
An improved convergence algorithm to compute ln(x) – FPGA
implementations

Géry J. A. Bioul, Martín Vázquez, Héctor N. Acosta, Martín Oriol*
Universidad Fasta, Facultad de Ingeniería

 Gascón 3145 – B7600FNK – Mar del Plata. Argentina.
 www.ufasta.edu.ar

Abstract

This paper presents FPGA implementations of classical algorithms for computing ln(x) with some
improvement at the level of the multiplication steps, and step skipping techniques. One starts from
a practical implementation of ln(x) computation using a convergence method. The function is
approximated by a multiplicative normalization technique, however, thanks to the peculiarity of the
multiplicative factor, namely (1 + ai .2-i), with ai ∈ {-1, 0, 1}, the successive multiplications have
been replaced by additions. Doing so, one saves the use of LUT’s and eventually reduces
processing time, as addition is generally faster than multiplication. Further, the acceleration
technique, based on skipping trivial steps, improves performances. Implementations for FPGA are
presented with time and slice cost evaluations. The Xilinx Virtex IV has been used for comparative
analysis of 8 to 64-bit logarithm computing devices.

Keywords: FPGA, ln(x), convergence method, multiplicative normalization, Xilinx Virtex IV.*

* This project is supported by FASTA University, Faculty of Engineering, B7600FNK Mar del Plata, Argentina.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

12

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. INTRODUCTION

Most often the computation of functions such as logarithms, and exponential or trigonometric
functions are made through software-implemented algorithms applied to floating-point
representations. Hardware or micro-programmed systems are mainly justified for special-purpose
computing devices such as ASIC or embedded systems. As it is generally not possible to get an
exact result, approximation methods have to be used together with error estimation techniques.
Newton-Raphson, Goldschmidt algorithm, Taylor MacLaurin series or Polynomial approximations
are the most common approaches to compute these functions. For trigonometric functions, CORDIC
(linear convergence) algorithms are well suited. Arguments included in the range [1, 2[- floating-
point IEEE standard - are suitable for most approximation methods that need to limit the range of
the argument. Whenever a specific range is imposed on the operands, a pre-scaling operation may
be necessary: so an initial step may be included in the algorithmic procedure. Crucial questions for
approximation methods are error estimation and effective rounding techniques; these problems start
from tables design (first approximation LUT) up to the final result. Numerous methods, algorithms
and implementations are proposed in the literature [1, 2, 3, 4, and 5]; the choice will depend upon
the speed/cost compromises and other constraints imposed on the designer. Approximations
methods usually assume available the four basic operations as arithmetic primitives at hand,
together with look-up tables for a first “reasonably good” approximation to start from. This paper
presents a practical implementation of ln (x) computation using a convergence method [2]. The
function is approximated by a multiplicative normalization technique, however, thanks to the
peculiarity of the multiplicative factor, namely (1 + ai .2-i), with ai ∈ {-1, 0, 1}, the successive
multiplications have been replaced by additions. Doing so, one saves the use of LUT’s and
eventually reduces processing time, as addition is generally faster than multiplication. Furthermore
an acceleration technique, based on skipping trivial steps, has been taken into account to improve
performances. Implementations for FPGA are presented with time and slice cost evaluations. The
Xilinx Virtex IV [6, 7, 8, 9] has been used for comparative analysis of 8 to 64-bit logarithm
computing devices.

2. THEORETICAL BACKGROUND - LOGARITHM FUNCTION APPROXIMATION BY
A CONVERGENCE METHOD USING MULTIPLICATIVE NORMALIZATION

Convergence methods consist in two parallel processes on two related sequences; typically, one
sequence converges to 1 (multiplicative normalization) or 0 (additive normalization) while the other
one converges to the function to approximate. Division using Goldschmidt’s algorithm is an
example of multiplicative normalization: while the divisor sequence converges to 1, the dividend
converges to the desired quotient.

Define

c(i) = 1 + ai .2-i , ai ∈ {-1, 0, 1} (1)

as the multiplicative normalizing function, where ai is selected in such a way that the sequence

x(i+1) = x(i).c(i) (auxiliary sequence) x(i)∈B(2n) (2)

converges towards 1. Then, the sequence

y(i+1) = y(i) – ln c(i) (3)

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

13

can be set to converge toward the result ln (x). If y(0) and x(0) are respectively set to 0 and to the
argument x, and assuming x(p) ≅ 1, one can write

x(p) = x.Πi c(i) ≅ 1 � 1/x ≅ Πi c(i); y(p) = y – Σi ln c(i) = - ln Πi c(i) = ln (x). (4)

To make the convergence of (2) possible, the argument x needs to be in a range such that

x.min (limp
����

∞∞∞∞Π1≤ i ≤p c(i)) ≤ 1 and x.max (limp
����

∞∞∞∞Π1≤ i ≤p c(i)) ≥ 1

that is

x ≤ 1/limp
����

∞∞∞∞Π 1≤ i ≤p (1 - 2-i) and x ≥ 1/lim p
����

∞∞∞∞Π 1≤ i ≤p (1 + 2-i), that is 0.42 ≤ x ≤ 3.45. (5)

This means that the argument x could need to be pre-scaled to fall in the range (5). An argument x
in the range [1, 2[(such as e.g. a floating-point mantissa) fits perfectly; otherwise use a
straightforward pre-scaling operation that replaces x by x’ such that x = x’.2s (x’ in [1, 2[); the
algorithm computes ln (x’), then a final additive correction of s.ln (2) is completed. Observe that the
lower bound of (5) can be lowered to 0.21, as (1+20) can be accepted as a first normalizing factor
for computing x(1).

In practical implementations of this algorithm, look-up tables are used to read out the successive
values of ln (1±2-i), needed to compute y(i+1) of (3). For x in [½, 2[, ai can be selected according to
the following rules:

a0 = 0, (6)

if x(i) > 1, ai = - x-i (i), i ≥ 1 (7)

if x(i) < 1, ai = + x-i(i).not (x-i-1(i)). i ≥ 1 (8)

The above rules are justified by the following two lemmas, also showing that the convergence rate
reaches precision p after p steps (linear convergence).

Lemma 1.

Let

x(k) = 1 + 2-k + ε, 0 ≤ ε ≤ 2-k - 2-n, k ≤ n, (9)

be the n-bit auxiliary sequence vector at step k; then

1 - 2-2k
≤ x(k).(1 - 2-k) < 1 + 2-k. (10)

Proof

The left inequality is trivial, it corresponds to ε = 0. The right inequality is deduced from the
computation of x(k).(1 - 2-k) for ε maximum, i.e. 2-k - 2-n.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

14

The practical interpretation of (10) is the impact of rule (7) on x(k+1) whenever x(k) is greater than
one with a fractional part made up of a (k-1)-zero string and a one at position k. x(k+1) will be either
greater than one, exhibiting a similar pattern with at least one zero more, or inferior to one (x0(k+1)
= 0) with at least 2k one’s as the header of the fractional part. In both cases, the target value x(p) =
1 is approximated by x(k+1) with at least one bit more.

Lemma 2.

Let

x(k) = 1 - 2-k + ε, 0 ≤ ε ≤ 2-k - 2-n, k ≤ n, (11)

be the n-bit auxiliary sequence vector at step k, then

1 - 2-2k
≤ x(k).(1 + 2-k) < 1 + 2-k. (12)

Proof

The right inequality is trivial, it corresponds to ε = 0. The left inequality is deduced from the
computation of x(k).(1 + 2-k) for ε maximum, i.e. 2-k - 2-n.

The practical interpretation of (12) is the impact of rule (8) on x(k+1) whenever x(k) is less than one
with a fractional part made up of a k-one string and a zero at position k+1. x(k+1) will be either less
than one, exhibiting a similar pattern with at least 2k one’s as the header of the fractional part, or
greater than one (x0(k+1) = 1) with at least k+1 zero’s as the header of the fractional part. In both
cases, the target value x(p) = 1 is approximated by x(k+1) with at least one bit more.

3. COMMENT

1 The selection (6) is justified by the fact that a decision about multiplying by ai .2-i + 1 (1) cannot
be made before knowing the next bit. Actually, considering bit x0 only (either 1 or 0) one cannot
know whether the sequence x(i) is already 1 (end of convergence process) or not.

2 When x(i) > 1, the strategy described by (7) consists in detecting the first non-zero bit of x(i) then
multiplying by (-2-i + 1). When x(i) > 1, lemma 1 shows that, at step i, bits x-k > -i (i) are all
zero’s.

3 When x(i) < 1, the strategy described by (8) consists in detecting the last non-zero bit of x(i) then
multiplying by (2-i + 1). When x(i) ≤ 1, lemma 2 shows that, at step i, bits x-k > -i (i) are all one’s.

4. ALGORITHMS

4.1. Algorithm 1 - Logarithm computation by multiplicative normalization

The argument x is in [½, 2[: x = x(0).x(1) x(2) … x(n) . Let xx(i,j) be the component j of xx(i) =
xx(i,0).xx(i,1) xx(i,2) … xx(i,n). Let lut(i) = ln (1+a(i).2-i) read from the table.

a(0):= 0; c(0):= 1; xx(1):= x; yy(1):= 0;
for i in 1 .. p-1 loop

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

15

if xx(i)= 1 then exit; end if;
if xx(i)> 1 then a(i):= -xx(i,i) else a(i):= xx(i,i)*not(xx(i,i+1)); end if;
c(i):= 1+a(i)*2**(-i); xx(i+1):= xx(i)*c(i); yy(i+1):= yy(i)-lut(i);
end loop;

4.2. Algorithm 2 - Logarithm computation by multiplicative, one-shift and add, normalization

The argument x is in [½, 2[: x = x(0).x(1) x(2) … x(n) . Let xx(i,j) be the component j of xx(i) =
xx(i,0).xx(i,1) xx(i,2) … xx(i,n). Let lut(i) = ln (1+a(i).2-i) read from the table.

a(0):= 0; xx(1):= x; yy(1):= 0;
for i in 1 .. p-1 loop

if xx(i)= 1 then exit; end if;
if xx(i)> 1 then a(i):= -xx(i,i) else a(i):= xx(i,i)*not(xx(i,i+1)); end if;
xx(i+1):= xx(i)+a(i)*xx(i)*2**(-i); yy(i+1):= yy(i)-lut(i);
end loop;

4.3. Example 1

In the following example the auxiliary sequence x(i) is computed in the binary system, while, for
readability, the sequence y(i) is computed in decimal; the precision is then readily verified. The
functional values ln (1±2-i) are assumed given by look-up tables. x is in [1, 2[.

Let
x = x(0) = x0. x-1 x-2 x-3 x-4 x-5 = 1.10111 = (1,71875)10

y(0) = 0

Compute ln (x) with precision p = 8

i ai

c(i)
ai.2

-i + 1
x (i+1)
x(i).c(i) ln c(i)

y(i+1)
y(i) – ln c(i)

- - - x(0) = 1.10111 - y(0) = 0

0 a0 = 0
0.2-0 + 1
c(0) = 1

(1.10111).(1)
x(1) = 1.1011100 0 0

1 a1 = -1
-2-1 + 1
c(1) = 0.1

(1.1011100).(0.1)
x(2) = 0.11011100 -0.69314718 0.69314718

2 a2 = 1
2-2 + 1
c(2) = 1.01

(0.11011100).(1.01)
x(3) = 1.00010011 0.223143551 0.470003628

3 a3 = 0
0.2-3 + 1
c(3) = 1

(1.00010011).1
x(4) = 1.00010011 0 0.470003628

4 a4 = -1
-2-4 +1
c(4) = 0.1111

(1.00010011).(0.1111)
 x(5) = 1.00000010 -0.064538521 0.534542149

5 a5 = 0
0.2-5 + 1
c(5) = 1

(1.00000010).1
x(6) = 1.00000010 0 0.534542149

6 a6 = 0
0.2-6 + 1
c(6) = 1

(1.00000010).1
x(7) = 1.00000010 0 0.534542149

7 a7 = -1
-2-7 + 1
c(7) = 0.1111111

(1.00000010).(0.1111111)
x(8) = 1 (rounded up) -0.007843177 0.542385326

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

16

The actual decimal value of ln (1.71875) is 0.541597282 ± 10-9, the difference from the computed
result is less than 8.10-4

< 2-10.
As it appears in the preceding example, whenever ai = 0, the only effect of step i on the computation
process consists in incrementing the step number; both sequences x(i) and y(i) remain unchanged.
So, by detecting strings of 0 or 1 in x(i), one could readily jump to the next non trivial computation
step. The following example illustrates this feature.

4.4. Example 2

As in the preceding example 1, the auxiliary sequence x(i) is computed in the binary system, while
sequence y(i) is computed in decimal. The functional values ln (1±2-i) are given by look-up tables. x
is now in [½, 2[. Strings 00.. or 11.. are highlighted. The multiplications by (1±2-i) have been
replaced by additions: x(i)±x(i)*2-i.

Let

x = x(0) = x0. x-1 x-2 x-3 x-4 x-5 = 0.10011 = (0,59375)10

y(0) = 0

Compute ln (x) with precision p = 10

i ai

c(i)
ai.2

-i + 1
x (i+1)
x(i).c(i) ln c(i)

y(i+1)
y(i) – ln c(i)

- - - x(0) = 0.1001100000 - y(0) = 0

0 a0 = 0
0.2-0 + 1
c(0) = 1

(0.10011).(1)
x(1) = 0.1001100000 0 0

1 a1 = 1
2-1 + 1
c(1) = 1.1

(0.1001100000).(1.1)
x(2) = 0.1001100000
 + 0.0100110000
 = 0.1110010000

0.405465108 0.405465108

2 a2 = 0
- -

x(3) = x(2)
- -

3 a3 = 1
1.2-3 + 1
c(3) = 1.001

(0.111001).(1.001)
x(4) = 0.111001
 + 0.000111001
 = 1.0000000010

0.117783035 0.523248143

4�8 a4�a8

= 0
- -

x(9) = x(4)
- -

9 a9 = -1
- 2-9 + 1
c(9) =
0.111111111

(1.0000000010)
.(0.111111111)
x(10) = 1.0000000010
 - 0.0000000010 ..
 = 1 (rounded up)

- 0.001955035 0.521293108

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

17

The actual decimal value of ln (0.59375) is - 0.521296923 ± 10-9, the difference from the computed
result is less than 4.10-6 < 2-10.

4.5. Implementation schemes

4.5.1. Algorithm 1

Figure one displays a possible implementation scheme for algorithm 1. The auxiliary sequence is
computed through successive multiplication by 1, (1+2-i) or (1-2-i) according to the values of ai

.

LUT
ln (1+2-i)

LUT
ln (1-2-i)

step number
i ≥ 1

subtractor

Acc
cp

 x0 ,

combinational
circuit

x-i(i)

x-1 x-p

x-i(i).not(x-i-1(i))

...

1

0

0 0 0
0 1
1 0
1 1

0

multiplier

LUT
 (1+2-i)

LUT
 (1-2-i)

1 0 0
0 1
1 0
1 1

1

cp

i

+_

Figure 1. Logarithm computation circuit using multiplicative normalization

Figure 2 displays a possible implementation scheme for algorithm 2. The auxiliary sequence is
computed through successive additions of 0, x(i)*2-i or - x(i)*2-i, according to the values of ai .
Actually the algorithm materialized by figure two is a slight modification of algorithm 2, as follows.

4.5.2. Modified algorithm 2

a(0):= 0; xx(1):= x; yy(1):= 0;

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

18

for i in 1 .. p-1 loop
if xx(i)= 1 then exit; end if;
if xx(i)> 1 then a’(i):= xx(i,i); xx(i+1):= xx(i)-a’(i)*xx(i)*2**(-i);
else a’(i):= xx(i,i)*not(xx(i,i+1)); xx(i+1):= xx(i)+a’(i)*xx(i)*2**(-i); end if;
yy(i+1):= yy(i)-lut(i);
end loop;

LUT
ln (1+2-i)

LUT
ln (1-2-i)

step number
i ≥ 1

subtractor

Acc
cp

 x0 ,

combinational
circuit

x-i(i)

x-1 x-p

x-i(i).not(x-i-1(i))

...

1

0

0 0 0
0 1
1 0
1 1

0

cp

i

+_

subtractor
+ +

A/S
_

a'i

Right
Shifter

i

Figure 2. Logarithm computation circuit using a multiplicative normalization circuit made of a
shifter and an adder/subtractor

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

19

5. IMPLEMENTATIONS ON FPGA XILINX VIRTEX IV

5.1. Algorithms 1 and 2

Both ln(x) algorithms presented above have been implemented on a 10752-slice Virtex IV FPGA
[6]. Synthesis has been achieved using Xilinx Synthesis Technology-XST, [7], while physical
implementation used Integrated System Environment (ISE), [8]. A comparative analysis is
presented for 8-bit, 16-bit, 32-bit and 64-bit ln(x) precisions. The corresponding precision is
provided by the respective LUT’s.
For implementing algorithm 1, among the available synthesis options, DSP48 units [9] have been
selected for efficiency purposes. DSP48 is a dedicated unit involving an 18-bit multiplier, a 3-input
48-bit adder together with the corresponding additional logic such as multiplexers. The aimed
functional precision determines the required quantity ND of DSP48 unit, namely

ND = (N/16)2 , (13)

where N stands for N-bit precision.

Table 1 displays the comparative values of cycle time T (single-step time), operating frequency F,
ln(x)-operation frequency FOP, number of required DSP’s ND, and number of slices NS for 8-bit,
16-bit, 32-bit and 64-bit precision and for implementations of algorithms 1 and 2.

Table 1: Performances of algorithms 1 and 2 implemented on Xilinx Virtex IV (device xc4vlx25-
12ff668)

Algorithm 1 (multiplier) Algorithm 2 (one-shift & Add)
N T

(ns)
F

(Mhz)
FOP
(Mhz)

ND NS T
(ns)

F
(Mhz)

FOP
(Mhz)

ND NS

8 bits 6.2 161 23.0 1 44 (0.4%) 4.5 222 31.746 - 52 (0.5%)
16 bits 6.7 149 9.95 1 92 (0.9%) 5.8 172 11.494 - 115 (1%)
32 bits 12.9 77 2.50 4 221 (2%) 7.2 138 4.480 - 290 (2.7%)
64 bits 20 50 0.793 16 639 (5.9%) 8.3 120 1.912 - 707(6.6%)

ln(x) operation frequency FOP is computed as

FOP = F/(N-1) (14)

Table 2 enhances the improvements of FOP‘s for Algorithm 2 with respect to Algorithm 1 and the
related increases of slice costs. It can be observed that the operating speed-up is paid by some
additional slice cost but for N = 32 and N = 64, the overall performance is reached at a very
reasonable cost. It can be observed that the improvements are more significant for higher values of
N, due to the quadratic increase of needed DSP48’s.

Table 2: Comparative FOP and slice costs of algorithms 1 and 2 implementations

N FOP(2) / FOP(1) NS(2) / NS(1)
8 bits 1.38 1.18
16 bits 1.15 1.25
32 bits 1.79 1.31
64 bits 2.41 1.11

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

20

5.2. Algorithm 3 - acceleration of algorithm 2.

An important feature of the ln(x) algorithms presented in section 4, is the possibility to skip steps
according to eventual values zero of ai’s. As a matter of fact whenever ai = 0, neither c(i) nor y(i)
have to be modified. According to rules (7) and (8), one can skip as many steps (say s) between
position -i and position -i-s, as allowed by the length of eventual 0-strings (within x(i)>1) or 1-
strings (within x(i)<1). One can shows statistically that the average quantity of steps to be skipped,
using this acceleration procedure, is superior to 50 % of what would be required by the straight p-
step procedure for precision p calculation. Exhaustive tests have been handled up to 16-bit
operands, while statistic experiments (for normalized [1,2[operands) exhibited Gaussian
distributions. Table 3 displays the experimental average latency (L) in terms of the average numbers
of required cycles for 8-bit, 16-bit, 32-bit and 64-bit operands. The drawback of step skipping is the
rise of cycle length, due to the need of an additional circuit to set the skip length (s). Actually the
hardware at hand plays a key role in additional costs and subsequent performance improvements.
Table 4 displays the overall performances of the accelerated algorithm 2 while table 5 displays the
comparative FOP and slice costs of algorithm 2 with respect to the accelerated version (algorithm
3).

Table3: Average latency for algorithm 3

N L
8 bits 3.4

16 bits 7.1
32 bits 15.1
64 bits 31.1

Table 4: Performances of algorithm 3 implemented on Xilinx Virtex IV (device xc4vlx25-12ff668)

Accelerated algorithm 2 (Algorithm 3)
T

(ns)
F

(Mhz)
FOP
(Mhz)

NS

8 bits 6.4 156 45.955 59 (0.5%)
16 bits 8.9 112 15.825 147 (1.4%)
32 bits 11.5 86 5.758 397 (3.7%)
64 bits 16.3 61 1.978 1217 (11.3%)

Table 5: Comparative FOP and slice costs of algorithms 3 and 2 implementations.

N FOP(3) / FOP(2) NS(3) / NS(2)
8 bits 1.45 1.13
16 bits 1.37 1.27
32 bits 1.28 1.38
64 bits 1.03 1.72

Table 5 shows that the performances (FOP) are decreasing as N increases. This means that as N
increases the additional step delay is overcoming the reduction in the number of steps. The NS

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

21

factor is directly related to the step complexity. In order to take a better profit of the acceleration
technique, some optimization technique is needed and remains an open question.

6. CONCLUSION

Starting from a classical ln(x) computation algorithm using convergence method with multiplicative
normalization, some FPGA implementations have been carried out. The used FPGA device belongs
to the Xilinx Virtex4 family.
On first noticed that the multiplication steps may be usefully replaced by a shift and add procedure
using a shifter and an adder-subtractor. This alternative has proved to be faster and cheaper. To
emphasize this point, one first implemented algorithm 1 (multiplication) using dedicated DSP48
multiplier cells embedded in the device at hand. Then the algorithm 2 (shift and add) has been
implemented and provided up to 140 % performance improvements (FOP) - for 64-bit operand,
while the hardware cost augmented by 11 % only. Finally the acceleration of the process (skipping
trivial steps) has been taken into account to improve performances, but the reduction in number of
steps appeared to be partially compensated by an additional delay generated by step length. So, the
advantages vanish as N increases.

7. BIBLIOGRAPHY

[1] J. Cao, B.W. Wei, and J. Cheng, “High-Performance Architecture for Elementary Functions
Generation,” Proc. 15th IEEE Symp. Computer Arithmetic, pp.136-144, 2001.

[2] J-P. Deschamps, G. Bioul, and G. Sutter, Synthesis of Arithmetic Circuits, FPGA, ASIC, and
Embedded Systems, John Wiley Interscience, New York 2006.

[3] M.D. Ercegovac, “FPGA Implementation of Polynomial Evaluation Algorithms,” Proc. of
SPIE Photonics East ’95 Conference, Vol. 2607, pp177-188,1995.

[4] V. Paliouras, K. Karagianni, and T. Stouraitis, “A Floating-point Processor for Fast and
Accurate Sine/Cosine Evaluation,” IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal processing, Vol. 47 no5, pp. 441-451, May 2000.

[5] P.K. Tang, “Table Look-up Algorithms for Elementary Functions and their Error Analysis,”
Proc. 10th IEEE Symp. Computer Arithmetic, pp.232-236, 1991.

[6] Xilinx inc., Virtex-4 User Guide, http://www.xilinx.com, April 2007.
[7] Xilinx inc., XST User Guide-82i, http://www.xilinx.com, 2007.
[8] Xilinx inc., ISE 8.2 documentation, http://www.xilinx.com, 2007.
[9] Xilinx inc., Xtreme DSP for Virtex-4 FPGA’s User Guide, http://www.xilinx.com, June 2007.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

22

