 loop 
if xx(i)= 1 then exit; end if; 
if xx(i)> 1 then a’(i):= xx(i,i); xx(i+1):= xx(i)-a’(i)*xx(i)*2**(-i);  
else a’(i):= xx(i,i)*not(xx(i,i+1)); xx(i+1):= xx(i)+a’(i)*xx(i)*2**(-i); end if; 
yy(i+1):= yy(i)-lut(i);  
end loop;

LUT
ln (1+2-i)

LUT
ln (1-2-i)

step number
i ≥ 1

subtractor

Acc
cp

 x0 ,

combinational
circuit

x-i(i)

x-1 x-p

x-i(i).not(x-i-1(i))

...

1

0

0 0 0
0 1
1 0
1 1

0

cp

i

+_

subtractor
+ +

A/S
_

a'i

Right
Shifter

i

Figure 2.  Logarithm computation circuit using a multiplicative normalization circuit made of a 
shifter and an adder/subtractor 

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
II Workshop de Arquitecturas, Redes y Sistemas Operativos
_________________________________________________________________________

 
 

19



5. IMPLEMENTATIONS ON FPGA XILINX VIRTEX IV 

5.1. Algorithms 1 and 2 

Both ln(x) algorithms presented above have been implemented on a 10752-slice Virtex IV FPGA 
[6]. Synthesis has been achieved using Xilinx Synthesis Technology-XST, [7], while physical 
implementation used Integrated System Environment (ISE), [8]. A comparative analysis is 
presented for 8-bit, 16-bit, 32-bit and 64-bit ln(x) precisions. The corresponding precision is 
provided by the respective LUT’s. 
For implementing algorithm 1, among the available synthesis options, DSP48 units [9] have been 
selected for efficiency purposes. DSP48 is a dedicated unit involving an 18-bit multiplier, a 3-input 
48-bit adder together with the corresponding additional logic such as multiplexers. The aimed 
functional precision determines the required quantity ND of DSP48 unit, namely 

ND = (N/16)2 , (13) 

where N stands for N-bit precision. 

Table 1 displays the comparative values of cycle time T (single-step time), operating frequency F, 
ln(x)-operation frequency FOP, number of required DSP’s ND, and number of slices NS for 8-bit, 
16-bit, 32-bit and 64-bit precision and for implementations of algorithms 1 and 2.  

Table 1: Performances of algorithms 1 and 2 implemented on Xilinx Virtex IV (device xc4vlx25-
12ff668) 

Algorithm 1 (multiplier) Algorithm 2 (one-shift & Add) 
N T 

(ns) 
F 

(Mhz) 
FOP 
(Mhz) 

ND NS T 
(ns)

F 
(Mhz) 

FOP 
(Mhz) 

ND NS 

8 bits 6.2 161 23.0 1 44 (0.4%) 4.5 222 31.746 - 52 (0.5%) 
16 bits 6.7 149 9.95 1 92 (0.9%) 5.8 172 11.494 - 115 (1%) 
32 bits 12.9 77 2.50 4 221 (2%) 7.2 138 4.480 - 290 (2.7%) 
64 bits 20 50 0.793 16 639 (5.9%) 8.3 120 1.912 - 707(6.6%) 

ln(x) operation frequency FOP is computed as 

FOP = F/(N-1) (14) 

Table 2 enhances the improvements of FOP‘s for Algorithm 2 with respect to Algorithm 1 and the 
related increases of slice costs. It can be observed that the operating speed-up is paid by some 
additional slice cost but for N = 32 and N = 64, the overall performance is reached at a very 
reasonable cost. It can be observed that the improvements are more significant for higher values of 
N, due to the quadratic increase of needed DSP48’s.  

Table 2: Comparative FOP and slice costs of algorithms 1 and 2 implementations 

N FOP(2) / FOP(1) NS(2) / NS(1)
8 bits 1.38 1.18 
16 bits 1.15 1.25 
32 bits 1.79 1.31 
64 bits 2.41 1.11 
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5.2. Algorithm 3 - acceleration of algorithm 2. 

An important feature of the ln(x) algorithms presented in section 4, is the possibility to skip steps 
according to eventual values zero of ai’s. As a matter of fact whenever ai = 0, neither c(i) nor y(i)
have to be modified. According to rules (7) and (8), one can skip as many steps (say s) between 
position -i and position -i-s, as allowed by the length of eventual 0-strings (within x(i)>1) or 1-
strings (within x(i)<1). One can shows statistically that the average quantity of steps to be skipped, 
using this acceleration procedure, is superior to 50 % of what would be required by the straight p-
step procedure for precision p calculation. Exhaustive tests have been handled up to 16-bit 
operands, while statistic experiments (for normalized [1,2[ operands) exhibited Gaussian 
distributions. Table 3 displays the experimental average latency (L) in terms of the average numbers 
of required cycles for 8-bit, 16-bit, 32-bit and 64-bit operands. The drawback of step skipping is the 
rise of cycle length, due to the need of an additional circuit to set the skip length (s). Actually the 
hardware at hand plays a key role in additional costs and subsequent performance improvements. 
Table 4 displays the overall performances of the accelerated algorithm 2 while table 5 displays the 
comparative FOP and slice costs of algorithm 2 with respect to the accelerated version (algorithm 
3). 

Table3: Average latency for algorithm 3 

N L 
8 bits 3.4 

16 bits 7.1 
32 bits 15.1 
64 bits 31.1 

Table 4: Performances of algorithm 3 implemented on Xilinx Virtex IV (device xc4vlx25-12ff668) 

Accelerated algorithm 2 (Algorithm 3)
T 

(ns) 
F 

(Mhz) 
FOP 
(Mhz) 

NS 

8 bits 6.4 156 45.955 59 (0.5%) 
16 bits 8.9 112 15.825 147 (1.4%) 
32 bits 11.5 86 5.758 397 (3.7%) 
64 bits 16.3 61 1.978 1217 (11.3%) 

Table 5: Comparative FOP and slice costs of algorithms 3 and 2 implementations. 

N FOP(3) / FOP(2) NS(3) / NS(2)
8 bits 1.45 1.13 
16 bits 1.37 1.27 
32 bits 1.28 1.38 
64 bits 1.03 1.72 

Table 5 shows that the performances (FOP) are decreasing as N increases. This means that as N 
increases the additional step delay is overcoming the reduction in the number of steps. The NS
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factor is directly related to the step complexity. In order to take a better profit of the acceleration 
technique, some optimization technique is needed and remains an open question.

6. CONCLUSION 

Starting from a classical ln(x) computation algorithm using convergence method with multiplicative 
normalization, some FPGA implementations have been carried out. The used FPGA device belongs 
to the Xilinx Virtex4 family. 
On first noticed that the multiplication steps may be usefully replaced by a shift and add procedure 
using a shifter and an adder-subtractor. This alternative has proved to be faster and cheaper. To 
emphasize this point, one first implemented algorithm 1 (multiplication) using dedicated DSP48 
multiplier cells embedded in the device at hand. Then the algorithm 2 (shift and add) has been 
implemented and provided up to 140 % performance improvements (FOP) - for 64-bit operand, 
while the hardware cost augmented by 11 % only. Finally the acceleration of the process (skipping 
trivial steps) has been taken into account to improve performances, but the reduction in number of 
steps appeared to be partially compensated by an additional delay generated by step length. So, the 
advantages vanish as N increases.   
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