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Resonance production and decays
in nucleon-nucleon collisions with HADES

Abstract

The High Acceptance Di-Electron Spectrometer (HADES), installed at GSI, allows
to study both hadron and rare dilepton production in a fixed target experiments in
the beam energy range of a few GeV per nucleon, reaching up to 4.5 GeV for a pro-
ton beam and 1.5 GeV/nucleon for a heavy-ion beam. The present interpretation of
dilepton spectra measured in heavy-ion reactions at various energies is based on had-
ronic models. They predict in-medium modifications of the ρ−meson spectral function
due to its coupling to resonance-hole states. In the energy range of the HADES ex-
periments, the ρ−meson can be produced in primary NN or secondary πN collisions.
The measurement of a dielectron emission in elementary reactions opens the possibility
to constrain the interpretation of medium effects and better understand the relation
between the couplings of the baryonic resonances to the ρ−meson. The Dalitz decay
of baryonic resonances (R → Ne+e−) gives access to the electromagnetic structure of
baryonic transitions in a timelike region at small positive values of the squared four-
momentum transferred, where couplings to light vector ρ/ω mesons are expected.

In this monograph the systematic studies of resonance excitation and decays, mea-
sured in NN collisions with the increasing energy, are presented. First, the pp collisions
at 1.25 GeV allowed to measure exclusive channels with one-pion in the final state. They
were put to extended studies based on various observables in one-pion exchange models
and with solutions obtained within the framework of a partial wave analysis (PWA) of
the Bonn-Gatchina group. The obtained ∆(1232) production cross section was further
used for the first experimental extraction of the ∆ Dalitz decay and compared to the
models of the electromagnetic transition form factors. The branching ratio of this decay,
achieved in the exclusive pp → ppe+e− channel, has been included in the 2018 Review
of Particle Physics.

In quasi-free np collisions at 1.25 GeV, two-pion production was studied to con-
clude on double−∆, N(1440), and ∆(1600) excitation with the aim of studying the
production of the ρ−meson in the isospin I = 1 channel. In addition, this analysis pro-
vided an independent verification of the existence of the d∗(2370) resonance observed
by the WASA Collaboration. Furthermore, a strong excess of the dielectron yield, in
comparison to the pp reaction at 1.25 GeV, was observed in the e+e− inclusive channel.
This reaction is well suited for studies of the np bremsstrahlung with strong isospin
effects effects predicted by one-boson-exchange models. The excess was confirmed also
in the e+e− exclusive channel and the data were compared with the models explaining
the enhancement at large invariant masses due to the off-shell ρ−meson production.

The exclusive hadronic channels with one-pion and η−meson were identified in pp
collisions at 2.2 GeV. The π0 and η exclusive production cross sections were extracted
and compared to the predictions of a resonance model. Further, the analysis of the
ppe+e− exclusive channel allowed for the reconstruction of π0 and η Dalitz decays. The
angular distributions of e+ or e− in the γ∗ rest frame were determined to be in agree-
ment with the QED prediction for pseudoscalar mesons.
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In the pp collisions measured at energy T = 3.5 GeV, a peak corresponding to di-
rect ω decays, with 2% mass resolution, was reconstructed. The inclusive production
cross sections for ω and ρ mesons were determined from dielectron experimental data
for the first time at this energy. In addition, the upper bound for the direct η → e+e−

decay was defined. The exclusive one pion production (pp→ ppπ0 and pp→ npπ+) and
dielectron (pp → ppe+e−) channels were used to extract the N∗ and ∆ resonance pro-
duction cross sections. The e+e− emission from baryonic decays was identified with the
dielectron invariant mass distribution strongly modified by the intermediate ρ−meson.
This observation has been interpreted within the Vector Dominance Model of the reso-
nance electromagnetic transition form factor. Comparison with various transport mod-
els (PYTHIA, GiBUU/SMASH, HSD, UrQMD) unraveled the ambiguities of the model
descriptions and the important role of the intermediate ρ production.

To tackle this problem a systematic investigation focused on the role of N(1520)
production and decay in pion-induced reactions was started. Data at four different
pion beam momenta (656, 690, 748 and 800 MeV/c) were collected in π−p collisions. In
the outlook, exclusive channels with one pion (π−p), two pions (nπ+π−) and dileptons
(ne+e−) in the final state were discussed, with a special interest for the ρN channel,
since it has a direct impact on the in-medium distortions of the ρ−meson spectral
function. Pion beam experiments will be continued in GSI in the next years, then the
HADES experimental program will be pursued using the proton and ion beams at FAIR.

This monograph has been extended by Appendices covering details on dielectron
production channels as well as the models of the electromagnetic transition form factors
for baryon resonance Dalitz decays. The HADES spectrometer and the analysis strategy
were described, too. The author hopes that this book will serve not only as a report on
the scientific achievements but also as a source of information on resonance production
and decays in nucleon-nucleon collisions at energies of a few GeV.
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Chapter 1

Baryon resonances

The path to understanding of nuclear forces usually begins with the studies of el-
ementary reactions. High precision measurements and final state complete reconstruc-
tion provide invaluable insight into the nature of nucleon-nucleon interactions. Those
studies have to be performed with increasing energy since new processes are involved
above the one-pion and two-pion production thresholds. The key issues in this research
are the investigation of baryon resonances, i.e. short-lived excited states of nucleons.
Resonance is identified as a pole in the complex energy plane located on the unphysical
sheet closest to the physical one (called second Riemann sheet). From experimental
point of view a resonance manifests as a peak in excitation function, located around
a certain energy in differential cross section. Its nature is probed in scattering exper-
iments and is characterized not only by the complex pole position of the scattering
amplitude but also by the couplings to the various channels and hence decay branching
ratios. Particularly the important region of 1 − 2 GeV is occupied by light-flavoured
baryons. Such baryons are built out of three quarks (u, d, s) with possible isospin
either 1/2 or 3/2. Accounting for orbital motion, a supermultiplet SU(6)×O(3) defines
all combinations resulting in 434 possible resonances. It highly exceeds the number of
112 identified resonances (Particle Data Group [PDG16]) many of which do not have
well determined parameters. The resonance properties were tackled by many models,
including quark models [Cre13], Dyson-Schwinger approach [Rob94] and lattice QCD
calculations [Edw11]. Those models are still confronting the fundamental question of
"missing resonances". A possible explanation (as suggested in Ref. [Kon80]) lies in the
fact that missing states can couple weakly to the Nπ channel, which is the main source
of knowledge about baryon properties. Additional difficulty stems from the fact that
resonance spectral functions are usually quite broad and various resonances overlap.

The excited states of the nucleon have been studied in many formation and pro-
duction experiments, and their Breit-Wigner masses and widths, the pole positions, and
the elasticities of the N and ∆ resonances were first obtained from partial wave analysis
of πN total, elastic, and charge-exchange scattering data. The former naming conven-
tion (used up to the year 2010 in the Review of Particle Physics [PDG10]) was related
to labeling resonances with the incoming pion-nucleon partial wave L2I,2J (where I is
isospin, J is spin), i.e. ∆(1232)P33, N(1440)P11, N(1520)D13 orN(1535)S11. In recent
years, a large amount of data on photoproduction has been accumulated improving the
knowledge on properties of baryon resonances [Kle10,Cre13]. The naming convention
(beginning since year 2012 [PDG12]) has been replaced with the spin-parity JP of the
state, i.e. ∆(1232) 3

2

+, N(1440) 1
2

+, N(1520) 3
2

− or N(1535) 1
2

−.
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Chapter 1. Baryon resonances

1.1 Resonance properties

The cross section for the production of a resonance R in a ab → R reaction is
usually describer by the Breit-Wigner formula:

σab→R(s) =
2JR + 1

(2Ja + 1)(2Jb + 1)
4π

k2

sΓinab Γouttot

(s −m2
0)

2 + sΓouttot
2
, (1.1)

where JR, Ja, and Jb denote the spins of the resonance, and the particles a and b,
respectively. k is the c.m.s. momentum of the incoming particles, s is the squared
invariant energy, and the m0 corresponds to the pole mass of the resonance. The total
decay width Γouttot is given as a sum over the partial decay widths of the resonance. For
a specific channel ab, the resonance R partial decay width can be denoted by

ΓR→ab(m) = Γ0
R→ab

ρab(m)
ρab(m0)

, (1.2)

wherem andm0 is the off-shell mass and the pole mass of the resonance R, respectively,
Γ0
R→ab = ΓR→ab(m0) is the partial width at the pole mass and ρab(m) is defined as

ρab(m) = ∫ Aa(m2
a)Ab(m2

b)
pf
m
B2
L(pfr)F2

ab(m)dm2
adm

2
b . (1.3)

Aa and Ab are spectral functions of the particles a and b with the masses ma and mb,
respectively. The spectral function A of an unstable particle i reads:

Ai(µ) =
2

π

µΓtot(µ)
(µ2 −m2

i0)
2 + µ2 Γ2

tot(µ)
, (1.4)

where mi0 is the pole mass, and Γtot(µ) is the total width of a particle i. Any spin
degrees of freedom as well as a momentum dependence of the real part of the self-
energy are here neglected. For a stable particle with respect to the strong interaction
the spectral function can be replaced by A(µ) = δ(µ − mi0). pf is the final state
momentum of a and b in the mother particle (resonance) reference frame:

pf(m,ma,mb) =
1

2m

√
m2 − (ma +mb)2)(m2 − (ma −mb)2 , (1.5)

and L is the orbital angular momentum of a or b in the final state. BL denotes the
Blatt-Weisskopf angular momentum barrier functions and r presents the interaction
radius (usually ∼1 fm). The expressions of the first few BL are:

B0(x) = 1,

B1(x) =
x√

1 + x2
,

B2(x) =
x2

√
9 + 3x2 + x4

,

B3(x) =
x3

√
225 + 45x2 + 6x4 + x6

.

(1.6)
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1.1. Resonance properties
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Figure 1.1: ∆ resonance various parametrizations: the mass-dependent vacuum width
Γ∆→ πN(m) (left panel) and the spectral function (right panel) according to Manley
(red curve), Dmitriev (dashed green), Moniz (dashed blue), Verwest (dotted magenta)
and Bass (dashed dotted cyan). Figure taken from Ref. [Wei13].

It is worth discussing the case of P−wave decays such as ∆ → πN due to signif-
icance of the ∆ resonance contribution to dilepton spectra. In such a case the width
parametrization is

Γ(m) = Γ0
m0

m
( q
q0

)
3 q2

0 + κ2

q2 + κ2
, (1.7)

where m and m0 are, as above, the off-shell and pole mass of the resonance, Γ0 is the
resonance width at m = m0, q and q0 are the final state (i.e. pion) momenta in the
center-of-mass reference frame for the resonance mass m and m0, respectively. The
cutoff parameter amounts to κ = 1/r = 1 fm−1, (1 fm−1 = 197.3 MeV). The Eq. 1.7
is cited in the literature as Blatt-Weisskopf or Manley ∆ resonance parametrization.
However, there are other parametrizations (Fig. 1.1) which differ significantly in the
modeling of the ∆ resonance in the high mass tail:

Γ(m)Dmitriev = Γ0 ( q
q0

)
3 q2

0 + κ2

q2 + κ2
, κ = 0.2 GeV,

Γ(m)Moniz = Γ0
m0

m
( q
q0

)
3

(q
2
0 + κ2

q2 + κ2
)

2

, κ = 0.3 GeV,

Γ(m)V erwest = Γ0 ( q
q0

)
3
√
q2 +m2

π +mN√
q2
0 +m2

π +mN

,

Γ(m)Bass = Γ0 ( q
q0

)
3 1.2

1 + 0.2 ( q
q0

)2
.

(1.8)

Among all formulas, VerWest parametrization [Ver79] was obtained by fitting to old
experimental data at the beam kinetic energy 800 MeV and overshoots all other de-
scriptions. The Dmitriev [Dmi86] and Bass [Bas98] parametrizations are equivalent to
Manley description [Man92] but with a different interaction radius. In many cases the
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Chapter 1. Baryon resonances

radius can be treated as a free parameter adjusted within the model (as discussed in Sec.
2.1.2). The Koch and Moniz parametrization [Koc84] provides a strong suppression of
the resonance tail. The ambiguous descriptions are populated further in various calcula-
tions. The Hadron String Dynamics (HSD) transport model [Bra97,Cas99,Bra08,Bra13]
and the resonance model by Teis et al. [Tei97] use Moniz parametrization, the Giessen
BUU (GiBUU) transport model [Bus12,Wei12,Wei13] uses Manley parametrization,
the UrQMD [Bas98] and the Isospin QMD (IQMD) [Har98, Tho07, Har12] transport
models use their own parametrizations. The partial wave analysis of Bonn-Gatchina
group in the photo-, pion- [Ani05,Ani06,Ani12] and proton-induced [Erm11,Erm14] re-
actions uses Blatt-Weisskopf (Manley) form factors, and, consequently, the partial wave
analysis of the HADES data for proton-proton collisions at T = 1.25 GeV [HC15a] does
(Sect. 2.1). Similarly, Ramalho and Peña [Ram12,Ram16] calculations, describing the
eTFF of ∆ resonance (Sec. B.4), follow the GiBUU description, that is, Manley parame-
trization. The experimental data of the proton-proton reaction at T = 3.5 GeV [HC14a]
seem to favor Moniz parametrization (Sect. 2.4). It has to be mentioned, however, that
not only the decay width matters in the description of the ∆ resonance excitation, but
also the vertex cut-off (Sect. 1.2.1) entering the production amplitude.
Fab cut-off function in Eq. 1.3 is introduced to describe the form factor of the

unstable decay products (i.e. ρN , ηN , σN , π∆, πN∗, ρ∆ and σ∆) [Pen02] and in the
case of stable particles it amounts to Fab(m) = 1. It has been also shown in Ref. [Bus08]
that the cut-off itself has only a minor influence on the resonance spectral shapes.

1.2 Resonances in semi-classical models

Nucleon-nucleon interactions provide a fundamental knowledge about the nature
of nuclear forces with a strong impact on the construction of many dynamic mod-
els. Although the elastic NN scattering is a dominant process at the low energies,
the understanding of inelastic collisions is mandatory above the one-pion and two-
pion production thresholds (for a review see Ref. [Mos02]). One of the first semi-
phenomenological models by Mandelstam [Man58] was describing the pion production
by the formation of the intermediate N∆ state and a decay of the ∆ into a nucleon
and a pion. However, the absence of dependence of the production amplitude on en-
ergy was in contradiction to experimental data at energies above 0.7 GeV. A more
advanced approach was realized by one-pion (OPE, see Refs. [Fer61, Fer63, Sel65])
or by a one-boson exchange (OBE) models, developed by several groups (see Refs.
[Ger71,Bry72,Bry73,Sch72,Erk74,Hol75,Hol76,Mac87,Eng96]).

An improved version of the OPE model was proposed by Suslenko and Gaisak
[Sus86], describing the experimental data in the pp → npπ+ reaction in the energy
range 0.6 − 1.0 GeV with an accuracy of 10 − 15%. The model was tested also in the
pp → ppπ0 reaction at seven energies of the incident proton in the range 0.6 − 0.9 GeV
with the data collected at the PNPI [And94]. Although various differential distributions
are described by the model qualitatively well, the predicted total cross sections are
lower than the reconstructed from the experimental data. Similar conclusions were
reported in the study of the neutral pion production at proton beam momentum 1.581
GeV/c and 1.628 GeV/c [Sar04], supplemented by the recent studies of npπ+ channel
(Refs. [Erm14, Erm11]) for the same beam momenta. The good data description in
the npπ+ channel leads to the underestimation of the total cross section by the OPE
model [Sus86] in the ppπ0 channel.

– 4 –



1.2. Resonances in semi-classical models

1.2.1 ∆∆∆ resonance production in OPE model

Another OPE model, successfully describing the data at slightly higher energies
of 0.97 GeV [Bug64], 1.48 GeV [Eis65] and 4 GeV [Col67] in the pp → npπ+ channel,
was introduced by Dmitriev, Sushkov and Gaarde [Dmi86]. The matrix element in the
model is calculated based on the direct and exchange graphs (Fig. 1.2) for ∆−production
in pp collisions, with the form factors taking into account the off-shellness of the pion,
in the πNN and πN∆ vertices

F (t) = Λ2
π −m2

π

Λ2
π − t

, (1.9)

where Λπ is the coupling constant adjusted to the data (i.e. Λπ = 0.63 GeV for the
[Bug64]) and t denotes the Mandelstam variable for the momentum transfer. The pion-
exchange amplitude is derived from the density matrix for spin− 3

2
particle (Ref. [Ose82])

and the interference between both graphs is taken into account. The finite ∆ width is
parametrized (see Eq. 1.8) with the cutoff parameter κ reproducing the π+p→ π+p cross
section [Fla83]. The Γ parametrization takes into account the ∆ off-shell correction.
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Figure 1.2: Direct (left panel) and exchange (right panel) graphs in pp collisions con-
tributing to the ∆−production in OPE model by Dmitriev et al. [Dmi86].

The model fit describes the slightly asymmetric pπ+ invariant mass distribution with the
∆++ resonance (Fig. 1.3, left panel). The neutron (or ∆++) angular distribution in the
center-of-mass system shows a strong anisotropy (Fig. 1.3, right panel), in agreement
with the OPE description [Dmi86]. It is also stated in this model, that due to the isospin
factors, ∆ production is less dominant in the ppπ0 case, and hence the background is
larger. For this reason the npπ+ channel was usually used to fix the cutoff parameters.

1.2.2 Resonance model

A more versatile dynamical model by Teis et al. [Tei97] describes the production of
light mesons in proton-proton (or neutron-proton) collisions and extends it to heavy-ion
collisions in the energy range of 1−2 GeV/nucleon. The major assumptions of this model
are: (i) the entire meson production proceeds via intermediate resonance excitation (ii)
the total cross section amounts to the incoherent sum of all resonances contributing to
a specific channel. The resonance list includes ∆(1232), ∆(1600), ∆(1620), ∆(1675),
∆(1700), ∆(1905), ∆(1910), ∆(1950), and N(1440), N(1520), N(1535), N(1650),
N(1680), N(1720). Their properties (the width and branching ratios) were taken from
Ref. [PDG94], apart from N(1535) resonance (see Ref. [Kru95]). The matrix elements
for the resonance production were obtained from a fit to the data of 1π, η, ρ and
2π production cross sections in nucleon-nucleon reactions. They were assumed to be
constant, except for the ∆ where dependency on t was adopted from Ref. [Dmi86].
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Chapter 1. Baryon resonances

Figure 1.3: Reaction pp → npπ+ at a proton kinetic energy of 0.97 GeV [Bug64]: exci-
tation energy of the (p, π+) pairs (left panel) and neutron angular distribution in the
c.m.s. (right panel). Solid curves present the OPE model [Dmi86].

An example of one-pion production cross sections in proton-proton collisions is
shown in Fig. 1.4. The cross sections used to the fit are taken from the collective works
of Baldini et al. [Bal88]. The experimental data represent e.g. measurements with
bubble chambers from the 1960s [Fic62,Bug64,Eis65], quite often with large statistical
uncertainties. Nevertheless, a similar approach is widely used with only small modifi-
cations in other resonance models, e.g. GiBUU [Bus12,Wei12] and UrQMD [Bas98].

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

5

10

15

20

25

30

√s (GeV)

data
sum
Δ(1232)
I = 1/2
I = 3/2 w/o Δ(1232)

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

5

√s (GeV)

σ
(m

b)

σ
(m

b)

pp→ppπ0

pp→npπ+

Figure 1.4: One-pion production in pp→ ppπ0 (left panel) and pp→ npπ+ (right panel)
channels according to Teis fit [Tei97].

1.2.3 ∆∆∆ resonance decay - angular distributions
In high-energy collision processes with multiparticle final states, resonances are

quite often produced in quasi-two-body reactions where one (or both) of the final sys-
tems is dynamically unstable. The modeling of the angular distributions of the produced
resonances allows for a more detailed comparison with experimental data and is essential
when measurements within a limited acceptance coverage are considered. For example,
the angular distribution of the ∆ decay depends on the population of different spin
states excited in the NN → N∆ process. For a spin− 3

2
particle like ∆ the spin-density

matrix can be described in terms of a 4 × 4 Hermitian matrix ρij [Got64]:
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1.2. Resonances in semi-classical models

ρ∆ =

⎛
⎜⎜⎜⎜⎜
⎝

ρ 3 3 ρ 3 1 ρ 3−1 ρ 3−3

ρ∗3 1 ρ 1 1 ρ 1−1 ρ 1−3

ρ∗3−1 ρ∗1−1 ρ−1−1 ρ−1−3

ρ∗3−3 ρ∗1−3 ρ∗
−1−3 ρ−3−3

⎞
⎟⎟⎟⎟⎟
⎠

, (1.10)

where the diagonal elements are real and satisfy the trace condition,

ρ33 + ρ11 + ρ−1−1 + ρ−3−3 = 1, (1.11)

and the off-diagonal elements satisfy the relationship ρij = ρ∗ji. The number of elements
is constrained by the invariance of the production mechanism and of the decay interac-
tion under reflection. Choosing the judicious axes, e.g. in the ∆ → Nπ decay process,
the pion angle θ with respect to the momentum transfer in the reference frame, where
the selected nucleon is at rest, leads to the fact that the pion angular distribution can
be expressed as a function of spin density matrix elements:

dσ

dΩ
∼ ρ33 sin2 θ + (1

2
− ρ33)(

1

3
+ cos2 θ)

− 2√
3
Reρ3−1 sin2 θ cos 2φ − 2√

3
Reρ31 sin 2θcosφ.

(1.12)

Integrating over the full azimuthal range leads to

dσ

d cos θ
∼ 2π2

3
(1 + 4ρ33) [1 +

3 (1 − 4ρ33)
1 + 4ρ33

cos2 θ]

∼ 1 +A cos2 θ,

(1.13)

where A = 3 (1 − 4ρ33)/(1 + 4ρ33) and the differential cross section depends only on
ρ33. Assuming solely a one-pion exchange and the excitation of the ∆ on the nucleon
target, ρ33 = 0, and the decay angular distribution ∆ → Nπ follows a ∼ (1 + 3 cos2 θ)
distribution, where θ is the angle of the pion (or the nucleon) in the ∆ rest frame with
respect to the beam axis.

If the exchange mechanism includes also ρ meson, the ρ33 matrix element is ex-
pected to be different from 0. The spin density matrix coefficients have been extracted
from the π+ angular distribution in pp → npπ+ reaction in the beam momentum range
1.18−1.98 GeV/c in Ref. [Wic87] (also at 3−12 GeV/c in Ref. [Wic86]), with polarized
beams. For the forward emission of ∆++ resonance, ρ33 = 0.16±0.03, which results in an
anisotropy coefficient A = 0.66+0.29

−0.25, smaller than the value 3 derived within the one-pion
exchange model. The other experiments essentially confirm this result at higher beam
momenta, i.e. A = 0.55 at 2.5 GeV/c [Eis65], or A = 0.85+0.32

−0.28 at 2.8 GeV/c [Bac67].
Such a parameterization is also corroborated by the experimental data pp → ppπ0 in
the energy range 600− 900 MeV [And94]. Yet another analysis of Shimizu et al. [Shi82]
reports a lower value A = 0.34.

All these experiments could derive only effective matrix elements considering that
only one graph contributes, with excitation either of the projectile or of the target. The
assumption is valid only for the forward or backward angles, and if the ∆++ excitation
is the dominant contribution. The analysis of the π angular distribution confirmed the
anisotropic ∆ decay, but with an anisotropy smaller than expected from a pure OPE
model. However, in transport models, the pionic decay of the ∆ resonance is treated
isotropically. There is also not much information on higher mass resonances, and usually
isotropic distributions are used.

– 7 –



Chapter 2

Resonances in hadronic channels

Baryon resonance production in NN collisions can be determined by the investiga-
tion of one-pion, two-pion or η production as a function of the excitation energy. This
goal has been addressed by the HADES Collaboration in experiments with a proton ki-
netic beam energy of 1.25 GeV, 2.2 GeV, and 3.5 GeV, as well as deuteron beam energy
of 1.25 GeV/nucleon. The multi-differential data were measured with the High Accep-
tance DiElecton Spectrometer (HADES) which is a unique spectrometer to study both
dielectron (e+e−) and hadron production in heavy-ion collisions, as well as in proton-
and pion-induced reactions in the energy range of 1 − 4 GeV. The detailed description
of the spectrometer and the analysis strategy is presented in Appendix C.

Exclusive channels with one pion (npπ+ and ppπ0) and η (ppη) in the final state were
put to extended studies based on various observables in the framework of a resonance
model (see Sect. 1.2), assuming saturation of the meson production by an incoherent
sum of baryonic resonances with masses < 2 GeV/c2. In addition, solutions obtained
within the framework of a partial wave analysis of the Bonn-Gatchina group (Sect. 2.1.2)
were obtained for the 1.25 GeV energy. In proton-proton collisions at a kinetic energy
of 3.5 GeV a very good description of the one-pion production was achieved by the
adjustment of resonance angular production. It allowed for an estimate of individual
baryon resonance (∆, N∗) production cross sections.

The two-pion production (π+π−) in quasi-free np collisions was confronted with
various models (Sect. 2.2.2) and the total cross section was extracted, based on the
model-driven acceptance correction. This measurement established also constraints for
the existence of the dibaryon resonance at massM ≈ 2.38 GeV/c2 and with Γ ∼ 70 MeV.

The collected pp and np data allow to test meson production mechanisms and the
contribution of baryonic resonances with a high statistical precision, in complement
to previous low-statistics but high-acceptance experiments. The obtained results, pre-
sented in the following sections, serve also as an input to calculate dielectron Dalitz
yields. They are further compared to the direct exclusive ppe+e− and npe+e− channel
reconstruction (see Chapter 4).
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2.1. Proton-proton collisions at T = 1.25 GeV

2.1 Proton-proton collisions at T = 1.25 GeVT = 1.25 GeVT = 1.25 GeV

In proton-proton collisions, a kinetic beam energy of 1.25 GeV and intensity of 107

particles/s was incident on a 5 cm long liquid-hydrogen target of 1% interaction proba-
bility. The energy

√
s = 2.42 GeV was selected below the η meson production threshold

in order to favor ∆(1232) production. To study one-pion production mechanisms in
the hadronic channels, only events with one proton and one pion (pπ+) and two protons
(pp) were identified with the help of the missing mass technique (Fig. 2.1, right panel).
The background estimation was done on the base of a double-differential missing mass
spectrum obtained for 20 different bins in the variable cos θc.m.s.πN and 25 bins in M inv

πN .
Prior to the background evaluation, the two-pion contribution to the missing mass spec-
trum, not very sensitive to details of the two-pion production model, was simulated and
subtracted. The background contribution obtained from the fit procedure applied to
the npπ+ final state amounts to a few percents. In the case of the ppπ0 sample the
background contribution yields to about ten percents (see Fig. 2.1, right panel).
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Figure 2.1: Left panel: Experimental spectrum of pp missing mass squared for the
reaction pp→ ppX at 1.25 GeV. The most prominent peak stems from pp elastic channel
(also denoted with a dashed curve), followed by the one-pion and two-pion contributions.
Right panel: Inelastic one-pion exclusive channels, pp missing mass squared (upper) and
pπ+ missing mass (lower). Solid curves represent the fit of a sum of one polynomial
(dotted curves) and two Gauss functions (dashed curves). The two-pion contribution
deduced from the simulation is subtracted before the fit.

The collected statistics amounts to 2.73 × 106 events with an identified π+ and
0.53×106 events with an identified π0, respectively. All spectra were normalized to the pp
elastic scattering yield measured in the same experimental run (see App. C.3.6.1). The
normalization error is estimated to be 8%, where 5.8% is derived from the error of the
reference differential cross section and 6% is the systematic error of the reconstruction
of events with elastic scattering.
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Chapter 2. Resonances in hadronic channels

2.1.1 One-pion production in resonance model
To describe the production of the one-pion channels from the pp reaction, the res-

onance model by Teis et al. [Tei97] was implemented in the framework of the PLUTO
event generator [Frö07]. Then, the full GEANT simulation and the Monte Carlo simu-
lations of the detector response, followed by the same analysis steps employed for the
experimental data, were performed. The following hadronic channels, with the cross
sections summarized in Table 2.1, were included:

• pp→ n +∆++(1232) followed by:

– ∆++ → p + π+ (BR = 1)

• pp→ p +∆+(1232) followed by:

– ∆+ → n + π+ (BR = 1/3)

– ∆+ → p + π0 (BR = 2/3)

• pp→ p +N(1440) with decays via ∆(1232) to:

– N(1440) → n + π+ (BR = 0.65*2/3)

– N(1440) → p + π0 (BR = 0.65*1/3)

The simulation employs the OPE model of Dmitriev et al. (Ref. [Dmi86], in-
troduced in Sect. 1.2.1) but replaces, as in the resonance model (Ref. [Tei97], see
Sect. 1.2.2), the original parametrization of the ∆ resonance total width by the one
given in the Moniz model (Ref. [Koc84], see Eq. 1.8 in Sect. 1.1). Such a parametri-
zation which suppresses the high-mass tail of the resonance, is compatible with the
description of the HADES data at a higher energy (Ref. [HC14a], see Sect. 2.4.4).
The parametrization of the one-pion decay width for the Roper resonance is defined in
a similar manner (see Ref. [Tei97] for details).

final state intermediate process σRES (mb) σPWA (mb)
npπ+ pp→ n∆++(1232) 16.90 11.1 ± 0.4

pp→ p∆+(1232) 1.89 1.2 ± 0.2
pp→ pN(1440) 0.54 1.7 ± 0.2

Total ∶ 19.35 16.34 ± 0.8
ppπ0 pp→ p∆+(1232) 3.76 2.96 ± 0.07

pp→ pN(1440) 0.27 0.86 ± 0.06
Total ∶ 4.03 4.2 ± 0.15

Table 2.1: Cross sections for the p(1.25 GeV)+p reaction and one-pion final states with
the intermediate baryon resonance excitation: σRES for the resonance model [Tei97],
σPWA for the partial wave fit.

The resonance behavior can be observed on Dalitz plots in Fig. 2.2. For the
ppπ0 channel (left panel), an accumulation of yield for the invariant mass squared
M2
inv(p, π0) = 1.5 (GeV/c2)2, corresponding to the excitation of the ∆+ resonance,

is clearly seen. Similarly, for the npπ+ channel (right panel) a strong ∆++ signal at
M2
inv(p, π+) = 1.5 (GeV/c2)2, and less pronounced ∆+ signal at M2

inv(n,π+) = 1.5
(GeV/c2)2, can be observed. The missing coverage in the plots are due to the accep-
tance of the spectrometer, with the dominant effect being due to the minimum proton
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Figure 2.2: Dalitz plots of the pp → ppπ0 (left panel) and pp → npπ+ (right panel)
at 1.25 GeV, with the dashed curves indicating their kinematical limits. In the right
panel, the region affected by the final-state interaction is marked by a circle. Data are
corrected for the reconstruction efficiency.

polar detection angle of 18○. For the pp → npπ+ reaction, the enhanced population for
both M2

inv(p, π+) and M2
inv(n,π+) around 2 (GeV/c2)2 is seen (Fig. 2.2, right panel),

due to the np final-state interaction (FSI), which enhances events with small relative
momentum between the proton and the neutron. The FSI between the outcoming nu-
cleons was modeled according to the Jost parametrization [Tit00], as a weight applied
directly on the cross section, following the probability function:

WFSI =
RRRRRRRRRRRR

k + i 1
r0

(
√

1 − 2r0a−1
0 + 1)

k + i 1
r0

(
√

1 − 2r0a−1
0 − 1)

RRRRRRRRRRRR

2

, (2.1)

where k is proton or neutron momentum in the (n,p) reference frame, and the effective
range r0 and scattering length a0 for np singlet spin state are taken from Ref. [Dum83],
r0 = 2.75 ± 0.05, a0 = −23.748 ± 0.010.

The production cross sections for the intermediate resonances were taken from the
resonance model [Tei97], except for the Roper resonance, where a slightly larger cross
section was used, based on a lagrangian model [Cao10], describing two-pion production.
Decay branching ratios to one and two pions at resonance pole masses are taken from
the PDG review [PDG16]. Isospin relations lead to the following ratios between cross
sections:

σpp→npπ+ = 5σpp→ppπ0 (2.2)

for the ∆ resonance with the isospin I = 3
2
, and

σpp→ppπ0 = 2σpp→npπ+ (2.3)

for the N(1440) (Roper) resonance with the isospin I = 1
2
. The cross sections are listed

in Table 2.1 (column σRES); the subsequent contributions to the total cross section
were added incoherently.
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Chapter 2. Resonances in hadronic channels

2.1.1.1 npπ+npπ+npπ+ channel

The description of the intermediate ∆++ resonance in the pp→ npπ+ channel within
the OPE model [Dmi86] required the adjustment of the cross section as well as the cut-
off parameter Λπ in Eq. (1.9) (Sect. 1.2.1) for the vertex form factor.
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Figure 2.3: Left panel: The pπ+ and nπ+ invariant mass distributions within the HADES
acceptance. The data points (efficiency corrected) are compared to the resonance model
(model A), with contribution of ∆++(1232) (dashed blue curve), ∆+(1232) (dotted
magenta) and N(1440) (dash-dotted green). The long-dashed black curve, denoted as
model B, results from the yield and neutron angular distribution adjustment. Right
panel: The angular distribution of neutron in c.m.s., the data points are acceptance
corrected and compared to resonance model with the cut-off parameter Λπ = 0.63 (solid
curve, model A), and Λπ = 0.75 (dashed curve).

Figure 2.3, left panel, presents the pπ+ and nπ+ invariant mass. The data are corrected
for reconstruction efficiencies and normalized using the total pp elastic cross section.
Error bars include statistical and systematic errors (see discussion below). The distri-
butions, peaked around 1.23 GeV/c2, confirm that most of the pions are produced via
∆ decay. The simulated contribution (black solid curves, model A), within the HADES
acceptance, is the sum of dominant ∆ isobar and small N(1440) admixture. The trend
of the data is rather well reproduced, although some discrepancies concerning both the
yields and the shapes can be observed. The model A overestimates the experimental
yield by about 20%. The acceptance corrected neutron angular distribution is shown in
Fig. 2.3, right panel. The HADES data favour Λπ = 0.75 GeV (dashed curve). Further
improvement could be achieved with the empirical parametrization of the angular distri-
bution cosθc.m.s.pπ+ as a function ofM inv

pπ+ . It allows to describe the anisotropic production
of the resonance, in agreement with the observations of the former proton-proton exper-
iments at higher energies [Col71]. The modifications affect mainly the ∆ → πN decay
at large c.m.s. angles. Both adjustments (cross section scaled down by a factor 0.85
and a neutron angular distribution) are plotted as a model B.

The comparison of the modified resonance model with data has been extended
to more differential observables, as shown in Fig. 2.4. The various projections of the
uncorrected data and the Monte Carlo simulation (black dotted histogram), within the
HADES acceptance, are presented: single particle angular distributions in the center of
mass (a − c), two-particle invariant mass spectra (d − f), helicity (g − i) and Gottfried-
Jackson (j − l) frames (see Appendix C.3.5.3). In addition, the results obtained with
a partial wave analysis (explained in Sect. 2.1.2) and phase space distributions (grey-
shaded area) are presented, with the normalization to the yield of the data.
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Figure 2.4: npπ+ channel projections: Angular distribution of (a) π+, (b) p and (c) n
in c.m.s.; Invariant mass of (d) pπ+, (e) nπ+ and (f) pn; Helicity distribution of (g) π+

in pπ+ reference frame, (h) π+ in nπ+ reference frame and (i) n in pn reference frame;
Angular distribution of (j) π+ in pπ+ GJ reference frame, (k) π+ in nπ+ GJ reference
frame and (l) n in pn GJ reference frame. Uncorrected data points (black) are within the
HADES acceptance with systematic and statistical vertical error bars, normalized to the
number of pp elastic scattering (Nel). Histograms: total PWA solution folded within
the HADES acceptance and efficiency (solid black) and normalized to the respective
yields of experimental data, contributions: the ∆(1232), short-dashed red, and the
N(1440), long-dashed blue. Dotted histogram (black): modified resonance model. The
grey hatched area shows the distribution in the case of isotropically simulated particles.

Thanks to a good solid angle coverage and a good model description, the data
could be corrected for the reconstruction inefficiencies and the detector acceptance, each
distribution with the respective one-dimensional correction function. The correction
function is constructed, for a given distribution, as ratio of the modified resonance
model yield in 4π and the yield within the HADES acceptance, including all detection
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Chapter 2. Resonances in hadronic channels

and reconstruction inefficiencies obtained using the full analysis chain. The integrated
correction factor in the npπ+ channel varies in the range 20 − 40, depending on the
distribution. The extracted cross section for the npπ+ channel amounts to 17.0 ± 2.2
(systematic error) mb, with a negligible statistical error. The systematic error includes:
5% error due to the particle identification (selection cuts and the missing mass cut) and
the background subtraction, 10% error due to the correction and model uncertainty
and 8% is the normalization error (errors are added quadratically). The background
subtraction error was deduced by varying of a polynomial function used together with
a Gauss function to fit the missing mass spectrum. The model error was estimated
from the differences in the integrated yields of the various distributions obtained after
acceptance corrections.

2.1.1.2 ppπ0ppπ0ppπ0 channel

The identification of two protons in the HADES spectrometer results in a reduced
acceptance for the ppπ0 reaction channel. The resonance model [Tei97] does not repro-
duce satisfactorily the measured observables in this channel, as shown in Fig. 2.5. The
pπ0 invariant mass (left panel) is underestimated by about 20% (model A), the proton
angular distribution (right panel) is much flatter in the data than in the model. To
improve the description, the aforementioned parametrization of the resonance angular
distribution, deduced from the npπ+ channel analysis, was applied for the ∆+ produc-
tion, resulting in a better agreement (model B, shown by the dashed curve). This
confirms that the two isospin channels can be described consistently with the same ∆
production angular distribution.

1
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Figure 2.5: The pπ0 invariant mass distribution (left panel) and the angular distribution
of protons in c.m.s. (right panel), within the HADES acceptance. The resonance model
contribution description as in Fig. 2.3.

Similarly to npπ+ channel, the comparison of the modified resonance model with
data has been studied with various observables in the ppπ0 channel, as shown in Fig. 2.6.
Although some angular projections still unravel slight discrepancies between the data
and the model, the overall description is quite good. It allows for the correction of
the data for the reconstruction inefficiencies and detector acceptance, with the model-
driven extrapolation, in an analogous way as it was done for the npπ+ channel. The
integrated correction factor in the ppπ0 channel varies in the range 15 − 25, depending
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Figure 2.6: ppπ0 channel projections: Angular distribution of (a) π0 and (b) p in c.m.s.
reference frame; Invariant mass of (c) pπ0 and (d) pp; Helicity distribution of (e) π0 in
pπ0 reference frame and (f) p in pp reference frame; Angular distribution of (g) π0 in pπ0

GJ reference frame and (h) p in pp GJ reference frame. Uncorrected data points (black)
within the HADES acceptance with systematic and statistical error bars, normalized to
the number of pp elastic scattering (Nel). Histograms: total PWA solution (solid black),
the ∆(1232) contribution (short-dashed red) and theN(1440) contribution (long-dashed
blue). Dotted histogram (black): modified resonance model. The grey hatched area in
each panel shows the distribution in the case of isotropically simulated particles.
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Chapter 2. Resonances in hadronic channels

on the distribution. The deduced total cross section amounts to 3.87 ± 0.60 mb. Due
to the smaller, as compared to the npπ+ channel, acceptance coverage, the systematic
error related to the acceptance corrections is 12% (estimated as in the previous case),
the background subtraction error is similar and amounts to 6%.

Taking into account the isotopic relations between the final state channels, one gets
the total cross section for the ∆+ production equal to either 4.98 ± 0.72 mb (deduced
from the npπ+ channel, where the ∆++ contribution is 14.86±2.19 mb) or 5.42±0.69 mb
(deduced from the ppπ0 channel). The expected ratio σ∆++/σ∆+ is 3, which is satisfied
within the errors in both cases: 2.98±0.61 or 2.74±0.53, respectively. One should notice
that the N(1440) contribution is negligible in the resonance model approach. Despite
the discrepancies, the calculations with the OPE model [Dmi86] are utilized in various
modern resonance models (e.g. GiBUU [Bus12]).

2.1.2 Partial wave analysis

The above modified resonance model describes fairly well the angular and mass
distributions and can be used for the acceptance correction of the data and determi-
nation of the total cross sections. However, the introduced modification of the angular
distributions of the ∆ resonance does not provide insight into the production mecha-
nism. Moreover, the non-resonant contribution is completely neglected and N(1440)
contribution is treated in a very simplified manner.

In view of the limitations of the resonance model, the partial wave analysis provides
a significant advantage - it includes the coherent sum of both resonant and non-resonant
contributions within the solution based on the simultaneous fit to many experimental
data samples. The extraction of contributions from different partial waves is performed
event by event and based on the maximum-likelihood method. The angular distributions
for a given partial wave in the final state, characterized by the spin and parity, are
naturally accounted for. Therefore, resonant and non-resonant contributions, including
interferences, can be extracted.

The successful partial wave analysis was demonstrated in the case of one-pion
production in pp reactions measured at PNPI at lower energies (see Refs. [Erm11,
Erm14, Erm17]) by the Bonn-Gatchina group. In this approach, the total reaction
amplitude A is described as a sum of partial wave amplitudes with the corresponding
angular dependencies:

A = ∑
α

Aαtr(s)Qinµ1...µJ
(SLJ)A2b(j, S2L2J2)(sj) ×

Qfinµ1...µJ
(j, S2L2J2S

′L′J) . (2.4)

Here S, L and J are the spin, the orbital momentum and the total angular momentum
of the initial NN system, S2, L2 and J2 denote spin, orbital momentum and total
angular momentum of the two-particle system in the final state, and S′ and L′ are spin
and orbital momentum between this two-particle system and the spectator particle with
index j, e.g. π(1), p(2), n(3). The invariant mass of the two-body system is determined
by sj = (P − qj)2, where qj is the four-momentum of the spectator and P is the total
momentum of the reaction. The operators Qin and Qfin are tensors of the rank J
constructed for each event from the momenta of the initial and final state particles.
Their convolution provides the angular dependence of the amplitude (see Ref. [Ani06]
for the explicit formulas). For the transition amplitude Aαtr from the initial NN to
the NNπ system, the multi-index α that summarizes all quantum numbers described
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2.1. Proton-proton collisions at T = 1.25 GeV

above is introduced. The differential cross section calculated from this amplitude is
maximized for the data events with the event-by-event maximum likelihood method,
thus taking into account all correlations in the multidimensional phase space.

The likelihood function is normalized by the Monte Carlo integral calculated with
events generated according to the phase space distribution passed through the simulated
detector response and signal reconstruction. It means that the distribution of these
events weighted by the cross section from the found solution should closely reproduce,
within the HADES acceptance, the distribution of the experimental data. The solution
provides also a possibility to extrapolate the cross section to the regions of low detection
capabilities and therefore to perform the acceptance correction of the data.

The resonance production in the πN channel is parametrized by relativistic Breit-
Wigner amplitudes. For the ∆ and Roper states the following parametrization is used
(j=2, 3):

A2b(j, β)(sπN) =
gRπN

M2
R − sπN − iMRΓR

, (2.5)

where the multi-index β stands for SπN , LπN , JπN . The resonance total width is equal
to the sum of partial widths, and the gRπN coupling is connected with the πN partial
width by:

MRΓπN = (gRπN)2 2kπN√
sπN

1

16π

k2L
πN

F (k2
πN , LπN , r)

. (2.6)

Here, the quantity kπN is the relative momentum of the pion and nucleon in the πN
rest frame, and F (k2

πN , LπN , r) denotes the Blatt-Weiskopf form factor with interaction
radius r (see Ref. [Ani06]).

Equation 2.6 defines the energy dependence of the resonance partial width. The
initial values of masses and of total widths of the resonances were taken from the review
of the Particle Data Group [PDG16] and adjusted in the course of the fit procedure. The
interaction radius r was fixed at 0.8 fm. The total width of the ∆ state is completely
defined by the decay into the πN system with LπN=1 (SπN= 1

2
, JπN= 3

2
). This form

of Blatt-Weiskopf parametrization is also used in the Manley and Saleski partial wave
analysis fit [Man92]. The difference of the cut-off function, as compared to the Moniz
parametrization Eq. (1.8), is not so pronounced at the energy of 1.25 GeV, but becomes
important at higher energies (see Sect. 2.4.4). In the case of the Roper resonance, the
πN partial width contributes about 65% to the total width of the state. In general,
the partial widths defined by the two pion-nucleon channel should have a complicated
energy dependence. However, possible parametrizations of the Roper resonance do not
change the solutions very much, as discussed below.

The non-resonant contributions in the NN scattering channel are parametrized by
a modified scattering length approximation expression (j=1):

A2b(j, β)(sNN) =
rβaβ

√
sNN

1− 1
2
rβk2

NNaβ+
iaβk

2Lβ+1

NN

F (k2
NN

,rβ ,LNN )

, (2.7)

where kNN is the nucleon-nucleon relative momentum calculated in theNN rest system,
LNN is the orbital momentum of the NN system, rβ is the effective range and aβ is
the scattering length of the system (β = SNN , LNN , JNN ). For the S−waves, Eq. 2.7
corresponds to the scattering-length approximation formula suggested in Refs. [Wat52,
Mig55]. The np scattering length and effective range are fixed for the S−waves:
a(2S+1LJ) = a(1S0) = −23.7 fm, r(1S0) = 2.8 fm, a(3S1) = 5.3 fm, and r(3S1) = 1.8 fm.
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Chapter 2. Resonances in hadronic channels

The final solution for the HADES data was obtained in an iterative procedure,
starting from the solution found in Ref. [Erm14], describing low-energy data very well.
The first fit produced a satisfactory description of the data, except of very forward
neutron and very backward proton angles in c.m.s. of the pp→ npπ+ reaction. Moreover,
large interferences between partial waves with Roper production and partial wave with
non-resonant production of the NN system were found. To stabilize the solution, the
lower energy data fitted in Ref. [Erm14], were included in the fit. The fitted data base
is given in Table 2.2. Number of events Ndata used in the PWA is lower than the full
available statistics in the case of Ref. [ES06] (154972 events) and in the case of the
HADES data (for the full statistics, see Sect. 2.1).

Reaction
√
s (MeV) Ndata σtot (mb) Reference

pp→ π0pp 2066 50000 0.10±0.03 [ES06]
pp→ π0pp 2157 542 2.07±0.09 [And94]
pp→ π0pp 2178 615 2.85±0.13 [And94]
pp→ π0pp 2200 882 3.31±0.19 [And94]
pp→ π0pp 2217 993 3.70±0.14 [And94]
pp→ π0pp 2234 914 3.73±0.15 [And94]
pp→ π0pp 2251 996 3.96±0.15 [And94]
pp→ π0pp 2269 1315 4.20±0.15 [And94]
pp→ π0pp 2284 903 4.19±0.17 [Sar04]
pp→ π0pp 2300 688 4.48±0.20 [Erm11]
pp→ π0pp 2319 1086 4.50±0.17 [Sar04]
pp→ π0pp 2422 60000 3.87±0.55 [HC15a]
pp→ π+pn 2285 4153 17.8±0.4 [Erm14]
pp→ π+pn 2300 2912 17.6±0.6 [Erm11]
pp→ π+pn 2319 2564 19.0±0.6 [Erm17]
pp→ π+pn 2422 60000 17.0±2.2 [HC15a]

Table 2.2: The data sets (number of events Ndata) used for the fit, except the data from
Ref. [Erm17] which were published recently.

To describe simultaneously the data in the energy range between
√
s = 2.06 GeV

and
√
s = 2.42 GeV, a dependence on the total energy of the initial NN system of

transition amplitudes was introduced in the same form as in Refs. [Erm14, Erm11].
Thus, the production of resonant and non-resonant two-body states was fitted by:

Aαtr(s) =
aα1 +

√
saα3

s − sα0
eia

α
2 , (2.8)

where aα1 , a
α
2 , a

α
3 and sα0 are real numbers, and the poles at s = sα0 are located in the

region of left-hand side singularities of the partial wave amplitudes. Indeed, in most
of the fits, the only fitted function was the transition amplitude Aαtr(s). In the case
of transition from an initial NN state to a two-body state with stable particles, this
function is a complex number at a fixed initial energy. In the case of the transition
to a two-body subsystem (a resonance or non-resonant rescattering and a spectator)
the transition amplitude has contributions from logarithmic singularities defined by the
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Figure 2.7: npπ+ channel, acceptance and efficiency corrected distributions: Angular
distribution of (a) π+, (b) p and (c) n in c.m.s. reference frame; Invariant mass of
(d) pπ+, (e) nπ+ and (f) pn; Helicity distribution of (g) π+ in pπ+ reference frame,
(h) π+ in nπ+ reference frame and (i) n in pn reference frame; Angular distribution
of (j) π+ in pπ+ GJ reference frame, (k) π+ in nπ+ GJ reference frame and (l) n in
pn GJ reference frame. Data points after acceptance corrections (black dots) based
on the partial wave analysis solution. Data points in the areas of very low acceptance
are omitted. Uncertainties originating from the various PWA solutions (as explained
in the text) and statistical errors are visualized as grey band. Normalization error is
not indicated. Histograms: total PWA solution (solid black), the ∆(1232) contribution
(short-dashed red) and the N(1440) contribution (long-dashed blue).

three-particle rescattering. Therefore, it should have a logarithmic dependence on the
energy of the intermediate systems. However, this dependence is not important for the
production of such a relatively narrow state, as the ∆(1232) resonance. In the case of
the Roper resonance, there was no difference between fits, where (i) the Roper total
width was parametrized with the same energy dependence as the πN channel only or
(ii) fits with a more complicated parametrization of the width with the following decay
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Chapter 2. Resonances in hadronic channels

branching ratios: πN (60%), ∆π (20%) and N(ππ)S−wave (20%) (see Ref. [Sar08]).
The fits with free masses and widths of the ∆ and Roper states were made, too. For
∆(1232) the parameters hardly changed from the PDG values [PDG16], and for the
Roper resonance only problems with convergence of the fit were observed, but no notable
improvement of the description of the data. Extensive tests did not show any need for
a more complicated energy dependence for the non-resonant amplitudes, either. All
these solutions were included for the estimate of systematic errors.

Various solutions with a maximum total angular momentum J = 3 or J = 4 were
considered. At first, the data base fit was performed (see Table 2.2) with partial waves
with total angular momentum up to J = 3, since only these partial waves were found to
be important for the description of the lower (than HADES) energy data (Ref. [Erm14]).
As in the case of the analysis of the HADES data alone, such a fit describes rather well
the pp→ ppπ0 single state but shows some problems in the description of the pp→ npπ+

reaction. In particular, the forward region of the neutron angular distribution calculated
in c.m.s. of the reaction, completely covered by the HADES geometrical acceptance, was
underestimated by the fit. As a consequence of such a description an underestimated
total cross section for the pp→ npπ+ reaction was obtained.

The very sharp behavior of the cross section at forward neutron angles (see Fig.
2.4c) is reproduced well by the resonance model. This model includes an infinite number
of partial waves based on one-pion exchange and, indeed, one should expect the largest
contribution from high angular momentum waves at extreme angles. To check this
idea, the partial waves with total angular momentum J = 4 decaying into the ∆N
intermediate state were added. A similar investigation was performed in Ref. [Erm14].
It was found that partial waves with the total angular momentum equal to four can
contribute up to 6% to the total cross section at highest energy (data set

√
s = 2.3

GeV) but cannot be unambiguously identified. The present analysis produces a rather
stable solution which defines the contribution from J = 4 partial waves. It is found to
be on the level of 5% at

√
s = 2.3 GeV in agreement with Ref. [Erm14] and it reaches

15% at the HADES energies. Indeed, the fit with high spin partial waves reproduces
rather well the forward angular distribution of the neutron in c.m.s. of the reaction (see
Figs. 2.4c and 2.7c). If partial waves with even higher J = 5 are added to the fitting
program, no improvement of the solution was seen but loss of the convergence only.

The comparison of the measured data and Monte Carlo events passed through
the detector is shown in Figs. 2.4 and 2.6. The PWA solution describes the data
better than the one obtained with the modified resonance model and can be used for
the acceptance correction of the HADES data. The acceptance corrected distributions
are shown in Figs. 2.7 and 2.8. The statistical errors are taken from the data, and
model uncertainty errors are calculated from the set of solution described above (see
the discussion below). Both statistical and model errors were added quadratically and
are shown as a grey band.

Figure 2.9 shows the energy dependence of the pion production cross section (npπ+

upper panel, ppπ0 lower panel) and its decomposition into contributions of ∆(1232),
N(1440) (left panel) and incoming pp partial waves (right panel). As expected, the cross
section is dominated by the contributions from the partial waves with the ∆(1232)
resonance produced in the intermediate state. In the combined analysis of the data
the partial waves with Roper production contributes about 20% to the pp → ppπ0

cross section and on the level of 12% to the pp → npπ+ cross section. The calculated
contribution of the non-resonant terms amounts to 22 − 25% in the npπ+ channel and
8 − 10% in the ppπ0 channel.
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Figure 2.8: Various acceptance and efficiency corrected projections for the ppπ0 channel:
Angular distribution of (a) π0 and (b) p in c.m.s. reference frame; Invariant mass of
(c) pπ0 and (d) pp; Helicity distribution of (e) π0 in pπ0 reference frame and (f) p in
pp reference frame; Angular distribution of (g) π0 in pπ0 GJ reference frame and (h) p
in pp GJ reference frame. Data points (black dots) in the areas of very low acceptance
are omitted. Uncertainties originating from the various PWA solutions (as explained
in the text) and statistical errors are visualized as grey band. Normalization error is
not indicated. Histograms: total PWA solution (solid black), the ∆(1232) contribution
(short-dashed red) and the N(1440) contribution (long-dashed blue).
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The fit to the HADES data alone is optimized with a smaller Roper contributions:
it was found to be around 10% for pp→ ppπ0 and 6% for the pp→ pnπ+ cross sections,
in agreement with the modified resonance model results. Contrary to that model, which
includes an infinite number of the partial waves, the Bonn-Gatchina approach describes
the data with a restricted number of partial waves. It is based on an observation for
the dominance of partial waves with low orbital momenta near production threshold.
Thus, at the HADES energies, the amplitudes with production of a Roper state are
included only with orbital momenta L′ = 0,1 between Roper and the spectator nucleon.
The stability of the obtained solutions was tested by including in the fit partial waves
with higher orbital momentum and checking that these contributions are small.

Total [%] ∆(1232)N [%] N(1440)p [%]
pp→ ppπ0

1S0 1.8 ± 0.7 <1 1.8 ± 0.7
3P0 6.8 ± 1.0 1.5 ± 0.5 5.5 ± 1.0
3P1 21.0 ± 4.4 2.0 ± 1.0 12 ± 2.0
3P2 29.5 ± 3.5 30.5 ± 4.0 2.3 ± 1.0
1D2 4.9 ± 1.0 4.2 ± 1.0 <1
3F2 11.8 ± 2.0 6.5 ± 1.0 <1
3F3 2.0 ± 2.0 2.0 ± 2.0 <1
3F4 12.0 ± 3.5 12.0 ± 3.0 <1
1G4 4.0 ± 1.0 4.0 ± 1.0 <1
3H4 5.5 ± 1.0 5.5 ± 1.0 <1

pp→ pnπ+

1S0 3.5 ± 0.8 <1 2.2 ± 0.7
3P0 4.0 ± 1.5 1.0 ± 0.5 1.7 ± 0.4
3P1 14.0 ± 6.0 2.0 ± 1.0 6.7 ± 1.0
3P2 33.5 ± 3.0 29.5 ± 3.0 1.0 ± 0.5
1D2 11.8 ± 1.5 8.8 ± 1.3 <1
3F2 8.0 ± 1.0 6.5 ± 0.8 <1
3F3 2.0 ± 2.0 2.0 ± 2.0 <1
3F4 11.5 ± 2.5 11.5 ± 2.5 <1
1G4 5.0 ± 1.0 5.0 ± 1.0 <1
3H4 5.5 ± 1.0 5.5 ± 1.0 <1

Table 2.3: Contributions of the initial partial waves to the single pion production reac-
tion pp→ ppπ0 and pp→ npπ+ at

√
s = 2.42 GeV.

The contributions of the initial partial waves to the HADES data as well as contributions
of the partial waves with ∆ and Roper resonances are listed in Table 2.3. The errors are
defined from the set of solutions which include the combined fit of the whole database,
the fit of the HADES data alone, and fits with contributions from higher spin states
(J = 4). In some of the fits the notable interferences between non-resonant contributions
in the NN channel and Roper production were found. In the case of a large correlation,
the non-resonant contributions were suppressed and re-fitting redone.
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2.1. Proton-proton collisions at T = 1.25 GeV

If the deterioration of the likelihood value was less than 1000 (11%) for the ppπ0 channel,
and less than 1500 (4%) for the pnπ+ channel, and the fit did not show large systematic
deviations in a particular distribution, it was also included in the systematic error. The
uncertainties of initial partial waves and final state differential projections, span from
minimum to maximum values obtained from the accepted set of the PWA solutions.
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Figure 2.9: The description of the total cross section (data points with systematic error
bars) in the combined analysis: npπ+ channel (upper panel), and ppπ0 channel (lower
panel). Total partial wave solution (black curve) and contribution of ∆(1232) (red) and
N(1440) (blue) resonance in the PWA description (left panel), contributions of initial
partial waves (right panel). Shaded bands reflect systematic uncertainties.

The same systematic approach was used for the calculation of errors for the total
cross section obtained from the integration of the PWA solutions in the full solid angle.
It was found to be 4.2 ± 0.15 mb for the pp → ppπ0 reaction and 16.34 ± 0.8 mb for
the pp → pnπ+ reaction. The quoted errors are treated as the model uncertainty (see
Table 2.1, column σPWA). The correction of experimental data with the obtained PWA
solution provides very similar to the PWA prediction, cross section values: 4.1 ± 0.46 mb
and 16.26 ± 1.96 mb, respectively. The errors, added quadratically, include: 5−6% due
to background subtraction and particle identification, 3−5% the PWA model correction
uncertainty and 8% due to normalization. Both cross sections agree well within errors
with the cross sections obtained with the modified resonance model approach. However
the contribution of the partial waves with ∆ production is smaller and there is a notable
contribution from the non-resonant terms. These terms provide a rather stable common
contribution but show a rather large variation between initial partial waves. The total
cross section obtained in the partial wave analysis of all fitted data together with main
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contributions are shown in Fig. 2.9 (right panel). The contributions from leading partial
waves have a peak in the region slightly below 2.3 GeV. This peak is created due
to a compromise between decreasing partial wave amplitudes and three-body phase
volume which grows rapidly near the pion production threshold. A similar behavior
was observed in the isospin I = 0 sector [Sar10].

2.1.3 Summary and conclusion
The HADES data of the pion production in proton-proton collision were analyzed

with a modified OPE model and with the Bonn-Gatchina partial wave analysis method.
A detailed study of various observables indicates that the partial wave solution provides
not only a better control of the underlying physics but also a better description of
experimental data (Figs. 2.4 and 2.6). In the ppπ0 channel the discrepancies between
PWA and the modified OPE model are visible in all spectra. Hence, the obtained PWA
solution suits better to perform a full phase space acceptance correction of the measured
data (Figs. 2.7 and 2.8).

The contribution of initial waves to the reactions cross section is defined as well as
the contributions of partial waves with ∆(1232) and Roper production in the interme-
diate state. The analysis shows that at given energy of

√
s = 2.42 GeV the dominant

contribution is defined by the production of ∆(1232) in the intermediate state. This is
visible not only in the proton-pion invariant mass distributions but also in the related
helicity distributions. Furthermore, the pion angular distributions in the GJ frame
shows a strong anisotropy, as expected from the ∆ decay. The PWA solution attributes
75% of the total cross section to the ∆ in the pp → npπ+ channel and 70% to the ∆
in the pp→ ppπ0 channel. Since no notable influence of the non-resonant partial waves
was observed for the ∆(1232) contribution, one can repartition the cross section for the
pp → ppπ0 reaction, obtaining the value 2.96 ± 0.22 (syst.) ± 0.24 (norm.) mb for the
∆ resonance. The partial waves including the Roper production can contribute up to
20% for pp→ ppπ0 and up to 12% for pp→ npπ+.
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2.2 Neutron-proton quasi-free collisions at T = 1.25 GeVT = 1.25 GeVT = 1.25 GeV

The excitation of a resonance decaying into two pions is usually studied in the πN →
ππN [CBC04] and γN → ππN [CEC08] reactions, however the simultaneous excitation
of two baryons can be investigated in the NN reactions. A significant amount of data
for proton-proton collisions has been accumulated for various two-pion final channels in
bubble chamber experiments (see Refs. [Pic62a,Har62,Eis65,Bru69,Coc72,Cve81,Shi82,
Dak82,Dak83,Bys87,Tsu00,Dor03, Sar07]), for energies from the threshold up to 2.85
GeV. Precise differential cross sections have been obtained at CELSIUS and COSY up
to 1.4 GeV [Bro02, Joh02,Pät03,CTC08,CTC09,Dym09,Sko08,Sko09,Sko11a,Sko11b,
CC12b], with an emphasis on the π0π0 production. The database for the np reaction
from the bubble chamber experiments is scarce [Bru69, Dak82, Dak83, Tsu00, Bes86].
Recently, precise measurements of total and differential cross sections for the np →
ppπ−π0 and np → npπ0π0 became available from WASA at COSY at neutron energies
from 1.075 to 1.36 GeV [CC13b, CC15]. In the np → npπ+π− channel, differential
cross sections are also known from Dubna measurements [Jer11, Jer15], covering the
beam incident energy range from 0.624 to 4.346 GeV. The tagged quasi-free np →
npπ+π− reaction was measured by HADES at a deuteron incident beam energy of 1.25
GeV/nucleon (

√
s ∼ 2.42 GeV for the quasi-free collision). In this channel, the excitation

of baryonic resonances coupled to the ρ meson can be studied in the isospin I = 1
channel, what is of relevance for understanding of the dilepton production (see Sections
4.5, 4.8, 4.9), and the expected modifications of the ρ−meson spectral functions in the
nuclear matter [Leu10]. In particular, the ρ production mechanism via ∆∆ final state
interaction, which does not contribute in the pp channel, was proposed as an explanation
for the different dilepton yield measured in pp and np channels [Bas14]. The two-pion
production in NN collisions is also interesting for the check of a dibaryon resonance,
observed in a double-pionic fusion reaction (see Refs. [CC09a,CC11,CC15,Cle15,CC16,
Pla16,Bas17,Cle17]).

2.2.1 npπ+π−npπ+π−npπ+π− channel

In the experiment, the deuteron beam with intensity up to 107 particles/s and 1.25
GeV/nucleon of kinetic energy was directed onto a 5 cm long liquid-hydrogen target of
1% interaction probability. In order to select the quasi-free np reactions, the HADES
spectrometer was equipped a Forward Wall (FW) scintillator hodoscope for registering
the spectator protons, covering polar angles from 0.33○ up to 7.17○. A Monte Carlo
simulation for deuteron-proton breakup verified that approximately 90% of all spectator
protons are within the FW acceptance [HC10]. Quasi-free np interactions were selected
by the detection of the proton spectators with scattering angles ≤ 2○ and momenta
between 1.7 GeV/c and 2.3 GeV/c, reconstructed from the time-of-flight measurement
in the FW.

Besides the proton spectator in the FW, the np → npπ+π− channel was recon-
structed based on the identification of three charged hadrons (p, π+, π−) in the HADES
spectrometer. Any of the selected particles was used as the reference track in order to
calculate the time-of-flight, using the reconstructed momentum and trajectory length.
The velocities of the other two particles were then deduced, using only the time-of-
flight difference with the reference particle (see App. C.3.4). In conjunction with the
reconstructed momentum (with resolution of 2−3%) it was possible to build all possible
particle combinations (hypotheses) out of the pool of hadronic tracks.

– 25 –



Chapter 2. Resonances in hadronic channels

Figure 2.10: np → npπ+π− reaction at 1.25
GeV: Squared missing mass distributions of
the pπ+π−. The experimental data are de-
noted by black dots, the shaded area displays
the phase space distributions at 1.25 GeV,
corrected for the energy dependence of total
cross section taken from Ref. [Bys87].

The purity of the np→ npπ+π− channel
selection is demonstrated by the miss-
ing mass squared distribution of pπ+π−

shown as black dots in Fig. 2.10, which
peaks close to the neutron mass. The
grey area displays the result of a sim-
ulation of the quasi-free np → npπ+π−

reaction, where the neutron momentum
distribution in the deuteron was taken
into account using the Paris potential
[Lac81] and the π+π− production in the
np reaction was treated using phase-
distributions and considering a rise of
the cross section with the np center-of-
mass energy according to Ref. [Bys87].
The total number of selected events in
the np→ npπ+π− channel was 8 × 105.

The comparison of experimental
distributions with theoretical models is
done within the HADES acceptance.
Based on the Monte Carlo simulation and full analysis reconstruction, three-dimensional
acceptance and efficiency matrices (functions of the momentum, polar and azimuthal
angles) for each particle species were produced. The acceptance of the np→ npπ+π− re-
action within the HADES spectrometer amounts to about 6%. The resulting detection
and reconstruction efficiency is typically about 90% for protons and pions.

2.2.2 Production of two pions

The description of double pion production in NN collisions in the GeV energy
range is possible only within the framework of phenomenological models, since the
chiral perturbation theory is available only near one-pion threshold [Liu13]. The first
attempts were based on the one-pion exchange (OPE) model (see Sect. 1.2). The
improved version is the reggeized π exchange model (OPER) [Jer12a,Jer12b], which uses
the partial wave analysis results for πN elastic scattering from the SAID group [Arn03].
Another approach present the Lagrangian models. The Valencia model by Alvarez-Ruso
et al. [AR98] describes NN collisions at energies lower than 1.4 GeV, including only
∆(1232) and N(1440) excitations. The Cao et al. model [Cao10] includes resonances
with masses up to 1.72 GeV/c2. Both models reproduce the fast increase of the cross
section above threshold in the different two-pion production channels and predict, both
the double−∆ excitation, and production of the N(1440) resonance followed by the
decay into ∆π or Nσ. Yet, both models fail to reproduce the π0π0 spectra for the pp→
ppπ0π0 reaction at beam energies above 1.0 GeV [Sko11b,CC12b]. The enhancement
observed in the low mass of the two-pion invariant mass spectra, in pn or pd fusion
reaction (the so-called ABC effect), triggered the development of double−∆ excitation
models [Ris73]. Later, the WASA Collaboration observed the resonant behavior of the
cross section in the pn → dπ0π0 channel [CC09a, CC11], associated with a structure
at low π0π0 invariant mass. They used the modified Valencia model (Ref. [Sko11b])
supplemented with the deuteron formation, however not being able to describe the
double pionic data. The hypothesis of a dibaryon resonance in the I = 0 NN channel,
with a mass of 2.37 GeV/c2 and a width of 70 MeV, was suggested and supported by

– 26 –



2.2. Neutron-proton quasi-free collisions at T = 1.25 GeV

the isospin decomposition of the pn → dππ reaction [CC13a]. The modified Valencia
model, supplemented with the new d∗ resonance, provided a consistent description of
both I = 0 and I = 1 channels, also for the pn → ppπ0π− [CC13b] reaction. Moreover,
the SAID partial wave analysis, based on new polarized n⃗p scattering data, confirmed
the resonance pole in the 3D3−3G3 coupled partial waves at (2380±10-i40±5) MeV (see
Refs. [CC14b,CC14a]).

The collected data with HADES spectrometer, in quasi-free np→ npπ+π− reaction,
using a deuteron beam of 1.25 GeV/nucleon, allow for precise investigation of the total
and differential cross sections. The sensitivity to the double−∆(1232) and N(1440)
excitation, as well as higher lying resonances, can be studied. The data are comple-
mentary to comparison to the already measured np→ dπ+π− (see Refs. [Fäl11,Alb13]).
In the analysis, the results were averaged over the available range of np center-of-mass
energies. For the interpretation of the HADES results, three models: the modified
Valencia [Sko11a], the Cao [Cao10], and OPER model [Jer12b] are used.

In the modified Valencia model [Sko11a], a number of adjustments have been done
as compared to the original model [AR98]. The two-pion contribution from the N(1440)
decay via ∆π or Nσ, calculated as a ratio Γ(N(1440) →∆π) to Γ(N(1440) → Nσ), has
been reduced from 4 to 1. This is supported by the analysis of the π0π0 opening angle
and invariant mass distributions obtained in the pp→ ppπ0π0 reaction at beam energies
below 900 MeV [Sko08], and a recent Partial Wave Analysis [Sar08,Ani12]. Furthermore,
the N(1440) cross section was adjusted according to the isospin decomposition of the
two-pion production channels in the pp reaction at different energies between 0.775 GeV
and 1.36 GeV [Sko09], resulting in the smaller Roper contribution as compared to the
double−∆ excitation. The shape of the π0π0 invariant mass distribution measured in
pp→ ppπ0π0 at an incident energy larger than 1 GeV, where the double−∆ mechanism
dominates [Sko11b], suggested the change of the sign of the ρ exchange contribution
in the ∆ excitation mechanism and its reduction. Finally, the ∆(1600) → ∆(1232)π
was introduced in order to improve the pp → nnπ+π+ description, especially the π+π+

opening angle and invariant mass distributions measured for this channel at 1.1 GeV
[Sko11a]. However, one should note that such a large contribution of the ∆(1600)
resonance at this low energy is controversial.

The Cao model [Cao10] neglects the interferences between the different contribu-
tions, included in the Valencia model. It has higher contributions for both ∆ and N∗

than the Valencia model, e.g., the N(1440) contribution corresponds to about 40 % of
the total np→ npπ+π− cross section at an incident energy of 1.25 GeV. The Cao model
favors N(1440) →∆π by a factor 2 with respect to N(1440) → Nσ decay. The ∆(1600)
starts to contribute to the pp→ nnπ+π+ reaction for energies larger than 1.6 GeV. The
larger double−∆ contribution leads to a good description of this channel but, on the
other hand, it overestimates the pp→ ppπ0π0 cross section.

The OPER model [Jer12b] is based on a reggeized π−exchange model, in which the
form factors and propagators take into account the off-shellness of the exchanged pion.
The model uses on-shell amplitudes of the elastic πN scattering from the SAID group.
The inelastic πN → ππN reaction amplitudes are deduced from a parametrization
obtained in the analysis of Manley [Man92], which provided a good description of the
np → npπ+π− reaction at 5.2 GeV/c, measured at Dubna [Jer11], and in p̄p → p̄pπ+π−

at 7.23 GeV/c, measured at CERN [Ape76,Ape79]. The two-pion production from the
exchange pion line uses amplitudes for ππ scattering, improving the description of the
two-pion invariant mass spectra in the low mass region [Jer12b]. Such graphs are taken
into account in the Valencia model, but are neglected in the Cao model.
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Cao mod. Valencia OPER
∆(1232)∆(1232) 47.0 % 60 % 38.0 %

N(1440) →∆(1232)π 23.0 % 2.1 % 4.5 %

N(1440) → Nσ 20.0 % 8.2 % 0.2 %

∆(1600) →∆(1232)π 3.0 % 21.0 % 4.5 %

Table 2.4: Main contributions in the Cao [Cao10], modified Valencia [Sko11b] and
OPER [Jer12b] models in the np → npπ+π− reaction, for a neutron incident energy of
1.25 GeV. The contribution of interference terms is neglected.

Table 2.4 presents the main contributions of the models discussed above, at an
incident neutron energy of 1.25 GeV. Although the numbers do not take into account
interference effects, they show major differences between the models which will be com-
pared to HADES data. The momentum distribution of the neutron inside the deuteron
was takien into account via the Paris [Lac81] deuteron wave functions for the phase
space calculation, the Hulthen [Hul57] wave function for the modified Valencia [Sko11a]
and CD-Bonn [Mac01] for OPER [Jer12b] and Cao [Cao10] models. No significant
difference is expected from these different inputs.

2.2.3 Experimental results compared with models

The distributions for the np→ npπ+π− reaction at 1.25 GeV are presented in Figs.
2.11-2.14 within the HADES acceptance. The data, corrected for the reconstruction
efficiency, are plotted as solid dots with statistical errors only. The model predictions
from the modified Valencia [Sko11a], Cao [Cao10] and OPER [Jer12b] models, as well
as the phase space distributions, have been normalized to the total experimental yield.
Additionally, contributions from the double−∆, N(1440), and ∆(1600) excitation in
the OPER and modified Valencia model description, are compared with experimental
data in Figs. 2.12 and 2.14.

2.2.3.1 Invariant masses

The sensitivity of the experimental data distributions, measured within the limited
acceptance of HADES, can be tested by comparison with the phase space Monte Carlo
simulation. In the invariant mass projections (Fig. 2.11), the resonant behavior is pro-
nounced in the pπ+ distribution, where a position of the maximum in the data roughly
corresponds to the ∆++ mass. This distribution is also well described by the different
models and deviates significantly from the phase space distribution. It clearly points
to the double−∆ excitation, where the ∆++∆− production is favored in comparison to
∆+∆0 by a factor 8/5 due to the isospin relation. The N(1440)+ →∆++π− decay is also
expected in pπ+ channel, however with the lower intensity. In addition, the N(1440)0

excitation, followed by decay to ∆−π+, has the same probability, but is enhanced by the
HADES spectrometer acceptance. Similarly, a small contribution of the ∆(1600) as a
source of ∆++ is supported by the modified Valencia model (see Figs. 2.11 d and 2.12 f)
and also favored by the acceptance. The double−∆ contribution is larger in the modi-
fied Valencia model than in the Cao model. The model differences are reflected in the
invariant mass width, however, this observable is not sensitive enough. The deviations
from phase space distributions, hence the resonance behavior, are less pronounced for
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2.2. Neutron-proton quasi-free collisions at T = 1.25 GeV

Figure 2.11: np → npπ+π− reaction at 1.25 GeV: Invariant mass of (a) π+π−, (b) pπ−,
(c) pπ+, and (d) pπ+π−. The experimental data are shown by solid symbols. The
theoretical predictions within the HADES acceptance are from OPER [Jer12b] (solid
curve), Cao [Cao10] (dashed curve), and modified Valencia model [Sko11b] (long-dashed
curve). The grey area shows the phase space distributions.

the pπ− and pπ+π− invariant mass distributions (Fig. 2.11 b and d). The ∆0 production
is attenuated as compared to the ∆++ due to isospin relations in all channels (double−∆,
N →∆(1232)π, and the ∆(1600) →∆(1232)π). The OPER and Cao models give simi-
lar predictions for the pπ− invariant mass distribution, very close to experimental data,
but their pπ+π− invariant mass is too narrow. The Valencia model overestimates both
pπ− and pπ+π− distributions. The largest deviations between experiment and models
are observed for the π+π− invariant mass distribution. The Cao model presents double
maximum, not present in the data, probably due to overestimation of the N∗ →∆π pro-
cess. The Valencia model is slightly peaked towards the π+π− mass above 350 MeV/c2.
It is due to the ∆(1600) and the N(1440) contributions, and their interference with the
double−∆(1232) contribution. The contribution at lower mass is insufficient (see Fig.
2.12, right column). The OPER model gives the best description of the low mass part
of π+π− distribution, however, the double−∆ contribution is much broader than in the
case of the modified Valencia model (Fig. 2.12, left column).
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Figure 2.12: np → npπ+π− reaction at 1.25 GeV: Invariant mass of (a, b) π+π−, (c,
d) pπ+, and (e, f) pπ+π−. Experimental data (full dots) are compared to the total
yield (solid curves) for the OPER model [Jer12b] (left column) and modified Valencia
model [Sko11a, Sko11b] (right column). The contributions denoted by curves: ∆∆
(long-dashed), N(1440) (long dash-dotted) and ∆(1600) (short-dashed).

2.2.3.2 Angular distributions

The angular distributions are more sensitive observables to the production mech-
anism, but also challenging due to the limited acceptance. Figure 2.13 presents the
angular distributions for the np → npπ+π− reaction at 1.25 GeV, where in most cases
the phase space distribution is very different from the experimental data and various
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Figure 2.13: np→ npπ+π− reaction at 1.25 GeV, angular distributions: (a) π+π− opening
angle in c.m.s., (b) pπ+π− polar angle in c.m.s.,(c) pπ− polar angle in c.m.s., (d) pπ+

polar angle in c.m.s., (e) π− polar angle in the pπ− Gottfried-Jackson frame, (f) π+

polar angle in the pπ+ Gottfried-Jackson frame. Curve description and grey area as in
Fig. 2.11.

models. The panels a-d present the projections in the center-of-mass system: the δπ+π−
opening angle, and polar (θ) angles of the pπ+π−, pπ−, and pπ+ systems. The center-
of-mass frame was defined assuming the neutron at rest in the deuteron. The panels
e-f present π− and π+ polar angles with respect to the beam axis, boosted first to the
pπ− and pπ+ Gottfried-Jackson frames, respectively.
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Figure 2.14: np→ npπ+π− reaction at 1.25 GeV, angular distributions in the center-of-
mass (np) rest frame: (a, b) π+π− opening angle, (c, d) pπ+ polar angle. Experimental
data are compared to the the OPER model (left column) and modified Valencia model
(right column). Curve description as in Fig. 2.12.

There is a correlation between the π+π− invariant mass (Fig. 2.11a) and π+π−

opening angle (Fig. 2.13a). It is seen as an excess of the measured yields at small
opening angle and invariant mass. The large asymmetry of the distribution in the case
of the Cao model and its steep peaking for back to back π+π− emission (cos δCMπ+π− =
-1) are related to the high-mass structure (Fig. 2.11a, dashed curve), which is due to
the N(1440) → ∆(1232)π decay. The other models, OPER and modified Valencia
model (Figs. 2.14a, b), are smooth for all contributions and close to experimental data.
The difference of the shapes of the cos δCMπ+π− distributions obtained for the double−∆
contributions in these models is consistent with the different behavior of the π+π−

invariant masses.
The polar angles (Figs. 2.13b, c, d), θCMpπ+π− , θ

CM
pπ− and θCMpπ+ , show a strong for-

ward/backward asymmetry, enhanced by the spectrometer acceptance, covering angles
larger than 18○. This asymmetry is mainly due to the strong ∆++∆− production, which
occurs at small four-momentum transfers between the proton from target and the ∆++,
and the neutron from the beam and the ∆−, respectively. The protons are emitted pref-
erentially backward in the center-of-mass. The description provided by the Cao model
is closest to experimental data. The Valencia model presents the asymmetry smaller
than in experimental data. In the OPER description (Fig. 2.11 solid curve, Fig. 2.14
left column), much steeper slope is due to strongly backward peaked the double−∆ con-
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tribution. The difference with this contribution in the modified Valencia model is due
to the much lower cut-off parameters in the vertex form factors which induce a much
steeper four-momentum transfer dependence. Similarly to the π+π− invariant mass dis-
tributions, the description of the θCMpπ+ distribution could be improved by a reduction of
the ∆(1600) contribution. The distributions of the pion angles θpπ

−

π− (GJ) and θpπ
+

π+ (GJ)
are shown in Figs. 2.14 e and f, respectively. The θpπ

−

π− (GJ) distribution is very well
reproduced, especially by the OPER and modified Valencia model, while none of the
models predict the observed enhancement for backward θpπ

+

π+ (GJ).
Is summary, the Valencia model provides a better description than the Cao model,

and the changes introduced by the WASA Collaboration in the original Valencia model,
except perhaps for the ∆(1600) contribution, seem to be justified by the HADES anal-
ysis. The OPER model, which is based on a very different approach, gives also a good
description of the data. In particular, it fits better the π+π− invariant masses than the
modified Valencia model, but the predictions are worse for the center-of-mass angular
distributions.

2.2.3.3 Total cross sections

The models can be compared with data also in terms of the integrated cross sec-
tion. The measured differential cross section integrated within the HADES acceptance
amounts to σaccHADES = 34.9 ± 1.5 µb. The closes but lower value, 26.4 µb, is pre-
dicted by the modified Valencia model [Sko11b]. The other models predict much larger
cross sections, the Cao model [Cao10] integral amounts to 72.4 µb, and the OPER
model [Jer12b] amounts to 86 µb.
In order to minimize the model dependence of the total production cross section and
estimate the model-driven systematic error, the acceptance corrections are constructed
based on several projections, corresponding to the differential distributions: Mπ+π− ,
Mpπ+ , Mpπ− , Mpπ+π− (see Fig. 2.11), and cosCMδπ+π− ,cosCMpπ+π− , cos θCMpπ+ , cos θCMpπ− (see Fig.
2.14 a-d). The OPER and the modified Valencia are the models selected for the one-
dimensional correction, since they give a reasonable shape description. The obtained
total cross section amounts to σV alenciaHADES = 0.65 ± 0.03 mb, using the modified Valencia
model, and σOPERHADES = 0.795 ± 0.040 mb, using the OPER model. The cross section
is averaged over neutron energies accessible in the quasi-free np → npπ+π− reaction
at a deuteron beam energy of 1.25 GeV/nucleon. The average neutron energy for the
HADES measurement (see Fig. 2.15) is 1.273 ± 0.063 GeV. The final cross section
estimate amounts to σHADES = 0.722 ± 0.108 mb. It is denoted in Fig. 2.15 with a full
solid dot and compared with the world data. In addition, the spread of the neutron
momentum in the different measurements is marked with the horizontal error bars.

There are two data points close to the HADES measurement. The NIMROD pd
measurement [Bru69] was obtained at an incident energy 120 MeV higher than the
HADES experiment, and the reported the cross section was 1.75 ± 0.20 mb. The KEK
dp measurement [Tsu00] was obtained for an incident energy only 70 MeV lower than
the HADES energy and reported the cross section was 1.25 ± 0.05 mb. Such a differ-
ence with the HADES cross section, lower by a factor 2 in such a small energy range, is
difficult to explain. Figure 2.15 presents also the selected model predictions. The Cao
model was omitted since it does not reproduce satisfactorily the np→ npπ+π− reaction
in the HADES energy range, with the predicted cross section 1.73 mb, higher by a
factor 2.4 than the HADES point. The OPER model does not provide cross sections
and was normalized to the Bystricky parametrization [Bys87] (solid curve), which is an
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interpolation between measurements over a wide energy range up to 2.2 GeV. This pa-
rametrization predicts the cross section of 1.88 mb at 1.25 GeV, largely overestimating
the HADES value. The modified Valencia (short dahs-dotted curve) gives a prediction
of 0.59 mb, close to the HADES value. The advantage of this model is the good re-
production of the differential distributions for the np→ npπ+π− channel, as well as the
data measured by the WASA Collaboration below 1.4 GeV for the nnπ+π+ [Sko11a]
and pp → ppπ0π0 [Sko11b] channels. Unfortunately, the model underestimates the
np → npπ+π− reaction both at lower and at higher energies. The latter might be due
to the lack of the N(1520) and N(1535) resonances in the model.
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Figure 2.15: HADES measurement for the
quasi-free np→ npπ+π− reaction at 1.25 GeV
(full dot at σ = 0.72 ± 0.11 mb) compared
to the world data. The solid curve repre-
sents the Bystricky parametrization [Bys87]
used for the OPER model normalization, the
short dash-dotted curve shows the estima-
tion of the modified Valencia model [Sko11a].
The long dash-dotted curve estimates the
contribution of the dibaryon resonance from
Ref. [Alb13]. The dashed curve is the sum of
the modified Valencia model and dibaryon
resonance contributions.

Another contribution to np →
npπ+π− channel was calculated
by the WASA Collaboration,
assuming formation of the di-
baryon resonance with a mass
around 2.38 GeV/c2. The contri-
bution estimated in Ref. [Alb13],
i.e. pn → d⋆ → pnπ+π−, is de-
noted in Fig. 2.15 as a long
dash-dotted curve with a max-
imum around 1.13 GeV neu-
tron energy. This contribution
should be added to the non-
resonant contribution. The com-
bined description, obtained by
adding the dibaryon contribu-
tion from Ref. [Alb13] to the
modified Valencia model predic-
tion, is presented as a dashed
curve. The result perfectly
matches the HADES data point
and, except for the KEK point
[Tsu00], is in agreement with the
cross sections obtained for in-
cident energies between 1 and
1.3 GeV within 20%. This en-
ergy range was used to adjust
the Valencia model for the pp →
ppπ0π0 and pp → nnπ+π+ data.
The worse description outside
this energy range could probably
be reduced by further adjustments of the Valencia model. The final conclusion cannot
be made until the full model, including in a consistent way the t−channel processes,
based on the modified Valencia model, and the resonant s−channel, is developed, due
to the unknown interference effects. The resonance contribution investigated is various
differential distributions remains also an open question.
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2.3 Proton-proton collisions at T = 2.2 GeVT = 2.2 GeVT = 2.2 GeV

In proton-proton collisions at a kinetic beam energy of 2.2 GeV (the energy
√
s =

2.765 GeV), the larger phase space available for inelastic processes is reflected in a signif-
icant contribution of the two-pion production, visible in Fig. 2.16, left panel, presenting
two-proton missing mass squared. In addition, the η−meson production shows up for
M2
miss(p, p) around 0.3 (GeV/c2)2. Due to that fact, studying one-pion production

mechanisms in the hadronic channels requires the modeling of multipion background.
At 2.2 GeV, they were simulated as resulting from a double−∆ production, with nor-
malization adjusted such as to fit the data at the highest missing masses. Figure 2.16,
right panel, shows events with two protons (pp), and one proton and one pion (pπ+).
The missing particles are clearly visible, albeit with a significant two-pion contribution.
Likewise in the other pp experiment, at lower energy, all spectra were normalized to
the pp elastic scattering yield measured in the same experimental run. The resulting
normalization factor has a precision of about 11%, reflecting mainly the uncertainty on
the global efficiency of the reconstruction and analysis.
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Figure 2.16: Left panel: Experimental spectrum of pp missing mass squared for the
reaction pp→ ppX at 2.2 GeV. The most prominent peak stems from pp elastic channel
(also denoted with a dashed curve), followed by the one-pion and two-pion continuum
and η production. Right panel: Inelastic one-pion exclusive channels, pp missing mass
squared (upper) and pπ+ missing mass (lower). The two-pion contribution (dot-dashed
curve), deduced from the double−∆ simulation followed by the decays toNπ final states,
is subtracted before the fit.

2.3.1 One-pion production and resonance model

The production of one-pion channels from the pp reaction at 2.2 GeV energy is
described within the resonance model by Teis et al. [Tei97]. Like in pp collisions at 1.25
GeV, the contributing resonances are ∆−isobar and Roper resonance, but also higher
lying resonances, mainly N(1520) and N(1535), play a role. The isospin relations
between channels are preserved (see Sect. 2.1.1, Eqs. 2.2 and 2.3). The resonance
model cross sections are listed in Table 2.5 (column σRES), in addition the cross sections
adjusted to experimental data are given in a column σADJ . Resonances heavier than
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N(1535) were neglected in this approach. They contribute 7% and 11% to the npπ+

and ppπ0 final states, respectively. Besides the ∆(1232), modeled according to the OPE
calculation [Dmi86] adopted in Teis fit, the angular distributions for the production of
the other resonances are assumed to be isotropic in the pp center-of-mass frame, except
for the N(1440) resonance, where a steep distribution following the one-boson exchange
(OBE) model of Ref. [Hub94] was implemented.

final state intermediate process σRES (mb) σADJ (mb)
npπ+ pp→ n∆++(1232) 10.80 10.80

pp→ p∆+(1232) 1.20 1.20
pp→ pN(1440) 0.82 1.60
pp→ pN(1520) 0.18 0.36
pp→ pN(1535) 0.19 0.64
non-resonant 0.0 0.3

Total ∶ 13.09 14.90
ppπ0 pp→ p∆+(1232) 2.40 2.40

pp→ pN(1440) 0.41 0.80
pp→ pN(1520) 0.09 0.18
pp→ pN(1535) 0.10 0.32
non-resonant 0.0 0.15

Total ∶ 2.99 3.85
ppη pp→ pN(1535) 0.0725 0.082

non-resonant 0.0525 0.06
Total ∶ 0.125 0.142

Table 2.5: Cross sections for the p(2.2 GeV) + p reaction and one-pion final states with
the intermediate baryon resonance excitation: σRES for the resonance model [Tei97],
σADJ adjusted to the data.

The resonance excitation is reflected in the Dalitz plots in Fig. 2.17. Besides the
dominating ∆−isobar contributions, the invariant mass squared around M2

inv(p, π0) =
2.3 (GeV/c2)2 is populated, corresponding to the higher N∗ resonance excitation. The
final state interaction, clearly seen in the pp → npπ+ at 1.25 GeV is less apparent at
2.2 GeV, since it affects events with proton angles below the acceptance limit. For the
ppπ0 channel, the pp FSI is suppressed by the trigger configuration (see App. C.2).

2.3.2 One-pion channels

Figure 2.18 presents the pπ0 (left panel) and both pπ+, and nπ+ (right panel) in-
variant masses, respectively. The subsequent contributions of the resonance model were
added incoherently. Unlike in the analysis of pp at 1.25 GeV (Sect. 2.1.1.1 and 2.1.1.2),
the ∆ resonance contributions were not adjusted and the cut-off parameter (see Eq. 1.9)
was left at Λπ = 0.63 GeV2. On the other hand, N(1440) was modeled anisotropically.
The sum of ∆ and N(1440) resonances, as well as the higher-lying resonances, N(1520)
and N(1535), is denoted by a black solid curve (model A). Contrary to the results in
pp at 1.25 GeV (Sect. 2.1), the total cross section in this model description is clearly
underestimated in all distributions.
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Figure 2.17: Dalitz plots of the pp → ppπ0 (left panel) and pp → npπ+ (right panel) at
2.2 GeV, with the dashed curves indicating their kinematical limits.

The cross sections of N∗ resonances, N(1440), N(1520) and N(1535), were in-
creased and a non-resonant contribution, generated with a phase space distribution,
was added (Table 2.5, column σADJ). A better description of the two-particle invari-
ant mass distributions, pπ0, pπ+, and nπ+ (Fig. 2.18), as well as the neutron angular
distribution in Fig. 2.19 in the npπ+ channel, were obtained.

2

4

6

0

0.1

0.2

0.3

0.4

1 1.2 1.4 1.6 1.8

A, total

B, total

+ΔA,

A, N(1440)

A, N(1520)+
N(1535)

0

0.5

1

1.5

1.2 1.4 1.6 1.8

++ΔA,

A, total

B, total

1 1.2 1.4 1.6 1.8

B, total

A, total

++ΔA,
+ΔA,

A, N(1520)+
N(1535)

A, N(1440)

)]2
[m

b/
(G

eV
/c

in
v

/d
M

σd

)]2
[m

b/
(G

eV
/c

in
v

/d
M

σd

0πpp→pp +πnp→pp

]2) [GeV/c0π(p,invM ]2) [GeV/c+π(p,invM ]2) [GeV/c+π(n,invM

Figure 2.18: Two-particle invariant mass distributions: pπ0 (left panel) and pπ+, and
nπ+ (right panel), within the HADES acceptance. The data points (efficiency corrected)
are compared to the resonance model contribution (model A), with contributions of
∆++(1232) (blue dashed curve), ∆+(1232) (magenta dotted curve), N(1440) (green
dash-dotted curve), and the sum N(1520) plus N(1535) (brown solid curve). The
long-dashed black curve, denoted as model B, results from the yield of N∗ resonance
adjustment and a small non-resonant admixture (not in the figure).

The modified resonance model was used to extrapolate the measured yield to the full
solid angle. This was achieved by the calculation of the acceptance correction factors as
a ratio of the number of events generated in the simulation (according to model B) to the
number of events after filtering by the HADES geometrical acceptance and analysis cuts.
The obtained cross sections are: σ(pp → npπ+) = 14.45 ± 3.2 mb, and σ(pp → ppπ0) =
4.15 ± 0.85 mb. The quoted systematic error is composed of the model dependence of
the acceptance corrections, the normalization error, the efficiency corrections and event
selection (mainly, geometrical cuts). The detailed discussion and numbers can be found
in Ref. [HC12b]. The statistical errors are negligible. The comparison with the other
experimental data from the resonance model fit is presented in Fig. 2.31 in Sect. 2.4.4,
together with the results from pp collisions at 1.25 GeV and 3.5 GeV.
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dash-dotted), N(1520) and N(1535)
(brown dot-dot-dashed). The black
dot-dashed curve shows the result of
model B (see text for details).

2.3.3 ppηppηppη channel
The kinetic beam energy E = 2.2 GeV allows for the production of η−meson. The

dominant decay mode is η → π+π−π0 with branching ratio 0.2292 ± 0.0028 [CC07], then
dielectron Dalitz decay (see App. A.3.1), η → e+e−γ with BR = (6.9 ± 0.4) × 10−3

(see Sect. 4.5). The investigation of hadronic channel in HADES requires selection
of events with two protons (pp), and one positive and one negative pion (ppπ+π−).
The correlation of observables, the missing mass Mmiss(p, p) and Mmiss(p, p, π+, π−) is
displayed in Fig. 2.20, left panel. The concentration of events with a ppπ+π− missing
mass slightly above zero is due to the pp → ppπ+π− reaction. Another clear signal,
selected with a rectangular cut, is due to pp→ ppη signal.
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Figure 2.20: pp → ppπ+π− reaction at 2.2 GeV. Left panel: The correlation be-
tween the two-proton missing mass (Mmiss(p, p)) and the four-particle missing mass
(Mmiss(p, p, π+, π−)) is shown. The orange rectangle selects the region of the η peak,
clearly visible for Mmiss(p, p) around the η mass and Mmiss(p, p, π+, π−) close to the
π0 mass. Right panel: Distribution of the two-proton missing mass (Mmiss(p, p)) for
the selected ppπ+π− events (left panel). The dashed curve shows the fit of the non
resonant three-pion background. The empty circles result from the subtraction of this
background and define the η signal. The full histogram (black solid) is the result of the
simulation of the pp→ ppη reaction.

The resulting Mmiss(p, p) spectrum, normalized to the pp elastic yield, is shown in
Fig. 2.20, right panel. It shows a peak at the mass of the η−meson on top of a broad
continuum, which is mainly due to the non-resonant π+π−π0 production. Its contribu-
tion in the peak region was obtained from a polynomial fit of the data outside the peak
region. The η signal was defined as the yield above this background, corresponding
to about 24800 counts. The sensitivity to the background suppression was studied by
varying the limits for the fit, resulting in a systematic error of ±4%.
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The simulation of the η production is composed of a non-resonant and N(1535)
contribution (see Table 2.5), with the same proportion as in the analysis of the DISTO
Collaboration [DC04], measured at similar beam energies. For both non-resonant and
resonant contributions, the angular distribution was deduced from the DISTO data.
The η production cross section, which was not measured in the DISTO experiment, is
taken from the resonance model fit [Tei97]. The N(1535) → Nη decay branching ratio
is 0.42 ± 0.10 [PDG16]. The missing mass distribution obtained from the simulation of
the pp → ppη channel is shown in Fig. 2.20 (right panel) as a full histogram. Its width
depends only slightly on the ingredients of the model for the η production. The agree-
ment of simulation and experimental signal confirms the consistency of the extracted η
signal and the good description of the detector resolution in the simulation.
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b] Figure 2.21: η cross section mea-
sured by HADES (full dot) for the
pp → ppη reaction, followed by the
η → π+π−π0 decay, compared to ex-
isting data (empty symbols) and Teis
fit [Tei97] (solid curve).

The extraction of the η production cross section was performed in a similar way
as described in Sect. 2.3.2. The model dependence was tested with the variation of
the proportion of non-resonant and resonant contribution. The value σ(pp → ppη) =
0.142 ± 0.022 mb is compared with other data in Fig. 2.21. In this energy range
only the two measurements from Ref. [Pic62b] existed. The value obtained in neutral
channels σ = 0.197 ± 0.077 mb is, within the error, in agreement with the HADES
value. The cross section obtained in the three-pion channel, 0.242 ± 0.042 mb, is above
the HADES point. However, the error of the latter result might be underestimated, as
discussed in Ref. [DC04]. The HADES measurement is in agreement with the resonance
model [Tei97], where the η−meson production proceeds only via N(1535) resonance
decay. This assumption is in contradiction with the DISTO analysis [DC04]. The
HADES measurement provides a constraint for various models of the η production.

2.3.4 Summary and conclusion

The HADES has provided a measurement of the reactions pp → ppπ0, pp → npπ+,
and pp → ppη at 2.2 GeV. The exclusive hadronic channels were identified with high
statistics and studied in various differential distributions. The comparisons to model
predictions based on a resonance model [Tei97] were presented. The studies of the
various contributions of the model, compared to the present data allow to determine
resonance cross sections on one-pion and η production. Such constraints are important
for modeling of dielectron sources (see Sect. 4.5). This approach, however, suffers
from some uncertainties due to free parameters in the models, e.g. vertex functions,
couplings strengths, and incoherent summation of the subsequent contributions. Despite
it all, thanks to a good acceptance coverage, one-pion cross sections were extracted.
Furthermore, determination of the exclusive η production cross section is important,
as it provides the first precise measurement of the exclusive production cross section in
this energy region.
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2.4 Proton-proton collisions at T = 3.5 GeVT = 3.5 GeVT = 3.5 GeV

In the studies of one-pion production in pp reactions at 1.25 and 2.2 GeV it has
been shown that the resonance model by Teis et al. [Tei96] describes the data well if
the angular distributions of the dominant ∆(1232) are slightly modified with respect
to the original OPE results [HC12b]. Even better description has been achieved in the
description of pp data at 1.25 GeV, with the partial wave analysis [HC15a]. There are,
however, also other prescriptions to parameterize resonance production amplitudes, e.g.
the one used in the UrQMD transport model [Bas98]. In the course of the systematic
baryon resonance production, the HADES Collaboration measured the pp collisions at
the kinetic beam energy of 3.5 GeV (

√
s = 3.18 GeV). In the experiment a proton beam

with intensities of up to 107 particles/s was impinging on a 5 cm long liquid-hydrogen
target (1% interaction probability). Similarly to measurements at lower energies, the
analysis of the exclusive one-pion production channels, pp→ pnπ+, and pp→ ppπ0, was
focused on baryon resonance excitation. The channels with pions were selected using
events containing at least two tracks from positively charged particles. The subsequent
final states were identified via cuts in one-dimensional missing mass distributions of
pπ+ and pp systems, around the value of the not detected particle, neutron or π0,
respectively. The reaction cross sections were determined using the yield Nel of elastic
proton-proton scattering measured simultaneously to the other reaction channels, the
overall normalization error was estimated to be 8%.

Figure 2.22, left panel, displays the distribution of missing mass squared of the
pπ+ pair with respect to the beam-target system, where the prominent peak centered
around the nominal neutron mass (squared) is clearly visible. In order to extract the
yield related to the npπ+ final state, the background under the peak had to be sub-
tracted. For this purpose a fit function consisting of a polynomial (second and third
order were considered) and two Gauss functions accounting for the background and the
peak, respectively, were used to fit the experimental distributions. It has been checked
that such a fit describes the missing mass distributions obtained from simulations (see
below) and that the widths of both distributions agree very well. The signal yield was
determined as the difference between the measured yield and the fitted background
around the missing mass peak. Various background parametrizations and fit ranges
were considered to evaluate the systematic error related to the extracted reaction yield.
An example of such a fit for the pπ+ events is presented in Fig. 2.22, right panel, in
the missing mass range used for the signal yield extraction. Typical systematic errors
amount to 5 − 11%, depending on the particle momenta and background distributions.
The same procedure was applied to determine the signal yield in each bin of various
distributions presented below.

Figure 2.23, left panel, displays the square of the two-proton missing mass distri-
bution for 2p events after rejection of the proton-proton elastic scattering events. The
background on the right hand side of the π0 mass is much higher (black dots) and not
well separated from the dominant π0 peak. The other two peaks visible on top of the
continuum stemming from two-pion production, correspond to the mass squared of η
and ω mesons, respectively. The shape of the two-pion contribution (dashed blue curve)
was obtained from dedicated Monte Carlo simulations (see below), assuming uniform
phase space population and with normalization to the measured yield. It was verified
that details of the modeling of the two-pion production did not modify the shape of
the background and led only to slight changes of its magnitude. In order to extract the
signal yield related to the ppπ0 channel, first the two-pion contribution was subtracted
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Figure 2.22: Left panel: missing mass squared of the pπ+ system with respect to the
beam-target pp system. Right panel: an example of a fit within the squared missing
mass window around the neutron peak at (Mpπ+

miss)
2=0.88 GeV2/c4.

followed by a signal and background fit done in a similar way as in the pπ+ case. Finally,
the yield of the ppπ0 final state was calculated in the window depicted in Fig. 2.23,
right panel, as the difference between the measured yield and the fitted background. To
correct for a small contribution from the η, the signal was calculated based on the left
half of the π0 peak position multiplied by factor 2. The same procedure was applied to
extract the pion production yields as a function of other kinematical variables.
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Figure 2.23: Left panel: missing mass squared of the pp system (black dots), simulated
two-pion (blue curve) and the difference distributions (red points) after rejection of
the elastic proton-proton scattering events. Right panel: an example of a fit to the
subtracted spectrum in the squared missing mass window (limited by the vertical dashed
lines) around the missing mass π0 peak.
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2.4.1 Baryon resonance cocktail in simulation
Simulations of pion and dielectron production in proton-proton collisions at kinetic

energy of 3.5 GeV were performed by means of the PLUTO event generator [Frö07].
A resonance model, assuming that the pion production cross section is given by the
incoherent sum of various baryon resonance contributions, was implemented. All four-
star resonances, used by Teis et al. [Tei96] to fit the total one-pion and the η−meson
production cross sections in the range 2.0 <

√
s < 5.0 GeV, were included. The

production amplitudes of the resonances extracted in Ref. [Tei96] are constant and
depend neither on the beam energy nor on the resonance production angle, except for the
∆(1232) resonance for which a strong dependence on the four-momentum transfer from
the incoming proton is included in accordance with the OPE results (see Ref. [Dmi86],
Sect. 1.2.1). The model was, however, confronted only with data at lower energies
[HC12b], where the ∆(1232) resonance is dominating. The most important extension
in this analysis was the implementation of the dependence of resonance production on
the production angle to all resonances, as described below. Furthermore, the resonance
production cross sections were treated in simulations as free parameters but with fixed
isospin relations between production cross sections for the pnπ+ and the ppπ0 final
states in the respective I = 3/2 (∆) and I = 1/2 (N∗) channels.

Table 2.6 summarizes the relevant resonance properties implemented in the simu-
lations: the total decay widths (Γ), the branching ratios (BR) for Nπ and, in addition,
the pe+e− decays (the dielectron decays will be discussed in Sect. 4.9). For the reso-
nances, the relativistic Breit-Wigner formula with mass dependent widths was used as
in Ref. [Tei97]. The resonance widths and the Nπ decay branches are adopted from
resonance model, except for N(1535), ∆(1910) and ∆(1950) the properties of which
were taken from Ref. [PDG16], due to large differences with respect to more recent
evaluations. Resonances of similar masses and the same isospin, I = 3/2 (∆) or I = 1/2
(N∗), are grouped together in the table, since various resonances in the analysis are
identified by means of the Nπ invariant mass distributions only, hence the ∆++ and
N∗+ resonances can be observed as peaks in the pπ+ and the nπ+ invariant mass distri-
butions. The resonances grouped together in Table 2.6 cannot be isolated by means of
the respective Nπ invariant mass distributions because they overlap. In such cases the
resonances (printed in bold style) with the largest decay branches to the nucleon-pion
and to the proton-dielectron final states were selected.

2.4.2 Baryon resonance angular distributions
Modeling of the angular resonance production is of utmost importance in the case of

the spectrometer with the limited acceptance. The anisotropic emission in the proton-
proton center-of-mass frame, depending on the four-momentum transfer t = (p1 − pR)2,
was calculated between the four-momentum vectors of the outgoing resonance (pR) and
the incoming nucleon (p1):

dσR/dt ∼ A/tα (2.9)

where A and α(M) are constants to be derived from the comparison to the data, and
M is the respective Breit-Wigner resonance mass. In the calculation of the momentum
transfer, the following convention was used for the definition of the incoming proton p1:
if the resonance is emitted forward in the c.m.s., p1 denotes the projectile, otherwise the
target proton. The choice of such a parametrization was motivated by the experimental
results on the resonance angular distributions from earlier proton-proton experiments
[Col71], where a strong forward-backward peaking of the resonance production was
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observed. Moreover, it was found that the anisotropy of the distribution decreases with
increasing resonance mass. Such a behavior is expected for peripheral reactions, where
the production of heavier resonances requires a larger four-momentum transfer and,
consequently, a flattening of the angular distributions. The respective α dependency on
M has to be, however, found from a comparison to the data.

JP Resonances ΓR [MeV ] BR(Nπ) BR(pe+e−)
3/2+ ∆(1232) 120 1 4.2e-5
1/2+ N(1440) 350 0.65 3.06e-6
3/2− N(1520) 120 0.55 3.72e-5
1/2− N(1535) 150 0.46 1.45e-5
3/2+ ∆(1600) 350 0.15 0.73e-6
1/2− ∆(1620) 150 0.25 1.73e-6
1/2− N(1650) 150 0.8 8.03e-6
5/2− N(1675) 150 0.45 1.02e-6
5/2+ N(1680) 130 0.65 1.97e-5
3/2+ N(1720) 150 0.2 3.65e-6
3/2− ∆(1700) 300 0.15 1.38e-5
5/2+ ∆(1905) 350 0.15 1.46e-6
1/2+ ∆(1910) 280 0.25 0.73e-5
7/2+ ∆(1950) 285 0.4 3.06e-6

Table 2.6: List of resonances and their properties included in the simulations. Some
groups of resonances cannot be separated in data. In such a case the resonance with the
largest coupling to pion and dielectron channels (printed in bold) is used in simulations.
See the text for details.

The decay angular distributions R → Nπ of all resonances, except ∆(1232), have
been assumed isotropic, since little is known on the alignment of resonances after pro-
duction. The ∆(1232) decay has been modeled proportional to 1 + 3cos2(θ), where
θ is the angle of the pion (or nucleon) in the ∆ rest frame with respect to the beam
axis. Such a parametrization is predicted by the OPE model (see Sect. 1.2.3) and also
corroborated by the experimental data [And94].

2.4.3 npπ+npπ+npπ+ and ppπ0ppπ0ppπ0 final states

In order to evaluate the resonance cocktail, various differential distributions for the
npπ+ and the ppπ0 final states need to be compared with Monte Carlo simulations within
the HADES acceptance. Since the HADES acceptance is not complete, all acceptance
corrections can be performed only by means of a model, and a detailed comparison of
such a model with the data is a mandatory.

To begin with, the pp→ pnπ+ reaction channel allows for a separation of the double
(∆++) and the single charged resonances (∆+,N∗+) by an analysis of the pπ+ and the
nπ+ invariant mass distributions, respectively. Figure 2.24 shows the data overlayed
with the result of the simulation assuming contributions from the resonances listed in
Table 2.6. The data points are normalized to the elastic scattering yields (Nel) and are
displayed together with the errors stemming from the background subtraction procedure
(statistic errors are negligible). The normalization error is not included.
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Figure 2.24: npπ+ final state: pπ+ (left panel) and nπ+ (right panel) invariant mass
distributions compared to the result of simulations (dashed curves) assuming an inco-
herent sum of the resonance contributions shown by separate curves, as indicated in the
legend. The data are normalized to the proton-proton scattering yield Nel measured
within the HADES acceptance. Indicated error bars are dominated by the systematic
errors related to the signal extraction, the constant normalization error (8%) is not
included. Normalization to the bin width is applied.

Since the resonance line shapes are fixed in the simulations, the only free param-
eters, to be found by a comparison to the data, are the resonance production yields
and the angular distributions, given by Eq. 2.9. The yields were obtained from simul-
taneous fits to the invariant mass and the four-momentum transfer distributions using
an iterative procedure. In the first step the ∆(1232)++ resonance, dominating the pπ+

invariant mass distribution, was considered. In order to extract the slope parameter
α(M) for the ∆(1232), the acceptance and efficiency corrected distribution of the pπ+

yield as a function of t for the events with an invariant mass window centered around
the resonance pole were plotted, as shown in Fig. 2.25, left panel. The experimental
distribution was fitted with a function given by Eq. 2.9, and the constants A(M), α(M)
were determined. In the next step, the obtained ∆(1232)++ and ∆(1232)+ contributions
were subtracted and the same procedure was performed for the nπ+ events in the region
of the N(1440) resonance, selected by the respective cut on the invariant mass. The
yield of the ∆+ was calculated using the isospin relation, σ∆++→pπ+ = 9σ∆+→nπ+ . The
sum of both ∆ contributions produces a broad smooth distribution in the nπ+ invariant
mass spectrum, as it can be seen in Fig. 2.24, right panel. On the other hand, the N∗

contributions in the pπ+ invariant mass under the ∆(1232) peak are very small and
influence the fit of the ∆++ angular distribution only marginally.

The contributions of higher mass resonances N(1520)+, N(1680)+ and ∆(1910)+
were extracted in the similar steps. Figure 2.25, left panel, shows the acceptance and
efficiency corrected t distributions for the three proton (neutron)-pion mass regions
together with the fits and the dependence of the α parameter (middle panel) on the
resonance mass extracted from the data. The points with the errors (red) correspond to
all investigated resonances, while the points without errors (blue) indicate the values of
α deduced from the fit which are used for the other resonances. The observed decrease
of α with the resonance mass is equivalent to the flattening of the angular distributions.
The angular distribution of the ∆(1232) production, obtained from the fit, agrees quite
well with the one obtained from the OPE model of Dmitriev et al. [Dmi86].

– 44 –



2.4. Proton-proton collisions at T = 3.5 GeV

]4/c2t [GeV

0 0.5 1 1.5 2 2.5 3

co
un

ts

210

310

410

510

610

710

2(1.15-1.45) GeV/c∈+πp

inv
(1232) M∆

2(1.4-1.65) GeV/c∈+πn

inv
N*(1520) M

2(1.75-2.05) GeV/c∈+πp

inv
(1910) M∆

x 0.05

x 0.005

]2 [MeV/cinvM
1200 1400 1600 1800 2000

 -
 p

ar
am

et
er

α

0.8

1

1.2

1.4

1.6

1.8

2

+πp

CM
)θcos(

-1 -0.5 0 0.5 1

el
 1

/N
⋅ 

C
M

)θ
dN

/d
co

s(

-110

1

10

210

Figure 2.25: npπ+ final state: Left panel: Acceptance and efficiency corrected distribu-
tions of pπ+ and nπ+ yield as a function of the four-momentum transfer t compared to
fits (solid curves) for the three indicated mass regions. Data from the high mass region
are scaled, as indicated, for better visualization. Middle panel: Dependency of the con-
stant α from Eq. 2.9 on the resonance mass, obtained from fits to the data (points with
errors). The points without errors are the α values deduced from the fit shown by the
dashed curve and used in simulations. Right panel: Center-of-mass (CM) distribution
of the pπ+ system within the HADES acceptance, decomposed into various resonance
contributions (same legend as in Fig. 2.24), using the t dependence of the resonance
production presented in the middle panel.

The consistency of the procedure was verified by a simulation with all components
included, according to the derived cross sections and the resonance angular distribu-
tions. The acceptance correction of the t distributions has been repeated with the
improved model and new α parameters were determined. The second iteration changed
only marginally the fit parameters. The final decomposition of the simulated pπ+ yield
as a function of cos(θpπ

+

CM) into individual contributions from the resonances is displayed,
within the HADES acceptance, in Fig. 2.25, right panel. The asymmetric shape of the
angular distribution is due to the acceptance favoring the detection of pπ+ pairs emitted
in the c.m.s. in backward direction (or, equivalently, nπ+ pairs in forward direction).
The HADES acceptance and reconstruction efficiency increase as a function of the res-
onance mass from 6% to 15%.

Finally, the extracted resonance yields and the angular distributions were included
in the simulation of the pp→ ppπ0 reaction channel. The cross sections for the pnπ+ and
ppπ0 final states are fixed by their isospin relations. A very good agreement between
simulation and the data was also achieved for this reaction channel. Figure 2.26 presents
a comparison of the pπ0 invariant mass and the c.m.s. angle distributions of the pπ0

system, obtained in the experiment and in the simulation. Since the two final-state
protons are indistinguishable, both combinations of protons with a neutral pion were
included in the presented distributions (each with a weight 0.5). Contrary to the npπ+

final state, the intensity of the ∆(1232) resonance is reduced and the contributions of
higher mass resonances are more pronounced. The distributions are strongly affected by
the HADES acceptance which is smaller by a factor 2−3, depending on the pπ0 mass, as
compared to the acceptance for the npπ+ final state. In the angular distributions for the
two reaction channels (right panels of Figs. 2.25 and 2.26), a clear cut-off is visible in the
pπ0 case. While the acceptance for the npπ+ channel is large for the backward emitted
pπ+ pairs, the acceptance for the ppπ0 is strongly reduced in this region. Consequently,
pπ0 events from reactions characterized by small momentum transfer are suppressed
with respect to the pπ+ case.
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Figure 2.26: ppπ0 final state: pπ0 invariant mass distribution (left panel) and the CM
angular distributions (right panel) compared to the result of the simulation (line style
as in Fig. 2.24, normalization to the bin width is applied).

To perform more detailed comparisons between the data and the adjusted reso-
nance model, the angular distributions defined in the Gottfried-Jackson (GJ) and the
helicity (H) reference frames were studied (see App. C.3.5.3 for definition). Figure 2.27
displays the angular distributions for the npπ+ final state in the GJ reference frame and
in the H reference frame. Although they are strongly affected by the HADES accep-
tance, they still reveal interesting features related to resonance production. The helicity
distributions are connected to the invariant mass distributions and exhibit structures
related to the contributions of individual resonances. As expected, the nπ+ helicity
frame allows to reveal the pπ+ states. In the case of pπ+ helicity frame, the resonant
states deriving from the single charge states, are covered by the decay pattern of the
∆++ resonances.

The angular distributions of nucleons calculated in the GJ frame display a strong
forward-backward peaking. The angle θπ

+

pπ+ in the GJ frame describes the decay angle
of the double-charged ∆++ and should be sensitive to the expected anisotropy of the
∆(1232) decay. Indeed, the data seem to follow the trend expected for the ∆(1232)
but are not perfectly described by the simulation. This might be a consequence of the
isotropically modeled decays of the other resonances. However, only a small sensitivity
to modeling of these distributions within the HADES acceptance was determined.

Figure 2.28 displays the angular distributions in the GJ and H reference frames for
the ppπ0 final state. Since the final state includes two indistinguishable protons, only
four distributions are presented. The two distributions, including two protons, were
averaged, as explained above. For the ppπ0 reaction, even a better description of the
data by the adjusted model has been achieved. It is interesting to note that the GJ
distribution for the pπ0 system, which is dominated by the N∗ contributions (particu-
larly N(1520)), is well described by simulation, hence corroborating the assumption of
an isotropic resonance decay.

2.4.4 Baryon resonance cross sections
Based on the studies presented in the previous section, the modified resonance

model within the HADES acceptance reproduces the data satisfactorily. Therefore
the simulation can be used to correct the data for losses due to limited acceptance
and inefficiencies of the detection and the reconstruction processes. Acceptance cor-
rected distributions can then be compared to other reaction models than those used
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in the simulation. The correction factors were calculated from the simulations as the
ratio between the generated and the accepted and reconstructed distributions as one-
dimensional functions for all studied kinematical variables separately (i.e the invariant
masses and the various angular projections).
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Figure 2.27: Angular distributions in the Gottfried-Jackson reference frame (top row)
for the npπ+ final state compared to the results of simulations (dashed curve) decom-
posed into contributions of various resonances and in the helicity (bottom row) reference
frame. For the legend, see Fig. 2.24.
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Figure 2.29 displays the acceptance and efficiency corrected charged pion differen-
tial cross sections as a function of the pπ+ and the nπ+ invariant masses for the npπ+

final state. The distributions are overlayed with the simulation decomposed into con-
tributions of the ∆ and the N∗ resonances (see legend as in Fig. 2.24). One can notice,
by comparing to the respective uncorrected distributions shown in Fig. 2.24, that the
corrections enhance the low-mass ∆(1232) region for the pπ+ and nπ+ systems and the
high-mass region (Mnπ+ > 1.9 GeV /c2) for the nπ+ system. The marked feature of the
pπ+ system is, as already observed in the uncorrected spectra, a dominant ∆(1232)++
contribution and a slight enhancement around Mpπ+ = 1.9 GeV/c2, which may indicate
contributions from the higher mass ∆ states. The line shape of the ∆(1232)++, which
dominates the pπ+ invariant mass distribution up to 1.6 GeV/c2, is perfectly described
by the simulation. This observation is important in view of the various parameteriza-
tions of the resonance spectral function used in transport models which substantially
differ at high ∆ masses, as discussed in Ref. [Bra13]. The HADES fit supports a pa-
rametrization of the total width based on the Moniz model (Ref. [Koc84], and Eq. 1.8
in Sect. 1.1) which strongly suppresses the high-mass tail of the resonance.
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Figure 2.29: npπ+ final state: Acceptance corrected pπ+ (left panel) and nπ+ (right
panel) invariant mass distributions compared to the simulation result (dashed curves).
Resonance contributions are shown separately (legend as in Fig. 2.24).

The nπ+ invariant mass distribution reveals also contributions of the single-charged
resonances: ∆(1232)+, N(1440), N(1520) and N(1680). This region is, however, dom-
inated by nπ+ pairs from the ∆(1232)++n → pπ+n final state and is characterized by
a continuous invariant mass distribution with an enhancement around 1.9 GeV/c2. It
is interesting to note that the enhancement is due to the assumed anisotropy of the
∆(1232)++ decay 1 + 3cos2(θ) which is also corroborated by the angular distributions
obtained in the GJ frame (see Fig. 2.27). The ∆(1232) contribution shown in Fig. 2.29
presents the sum of ∆(1232)++ and ∆(1232)+, where the latter resonance peaks approxi-
mately at the pole position. It is particularly important to note the strong contributions
of the N(1520) and N(1680) resonances which are relevant for dielectron production
because of their relatively large Dalitz decay branching ratios (see Table 2.6).

The acceptance corrected invariant mass distributions for ppπ0 final states are
shown in Fig. 2.30 together with the simulation results. In contrast to the npπ+ reaction
channel, the ppπ0 final state is sensitive only to the contributions of single-charged
resonances, hence the very strong signal from the double-charged ∆(1232)++ is absent
and other resonances are more prominent. On the other hand, a disadvantage of this
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Figure 2.30: ppπ0 final state: Acceptance corrected pπ0 invariant mass (left panel) and
the CM angular distributions (right panel) compared to the simulation result (dashed
curves). Resonance contributions are shown separately (legend as in Fig. 2.24).

channel is that the final state of two protons does not allow for a unique reconstruction of
the resonance mass and leads to a slight spectral distortion due to averaging between two
possible pion-proton combinations. Nevertheless, the enhancements around N(1520)
and N(1680) are also clearly visible, as it is the case in the pp→ npπ+ reaction channel.
Figure 2.30, right panel, shows the differential cross section as a function of the CM
angle of the proton-pion system in comparison to the model calculations. The expected
strong anisotropy, decreasing with increasing resonance mass of the pπ0 production, is
clearly visible (see the components). The lack of data points below cos(θpπ

0

CM) < −0.6
reflects the acceptance losses in the HADES spectrometer.

The total cross sections for the ppπ0 and the npπ+ final states can be calculated
from the acceptance corrected spectra. They have been obtained as an average of the
integrated differential cross sections expressed as a function of the pion-nucleon invariant
mass and various angles presented above. The respective cross sections amount to
σppπ0 = 2.50±0.23 (syst.)±0.2 (norm.) mb and σnpπ+ = 10.69±1.2 (syst.)±0.85 (norm.)
mb, the statistical errors are negligible. The systematic errors were estimated from the
differences between the integrated differential cross sections obtained after the respective
acceptance corrections on the above mentioned distributions.

The ppπ0 distributions are particularly interesting since they provide a direct input
to calculations of the resonance conversion R → pe+e−. However, as discussed above,
in the simulation a subset of resonances was used because the overlapping states in the
pion-nucleon invariant mass distributions could not be separated. Nevertheless, using
the resonance model ansatz it is possible to extract the upper limits on contributions
from other possible resonances within the given groups in Table 2.6 and calculate the
respective uncertainty of the dielectron yield. For this purpose, the simulations substi-
tuting the selected resonance with other resonances belonging to the same group (see
Table 2.6) were done, keeping the other components in the simulations unchanged. The
obtained cross sections are listed in the second column of Table 2.7. The errors in the
determination of the cross section for production of resonances were estimated for each
resonance separately from the pion-nucleon invariant mass distributions by altering the
respective yield within the experimental error bars but with all other components fixed.
The relative errors for some resonances are quite large due to their small contribution
to the pion production, leading to a limited sensitivity.
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Resonances σR σTeisR (σGiBUUR ) σUrQMD
R

∆(1232) 2.53 ± 0.31 2.0 (2.2) 1.7
N(1440) 1.50 ± 0.37 0.83 (3.63) 1.15
N(1520) 1.8 ± 0.3 0.22 (0.27) 1.7
N(1535) 0.152 ± 0.015 0.53 (0.53) 0.8
∆(1600) < 0.24 ± 0.10 0.70 (0.14) 0.4
∆(1620) < 0.10 ± 0.03 0.60 (0.10) 0.2
N(1650) < 0.81 ± 0.13 0.23 (0.24) 0.4
N(1675) < 1.65 ± 0.27 2.26 (0.94) 1.2
N(1680) < 0.90 ± 0.15 0.21 (0.22) 1.2
N(1720) < 4.41 ± 0.72 0.15 (0.14) 0.68
∆(1700) 0.45 ± 0.16 0.10 (0.06) 0.35
∆(1905) < 0.85 ± 0.53 0.10 (0.06) 0.25
∆(1910) < 0.38 ± 0.11 0.71 (0.14) 0.08
∆(1950) < 0.10 ± 0.06 0.08 (0.10) 0.25

Table 2.7: Cross sections in units of mb for the single positively charged resonances
extracted from the HADES data (second column), the Teis et al. model [Tei96] (third
column) and used in the GiBUU [Bus12,Wei12] (number in brackets in the third column)
or the UrQMD [Bas98] (fourth column).

The last two columns in Table 2.7 present the resonance cross sections from the
model of [Tei97], and the modified values used in the GiBUU code [Bus12,Wei12] (values
in brackets), as well as the values used in the UrQMD [Bas98] code. Figure 2.31 shows
the total one-pion exclusive cross sections as a function of

√
s, separated into contribu-

tions of the ∆(1232), the higher mass ∆ (I = 3/2) and the N∗ (I = 1/2) resonances in
comparison to the parametrization of Ref. [Tei97]. The HADES results are marked as
red symbols with error bars. The total pion production cross sections are equal to the
sum of the resonance contributions listed in Table 2.7. For the isospin decomposition
the cross sections of the selected resonances indicated in bold were selected. Although
the identification of resonances is ambiguous in the nucleon-pion invariant mass region
of overlapping states, the decomposition is still feasible. It is performed by a compari-
son of the corresponding yields in the nπ+ and pπ+ invariant mass distributions for the
N∗ and ∆ resonances and is given as the product of the resonance cross section and
the respective branching ratio. The comparison (see extracted values in the second col-
umn of Table 2.7) shows a qualitative agreement with the decomposition in Ref. [Tei97]
(third column). The differences are discussed below.

The ∆(1232)+ cross section obtained in the present analysis is slightly higher than
that of Ref. [Tei97] and is closer to the cross section value used in GiBUU [Bus12].
The total contribution of higher mass ∆, with masses around M∆ ∼ 1620 MeV/c2 and
M∆ ∼ 1910 MeV/c2, is clearly larger in the fit [Tei97] as compared to the HADES
results. One can hence conclude that the reduction of the respective cross sections
applied in the GiBUU version [Bus12] are in line with the result of this analysis. One
can also notice that the cross sections for the higher mass ∆ resonances are by a factor
2− 3 larger in the UrQMD code [Bas98] as compared to the GiBUU [Bus12], but lower
for the ∆(1232).
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Figure 2.31: One-pion (left: charged, right: neutral) exclusive cross sections as a func-
tion of the total c.m.s. energy

√
s separated into contributions of the ∆(1232), the

higher mass I = 3/2 (∆) and the I = 1/2 (N∗) resonances in comparison to the pa-
rametrization from Ref. [Tei97] and experimental data. The data compilation is taken
from Ref. [Tei97]. The HADES results at

√
s = 3.18 GeV are depicted as full symbols

(including black squares from the measuremets at lower energies [HC12b,HC15a]).

For the N∗ resonances, a direct comparison of the N(1520), N(1535), and N(1440)
cross sections can be done. The HADES cross sections are closer to the values used in
UrQMD [Bas98], except for N(1535) which appears to be much larger in all models.
As explained above, the HADES cross section for N(1535) was fixed by the data on η
production. Although in Ref. [Bus12] the sum of the cross sections for all N∗ resonances
is similar to the model [Tei97], the relative partition is different, giving the largest weight
to the N(1440) and a smaller one to the N(1675). One should also notice that the cross
sections for N(1720) and N(1680) used in Ref. [Bas98] are also much higher by a factor
of about 5 − 6 than the ones used in Ref. [Bus12]. These cross sections, together with
the cross section for the N(1520), ∆(1620) and ∆(1905) resonances play a major role
for dielectron production because of their large pρ branching ratios.

The aforementioned features are visible in a comparison to the npπ+ differential
cross sections plotted as a function of the nucleon-pion invariant mass (Fig. 2.32). The
pπ+ invariant mass distribution is better described by simulations based on the cross
sections used in Ref. [Bus12] (dashed histogram, denoted as model1). The parametri-
zation used in Ref. [Bas98] (dotted histogram, denoted as model2) underestimates the
∆(1232) production, but overestimates the production of higher mass ∆ states. On the
other hand, the nπ+ invariant mass distribution, reflecting enhancements mainly due
to the N∗ resonances, clearly shows that the strong N(1440) production implemented
in model1 is not supported by the HADES data. There is also missing intensity around
N(1520) which could be explained by a larger resonance cross section, as deduced from
the present fit. Indeed, by taking the cross sections for both resonances and N(1535)
from the HADES fit and leaving all the others without any change, one can reproduce
the result shown in Fig. 2.29.

The comparison of the nπ+ invariant mass distribution to the calculations using the
parametrization of resonance cross sections applied in model2 shows a clear overshoot
in the mass region around N(1680) / N(1675), indicating too strong contributions from
these resonances. On the other hand, the undershoot at low invariant masses is related
to a too small ∆(1232)++ cross section.
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Figure 2.32: npπ+ final state: Acceptance corrected pπ+ (left panel) and nπ+ (right
panel) invariant mass distributions (symbols with error bars) compared to the simula-
tion results using the resonance cross sections according to parametrizations taken from
Ref. [Bus12] (dashed green line histogram - model1) or from Ref. [Bas98] (dotted blue
line histogram - model2).

2.4.5 Summary and conclusions

A combined analysis of one-pion exclusive channels ppπ0, pnπ+ in pp collisions,
using a beam with a kinetic energy of 3.5 GeV (

√
s = 3.18 GeV), was performed. It al-

lowed for the estimation of ∆ and N∗ resonance production cross sections by means
of a resonance model. Empirical angular distributions derivation for the production of
resonances showed a strong forward-backward peaking which is characteristic for periph-
eral reactions. A good description of the experimental data in the detector acceptance
was achieved allowing for an extrapolation to the full solid angle and an extraction of
the pion and, to some extent, resonance production cross sections. Although the applied
model assumes a simplified reaction mechanism, ignoring interferences between various
intermediate states, it describes the data in various observables surprisingly well. Fur-
ther studies, by means of the partial wave analysis, are on the way, in order to estimate
the interference effect and to study resonance production in more detail. Nevertheless,
the obtained results are very useful for a comparison of various parametrizations of the
production of resonances used in the modern transport codes, as shown for the GiBUU
and UrQMD codes.
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Dilepton probes
The dilepton (lepton pairs: l+l− = e+e−, µ+µ−) production takes place during the

whole space-time evolution of the colliding particles and processes involved depend both
on the system and the energy. Dileptons are coupled to the electromagnetic current
of hadrons through intermediate virtual photons. Once the lepton pair is produced,
it decouples from the strongly interacting medium and carries information about the
production process undisturbed to the detectors. The virtual photon, reconstructed
from the momenta of the two identified, correlated leptons, is characterized by four
independent coordinates of its four-momentum. The final experimental observables are
typically the invariant mass (Fig. 3.1), the transverse momentum, the rapidity, and
angular projections. Generally, dilepton
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Figure 3.1: Dilepton pair sources as a
function of l+l− invariant mass in ultra-
relativistic nuclear collisions [Rap00].

production in heavy-ion collisions can be
divided into a few chronological stages.
Before the interaction between nuclei
happens, their movement is decelerated
first in their Coulomb field and dileptons
are produced by a coherent bremsstrahl-
ung, however this contribution is usually
small. In the first stage of the over-
lapping nuclei, within the time span of
1−2 fm/c, the system is far from equilib-
rium and dileptons are produced in hard
processes, i.e. Drell-Yan annihilation or
quark-gluon Compton scattering. They
contribute at large invariant mass, Mll ≥
3 GeV/c2. The next stage may reach the
quark-gluon plasma (QGP) phase where
quark-antiquark annihilation contributes
to the dilepton production. The expanding system cools down and the nuclear matter
undergoes the hadronization process. The main dilepton sources are then the pion and
kaon annihilations and hadronic collisions. Light vector mesons, ρ, ω and φ, are pro-
duced and decay directly into a dilepton channel. The l+l− invariant mass can carry
out the information about vector mesons inside hot and dense nuclear matter. The
heavy quarkonium states, e.g. J/ψ or Υ, can also decay to dilepton pairs but after the
freezout phase, due to their long lifetime. The intermediate mass 1 ≤Mll ≤ 3 GeV/c2 is
populated mostly by charmed meson pairs DD̄ and partly by Drell-Yan process. The
main source of the l+l− pairs in the low invariant mass region, below φ(1020) meson, are
the decays of objects built out of light quarks u, d, s, e.g. baryon and meson resonances.
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3.1 Decays to dilepton channels

In the 1 − 2 GeV/nucleon energy range, accessible by the HADES experiment at
SIS accelerator (see Ref. [HC09]), the dielectron sources (e+e−) can be characterized by
the following decay processes:

• direct two-body decays (App. A.2)

– V → e+e−, where V = ρ0, ω, φ
– P → e+e−, where P = π0, η (rare processes)

• meson Dalitz decays (App. A.3)

– V → π0 /η e+e−, where V = ω / φ
– P → γe+e−, where P = π0, η, η′

• baryon resonance Dalitz decays (Sect. 3.4)

– ∆(N∗) → Ne+e−

• NN bremsstrahlung (Sect. 3.5)

– NN → NNe+e−

3.2 Electromagnetic structure of baryon resonances

The electromagnetic structure of baryon transitions is encoded by a set of electro-
magnetic transition form factors (eTFF), depending on the resonance isospin, spin, par-
ity and the four-momentum transfer squared (q2) of the virtual photon. It can be probed
in the two kinematical regimes defined by the sign of q2 =M2

γ∗ (Fig. 3.2). They are ei-
ther q2 < 0 (spacelike), probed in electro-production experiments or q2 =M2

inv(e+e−) > 0
(timelike), probed in annihilation experiments. The timelike electromagnetic structure
of baryonic transitions can be also directly studied in low-energy NN and πN collisions
at 1 − 2 GeV energies via resonance (R = N∗,∆) Dalitz decays, R → Nγ∗ → Ne+e−.
They give a unique insight into the timelike region at small positive four-momentum
transfer squared (0 < q2 < (MR −MN)2, where MR and MN are resonance and nucleon
masses, respectively), which is best suited to study the coupling to vector mesons. The
real photon experiments (with unpolarized, circularly or linearly polarized beam) settle
the boundary point at q2 = 0.

The ∆(1232) resonance is the first excited state of the nucleon which dominates
pion production in NN reactions for

√
s < 2.6 GeV/c2. Despite its relatively large width

(117 MeV) it is quite well isolated from higher lying resonances. The total width Γ can
be decomposed into the sum of contributions from the independent decay channels:

Γ(m) = ΓπN + ΓγN + Γe+e−N + ... . (3.1)

The dominating decay channel ∆→ Nπ is 99.4% and the only measured electromagnetic
decay ∆ → Nγ is 0.55 − 0.65% [PDG16]. For the unmeasured ∆ → Nγ∗ transition, a
theoretical estimate on the level of 4 × 10−5 has been given, e.g. in Refs. [Kri02,Zét03a].
The electromagnetic transition N →∆ is predominantly magnetic dipole (M1) involving
the spin and isospin flip of a single quark in the S−wave state (Fig. 3.3). A small
D−wave admixture of quadrupole (electric E2 and Coulomb C2) amplitudes describes
small deformations of the resonance from a spherical shape [Pas07,CC09b].
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Figure 3.2: A form factor F (Q) in the spacelike and timelike region with characteristic
ρ−meson peaks in the timelike region. Dalitz decays allow to probe the timelike region
at low q2 and resonance couplings to vector mesons. Here, Q2 = −q2.

Electromagnetic decays are described with the help of three helicity amplitudes
A1/2(q2), A3/2(q2) and S1/2(q2), defined in the ∆ rest frame (Fig. 3.4). First two of
them are related to the transverse photon polarization, the last one is related to a virtual
(massive) longitudinal photon polarization. In the limit of a real photon (q2 = 0) the
S1/2 amplitude vanishes. The best estimations of helicity amplitudes A1/2, A3/2 for the
real photon coupling were measured in the pion photoproduction experiments by the
CLAS [Wor12], MAMI/A2 [Bec97,Bec00] and LEGS [Bla97,Bla01] Collaborations.

N

M1

�

N

E2

�

Figure 3.3: Schematic picture of the N → ∆ transition induced by the interaction of
a photon with a single quark in the nucleon: M1 transition involves a S−wave spatial
wave function (left panel) and E2 transition requires N and/or ∆ wave functions to
have a D−wave component (right panel). Figure taken from [Pas07].

These helicity amplitudes are completely unknown for q2 > 0. This region can be
accessed via the Dalitz decay ∆ → Ne+e−. The differential decay width dΓ/dmγ∗ as a
function of the virtual photon mass can be expressed in terms of the resonance decay
width Γ∆→Nγ∗

dΓ∆→Ne+e−

m∆

dmγ∗
= 2α

3πmγ∗
Γ∆→Nγ∗

M∆
(mγ∗), (3.2)

hence it is also related to the radiative width Γ∆→Nγ
m∆

. In fact, the real photon decay
width is the limit of the dilepton decay width, when mγ∗ → 0. The calculation of the
partial decay width Γe+e−N requires the knowledge of the evolution of the electromag-
netic transition form factors (eTFF) as a function of q2, which are real in the spacelike
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region, but get an imaginary part in the timelike region. They can be equivalently
expressed in terms of γ∗N∆ form factors: magnetic dipole (G∗

M ), electric quadrupole
(G∗

E) and Coulomb quadrupole (G∗

C), or in terms of helicity amplitudes, which are
related by, as introduced in the paper of Jones and Scadron [Jon73]:

A3/2 = −N
√

3

2
(G∗

M +G∗

E),

A1/2 = −N
1

2
(G∗

M − 3G∗

E),

S1/2 = N
q∆√
2M∆

G∗

C .

(3.3)

q∆ = Q+Q−

2m∆
is the magnitude of the virtual photon three-momentum in the ∆ rest frame,

and Q± =
√

(m∆ ±mN)2 +Q2, m∆ and mN are ∆ and nucleon masses, respectively, q2

is the photon four-momentum transfer squared and Q2 = −q2. Further, N is defined as

N = e
2

(Q+Q−

2m3
N

)
1/2 (mN +m∆)

Q+

, (3.4)

where e is the elementary electric charge. The helicity amplitudes (and form factors)
are expressed in units GeV−1/2 (and without units, respectively), and reduce to the
photo-couplings at Q2 = 0.
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Figure 3.4: γ∗N → ∆ helicity amplitudes in the ∆ rest frame. The γ, N , and ∆ spin
projections are along the z−axis (chosen along the virtual photon direction).

The other electromagnetic N−N∗ transition form factors for the abnormal- and normal-
parity transitions related to helicity amplitudes can be found in Refs. [Dev76,Kri02].

3.3 Baryon resonances and vector mesons

A rich data sample of the transition amplitudes for ∆(1232)P33, N(1440)P11,
N(1520)D13, N(1535)S11, ∆(1620)S31 and N(1650)S11, N(1680)F15, N(1700)D33,
and N(1720)P13 has been obtained in the spacelike region in a wide q2 range (for a re-
view, see Ref. [Azn12]). On the other hand, no experimental data on the Dalitz decays
of resonances exist, though many theoretical calculations predict a sensitivity of the
dilepton invariant mass distribution to the RNγ∗ vertex structure. According to the
Vector Meson Dominance (VMD) model of Sakurai [Sak60, Sak69] the virtual photon
coupling to a hadron is mediated entirely by intermediate vector mesons ρ/ω/φ. Hence,
it is expected that the contribution of mesons to the interaction vertex modifies the
q2 dependence of the respective eTFF and produces an enhancement near the vector
meson poles. However, it has also been realized that a strict VMD used together with
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the NNρ Lagrangian (Refs. [Sak60,Sak69]) leads to an overestimation of the radiative
R → Nγ decay widths when the known R → Nρ branching ratios are used in calcula-
tions (see e.g. [Kro67,Fae03]). Various solutions of this problem were proposed, as for
example the use of the alternative NNρ Lagrangian given in Ref. [Kro67], where two
independent coupling constants are applied for the vector mesons and photon couplings,
or destructive interferences between contributions from higher ρ/ω states [Kri02]. Two-
component quark models with direct and VMD couplings [Wan05,Ram17] also avoid
this problem. The striking feature of all these models is a significant modification of
the eTFF due to the vector meson-resonance couplings.
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Figure 3.5: (a) Modifications of ρ meson in the nuclear matter via resonance-hole ex-
citations. The cut on the right diagram defines the imaginary part of the self-energy.
(b) Within the Vector Meson Dominance (VMD) theorem [Sak60] the spectral distri-
bution of the virtual photons γ∗ reflects the strength of the vector meson coupling.

Understanding the couplings of vector-meson resonances is important also due to a
strong modification of the ρ meson spectral function observed in dilepton invariant mass
distributions measured in ultra-relativistic heavy ion collisions at SPS [CC08, NC10,
NC06] and also at RHIC [Col13,PC10]. They lead to the conclusion, that the in-medium
propagator of the ρ meson can be modified by a strong coupling of the pion loop to
π∆N−1 or direct ρ meson- N−1N∗ excitation, where N∗ is a baryonic resonance [Hee08,
Leu10] (see Fig. 3.5a). In particular, calculations of Rapp and Wambach [Rap97,Rap99]
support the in-medium broadening scenario, yet the modification itself depends both
on the temperature of the colliding system and the ρ momentum.

Although the dominant production mechanism for the ρ is different in the high
energy experiments (π+π− annihilation) and at lower energies where baryons play a
dominant role, the in-medium spectral function depends in any case on the ρNN∗

coupling with the close connection to the electromagnetic structure of the resonance-
nucleon transition (Fig. 3.5b). The calculations for cold nuclear matter predict also
strong off-shell ρ couplings to the low-mass baryon resonances like N(1440), N(1520),
N(1720) and ∆(1620) shifting part of the strength of the ρ meson spectral function
down below the meson pole [Pet98] (for a review see also Ref. [Leu10]). The respective
coupling strengths are usually constrained in models by the data from meson photo-
production and/or known resonance−ρN branchings and the e+e− yield is deduced using
VMD (see for example Ref. [Rap00]).

The road to resonance properties is linked also with the question about the fun-
damental symmetries in the nature. In the beginning of the 1990s a vivid discussion
about the chiral symmetry restoration in the hot and dense nuclear matter was trig-
gered by the work of Brown and Rho [Bro91]. It is expected that chiral symmetry
restoration should manifest itself in the decrease of the quark condensate value [Kli90].
Brown and Rho gave a phenomenological link between quark condensate and experi-
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mental observables: vector mesons. Similar results were postulated from the QCD sum
rules, using a very simple ρ spectral function [Hat92]. The ρ−meson, with its short life
time (τ = 1.3 fm/c), smaller than the average life time of a fireball created in heavy-
ion collisions, should decay in medium and one of the promising channels is the decay
into dilepton pairs. Dileptons do not interact strongly and hold unbiased information
about the meson still decaying in medium, hence they could be the optimum carrier to
investigate its properties. The observable related to the spectral function is invariant
mass, it could tell about the possible ρ medium modifications (e.g. meson pole mass
shift or broadening). Unfortunately, the branching ratio ρ → e+e− is very small and
amounts to 4.72 × 10−5 [PDG16] what is very challenging from the experimental point
of view. The role of vector mesons, their origin, and the dielectron production in two-
and three-body decays of vector and pseudoscalar mesons is presented in Appendix A.

3.4 Dalitz decays of baryon resonances

The decay width of a resonance R (of a mass mR), decaying into a nucleon N (of
a mass mN ) and a photon γ∗ (of a mass mγ∗), can be written in terms of the helicity
amplitudes (see Sect. 3.2). They describe the transition from a resonance of a given spin
J and helicity λR to a nucleon with the helicity λN = ±1/2 and a (virtual) photon with
the helicity λγ = ±1 or 0, where λR = −λN +λγ > 0. The independent helicity amplitudes
(three for spin J ≥ 3

2
resonances, two for spin J = 1

2
resonances), can be related to the

transition form factors (see Eq. 3.3), resulting in the following decay width formulas,
as in Ref. [Kri02]. For spin J ≥ 3

2
resonances,

Γ(R± → Nγ∗) = 9α

16

(l!)2

2l (2l + 1)!
(mR ±mN)2

m3
Rm

2
N

[(mR ±mN)2 −m2
γ∗]

1/2

× [(mR ∓mN)2 −m2
γ∗]

3/2

× ∣F ±

R(mγ∗)∣
2
,

(3.5)

where l is related to the incoming partial wave of a resonance, and the resonance
electromagnetic transition form factor is

∣F ±

R(mγ∗)∣
2 = l + 1

l
∣G±

M/E ∣2 + (l + 1)(l + 2)∣G±

E/M ∣2 +
m2
γ∗

m2
R

∣G±

C ∣2. (3.6)

The Γ(R± → Nγ∗) depends on the normality of a resonance, defined as P (−1)J−1/2

where P is intrinsic parity, that is, resonances with normal parity (JP = 1/2−, 3/2+,
5/2−, ...) are denoted with a ” + ”, and with abnormal parity (JP = 1/2+, 3/2−, 5/2+,
...) are denoted with a ” − ”.

The resonance decay width for spin J = 1
2
resonances reads:

Γ(R± → Nγ∗) = α

8mR
[(mR ∓mN)2 −m2

γ∗]
1/2

× [(mR ±mN)2 −m2
γ∗]

3/2

× ∣F ±

R(mγ∗)∣
2
,

(3.7)

with the form factor

∣F ±

R(mγ∗)∣
2 = 2 ∣G±

E/M ∣2 +
m2
γ∗

m2
R

∣G±

C ∣2. (3.8)
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Figure 3.6: Left panel: ∆ Dalitz decay differential width for a few off-shell ∆ masses
(W = 1.23, 1.43, 1.63, 1.83 and 2.03 GeV/c2) in the description of [Kri02,Wol90,Ern98].
Right panel: The Γ∆→πN (black solid curve) and Γ∆→γN compared to the integrated
∆ Dalitz decay yield in the description of various models (see the legend), Ref. [Wei13].

For example, for the ∆(1232) resonance (l = 1), Eq. 3.5 reduces to the form derived
by Krivoruchenko and Fässler in Ref. [Kri01]:

Γ∆→Nγ∗

m∆
(mγ∗) =

α

16

(m∆ +mN)2

m3
∆m

2
N

[(m∆ +mN)2 −m2
γ∗]

1/2

× [(m∆ −mN)2 −m2
γ∗]

3/2

× ∣F∆(mγ∗)∣2 .
(3.9)

mγ∗ =me+e− is the invariant mass of the dilepton pair, mN and m∆ are the nucleon and
∆ masses and α = 1/137 is the fine-structure constant. This formula is related to the
∆ Dalitz decay as in Eq. 3.2. Further, the ∆ form factor (Eq. 3.6) can be decomposed
into a magnetic, electric and Coulomb component:

∣F∆(mγ∗)∣2 = ∣G2
M(mγ∗)∣ + 3 ∣G2

E(mγ∗)∣ +
m2
γ∗

2m2
∆

∣G2
C(mγ∗)∣, (3.10)

but most models neglect the GE and GC and treat only the dominant magnetic dipole
form factor GM . In the literature, other parametrizations of the ∆ Dalitz decay exist
[Wol90,Ern98]. However, as pointed out by Krivoruchenko in Ref. [Kri01], many former
expressions of the Dalitz decays of baryonic resonances were inconsistent even in the
real photon decay limit, e.g. ∆ → Nγ. Figure 3.6, left panel, shows that the off-shell
contributions in dΓ/dmγ∗ strongly dominate over the on-shell contribution and the
Dalitz width grows strongly with W =m∆. The dilepton yield from ∆ Dalitz decays is
very sensitive to uncertainties in the off-shell behavior. Figure 3.6, right panel, shows
also the comparison of the hadronic width Γ∆→πN , the real-photon width Γ∆→γN and
the integrated dilepton width Γ∆→Ne+e− , defined as:

Γ∆→Ne+e−

m∆
= ∫

m∆−nN

2me

dΓ∆→Ne+e−

dmγ∗
dmγ∗ . (3.11)

The total Γ∆ width is dominated by the hadronic part, but for the dilepton width large
differences appear, related to various width parametrizations and form factors. The
electromagnetic transition form factor F∆(mγ∗) (Eq. 3.10) is only constrained in the
spacelike region, but remains unknown in the timelike region. The latter regime can be
probed by the Dalitz decays. At the real-photon point it is fixed by the decay width
Γ∆→Nγ = 117 MeV × 0.0055 = 0.66 MeV [PDG16] resulting in the value ∣F∆(0)∣ = 3.03.
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Equation 3.9 was accomodated in various model calculations [Kri02,Wan05,Ram12].
In the calculations of Zétényi and Wolf [Zét03a] an equivalent set of form factors has
been used but giving the same result. The detailed overview of the models is given in
Appendix B.

3.5 NNNNNN bremsstrahlung

The charged objects under acceleration radiate real or virtual photons, the latter
ones decay into dilepton pairs. In case of the interaction of two nucleons such a process
is called nucleon-nucleon bremsstrahlung. Among the reactions pp → pp, np → np and
nn → nn, the last one has no charged particles in the initial and the final states, and
pp → pp bremsstrahlung is highly suppressed due to destructive interferences between
graphs involved and is often neglected. Therefore significant contribution is expected
only in the np→ np case.

(a) (b) (c)

Figure 3.7: The (virtual) photon radiation from the external proton lines (a, b) in the
Soft Photon Approximation [Gal87] and the radiation from an internal charged pion
line (c) in np scattering.

In the Soft Photon Approximation (SPA) [Gal87,Gal89,Wol90,Lic95,Zha97] photons are
radiated only from the initial or from the final charged lines (Fig. 3.7a, b). The vertex
NNγ∗ is treated on-shell and this approximation is valid only for low photon energies
Eγ = 100−200 MeV. The hard photons can be emitted from the strong interaction lines,
e.g. radiation from the exchange line of the charged pion (Fig. 3.7c). In the limit of
the soft photons this radiation is a sub-leading contribution. Most of the calculations
of dielectron production take as a starting point a formula introduced by Rückl [Rüc76]
linking the dilepton production cross section via virtual photon bremsstrahlung to the
cross section of real photons bremsstrahlung. The differential cross section reproduces
the kinematics associated with the on-shell elastic differential nucleon-nucleon cross
section:

dσnp→npe+e−

dme+e−dEdΩ
= α2

6π3

q

me+e−E2

s − (m1 +m2)2

2m2
1

σel(s)
R2(s2)
R2(s)

, (3.12)

where m1 is the mass of a charged particle (proton), m2 is the nucleon mass, σel is the
elastic NN cross section, q, E and Ω are dilepton momentum, energy and solid angle
in the neutron-proton center-of-mass frame, s is the total available energy. Since the
four-momentum q of the virtual photon in the phase space δ function is neglected, the
ratio of two-body phase space is evaluated by R2(s2)/R2(s) [Byc73], where

R2(s) =
√

1 − (m1 +m2)2/s, s2 = s +me+e− − 2E
√
s. (3.13)
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3.6 One-Boson Exchange models

The final state of ppe+e− or npe+e− at the energy of a few GeV may result from
both baryon resonance Dalitz decay and NN bremsstrahlung, and both processes can
interfere. The coherent sum of the contributing amplitudes has been evaluated within
one-boson exchange (OBE) models, e.g. by Kaptari and Kämpfer [Kap09] and Shyam
and Mosel [Shy09]. These models provide the total e+e− contribution based on a co-
herent treatment of many amplitudes including contributions of the ∆ resonance and
the nucleon-nucleon bremsstrahlung. Despite the similar approaches the models give
different predictions for the energy dependence of differential cross sections. One should
note that according to both OBE models, interference effects between the ∆ and NN
bremsstrahlung are small and play a role only at higher e+e− invariant mass (Me+e− >
0.4 GeV/c2). This seems to justify the statement that in proton-proton collisions the
NN bremsstrahlung contribution can be treated separately and added incoherently to
the ∆ contribution.

3.6.1 Kaptari and Kämpfer model
The fully covariant and gauge-invariant calculation by Kaptai and Kämpfer [Kap06,

Kap09] provides the exclusive e+e− production in NN collisions:

N1(P1) +N2(P2) → N ′

1(P ′

1) +N ′

2(P ′

2) + e+(k1) + e−(k2) (3.14)

The differential cross section dσ/dM includes the sum over all spin states of hadro-
nic currents Jµ. They are defined by effective interaction Lagrangians consisting of two
parts describing strong and electromagnetic interaction. The strong interaction among
nucleons is mediated by the exchange mesons: σ (scalar), π (pseudoscalar-isovector),
ω (neutral vector), ρ (vector-isovector). The currents have to obey gauge invariance,
hence the condition qµJµ = 0. In such approximation (one-boson exchange, OBE) the
current Jµ is determined by two types of diagrams. One set describes the creation of a
virtual photon (q2 = M2

γ∗ > 0) as a pure bremsstrahlung (Fig. 3.8).

(a) (b) (c) (d)

Figure 3.8: Bremsstrahlung diagrams describing exclusive production in N1 + N2 →
N ′

1 +N ′

2 + e+ + e− reaction [Kap09] with pre-emission (a, c) and post-emission (b, d).
Thick lines represent resonance excitation. The same set of diagrams for 1′ ↔ 2′.

The gauge invariance is easily obtained in the case of neutral meson exchange, since the
pair of diagrams with pre-emission (Fig. 3.8a) and post-emission (Fig. 3.8b) of γ∗ ensures
gauge invariance, also in the case of dressing the vertices with phenomenological form
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factors. This is not the case for charged meson exchange and another set of diagrams
describing the emission of a virtual photon γ∗ from internal meson line (Fig. 3.9a) is
necessary. However, application of additional form factors again leads to violation of
current conservation. The solution of this problem requires the presence of another
pair of seagull-like diagrams (Fig. 3.9b and 3.9c). The numerical calculations show that
the contribution of ρ−meson exchange for seagull-type diagrams varies from 10% (low
dielectron invariant masses) to 35% (at kinematical limit). The proposed solution for
the gauge invariance restoration is not unique.

(a) (b) (c)

Figure 3.9: Contribution of meson exchange currents (a) and seagull terms (b, c) to the
process p + n→ n + p + e+ + e− [Kap09].

The e+e− invariant mass distribution calculated in pp and np collisions (at kinetic
beam energy T = 1.25 GeV) but only for nucleon lines is presented in Fig. 3.10a. The np
cross section is 5−6 times larger than the pp cross section due to destructive interferences
in the latter case. In addition, there is a notable contribution from the emission of
charged exchange mesons (graphs in Fig. 3.9) in the np case. Further investigation
includes contribution from graphs with the low-lying baryon resonances P33(1232),
P11(1440), D13(1520) and S11(1535). The main contribution to the cross section stems
from the ∆ resonance. Due to the isosopin I = 3/2 of the ∆ resonance, only the isovector
mesons π and ρ can be associated to a N − ∆ transition. Figure 3.10b shows the
contribution calculated for the ∆ only, which dominates over the nucleon contribution
(Fig. 3.9) in the whole kinematic range except the end of the kinematic limit. The
coupling constants related to the ∆ eTFF are fixed at the photon point (q2 = 0) [Feu97]
but authors notice the importance of the proper off-shell resonance treatment, especially
at large resonance masses. The contributions of the isospin− 1

2
resonances, P11(1440)

and S11(1535), which couple both to isospin−1 and isoscalar mesons, are small. The last
considered resonance, D13(1520), has a comparable contribution toNN bremsstrahlung
at the dielectron invariant mass Me+e− > 0.45 GeV/c2.

The quantum mechanic interference effects seem to play an important role in Kap-
tari and Kämpfer calculation (Fig. 3.10c). The comparison of the coherent sum of all
amplitudes (solid curves) with the incoherent sum of separate contributions of brems-
strahlung and the low-lying resonances (dashed curves) shows that the interference
effects become significant at higher values of e+e− invariant mass, reducing the cross
section by a factor of 2 − 2.5.

The cross section for pn → pne+e− is estimated to be larger by a factor of 1.5 − 3
than the cross section for pp→ ppe+e− and it does not scale up simply with the isospin
relation (factor 2). This is due to resonance contribution and interferences, different
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(a)                                             (b)                                          (c)

Figure 3.10: Contribution of bremsstrahlung diagrams (Figs. 3.8 and 3.9) to the e+e−

invariant mass distribution at the T = 1.25 GeV for pp and pn reactions: (a) with only
nucleon lines, (b) with only ∆ decays, (c) as a coherent sum (solid curves) and an
incoherent sum (dashaed curves) of the contributions from bremsstrahlung, P33(1232),
P11(1440), D13(1520) and S11(1535) [Kap09].

couplings in γp and γn system, and the exchange of the isoscalar σ and ω mesons.
Kaptari and Kämpfer conclude that bremsstrahlung process has a smooth behavior as
a function of dielectron invariant mass and can be treated as a background process.

3.6.2 Shyam and Mosel model

The role of baryonic resonances in the dielectron invariant mass spectrum produced
in pp and pn collisions at various beam energies in the 1−5 GeV range is also investigated
by Shyam and Mosel [Shy03, Shy09]. The general production mechanism is presented
in Fig. 3.11b. A virtual photon decaying into e+e− pair can be emitted from a nucleon
or resonance line, before (Fig. 3.11a) and after (Fig. 3.11b) collision, plus the analogous
diagrams with an emission from the lower line. The important source, depicted in
Fig. 3.11c, presents the dilepton emission from the internal meson line.

N

N

γ ­
e

+
e

(a)

N

N

γ ­
e

+
e

(b)

n

p

π
ρ

­
e

+
e

(c)

Figure 3.11: A representation of Feynman diagrams describing e+e− production in
NN → NNe+e− reaction [Shy09]: emission (a) before NN collision, (b) after colli-
sion and (c) during collision from an internal charged meson line. The hatched box
represents an off-shell nucleon or ∆.

Similar to Kaptari and Kämpfer calculations (Sec. 3.6.1), the interaction between
two nucleons is modeled by an effective Lagrangian which is based on the exchange
of the π, ρ, ω, and σ mesons. In addition to nucleon lines (NN bremsstrahlung),
the two intermediate resonances, P33(1232) and D13(1520), are taken into account.
At each interaction vertex a form factor with an energy independent cutoff parameter
is introduced, suppressing the contribution at high momentum transfer. The meson-
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nucleon and meson-nucleon-∆ (g∆Nπ, g∆Nρ) coupling constants are energy dependent,
as determined in Refs. [Sch94,Eng96]. The coupling constants gN∗Nπ and gN∗Nρ have
been determined from the branching ratios for the decay of the N(1520) resonance
to Nπ and Nρ channels, respectively [Shy99, Shy01]. The coupling constants gN∗Nω

and gN∗Nσ have been determined by vector meson dominance [Pos01b] with a large
uncertainty, but their contributions to the dilepton production amplitude are negligible.
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Figure 3.12: The dielectron invariant mass distributions produced in proton-proton (left
panel) and proton-neutron (right panel) collisions. The NN non-resonant bremsstrahl-
ung (dashed-dotted), ∆(1232) (dashed) and N(1520) (dotted) and the solid curves
present the coherent sum, the total cross sections.

The subsequent contributions are presented in Fig. 3.12 at the beam energy of
1.04 GeV. The pn cross sections (right panel) are about 2 − 3 times larger than the
ones in the pp reactions (left panel). In both cases, the dominant contribution stems
from the ∆(1232) resonance. In the pp case, the NN bremsstrahlung (graphs involving
only intermediate nucleon lines) and N(1520) resonance are similar, however in the pn
case, the NN bremsstrahlung is significantly larger. In addition, it has been shown
in Ref. [Shy09] that the dominant ∆(1232) contribution stems from the post-emission
graphs (see Fig. 3.11b) at the low energy 1.04 GeV.
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Figure 3.13: The dielectron invariant mass distributions produced in proton-proton (left
panel) and proton-neutron (right panel) collisions at the beam energy of 1.04 GeV (see
Ref. [Shy03]). The solid and dashed curves present the cross sections obtained by the
coherent and incoherent summations of various terms, respectively.

– 64 –



3.6. One-Boson Exchange models

The role of the interference effects in pp and pn collisions is investigated in Fig.
3.13. The cross sections obtained by coherent (solid curve) and incoherent (dashed
curve) sums of the amplitudes corresponding to the NN non-resonant bremsstrahlung,
∆(1232) and N(1520) are presented, respectively. The interference effects become more
important at the larger masses (Me+e− > 0.3 GeV/c2) for the pp collisions, while they
are rather small everywhere for the pn collisions. This is at variance with Kaptari
and Kämpfer model, where interferences are larger. Both results on the dominant ∆
contribution from the post-emission graphs and the negligible interference effects at
the low dielectron invariant mass, make an assumption of the resonance model to be
acceptable, but only at the low energies and low dielectron invariant masses.
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Figure 3.14: Model comparison: the invariant mass distribution of the NN bremsstrahl-
ung contributions to the dilepton spectra in pp (left panel) and pn (right panel) collisions
at the beam energy of 1.04 GeV. Solid curves present Shyam-Mosel calculations [Shy09]
while dashed curves present Kaptari-Kämpfer caluclations [Kap09].

The main difference between Refs. [Shy09] and [Kap09] is the implementation of
the gauge invariance of the NN bremsstrahlung amplitudes (Fig. 3.14). In Shyam and
Mosel approach (black solid curves) the NNπ coupling is calculated as a pseudoscalar
and does not require additional contact terms (seagull diagrams) in order to preserve
the gauge invariance for bare pointlike nucleons. The resulting cross sections are lower
than obtained in Ref. [Kap09] (blue dashed curves) by factors of 2 − 4 for dilepton
invariant mass values below 0.6 GeV/c2 for both pp and pn collisions at 1.04 GeV (but
also higher) incident energies. The difference is not a constant factor and changes over
the mass value.

The total dilepton production cross sections in the elementary NN collisions are
implemented in most transport calculations with semi-classical models which, in general,
differ noticeably from the predictions of full quantum mechanical models. However, the
differences in theNNπ couplings among various OBE models lead to huge discrepancies.
The ambiguities can be solved by the precise experimental results, preferably measured
in the exclusive channels.
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Resonances in dilepton channels

The goal of this chapter is to present the results obtained in the inclusive and
exclusive channels with e+e− pairs, measured in the NN experiments by the HADES
Collaboration. The unique feature of the HADES spectrometer (App. C) is that the
contributions of baryonic sources can be also studied by identification of dielectron
(e+e−) pairs. They origin mainly from the meson (App. A.3.1) and baryon (Sect. 3.4)
resonance Dalitz decays, and from NN bremsstrahlung (Sect. 3.5). In the case of pp
collisions at the beam energy T = 1.25 GeV, below the η meson production threshold, the
baryonic sources completely determine the e+e− invariant mass distribution above the π0

mass. The exclusive ppe+e− channel is dominated by ∆ Dalitz decay. In the dp collisions
at 1.25 GeV/nucleon, the dielectron production offers an additional possibility to study
np bremsstrahlung radiation with timelike virtual photons. The relevant final state is
NNγ∗(e+e−) resulting from the interaction between the nucleons or/and their excited
states (such as ∆) formed in the collisions. In pp at 2.2 GeV, the data obtained on both
inclusive e+e− and exclusive ppe+e− channels allows for determination of π0 and η mesons
production. In addition, various angular distributions represent sensitive observables in
dielectron channels. Data for pp collisions at 3.5 GeV on dielectron production provided
results on ∆ and N∗ excitation. In the ppe+e− final state, the Dalitz decays of π0/η →
γe+e− and ω → π0e+e− could be effectively suppressed via kinematical constraints, with
the focus on the studies of the two-body vector meson decays and the resonance Dalitz
decays, R → pe+e−. The Dalitz decays are compared to calculations assuming a pointlike
RNγ∗ coupling, raising the subject of the electromagnetic transition form factors and
the role of the ρ−meson production, and the ρN coupling.

4.1 Inclusive e+e−e+e−e+e− production at T = 1.25 GeVT = 1.25 GeVT = 1.25 GeV

The proton-proton (Sect. 2.1) and deuteron-proton (Sect. 2.2) experiments were
performed at the energy of 1.25 GeV/nucleon. Figure 4.1 presents the efficiency cor-
rected invariant mass distribution of e+e− signal pairs within the HADES acceptance,
for pp (left panel) and quasi-free np (right panel) collisions. The dielectron pairs from
deuteron-induced reactions are measured in coincidence with the spectator proton in
the Forward Wall hodoscope (App. C.1.7), which is selected with the condition on its
momentum, 1.6 < psp < 2.6 GeV/c. The moderate experimental momentum resolu-
tion obtained from a time-of-flight measurement in FW enforces the given range of psp.
The total number of signal pairs amounts to 39 × 103 (pp collisions), and 36 × 103

(np collisions), respectively. The number of pairs in the region above the π0 mass,
Mee > 0.15 GeV/c2, amounts to 350 and 1450, for pp and np collisions, respectively,
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with a signal-to-CB ratio ≥ 1 [Col09]. The measured pair yield was normalized to the pp
elastic scattering yield (App. C.3.6). The normalization error of this procedure is esti-
mated to be 9% and does not show any pair-mass dependence. It results from the error
on the published elastic cross section (5%) and from systematic errors related to the
reconstruction of elastic-scattering events (7%). An additional uncorrelated systematic
uncertainty of 20% comes from the pair reconstruction efficiency, including a smooth
invariant mass dependence.
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Figure 4.1: e+e− final state: invariant mass (full circles) measured in pp reactions (left
panel) and in quasi-free np reactions (right panel) at 1.25 GeV. Systematic errors are
indicated by red horizontal bars, statistical errors by vertical bars. In the analysis, e+e−

pairs with an opening angle of α ≤ 9○ are removed from the sample. The curves show
results of model calculations (see text for explanations).

4.1.1 e+e−e+e−e+e− production channels

In proton-proton collisions at 1.25 GeV, the resonance model [Tei97] (Sect. 1.2.2)
predicts that mesons are produced mostly through intermediate ∆ resonances. In par-
ticular, the ∆+ decays into pπ0 followed by the π0 Dalitz decay with a branching ratio
1.174 ± 0.035 × 10−2 (see App. A.3.1). The measured yield in the π0 Dalitz decay
region is reproduced (red short-dashed curve in Fig. 4.1, left panel) taking into account
the inclusive π0 production cross section σpp

π0 = 4.5 ± 0.9 mb from the resonance model,
which describes the existing data [Bys87]. The respective cross section for ∆+ produc-
tion is fixed by the isospin conservation to σ∆+ = 3/2 σπ0 . The dielectron emission in
the mass region above the π0 Dalitz region is dominated by the ∆ Dalitz decay. The
prescription for the differential partial decay width dΓ∆→Ne+e−(Me+e−)/dMe+e− used in
the PLUTO simulation [Doh10] follows Krivoruchenko formula from Eq. 3.9 (Sect. 3.4).
The ∆ form factor is decomposed in Eq. 3.10 into a magnetic, electric and Coulomb
component, with the dominant magnetic transition form factor (GM). Its magnitude,
extracted from pion photoproduction experiments [Pas07] at the photon point, amounts
to GM(0) = 3.02±0.03 and is kept constant within the simulation. The GE and GC are
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neglected, similar to Zétényi and Wolf model (App. B.1). The result is shown in the
left panel of Fig. 4.1 with a long dashed curve. The ∆ Dalitz contribution to the e+e−

spectrum can be regarded as a lower bound in this approach. A possible modification
of the magnetic transition form factor due to intermediate vector mesons is illustrated
with a short dashed curve. Here a calculation using the two-component quark model of
Iachello and Wan (App. B.3) was used. In the four-momentum q2 range of the ∆(1232)
Dalitz decay, the GM form factor is described mostly by the Vector Dominance Model
in terms of the dressed ρ−meson propagator. The enhanced yield is observed (gray
hatched area), in particular for high pair masses, providing a better description of the
pp data. A microscopic one-boson exchange model by Kaptari and Kämpfer [Kap09] is
another approach (see Sect. 3.6.1) compared with the data. The total e+e− contribution
is calculated there as a coherent sum of amplitudes including contributions of the ∆
resonance and the nucleon-nucleon bremsstrahlung. The virtual photon emission was
modeled isotropically and corrections due to NN final state interactions were included
in the parametrization implemented in the PLUTO event generator [Doh10]. The re-
sult of the simulation is shown in Fig. 4.1 (left panel) as a solid black curve. The yield
calculated in this approach significantly overestimates the measured spectrum.

In quasi-free neutron-proton collisions induced with a deuteron beam at kinetic
beam energy of 1.25 GeV/nucleon, the cross section in the π0 mass region amounts
to σnp

π0 = 8.56 ± 1.7 mb. It is a factor of 2 larger as compared to the pp reaction, in
line with the resonance model prediction [Tei97]. The good agreement between the
measured and the simulated yield in the π0 mass region is shown in Fig. 4.1 (right
panel). However, a dramatic change in the mass spectrum at higher masses is observed,
in comparison to pp spectrum. In the intermediate mass region (0.15 < Mee < 0.35
GeV/c2) the dielectron np yield is enhanced by a factor of ten over the pp yield, clearly
indicating that the ∆ is not the only dielectron source. At the high invariant mass
(Mee > 0.35 GeV/c2) the yield excess is even larger, reaching almost a value of 100
for the ratio np/pp at Mee = 0.5 GeV/c2. Dependence on the shape of e+e− invariant
mass was investigated by restricting the spectator emission angle to a very forward cone
(0.3○ ≤ θsp ≤ 2○). No significant change of the shape of the resulting pair spectrum was
observed [Lap09]. To model the np data, the available energy in the center-of-mass
was smeared to include the neutron momentum distribution in the deuteron using the
Paris potential [CTC06]. Additionally, the η Dalitz decay was accounted for (blue dash-
double dotted curve) with the cross sections for np→ npη and np→ dη reactions known
down to the production threshold (see Ref. [Mos09]). The contribution of ∆ Dalitz
decay, modeled with a pointlike form factor, added with η Dalitz decay (Fig. 4.1, right
panel, short dashed curve) is far from the data description. Similar to pp reactions,
the OBE calculations [Kap09], which include effects enhancing bremsstrahlung in np
collisions, were simulated. The OBE contribution summed with the η Dalitz decay
contribution (black solid curve) overshoots the data at a mass just above the π0 mass
but underestimates the observed yield in the high mass region, where the data show an
enhanced dielectron emission.

4.1.2 Comparison to models

The dilepton spectra measured in NN collisions by the DLS [DC97] and HADES
(as discussed above) Collaborations at low energies unravel significant enhancement ob-
served in the intermediate dilepton mass region over the contributions predicted by var-
ious models from the electromagnetic decays of hadrons and long-lived mesons, mainly
η. The results triggered a progress in description which is summarized below.
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4.1.2.1 Shyam and Mosel model

In Shyam and Mosel report [Shy10b], the effective Lagrangian model of Refs.
[Sch94, Shy03, Shy09] (Sect. 3.6.2) was used to investigate the dilepton production
in pp and quasi-free np reactions. The neutron momentum distribution in the deuteron
was modeled using deuteron wave function from Ref. [Wir95] (Argonne v18), resulting
in a smeared np (quasi-free) reaction and center-of-mass energy above the threshold
for the η−meson production. The total cross section parametrization for the η−meson
was taken from Ref. [Shy07], corresponding to the good description of experimental
data from Refs. [Cal98,Cal99]. The η−meson production was factorized as a two-step
process, with a reaction either p+n→ p+n+η or p+n→ d+η, followed by the η−meson
Dalitz decay (see App. A.3.1). In addition, the contributions from the production and
dileptonic decay of the subthreshold ρ0−meson via the baryonic resonance N(1520)
were included for both pp and quasi-free np reactions. The ρ−meson exchange terms
contribute less than 5% total bremsstrahlung cross sections [Shy10a]. The important
modification in the NN bremsstrahlung is the inclusion of the pion electromagnetic
form factor Fπ(M2) at the charged internal meson line (graphs in Fig. 3.11c).
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Figure 4.2: Dilepton invari-
ant mass distributions in (a)
pp → ppe+e−X and quasi-
free (b) np → npe+e−X reac-
tions at a beam energy of 1.25
GeV within the HADES ac-
ceptance. Total cross section
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curve. The contributions ob-
tained with (FF2) and with-
out (NEFF) pion electromag-
netic form factor are shown
by purple dot-dashed and blue
dashed curve, respectively. Fig-
ure adopted from Ref. [Shy10b].

The same form factors at both the pion and the nucleon vertices are used in order to
preserve gauge invariance. Two parametrizations for Fπ(M2) were used. The first one
assumes that the photon couples to the pion only via the ρ0 meson

Fπ(M2) =
m2
ρ

m2
ρ −M2 − imρΓρ(M2)

, (4.1)

where mρ is the ρ−meson mass and Γρ is the width for ρ→ ππ decay (see Ref. [Eri88]).
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The second parametrization is derived from the assumption that the photon couples
about 50% directly to the intrinsic quark core of the pion and the remaining 50%
indirectly through the pion cloud:

Fπ(M2) = 0.4

1 −M2/λ2
+ 0.6

1 −M2/2m2
ρ

m2
ρ

m2
ρ −M2 − imρΓρ(M2)

, (4.2)

where λ2 = 1.9 GeV2. This parametrization provides a better description of the pion
form factor in the timelike region [Bro86].

Figure 4.2 shows the results of the model calculation inside the HADES acceptance.
The total cross section (solid curve) is obtained by the coherent sum of the dominant
∆ resonance amplitudes and NN bremsstrahlung (graphs in Fig. 3.11 a and b), and
added incoherently η and ρ contributions. The addition of the pion form factor does
not make any difference in the proton-proton case (Fig. 4.2a), because the ∆(1232)
dominates over NN bremsstrahlung, and the model describes the data very well. It is
very different in the neutron-proton collisions (Fig. 4.2b) where the pion form factor
parametrization from Eq. 4.2 significantly enhances the dielectron yield for Mee >
0.3 GeV/c2 (purple dot-dashed curve) as compared to the no form factor case (blue
long-dashed curve), making it larger than η Dalitz decay (green dotted) and ρ0 decay
(red double dot-dashed curve) contributions. Yet, it is not sufficient to describe the
measured enhancement in the high mass region. Moreover, the explicit inclusion of the
ρ−meson production can lead to double counting due to the pion form factor, which
also implicitly includes the ρ. Shyam and Mosel [Shy10b] conclude that the dilepton
production data in elementary neutron-proton reactions are very sensitive to the pion
electromagnetic form factors.

4.1.2.2 Martemyanov and Krivoruchenko model

Another approach of Martemyanov et al. [Mar11] is based on the resonance model
of Ref. [Fae03], developed to describe the production of dileptons in nucleon-nucleon
collisions at Tlab = 1 − 6 GeV. The major dilepton production via baryon resonances,
as in Ref. [Tei97], is supplemented by the bremsstrahlung contribution [Shy10b], scaled
by a monopole form factor, 1/(1 −M2/m2

ρ), originating from the vector meson dom-
inance (VMD) model. In addition, np → de+e− channel is included and gives large
dilepton contribution in the region of masses Mee > 0.4 GeV/c2. The cross section of
this process was deduced from the experimental data of the inverse process, deuteron
photodisintegration γd→ np [Dou76]. The isotopic relations for two-nucleon final states
are preserved (see Ref. [Tei97]), that is, pp : np = 1 : 1 for all N∗, except N(1535),
where pp : np = 1 : 5. Since N(1535) is the only significant source of η−meson, the
isotopic ratio for the η is the same as for N(1535). The relations of ∆ resonance cross
sections are pp : np = 1 : 2. The radiative decays of resonances R0 and R+ in reactions
np→ pR0 and np→ pR+ are incoherently summed up. However, the subsequent decays
of the resonances preserve the coherent sum of ρ and ω (see App. B.2). The nucleon
momentum distribution in the deuteron was determined from the experimental data on
the electron scattering cross section on deuteron [Ber81].

The results of the model are presented within the HADES acceptance in Fig. 4.3.
In the case of pp→ e+e−X inclusive channel (left panel), the whole spectrum is described
by the ∆ resonance, followed by a decay to pπ0 and π0 Dalitz decay, or by a ∆ Dalitz
decay. The pp bremmstrahlung contribution is noticeable only at high invariant mass
and the other resonances, denoted by R, are negligible. In the case of np → e+e−X
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Figure 4.3: Left panel: e+e− invariant mass for the pp → e+e−X reaction. The subse-
quent contributions of π0−mesons, ∆(1232), and other baryon resonances R are marked
in the figure, pp bremsstrahlung contribution is shown by the dash-dotted curve. Right
panel: e+e− invariant mass for the np → e+e−X reaction. Additional contributions are
η Dalitz decay (green curve) and the radiative capture np→ de+e− (dashed curve). All
contributions are summed up incoherently (black solid curves in both panels). Figure
taken from Ref. [Mar11].

channel (right panel), there are two additional contributions, the η−meson Dalitz decay
and the np → de+e− radiative capture. These additional sources, however, are not
sufficient to explain of the yield of dileptons in the np collisions.

4.1.2.3 GiBUU model

The GiBUU hadronic transport model is the unified framework for various types of
elementary reactions on nuclei as well as heavy-ion collisions [Bus12]. The low-energy
part of the nucleon-nucleon collisions are assumed to be dominated by the excitation of
baryon resonances, as in the resonance model [Tei97]. The properties (masses, widths
and branching ratios) of all resonances are taken from the partial-wave analysis of
Manley and Saleski [Man92], based on data from pion-induced reactions. The resonance
width parametrization is also used according to Manley prescription (see Eq. 1.7 in
Sect. 1.1). The dilepton production in proton-induced reactions at SIS energies with
the GiBUU model was presented in Refs. [Wei12,Wei13]. In particular, Fig. 4.4 shows
the dielectron invariant mass in the GiBUU approach within the HADES acceptance.

In pp collisions (left panel), the spectrum is dominated by the π0 and ∆ Dalitz de-
cays. The latter decay involves, however, the uncertainty related to the electromagnetic
transition form factor which is unknown in the timelike region. The GiBUU incorpo-
rates for the ∆ Dalitz decay the formula from Ref. [Kri02] (see Eq. 3.5 in Sect. 3.4). At
the energy of 1.25 GeV the vector meson pole mass is not reached and the sensitivity
to the ∆ eTFF is limited. In the figure, the form factor of Iachello-Wan [Iac04,Wan05]
(App. B.3) is presented as a red hatched area. Application of of a standard VMD form
factor results in the same yield for this energy. The contribution of the subthreshold
ρ production (green dashed curve) is negligible. In the π0 region the GiBUU model
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Figure 4.4: Dielectron mass spectrum for pp (left panel) and np (right panel) at 1.25
GeV within the HADES acceptance, compared to the GiBUU contribution (red solid
curve) [Wei12]. The red hatched area indicates the effect of the ∆ electromagnetic
transition form factor in the Iachello-Wan approach [Wan05]. The other contributions
are indicated in the figure (see text for details).

overshoots the data what is attributed to the higher resonances, which are produced
only in phase space approximation. In quasi-free np collisions (right panel), the avail-
able energy is determined by the deuteron potential, which in the GiBUU is given,
similarily to Shyam and Mosel OBE calculation (see above), by the Argonne v18 po-
tential [Wir95]. In the invariant mass above the π0, a strong enhancement of the data
over the model contribution is observed. The largest contribution in the model stems
from η Dalitz decays (short dash-dashed curve), where both channels, np → npη and
np → dη, are taken into account. The latter one dominates the η production in np
collisions at threshold [Cal98]. The ∆ resonance form factor (hatched area) does not
improve the description since its yield is 1−2 orders of magnitude lower than data. The
contribution from np→ npρ0 channel is experimentally not well known. In the GiBUU
model, the ρ0 production in dp at 1.25 GeV/nucleon is dominated by the D13(1520) and
S11(1535) resonances. The contribution of NN bremsstrahlung originating from the
internal pion lines (as in Shyam and Mosel calculation) is not implemented. Instead, the
np bremmstrahlung (short dashed curve) is treated in the soft-photon approximation
(see Sect. 3.5) resulting in the much lower yield. The conclusions from Ref. [Wei12]
point to the missing ρ−like contributions and emphasize that the comparison of data
and model within the spectrometer acceptance is sensitive to the angular distributions
of the dilepton sources, which are unknown in many cases.

4.1.2.4 HSD and IQMD model

Yet another analysis was presented in Ref. [Bra13], where the microscopic off-shell
Hadron-String-Dynamics (HSD) transport approach [Ehe96, Bra97, Cas99, Bra08] and
the Isospin Quantum Molecular Dynamics (IQMD) approach were employed. The HSD
model assumes that at higher energies, that is

√
sth ≥ 2.6 GeV for inelastic baryon-

baryon collisions, and
√
sth ≥ 2.3 GeV for inelastic meson-baryon collisions, respec-

tively, hadrons are created by nonresonant mechanisms or string decay [And93]. The
low-energy hadron-hadron collisions are modeled using experimental cross sections.

– 72 –



4.1. Inclusive e+e− production at T = 1.25 GeV

The conventional dilepton sources, π0, η, ω, ∆ Dalitz decays and direct ρ, ω and φ
vector mesons decays, are described in Ref. [Bra01]. ∆ eTFF used in the HSD is de-
rived from Wolf et al. calculation [Wol90] (see Fig. 3.6). Only "quasi-elastic" part of
the NN bremsstrahlung contribution from Ref. [Kap06] (Sect. 3.6.1) without resonance
excitation is taken into account, and the quantum mechanical interference between indi-
vidual contributions are neglected, as they cannot be treated consistently in transport
approaches. The bremsstrahlung calculation does not involve the VMD form factor
and the dilepton radiation via the decay of the virtual photon, pp → ppγ∗ followed by
γ∗ → e+e−, and the direct ρ→ e+e− decay are treated separately in the HSD calculations.
A proton and a neutron momenta in the deuteron are modeled according to the wave
function of the Paris potential [Lac81]. In the IQMD model [Har98, Tho07] all pions
are produced by the decay of ∆ resonance only. Since no higher mass resonances are
included, the model prediction is feasible for beam energies up to 2 GeV/nucleon. As
presented on examples of heavy-ion data in Ref. [Bra13], both the IQMD and the HSD
models describe the available pion data quite well, which is the good starting point for
the dilepton spectra description.
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Figure 4.5: The dilepton differential cross section dσ/dM of the HSD model for pp (a),
np (b), and dp (c) reactions at 1.25 GeV in comparison to the experimental data for pp
(a) and quasi-free np (b, c) reactions within the HADES acceptance. The contributions
are described in the legends.

Figure 4.5 shows the differential cross section dσ/dM for dileptons as a function
of the invariant mass M for (a) pp, (b) np, and (c) dp reactions at 1.25 GeV. The
pp dilepton yield (left panel) is dominated by the ∆ Dalitz decay, but the presented
bremsstrahlung contribution is quite significant, too. This reflects, however, only non-
resonant part of Kaptari and Kämpfer model [Kap06,Kap09], which, in the case of the
full OBE calculation strongly overshoots the data (as presented above in Fig. 4.1). The
non-resonant bremsstrahlung is dominating in np collisions (middle panel) but added
with the ∆ Dalitz decay contribution is not enough to desribe the data. In the right
panel (c) the same quasi-free np experimental data are compared to the HSD prediction
but for the dp collisions. The idea of this comparison is the statement that the proton
does not scatter on a quasi-free neutron but on a deuteron. Although the total dp
yield gives a better description just above the π0 and at the high invariant mass M , it
clearly overshoots the π0 contribution and still does not describe the dielectron excess
in the mass range of 0.3 < M < 0.5 GeV/c2. Another problem with the quasi-free
np scattering is related to the possibility of deuteron formation in the final state, as
discussed above in Martemyanov et al. model [Mar11]. This is not implemented in
the HSD model but the possible impact of the np → dη channel was simulated by the
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increased cross section for η production. The missing η contribution turns out to be
of the same order of importance as ∆ Dalitz decay and np bremsstrahlung around M
= 0.4 GeV/c2. The subthreshold ρ−meson production via excitation and decay of the
N(1520) resonance, as shown by the dash-dotted curve in 4.5c, is another possibility to
describe the dielectron enhancement. However, the HSD contribution is still well below
the data. The IQMD predictions for pp and np collisions are in a very good agreement
with the HSD model and therefore fail to describe the much higher dilepton rate in np
collisions, in particular regarding the region Me+e− > 0.3 GeV/c2.

4.1.2.5 Bashkanov and Clement model

The most recent attempt to explain the enhancement in the np dilepton spectrum
was published in Ref. [Bas14], where the observed excess in np data was attributed to
ρ0 → π+π− production. At the energy of 1.25 GeV the largest inelastic channel is a
single-pion production, dominated by t−channel meson exchange in combination with
the excitation of one of the nucleons into the ∆(1232) resonance or N(1440) resonance,
followed by the decay into πN system. The two-pion production process is dominated
by t−channel N(1440) at beam energies close to threshold (1 GeV), and ∆∆ excitation
above 1 GeV. The total inclusive cross section for pp−induced π+π− production at energy
1.25 GeV amounts to about 700 µb. It can be shown from the isospin decomposition (see
Ref. [Bas14]) that there is no contribution from ∆∆ excitation to ρ0 channel production
and therefore pp dielectron spectrum is not influenced by this production mechanism
(Fig. 4.6, left panel).
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Figure 4.6: Dielectron invariant mass Me+e− produced in NN collisions at 1.25 GeV
presented within the HADES acceptance. Left panel: pp data (red open circles) with
the two leading contributions (π0 Dalitz and ∆ Dalitz decays), with the ∆ resonance
including form factor (solid curve) and the pointlike form factor (dot-dashed curve).
Right panel: np data (blue open circles) with the e+e− contribution originating from π0

and np bremsstrahlung (black curves), signle ∆ with VMD form factor (red curve), η
(green curve). The sum is denoted by the dotted curve. The cyan dashed curve shows
the contribution from the ρ → π+π− and the thick solid curve is the sum of all these
processes. Figure adopted from Ref. [Bas14].

The situation is very different for two-pion production in np reactions (see Fig.
4.7). This channel us of special importance for the e+e− production because of strong
dielectron decay branch. Furthremore, the dielectron production is enhanced by the
dibaryon resonance structure d∗(2370) with Γ = 70 MeV and I(JP ) = 0(3+), decaying
into d∗ →∆∆→ NNππ [Cle17]. The total inclusive cross section for np−induced π+π−
production is about 1300 µb, with the npπ+π− and dπ+π− channels contributing.
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Figure 4.7: e+e− production in pn collisions via π+π− → ρ0 according to Ref. [Bas14],
describing sub-process via t−channel ∆∆ excitation leading to pn (left graph) and
deuteron (middle graph) final states, as well as production via s−channel d∗ resonance
decaying into ∆∆ system (right graph).

The dielectron production from double−∆ excitation proceeds via the intermediate
ρ−meson, π+π− → ρ0 → e+e−, with the isovector π+π− pair being in relative p−wave.
The subsequent channels are represented by graphs in Fig. 4.7 and their contributions
are:

σ(np→∆∆→ np[π+π−]I=1) ≈ 170 µb,

σ(np→ d[π+π−]I=1) =
1

2
σ(pp→ dπ+π−) ≈ 100 µb,

σ(np→ d∗ → np[π+π−]I=1) ≈ 40 µb.

(4.3)

The total cross section for the ρ0 → π+π− production in np reactions at Tp = 1.25
GeV amounts to 310 µb, with the error estimated to be 20%. The transition from
the [π+π−]I=L=1 system into the [e+e−]L=0 system is calculated with the Breit-Wigner
formula, as in Refs. [Li95,Koc93] (see also App. A.2.2):

∣ M(π+π− → ρ0 → e+e−) ∣2 =
m2
ρ Γπ+π− Γe+e−

(s −m2
ρ)2 + m2

ρ Γ2
ρ

. (4.4)

The partial width depends on the invariant masses (see App. A.2.1 and A.2.2), as
follows:

Γπ+π− = aq3/Mπ+π− ,

Γe+e− = bk/M3
e+e− ,

(4.5)

where q and k are the momenta in π+π− and e+e− subsystems, respectively. The con-
stants a and b are fixed by adjustment to the branching ratios and widths at the ρ mass
pole. Since the models describing π+π− production were adjusted to data, Eq. 4.4 gives
the conversion to e+e− based on experimental reference. The enhancemet of the e+e−

yield derives not only from the inverse dependence on the Me+e− mass (Eq. 4.5) but
also due to the fact, that π+π− pairs in relative p−wave are suppressed near threshold
and e+e− pairs in relative s−wave are not suppressed. The obtained cross section for the
inclusive identification np → e+e−X amounts to 72 nb. As pointed out in Ref. [Wei12],
the two-lepton threshold is much lower than the two-pion threshold, therefore modeling
of e+e− pairs below the two-pion invariant mass requires the virtual ρ0 treatment. Since
it is model dependent, and the π+π− production in Ref. [Bas14] is fitted to experimental
results, only on-shell ρ−meson approach is considered.
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Figure 4.6 (right panel) presents the e+e− invariant mass from np collisions at
energy on 1.25 GeV within the HADES acceptance. All standard sources (π0, η, ∆
Dalitz decays as discussed in Sect. 4.1.1 above, and np bremsstrahlung in Shyam
and Mosel description [Shy10b]) were added incoherently (dotted curve), giving good
description in the π0 peak, and underestimating the data for Me+e− > 0.3 GeV/c2.
Additional contribution from π+π− → ρ0 → e+e− channel (cyan dashed curve) saturates
or even exceeds the whole dielectron excess. The contribution from the direct d∗ decay
in the np → d∗ → de+e− channel, as suggested in Ref. [Mar11] (see above), was not
included in this calculation. In Section 4.3 Bashkanov and Clement calcualtion [Bas14]
is compared to exclusive final state npe+e− in the quasi-free np reaction, therefore posing
more stringent experimental conditions.

4.2 Exclusive ppe+e−(γ)ppe+e−(γ)ppe+e−(γ) production (pppppp at T = 1.25 GeVT = 1.25 GeVT = 1.25 GeV)

The identification of exclusive dilepton decay channels, ppe+e− and ppe+e−γ, allow
to access both ∆+ → pπ0(e+e−γ) and ∆+ → pe+e− Dalitz decay channels. The recon-
struction of the well-known π0 Dalitz decay can serve as a proof of the consistency of
the analysis. The following pp reaction dilepton channels are discussed:

• π0 → e+e−γ (BR = 1.194×10−2): The identification of the π0 in a four-prong
channel (ppe+e−γ) allows for the comparison of various differential distributions
with the ones extracted from the hadronic channel ppπ0 [HC15c].

• ∆+ → pe+e− (theoretical estimate of BR = 4.2×10−5 [Kri02, Zét03a]) for the in-
variant mass Me+e− > 0.14 GeV/c2. The baryonic resonance is identified based
on selected characteristic distributions, the ∆ angular production, decay, and ∆
invariant mass distributions.

All presented spectra (if not stated otherwise) were normalized to the pp elastic
scattering yield measured in the same experimental run.

4.2.1 Exclusive ppe+e−γppe+e−γppe+e−γ channel and π0π0π0 identification

The production of π0 has been studied in the analysis of channels with one pion
in the final state (Sect. 2.1). Out of the two dominant decay channels (π0 → γγ and
π0 → γe+e−), the latter one, the π0 Dalitz decay, can be completely reconstructed with
the missing mass technique by the identification of four particles p, p, e+, e− in the
ppe+e−γ final state.

Figure 4.8a, shows the e+e− invariant mass spectrum as the number of signal pairs
(e+e− pairs after combinatorial background subtraction) per GeV/c2, to account for the
variable bin size used. The combinatorial background is depicted as a grey hatched
area. A strong increase in the CB near the π0 mass signals the correlated source of
dielectrons produced in the conversion of two real photons in the same event, following
the π0 → γγ decay. If both e+ and e− produced by the same photon are registered, the
conversion is effectively suppressed by the e+e− opening angle cut of 9○. If only one
track from each photon is reconstructed, it contributes to the combinatorial background.
The signal-to-background ratio is very high, reaching the value of 400 (see the inset in
Fig. 4.8a) and dropping down below 1 near Me+e− ∼ 0.14 GeV/c2.
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Figure 4.8: ppe+e−γ final state. (a) e+e− uncorrected invariant mass distribution of sig-
nal pairs (number of counts is per GeV/c2 to account for the variable bin width) with
the cuts selecting π0. A grey hatched area represents the combinatorial background
(CB). Inset: signal to background ratio. (b) e+e− invariant mass within the HADES
acceptance. Experimental data (black dots) are corrected for the detection and recon-
struction efficiencies. Normalization error is not indicated. The curves display Monte
Carlo simulations. Black solid curve represents the total π0 Dalitz decay as obtained
in the partial wave analysis (Sect. 2.1.2). In addition, decomposition to resonances (∆,
blue dashed curve; N(1440), black short dashed curve) decaying to pπ0; the components
are added coherently. Red dashed curve represents ∆ Dalitz contribution in a descrip-
tion with a pointlike γ∗NR coupling [Zét03a,Doh10]. Inset: missing mass squared of
ppe+e− (black points) and missing mass squared of two protons (blue points).

To provide a clean signal, a two-dimensional cut on the missing mass of two protons
squared (where the missing particle is π0) and the missing mass of four particles: p,
p, e+, e− squared (where the missing particle is γ) is applied with a window selecting
95% of all events. Inset in Fig. 4.8b, shows the projected distributions of the missing
masses squared. It has been checked both by the experimental data and the Monte Carlo
simulation that the variation of the selection window width introduces a systematic error
lower than 10%. The number of reconstructed e+e− pairs amounts to 7500. Figure 4.8b
presents the invariant mass spectrum of e+e− within the HADES acceptance. It has
been corrected for the detection and reconstruction inefficiencies. The correction is done
with the help of a one-dimensional correction histogram, deduced from the Monte Carlo
simulations. The correction factor for the masses below π0 mass amounts to about 20.

4.2.1.1 ppe+e−γppe+e−γppe+e−γ final state

The partial wave analysis of the final state ppπ0 (Sect. 2.1.2) provided a very
good description of this hadronic channel both in terms of the total cross section 4.2 ±
0.15 mb and the various differential distributions. This analysis provided ppπ0 events
distributed according to the PWA solution. The π0 → e+e−γ decay was further imple-
mented in order to generate the full ppe+e−γ final state and to compare the experi-
mental distributions with the PWA-driven simulated events. Figure 4.8b shows such a
comparison for Minv(e+e−) within the HADES acceptance. The systematic error of ex-
perimental data is 12%. It includes the particle identification, the time reconstruction,
the CB rejection, and the missing mass selection. The statistical error is negligible in
the π0 region. The normalization error, given above, is not shown. The Monte Carlo
simulation is shown in comparison. The black curve depicts the contribution from all π0

Dalitz decay events, describing the data very satisfactorily. In addition, the decomposi-
tion to the intermediate resonance states is shown: blue dashed curve for ∆(1232) and
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Figure 4.9: Various projections of the ppπ0 and ppπ0 → ppe+e−γ channels: angular
distributions of (a) π0 and (b) p in c.m.s. reference frame; invariant mass distributions
of (c) pπ0 and (d) pp; angular distributions in the helicity frame of (e) π0 in pπ0

reference frame and (f) p in pp reference frame; and angular distribution of (g) π0 in
pπ0 GJ reference frame and (h) p in pp GJ reference frame. Dielectron data points after
acceptance and BR(π0 → γe+e−) corrections (black dots) are compared with the data
from hadron channel (red open squares). Histograms: total PWA solution (solid blue)
obtained for the hadronic channel (see text for details).
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black short dashed curve for N(1440), are given by the PWA solutions. There are also
non-negligible non-resonant contributions (not shown in the picture). The amplitudes
need to be added coherently in order to obtain the total π0 contribution (black curve).
∆ Dalitz decay is shown as a red dashed curve (for details, see Sect. 4.2.2.1).

For a better verification of the dielectron channel in the π0 Dalitz decay, various
distributions of experimental data were compared with the PWA solution and hadron
data, as in Sect. 2.1.2. Figure 4.9 shows single particle angular distributions in the
center-of-mass (c.m.s.), helicity, and Gottfried-Jackson (GJ) frames and two-particle
invariant mass spectra (for definitions, see App. C.3.5.3). The data were corrected for
the reconstruction efficiencies and the detector acceptance, each distribution with the
respective one-dimensional correction function. The correction factor in the π0 Dalitz
decay channel varies in the range 30 − 50. A direct comparison with the distributions
for the hadronic channel requires a correction of dilepton data by the inverse of the BR
= 1.194 × 10−2. All projections in Fig. 4.9 demonstrate that the π0 Dalitz decay recon-
struction is well under control and both data in the dielectron and hadronic channels
are well described by the PWA solution.
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Figure 4.10: ppe+e−γ final state. The
angle between e+ or e− and γ∗ (upper
index) in the γ∗ rest frame (lower in-
dex) for π0 Dalitz decay (acceptance
corrected). Experiment: black data
points with statistical errors only. Fit-
ted formula (red curve) ∝ 1+B cos2 θ,
with B = 1.00 ± 0.11, in agree-
ment with the expected value (see Ref.
[Bra95]). The distribution is sym-
metrized by plotting both e+ and e−

contributions.

Yet another observable sensitive to the structure of the electromagnetic transition
is defined as the angle between a lepton (e+ or e−) and the virtual photon γ∗ in the rest
frame of γ∗, first boosted (leptons and γ∗) to the rest frame of the decaying resonance.
This angular distribution has the form 1+B cos2 θ [Bra95]. In the simplest case of scalar
mesons (π0, η), the anisotropy coefficient is 1, since the helicity conservation in the γ∗γ
decay allows, for the pseudoscalar-vector-vector transitions, only for transverse virtual
photons. Figure 4.10 presents the acceptance corrected e+ or e− angle in the γ∗ reference
frame in the reconstructed π0 Dalitz decay channel. The distribution is symmetrized
by plotting both e+ and e− contributions. The fit (red curve) returns the parameter B
= 1.00 ± 0.11. In addition, the data are also corrected for the BR(π0 → γe+e−) and
the integral over the angular distribution results in the total cross section for the π0

production, σ(pp → ppπ0) = 4.18 mb. The statistics error is negligible (less than 2%),
and the systematic and normalization errors are 12% and 8%, respectively, as discussed
above. Both the anisotropy and the deduced cross section are in agreement with the
predictions for the neutral pion Dalitz decay and the description of the π0 production in
the PWA framework (σPWA

π0 = 4.2±0.15 mb). These results prove the perfect consistency
of the analyses of the leptonic and hadronic channels for the π0 reconstruction. The
high quality of the reconstruction of electromagnetic channels with HADES will be
further exploited for the reconstruction of the ppe+e− channel. The results confirm
the consistency of the PWA analysis, based on hadronic channels, providing the ∆+

contribution, which is essential for the BR(∆→ pe+e−) estimate.
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According to the PWA description (Sect. 2.1.2 and Ref. [HC15a]), the contribution
of the ∆ resonance to the channel with one neutral pion in the final state is 70%. The
remaining part results from N(1440) decay and non-resonant 3P2 partial wave, destruc-
tively interfering with the Roper resonance. Since no notable influence of interferences
with non-resonant partial waves was observed for the ∆(1232) contribution, the esti-
mate from the PWA can be safely taken as the ∆ production cross section input for
the simulation of the ∆ Dalitz decay. In addition, the contribution of nucleon-nucleon
bremsstrahlung is expected to be small, as will be discussed in the next section.

4.2.2 ∆∆∆ Dalitz decay in the ppe+e−ppe+e−ppe+e− channel

The identification of three particles (p, e+, e−) in the ppe+e− final state allows for
the kinematically complete (exclusive) reconstruction of the ∆ Dalitz decay channel
under two conditions: (a) selection of the missing mass of pe+e− (Mpe+e−

miss ), close to the
proton mass as a signature of the exclusive pp → ppe+e− reaction; (b) invariant mass
Me+e− > Mπ0 for a rejection of the π0 Dalitz decay. Although the exit channel is in
this case γe+e−, it is only partially suppressed by cut a due to the finite missing mass
resolution and the cut b is needed for the channel separation.
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Figure 4.11: ppe+e− final state. (a) Invariant mass spectrum of e+e− signal pairs (un-
corrected data points, number of counts is per GeV/c2) within the pe+e− missing mass
selection window. The grey hatched area represents the combinatorial background
(CB). Inset: signal-to-background ratio. (b) e+e− invariant mass within the HADES
acceptance. Experimental data (black dots) are corrected for the detection and recon-
struction inefficiencies (the grey thin band indicates the uncertainty of corrections; for
more details, see text). Blue curve represents the sum of the following contributions: π0

Dalitz decay, ∆ Dalitz decay according to Ref. [Ram16] (App. B.4) and bremsstrahlung
according to Ref. [Shy10b] (Sect. 3.6.2). The cyan curve represents the ∆ Dalitz contri-
bution in a description with a pointlike γ∗NR coupling (QED model) [Zét03a,Doh10]
(App. B.1). The two-component Iachello-Wan model [Iac04, Wan05, Wan06] (App.
B.3), depicted with dashed dark green curve, has the largest contribution. The two
components of the Ramalho-Peña model [Ram16] are shown after scaling each of them
up to the same yield as in the full model: quark core (dashed black curve) and pion
cloud (dashed red curve). All model contributions are supplemented with the brems-
strahlung (shown also separately as a green histogram). Normalization error is not
indicated. The vertical dashed line at 0.15 GeV/c2 divides the area of π0 mass and
higher masses. Inset: pe+e− missing mass for Me+e−

inv > 0.15 GeV/c2. The blue curve
shows the simulation of the ∆ Dalitz scaled to the same yield. Vertical dashed lines
limit the window around the mass of the missing proton.
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In about 20% of all events, both protons are measured. Since there is no clear
identification of the proton produced by the ∆ decay, all projections using proton vari-
ables in their construction are added with a weight of 0.5 for both protons in the final
state, i.e., (a) both protons (p1e

+e−) and (p2e
+e−) if p1 and p2 are measured and (b)

measured proton (pe+e−) and missing proton (pmisse+e−) if only p is measured.
Figure 4.11a shows the e+e− invariant mass spectrum as the number of e+e− signal

pairs per GeV/c2 to account for the variable bin width used. The CB is depicted as a
grey hatched area. The data are plotted for a missing mass selection 0.85 < Mpe+e−

miss <
1.03 GeV/c2 around the proton mass (5σ cut, see inset in Fig. 4.11b). Due to the finite
reconstruction resolution, a cut to reject π0 Dalitz decay has been applied at Me+e− >
0.15 GeV/c2 (vertical dashed line). The spectrum spans up to the mass Me+e− ∼ 0.5
GeV/c2, which is close to the excess energy 0.54 GeV available in the pp collisions for the
1.25 GeV kinetic beam energy. The signal-to-background ratio in the area above Mπ0

reaches 7 − 10 (Fig. 4.11a, inset). The number of reconstructed e+e− pairs amounts to
∼15500 below 0.15 GeV/c2 and strongly depends on the missing mass Mpe+e−

miss selection
window. The variation of the e+e− yield due to the window size shows, however, that it
introduces a systematic error of less than 10% as compared to simulation. The number
of e+e− pairs for Me+e− > 0.15 GeV/c2 amounts to 209 pairs. It is not dependent on the
missing mass cut unless the selection window is at least 3σ. Figure 4.11b (inset) shows
that the Monte Carlo simulation (blue curve) of the ∆ Dalitz decay gives a very similar
resolution as the experimental data reconstruction.

Figure 4.11b presents the invariant mass spectrum of e+e− and Fig. 4.12 displays
the invariant mass spectrum of pe+e− (equivalent to missing mass of pp → pe+e−X)
for Me+e−

inv > 0.15 GeV/c2, within the HADES acceptance, respectively. Both spectra
are corrected for the detection and reconstruction inefficiencies. The experimental data
corrected with various models span over the grey band, which defines the systematic
(root-mean-square) error due to the model dependent inefficiency correction. The cor-
rection factor for masses larger than the π0 mass is essentially almost constant and
amounts to about 11. The pe+e− invariant mass (Fig. 4.12) does not display the usual
∆ resonance shape with the peak at 1.232 GeV/c2 mass due to the selection of events
with Me+e−

inv > 0.15 GeV/c2, which naturally favors high pe+e− masses and results in
a distorted ∆ spectral function.

4.2.2.1 ppe+e−ppe+e−ppe+e− final state

To estimate the contribution of π0 Dalitz decay in the pe+e− channel, correspond-
ing analysis cuts were applied to simulated events generated with the same model as
for the ppe+e−γ analysis (Sect. 4.2.1.1). It can be observed that the e+e− invariant mass
in π0 region is described very well by the Monte Carlo simulation within the HADES
acceptance (Fig. 4.11b). This proves the consistency of the three- and four-prong anal-
yses and the very detailed description of the pe+e− missing mass resolution, since, as
observed above, the yield in this region is strongly dependent on the missing mass cuts.

The experimental data are confronted with two descriptions of the ∆ eTFF. First,
a pointlike γ∗NR model, described in App. B.1, is used (QED model). The second
model is a two-component covariant model by Ramalho-Peña [Ram16] (App. B.4).
In all cases, the ∆ resonance parametrization and production is taken from the PWA
solution (as discussed in Sect. 4.2.1.1) as well as the cross section σ∆ = 4.45 ± 0.33 mb.
The ∆ Dalitz decay is then implemented using the differential decay width calculated
as a function of the running mass of the resonance and of the e+e− invariant mass in
the description of the Krivoruchenko formula, see Eq. 3.9 and Refs. [Kri01,Doh10].
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Figure 4.12: ppe+e− final state for the
Me+e−

inv > 0.15 GeV/c2. Invariant mass
of pe+e− and missing mass of a proton
within the HADES acceptance (data
are corrected for the reconstruction ef-
ficiency and plotted with the variable
bin width). The grey band indicates
the uncertainty of model-dependent
one-dimensional efficiency and accep-
tance corrections (for details, see text).
Vertical error bars represent statistical
error, and blue horizontal bars indicate
normalization error. Monte Carlo si-

mulations: blue curve represents the sum of the ∆ Dalitz decay according to Ref.
[Ram16] and non-resonant part of NN bremsstrahlung according to Ref. [Shy10b] (solid
green line histogram). Color codes of the other curves are as in Fig. 4.11b.

Besides the dominant ∆ resonance contribution, a non-resonant virtual photon
emission is added to the description, referred to as nucleon-nucleon bremsstrahlung.
As discussed in Sect. 3.6, the models provide the total e+e− contribution based on
a coherent sum of many graphs describing the ∆ resonance and the nucleon-nucleon
bremsstrahlung contributions. In our simulation we have used the Shyam and Mosel
model, which describes better data in pp and np collisions at 1.25 GeV (Sect. 4.1.2.1).
It predicts the relative contribution of the nucleon-nucleon bremsstrahlung to ∆ pro-
duction on a level of 9%. It is presented as a green line histogram in Fig. 4.11b and also
in Fig. 4.12. The contribution of the N(1440) Dalitz decay can be neglected [Wol90].
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Figure 4.13: ppe+e− final state. The
ratio of the experimental data (squares
with error bars) to the simulated con-
tribution of the ∆ resonance with a
pointlike form factor (QED model)
[Doh10] as a function of the invari-
ant mass of e+e−. The experimental
data are after subtraction of the sim-
ulated non-resonant nucleon-nucleon
part of bremsstrahlung according to
Ref. [Shy10b]. Vertical error bars rep-
resent statistical error only. Various

models are also divided by the QED model contribution (see text for details). Distri-
butions are plotted with the same variable bin width as in Fig. 4.11b.

The solid cyan curve in Fig. 4.11b represents the simplest case: the ∆ contribution
with a pointlike γ∗N∆ form factor [Doh10] (App. B.1) and the NN bremsstrahlung
[Shy10b] (Sect. 3.6.2). The QED model can be considered as a lower level estimate of
the ∆ contribution. The blue solid curve is the sum of the full Ramalho-Peña model
contribution [Ram16] (App. B.4) and, as above, the NN bremsstrahlung. The ∆ decay
in this model is calculated with a mass-dependent eTFF with separate contributions
from the quark core and the pion cloud. The presence of the form factor enhances
the e+e− yield at large invariant masses. The model describes the data just above the

– 82 –



4.2. Exclusive ppe+e−(γ) production (pp at T = 1.25 GeV)

π0 mass quite well but at higher e+e− masses the data points present still an excess
above the model. A possible explanation on the origin of the e+e− excess might be
drawn from the comparison of the components in the Ramalho-Peña model. In order
to do a qualitative comparison of the shape of the distribution, both components were
scaled up to the same total yield in the full solid angle. The first component, the
bare quark core (supplemented by bremsstrahlung), is plotted in Fig. 4.11b by a black
dashed curve. Its distribution is similar to the QED model (cyan curve). This is
expected, since this part of the form factor stays constant for the four-momentum
transfer squared probed in our experiment. The second component, related to the
pion cloud (also supplemented by bremsstrahlung), is plotted as the dotted red curve.
The distribution practically describes the data points within their error bars, which
might indicate that this model component has a correct q2 dependence and is slightly
underestimated in the model. The largest contribution is provided by the Iachello-Wan
model [Iac04] (App. B.3), supplemented by the bremsstrahlung yield (dashed dark
green curve). It tends to overshoot the experimental contribution at the intermediate-
mass 0.14 < Minv(e+e−) < 0.28 GeV/c2 while giving the good description at the
high-mass Minv(e+e−) > 0.28 GeV/c2.

The same model contributions are compared with the experimental data within the
HADES acceptance in Fig. 4.12, where the invariant mass of pe+e− (or missing mass
of p) is presented for Minv(e+e−) > 0.15 GeV/c2. The grey band reflects again the
rms error due to the model-dependent acceptance correction. All curves are the same
as in Fig. 4.11b. As observed above for the e+e− invariant mass, the pion cloud part
of the Ramalho-Peña model (plus bremsstrahlung) delivers the description closest to
the data. The Iachello-Wan model (plus bremsstrahlung) has a higher contribution,
however, within the experimental error bars.

In order to quantify the effect of the N − ∆ transition form factor, the ratio of
the experimental data to the simulations using the pointlike form factor (QED model)
[Doh10] is shown in Fig. 4.13 as a function of the e+e− invariant mass. It is integrated
over the ∆ mass distribution as given in Fig. 4.12. First, the simulated contribution
of the non-resonant part (bremsstrahlung) [Shy10b] is subtracted from the data (it is
shown as a green hatched histogram). The Ramalho-Peña model (solid blue) [Ram16]
gives a good description of the data for masses Minv(e+e−) < 0.28 GeV/c2 but then
it tends to underestimate the excess. The separated pion cloud component of this
model (dotted red) is the closest to the data in the whole range. The Iachello-Wan
model [Iac04] also describes the data well. However, the vector meson contribution
in this model is not consistent with the pion electromagnetic form factor data. The
differences in the parametrization of the eTFF of the pion, discussed in Sect. 3.4, are
smaller than the experimental uncertainty in the studied mass range. Since they increase
with the invariant mass, they have a large impact for dilepton production at higher
energies (see Sect. 4.9). The quark core component of the Ramalho-Peña model (dashed
black) is very close to the pointlike contribution, as expected.

An important observable describing the resonance is the production angle of the
resonance system, which is found to be very anisotropic in the c.m.s., both experimen-
tally and in various model descriptions, i.e., one-pion exchange models [Tei97,Dmi86]
(Sect. 1.2) or PWA [Erm11,Erm14,Erm17,HC15a] (Sect. 2.1.2). The strong forward-
backward peaking reflects the peripheral character of the ∆ resonance excitation. Fig-
ure 4.14a presents the angular distribution of pe+e− or missing p in the c.m.s. First,
the simulated bremsstrahlung contribution with the angular distribution modeled in
line with the ∆, depicted as the green shaded histogram at the bottom, was subtracted

– 83 –



Chapter 4. Resonances in dilepton channels

)
­

e
+

 (pec.m.θcos 
­1 ­0.5 0 0.5 1

)­
e

+
 (

p
e

C
M

θ
 /
 d

c
o
s
 

σ
d

0

0.2

0.4

0.6
­3

10×

(a)

­1 ­0.5 0 0.5 1
*

γe­
*

γ
θcos 

­1 ­0.5 0 0.5 1

*
γ

e
­ *

γ
θ

 /
 d

c
o
s
 

σ
  
  
  
d

0

0.05

0.1

0.15

0.2

­3
10×

(b)

­1 ­0.5 0 0.5 1

Figure 4.14: ppe+e− final state for Me+e−

inv > 0.15 GeV/c2. Experimental data (see sym-
bols with error bars) are corrected for the acceptance and reconstruction inefficiencies.
Both distributions are after subtraction of the simulated bremsstrahlung contribution.
(a) Angular distribution of pe+e− (or missing p) in the c.m.s. (black dots); green shaded
area at the bottom represents bremsstrahlung (see text for details). (b) e+ and e− angle
along the γ∗ direction (upper index) in the γ∗ rest frame (lower index). Red dashed
curve is a fit ∼ 1+B cos2 θ, where B = 1.17 ± 0.34. The grey band indicates the uncer-
tainty introduced by the model-dependent correction in both cases. Vertical error bars
represent statistical error; blue horizontal bars indicate the normalization error. The
blue curve in both cases denotes simulation results, assuming ∆ Dalitz decay according
to model of Ref. [Ram16]. The black dashed curve [panel (a)] represents the ∆ produc-
tion from hadronic channel in the PWA description (Sect. 2.1.2), renormalized to the
same yield as the data points in the angular range -0.8 < cos θc.m.(pe+e−) < +0.8.

from the data points. The projection was corrected for the reconstruction inefficiencies
and the detector acceptance, with a one-dimensional correction function. The data are
compared to the simulation using the Ramalho-Peña model [Ram16] (blue curve). The
pe+e− distribution is affected by the dependence of the angular distribution on the ∆
mass. Indeed, the Ramalho-Peña model enhances the weight of heavier ∆s, which are
produced with a flatter angular distribution. The predicted yield from this model is
not sufficient in the very forward-backward parts of the angular distribution. This is
consistent with the observation in the hadronic channel pp → p∆+ → ppπ0 [HC15a],
where a similar underestimation of the proton c.m.s. angular distribution was observed
at forward-backward angles (dashed black curve).

Another distribution represents angles between e+ or e− in the γ∗ rest frame and
the γ∗ itself, where dielectrons and γ∗ are boosted to the ∆ rest frame (Fig. 4.14b).
This angle is measured with respect to the momentum of the γ∗ in the ∆ reference
frame. The data were corrected for the reconstruction inefficiencies and the detector
acceptance. The fit to the data in the form of 1+B cos2 θ is presented in Fig. 4.14b (red
dashed curve) resulting in B = 1.17 ± 0.34 (the fitting error includes statistical error
only). This is in agreement with calculations from Ref. [Bra95] where the anisotropy
factor B = 1 is expected if the contributions of longitudinal photons is negligible. The
blue curve represents the Monte Carlo simulation (as in the models discussed). The
subtraction of the bremsstrahlung contribution modeled in the Monte Carlo simula-
tion with a homogeneous distribution does not influence the fit result. Both angular
distributions confirm the identification of the ∆ resonance.
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4.2.3 ∆(1232)∆(1232)∆(1232) Dalitz decay branching ratio
The identification of the ∆(1232) resonance in the Dalitz decay channel allows for

the experimental determination of the branching ratio. The calculation is based on the
yield measured as a function of the pe+e− angle (Fig. 4.14a) and is limited to the range
-0.8 < cos θc.m.(pe+e−) < +0.8, where both the hadronic and dielectron channels agree
very well and systematic errors due to acceptance correction are lowest. One should
note that the experimental ∆ Dalitz decay yield is measured for e+e− invariant masses
Me+e−

inv > 0.15 GeV/c2, which favors high ∆ masses, as observed in Fig. 4.12. In ad-
dition, due to the indiscernibility of two protons, the mass of the resonance cannot be
reconstructed in a unique way. Nevertheless, simulations can be used to deduce the
branching ratio at the pole from the measured Dalitz decay yield. For this purpose,
we have used simulations based on the constituent covariant quark model [Ram16] and
QED model [Zét03a,Doh10], which describe the shapes of the experimental distribu-
tions very well. In addition, both simulations are based on the ∆ production amplitudes
deduced from the ∆ pionic decay channels via the PWA. Thus, they can be safely used
to extrapolate the Dalitz decay yield to the whole phase space. Both models provide
a branching ratio value at the pole mass 1.232 GeV/c2, BR(∆→ pe+e−) = 4.2×10−5.

The procedure for deducing the branching ratio is hence enforced in the following steps:

• The experimental yield Nexp (after the bremsstrahlung subtraction) in the range
of -0.8 < cos θ < +0.8 is calculated.

• Similarly, the integrated yield of simulated events Nmodel (QED model as well as
Ramalho-Peña model) is extracted.

• The branching ratio at the pole position is calculated by scaling the known BR
of the models by the ratio of the integrated experimental and the model yields

BRexp(∆→ pe+e−) = 4.2 × 10−5 Nexp

Nmodel
. (4.6)

The obtained ∆ Dalitz branching ratio at the pole position is equal to 4.19 × 10−5 when
extrapolated with the help of the Ramalho-Peña model [Ram16], which is taken as
the reference, since it describes the data better. The branching ratio deduced with the
QED model differs by 6%. The estimate of the branching ratio also depends on the cross
section for the ∆ production drawn from the PWA solution which is affected by the error
of 7.4% (σ∆ = 4.45± 0.33). Both contributions are included in the systematic error due
to model uncertainty which amounts in total to 10%. The systematic error of the PWA
solution the error due to the normalization of the data was excluded, since the same
error affects the dielectron yield. Systematic errors related to the data reconstruction
are similar to those presented in Sect. 4.2.1.1. Contributions to the systematic error,
studied carefully by means of a Monte Carlo simulations, are due to the absolute time
reconstruction, particle identification, rejection of γ conversion, CB subtraction, missing
mass window cut, efficiency, and acceptance correction uncertainty. All errors, added
quadratically, result in a total systematic error of 11%. The statistical error amounts
to 8%. Finally, the branching ratio is BR(∆ → pe+e−) = (4.19 ± 0.42 model ± 0.46
syst. ± 0.34 stat.) × 10−5. This result has been included in the 2018 Review of Particle
Physics.
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4.3 Exclusive npe+e−npe+e−npe+e− production (npnpnp at T = 1.25 GeVT = 1.25 GeVT = 1.25 GeV)

In the dp collisions at 1.25 GeV/nucleon, the dielectron production in the final
state NNγ∗(e+e−), enables to study bremsstrahlung radiation. In general, the brems-
strahlung yield is given by a coherent sum of two types of amplitudes originating from
"pure" nucleon-nucleon interactions and intermediate resonance excitation processes
(Sect. 3.5). The nucleon contribution provides information on the elastic timelike elec-
tromagnetic form factors in a region of four-momentum transfer squared 0 < q2 ≪ 4m2

p,
where mp is the proton mass, which is inaccessible to measurements in e+e− or p̄p anni-
hilation. The resonance contribution includes the production of baryon resonance (∆,
N∗) states. One might visualize this contribution as resonance excitation subsequently
decaying into Ne+e− via the Dalitz process (since momentum-space diagrams have no
time ordering, also other resonance - Ne+e− vertices are to be accounted for). This pro-
cess gives access to the timelike electromagnetic form factors of baryonic transitions in
a complementary way to meson photo- or electroproduction experiments where negative
(i.e. spacelike) values of q2 are probed.

Full quantum mechanics calculations have been performed for np → npe+e− based
on effective model Lagrangians (Sect. 3.6), composing the nucleon-nucleon interac-
tion via the exchange of mesons (π, ρ,ω, σ,...). The virtual photon production happens
at γ∗NN , γ∗NN⋆ and γ∗N∆ vertices and off meson exchange lines. The produc-
tion amplitude of the virtual photon γ∗ depends on the electromagnetic structure of
the nucleons and on the excited baryon resonances. In the kinematic region of small
positive (timelike) values of the squared four-momentum transfer q2 = M2

γ∗ = M2
e+e−

(q2 > 0), these electromagnetic amplitudes are related to off-shell light vector meson
production [Mos91]. Another approach, often used in microscopic transport model cal-
culations to account for the nucleon-nucleon bremsstrahlung, is the soft photon approx-
imation [Rüc76,Gal87,Gal89] (Sect. 3.5). It assumes photon emission following elastic
nucleon-nucleon interactions with an appropriate phase space modification induced by
the produced virtual photon, with interference processes to be neglected. Contributions
from the ∆ isobar and higher resonances are added incoherently and treated as separate
source of pairs.

In the energy range relevant to the HADES measurement, the bremsstrahlung
production in proton-proton collisions is dominated by the ∆ resonance excitation. In
neutron-proton collisions, however, the nucleon-nucleon non-resonant contribution also
plays a significant role, since it is 5 to 10 times stronger than in proton-proton collisions.
The results of various calculations show some sensitivity to the electromagnetic form
factors and to details of the implementation of gauge invariance in the calculations,
in particular those related to the emission off the charged pion exchange (for details
see Sect. 3.6.2). The adjustment of various effects on coupling constants is crucial,
too. Consequently, the cross sections can differ between the models substantially (up
to a factor 2 − 4) in some phase space regions and need to be constrained further by
experimental data.

A very strong isospin dependence in NN reactions was demonstrated by the DLS
experiment [DC98] measuring excitation functions of the pair production in pp and dp
collisions in the beam energy range Ebeam 1 − 4.88 GeV. Despite the limited statistics
and large systematic errors related to normalization, a strong increase of the dielectron
pairs (in the Me+e− > Mπ0 range) in dp reactions over the yield measured in pp below
2 GeV, was observed.
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The main goal of investigating the exclusive reaction np → npe+e− is two-fold: (i)
to verify whether the observed enhancement of the inclusive dielectron production over
pp data has its origin in the exclusive npe+e− final state, and (ii) to provide various
multi-particle differential distributions of the exclusive final state to characterize the
production mechanism and provide more constraints for the comparison to models.

The procedure of identification of the npe+e− final state is initiated by the event
selection requesting at least one track with a positive charge, at least one dielectron
pair (like-sign or unlike-sign) detected in the HADES, and at least one hit in the FW.
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Figure 4.15: Events with npe+e− final state. Left: invariant mass distributions of e+e−

signal pairs (black dots), the combinatorial background (CB) (hatched histogram) and
the signal/background ratio (inset). Experimental data (black dots) are within the
HADES acceptance and not corrected for reconstruction inefficiency. Right: the pe+e−

missing mass for np → pe+e−X reaction and dielectron invariant masses Me+e− > 0.14
GeV/c2 (dots) overlayed with a Monte Carlo simulation (green curve) normalized to the
same yield as the data. Two major contributions of model A are depicted: dotted blue
curve - ρ−meson contribution, dashed red curve - ∆ contribution (see text for details).
In both cases, the number of counts is given per GeV/c2 to account for the variable bin
width. Only statistical errors are indicated.

Further, for all pe+e− candidates in an event, the missing mass for np → pe+e−X
was calculated, assuming the incident neutron carrying half of the deuteron momentum.
The exclusive npe+e− final state was finally selected via a one-dimensional cut centered
around the mass of the neutron 0.8 < Mmiss

pe+e− < 1.08 GeV/c2 (3σ cut). A variation of
this selection has no influence on the data at Minv(e+e−) > 0.14 GeV/c2 and introduces
a systematic error on the yield of about 10% for the π0 region, as deduced from com-
parisons to Monte Carlo simulations. It was checked that the missing mass distribution
width only slightly depends on the invariant mass Me+e− (see Tab. 4.1, last column).

The same procedure was also applied for the pe−e− and the pe+e+ track combina-
tions in order to estimate the combinatorial background (CB) originating mainly from
a multi-pion production followed by a photon conversion in the detector material. The
resulting e+e− invariant mass distributions of the signal and the CB are shown in Fig.
4.15 (left panel) together with the signal to background ratio (inset) for the identified
pe+e− events. In the invariant mass region above the prominent π0 Dalitz decay peak,
the signal is measured with a small background. The number of the reconstructed sig-
nal e+e− pairs and the number of the CB pairs is quoted in Table 4.1. In Fig. 4.15
(right panel), the missing mass distribution of the pe+e− system with respect to the
projectile-target is shown for the events with the invariant mass Me+e− > 0.14 GeV/c2.
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Minv
ee GeV/c2 NSIG NCB σ(Mmiss

pe+e−) GeV/c2

Mee < 0.14 7240 600 −
Mee > 0.14 280 26 0.047
0.14 <Mee < 0.28 184 19 0.051
Mee > 0.28 96 7 0.042

Table 4.1: Number of e+e− (or e+e+ and e−e− for CB) pairs in a given invariant mass
range: signal pairs (NSIG) and combinatorial background (NCB). The last column
presents the width (σ) of the missing mass distribution np→ pe+e−X.

The data are compared to a Monte Carlo simulation - green solid curve (model A, see
Sect. 4.3.1 for details). Its total yield has been normalized to the experimental yield
to demonstrate the very good description of the shape of the distribution. One should
note that a broadening of the missing mass distribution is caused by the momentum
distribution of the neutron in a deuteron, which is accounted for in the simulation.
The spectrometer resolution causes half of the measured width.

Contributions to the systematic error of the e+e− yield were studied carefully by
means of Monte Carlo simulations. They are due to the absolute time reconstruction,
particle identification, rejection of γ conversion, CB subtraction, missing mass window
cut, and efficiency correction uncertainty. All errors, added quadratically, result in
a total systematic error of 10%.

4.3.1 npe+e−npe+e−npe+e− final state
The most recent calculations of Shyam and Mosel [Shy10b] and Bashkanov and

Clement [Bas14] offer an explanation of inclusive dielectron data measured in np colli-
sions at T = 1.25 GeV (see Sect. 4.1.2.5). A characteristic feature of both models is an
enhancement in the dielectron invariant mass spectrum for Me+e− > 0.3 GeV/c2 due to
the intermediate ρ−like state in the in-flight emission by the exchanged charged pions,
which are present in the case of the np→ npe+e− reaction, unlike in the pp→ ppe+e− re-
action. A major difference between the models is that the charged pions are exchanged
between two ∆s in Ref. [Bas14] (Fig. 4.7 in Sect. 4.1.2.5) and between two nucleons in
Ref. [Shy10b] (Fig. 3.11 in Sect. 3.6.2). These models were selected as a basis for the
simulation (described in details below).

The model [Bas14] assumes a sub-threshold ρ−meson production, via intermediate
double ∆+∆0 or ∆++∆− excitation, and its subsequent e+e− decay, according to a strict
vector dominance model [Sak60]. The total cross section, for the np→∆∆ channel, has
been predicted to be σ∆∆ = 170 µb. The dielectron decays of the γ∗ have been modeled
in the simulations following the VDM prescription for the ρ−meson differential decay
rate and assuming the isotropic electron decay in the virtual photon rest frame.

The remaining dielectron sources (π0, ∆ and η Dalitz decays) were computed using
the PLUTO event generator [Frö07]. The detailed description of the procedure was
published in Refs. [HC10,Doh10], and in fact the calculations in Ref. [Bas14] use exactly
the same method. For the ∆ Dalitz decay, the QED model was used, with the constant
electromagnetic Transition Form Factors (eTFF) fixed to their values at the real-photon
point. As a consequence, the Coulomb form factor is neglected and the e+ or e− angular
distribution with respect to the γ∗ in the rest frame of the γ∗, is taken as ∝ 1 + cos2 θ,
in agreement with data [HC17b] (Sect. 4.2).
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The following channels are included in the simulations: (i) np → ∆+,0(n, p) →
npπ0 → npe+e−γ (ii) np → npη → npe+e−γ and (iii) np → ∆+,0(n, p) → (p,n)e+e−(n, p).
One should note that the latter channel accounts for the part of the bremsstrahlung
radiation related to the ∆ excitation, since the pre-emission graphs associated with the
∆ excitation have a small contribution (see Sect. 3.6.2). It is assumed that one-pion
production is dominated by the ∆ excitation which saturates the I = 1 component of
the np reaction. The iso-scalar component of the np reaction at the HADES energy
is much smaller, as shown in Refs. [Sar04,Bys87], and has been neglected. The cross
section σ∆+,0 for the production of the ∆+ and ∆0 resonances in the np reactions has
been deduced in Ref. [Tei97] within the framework of the resonance model by a fit to
the available data on one-pion production in nucleon-nucleon reactions and amounts to
σ∆+ = σ∆0 = 5.7 mb. Furthermore, the angular distributions for the production of the
∆ excitation, deduced from the partial wave analysis of the one-pion production in the
pp collisions at the same energy [HC15a] (Sect. 2.1.2), were included in the simulation.
These distributions provide a small correction with respect to the one-pion exchange
model [Tei97], which were originally included in the PLUTO event generator.

The contribution of the η (see Ref. [Frö07] for details of the implementation) to
the exclusive npe+e− channel is negligible but was included for comparison with the
calculations of the inclusive production [HC10], where it plays an important role. This
model is later referred as the model A.

The model of Shyam and Mosel [Shy10b] (Sect. 3.6.2) is based on a coherent
sum of NN bremsstrahlung and isobar contributions. It demonstrates a significant
enhancement of the radiation in the high-mass region due to contributions from the
charged internal pion line and the inclusion of the respective electromagnetic pion form
factor. This mechanism modifies the contribution of the bremsstrahlung radiation from
the nucleon charge-exchange graphs, which are absent in the case of the pp → ppe+e−

reaction. The other part of the bremsstrahlung corresponds to the ∆ excitation on one
of the two nucleon lines and its subsequent Dalitz decay (Ne+e−). Although the latter
dominates the total cross section at Me+e− < 0.3 GeV/c2, the modified nucleon-nucleon
contribution makes a strong effect at higher masses. Unfortunately, the proposed model
does not provide details about angular distributions of the final state particles. In the
simulation the bremsstrahlung generator included in the PLUTO package [Frö07] was
used, with a modification of the dielectron invariant mass distribution to account for the
results of Ref. [Shy10b]. Since there is no guidance in the model on angular distributions
of the protons and of the virtual photons, the distribution introduced in the model A
for the ∆ production was assumed, and denoted as the model B.

The modeling of the quasi-free np collisions has been implemented in both models
based on a spectator model [Frö07]. This model assumes that only one of the nucleons
(in HADES case, the neutron) takes part in the reaction while the other one, the
proton, does not interact with the projectile and is on its mass shell. The momenta of
the nucleons in the deuteron rest frame are anti-parallel and generated from the known
distribution [Ben73].

4.3.2 Comparison to models

The exclusive final state npγ∗ can be characterized by five independent variables
selected in an arbitrary way. Assuming azimuthal symmetry in the production mech-
anism, only four variables are needed. The decay of the γ∗ into the e+e− pair can be
characterized by two additional variables. The following observables have been chosen:
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• the three invariant masses of the e+e− pair (Me+e− , equivalent to the γ∗ mass), the
proton−e+e− system (Mpe+e−) and of the proton-neutron (Mnp) system,
respectively

• the two polar angles of the proton (cosc.m.(θp)) and of the virtual photon
(cosc.m.(θ∗γ)) defined in the center-of-mass system and the polar angle of the
lepton (e− or e+) in the γ∗ rest frame (cos(θe−γ

∗

γ∗ )) with respect to the direction
of the γ∗ in the c.m.s. The center-of-mass system is defined by incident neutron
at half deuteron energy (ignoring "Fermi motion") and target proton at rest.
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Figure 4.16: Dielectron differential
cross section as a function of the invari-
ant mass of e+e− within the HADES
acceptance. The data (black dots)
are corrected for the detection and re-
construction inefficiency and presented
per GeV/c2. The simulated cock-
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red) Dalitz decays, ρ from the dou-
ble ∆ −∆ interaction process (dashed
black) according to the model [Bas14]
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∆ and ρ - solid green curve) - model
A. The dot-dashed blue curve shows
the bremsstrahlung contribution from
Ref. [Shy10b] - model B.

4.3.2.1 Invariant masses

The dielectron invariant mass distributions is very sensitive to the coupling of the
virtual photon to the ρ−meson. Figure 4.16 displays the dielectron invariant mass
distribution and a comparison to the simulated spectra. As already observed in the
case of the inclusive e+e− production [HC10] (Sect. 4.1), the e+e− yield in the π0 region
is found to be in a very good agreement with the π0 production cross section of 7.6
mb used as an input to the simulation (see Sect. 4.3.1). One should note that the
contribution from np → npπ0(π0 → e+e−γ) channel could not be completely eliminated
by the selection on the pe+e− missing mass due to the finite detector mass resolution.
This contribution is well described by the simulations, confirming the assumed cross
section of the one-pion production. The good description obtained in the exclusive case
demonstrates in addition that the acceptance on the detected proton and the resolution
of the pe+e− missing mass are well under control.

The distribution for invariant masses larger than the π0 mass (Me+e− > Mπ0) is
dominated by the exclusive np → npe+e− reaction (as also proven by the missing mass
distribution in Fig. 4.15 - right panel), which is of main interest for this study. In this
mass region the general features of the dielectron yield are reproduced by the model A.
The ∆ Dalitz decay dominates for the e+e− invariant mass between 0.14 GeV/c2 and
0.28 GeV/c2, while the ρ contribution prevails at higher invariant masses. The η Dalitz

– 90 –



4.3. Exclusive npe+e− production (np at T = 1.25 GeV)

decay gives a negligible contribution. A closer inspection reveals that the ∆ Dalitz
alone cannot describe the yield in the mass region 0.14 <Me+e− < 0.28 GeV/c2. This is
not surprising since the nucleon-nucleon bremsstrahlung is also expected to contribute
in this region. On the other hand, the ρ contribution overshoots the measured yield
at higher masses, even in a stronger way, than observed in the case of the inclusive
data [Bas14] (Fig. 4.6 in Sect. 4.1.2.5). The low mass cut of the ρ contribution is due
to the threshold at the double-pion mass, which should be absent in the case of the
dielectron decay but is the feature of the applied decay model [Bas14].
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Figure 4.17: Left panel: dielectron invariant mass distribution for npe+e− (black dots)
and ppe+e− (blue open circles) normalized to the same π0 cross section within the
HADES acceptance. Right panel: the ratio of the differential cross sections (in absolute
scale, within the HADES acceptance) from np → npe+e− and pp → ppe+e− exclusive
channels (black dots). The ratio of the model (A and B) and the pp Monte Carlo
simulation is presented by green triangles (model A) and blue dots (model B). In addi-
tion a difference in phase volumes between np and pp collisions in the aforementioned
channels is estimated (red squares). For details, see text.

The simulation based on the model B presents a rather different shape, with
a smooth decrease of the yield as a function of the invariant mass. It was indeed
shown in Ref. [Shy09] that the introduction of the pion electromagnetic form factor at
the charged pion line (Fig. 3.11 right graph) enhances significantly the yield above the
π0 peak, but does not produce any structure. The yield for Me+e− < 0.14 GeV/c2 is
strongly underestimated, which is expected, due to the absence of π0 Dalitz process in
the model, which aimed only at a description of the np → npe+e− (see Sect. 4.1.2.1).
Above the π0 peak, model B comes in overall closer to the data than model A, but it
underestimates the yield at the very end of the spectrum (Me+e− > 0.35 GeV/c2). The
exclusive yield calculated within the model B might slightly depend on the hypothesis
we have made on the angular distributions (see Sect. 4.3.1). The expected effect is
however rather small, since the proton angular distribution is well described by the
simulation, as will be shown in Sect. 4.3.2.2. The comparison of the simulations based
on both models with the experimental dilepton invariant mass distributions seem to
favour the explanation of the dielectron excess due to the electromagnetic form factor
on the charged pion line, as suggested in Ref. [Shy10b].
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The exclusive invariant mass distribution can be also compared with the ppe+e−

final state measured by the HADES at the same beam energy [HC17b] (Sect. 4.2).
The latter one is well described by various independent calculations which all show the
dominance of the ∆ Dalitz decay process for invariant masses larger than 0.14 GeV/c2.
Thus, it can serve as a reference for the identification of some additional contributions
appearing solely in the npe+e− final state. Figure 4.17 (left panel) shows the comparison
of the e+e− invariant mass distributions normalized to the π0 production measured in
the reaction np→ npe+e−. It reveals a different shape above the pion mass.

The right panel of Fig. 4.17 shows the ratio of both differential cross sections, with
their absolute normalization, as a function of the invariant mass in comparison to three
different simulations. The error bars plotted for data and simulations are statistical only.
The ratio of the two cross sections in the π0 region within the HADES acceptance and
inside the Mpe+e− missing mass window amounts to σnp

π0 /σppπ0 = 1.48± 0.24, which is well
reproduced by the simulations for the π0 Dalitz decay. The ratio of the cross sections in
the full solid angle is 2, according to the measured data [HC15a] and as expected from
the isospin coefficients for the dominant ∆ contribution. However, the ratio measured
inside the HADES acceptance is smaller because it is reduced by the larger probability
to detect a proton in addition to the e+e− pair for the ppe+e− final state as compared
to npe+e−. For the e+e− invariant masses larger than the pion mass, the ratio clearly
demonstrates an excess of the dielectron yield in the exclusive np channel over the one
measured in pp. It indicates an additional production process which is absent in the pp
reactions, as proposed by the discussed models.
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Figure 4.18: npe+e− final state within
the HADES acceptance. Differential
cross section as a function of the in-
variant mass of pe+e− (left panel) and
of np (right panel) compared to model
A (solid green), with the following
components: ∆ Dalitz (dashed red),
ρ−meson decay from the double−∆
interaction (short-dashed black) and
model B (blue dotted).

In order to exclude trivial effects, like the different phase space volumes available
in the pp and quasi-free np collisions due to the neutron momentum spread in the
deuteron, the ratio of the cross sections of ∆ channels in both reactions is investigated
(red squares on the right panel of Fig. 4.17). An enhancement is indeed present but
only at the limits of the available phase space. It confirms that the phase space volume
difference gives a very small contribution to the measured enhancement in the npe+e−

channel.
The green triangles (model A) and blue dots (model B) in Fig. 4.17 (right panel)

represent the ratio of the respective model simulation and the pp Monte Carlo simu-
lation: the sum of π0 and ∆ Dalitz decays (∆ with a pointlike eTFF) [HC17b]. The
ratios take into account the differences in the phase volume between np and pp, as men-
tioned above. Similar to the comparison of the dielectron invariant mass distribution in
Fig. 4.16, the calculation of [Shy10b] (model B) gives a better description of the data
for the invariant masses larger than the π0 mass.
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Figure 4.18 shows the two other invariant mass distributions of the pe+e− (Mpe+e− ,
left panel) and the np (Mnp, right panel) systems. Both distributions are plotted for
masses of the virtual photon Me+e− > 0.14 GeV/c2 and are compared to the models A
and B. For the model A, the ∆ and ρ contributions are shown separately. As expected,
the distribution at lowMpe+e− is dominated by low mass dielectrons, originating mainly
from the ∆ decays (the observed shape in the simulation is due to an interplay between
∆+ → pe+e− and ∆0 → ne+e− decays, both contributing with same cross sections) and at
higher masses by the ρ−like channel. On the other hand, the invariant mass distribution
of the np system is dominated at low masses by the ρ contribution, which in the model
A overshoots slightly the data. In general, the high-mass enhancement visible in the
e+e− mass spectrum is consistently reflected in the shapes of the two other invariant
mass distributions.

4.3.2.2 Angular distributions

In the discussion of the angular distributions two bins of the dielectron invariant
mass are considered separately: 0.14 <Me+e− < 0.28 GeV/c2 and Me+e− > 0.28 GeV/c2.
The selection of the two mass bins is dictated by the calculations which suggest two
possible different production regimes, with a dominance of the ρ−like contribution in
the second bin.

Figure 4.19 displays the differential angular distributions of the proton in the c.m.s.,
both within the HADES acceptance and after acceptance corrections. In the first case,
the experimental distributions are compared to the predictions of the simulations on
an absolute scale. In the second case, the simulated distributions are normalized to the
experimental yield after acceptance corrections in order to compare the shapes.
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Figure 4.19: Differential cross sections
for the dilepton production in npe+e−

channel as a function of the proton
emission angle in the c.m.s.: for 0.14 <
Me+e− < 0.28 GeV/c2 (left panel)
and Me+e− > 0.28 GeV/c2 within the
HADES acceptance (open red dots)
and the full solid angle (full black
dots). The solid curves display predic-
tions from the simulations in the full
solid angle normalized to the experi-
mental yield: the green curve repre-
sents model A (in the low mass bin

mostly ∆, in the high mass bin mostly ρ), dashed blue represents model B. The dot-
ted/dashed curves are within the detector acceptance for model A (dashed green) and
B (dotted blue) (see text for details), respectively.

As can be deduced from Fig. 4.16, according to model A, the low-mass bin is dom-
inated in the simulation by the ∆ Dalitz decay process, while the ρ−like contribution
determines the dielectron production in the higher mass bin. In the first mass bin, the
distribution exhibits a clear anisotropy, pointing to a peripheral mechanism. The sim-
ulated distributions for the models A (dashed green curve) and B (dotted blue curve)
differ in magnitude but have similar shapes. This is due to the fact that the angular
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distribution for the model B is the same as in the ∆ contribution of model A, which
dominates in this mass region (see Sec. 4.3.1) - both contributions have the same angular
distribution in the full solid angle (solid green and superimposed dashed blue curves).
The shape of the experimental angular distribution is rather well accounted for by both
simulations, where the angular distributions for the ∆ production from the partial wave
analysis is used, leading to a symmetric forward/backward peaking. However, there is
an indication for some enhancement above the simulation in the npe+e− channel for the
forward emitted protons, unfortunately cut at small angles by the HADES acceptance.
It might be due to the charge exchange graphs involving nucleons, which are not prop-
erly taken into account by the symmetric angular distribution used as an input for the
simulation. Indeed, in the case of the ∆ excitation, charge exchange and non-charge ex-
change graphs have the same weight, which yields a symmetric angular distribution for
the proton in the center-of-mass system. This is different for nucleon graphs, where the
contribution of the charge exchange graphs to the cross section are enhanced due to the
isospin coefficients by a factor 4 and, therefore, forward emission of the proton is favored.

For the higher invariant e+e− masses, the angular distribution is more isotropic and
is described rather well by both simulations which again exhibit similar characteristics.
The flattening of the distributions reflects the different momentum transfers involved in
the production of heavy virtual photons. However, as already mentioned, the angular
distribution in model B follows the ∆ production angular distribution, while in model
A it is properly calculated for the ρ production via the double−∆ mechanism.

It is interesting to observe that the two angular distributions are very similar. In
particular, the distribution with respect to cosc.m.p (θ) from the model A is symmetric,
although graphs with emission of the neutron from a ∆− excited on the incident neutron
(and corresponding emission of the proton from the excitation of a ∆++ on the proton
at rest) are highly favoured by isospin factors and induce a strong asymmetry for the
production of the ∆s, as shown for example in Ref. [Hub94].
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Figure 4.20: Differential cross sections
for the dielectron production in the
npe+e− channel as a function of the
virtual photon emission angle in the
c.m.s. for 0.14 <Me+e− < 0.28 GeV/c2

(left panel) and Me+e− > 0.28 GeV/c2

(right panel). The red open dots
present data within the HADES accep-
tance while the black full dots show the
acceptance corrected data. See cap-
tion of Fig. 4.19 for the legend.

Figure 4.20 presents similar angular distributions as discussed above but for the
virtual photon. The distributions are also strongly biased by the HADES acceptance,
which suppresses virtual photon emission in the forward and even more strongly in the
backward direction. In the lower mass bin, where the ∆ contribution is dominant, a de-
viation from the isotropic distribution could be expected due to the polarization of the
∆ resonance. However, the experimental distributions are compatible with an isotropic
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emission, as assumed in the simulation. In the larger mass bin, it is interesting to see
that the model A (solid green curve) predicts a significant anisotropy, related to the
angular momentum in the double−∆ system for the ρ emission by the charged pion line
between the two ∆s, which is the dominant contribution in this mass bin. However,
the HADES data present a different trend, which seems also to deviate from isotropy
but with a smaller yield for the forward and the backward emission. Unfortunately,
as already mentioned for the proton angular distributions, the verification of these
distributions based on the hypothesis of an emission by the charged pion between two
nucleons is not possible, since the calculations in Ref. [Shy10b] do not provide them and
the distribution of the model B remains here rather flat (dashed blue curve in Fig. 4.20).

Finally, the distributions of leptons in the rest frame of the virtual photon are
studied. These observables are predicted to be particularly sensitive to the timelike
electromagnetic structure of the transitions [Bra95]. Indeed, for the Dalitz decay of the
pseudoscalar particle, i.e. pion or η mesons, the angular distribution of the electron (or
positron) with respect to the direction of the virtual photon in the meson rest frame
is predicted to be proportional to 1 + cos2(θe). These predictions were confirmed in
our measurements of the exclusive pion and eta meson decays in proton-proton reac-
tions [HC12b] (Sect. 4.6).

For the ∆ Dalitz decay, the angular distribution has a stronger dependence on the
electromagnetic form factors due to the wider range in e+e− invariant masses. Assuming
the dominance of the magnetic transition in the ∆→ Ne+e− process, the authors of Ref.
[Bra95] arrive at the same distribution as for the pseudo-scalar mesons. Concerning the
elastic bremsstrahlung process, only predictions based on the soft photon approximation
exist in the literature [Bra95]. According to this model, the corresponding angular
distributions show at HADES energies a small anisotropy with some dependence on the
dielectron invariant mass. On the other hand, the angular distribution of leptons from
the ρ−meson decay from pion annihilation, measured with respect to the direction of
the pion in the virtual photon rest frame, has a strong anisotropy, e.g. ∝ 1 − cos2(θe).
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Figure 4.21: Angular distributions of
the leptons in the rest frame of the
virtual photon, calculated in the pe+e−

rest frame and for the dielectron mass
of 0.14 < Me+e− < 0.28 GeV/c2 (left
panel), and with respect to the direc-
tion of the charged pion exchange for
dielectrons with Me+e− > 0.28 GeV/c2

(right panel). See caption of Fig. 4.19
for the legend except the dashed blue
curve which shows a fit with a function
A(1 +B cos2(θe)).

Figure 4.21 presents e+ and e− angular distributions for the experimental data and
the two bins of the dielectron invariant mass. The distributions are symmetric due
to the fact that both angles, between electron and γ∗ as well as positron and γ∗, in
the rest frame of the virtual photon, have been plotted. For the left panel (bin with
the smaller masses, 0.14 < Me+e− < 0.28 GeV/c2) the distribution has been calculated

– 95 –



Chapter 4. Resonances in dilepton channels

with respect to the γ∗ direction, obtained in the pe+e− rest frame, while for the right
panel (bin with the larger masses, Me+e− > 0.28 GeV/c2) it has been calculated with
respect to the direction of the exchanged charged pion momentum. The latter one has
been calculated as the direction of the vector constructed from the difference between
the vectors of the incident proton and reconstructed emitted neutron and boosted to
the rest frame of the virtual photon. The open red symbols present the data within
the HADES acceptance (multiplied by a factor 5) while the full black symbols show
the acceptance corrected data. The solid green curve displays a prediction from the
simulation in the full solid angle while the dashed green curve, is normalized to the
experimental distributions within the HADES acceptance for a better comparison of
the shape. The dashed blue curve shows a fit with a function A(1 + B cos2(θe)). In
the lower mass bin the data follow the distribution expected for the ∆, B = 1.58 ± 0.52
and the fit almost overlays with the simulated distribution. This seems to confirm the
dominance of the ∆ in this mass bin, in agreement with both models. However, it
would be interesting to test the possible distortion that could arise due to contribu-
tion of nucleon graphs, following Ref. [Shy10b]. For these graphs, the distribution of
the e+ or e− angle in the virtual photon rest frame should depend on the electric and
magnetic nucleon form factors in a very similar way to the e+e− ↔ p̄p reactions, e.g.
following ∣GM ∣2(1+ cos2 θ) + (4m2

p/q2)∣GE ∣2 sin2 θ, where mp is the proton mass. In the
calculation of Ref. [Shy10b], the anisotropy of the e+ (e−) angular distribution should
therefore derive from the VDM form factor model. A similar fit to the higher mass
bin in the same reference frame (not shown) gives a significantly smaller anisotropy
B = 0.25±0.35 which changes the sign, when the distribution of the lepton with respect
to the exchanged charged pion is fitted (B = −0.4 ± 0.20), as shown in Fig. 4.21 (right
panel). The latter may indicate the dominance of the ρ decay, as suggested by both
models [Shy10b,Bas14].

The systematic uncertainty of the data points presented in Figs. 4.19-4.21 includes
the normalization error 7%, particle identification, track reconstruction and efficiency
correction 10%, and the model dependent acceptance correction uncertainty. The latter
one can be deduced in the following way. In the lower mass bin, 0.14 < Me+e− < 0.28
GeV/c2, both models A and B have implemented the same angular distribution of
the ∆ resonance. Hence, the difference in the data points corrected either with the
help of model A or model B, despite the differences in the invariant mass distribution
(Fig. 4.16), is negligibly small (< 0.5%). However, one should notice that the most con-
tributing ∆ resonance is modelled with the pointlike eTFF here. The electromagnetic
structure of ∆ resonance has been investigated via the Dalitz decay in Ref. [HC17b],
including a comparison with various eTFF models (Refs. [Ram16, Zét03a, Wan05]).
The production of the ∆ resonance was investigated in the partial wave analysis ap-
proach [HC15a]. Based on these results the systematic model uncertainty, related to
the ∆ resonance, is estimated on the level of 10%. In the higher mass bin, Me+e− > 0.28
GeV/c2, both models A and B were used for the one-dimensional and two-dimensional
acceptance correction, resulting in the discrepancy of 6%. Finally, all uncertainties,
added quadratically, give the systematic error 14 − 16%.
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4.4 Summary for e+e−e+e−e+e− production at T = 1.25 GeVT = 1.25 GeVT = 1.25 GeV
The inclusive dielectron distributions measured in pp and quasi-free np collisions

at T = 1.25 GeV unraveled a very strong isospin dependence of the dielectron produc-
tion. The pp collisions are essentially described by two leading contributions, π0 and ∆
Dalitz decays. However, in the case of np collisions, a significant enhancement in the
intermediate dilepton mass region was observed. Contributions previously predicted
by various models from the electromagnetic decays of hadrons and long-lived mesons,
mainly η, failed to describe the data.

The ppe+e−γ channel identified by HADES allows study of the π0 Dalitz decay
and to verify the ∆ production characteristics derived from the partial wave analysis
of hadronic final states. All distributions are in a perfect agreement with expectations
from simulations. In particular, the angle between e+ or e− and γ∗ in the γ∗ rest
frame follows the 1+ cos2 θ distribution predicted for the decay of pseudoscalar mesons.
Moreover, the yield is consistent with the measurements in the pp → ppπ0 channel,
where π0 was identified by the missing mass technique (Sect. 2.1.1).

These results of ∆ production are used for the interpretation of the pp → ppe+e−

channel, and allows to extract, for the first time, the branching ratio of the ∆ Dalitz
decay (4.19 ± 0.62 syst. incl. model ± 0.34 stat.) × 10−5. The value is found to be in
agreement with estimates based on calculations, using either constant electromagnetic
form factors [Zét03a, Doh10] or a quark constituent model [Ram16]. Comparisons to
models suggest important role of intermediate ρ−meson in the dilepton decay and pion
cloud contribution in the baryon wave function.

The measurements of npe+e− (pspect.) channel confirm that the e+e− invariant-
mass differential cross section in np collisions presents a similar excess with respect
to the one measured in the pp → ppe+e− channel, as previously observed for the cor-
responding inclusive e+e− distributions, hence suggesting the baryonic origin of this
effect. Two models were tested, providing an improved description of the inclusive e+e−

production in the np reaction at large invariant masses. The first one consists of an
incoherent cocktail of dielectron sources including (in addition to π0, ∆ and η Dalitz
decay) a contribution from the ρ−like emission via the double−∆ excitation following
the suggestion by Bashkanov and Clement [Bas14]. The second model is based on the
Lagrangian approach by Shyam and Mosel [Shy10b] and provides a coherent calculation
of the np → npe+e− reaction including nucleon and resonant graphs. In both models,
the enhancement at large invariant masses is due to the VDM electromagnetic form
factor which is introduced for the production of the e+e− pair from the exchanged pion.
The evolution of the shape of the experimental e+ and e− angular distribution in the
γ∗ rest frame seems to confirm the emission via an intermediate virtual ρ at the largest
invariant masses. Since this process is absent in the reaction pp→ ppe+e−, it provides a
natural explanation for the observed excess.

The first observation of dielectron excess measured in the inclusive np reaction with
respect to the pp reaction triggered a lot of theoretical activity and raised interesting
suggestions of mechanisms specific to the np reaction. Understanding in detail the
e+e− production in np collisions is a necessary step towards the description of e+e−

production in heavy-ion collisions where medium effects are investigated. On the other
hand, the description of the np→ npe+e− process is challenging because it implies many
diagrams with unknown elastic and transition electromagnetic form factors of baryons in
the timelike region. The HADES exclusive measurement of the quasi-free np→ npe+e−

reaction at T = 1.25 GeV is sensitive to various underlying mechanisms and in particular
sheds more light on contributions which are specific to the np reaction.
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4.5 Inclusive e+e−e+e−e+e− production (pppppp at T = 2.2 GeVT = 2.2 GeVT = 2.2 GeV)
The HADES data measured in proton-proton collisions at kinetic beam energy 2.2

GeV were analyzed in Sect. 2.3 in the inclusive one-pion (π0, π+) and η production
channels. The dominant resonance contributions were confirmed and cross sections of
∆(1232), N(1440), N(1520), and N(1535) resonances were reported. Based on this
production scheme, results with data obtained on inclusive e+e− identification in the
pp→ ppe+e−X reaction were studied. As a result, the inclusive production cross sections
of π0 and η mesons at 2.2 GeV were deduced. The differential dσ/dMe+e− cross section
of e+e− signal pairs is shown in Fig. 4.22. The spectrum is corrected for inefficiencies
and trigger bias, with cuts on a single electron/positron momentum pe > 0.1 GeV/c, and
pair opening angle αe+e− > 9○. The total number of reconstructed e+e− pairs amounts
to 19.000, with 2.000 pairs for the masses above the π0 mass (Me+e− > 0.15 GeV/c2),
up to the kinematical cut-off limit for the e+e− mass at 0.89 GeV/c2. The ratio of the
signal (S) to combinatorial background (CB) (Fig. 4.22 inset) is essentially above 1.
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Figure 4.22: Dielectron invariant mass
distributions in pp → ppe+e−X at en-
ergy of 2.2 GeV. The spectrum is pre-
sented within the HADES acceptance,
after efficiency correction and CB sub-
traction. Cuts on minimum momentum
pe > 0.1 GeV/c and pair opening an-
gle αe+e− > 9○ are applied. Black verti-
cal bars indicate statistical errors while
horizontal red bars indicate systematic
errors. The inset: signal to combinato-
rial background (S/CB) ratio.

The HADES dielectron spectra from pp collisions at 2.2 GeV were also compared
with the DLS experiment, which provided e+e− data for the pp reaction at 2.09 GeV
[DC98]. Figure 4.23 presents the comparison for the pair mass distributions dσ/dMe+e−

(left panel) and the pair transverse momentum spectrum 1/(2πP⊥) dσ/dP⊥ (right panel),
the latter one with the condition Me+e− > 0.15 GeV/c2. To compare the data, the DLS
acceptance filter [DC97] was imposed on the HADES data, giving within statistical
and systematic uncertainties, very good agreement between both data samples, thus
confirming the previous DLS results.

4.5.1 e+e−e+e−e+e− production channels
The e+e− data were compared with the expected dielectron sources in Figs. 4.24

(pair invariant mass) and 4.25 (pair transverse momentum). They were implemented in
the PLUTO event generator [Frö07,Doh10] and filtered within the HADES acceptance.
The following channels were modeled with the cross sections as listed:

• π0 → γe+e− decay with π0 production cross section σ = 14 mb. The π0 channels
listed in Ref. [Bal88] provide a lower limit of 12 mb.

• η → γe+e− decay with η production in the range of 0.26 − 0.35 mb. The known
exclusive η production cross section is at 0.14 mb (see Sect. 2.3.3).
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Figure 4.23: e+e− cross sections measured by HADES in pp collisions at 2.2 GeV (black
dots) and by DLS at 2.09 GeV (open crosses, see Ref. [DC98]): invariant mass distribu-
tions (left panel), pair transverse-momentum distributions (right panel). Error bars are
statistical only, systematic errors (not shown) are 23% for DLS and 29% for HADES.

• ω → π0e+e−, ω → e+e−, and ρ → e+e− decays, with exclusive vector meson (ω, ρ)
production of 0.01 mb [CTC07].

• ∆0,+(1232) excitation, followed by the nucleon-pion or Dalitz decays, with cross
section in the range 10 − 21 mb.
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Figure 4.24: Dielectron invariant mass dis-
tribution measured in proton-proton re-
action at 2.2 GeV, presented within the
HADES acceptance (full circles, only sta-
tistical errors are shown). The compar-
ison with simulated dielectron sources of
π0, η, ω, ∆ Dalitz decays, and ω, ρ di-
rect decays. The shaded bands delimit the
range of modeled ∆ (yellow band) and η
(blue band) contributions as discussed in
the text, with the dashed delimiters corre-
sponding to high cross section limit, and
the solid ones to low cross section limit.

The wide range of ∆ cross sections depends on meson production description. One
assumption, leading to the upper cross section of 21 mb (dashed curve of the yellow
band in Figs. 4.24 and 4.25), is driven by a single pion production mediated by ∆
excitation only, and the isospin relation, σ∆ = 3/2σπ0 . Another assumption, resulting
in the lower cross section of 10 mb (solid yellow curve in figure), is a sum of one-pion
production of 3.6 mb from a resonance model in Ref. [Tei97], and two-pion production
of 6.4 mb from the effective Lagrangian model in Ref. [Cao10]. Another dielectron
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channel, marked with a blue band in Figs. 4.24 and 4.25, is related to η Dalitz decay.
Both production channels saturate the e+e− invariant mass spectrum up to the Me+e− ≈
0.45 GeV/c2 (see also Fig. 4.25b). Based on the components of the e+e− cocktail it
is possible to deduce the inclusive cross sections of scalar mesons. For Me+e− < 0.15
GeV/c2 the dominating π0 Dalitz decay allows to fix the inclusive π0 production cross
section at σπ0 = 14± 3.5 mb. The quoted 25% error is determined mostly by systematic
effects (normalization, trigger bias correction, acceptance correction).
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Figure 4.25: Pair transverse momentum distributions dσ/dP⊥ measured in pp collisions
at 2.2 GeV within the HADES acceptance. Three mass bins are shown: (a) Mee < 0.15,
(b) 0.15 <Mee < 0.45, and (c) Mee > 0.45 GeV/c2. For legend, see Fig. 4.24.

In the intermediate mass region, 0.15 < Me+e− < 0.45 GeV/c2, the subtraction of ∆
Dalitz decay contribution allows for estimation of η−meson cross section. The upper
limit σ∆ = 21 mb corresponds to ση = 0.26 mb, while the lower limit σ∆ = 10 mb results
in ση = 0.35 mb. The average value can be written, ση = 0.31 ± 0.08 ± 0.05 mb, with
the systematic error, and model dependence error. The mass above η unravels strong
excess of dielectron pairs in data as compared to simulation (see also Fig. 4.25c). The
possible missing sources are N∗ resonances, e.g. N(1520) and N(1720), coupling to
the ρ−meson. An enhancement could be also possible due to vector meson dominance
form factors of the nucleon resonances [Kri02].

4.5.2 Comparison to models
Similar to investigation presented in Sect. 4.1.2, attempts to describe the dilepton

spectra from pp collisions at 2.2 GeV were made by a number of models. Brief overview
is given below.

4.5.2.1 GiBUU model

In pp collisions at 2.2 GeV, the spectrum below mass M < 0.15 GeV/c2 is still
dominated by the π0 Dalitz decay, but at higher mass the role of ∆ Dalitz decay is less
pronounced (Fig. 4.26). The beam energy is above η−meson production threshold and
the respective Dalitz decay contributes (dash-dashed curve in figure). It also reaches the
pole mass of ρ (green long dashed curve) and ω (direct decay: blue dashed, Dalitz decay:
dot-dashed turquoise curve) mesons, which dominate the high-mass part of the dilepton
spectrum. The ∆ Dalitz decay is presented for two cases: a pointlike (lower limit) and
the Iachello-Wan (see App. B.3) electromagnetic transition form factor (upper limit),
plotted as a red hatched area. However, the ∆ contribution plays a less important role
here, since the η and ρ contributions are much larger.
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Figure 4.26: Dilepton mass
spectrum within the HADES
acceptance, compared with the
GiBUU calculation [Wei12].
The P33(1232) resonance is
presented without and with
electromagnetic transition form
factor (red hatched area), while
the D13(1520) and P13(1720)
are modeled with a pointlike
eTFF. For color code, see
legend. Figure adopted from
Ref. [Wei12].

Unlike the ρ−meson channel modeled in Sect. 4.5.1 by the phase space production,
in GiBUU two resonances contributing to the ρ, D13(1520) and P13(1720), result in
a better description of the data, with some minor deviations. The N(1520) resonance
is underestimated and, on the other hand, N(1720) overestimates the data.

p + p at 2.2 GeV

10
-3

10
-2

10
-1

10
0

10
1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

d
σ

/d
p

T

m = 0 - 150 MeV

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

transverse momentum pT [GeV]

m = 150 - 450 MeV

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

10
-3

10
-2

10
-1

10
0

10
1

d
σ

/d
p

T
m > 450 MeV

data
GiBUU total

ρ → e
+
e

-

ω → e
+
e

-

ω → π
0
e

+
e

-

π
0
 → e

+
e

-
γ

η → e
+
e

-
γ

∆ → Ne
+
e

-

Figure 4.27: Pair transverse momentum distributions in three mass bins (as in Fig. 4.24).
The red hatched area indicates the effect of the ∆ form factor.

Figure 4.27 show the transverse momentum spectra in three mass bins as in Fig.
4.24. The GiBUU calculation gives a better description of the data, most notably, from
the larger ρ contribution in the highest mass bin.
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4.5.2.2 HSD model

The Hadron-String-Dynamics (HSD) transport approach presented in Ref. [Bra13]
is compared with data in Fig. 4.28 (for details, see Sect. 4.1.2.4). Left panel shows the
invariant mass spectrum, qualitatively described similarly as in the GiBUU model (see
above). However, although ∆ Dalitz contribution is treated here with the pointlike form
factor, a higher production cross section, as compared to the GiBUU, is implemented.
The difference is clearly seen in the low mass, where ∆ Dalitz decay reaches the same
level as η Dalitz decay. It results in the overall increase of the yield. Another difference is
the pp bremsstrahlung (without resonance excitation, as in Ref. [Kap06]) implemented
in the HSD. The contribution of the N(1520) to the ρ cross section is included as
suggested in Ref. [Pet98], but the branching ratio to a ρ has uncertainty between 15%
and 25%. Such a resonance contribution presents an upper estimate for the ρ−meson
production in NN and πN reactions at sub-threshold energies. The right panel of Fig.
4.28 shows the HSD results for the differential transverse momentum cross sections
separated for different invariant mass bins, as in Figs. 4.25 (HADES analysis) and 4.27
(GiBUU model). The agreement between theory and experiment is very similar to the
GiBUU model, despite the differences in the description of contributing sources.
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Figure 4.28: Left panel: The dilepton differential cross section dσ/dM of the HSD
model for pp reactions at 2.2 GeV in comparison to the experimental data. For the
contributions, see legend. Right panel: HSD results for the differential dilepton trans-
verse momentum cross section for different mass bins: M < 0.15 GeV/c2 (black curve),
0.15 < M < 0.55 GeV/c2 (red dot-dot-dashed curve), and M > 0.55 GeV/c2 (blue
dashed curve). All spectra are presented within the HADES acceptance.

4.5.2.3 UrQMD model

The microscopic Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model
is a hadronic non-equilibrium transport approach including all baryons and mesons with
masses up to 2.2 GeV/c2 [Bas98,Ble99,Pet08]. The ρ−meson production is calculated
either as a two-step process, with the resonance R excitation followed by the decay:
N +N → N +R → N +N +ρ, or in the pion annihilation, π+π− → ρ. The mass dependent
branching ratios of resonance decays are taken from Ref. [PDG16]. The pseudoscalar
(π0, η, η′) and vector (ω) meson Dalitz decays are also decomposed into a two-step
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process, first decay into a virtual photon and then the subsequent decay of the photon
via electromagnetic conversion. The form factors used in this description are obtained
by the vector meson dominance model (see Refs. [Lan85,Li96]). The direct vector meson
(ρ0, ω, φ) decays are also included. The ∆(1232) Dalitz decay is described with the
parametrization of Wolf et al. [Wol90] (see also Sect. 3.4) with a modified coupling to
fit the radiative decay width [Bra99].
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transport model (for the
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Figure 4.29 presents dilepton invariant mass spectrum for pp at 2.2 GeV (Ref.
[End13]) within the HADES acceptance. The overall agreement of the UrQMD calcu-
lations and the HADES data is seen up to the ρ−meson pole mass, where the model
significantly overestimates the yield. The further studies can be done with the data at
higher energy 3.5 GeV where the full phase space is open for vector meson production.

4.6 Exclusive e+e−e+e−e+e− production (pppppp at T = 2.2 GeVT = 2.2 GeVT = 2.2 GeV)

To reconstruct the Dalitz decays of π0 → γe+e− and η → γe+e− (see App. A.3.1),
all events with two protons and one dielectron (ppe+e−) have been selected. The signal-
to-background ratios are of the order of 3 in the π0 region and of 4 in the η region.
The missing masses of the two-proton system Mmiss(p, p) and of the four-particle sys-
tem Mmiss(p, p, e+, e−) were reconstructed, in the same way as for the ppπ+π− events
(Sect. 2.3.3). The correlation between the squares of both missing masses is shown in
Fig. 4.30, left panel, after combinatorial background subtraction. The contributions
from pp → ppπ0/η reactions, followed by Dalitz decays π0/η → γe+e−, are pronounced
for M2

miss(p, p) close to the π0 and η mass squared, respectively. All events from the
pp→ ppe+e−γ reaction are centered around zero in the M2

miss(p, p, e+, e−) distribution.

Figure 4.30 (right panel) presents theM2
miss(p, p) distribution: signals from π0 and

η Dailtz decays are extracted with the rectangle cuts (see Fig. 4.30, left panel). The
remaining background, of the order of 5%, is due to e+e− pairs from the Dalitz decay of
a π0 produced in multipion production processes (blue histogram). This contribution
has been removed bin by bin, based on the simulation of the channels with two pions
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Figure 4.30: pp → ppe+e− reaction at 2.2 GeV. Left panel: The correlation between
the two-proton missing mass squared (M2

miss(p, p)) and the four-particle missing mass
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miss(p, p, e+, e−)) is shown. The orange rectangles select the regions of the
η peak, visible for M2

miss(p, p) around the η mass squared, and of the π0 peak, visible
forM2

miss(p, p) around the zero mass. Both selections are at M2
miss(p, p, e+, e−) close to

the γ (zero) mass. Right panel: Distribution of the two-proton missing mass squared
(M2

miss(p, p), black dots) for the ppe+e− events, after a cut on the missing mass to
the four-particle system (left panel). The distribution is normalized to the pp elastic
scattering yield. The histograms show the results of simulations: The red histograms
peaking at the π0 and η squared masses correspond to the exclusive π0 and η production,
respectively, followed by Dalitz decay. The blue histogram shows the contribution of
multipion background, which is subtracted from the data (see text for details). The
vertical lines depict the limits used to extract the experimental signals strength.

π0π0 (cross section 1.09 mb), and three pions, π0π0π0, and π+π−π0 (cross section 0.5
mb, see Ref. [Bal88]). The number of reconstructed π0 Dalitz decays amounts to 6800
± 200 (syst.) ± 82 (stat.), and the number of η Dalitz decays amounts to 235 ± 18
(syst.) ± 19 (stat.). The systematic error was evaluated by the variation of the missing-
mass limits (vertical lines in Fig. 4.30, right panel) and the shape of the multipion
background.
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Figure 4.31: e+e− invariant mass distributions for the π0 (left panel) and η (right
panel) Dalitz decays, obtained after efficiency and acceptance corrections. The yields
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based on resonance model (for details, see Sect. 2.3.2 and 2.3.3). In the case of η
meson, the simulation with the VMD η form factor (solid curve) and without η form
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– 104 –



4.6. Exclusive e+e− production (pp at T = 2.2 GeV)

4.6.1 π0π0π0 and ηηη form factors

The simulation of π0 and η Dalitz decays is based on the resonance model [Tei97].
All contributions and the respective cross sections were taken as in Table 2.5 (Sect.
2.3.1), resulting in the red histogram in Fig. 4.30, right panel. The widths of the
missing mass peaks, which do not depend on the details of the model and mainly reflect
the momentum resolution of the particle tracks, are similar to the experimental ones.
This justifies the procedure of the signal selection cuts from the simulation and allows
for the model-driven acceptance correction. The acceptance and efficiency corrected
e+e− invariant mass distributions are displayed in Fig. 4.31, with statistical errors and
systematic errors added quadratically. In the case of the π0 (left panel), the largest
source of systematic error is the rejection of e+e− pairs from photon conversion, which
is done by the cut on e+e− opening angle (> 9○), resulting in the loss of data at small
e+e− invariant masses. The small excess around 0.03 GeV/c2 is most likely due to
a remaining contamination of conversion pairs. In the η region (right panel), the error
is due to e+e− pairs from π0 decay in multipion production processes. The yields are well
reproduced by the simulation. In the case of the π0, the production cross sections are
constrained by independent data, thus the agreement in the π0 → γe+e− reconstructed
yield provides a consistency check of the whole analysis chain for dileptons. In the
case of the η production, the cross section was fixed by the HADES measurement in
the hadronic channel (Sect. 2.3.3), thus the present analysis confirms the consistency
of hadronic and leptonic reconstructions and the good control of the corresponding
efficiencies.
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Figure 4.32: Angular distributions of electrons and positrons in the virtual photon
rest frame, from π0 (left panel) and η (right panel) Dalitz decay, after acceptance and
efficiency correction. The dashed curves show a fit with a function A(1 +B cos2 αγ

∗

eγ∗)
(see text for details). The normalization is arbitrary.

The possible contribution of Dalitz decays of baryon resonances, corresponding to
a ppe+e− final state, is negligible (Fig. 4.31, right panel), except in the mass region
close to the kinematical limit (Minv(e+, e−) = 0.547 GeV/c2). This could explain the
excess of measured yield above the simulation for the reaction pp → ppη for masses
above 0.5 GeV/c2. The shapes of e+e− invariant mass distributions are characteristic
for their Dalitz decay. The description of the Dalitz decay processes in the simulation
involves the modeling of the electromagnetic transition form factors (App. A.3.1). They
were implemented in the simulation as pointlike (referred to as QED, dashed curves)
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or VMD form factors (solid curves). The differences are negligible for the π0 → γe+e−

case, and show up for the η → γe+e− case only at larger values of the e+e− invariant
mass. Unfortunately, the HADES data are not precise enough to provide any further
quantitative constraint to these models.

4.6.2 π0π0π0 and ηηη angular distributions
An interesting feature of the Dalitz decay of pseudoscalar mesons is the transverse

polarization of the virtual photon. The expected distribution of the angle αγ
∗

eγ∗ , that

is, e+ or e− in the γ∗ rest frame, is predicted to be proportional to 1 + B cos2 αγ
∗

eγ∗

(Ref. [Bra95]). The calculation of this angle implies a boost of all particles in the π0/η
meson rest frame, followed by the boost of electron/positron in the virtual photon rest
frame. Figure 4.32 shows the e+ and e− angular distributions in the π0 (left panel)
and η (right panel) Dalitz decay channels. The acceptance and efficiency corrections
were calculated using the simulation of the dielectron production via Dalitz decays,
as described above. The fit of a function (quoted above) results in the anisotropy
coefficients, B = 1.36 ± 0.43 for the π0, and B = 0.98 ± 0.48 for the η, in agreement
with the QED prediction, B = 1 (Ref. [Bra95]).

4.7 Summary for e+e−e+e−e+e− production (pppppp at T = 2.2 GeVT = 2.2 GeVT = 2.2 GeV)

The presented data on inclusive e+e− production in the reaction pp at 2.2 GeV
beam kinetic energy are in good agreement with the DLS result obtained earlier at 2.09
GeV. The employed cocktail of e+e− sources describes the π0 region very well, but it
does not saturate the data at invariant mass around 0.55 GeV/c2. The transport models
describe the data quite well, although they differ in details: HSD uses a pointlike form
factor for ∆ Dalitz decay, but the higher ∆ production cross section as compared to the
UrQMD. The ρ−meson distribution due to the coupling to baryon resonances is very
different in the GiBUU and the HSD approach.

The identification of kinematically complete ppe+e−γ channel allows for the recon-
struction of π0 and η Dalitz decay signals. They have been compared with Monte Carlo
simulations of pseudoscalar meson production within the resonance model [Tei97] ap-
proach, followed by the subsequent Dalitz decays. In addition, the sensitivity to the
pointlike and VDM-like electromagnetic transition form factors of baryon resonances
has been investigated in the channel with the η−meson. Although the precision of the
HADES data is not sufficient to provide constraints to the eTFF models but the anal-
ysis has confirmed that the e+e− invariant mass distributions presented above are fully
consistent with the hadronic channels reconstructed in HADES. Yet other observables,
the acceptance corrected e+/e− angular distributions in the γ∗ rest frame, have shown
the anisotropic behavior. The anisotropy coefficients from the fits to the data are in
a good agreement with QED predictions for the pseudoscalar mesons.
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4.8 Inclusive e+e−e+e−e+e− production (pppppp at T = 3.5 GeVT = 3.5 GeVT = 3.5 GeV)

At energy 3.5 GeV many hadron channels become available and various produc-
tion scenarios are assumed in transport codes. In Hadron String Dynamics (see Sect.
4.1.2.4) and Giessen Boltzmann-Uehling-Uhlenbeck (Sect. 4.1.2.3) models, at this beam
energy, hadrons are produced through string fragmentation [And83]. In the resonance
Ultrarelativistic Quantum Molecular Dynamics transport model [Bas98] the decaying
resonances are the sources of final state particles. First uncertainty in the dielectron
production stems from the unknown inclusive cross sections of meson and baryon reso-
nance productions, which can decay into e+e− pairs in two-body decays or Dalitz decays
(see Sect. 3). Another uncertainty is related to the parametrization of the mass depen-
dent resonance width. Various prescriptions are used in model calculations which differ
at high resonance masses (see Eqs. 1.8 in Sect. 1.1). As a consequence, the result-
ing dielectron yield from the resonance Dalitz decays has a large uncertainty. Finally,
the Dalitz decays of baryon resonances (R → Ne+e−) depend on the electromagnetic
structure of the R → Nγ∗ transition vertex (Sect. 3.4).
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The inclusive e+e− signal pair distribution, after a combinatorial background sub-
traction, is shown in Fig. 4.33. It is efficiency corrected and normalized to Nacc

el /σaccel ,
where Nacc

el and σaccel denote the measured yield of the pp elastic scattering and the
differential elastic cross section from Ref. [Kam71] inside the acceptance of HADES,
respectively. In total, 6.1×104 signal pairs were reconstructed, with 5.4×104 in the mass
region below 0.15 GeV/c2. The spectrum shows a clear peak around the pole mass of
the ω−meson, corresponding to its direct decay into e+e− pairs. The peak is shown
also on a linear scale in the inset, where it was fitted with a Gaussian distribution and
a polynomial for the underlying continuum. The obtained mass resolution amounts
to σ/Mω

pole ≈ 2%. The number of pairs in the mass range between 0.71 GeV/c2 and
0.81 GeV/c2, which corresponds to the ±3σ interval around the reconstructed ω peak,
amounts to 260.

– 107 –



Chapter 4. Resonances in dilepton channels

4.8.1 Comparison to models

When neglecting the internal degrees of freedom of dielectron decay, e.g. helicity
angles of virtual photons, the reaction pp → e+e−X can be described by three inde-
pendent degrees of freedom, e.g. invariant mass, transverse momentum, and rapidity.
An overview of inclusive dielectron channel from pp → ppe+e−X reaction at energy of
3.5 GeV, obtained in various models, is given below.
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4.8.1.1 PYTHIA generator

The PYTHIA is a program developed at the Lund University [Sjö08] for the gen-
eration of high-energy collisions, comprising a coherent set of physics models for the
evolution from a few-body hard process to a complex multihadronic final state. It is im-
plemented in the transport models, e.g. HSD add GiBUU, to model hadron production.
The inclusive cross sections for vector mesons, η, and ∆(1232) resonance, were adjusted
in order to describe the measured dielectron yields in the invariant mass, transverse mo-
mentum and rapidity distributions (see below). The simulated dielectron sources, Dalitz
decays of the pseudoscalar mesons π0 and η, vector meson ω, and ∆(1232) resonance
only, as well as direct vector meson decays V → e+e−, where V = ρ, ω, were added
incoherently. The decays were simulated outside the PYTHIA, in the PLUTO event
generator (see App. C.3.1). The masses of ρ, ω and ∆(1232) were generated according
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to relativistic Breit-Wigner distribution, replacing the implementation of the resonances
with constant total widths around the resonance pole mass in the PYTHIA. In case of
the ∆(1232) baryon resonance the mass dependence of the total width is calculated
from its Nπ decay channel with the cutoff parametrization as in Ref. [Man92], known
as Blatt-Weisskopf or Manley ∆ resonance parametrization (see Eq. 1.7). The mass
dependence of the ρ and ω total width is parametrized as in Ref. [Bra08].

Figure 4.34, left panel, presents the comparison of invariant mass distribution for
the data and the PYTHIA model. The simulated cocktail reproduces the data reason-
ably well except for the mass range around 0.55 GeV/c2 where the yield is underesti-
mated. The ∆(1232) is modeled with a pointlike electromagnetic transition form factor,
fixed at the photon point, what is obviously not sufficient at high mass. However, one
should note that contributions of higher ∆ and N∗ resonances are not included at all.
The two sets of four figures (Fig. 4.34, bottom panel) present the comparison of the
data to the PYTHIA simulations in the transverse momentum (dσ/dpeet ), and rapidity
(dσ/dyee) distributions. They are split into four mass bins: (a) Me+e− < 0.15 GeV/c2

(upper left), (b) 0.15 < Me+e− < 0.47 GeV/c2 (upper right), (c) 0.47 < Me+e− < 0.7
GeV/c2 (lower left), and (d) Me+e− > 0.7 GeV/c2 (lower right). The low mass regions,
(a) and (b), are dominated by the π0 Dalitz decay and η Dalitz decays, respectively.
Similar to the invariant mass distribution, in the pt and y distributions, they are de-
scribed by the PYTHIA cocktail very well. The high mass region (d), is saturated by
the vector meson direct decays, again, well described in all representations. The mass
region below the ω−meson pole mass (c), is not sufficiently described, pointing to the
missing yield from baryon resonances, both in terms of their cross sections, transition
form factors, and the coupling strength to Nρ channel.

4.8.1.2 GiBUU model

Figure 4.35 shows a comparison of the GiBUU simulation to the HADES data.
The η, ω and ρ production channels are fully accessible at energy of

√
s = 3.18 GeV. In

the GiBUU model, the η and ρ production is based on the cross sections obtained from
PYTHIA.

Figure 4.35: GiBUU description of the
e+e− mass spectrum for pp at 3.5 GeV.
∆(1232) resonance is presented with
both a pointlike (lower limit), and
Iachello-Wan transition form factor
(upper limit, red right-hatched area).
The baryon resonance contributions to
the ρ production are shown as green
hatched area. The total contributions
(from bottom to top) are plotted with
∆ form factor (left hatched), ρ res-
onance contributions (right hatched).
Figure adopted from Ref. [Wei12].
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Above the mass of η−meson, two dielectron sources, described with the largest
uncertainty, are investigated in details. The first source is related to the ρ contribution
given by the resonance model and the PYTHIA. The PYTHIA result is given by the
lower limit green dashed curve in Fig. 4.35. The green hatched area presents the ρ shape
due to the production of ρ mesons via nucleon resonances, e.g. NN → NR(→ Nρ) and
NN → ∆R(→ Nρ). A major contribution to the low-mass part of the ρ spectral func-
tion comes from the N(1520) resonance. Together with the 1/m3

ee factor of the dilepton
decay width (see Eq. A.30 in App. A.2.1), the ρ shape is strongly enhanced towards
lower masses and dominates the dilepton spectrum in the intermediate mass region
around 0.5 − 0.7 GeV/c2. This modification is solely caused by the production mech-
anism via baryon resonances. Therefore, the determination of the coupling constants
of resonances to Nρ channel plays an important role. However, the knowledge of the
resonance contributions to the ρ channel is constrained only from the two-pion decay
channels, which are known with large errors (see Ref. [PDG16]). Yet another uncer-
tainty is related to the ∆ (or in general, a baryon resonance) electromagnetic transition
form factor. In Figure 4.35, similar to the description of pp data at 2.2 GeV (Sect.
4.5.2.1), the ∆ Dalitz contribution is presented with two assumptions: using a pointlike
form factor (lower limit, red dot-dot-dashed curve), and the Iachello-Wan (App. B.3)
form factor, plotted as a red hatched area. The gap in the intermediate mass region,
as shown in the PYTHIA model (Fig. 4.34, left panel), can now be filled either by the
ρ production from baryon resonances, or by the ∆ resonance with Iachello-Wan form
factors. The sum of both modifications leads to the overestimation of dielectron yield,
as compared to data.
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4.8.1.3 HSD model

The Hadron-String-Dynamics (HSD) transport approach presented in Ref. [Bra13]
(see Sect. 4.1.2.4) is compared with the HADES data in Fig. 4.36. The blue curve,
labeled in the legend as "All wo Brems" shows the sum of all channels (labeled as "All")
without pp bremsstrahlung, since at this energy no reliable bremsstrahlung calculations
exist. The striking feature of the HSD is much higher yield of ∆ Dalitz decay in
comparison to the GiBUU or SMASH calculations. The HSD approach uses Wolf et
al. [Wol90] parametrization of the ∆ Dalitz decay, which predicts significantly larger
contribution than Krivoruchenko formula [Kri02] (see Fig. 3.6 and Sect. 3.4). The ∆
Dalitz yield compensates smaller ρ contribution, since the enhancement of the ρ−meson
production by accounting for the N(1520) channel is relatively small in the HSD model.
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Although the overall description of the invariant mass spectrum is good, except
the high mass region, the model should be also confronted with the data in different
kinematical variables. Despite a number of adjustments (lowering of η, ω, and ρ dilepton
decay contributions, as described in Ref. [Bra13]), the HSD predicts higher yield in the
transverse momentum pt representation, in all mass bins Me+e− > 0.15 GeV/c2 (see the
PYTHIA model). It is a direct consequence of the large ∆(1232) contribution which
seems not to be supported by the data.

4.8.1.4 UrQMD model

The dilepton invariant mass spectrum in the UrQMD model description ( [End13],
see Sect. 4.5.2.3) for pp at 3.5 GeV within the HADES acceptance is shown in Fig.
4.37. Although the UrQMD contains the excitation of many ∆ and N∗ resonances up
to the mass of 2.25 GeV/c2, only the Dalitz decay of the ∆(1232) isobar is explicitly
included. The ∆ Dalitz decay parametrization is the same as in the HSD, but the
resonance total width uses Bass parametrization [Bas98] (see Eq. 1.8 and Fig. 1.1),
leading to the lower dielectron yield. The e+e− contribution from decays of higher-lying
resonances is included via their ρ decay branches what leads to an overestimation of
the e+e− production from the ρ decays at high masses.
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The UrQMD contribution is clearly underestimated in the intermediate mass bin,
0.15 < Me+e− < 0.47 GeV/c2, which is populated mainly by the pairs originating from
η Dalitz decays. This discrepancy can be also studied e.g. in transverse momentum
representation, where UrQMD is low by a factor of 2 at low pt and a factor of 5 too high
at large pt. This high−pt part contains, in addition, a substantial contribution from the
∆(1232) Dalitz decay.

4.8.1.5 SMASH model

The recently developed hadronic transport model, SMASH (Simulating Many Ac-
celerated Strongly-interacting Hadrons) [Wei16], is a microscopic approach based on the
relativistic Boltzmann equation. It profits from the description of dielectron production
developed in the UrQMD and the GiBUU models. It describes collisions at low and
intermediate beam energies with the aim to provide a standard reference for hadronic
systems with vacuum properties. The collision term is modeled by excitation and decay
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of resonances and is restricted to binary collisions. Two particles collide, if the geo-
metric collision criterion (dtrans <

√
σtot/π), employed also in the UrQMD [Bas98], is

fulfilled. Only binary collisions and two body decays are performed in order to conserve
detailed balance, therefore generic multi-particle decays are implemented with the in-
termediate resonance states (e.g., ω → ρπ → 3π). The model includes well-established
hadronic states listed in the PDG [PDG16] up to a mass of 2.35 GeV, with their corre-
sponding decays and cross sections (for a tabulated list see Ref. [Wei16]). All spectral
functions are described by relativistic Breit-Wigner functions and the hadronic partial
widths are calculated following the framework of Manley and Saleski [Man92]. All res-
onances are either produced by inelastic scattering and absorption, or decays of other
resonances. The dilepton emission in SMASH is calculated by direct or Dalitz decays
of resonances. The directly decaying resonances, like e.g. the ρ meson, include Dalitz
decay contributions in a factorization scheme ∆/N∗ → ρX → e+e−X. The decay width
of vector mesons is calculated under the assumptions of vector meson domiance [Li96].
Pseudoscalar meson Dalitz decays are described in Appendix A.3.1. ∆ Dalitz decay is
described by Krivoruchenko et al. formula [Kri02] (see Sect. 3.4), with the constant
form factor fixed at the photon point, F∆(0) = 3.12. The description of dilepton pro-
duction in elementary collisions is used as a baseline for the binary reactions occurring
in a nucleus-nucleus collision.
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The HADES data in the kinetic energy range of 1− 3.5 GeV/nucleon were system-
atically confronted with the SMASH model [Sta17]. Figure 4.38 shows the dielectron
invariant mass spectrum produced in pp at 3.5 GeV. The good description of the exper-
imental data results from the ρ−meson coupling to baryonic resonances. The significant
contributions below two-pion threshold come from Dalitz decays of the light baryonic
resonances, mainly N(1520), ∆(1620), and ∆(1700).

4.8.2 π0π0π0, ηηη, ρρρ, and ωωω cross sections

Integration of the measured yield, followed by the efficiency correction and model-
dependent extrapolation to the full phase space, allows for the determination of inclusive
cross section of the produced mesons and ∆ resonance. The π0 yield was obtained
by integrating the invariant mass between 0 and 0.15 GeV/c2 (Fig. 4.33). In order
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to minimize the model-dependent correction, the average factor was extracted from
calculations based on URQMD and PYTHIA events. The measured data of π0 Dalitz
decay were corrected for the Dalitz decay branching ratio (see Table A.2 in App. A.3.1).
Finally, the extracted cross section was corrected for the pions originating from the η
and ω decays. The obtained inclusive cross section amounts to σπ0 = 17±2.65±1 (model)
mb, and is depicted as a red open circle in Fig. 4.39, left panel.
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Figure 4.39: Left panel: pion inclusive production cross sections in pp collisions (π+, blue
dots, π−, green dots, π0, red open circle - extracted from the HADES data). The dashed
curves refer to the parametrizations used in the HSD model. Right panel: η−meson
exclusive production cross sections, with the inclusive production cross section obtained
from the HADES data (red open circle). The dashed curve represents the exclusive ppη
production through the N(1535) resonance predicted by the resonance model [Tei97] .

The yield integrated between 0.15 and 0.47 GeV/c2 allows for the extraction of
the η−meson inclusive cross section. The contributions of other sources were fixed
based on the PYTHIA prediction for the ∆ Dalitz decay (see Fig. 4.34, bottom panel)
and based on the known ω cross section. These contributions were subtracted, in-
troducing small systematic error of 3.7%. The model-dependent extrapolation was
performed in the same way as in the π0−meson case. The cross section amounts to
ση = 1.035 ± 0.17 ± 0.105 (model) mb. Figure 4.39 shows the known exclusive η−meson
cross sections, with a red open circle depicting the η inclusive cross section.

The inclusive production cross sections for the vector mesons were obtained from
their multiplicities in full phase space generated by PYTHIA. The HADES spectrome-
ter acceptance for e+e− pairs from vector meson decays is high, εpair ≈ 40% (see App.
C), and does not introduce any bias. The obtained cross sections are σω = 0.273 ± 0.07
mb, and σρ = 0.233 ± 0.06 mb, respectively. Figure 4.40 shows a compilation of mea-
sured production cross sections of vector mesons (ω, ρ) in pp collisions at different
energies [Bal88]. Full dots represent the exclusive production channels, open dots (in-
cluding a red open circle from the HADES data) represent the inclusive production
channels.

The errors quoted for the extracted cross sections, besides the model error (for
π0 and η), are square roots of statistical and systematic errors, added quadratically.
The systematic error includes both efficiency correction and the normalization error.
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Figure 4.40: Cross-sections for the vector mesons ω (left panel) and ρ (right panel), in
pp collisions as a function of

√
s. The data points represent the exclusive (full dots)

and inclusive (open dots) production cross sections, respectively. The cross section
values extracted from the HADES data are depicted in red. The dashed curves refer
to the OBE calculations for the exclusive channels from Ref. [Sib97].

4.9 Exclusive e+e−e+e−e+e− production (pppppp at T = 3.5 GeVT = 3.5 GeVT = 3.5 GeV)

In Section 2.4 a detailed analysis of one-pion exclusive channels ppπ0, npπ+ in
pp collisions at energy 3.5 GeV was presented. ∆ and N∗ resonance production cross
sections were deduced by means of a resonance model [Tei97] and with the empirical
angular distributions derivation. The obtained results can be used for the exclusive
pp → ppe+e− final state. Such a channel selects, from all possible dielectron sources,
only those related to the two-body vector meson decays and the resonance conversions,
R → pe+e−, which modeling, as demonstrated in Sect. 4.8 above, is the subject of
the largest uncertainties. The other dielectron sources dominating the inclusive e+e−

production (see Sect. 4.8), in particular the Dalitz decays of π0/η → γe+e− and ω →
π0e+e−, can be effectively suppressed via kinematical constraints. In the calculations
of the resonance Dalitz decay spectra, a pointlike RNγ∗ coupling (see Refs. [Zét03a,
Zét03b] and App. B.1) will be used, constrained by experimental data on R → Nγ
transitions. The modifications of the respective electromagnetic transition form factors,
due to the resonance-vector meson couplings, will be directly visible in the e+e− invariant
mass distributions. Finally, the exclusive ppe+e− data are compared to the calculations
assuming dominance of the ρ−meson.

4.9.1 ppe+e−ppe+e−ppe+e− final state

For the ppe+e− final state identification, events containing at least one proton track
and one dielectron pair were selected. The electron tracks were identified by means
of the RICH detector, providing also the electron emission angles for matching with
tracks reconstructed in the MDC. In the next step, all pe+e− candidates were identified
in a given event, and the same procedure was applied for the pe+e+ and the pe−e−
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track combinations in order to estimate the combinatorial background (CB). The CB
was calculated using the like-sign pair technique, given as a sum of like-sign pairs in
events with one proton at least, as described in App. C.3.5.2. The main origin of
the combinatorial background is from multi-pion (π0) production followed by a photon
conversion in the detector material.

Figure 4.41 (left panel) shows the missing mass distribution of the pe+e− system
(black squares) together with the CB (a sum of the pe+e+ and pe−e− contributions de-
picted by red points). The blue histogram presents the signal after the CB subtraction.
The CB contribution increases with the missing mass but it is small in the interesting
region around the mass of a missing proton. The right panel of Fig. 4.41 displays the
dielectron invariant mass distributions for events located inside the window centered
around the proton mass (0.8 < Mpe+e−

miss < 1.04 GeV/c2) for: (i) the unlike-sign pairs
(black squares) and (ii) the CB (red dots) for the e+e− pairs with masses Me+e−

inv > 0.14
GeV/c2. The latter condition removes abundant pairs originating from the π0 Dalitz de-
cay and allows for better inspection of high-mass e+e− pairs stemming from the baryon
resonance conversions (R → pe+e−) and from vector mesons (ρ/ω → e+e−) decays.
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Figure 4.41: Left panel: missing mass distribution for the pe+e− system (black squares),
sum of pe+e+ and pe−e− (red dots), accounting for the combinatorial background, and
the signal pe+e− system (blue histogram) for Me+e− > 0.14 GeV/c2. Right panel: dielec-
tron invariant mass for the signal pairs (black squares) and the CB (red dots) for the
events inside the window around the mass of the missing proton (left panel: limited by
the vertical dashed lines, 0.8 <Mpe+e−

miss < 1.04 GeV/c2). The total number of signal pairs
amounts to 750. The number of counts is given per GeV/c2 to account for the variable
bin width used.

The missing mass Mpe+e−

miss distribution, and the e+e− and the pe+e− invariant mass
distributions are used below in comparison to various models. All experimental dis-
tributions are normalized to the measured elastic scattering yields (as explained in
Sect. 2.4), and the simulation results are filtered through the acceptance and efficiency
matrices followed by a smearing with the experimental resolution. The data are com-
pared to simulations assuming the production cross sections σR of baryon resonances
from Table 2.7 (Sect. 2.4.4) and the ω and ρ meson cross sections given in Sect. 2.4.1.
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4.9.2 Pointlike RNγ∗RNγ∗RNγ∗ coupling
To begin with, the assumption of a pointlike RNγ∗ coupling, called QED model

(App. B.1), was made. The missing mass distribution of the pe+e− system with respect
to the beam-target system, after CB subtraction, is shown in Fig. 4.42 (left panel).
The error bars represent statistical (vertical) and the normalization (red horizontal)
errors. The distribution is compared with the result of the simulation (dashed curve)
including the baryon resonances and ρ, ω and η meson sources. The baryon resonances
included in the simulations are indicated by bold symbols in Table 2.7 and grouped into
two contributions, appearing to be of similar size, originating from the ∆(1232) and
the higher mass (∆+,N∗) states. The hatched area uncovers the model uncertainties
related to the errors of resonance and meson production cross sections (see below for
a more detailed discussion).
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Figure 4.42: ppe+e− final state: pe+e− missing mass (left panel), dielectron (middle
panel) and pe+e− (right panel) invariant mass distributions compared to the simulation
result assuming a pointlike RNγ∗ coupling (QED-model). The invariant mass distribu-
tions have been obtained for events inside the indicated window (vertical dashed lines
in the left panel) on the pe+e− missing mass. The hatched area indicates the model
errors (for more details see text). Number of counts is per mass bin width.

In order to account for events with Mpe+e−

miss > Mp the final states p∆+,0π0,+,
pp(n)ηπ0,+ were included in the simulations. Channels with two and more pions were
omitted because of negligible contributions caused by smaller cross section and the small
HADES acceptance for the very forward emitted protons. A very good description of
the pe+e− missing mass distribution could be achieved with all the sources mentioned
above, except for the yield in the proton missing-mass peak itself. It is important to
note that the background under the proton peak, related to final states other than
ppe+e−, is smaller than 6%. In particular, channels including the η → e+e−γ decay are
strongly suppressed.

The middle part of Fig. 4.42 displays the e+e− invariant mass distribution for the
events within the pe+e− missing mass window, shown by the vertical dashed lines in the
left panel. It is compared to the simulation including dielectron sources originating from
the baryon resonance decays and the two-body meson ρ, ω → e+e− decays. A very good
agreement in the vector mass pole is achieved. Since the exclusive production cross
section of vector mesons at this energy are rather well known, the agreement confirms
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that the normalization and the simulations of the HADES acceptance and reconstruc-
tion efficiencies are under control. On the other hand, an excess of the contributions
from the baryon resonances is clearly visible below the vector meson pole. The effect
is obviously related to the apparent excess in the proton missing-mass window. This
is, however, not a surprise because one expects contributions from off-shell couplings
of the resonances to the vector mesons. It is expected that such couplings modify the
respective eTFF which were assumed to be constant in the simulations. Therefore, the
observed enhancement below the vector mass pole can be interpreted as a fingerprint
of the anticipated contribution.

The hatched area presents the model error on the dielectron conversion yields
related to the discussed ambiguities of the resonance assignments. Apart from the reso-
nance production cross sections, the overlapping states differ also in the branching ratios
for the Dalitz decay (see Tables 2.6 in Sect. 2.4.1 and 2.7 in Sect. 2.4.4). However, the
effect on the pair yield (hatched area) turns out to be rather moderate. This is because
the relative variation of the pair yield due to changes in the resonance production cross
sections is compensated by the respective changes in the branching ratios for the dielec-
tron conversion. Consequently, one can conclude that the excess above the calculated
yield cannot be explained by another choice of the resonances in the calculations. The
substantially different shape of the experimental invariant mass distribution, as com-
pared to the simulation, indicates also the importance of the off-shell vector couplings.

This conclusion seems to be corroborated by the comparison of the pe+e− invariant
mass distribution with the simulation, displayed in Fig. 4.42 (right panel), which shows
that the excess is indeed located around the N(1520) resonance known to have a sizable
decay branch to the ρ−meson.

4.9.3 Resonance−ρρρ coupling

The dielectron production through the resonance decay can be factorized as a two
step process, proceeding through the intermediate ρ−meson production, R → pρ →
pe+e−. Such a scheme is used in transport models, the GiBUU [Bus12], the SMASH
[Wei16], and the UrQMD [Bas98], as discussed in Sect. 4.8.1. The results of the
two models were recently published in Ref. [Wei12] (GiBUU) and Refs. [Sch09,End13]
(UrQMD), giving the prediction or comparison to HADES inclusive data [HC12a].

In order to compare the calculations of the contributions to the exclusive ppe+e−

channel the final states including single resonance production are selected. The re-
spective cross sections are given in Table 2.7 and the branching ratios to pρ are listed
in Refs. [Bus12] and [Sch09]. Table 4.2 summarizes these branching ratios (columns
"GiBUU" and "UrQMD") together with more recent results from a multichannel par-
tial wave analysis which are discussed below.

First, the GiBUU events, provided by the authors of Ref. [Bus12], were filtered
through the HADES acceptance and reconstruction efficiency matrices. For the reso-
nance production a non isotropic production was assumed according to the measured
t distributions (see Eq. 2.9) presented in Sect. 2.4.2. The ω meson production is
generated assuming uniform phase space population. The two plots in Fig. 4.43 show
a comparison of the dielectron and the pe+e− invariant mass distributions to the results
of calculations normalized to the same elastic scattering yield. The total yield (solid
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curves) is decomposed into the contributions originating from the ∆(1232) (red curves),
the ω meson (blue curves) and the higher mass resonances (dashed green curve) which
are mainly the decays of N(1520) (38%), N(1720) (22%), ∆(1620) (15%) and ∆(1905)
(6.5%). The measured distributions are well described, except some lacking intensity
at low dielectron and pe+e− invariant masses and some overshoot just below the vector
meson pole. The missing yield might suggest an even stronger contribution of N(1520),
as also indicated by the comparison to pion spectra in Fig. 2.32 (Sect. 2.4.4), where
the calculations based on cross sections used in the GiBUU do not describe the nπ+

invariant mass distributions around 1.5 GeV/c2. On the other hand, the usage of the
cross section for N(1520) and N(1440) obtained from the HADES analysis would over-
estimate the measured dielectron yield almost by a factor 2, if branching ratios from
the GiBUU were used (see Table 4.2).

Resonances GiBUU UrQMD KSU BG CLAS
N(1520) 21 15 20.9(7) 10(3) 13(4)
∆(1620) 29 5 26(2) 12(9) 16
N(1720) 87 73 1.4(5) 10(13) -
∆(1905) 87 80 < 14 42(8) -

Table 4.2: Branching ratios (in percent) for R → Nρ decays applied in GiBUU [Bus12]
(second column) and UrQMD [Sch09] (third column) for the most important dielectron
sources. KSU: BR(Nρ) and its error (in brackets) from multichannel PWA [Shr12], BG:
the difference between the total and the sum of all determined partial branching ratios
(except Nρ) from the Bonn-Gatchina group [Ani12]. CLAS: results from the analysis
[CC12a]. For details, see text.

Since the resonance sources contributing to the dielectron production in UrQMD
[Bas98] are almost the same as in GiBUU [Bus12], one can estimate the corresponding
yields. Indeed, according to Ref. [Sch09], the main contributions to the ρ production
stem from N(1720), N(1520), ∆(1905) and N(1680), respectively. The production
cross sections are given in Table 2.7 and are by a factor 5 − 6 larger than the corre-
sponding cross sections used in the GiBUU code [Bus12]. Consequently, the calculated
total dielectron yield below the vector meson pole, including the ∆(1232) contribution,
is overestimated by a factor of about 3. The authors of Ref. [Sch09] came to similar con-
clusions comparing their calculations to the inclusive dielectron production measured
by DLS [DC98].

The comparison in Fig. 4.43 shows, despite the fact that both models were well
tuned to describe the total pion production cross sections, the predictions for dielectron
production differ substantially. This is not a surprise since, in spite of the large branch-
ing ratios for the Nρ decays assumed in the calculations, dielectrons are very sensitive
to the resonance contributions. In particular, e+e− contributions from Dalitz decays of
higher mass resonances are significant, larger than expected from ∆(1232) Dalitz decay,
and require a good understanding of the R → pe+e− decay mechanism. In the factor-
ization scheme, with off-shell ρ−resonance coupling, the dielectron yield depends on the
R → pρ branching ratios which are taken in both models within the limits given by the
PDG [PDG16]. The extracted parameters are based on various multichannel analyses
of pion induced reactions (mainly two-pion production), suffering from low statistics.
A new comprehensive multichannel analysis of the pion and photon induced reactions,
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Figure 4.43: Experimental dielectron (left panel) and pe+e− (right panel) invariant-mass
distributions compared to simulations based on the input from GiBUU (solid curve).
Contributions from higher mass resonances, ∆(1232) and the ω meson are indicated
separately. Dotted curves show results of calculations using modified cross sections and
R → Nρ branching ratios from Ref. [Ani12]. Number of counts is per mass bin width.
For details, see text.

performed by Shrestha and Manley (KSU) [Shr12] and by the Bonn-Gatchina (BG)
group [Ani12], however, shows smaller branching ratios for the Nρ decays (see Table
4.2). In the BG analysis the dominant channel for the two-pion production is the ∆π
channel. The group does not provide any branching ratios for the pρ decay (π+π− fi-
nal state is not included in the analysis), however, from the provided branching ratios
(mainly πN and ∆π) one can estimate the contribution left for the pρ decay. Table
4.2 shows the respective estimates, which for the most important resonances N(1520),
N(1720) ∆(1620) predict branching ratios of the order of 10% only. The recent results
from CLAS [CC12a] suggest lower values of the branching ratios (see the rightmost
column in Table 2.7, Sect. 2.4.4).

Using the BG branching ratio would lead to an underestimation of the dielectron
yield if the cross sections applied in GiBUU [Bus12] are strictly used. However, if the
higher cross sections for the N(1520), and smaller for the N(1440), N(1535), as ex-
tracted from the HADES simulations, are taken, the calculation explains the measured
ppe+e− yield slightly better, as seen in Fig. 4.43 (model1 - dashed dotted curve). Hence,
it remains still a subject of future work, both on theoretical and experimental sides,
to better constrain the properties of the R → pe+e− decay.
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4.10 Summary for e+e−e+e−e+e− production (pppppp at T = 3.5 GeVT = 3.5 GeVT = 3.5 GeV)

In summary, the inclusive invariant mass, transverse momentum and rapidity dis-
tributions of dielectrons (e+e− pairs) in pp interactions at 3.5 GeV beam kinetic energy
were reported. In the vector meson mass region, a peak corresponding to direct ω
decays is reconstructed with 2% mass resolution. The experimental distributions were
compared to the results from the PYTHIA, GiBUU, HSD, UrQMD, and SMASH event
generators, which use different physics assumptions to generate the parent hadrons
decaying subsequently into e+e− at this projectile energy. The discrepancies in the de-
scriptions, mainly related to the role of the ∆(1232) and higher-lying resonance Dalitz
decays, as well as the couplings to the ρN channel, cannot be fixed by the inclusive data.

The inclusive production cross sections for ω and ρ mesons were determined, for
the first time, from dielectron experimental data, together with the cross sections for
π0 and η mesons. In addition, based on the inclusive e+e− data at 3.5 GeV, the upper
bound for the direct η → e+e− decay was improved by a factor of 6 compared to the
value quoted in Ref. [CWC08], as shown in Appendix A.2.3. Even lower estimate was
obtained from p +Nb data at 3.5 GeV measured with HADES, see Ref. [HC13].

The analysis of the exclusive ppe+e− channel was focused on the dielectron pro-
duction from electromagnetic baryon-resonance Dalitz-decays and two-body ω−meson
decay (ω → e+e−). Clear signals of the ω−meson and the resonance decays have been
established. In particular, a significant yield below the vector meson pole has been mea-
sured and attributed to the Dalitz decays of baryon resonances. Using the resonance
model approach, upper limits for the various resonance contributions to the dielectron
spectrum have been obtained assuming pointlike baryon-virtual-photon couplings. The
calculated dielectron yields cannot reproduce the measured yield and suggest strong
off-shell vector meson couplings, which should influence the respective electromagnetic
Transition Form Factors (eTFF). Upcoming theoretical studies of the eTFF in the time-
like region are eagerly awaited for a more detailed comparison with our data.

An alternative approach for the Dalitz decay of resonances assuming a factoriza-
tion scheme R → pρ → pe+e− was studied following the implementation used in the
GiBUU/SMASH and UrQMD codes. The GiBUU calculations explain the dielectron
and pe+e− invariant mass distributions, except the low-mass region which are due to
a too small N(1520) contribution visible also in the comparison of the model to the
nπ+ invariant mass distribution. On the other hand simulations based on the resonance
cross sections used in UrQMD overestimate dielectron yields by a factor 3. However,
the calculated dielectron yields depend strongly on the R → pρ branching ratios which,
according to new results from multichannel analysis of pion and photon reactions off
the proton, might be smaller than presently used in transport calculations. This con-
clusion is also corroborated by the calculations employing smaller branching ratios and
the cross sections for resonance production derived from the HADES on the ppπ0 and
npπ+ channels. Further theoretical studies, including our results on exclusive ppe+e−,
are needed to better understand the electromagnetic decays of baryon resonances.
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Summary and outlook
The data collected by the HADES Collaboration in elementary collisions allowed

for investigation of hadronic channels. One-pion production reactions in pp at 1.25 GeV
were compared to predictions of a modified OPE resonance model [Tei97] and investi-
gated with the Bonn-Gatchina [Ani06] partial wave analysis method (Sect. 2.1). Ex-
tended studies provided good description of the data and confirmed the dominant con-
tribution of ∆(1232), yet with a sizable impact of N(1440) and non-resonant partial
waves. In quasi-free np collisions at 1.25 GeV, two-pion production was compared with
the various model predictions (Sect. 2.2) with the aim of studying the excitation of
baryonic resonances coupled to the ρ−meson in the isospin I = 1 channel. The model
contributions from the double−∆, N(1400), and ∆(1600) excitation were compared
with experimental data, demonstrating the significance of the double−∆ channel. The
exclusive hadronic channels with one-pion and η−meson were identified with high statis-
tics also in pp collisions at 2.2 GeV (Sect. 2.3) and compared to model predictions based
on a resonance model [Tei97]. The π0 and η exclusive production cross-section were
extracted. Finally, a combined analysis of one-pion exclusive channels ppπ0, pnπ+ in
pp collisions at 3.5 GeV (Sect. 2.4) allowed for the estimation of ∆ and N∗ resonance
production cross sections for resonances with masses below 2 GeV/c2. In addition, the
angular distributions for the production of resonances were determined within the mod-
ified resonance model approach.

Dielectron pairs, reconstructed in inclusive and exclusive channels at various en-
ergies by HADES, delivered unique information on production and decays of meson
and baryon resonances. First, the inclusive e+e− channel was reconstructed for pp and
np collisions at T = 1.25 GeV (Sect. 4.1). In the pp case, the dielectron distribution
was satisfactorily described by the OPE models, with the dominating contribution of
π0 and ∆ Dalitz decays. There was, however, some uncertainty left related to the
possible electromagnetic transition form factors of the ∆ Dalitz decay which has been
resolved by studies of the exclusive state (see below). The quasi-free np collisions were
studied by means of a deuteron beam and a proton spectator measured at the forward
angles. In such a reaction and at this energy, η−meson production was possible, and
np bremsstrahlung played an important role, in contrary to pp channel, where it could
be neglected due to destructive interferences. A significant enhancement in the inter-
mediate dilepton mass region was observed. The contributions predicted by various
models from the electromagnetic decays of hadrons failed to describe the data, as it
was discussed in Sect. 4.1.2. Particularly interesting was comparison of a microscopic
one-boson exchange models, by Kaptari and Kämpfer (Sect. 3.6.1), and Shyam and
Mosel (Sect. 3.6.2). The total e+e− contribution was calculated there as a coherent
sum of amplitudes including contributions of the ∆ resonance and the nucleon-nucleon
bremsstrahlung. Kaptari and Kämpfer prediction overshot both pp and np data above
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the π0 mass. Shyam and Mosel calculation introduced the pion electromagnetic form
factor, which significantly enhanced the dielectron yield for Mee > 0.3 GeV/c2, and
partially explained the enhancement. The pion form factor did not make any difference
in the proton-proton case, because the ∆(1232) dominated over NN bremsstrahlung,
and the model described the data very well.

The most advanced analysis of the exclusive dielectron channels in pp collisions
at 1.25 GeV utilized the results of the partial wave analysis, as discussed above. The
contributing channels, ∆(1232) and N(1440), were extracted, as well as non-resonant
parts. The NN bremsstrahlung contribution was modeled according to Shyam and
Mosel calculation. The study of the π0 Dalitz decay in the ppe+e−γ channel allowed
to verify the ∆ production derived from hadronic channels. All observed spectra, in
particular angular projections in the center-of-mass system, as well as in the helic-
ity and Gottfried-Jackson reference frames, showed a perfect agreement with the data
(Sect. 4.2.1), and with predictions for the decay of pseudoscalar mesons. The consis-
tency of the yield measured in the pp→ ppπ0 channel proved that both the production
description and the dielectron reconstruction are under control. The analysis of the
pp → ppe+e− exclusive channel for the masses above the π0 region allowed to identify,
for the first time, ∆ Dalitz decay (Sect. 4.2.2). This process gives the insight into the
electromagnetic structure of baryonic transitions in the interval of squared momentum
transfer 4m2

e < q2 < (MB −MN)2, where me, MB and MN are the electron, resonance
and nucleon masses, respectively. This kinematical region is complementary to the
spacelike region of negative q2 probed in electron scattering. The ∆ Dalitz differential
decay width was modeled using either constant electromagnetic transition form factors
or a quark constituent model of Ramalho and Peña (App. B). The important role of
the intermediate ρ−meson and the pion cloud contributions were discussed. Finally, the
branching ratio of the ∆ Dalitz decay was extracted, BR(∆ → pe+e−) = (4.19 ± 0.62
syst. incl. model ± 0.34 stat.) × 10−5. This unique result has been included in the 2018
Review of Particle Physics.

The analysis of the npe+e− (pspect.) exclusive channel unraveled the dielectron
excess over yield from the ppe+e− channel, similar to the one observed in the inclusive
channels (Sect. 4.3). The data were confronted with the two models (Sect. 4.3.2).
Shyam and Mosel calculation was based on the Lagrangian approach and provided
a coherent sum of the nucleon and resonant graphs. Bashkanov and Clement calculation
was an incoherent sum of dielectron sources, π0, η, and ∆ Dalitz decays, as well as the
contribution from the ρ−like emission via the double−∆ excitation. In both models the
enhancement at large invariant masses is due to off-shell ρ−meson. A better description
of the experimental distributions was obtained with the model based on Shyam and
Mosel calculations, where the effect is related to the nucleon charge-exchange graphs.
However, this conclusion should be tempered by the fact that the angular distributions
of the final products were not provided by the calculations but based on phenomenology.
On the other hand, the double−∆ excitation process is expected to play a role in the
e+e− production. The contribution of the double−∆ excitation to the e+e− production
can be only supplied if the effect is included as a coherent contribution in a full model
including the nucleon and ∆(1232) graphs.

The kinetic beam energy of 2.2 GeV (Sect. 4.5) allowed for the η−meson produc-
tion, reaching also the pole masses of the ρ and ω. Already at this energy the comparison
with various models unraveled big differences (Sect. 4.5.2). Their nature stems from
the modeling of the ∆(1232) resonance, where different production cross sections were
used (e.g. HSD used higher value than UrQMD). It was demonstrated that the electro-
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magnetic transition form factors used (as shown in the GiBUU calculation) influence
the dielectron yield. On the other hand, higher resonances also contribute via the res-
onance coupling to the ρN . Here, significant differences appeared between the models,
the ρ−meson line shape was very different in the HSD and the GiBUU calculations. It
is worth noticing that the inclusive e+e− channel was compared also with the former
DLS dielectron spectrum measured at slightly lower energy of 2.09 GeV, both experi-
mental results are in a good agreement. The analysis of the ppe+e− exclusive channel
allowed for the reconstruction of π0 and η Dalitz decays (Sect. 4.6). The e+e− invariant
mass distribution was found in accordance with description of the meson electromag-
netic transition form factors (eTFF) given by the Vector Dominance Model. The π0

production cross section was found in agreement with independent measurements while
the η production cross section was found in accordance with the HADES measurement
in the hadronic channel (see discussion above). Further, the baryon resonance contri-
bution was identified but its description was not unique due to unknown structure of
electromagnetic transition form factors, which could not be fixed by the inclusive data.
Although the precision of the HADES data was not sufficient to provide quantitative
constraints to the eTFF models but the analysis confirmed the consistency of the hadro-
nic and leptonic reconstructions and the good control of the corresponding efficiencies.
Another important fingerprint of the dielectron sources are the angular distributions of
e+ or e− in the γ∗ rest frame, which are expected to be proportional to 1+B cos2 α. The
obtained anisotropy coefficients, B = 1.36 ± 0.43 for the π0, and B = 0.98 ± 0.48 for
the η, respectively, are in agreement with the QED prediction for pseudoscalar mesons.

The pp collisions measured at energy T = 3.5 GeV (Sect. 4.8) allowed for the
reconstruction of a peak corresponding to direct ω decays, with 2% mass resolution.
The inclusive production cross sections for ω and ρ mesons were determined from di-
electron experimental data for the first time, together with the cross sections for π0

and η mesons. The inclusive e+e− invariant mass, transverse momentum and rapid-
ity distributions were confronted with various transport model calculations (PYTHIA,
GiBUU, HSD, UrQMD, and SMASH). The comparison unraveled that the knowledge
on ∆ and N∗ resonance production cross sections, and resonance−ρ couplings, are es-
sential for the description of dielectron data. In addition, the upper bound for the direct
η → e+e− decay was defined based on the inclusive e+e− data [PDG14]. The analysis of
the exclusive ppe+e− channel (Sect. 4.9) was focused on the dielectron production from
electromagnetic baryon resonance Dalitz decays and two-body ω−meson decay. A sig-
nificant yield below the vector meson pole was measured and attributed to the Dalitz
decays of baryon resonances. The data were compared to Monte Carlo simulations in the
resonance model approach, with the production cross sections and angular production
of baryon resonances deduced in the channels with one pion, as discussed above. The
upper limits for the various resonance contributions to the dielectron spectrum were ob-
tained assuming pointlike Rγ∗ couplings. The calculated in this ansatz dielectron yields
did not reproduce the measured yield, suggesting the strong off-shell vector meson cou-
plings, influencing the respective electromagnetic transition form factors. Another ap-
proach for the Dalitz decay of resonances was studied within the GiBUU [Bus12,Wei12]
and UrQMD [Bas98] transport models (Sect. 4.9.3), applying a two step factorization
R → pρ→ pe+e− in the dilepton production. It turned out that to describe the data the
resonance cross sections and also the resonance−ρ couplings must be modified in ac-
cordance to the newest multichannel partial wave analyses [Shr12,Ani12], or the CLAS
collaboration [CC12a] results. These results demonstrate high sensitivity of the HADES
data and their importance for the progress in the description of dielectron decays.
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5.0.1 Towards pion beam results
The analysis of NN collisions unraveled that the combined exclusive hadronic and

leptonic channel results are the unique tool to characterize dielectron decays. However,
full isolation of decays from overlaping baryonic resonances has not been yet achieved.
In such a situation, the study of Dalitz decays of broad resonances can be performed
more effectively with pion beams. First, the overlap between the different states is
much reduced, since, in the dominant s channel processes, the resonance is produced
with a given mass M =

√
s. The πN interaction is also better controlled, which makes

the theoretical description of these reactions easier. In addition, results on baryon
resonance excitation from known pion photo- or electroproduction amplitudes can be
directly used. Finally, the detection of the e+e− pair is sufficient to extract the exclusive
π−p → ne+e− channel using the missing neutron mass constraint, while in the case of
the pp→ ppe+e− reaction, the detection of the pe+e− is needed for the exclusive channel
reconstruction, which significantly reduces the count rate due to the reduced acceptance
of the HADES spectrometer. The measurements of hadronic channels will also provide
a strong impact on world database, considering the very poor existing statistics, which
motivates projects of future meson beam facilities [Bri15].

Indeed, all information on the N∗ and ∆ resonances listed in the PDG [PDG16]
originates from the partial wave analysis of πN total, elastic and charge exchange-
scattering data performed by three major groups. Two of them (Karlsruhe-Helsinki
[Höh83] and Carnegie-Mellon-Berkeley [Cut79]) were using only data from experiments
conducted before 1980. The available statistics was 10 kevents for each of the π±p→ π±p
reaction, 1.5 kevents for π−p → π0n, with only 17% of polarized data. The George
Washington University (SAID) is the only group providing the partial wave analysis for
the πN elastic scattering data. They use also the updated database (13 kevents of each
of π±p → π±p, 3 kevents of π−p → π0n and 250 events of π−p → ηn; 25% of polarized
data) [Arn06] and continuously include the new available data sets. For example, π±p
elastic scattering by EPECUR [Ale15], added to the SAID database, demonstrates
how big improvements in statistics are possible with the modern experiments and, in
fact, demanded for the low energy data in order to construct the unbiased partial
wave amplitudes. Another very important channel is ππN , since many well established
resonances couple to it. The most extensive study in the resonance energy region
1.32 − 1.93 GeV was made by Manley et al. [Man84] (with an update [Man92]) within
the isobar approximation. The analysis relied on 241 214 bubble chamber events, they
were divided into 22 energy bins and the simultaneous fit to two-pion channels (no
π−p → π0π0n channel) was performed. The single energy solution was extracted for
each energy bin and every isobar channel, delivering results on N∗ coupling to ρN , ∆π
and σN channels. This complete work had great impact on resonance parametrizations
used in various transport models (GiBUU [Bus12,Wei12] and UrQMD [Bas98]). Since
then new experimental data became only available in the π−p → π0π0n channel from
the Crystal Ball collaboration (349 611 events at the energy rangeW = 1213−1527 GeV
[CBC04]) and in the π−p→ π+π−n channel from the CHAOS collaboration (20 kevents,
low energies, W = 1257 − 1302 GeV, [Ker98]) and from ITEP (40 kevents, high energy
W = 2060 GeV [Ale98]). The database for π+π− in the energy range W = 1.3−2.0 GeV
remains scarce and often lacks differential distributions. Therefore, there is a strong
need for detailed new measurements in all charged channels.
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Pion-induced measurements on proton and nuclei are the part of the HADES sci-
entific program. The GSI pion beam covers the momentum range between 0.6 and 1.7
GeV/c, corresponding to baryon masses of 1.43−2.0 GeV/c2 (see App. C.1.8 for details).
The first experimental run was dedicated to strangeness production in pion-induced re-
actions on light (12C) and heavy (74W) nuclei at a beam momentum of 1.7 GeV/c. The
goal of the second run was to measure the excitation function of two-pion production
in the π−p reaction around the pole of the N(1520)D13 resonance [HC16c]. Data at
four different pion beam momenta (656, 690, 748 and 800 MeV/c) were collected with
polyethylene target (C2H4)n and carbon target, respectively. Events from the reactions
on proton are deduced after subtraction of the reactions on carbon, as described in
App. C.3.6.2. The largest statistics were collected in the case of the momentum of 690
MeV/c, aimed for the first world measurements of e+e−. All spectra were normalized to
the π−p elastic scattering, measured in the same experimental run (see App. C.3.6.2).

Identification of two charged pions (π+π−) or proton and pion (pπ−) in the final
state allows for the reconstruction of the kinematically complete exclusive channels via
cuts in the missing mass distributions around the value of the not detected neutron
or neutral pion. The obtained resolution of the π+π− missing mass peak amounts to
1.5% (σ) for a fixed beam momentum or even less, 0.8 − 1.0%, when using the beam
momentum reconstructed in the pion tracker (see App. C.1.8) for each event. In
both cases the peak position is at the expected value of the neutron mass with an
accuracy of ±1 MeV/c2. The resolution of the pπ− missing mass squared is above
40% (σ) and above 30% for the pion tracker momentum used in the reconstruction.
The peak position is slightly lower (3 − 4 MeV/c2) than 135 MeV/c2 (π0 mass) and
close (1 − 2 MeV/c2 below) in the case of the pion tracker momentum [HC16b]. The
number of reconstructed events in the nπ+π− exclusive channel amounts to more than
400 000 (beam momentum 656 MeV/c), 7 900 000 (690 MeV/c), 815 000 (748 MeV/c)
and 526 000 (800 MeV/c). The number of reconstructed events in the pπ−π0 exclusive
channel amounts to more than 122 000 (beam momentum 656 MeV/c), 3 100 000 (690
MeV/c), 490 000 (748 MeV/c) and 368 000 (800 MeV/c). Those numbers dramatically
improve the world data base of two-pion production in pion-induced experiments in the
energy range around theN(1520) resonance, and allow for investigation of the branching
ratios of this resonance, with a special interest for the ρN decay. This decay channel
has not been reported in the present edition of Particle Data Group [PDG16] at all.
The former estimation, 15−25%, published in Ref. [PDG14], is obsolete, similar to other
results obtained from the analysis of old experimental data. The HADES result would
be a highly anticipated update on the missing N(1520) branching ratio entry.

The two-pion data samples, measured at the four above mentioned pion beam
momenta, have been included into the multichannel partial wave analysis developed by
the Bonn-Gatchina group [Ani05,Sar16]. This analysis includes pion induced reactions
(including Crystal Ball data [CBC04] with neutral two-pion channel) and a large number
of pseudoscalar meson photoproduction data taken with polarized beam and target. The
analysis also includes the information about photoproduction of vector mesons. The
analysis is in progress and will define the channels giving the largest contribution to two-
pion final state: σN(939), ∆(1232)π, ρN , and in particular the N(1520) production
cross section and the N(1520) → ρN decay, establishing the input to dielectron analysis.

In parallel to hadronic channels, the dielectron channel, π−p → ne+e−, has been
measured for the first time. The largest statistics has been collected for the pion beam
momentum 690 MeV/c, resulting in 13100 dielectron pairs in the π0 mass region and
3300 dielectron pairs for M inv

e+e− > 140 MeV/c2, after combinatorial background subtrac-
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tion (see Ref. [HC16a]). The existing microscopic models of dielectron production in
the pion-induced reacions differ by and order of magnitude in the e+e− yield prediction
(see Refs. [Lut02,Lut06,Lut03,Tit01,Käm03,Ris01]), mainly due to strong negative or
positive interferences below or above the ω−meson threshold, and lack of knowledge on
the RNρ coupling. The e+e− exclusive channel will allow for the direct investigation of
the N(1520) Dalitz decay and coupling to the ρN channel. Additional information can
be obtained from the angular distribution of dielectrons originating from the process
πN → Ne+e−. In Ref. [Spe17] the spin density formalism has been used to calculate
the angular distribution of dileptons originating from the decay of a virtual photon. In
particular, the anisotropy coefficients including the N(1520) and N(1440) resonances,
have been computed. The results are essential for the description of the data obtained
by the HADES Collaboration on this reaction. Recently, the partial wave analysis has
been extended to fit directly the dielectron data within the spin density formalism. The
work is in progress and will provide the precise description of the e+e− exclusive channel.

5.0.2 Spectrometer upgrade and future plans

The HADES detector is currently being upgraded. For experiments planned in
2018, a new Electromagnetic Calorimeter (ECAL, see Refs. [Czy11,Svo14,RR14,Svo15])
based on lead glass crystals will replace the PreShower detector (App. C.1.6). The
ECAL will enable measurements of real photons emitted from nuclear matter and neu-
tral meson production via their photonic decays (e.g. π0/η → γγ). It will also improve
the electron-hadron separation of the spectrometer for the purpose of future experi-
ments of HADES at FAIR in elementary and heavy ion collisions in the energy range
of 2 − 10 GeV/nucleon. The reconstruction of neutral mesons is essential also for the
complete partial wave analysis of π−N reactions. In addition, the CsI photocathodes
of the RICH (App. C.1.2) has been replaced by a new photon detector, aiming at a
significant increase of the electron efficiency. In 2019, the existing Forward Wall (App.
C.1.7) will be renewed and complemented by two sets of straw tube modules, taking
advantage of a technology developed for PANDA [Smy17]. Each station will consist in
four double layers of straws with about 1500 channels readout. The first station will
be placed 3.3 m behind the target, and the second one 1.6 m further. Thanks to the
position resolution of 150 µm (σ), angles and vertices of the forward emitted particles
will be reconstructed with a good precision. In addition, two Resistive Plate Counter
(RPC) modules (see App. C.1.5) will be installed behind the second Straw Tube Station
for time-of-flight measurements with a resolution of 70 ps (σ).

The HADES collaboration developed an important program in elementary reac-
tions. By measuring e+e− emission in hadronic reactions, new information about the
timelike structure of baryonic resonances can be accessed. The Dalitz decay branching
ratio of the ∆(1232) has been measured for the first time using proton-proton reac-
tions and, for heavier resonances, the role of far off-shell ρ−mesons as a mediator of
the electromagnetic interaction was clearly revealed in the e+e− invariant mass spectra.
Recently, a new step was taken with an exploratory experiment using the GSI pion
beam in the N(1520) region. It demonstrated the interest of pion beam experiments
to perform direct studies of baryon Dalitz decays and to improve the determination of
hadronic couplings. The experiments with the pion beam as well as the pp collisions
at the highest available energy (T = 4.5 GeV) will be continued in 2018 − 2021, after
the SIS18 upgrade as an injector for the FAIR facility. In addition, a program aiming
at studying electromagnetic transitions between hyperons will be started at the present
SIS18 facility and continued at higher energies at SIS100 (FAIR).
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Appendix A

Mesons and dileptons

The dilepton sources in the 1 − 2 GeV/nucleon energy range have been listed in
Section 3. In this chapter, the role and origin of vector mesons is discussed. A detailed
overview of dilepton production in two- and three-body vector and pseudoscalar meson
decays is given.

A.1 Vector mesons

Vector mesons play a special role in non-perturbative QCD, where they can be
treated as field carriers in the electromagnetic hadron interactions. They are introduced
as gauge bosons, in analogy to a photon in QED, since both carry the same spin and
parity (JP = 1−). The coupling of hadrons to vector mesons is expressed by coupling
constants, there is a constant for each meson decay into virtual photon, and a coupling
constant describing ρN for each baryon. Vector mesons can be described as resonances
in current-current correlation tensor [Shu93,Ste96,Ste97,Gal91,Kap94]:

Πµν(q) = i∫ eiq⋅x ⟨0 ∣T jµ(x)jν(0) ∣ 0 ⟩ d4x, (A.1)

where T is time-ordering operator and jµ is the electromagnetic current. The latter
one can be written in the SU(3) flavor symmetry [Kli96]

jµ = Qψ̄ γµ ψ = 1√
2
Jρµ +

1

3
√

2
Jωµ −

1

3
Jφµ = 1

2
jYµ + V 3

µ , (A.2)

where ψ = (u, d, s) is a vector in flavor space with the subsequent quark wave functions,
γµ denote Dirac matrices, and Q is the quark charge matrix

Q =
⎛
⎜⎜
⎝

2
3

0 0

0 − 1
3

0

0 0 − 1
3

⎞
⎟⎟
⎠
. (A.3)

The isospin current (I = 1) is jYµ and the hypercharge current (I = 0) is V 3
µ = 1

2
ψ̄γµλ

3ψ,
where λ3 is the Gell-Mann matrix. The vector currents Jρ, Jω, and Jφ, describe the
respective quark components of vector mesons:

1√
2
Jρµ = 1

2
(ūγµu − d̄γµd) = V 3

µ ,

Jωµ = 1√
2
(ūγµu − d̄γµd),

Jφµ = s̄γµs.

(A.4)
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The current conservation condition ∂µjµ = 0 leads to qµΠµν = qνΠµν = 0 and hence the
tensor (Eq. A.1) is purely transversal in vacuum:

Πµν(q) = (gµν −
qµqν

q
)Π(q). (A.5)

The scalar dimensionless correlation function,

Π(q) = 1

3
gµνΠµν(q), (A.6)

is proportional to the hadron production cross section in e+e− annihilation collisions
[Kli97] at a given total center-of-mass energy

√
s:

R(s) = σ(e
+e− → hadrons)

σ(e+e− → µ+µ−)
= −12π

s
Im Π(s), (A.7)

where σ(e+e− → µ+µ−) = 4πα/3s and α = e2/4π = 1/137.
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Figure A.1: The ratio σ(e+e− → hadrons)/σ(e+e− → µ+µ−) as a function of the total
center-of-mass energy: (a) the isovector channel with ρ−meson; (b) the isoscalar channel
with ω−meson; (c) φ−meson channel. Solid black curve represents VDM. For energies√
s ≥ 1 GeV a continuum (perturbative QCD limit) for processes e+e− → 4π,6π, is

also shown (dashed line). Experimental data are taken from Refs. [Bar85,Dol91,Bar87,
Iva81,Man82,Cor82].

Resonance R in e+e− → hadrons channel appears as a sharp maximum in Im Π(s)
around s = m2

R. Indeed, the low mass region is dominated by the light vector mesons,
ρ0, ω and φ. They can be distinguished by looking at different hadronic channels, i.e.
e+e− → nπ (n - number of pions produced), carrying the respective isospin quantum
numbers. The G−parity conservation requires that the ρ−meson couples only to chan-
nels with even number of pions (n = 2, 4, 6...) and isospin I = 1 (Fig. A.1a). The
annihilation of e+e− into odd numbers of pions determines the isoscalar current involv-
ing the ω−meson (Fig. A.1b). In the case of φ(1020)−meson, the channel with three
pions is strongly suppressed, BR(φ → ρπ +π+π−π0) = 15.32%, as compared to kaonic
decays, BR(φ → K+K−) = 48.9% and BR(φ → K0

LK
0
S) = 34.2% [PDG16]. This is ex-

plained by the Okubo-Zweig-Iizuka (OZI) rule [Oku63,Zwe66, Iiz66,Oku77]. This rule
says that processes with the disconnected quark lines, when Feynman diagram can be
separated into two diagrams of incoming and outcoming states, are strongly suppressed
as compared to processes with connected quark diagrams. The φ−meson decays then
mainly into OZI-allowed channels such as K+K− and K0

LK
0
S (Fig. A.1c).

Figure A.1 shows also QCD predictions for large momentum transfers
√
s ≥ 1

GeV. In this case the observables do not include initial state hadrons and are inclusive
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with respect to details of the final state. The ratio R(s) can be written as a product of
the electromagnetic currents carried by electrons and quarks, resulting in:

R(s) = REW (1 + δQCD(s)), (A.8)

where REW = Nc ∑qQ2
q is purely electroweak prediction, which at low energies is

dominated by photon exchange (Nc = 3 for light quarks, Qq see Eq. A.3 for quark
charge matrix). The δQCD is correction due to QCD effects:

δQCD(s) =
∞

∑
n=1

cn (αs(s)
π

)
n

+ ..., (A.9)

where αs(s) is the QCD running coupling constant (for a review see Ref. [Deu16]), for
the leading order expansion term c1 = 1 and three lightest quarks, one gets:

R(s) = 3 [( 2
3
)2 + (− 1

3
)2 + (− 1

3
)2] (1 + αs(s)

π
). (A.10)

More terms in the αs series expansion can be found in Ref. [Bai12].
At low energies (

√
s < 1 GeV), the quark electromagnetic current (jµ) is carried

entirely by the vector meson fields (V µ), as postulated in vector meson dominance
[Sak60], in the identity

jµ = ∑
V

m2
V

gV
V µ, (A.11)

where the mV is the vector meson mass (mρ =775.26 MeV/c2, mω = 782.65 MeV/c2,
mφ = 1019.46 MeV/c2, see Ref. [PDG16]). In the framework of the second quantization,
jµ is a creation operator which acts on the QCD vacuum and creates quark-antiquark
pairs, overlapping with the mesonic states:

⟨0 ∣ jµ ∣ V ⟩ = −
m2
V

gV
εµ, (A.12)

where εµ is a polarization vector. The coupling constants gV can be obtained from the
vector meson two-body dilepton decays as will be discussed in App. A.2.

A.2 Two-body decays

The two-body decay width of a particle with a mass M and a four-momentum
P in the laboratory reference frame, decaying into particles of masses m1, m2, and
four-momenta p1, and p2, respectively, is:

dΓ

dΩ
= 1

32π2
∣M∣2 p1

M2
, (A.13)

where M is the transition matrix element, and dΩ = dφ1d(cos θ1) is the solid angle of
particle 1. In the rest frame of the particle of mass M ,

∣p1∣ = ∣p2∣ =
λ1/2(M2,m2

1,m
2
2)

2M
, (A.14)

where
λ(x2, y2, z2) = (x2 − (y + z)2) (x2 − (y − z)2) (A.15)

denotes the Källén function, also known as triangle function [Käl64].
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A.2.1 Two-body decays of vector mesons

The decay of vector mesons is an example of process where the square matrix ele-
ment can be written, with the additional summation over possible photon polarizations,
in the form:

∑
pol

∣M∣2 = e2

k4
Wµν Lµν , (A.16)

where e2 = 4πα, 1/k2 is the photon propagator, Wµν is the hadronic tensor with the
Mhad

µ being the hadronic part of the matrix element

Wµν = ∑
pol

Mhad
µ Mhad∗

ν , (A.17)

and Lµν is the lepton tensor describing the coupling of the virtual photon to the dilepton
pair

Lµν = 4 (kµ1 k
ν
2 + kν1k

µ
2 − (k1 ⋅ k2 +m2

l ) gµν), (A.18)

where k1 and k2 are momenta of the subsequent leptons, each of a mass ml. The had-
ronic tensor describes the internal structure of hadrons, and the coupling to virtual
photon involved in the decay process. Hence, the decay of vector mesons can be factor-
ized as a two-step process [Koc93,Ko96], meson to virtual photon transition followed
by the virtual photon conversion into a dilepton pair:

∣M(V → l+l−)∣2 = ∣M(V → γ∗)∣2 1

M4
∣M(γ∗ → l+l−)∣2 , (A.19)

where M = mγ∗ = ml+l− . The first matrix element can be evaluated with the VMD
ansatz (Eq. A.11) of Sakurai [Sak60,Sak69]:

∣M(V → γ∗)∣2 =
e2m4

V

g2
V

, (A.20)

and the second matrix element describes the conversion of the virtual photon γ∗ into a
dilepton pair, calculated from the lepton tensor [Koc93]:

∣M(γ∗ → l+l−)∣2 = e2

3
(M2 + 2m2

l ). (A.21)

Finally,

∣M(V → l+l−)∣2 =
e4m4

V

3 g2
V M

4
(M2 + 2m2

l ), (A.22)

and from Eq. A.13 one gets

Γ(M) = 4πα2

3 g2
V

m4
V

M3
(1 −

4m2
l

M2
)

1/2

(1 +
2m2

l

M2
). (A.23)

When neglecting the lepton mass (ml ≈ 0), the meson decay width at the vector meson
pole mass (M =mV ) is, as obtained by Sakurai [Sak60]:

Γ(V → l+l−) = 4πα2

3

mV

g2
V

. (A.24)
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vector meson decay channel branching ratio gV

ρ e+e− (4.72 ± 0.05) × 10−5 5.03
ρ µ+µ− (4.55 ± 0.28) × 10−5 4.96
ω e+e− (7.36 ± 0.15) × 10−5 17.05
ω µ+µ− (9.0 ± 3.1) × 10−5 > 10.7
φ e+e− (2.955 ± 0.029) × 10−4 -12.89
φ µ+µ− (2.87 ± 0.19) × 10−4 -14.37

Table A.1: Vector mesons branching ratios at meson poles, for the dielectron and dimuon
decays [PDG16]. The coupling constant gV is deduced from decay widths. Following the
SU(3) symmetry and the universal coupling constant gγ = 5.66, the coupling constants
are: gρ = 5.66, gω = 17.0, gφ = -12.02.

The coupling constants gV and branching ratios for the subsequent vector mesons
(V = ρ, ω, φ) and decays (l+l− = e+e−, µ+µ−) are available from the measured dilepton
experimental decay widths (Table A.1). Their values have similar relations than the
ones deduced from SU(3) flavor symmetry (see coefficients in Eq. A.4), that is, gρ :
gω : gφ = 1 : 3 : −3/

√
2. The decay widths Γ(V → e+e−) are proportional to mV /g2

V

(Eq. A.24). Therefore, in the context of SU(3) symmetry, they can be expressed in
terms of a single vector meson-photon coupling constant, which amounts to gγ = 5.66:

Γ(ρ→ e+e−) ∶ Γ(ω → e+e−) ∶ Γ(φ→ e+e−) =
mρ

2 g2
γ

∶ mω

18 g2
γ

∶
mφ

9 g2
γ

≃ 1 ∶ 9 ∶ 4.5. (A.25)

The experimental decay width follows the SU(3) pattern, with the exception of the
observed gρ = 5.03, instead of the SU(3) value of 5.66. The VDM assumption is that
the same coupling constant describes the meson-hadron interactions linking strong and
electromagnetic interactions by vector meson gauge fields. As an example the ρ−meson
decay into two pions can be analysed, the Γ(ρ → π+π−) decay width is calculated in a
similar way as for dielectron decay. The transition matrix element is (Ref. [Koc93]):

∣M(ρ→ π+π−) ∣2 = g2
ρππ (m2

ρ − 4m2
π), (A.26)

and the decay width is (Refs. [Li95,Kli96]):

Γ(ρ→ π+π−,M =mρ) =
g2
ρππ

48π
mρ (1 − 4m2

π

m2
ρ

)
3/2

. (A.27)

Taking into account values Γ(ρ→ π+π−) = 147.8 MeV, mρ = 775.26 MeV/c2, and mπ± =
139.57 MeV/c2 [PDG16], the coupling constant is gρππ = 5.95, close to the universal
coupling constant gγ , which supports the VDM ansatz. It is important to notice,
however, that the calculations of Γ(V → l+l−) (Eq. A.23) and Γ(ρ → π+π−) (Eq. A.27)
have been made for the meson pole mass. For the broad ρ−meson the decay widths
should be parametrized with the massM , as given in Ref. [Bra99], for the dipion decay:

Γ(ρ→ π+π−,M) = Γ(ρ→ π+π−,mρ)
mρ

M
(M

2 − 4m2
π

m2
ρ − 4m2

π

)
3/2

, (A.28)

or in a simpler form, which reduces to Eq. A.27 when M =mρ,

Γ(ρ→ π+π−,M) =
g2
ρππ

48π

M2

mρ
(1 − 4m2

π

M2
)

3/2

. (A.29)
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On the other hand, the parametrization for the dielectron decay follows Eq. A.23, and
with the lepton mass neglected (ml ≈ 0) is

Γ(ρ→ e+e−,M) = Γ(ρ→ e+e−,mρ) (
mρ

M
)

3

= 4πα2

3g2
ρ

m4
ρ

M3
. (A.30)

In summary, the total decay width of the ρ−meson in vacuum, neglecting for sim-
plicity pion mass, is given by Γtot ≈ Γρ→ππ ∼ M and decreases with the mass. On
the other hand, the partial decay width into dilepton channel, Γρ→e+e− ∼ 1/M3, what
leads to a considerable shift of strength in the dilepton spectrum towards lower masses.
This low mass enhancement can be a signature of vector meson contribution.

A.2.2 Pion annihilation

In heavy-ion collisions, pion annihilation is an important production mechanism
of the ρ−meson, what can be connected with the dilepton observables in a process
π+ + π− → l+ + l−. The matrix element M(π+π− → l+l−) is usually calculated in the
framework of the vector dominance model and the considered process can be understood
as the formation of a vector meson by the annihilation of pions which subsequently,
through the coupling to the photon, decays into a lepton pair (Fig. A.2, left panel).
Hadrons are extended objects and do not couple pointlike to the photon, therefore pions
acquire an electromagnetic form factor (Fig. A.2, right panel). The matrix element for
this process can be written:

M = ūγµυ
e2

q2 ∑
V

1

gV

m2
V

m2
V − q2 − imV ΓV

gV ππ(p1 − p2)µ, (A.31)

where ūγµυ is the leptonic current, q is the four-vector of the virtual photon and 1/q2

is the photon propagator, q2 = M2 is the invariant mass of the lepton pair, p1 and p2

are momenta of the incoming pions. The gV ππ coupling strength in general is not a
constant and can be parametrized as a function of M (for details, see Ref. [Koc93]).
The formula describes the coupling of the photon to the two incoming pions via the
electromagnetic pion form factor, including the vacuum propagator of the intermediate
vector meson. The squared matrix element after the spin summation, for the dominant
ρ−meson, can be decomposed:

∣M(π+π− → l+l−)∣2 = ∣M(π+π− → ρ)∣2 ∣M(ρ→ γ∗)∣2 ∣M(γ∗ → l+l−)∣2

[(m2
ρ −M2)2 +m2

ρΓ
2
ρ]M4

, (A.32)

where the subsequent matrix contributions were given in Eqs. A.26, A.22, A.21, and
Γρ(M) in Eq. A.28. The cross section for a two-body scattering process in the center-
of-mass frame (pi is pion momentum, and pf is lepton momentum, respectively)

dσ

dΩ
∣
CM

= 1

64π2 s

pf

pi
∣M∣2 , (A.33)

allows to calculate the cross section for the process π+π− → e+e−:

σπ+π−→e+e−(M) = 4π

3

α2

M2

√
1 − 4m2

π

M2
∣Fπ(M)∣2 . (A.34)
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The pion form factor is defined in the timelike region (q2 > 0), by the following matrix
element [Kli96]:

⟨ π±(p1) ∣ jµ ∣ π±(p2) ⟩ = ±(p1 − p2)µ Fπ(M), (A.35)

and finally:

∣ Fπ(M) ∣2 =
g2
ρππ

g2
ρ

m4
ρ

(M2 −m2
ρ)2 +m2

ρΓ
2
ρ

. (A.36)
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Figure A.2: Left panel: π+π− annihilation in the vector dominance description. Right
panel: pion form factor ∣Fπ(q) ∣2, in the timelike region, obtained via e+e− annihilation
(Ref. [Kli96]).

One should note that the region accessible in the e+e− annihilation experiments
(see Fig. 3.2) is limited to q2 > 4π2

π and assuming the universal coupling constant
value, gρππ = gρ, there is Fπ(q2 = 0) = 1, restoring the electric charge of pion. The VMD
approach gives quite good description of the electromagnetic pion form factor (Fig. A.2,
right panel, dashed curve), however more precise calculations (Ref. [Kli96], solid curve
in the figure) give the perfect desription of the data. They introduce the gρππ constant,
renormalized with one-pion loop contribution, modifying the pion self-energy, and the
ρ − ω mixing (Ref. [Hat94]), visible at q2 ≈ 0.8 GeV.

A.2.3 Two-body decays of pseudoscalar mesons

π0(q)
Fπ

e+(p′)

γ(k − q)

e−(p)

γ(k)

Figure A.3: The π0 → e+e− process: tri-
angle diagram with a pion π0 → γ∗γ∗

form factor in the vertex.

The pseudoscalar two-body dielectron de-
cays are very rare processes, therefore they
are not important contribution to the dilep-
ton spectrum, but allow to study low-energy
dynamics in the Standard Model and might
be a filtering processes for light dark mat-
ter particles (see Ref. [Dor10]). First predic-
tion for the π0 → e+e− decay was given by
Drell [Dre59], the mean branching ratio given
in Ref. [PDG16] amounts to BR = (6.46 ±
0.33) × 10−8. The decay proceeds in the low-
est order of QED as a one-loop process via the
two-photon intermediate state (Fig. A.3).
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The normalized branching ratio R is:

R(π0 → e+e−) = BR(π0 → e+e−)
BR(π0 → γγ)

= 2 (α
π

me

mπ
)

2
¿
ÁÁÀ1 − 4

m2
e

m2
π

∣A(m2
π)∣

2
, (A.37)

and relative to the π0 → γγ rate, (98.823±0.034)×10−2, it is suppressed by a factor α2,
and further by 2(me/mπ0)2 due to the approximate helicity conservation of the interac-
tion. The amplitude A includes the the form factor Fπγ∗γ∗(k, k−q) (see Fig. A.3) of the
transition π0 → γ∗γ∗ with off-shell photons. In the real photon limit, Fπγ∗γ∗(0,0) = 1,
the amplitude is model independent and leads to the unitary bound for the branching
ratio, BR(π0 → e+e−) ≥ 4.69 × 10−8 [Ber60], neglecting radiative corrections. Vari-
ous models provided the form factor [Ber83b], within the conventional vector-meson
dominance scheme [Ame93], chiral perturbation theory [Sav92,Kne99], and including
radiative corrections [Ber83a,Dor08] and higher-order QED corrections [Hus14]. The
most precise experimental result [Abo07], from the KTeV E799-II experiment at Fer-
milab, is based on 794 π0 → e+e− events using KL → 3π0 as a neutral pion source.
It established BR(π0 → e+e−) = (6.44 ± 0.25stat. ± 0.22syst.) × 10−8, above the unitary
bound from π0 → γγ, and within 2σ discrepancy with theoretical expectations from the
standard model (see Refs. [Dor07,Wei17]).
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Figure A.4: Left panel: Invariant mass distribution of e+e− pairs in the η meson mass
range [HC14a]. The experimental data is fitted with a polynomial distribution (magenta
curve), excluding the area around the η−meson pole mass. The simulated yield of direct
dielectron decays of the η−meson (blue curve) is presented on top of the background
(dashed blue curve). Right panel: Invariant mass distribution of e+e− pairs in the
η−meson mass region reconstructed in the p(3.5 GeV)+Nb reaction [HC14b]. The data
is fitted with a polynomial (dashed black curve) with a simulated signal from the η direct
decay, corresponding to the upper limit of branching ratio 2.5 × 10−6 is superimposed
(solid red and pink curves).

In the case of η → e+e− decay, no direct measurement is present. The calculations
based on chiral perturbation theory and quark models etimate the branching ratio
at BR(η → e+e−) = (5 ± 1) × 10−8 [Sav92, Dor07]. The most recent estimation of the
branching ratio upper limit is derived from the HADES data [HC14a,HC14b]. In Figure
A.4, left panel, the dielectron invariant mass spectrum from p+p→ p+p+e++e−+X at 3.5
GeV (Sect. 4.8) was plotted in the η meson mass range. The polynomial background
was fitted to data, excluding the area around the η meson mass. With the help of
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method describing the treatment of upper confidence limits for null results, given by
Feldman and Cousins (Ref. [Fel98]), an upper limit for the signal counts with a 90%
confidence was estimated. Thus, an upper limit for the branching ratio is 5.6×10−6.
The inclusive η cross section, ση = 1.035 mb, was extracted from the dielectron analysis
(see Sect. 4.8.2), and the hypothetical peak from η → e+e− decay was plotted in Fig.
A.4, left panel. The obtained upper estimation was 6 times lower than the value of
2.7 × 10−5 from Ref. [CWC08].

Even better estimation was derived from the analysis of p +Nb data at 3.5 GeV
measured with HADES. Using the inclusive η cross section from Ref. [HC13], the upper
limit for BR(η → e+e−) was derived to be 2.5×10−6 (Fig. A.4, right panel), with a
confidence level of 90%. A combined results of pp and p+Nb data give the upper limit
of 2.3×10−6. It is the best available estimate (Ref. [PDG16]), however, still significantly
larger than theoretical predictions.

A.3 Three-body decays

The decay of a particle with mass M into three particles with masses m1, m2

and m3 is known as a Dalitz decay [Dal54]. It can be completely described using
two variables and the standard Dalitz plot presents the correlation between invariant
masses squared of two pairs of the decay products, m2

12 versus m2
23. The intermediate

resonance can decay into two particles first, with one decay product being unstable
and immediately decaying into two additional decay products. Similar to the two-body
decays (see Eq. A.13), the differential decay width can be described with the matrix
element:

dΓ

dm12 dΩ∗

1 dΩ3
= 1

(2π)5

1

16M2
∣M ∣2 ∣p∗1∣ ∣p3∣. (A.38)

Let p, p1, p2 and p3, denote the four-momentum vectors of the mother-particle and
the subsequent decay products. m2

12 = (P − p3)2 and p∗1, Ω∗

1 are the four-momentum
and the angle of particle 1 in the reference frame of the two-body system 1 − 2, Ω3 is
the angle of particle 3 in the rest frame of decaying mother-particle. The ∣p∗1∣ and ∣p3∣
are given (similar to Eq. A.14) by:

∣p∗1∣ =
λ1/2(m2

12,m
2
1,m

2
2)

2m12
,

∣p3∣ =
λ1/2(M2,m2

12,m
2
3)

2M
.

(A.39)

If the decaying particle is scalar or averaging over all spin states, followed by the inte-
gration over the angles, leads to the standard form of the Dalitz plot:

dΓ

dm2
12 dm

2
23

= 1

(2π)3

1

32M3
∣M ∣2. (A.40)

The Dalitz plot gives the information on ∣M∣2. If there are no angular correlations
between the decay products then the distribution of these variables is flat. However,
if resonance processes are involved, the Dalitz plot unravels a non-uniform distribution
with a peak around the mass of the resonant decay.
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A.3.1 Dalitz decays of mesons
Dalitz decays A → Bl+l− are often reduced to two-body decays of B and a virtual

photon (with an invariant mass M), decaying into a dilepton pair l+l− (see Fig. A.5a).
The matrix element factorizes in a similar manner as in Eq. A.19:

∣M(A→ Bl+l−)∣2 = ∣M(A→ Bγ∗)∣2 1

M4
∣M(γ∗ → l+l−)∣2 . (A.41)

The differential decay width can be written as the product of the conversion rate of the
virtual gamma [Kro55] and the decay width Γ(A→ Bγ∗),

dΓ(A→ Bl+l−)
dM

= 2α

3πM

√

1 −
4m2

l

M2
(1 +

2m2
l

M2
) Γ(A→ Bγ∗). (A.42)

In the case of the conversion to a dielectron pair, the electron mass is neglected (me ≈ 0)
and the formula reduces to:

dΓ(A→ Be+e−)
dM

= 2α

3πM
Γ(A→ Bγ∗). (A.43)

As shown in Fig. A.5b for π0, η, η′ and ω meson, the dielectron invariant mass for η′ and
ω shows a yield enhancement at larger invariant masses due to the ρ−meson dominance
in the photon−e+e− conversion process. Assuming the isotropic decay A → Bγ∗ in the
A rest frame, the width is given by:

Γ(A→ Bγ∗) =
λ1/2(m2

A,m
2
B ,M

2)
16πm3

A

∣M(A→ Bγ∗)∣2 . (A.44)

The missing element which has to be provided is the matrix elementM(A→ Bγ∗). In
Dalitz decays, the transitions from A to B plus γ∗, are either from a pseudoscalar meson
(π0, η, η′) into a vector particle (photon, where spin-parity relation is 0− → 1− + 1−),
or from a vector meson (ω) into a pseudoscalar meson (1− → 0− + 1−). Therefore the
transition form factor fAB(M2) has the same structure and the matrix element can be
written [Koc93]:

∣M(A→ Bγ∗)∣2 = 1
2
∣fAB(M2)∣2 λ(m2

A,m
2
B ,M

2). (A.45)

Typically, the partial decay width Γ(A→ Bγ∗) is normalized to the decay width of the
real photon (M = q2 = 0):

Γ(A→ Bγ) =
(m2

A −m2
B)3

32πm3
A

∣fAB(0)∣2 , (A.46)

and the normalized form factor is

FAB(M2) = fAB(M2)
fAB(0)

, (A.47)

where FAB(0) = 1. The decay width is then:

Γ(A→ Bγ∗) = Γ(A→ Bγ)
λ3/2(m2

A,m
2
B ,M

2)
(m2

A −m2
B)3

∣FAB(M2)∣2 , (A.48)
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or the differential decay width [Lan85] is:

dΓ(A→ Bl+l−)
dM2 Γ(A→ Bγ)

= α

3π

√

1 −
4m2

l

M2
(1 +

2m2
l

M2
) 1

M2

× [(1 + M2

m2
A −m2

B

)2 −
4m2

AM
2

(m2
A −m2

B)2
]
3/2

× ∣FAB(M2)∣2 =XQED × ∣FAB(M2)∣2 ,

(A.49)

with XQED denoting the single-differential decay width of pure QED. In the case of a
pseudoscalar meson (A) conversion,

A→ B γ∗ → γ l+l−, (A.50)

where B is a photon, the corresponding normalization reaction is A → 2γ, and the
differential decay width turns into:

dΓ(A→ γl+l−)
dM2 Γ(A→ γγ)

= 2α

3π

√

1 −
4m2

l

M2
(1 +

2m2
l

M2
) 1

M2

× [1 − M
2

m2
A

]
3

× ∣FA(M2)∣2 =XQED × ∣FA(M2)∣2 .
(A.51)

It is easy to show that the substitutionmB → 0 in Eq. A.49 leads to the half of Eq. A.51,
due to the two possible choices of the virtual photon in reaction (A.50).

The form factor FAB(M2) describes the hadron-virtual photon transitions, there-
fore it can be obtained from the vector dominance model:

FAB(M2) = {∑
V

gABV
gV

m2
V

m2
V −M2 − iΓVmV

} / {∑
V

gABV
gV

} . (A.52)

where gABV and gV are the coupling constants, which can be fixed from the quark
model or from the experimental data on A→ BV , A→ Bγ and V → l+l− decays. In the
narrow width approximation (neglecting ΓV ) the form factor is:

FAB(M2) = {∑
V

gABV
gV

1

1 −M2/m2
V

} / {∑
V

gABV
gV

} . (A.53)

Additionally, in the small momentum transfers regime, it is convenient to write an
expansion:

FAB(M2) ≈ 1 +M2 dFAB
dM2

∣
M2=0

= 1 +M2 bAB = 1 + 1
6
M2 ⟨ r2

AB ⟩, (A.54)

The mean radius
⟨ r2
AB ⟩1/2 = ( 6

dFAB
dM2

∣
M2=0

)
1/2

(A.55)

is the characteristic size of the transition which reflects the extended hadron structure.
Another useful practice to describe the standard VMD form factor is the monopole
approximation:

FAB(M2) = 1

1 − M2

Λ2

≈ 1 + M
2

Λ2
(A.56)
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Figure A.5: (a) Diagram of the meson dilepton Dalitz decay; (b) Dilepton invariant
mass distribution for various (π0, η, η′, ω) meson Dalitz decays [Ern98].

where Λ is the effective virtual vector meson mass. In the limit of small q2, the slope of
the transition form factor bAB = Λ−2 (see Eq. A.54), is associated with the size of the
pseudoscalar meson, bAB = ⟨ r2

AB ⟩/6 (see Eq. A.55). At M2 = 0 the slope definition is:

bAB = Λ−2 = dFAB
dM2

∣
M2=0

=
∑

V =ρ0,ω,φ

gABV gV
m2
V

∑
V =ρ0,ω,φ

gABV gV
. (A.57)

In experiments, the one-pole approximation is used to extract the slope of the form
factor. There are a few alternative parametrizations used in literature, i.e. for the π0

(Ref. [Lan85]):
Fπ0γ(M2) = 1 + bπ0 M2, (A.58)

however, another popular form of the parametrization is also:

F (x2) = 1 + a x2, (A.59)

where x = M/mπ and a is a dimensionless slope parameter, with a = bπ0 m2
π. By

assuming that the virtual photon (of mass M) is coupled to the π0 through a vector
meson, it is possible to relate the parameter a to the mass mV of the vector meson
involved, a ≃ (mπ/mV )2. Therefore, a should be positive with a value a ≃ 0.031,
corresponding to the ρ mass. In the early 60’s Gell-Mann et al. [GM61,GM62] showed
that the π0 form factor is dominated by the ρ and ω meson resonances and got a
positive a equal to m2

π (m−2
ρ +m−2

ω )/2. The early experiments with bubble chambers
[Sam61, Kob61] reported a negative value of a, a counter experiment [Dev69] found
a compatible with zero. First positive value of a was identified in the analysis of
Fisher et al. [Fis78], where π0 mesons were tagged from K+ → π+π0 decays. The slope
a = 0.10 ± 0.03, or equivalently, bπ0 = 5.5 ± 1.6 GeV−2, with statistical errors only, is
very dependent on the radiative corrections [Mik72], which double the slope value.

One-pole approximation for η−meson (ηγ vertex) and φ−meson (φη or φπ0 vertex)
follows general Eq. A.56. The first experimental fit reported bη = Λ−2

η = -0.7 ± 1.5 (stat.
errors only) GeV−2 [Jan75], for η → γe+e−. The Lepton-G Collaboration provided better
constrained value bη = 1.9 ± 0.4 GeV−2 [Dzh80] (for η → µ+µ−γ), what corresponds to
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Figure A.6: ηγ (left panel) and ωπ0 (right panel) vertex electromagnetic transition
form factor, fitted with one-pole formula (solid curve) and the VDM prediction (dashed
curve). Experimental data are provided by the Lepton-G Collaboration [Dzh80,Dzh81].
Figures adopted from Ref. [Lan85].

Λη = 0.72 ± 0.09 GeV. In the case of the η′ or ω, the square of the form factor is
described by:

∣Fη′γ(M2) ∣2 =
Λ2
η′ (Λ2

η′ + γ2
η′)

(Λ2
η′ −M2)2 + Λ2

η′ γ
2
η′
,

∣Fωπ0(M2) ∣2 = Λ2
ω (Λ2

ω + γ2
ω)

(Λ2
ω −M2)2 + Λ2

ω γ
2
ω

,

(A.60)

where the parameters Λ and γ correspond to the mass and width of the Breit-Wigner
shape for the effective contributing vector meson. The expected values are Λ ≈Mρ ≈ 0.7
GeV, and γ ≈ Γρ ≈ 0.12 GeV. The experiments, performed by the Lepton-G Collabo-
ration, provided fitted values bη′ = Λ−2

η′ = 1.7 ± 0.4 GeV−2 [Dzh79] (for η′ → µ+µ−γ)
and bωπ0 = Λ−2

ω = 2.4 ± 0.2 GeV−2 [Dzh81] (for ω → π0µ+µ−). Writing the mass and
the width, they are Λη′ = 0.77 GeV, γη′ = 0.1 GeV, as well as Λω = 0.65 GeV, and
γω = 0.04 GeV. The successful description within the VMD ansatz was prominent for
π0, η (Fig. A.6, left panel) and η′, but in the case of ω−meson (Fig. A.6, right panel)
the VMD model failed to describe the data. In addition, experimental data lacked the
statistics and were not reliable in terms of systematic error handling.

In the 80’s and 90’s, various collaborations were analyzing data with the focus on
meson form factors. They were investigated not only via meson Dalitz decays, but also
in two-photon transitions, γγ∗ → π0, η, and η′, that means with at least one spacelike
photon with q2 < 0. The TCP/2γ Collaboration [TC90] published Λη = 0.70 ± 0.08
GeV, and Λη′ = 0.85 ± 0.07 GeV, in agreement with [Jan75]. The CELLO Collaboration
[CC91] results were obtained by extrapolation from a measurement in the region of
large spacelike momentum transfer assuming vector dominance. The following values
are then model-dependent and with statistical errors only: Λπ0 = 0.75 ± 0.03 GeV (137
events), Λη = 0.84 ± 0.06 GeV (68 events), Λη′ = 0.79 ± 0.04 GeV (41 events). Pion
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beam experiment at Saclay [Fon89] delivered again negative value of the π0 form factor
slope, a = −0.11 ± 0.03 (stat.) ± 0.08 (syst.). Two more experiments, measured in
the SINDRUM I magnetic spectrometer at the PSI [Dre92], and with pion beam at
TRIUMF facility [Far92], reported a positive π0 form factor slope, however with large
total errors: a = 0.025 ± 0.014 (stat.) ± 0.026 (syst.), and a = 0.026 ± 0.054 (tot.),
respectively. The measurements with the SND detector at VEPP-2M collider delivered
information on conversion decays η → γe+e−, and φ → ηe+e− [Ach01]. The η−meson
transition form factor slope was bηγ = 1.6 ± 2.0 GeV−2, which presents no statistically
significant difference with the negative value from Ref. [Jan75], due to a large error. The
φ−meson transition form factor was measured for the first time, resulting in bφη = 3.8 ±
1.8 GeV−2, based on 213 events. Further, the CMD-2 Collaboration published results
on the same η and φ decays [Akh01], however, no form factor slopes were deduced, but
only branching ratios. They estimated also an upper limit for the φ→ ηµ+µ− decay.
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Figure A.7: Meson transition form factors: (a) ∣Fηγ ∣2 fit compared with experimental
data of NA60 In − In [NC09] (open cyan squares), NA60 p − A [NC16] (open ma-
genta triangles) and A2/MAMI γp [MAM17a] (black triangles) reactions; (b) ∣Fωπ0 ∣2 fit
compared with Lepton-G [Dzh81] (open red squares), NA60 p −A [NC16] (open green
triangles) and A2/MAMI γp [MAM17a] (black triangles) reactions; (c) ∣Fφπ0 ∣2 VMD fit
compared with KLOE-2 e+e− [KC16] (black points) reactions.

The experimental results mentioned above, are confronted in Refs. [Lan85,Ame92]
with the vector meson dominance predictions (see Eq. A.52), which are Λπ0 = Mρ,ω =
0.78 GeV, Λη = 0.75 GeV, and Λη′ = 0.83 GeV. Other calculations discussed in Ref.
[Ame92], i.e. constituent-quark loops [Bra81,Ame83,Pic84] or chiral perturbation the-
ory [Bij88, Bij90, Eck89], are not far from the VMD predictions. The anomalous case
of ω−meson triggered theoretical efforts, via modified ρ propagator [Köp74], effective
Lagrangian approach to vector mesons [Kli96], or an extended VMD model with more
excited ρ states [Fae00]. They improved the ω form factor description, yet overestimat-
ing the form factor at low mass, and underestimating it at high mass, in the region of
the kinematic cut-off. The conclusion was that accurate experiments, with precision
of the order of a few percent, are required in order to decide on the correct scheme
accounting for the ABγ∗ (A pseudoscalar meson, B photon) transition form factors.

In the last decade, the new experimental facilities allowed for a significant improve-
ment on meson Dalitz decay studies. The reaction γp → pη measured with the Crystal
Ball and TAPS photon detector setup at the electron accelerator MAMI-C led to iden-
tification of 1345 events of the η → γe+e− decay [Ber11], hence the slope value bη = 0.192
± 0.35 (stat.) ± 0.13 (syst.) GeV−2, corresponding to Λη = 0.72 ± 0.06 (stat.) ± 0.025
(syst.) GeV. The NA60 experiment at the CERN SPS studied low-mass muon pairs
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in 158 GeV/nucleon In − In collisions, and in proton-nucleus (p −A) collisions using a
400 GeV proton beam and various targets (Be, Cu, In, W , Pb and U). The heavy-ion
data analysis allowed to deduce high precision electromagnetic transition form factors
of the Dalitz decays η → µ+µ−γ and ω → µ+µ−π0 [NC09], that is bη = 1.95 ± 0.17 (stat.)
± 0.05 (syst.) GeV−2 and bω = 2.24 ± 0.06 (stat.) ± 0.02 (syst.) GeV−2. The results
have been improved even more in the recently published p − A analysis [NC16], with
bη = 1.934 ± 0.067 (stat.) ± 0.050 (syst.) GeV−2, and bω = 2.223 ± 0.026 (stat.) ± 0.037
(syst.) GeV−2. The low-mass electron pairs were studied in the γp → π0p, ηp and ωp
reactions, followed by the subsequent meson Dalitz decays, with the A2 tagged-photon
facility at the Mainz Microtron, MAMI. The improved value for the slope parameter
of the π0 electromagnetic transition form factor is a = 0.030 ± 0.010 (tot.) [MAM17b].
Similarly, the fit to 5.4×104 events of the η → e+e−γ resulted in Λ−2

η = 1.97 ± 0.11
(tot.) GeV−2 (Fig. A.7a), and the fit to 1.1×103 events of the ω → e+e−γ resulted in the
value Λ−2

ωπ0 = 1.99 ± 0.2 (tot.) GeV−2 [MAM17a], which is lower than in the di-muon
reconstruction, but closer to the theoretical value (Fig. A.7b). The last improvement
on the π0 electromagnetic transition form factor slope parameter, from 1.11×106 fully
reconstructed K± → π± π0, π0 → e+e−γ Dalitz decay events, was reported by the NA62
Collabration in Ref. [NC17]. The value of a = 0.0368 ± 0.0057 represents the most
precise experimental determination of the π0 slope in the timelike momentum transfer
region (Fig. A.8, left panel). The comparison of results determined experimentally for
40 years is shown in Fig. A.8, right panel.
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Figure A.8: Left panel: the ratio of the reconstructed x distributions (see Eq. A.59)
for the π0 Dalitz decay NA62 data and Monte Carlo simulation, where the MC sample
corresponds to a = 0. The sold red curve represents the form factor Fπ0(x2) with the
slope value a = 3.68×10−2, the dashed curve marks the ±1σ band. Right panel: historical
comparison of the π0 eTFF slope measurements in the timelike momentum transfer
region in various experiments, see text for details. Figures adopted from Ref. [NC17].

The most recent η′ form factor determination (Ref. [BC15]) was based on 1.3×109

J/ψ events collected with the BESIII detector. The η′ are produced via the J/ψ → γη′

decay, followed by the η′ → γe+e− Dalitz decay. The fit, following the parametrization in
Eq. A.60, gives Λη′ = 0.79 ± 0.04 (stat.) ± 0.02 (syst.) GeV, and γη′ = 0.13 ± 0.06 (stat.)
± 0.03 (syst.) GeV. This result improves the precision of the old fit in the timelike region,
given by the Lepton-G Collaboration (Ref. [Dzh80]), and is in agreement with the VMD
model preditions, as well as with the transition form factor slope determination in the
spacelike region from the CELLO Collaboration (Ref. [CC91]).
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meson decay channel branching ratio b = Λ−2 [GeV−2]
π0 γe+e− (1.174 ± 0.035) × 10−2 2.020 ± 0.313 (NA62)
η γe+e− (6.9 ± 0.4) × 10−3 1.97 ± 0.11 (A2/MAMI)
η γµ+µ− (3.1 ± 0.4) × 10−4 1.934 ± 0.084 (NA60)
η′ γe+e− (4.73 ± 0.30) × 10−4 1.60 ± 0.19 (BESIII)
η′ γµ+µ− (1.09 ± 0.27) × 10−4 1.7 ± 0.4 (Lepton-G)
ω π0e+e− (7.7 ± 0.6) × 10−4 1.99 ± 0.2 (A2/MAMI)
ω π0µ+µ− (1.34 ± 0.18) × 10−4 2.223 ± 0.045 (NA60)
φ π0e+e− (1.33 ± 0.1) × 10−5 2.02 ± 0.11 (KLOE-2)
φ ηe+e− (1.08 ± 0.04) × 10−4 1.28 ± 0.10 (KLOE-2)

Table A.2: Meson Dalitz decays with dilepton pairs in the final state: branching ratio
(the mean values from Ref. [PDG16]), and transition form factor slope b = dF /dM2

(M2 = 0), in the one-pole approximation b = Λ−2 [GeV−2]. The best experimental value
of the slope b (the source quoted in brackets).

The KLOE-2 Collaboration aimed at production of φ−meson based on e+e− colli-
sions at

√
s ∼ mφ collected at the DAΦNE collider. Based on 29625 φ → ηe+e− events,

with φ identified from the φ → 3π0 decays, the form factor slope bφη = 1.28 ± 0.1
GeV−2 was determined [KC15]. This value is very different from the SND old result
(Ref. [Ach01]), but close to the VMD prediction, which is bφη = 1 GeV−2 [Fae00]. Fur-
ther, the sample of 9500 φ → π0e+e− events allowed to determine, for the first time,
the Fφπ0(M2) transition form factor (Fig. A.7c), and the one-pole parametrization fit
resulted in a slope bφπ0 = 2.02 ± 0.11 GeV−2 [KC16].

The summary of the mean values of the A → B l+l− Dalitz decay branching ratios
for mesons (A = π0, η, η′, ω, φ), together with transition form factors (the slope pa-
rameter b), is given in Table A.2. The VMD-inspired one-pole approximation fits to
experimental data (Eqs. A.58−A.60) give good description for π0, η, and η′ mesons, but
fail in the case of ω and φmesons. High-precision data triggered also effort on theoretical
side. They are VMD-inspired extensions [Lic11], leading-order chiral Lagrangian calcu-
lations, including light vector mesons and Goldstone bosons [Ter10a,Ter10b,Ter12], dis-
persion theory [Sch12,Dan15], extended vector meson dominance model [She03,Fuc05],
or tri-mixing pattern in the light-cone constituent quark model [Qia10]. All theoretical
predictions either improve the VMD description (for the π0, η or η′), or just show good
agreement with the data for the ω up to the mass 0.55 GeV/c2, but still fail to describe
the data points close to the upper kinematical limit, mω −mπ0 . The situation with
φ−meson is ambiguous. In the case of φ → ηe+e−, the one-pole fit is not very far from
the VMD estimation, but models i.e. chiral Lagrangian calculations, clearly overshoot
the experimental transition form factor (see Ref. [KC15]). In the case of φ → π0e+e−,
the dispersive analysis description starts to fail at masses above 0.3 GeV/c2, the VMD
description is lying far lower than the experimental data. However, the chiral effec-
tive field theory with resonances, with parameters extracted from a fit of the NA60
data [Iva12], follows the data points quite well (see Ref. [KC16]). Despite the tremen-
dous experimental progress, many rare meson Dalitz decays are still not measured or
poorly known, i.e. η′ → ωe+e−, ω → ηl+l−, φ → ηµ+µ−, or φ → η′e+e−. On theoretical
side, the ω form factor steep rise at the kinematical boundaries, remains unexplained.
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Baryon resonance models

B.1 Zétényi and Wolf model

The model by Zétényi and Wolf [Zét03a,Zét03b] assumes a standard set of dilepton
sources in pp collisions: two-body direct decays of ρ0, ω, φ vector mesons and Dalitz
decays of mesons π0 → γe+e−, η → γe+e−, ω → π0e+e−. In addition it includes the Dalitz
decays of resonances with spins J ≤ 5/2 and masses below 2.25 GeV/c2. The resonance
differential width of Dalitz decays is treated via the relation to the resonance virtual
photon decay (Eq. 3.2), and further:

ΓR→Nγ∗(M) =
√
λ(m2

R,m
2,M2)

16πm3
R

1

Npol,R
∑
pol

⟨Nγ∗∣T ∣R⟩, (B.1)

wheremR,m are masses of a resonance and a nucleon, Npol,R is a number of polarisation
states of a resonance R and a summation runs over all physical polarisation states of
the incoming and outgoing particles. The kinematical factor λ is defined in Eq. A.15.
In the limit m → 0, Eq. B.1 results in the radiative decay width. The virtual photon
decay matrix element is related to the electromagnetic current matrix

⟨Nγ∗∣T ∣R⟩ = −εµ⟨N ∣Jµ∣R⟩, (B.2)

where εµ is the photon polarisation vector. Thus, in order to calculate the electromag-
netic decays of resonances, the matrix elements of the electromagnetic current operator
Jµ between the nucleon N and the resonance R has to be calculated. For the spins
J ≥ 3/2

⟨N ∣Jµ∣R⟩ = ū(p, λ)Γµ,ρ1...ρnu
ρ1...ρn(pR, λR), (B.3)

where pR, λR, p, λ are four-momentum and helicity of a resonance and nucleon, respec-
tively. uρ1...ρn(pR, λR) are momentum-space wave functions, which are spinor-tensor
amplitudes fulfilling the generalized Rarita-Schwinger relations [Lov97]. Taking into
account the conservation of the electric charge

qµ⟨N ∣Jµ∣R⟩ = 0, (B.4)

and Dirac equations

ū(p, λ)(γµpµ −m) = 0,

(γµRpRµ −m)uρ1...ρn(pR, λR) = 0,
(B.5)
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the number of parameters in Γµ,ρ1...ρn is limited to three independent terms. They
include three form factors fi(q2)(i = 1,2,3), to be determined from the experimental
data, but their expression also depend on the resonance normality (see Sect. 3.4). In
the case of spin J = 1/2, the matrix element (Eq. B.3) contains two independent terms
of Γµ, hence two form factors. The Zétényi and Wolf model introduces the contribution
of e+e− pairs from the direct two-body vector meson decays separately and the Vector
Meson Dominance model (see Sect. 3.3) is not used in the resonance Dalitz decay
description. As a consequence, form factors fi(q2) are kept constant and reduce to
coupling constants, g1, g2 for J = 1/2, and g1, g2, and g3 for J ≥ 3/2. However, the
terms containing g2 (for J = 1/2) and g3 (for J ≥ 3/2) have no singularities at q2 = 0
and give zero contribution in Eq. B.1. Therefore, these coupling constants cannot be
fixed by real photon amplitudes. The remaining terms with g1 (for J = 1/2) and g1, and
g2 (for J ≥ 3/2) give similar virtual photon mass dependence except for the resonances
of spin-parity 3/2+ and 5/2−, and for masses significantly larger than the Breit-Wigner
mass. Zétényi and Wolf conclude, that in practical applications e.g. transport models,
the masses are not far from the Breit-Wigner mass and thus the description with either
g1 or g2, or a linear combination of both, does not generate a big difference in the
dilepton yield. The largest uncertainty derives from the normalization of the coupling
constants to the poorly known real photon amplitudes, in particular in the case of
neutron excitations. The final conclusion is that only one coupling constant g1 is used,
to describe with a reasonable precision, the dilepton invariant mass distribution in the
Dalitz decay width of baryon resonances. The value of this coupling constant is fixed
to reproduce the radiative decay width.

Figure B.1: Zétényi and Wolf model:
differential width dΓ/dM2 of the Dalitz
decay of baryon resonances with differ-
ent spins ≤ 5/2 and parities. Calcula-
tion done for the selected resonance mass
1.5 GeV and photonic width 0.6 MeV
[Zét03a].

The model prediction is demonstrated in Fig. B.1 for a hypothetical resonance
with the mass mR = 1.5 GeV/c2, the real photon decay width ΓR→Nγ = 0.006 GeV
and for various spin-parities. There is a striking difference at the high invariant mass:
the largest contributions are for spin-parity 1/2+ and 3/2− resonances, the smallest
contribution, lower by up to two orders of magnitude, is for 5/2− resonance. The model
provides the coupling constants gpγ1 or gnγ1 and thus the Dalitz decay widths for the
following resonances: N(1440), N(1710), ∆(1910) (JP = 1/2+), N(1535), N(1650),
∆(1620) (JP = 1/2−), ∆(1232), N(1720), ∆(1600) (JP = 3/2+), N(1520), N(1700),
∆(1700) (JP = 3/2−), N(1680), ∆(1905) (JP = 5/2+), N(1675), ∆(1930) (JP = 5/2−).
The Dalitz decays of baryon resonances provide small contribution to e+e− invariant
mass spectrum since they are decoupled from the vector meson contributions. The
model can be referred as a model describing the baryon resonance with a pointlike
constant form factor fixed consistently with the radiative decay width (QED model).
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B.2 Krivoruchenko and Martemyanov model

The QED-based model by Krivoruchenko and Martemyanov [Kri01, Kri02] pro-
vides phenomenological, kinematically complete, relativistic expressions for the dilep-
ton decay rates of nucleon resonances with arbitrary spin and parity with masses below
2 GeV/c2. Similar to other models, in order to calculate the dilepton decays, one needs
to know the electromagnetic transition form factors of nucleon resonances in the time-
like region [Fae00]. The standard VDM [Sak60] with the ground-state ρ−, ω−, and
φ−mesons predicts monopole form factors. The form factor pole corresponds to the
masses of the ρ− and ω−mesons with the asymptotic behaviour ∼ 1/q2 at q →∞. It de-
scribes well the electromagnetic pion form factor which, according to the quark counting
rules [Bro73, Bro75], decreases with the Fπ(q2) ∼ 1/q2. However, the quark counting
rules for the Sachs form factors [Ros50, Hof58] predict GE(q2) ∼ GM(q2) ∼ 1/q4 at
q → ∞. Moreover, the model should describe both radiative RNγ and mesonic RNV
decays but a normalization to the radiative branchings (RNγ) strongly underestimates
the mesonic branchings (RNV ) [Fri97,Fae03]. The problem is observed for almost all
N∗ and ∆ resonances if compared to the existing Nρ and Nγ data. The two indepen-
dent couplings for the photons and vector mesons, as in the VDM model by Kroll et.
al. [Kro67], can be used in order to resolve this discrepancy (see discussion in [Fri97]),
however the form factor asymptotic behaviour is not in agreement with quark counting
rules in such a case.

Figure B.2: Extended VMD model graph. The min-
imum number of the vector mesons required for each
isotopic channel to obtain the correct asymptotic be-
haviour of radiative and mesonic decays is 3+l = 3+J− 1

2
(for J−spin resonance). The resonances considered in
the model have spins 1

2
≤ J ≤ 7

2
therefore six interme-

diate mesons are required at maximum. The selected
masses are: 0.769, 1.250, 1.450, 1.720, 2.150 and 2.350
GeV/c2, where the mass 1.250 GeV/c2 seemed to be a
candidate for a vector meson on that time and the mass
2.350 GeV/c2 is for an upper estimate.

The solution proposed by Krivoruchenko and Martemyanov includes the excited
states in the electromagnetic current of the vector mesons (extended Vector Dominance
Model, eVDM) and thus solves the problem of the vector meson to dilepton decay width
ratios. The stronger suppression of the transition form factors at high q2 is achieved
by the destructive interference of the higher lying ρ− and ω− vector mesons away from
the ρ and ω poles (φ mesons are decoupled from the model due to the OZI rule) with
the ground state vector mesons. The basic problem of the model is the lack of the
data on resonance couplings and on form factors. For example, the couplings of the
ρ′ = ρ(1450) and ρ′′ = ρ(1700) mesons to resonances or photon are not established.
Therefore the unknown factors are fixed by fitting the radiative decay widths. The
model uses also multi-channel πN partial wave analysis of Manley and Saleski [Man92],
and Longacre et al. [Lon75,Lon77], as well as other model predictions [Kon82,Cap94]
in order to constrain the total vector meson decay widths. Whenever it is possible, the
parameters of the extended VMD model are determined from the fit to the photo- and
electroproduction data measured in the spacelike region [Bar68,Bät72, Ste75] and the
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vector-meson decay amplitudes of the nucleon resonances. On the time of the model fit,
only the ∆ resonance was well constrained and in many cases merely a single data point
or no data were available at all. At present, the updated version of the eVMD model
fit is expected, including a wealth of new electroexcitation data [CC09b,Azn12,Azn13]
and RNV couplings based on the modern partial wave analysis [Ani12].

B.3 Iachello and Wan model

Semi-phenomenological two-component model, proposed by Iachello, Jackson and
Lande in 1973 [Iac73] and developed further by Wan [Wan05,Wan06] is the first model
of elastic and transition form factor which was analytically extended to the timelike
region. The model provides a unitary description of the electromagnetic amplitudes on
all possible transitions with final N or ∆ resonance R up to 2 GeV. It parametrizes the
electromagnetic transition of baryons with direct couplings to the photon and couplings
to the photon mediated by vector mesons (Fig. B.3, left panel). The generic structure
of the form factor can be written:

F (Q2) = g(Q2)[α0 +∑
i

αi
m2
i

m2
i +Q2

], (B.6)

where g(Q2) is the intrinsic form factor and mi’s and αi’s are the masses and cou-
pling constants of the vector mesons. The advantage of this model is that all form
factors, expressed via helicity amplitudes A1/2(Q2), A3/2(Q2) and S1/2(Q2)), are ob-
tained simultaneously in a unified algebraic model and very few parameters are needed
to produce the results on a large set of resonances. In the case of proton and nucleon,
the elastic form factors (magnetic GMp , GMn and electric GEp , GEn) perfectly describe
the data both in spacelike and timelike calculations [Iac04] except neutron spacelike
data above Q2 = 1 (GeV/c)2.

Figure B.3: Iachello-Wan two component model. Left panel: the direct coupling to the
photon (left graph) and the coupling mediated by vector mesons (right graph). Right
panel: G∗

M form factor fitted to the data (for the list see Ref. [Wan06]) and normalized
to the dipole form factor GD(Q2) = 1/(1 +Q2/0.71)2.

In the case of N − ∆ transition, the parameters are fixed from the elastic form
factor parametrization and from fitting to the measured N −∆ transition magnetic form
factor in the spacelike region (Fig. B.3, right panel). The analytical continuation of the
N −∆ transition form factor into the timelike region is not trivial. It requires a complex
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parametrization both in the intrinsic form factor g(Q2) and the vector meson propagator
m2
ρ/(m2

ρ +Q2), the widths of the ω and φ mesons are small and can be neglected. The
form factor g(q2) (where q2 = −Q2) introduces a phase θ in the spacelike region:

g(q2) = 1

(1 − γeiθq2)2
, (B.7)

but uses the parametrization γ = 0.25 (GeV/c)−2 as in the timelike region. The vector
meson propagator, in the limit q2 ≫ 4m2

π ≃ 0.08 GeV2 is:

Fρ(q2) =
m2
ρ

m2
ρ − q2 − 1

π

Γ0
ρ

mπ
q2 log q2

m2
π
+ i Γ0

ρ

mπ
q2
, (B.8)

where Γ0
ρ = 0.149 GeV in [Wan06] or Γ0

ρ = 0.112 GeV [Doh10] depends on the model.

Figure B.4: Left panel: Magnetic N −∆ transition form factor in the Iachello and Wan
two-component quark model. Right panel: The distribution dΓ/dmee as a function of
mee for three ∆ masses: m∆ = 1.232 GeV (solid green curve), m∆ = 1.5 GeV (long-
dashed green curve), m∆ = 1.8 GeV (short-dashed green curve) according to Eq. 3.9
with a constant GM form factor, compared to the contribution calculated with the
two-component quark model (upper set of black curves) [Doh10].

The resulting distribution of form factor values unravels a prominent peak centred
around mee ∼ 0.77 ⋅mρ (Fig. B.4, left panel), hence the generated pole of the ρ−meson
is at much lower value than expected (the mass mρ = 0.765 GeV/c2 was used in the
calculation). Finally, the distribution dΓ/dmee for three selected ∆ masses exhibits a
rising enhancement of the decay width for larger ∆ masses (Fig. B.4, right panel). The
direct coupling to the quark core in the model is negligible up to q2 = 5 (GeV/c)2 and
the dominant contribution (99.7%) to the GM form factor is estimated by the VDM in
terms of the dressed ρ−meson propagator, being dominant for the range of q2 involved
in the Dalitz decays.

– 147 –



Appendix B. Baryon resonance models

B.4 Ramalho and Peña model

The most recent and continuously developed covariant constituent quark model
by Ramalho and Peña [Ram08a,Ram09b,Ram09a] is focused on the description of the
form factors of nucleons and baryon resonances (in particular ∆(1232) [Ram12,Ram16],
N(1520) [Ram17], and N(1440), N(1535), ∆(1620), N(1650) [Ram18]) both in the
timelike and the spacelike region, hence it can be very useful for the experimental data
interpretation. The model has two ingredients, the contribution from the quark core
and the contribution of the pion cloud. The quark core component [Gro69, Gro08]
describes the ∆ resonance as a quark-diquark structure. The dominant S−wave orbital
state is responsible for the magnetic dipole transition form factor G∗

M . The electric
(G∗

E) and Coulomb (G∗

C) quadrupole form factors proceed through the transition to
a D state of the ∆ corresponding to a three-quark core spin of 3/2 (D3 state) and
1/2 (D1 state), respectively [Ram08b]. D−state contributions improve the description
of the experimental electroproduction data for large four-momentum transfers Q2 ≤ 6
GeV2 (q2 = −Q2 is the squared transferred momentum) collected at Jlab/CLAS [Fro99,
CC06], MAMI [Bec00, Pos01a, Els06, Sta06, Spa07], LEGS [Bla97, Bla01], and MIT-
Bates [Mer01,Spa05] but their contributions are in general small.

(a)                            (b) Figure B.5: Pion cloud contributions
for the ∆→ γ∗N eTFFs.

Pure quark models can give a complete description only at higher Q2 where con-
tributions from the pion cloud are negligible. At small four-momentum transfers, the
pion cloud needs to be introduced and parametrized. The model extrapolation to the
timelike region needs the replacement of the physical ∆ mass by an arbitrary W mass
and introduction of a phase. The decomposition of the magnetic form factor can be
written

G∗

M(Q2,W ) = GBM(Q2,W ) +GπM(Q2,W ), (B.9)

where GBM(Q2,W ) is the quark core bare form factor and GπM(Q2,W ) is the contri-
bution from any diagram involving a photon and pion loops (Fig. B.5). In order to
understand the model features in the timelike region it is worth studying the subsequent
components. The bare quark core

GBM(Q2,W ) = 8

3
√

3

M

M +W
[f1±(Q2) + W +M

2M
f2±(Q2)] ×

∫
d3k

(2π)2 ⋅ 2
√
m2
D + k2

Ψ∆(P+, k)ΨN(P−, k),
(B.10)

where M - nucleon mass, W - arbitrary resonance mass, Ψ∆ and ΨN - ∆ and nu-
cleon radial wave functions depending on the ∆ (P+), nucleon (P−) and intermediate
diquark (k) momenta (their detailed form can be found in Ref. [Ram08a]), mD - di-
quark mass. The electromagnetic photon-quark coupling is represented in terms of
Dirac and Pauli quark form factors f1±, f2±. They are parametrized by means of a vec-
tor meson dominance (VMD) mechanism, therefore are composed of two components:
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m2
v±/(m2

v± − q2) and M2
h/(M2

h − q2), where mv+ = mω (ω mass) is used for isoscalar
functions and mv− =mρ (ρ mass) is used for isovector functions. The pole at Mh = 2M
simulates the meson resonance of a large mass (larger than ρ) in order to describe short
range interactions. This kind of parametrisation is very useful for fitting the model
to the lattice QCD, using the ρ and nucleon mass values in the lattice QCD regime
(see Refs. [Ale08,Ale11,Ale13]). In particular, for pion masses mπ> 400 MeV/c2, the
pion cloud contributions are suppressed. The valence quark model is also in agreement
with the estimation of the bare part of the dynamical model from the EBAC (Excited
Baryon Analysis Center, [Sat96,Sat01,JD07]). For the extension to the timelike region,
it has to be considered that two pole structures naturally appear, at q2 equal to either
m2
ρ or M2

h . Since the kinematical upper limit is q2 ≤ (W −M)2, only the case q2 = m2
ρ

has to be considered by introducing the finite Γρ width in the ρ propagator:

m2
v

m2
v − q2

Ð→ m2
v

m2
v − q2 − imρΓρ

, (B.11)

and this way an imaginary part appears in the bare quark contribution. In the transition
γ∗N →∆ the isovector components contribute only (functions fi− in Eq. B.10), therefore
only the ρ meson pole is taken into account. The Γ0

ρ = Γρ(m2
ρ) = 0.149 GeV [PDG16]

width is known for the physical decay of the ρ→ ππ, and for the timelike region q2 ≥ 0,
a parametrization is used in the form:

Γρ(q2) = Γ0
ρ

m2
ρ

q2
( q

2 − 4m2
π

m2
ρ − 4m2

π

)
3/2

θ(q2 − 4m2
π), (B.12)

where mπ is the pion mass and the cut below the 2π creation threshold q2 ≤ 4m2
π is

enforced by the Heaviside step function θ(x). The imaginary contribution is present only
for q2 > 4m2

π ≈ 0.076 GeV2. Since the nucleon and resonance radial wave functions in
Eq. B.10 are normalized, it can be obtained that GBM(0,M∆) ≤ 2.07 (see Ref. [Ram08a]),
but the experimental value of the magnetic form factor G∗

M(0,M∆) ≈ 3.0. The covariant
model without pion cloud explains only 55% of G∗

M at q2 = 0.

Figure B.6: Pion form factor ∣Fπ(q2)∣2 fit
to the data, as listed in Ref. [Ram16]. The
fit was restricted to q2 < 0.6 GeV2 and de-
scribes both the timelike and the space-
like data. The slight discrepancy for the
q2 values above the peak origins from the
interference effects with the ω pole.

The comparison with data requires definition of the second term in Eq. B.9. The
simplest parametrization of the pion cloud is double dipole approximation:

GπM
3GD

= λπ ( Λ2
π

Λ2
π +Q2

)
2

, (B.13)
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where the dipole factor is GD = 1/(1+Q2/0.71)2 and λπ (fraction of pion cloud at Q2 =
0) and Λ2

π (falloff of the pion cloud) are adjustable parameters. The model dependence
leads to unambiguities (e.g. due to nucleon wave functions) in GBM and GπM values.

In the most recent version [Ram16] the contribution of the pion cloud to GM is
parametrized with two terms: a photon directly coupling to a pion (Fig. B.5a) or cou-
pling to intermediate baryon states (Fig. B.5b). Therefore, the pion cloud contribution
is described with the more advanced formula:

GπM = 3
λπ
2

[Fπ(q2)( Λ2
π

Λ2
π − q2

)
2

+ G̃2
D(q2)]. (B.14)

Both terms (a) and (b) give a similar contribution [Ram13] and in the limit q2 = 0 one
has GπM(0) = 3λπ, therefore since G∗

M(0) ≃ 3 it is clear that λπ defines the fraction of
the pion cloud contribution to G∗

M(0). Λπ is the cutoff of the pion cloud component
(Fig. B.5a) form factor contribution.

Figure B.7: Left panel: Magnetic form factor ∣G∗

M(q2)∣ for selected discrete resonance
masses W = 1.232 GeV, W = 1.6 GeV, W = 1.8 GeV and W = 2.2 GeV. Thick curves
represent total model contribution, thin curves indicate the quark core contribution.
Right panel: The distribution dΓe+e−N(q,W )/dq for three masses M∆: W = 1.232
GeV, W = 1.6 GeV, W = 2.2 GeV (red curves) compared to the results of Eq. 3.9 with
a constant GM form factor.

The parametrization of the pion form factor Fπ(q2) is based on the Iachello-Wan
expression for Fρ (see Eq. B.8):

Fπ(q2) = α

α − q2 − 1
π
βq2 log q2

m2
π
+ iβq2

. (B.15)

By substitutions α → m2
ρ and β → Γ0

ρ

mπ
the Eq. B.8 is fully recovered. The parameters

α = 0.696 GeV2 and β = 0.178 are obtained by the fit to the high precision data as in
Fig. B.6. The obtained α value is larger than m2

ρ ≃ 0.6 GeV2 but it is compensated by
another logarithmic term in the denominator of Eq. B.15, which is dependent on the β
parameter, and the pole correctly appears at the ρ mass. In the Iachello-Wan model
β ≃ 1.1 therefore the resulting maximum was shifted to q2 ≃ 0.3 GeV2, not in agreement
with the data.

The second term in Eq. B.14, the dipole form factor, is extended to the timelike
region in the following way:
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G̃2
D(q2) =

Λ4
D

(Λ2
D − q2)2 +Λ2

DΓ2
D

, (B.16)

where ΓD(q2) is defined:

ΓD(q2) = 4Γ0
D( q2

q2 +Λ2
D

)
2

θ(q2) (B.17)

in order to avoid the pole at q2 = Λ2
D and Γ0

D = 4Γ0
ρ ≃ 0.6 GeV. Again, due to θ(q2) step

function, ΓD = 0 when q2 < 0.
The magnetic dipole form factor contribution ∣G∗

M(Q2)∣ in the covariant spectator
quark model is presented for selected W =M∆ (1.232, 1.600, 1.800 and 2.200 GeV) in
Fig. B.7, left panel. Thick curves represent the total contribution (sum of the pion cloud
and the bare quark) while thin curves denote the bare quark contribution only. The
pion cloud effect is dominating for q2 ≤ 1.5 GeV2 reaching the maximum of the magnetic
dipole form factor around the ρ−meson pole. The valence quark is dominant for larger
q2 values. The contributions in the timelike region are restricted by the kinematical
limit q2 ≤ (W −M)2. The dependence of the form factor on the resonance mass is due
to the quark core part, which has an explicit resonance mass dependence, while the
pion cloud part is independent on the resonant mass. The resulting differential Dalitz
decay width dΓe+e−N(q,W )/dq is presented in Fig. B.7 (right panel), where red curves
represent the model contributions for selected resonance masses (W = 1.232, 1.6 and
2.2 GeV) compared to the description with the constant magnetic form factor G∗

M (as
in Fig. B.4, right panel). For higher W and q values, the model naturally exceeds the
QED (pointlike) approximation but for q < 0.4 GeV its contribution is below the QED
prediction. The contribution at the resonance pole mass (M∆ = 1.232 GeV) is very
similar for the valence quark model and the pointlike form factor model.
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Figure B.8: N(1520) eTFF for selected resonance masses W = 1.520, 1.8, 2.1 GeV.
Left panel: Effective contribution of N(1520) form factors ∣GT (q2,W )∣. Right panel:
Magnetic form factor ∣GM ∣ (thick curve - total contribution, thin curves - bare quark
contribution).

In the transition γ∗N → N(1520), the ω pole has to be included in the form:

Γω(q2) = Γ2π(q2) + Γ3π(q2). (B.18)

The first term corresponds to ω → 2π decay and is described by the same formula as in
Eq. B.12 but with mω (instead mρ) and Γ0

2π = 1.428 × 10−4 GeV, which is about 103

smaller than Γ0
ρ. The second term is factorized as the process ω → ρπ → 3π and the

Γ3π(q2) function used in [Ram17] is taken from [Müh06,Müh07].
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Further decomposition of the three form factors (GM , GE and GC) is based on
fitting to electroproduction data from the CLAS Collaboration [CC09b,CC12a] in the
spacelike region. The model prediction for the combination of the electromagnetic
transition form factors in the timelike region is presented in Fig. B.8 (left panel), for
the three resonance masses W = 1.520 GeV, W = 1.8 GeV and W = 2.1 GeV. In
addition, Fig. B.8 (right panel) shows the absolute value of magnetic form factor ∣GM ∣,
where thick curves denote total contributions and thin curves denote the bare quark
contributions. It is clear that the dominant part comes from the pion cloud and the
quark core part can be neglected, even at q2 = 0, where it had a significant contribution
in the case of the ∆(1232) resonance. This prediction is in agreement with the decay
channels of the subsequent resonances. For example, ∆(1232) decays to Nπ in 99.4%
whereas N(1520) decays to Nπ in 55 − 65%, and to Nππ in 25 − 35% [PDG16]. In
the case of the ∆(1232) only magnetic form factor plays a role and both valence quark
and pion cloud contributions are important at low q2. The double-pion decay indicates
the stronger contribution of the meson cloud in the case of the N(1520) and for the
γ∗N → N(1520) transition both magnetic and electric form factors have a significant
contribution at low q2. The evolution of ∣GT (q2,W )∣ as a function of W shows that
in the range q2 = 0 − 1 GeV2 the model predicts form factor contributions higher by
one-two order of magnitudes as compared to the pointlike form factors [Doh10,Zét03a],
where neither q2 nor resonance mass dependence of the form factor is present.
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Figure B.9: Left panel: The distribution dΓe+e−N(q,W )/dq for three N(1520) masses,
W = 1.520, 1.8 GeV, and 2.1 GeV (red curves), compared to the results of Eq. 3.9 with
a constant GM form factor (dotted curves). Right panel: N(1520) (solid curves) and
∆(1232) (dashed curves) decay widths as a function of W for photon and Dalitz decays.

Finally, also N(1520) → e+e−N Dalitz decay width can be studied, as shown in
Fig. B.9 (left panel) with the dilepton decay rate dΓ(q,W )/dq. The model prediction
(red curves) exceeds significantly the pointlike form factor model (dotted curves) already
for q2 > 0.1 GeV2 due to the pion cloud contribution. The integrated values of the decay
widths Γ as a function of W are compared in Fig. B.9 (right panel) for the N(1520)
(solid red curves) and the ∆(1232) (dashed blue curves) in the photon and Dalitz decays,
respectively. At the lower W < 1.6 GeV values the ∆ has a dominant contribution, but
at large W both resonances contribute in a similar way. The constituent valence quark
model provides predictions of the baryon resonance electromagnetic form factors in the
timelike region which can be tested in the experiments measuring the resonance Dalitz
decays.
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HADES Spectrometer

The High-Acceptance Di-Electron Spectrometer (HADES) [HC09] is installed at
GSI Darmstadt on SIS18. It allows to study both hadron and rare dilepton production
in fixed target experiments, π + N , π + A, N + N , p + A, A + A in the beam energy
range of a few GeV per nucleon, reaching up to 4.5 GeV for a proton beam and 1.5
GeV/nucleon for a heavy-ion beam. The key parameters of the spectrometer are:

• a large geometrical acceptance for detecting dielectron pairs, εpair ≈ 40% for pairs
with large opening angle (e.g. from ω → e+e−) and ≈ 10% for close pairs with
small opening angle (e.g. from π0 → γe+e−)

• a high mass resolution, ∆Minv/Minv ≈ 1 − 2%

• an excellent hadron discrimination allowing to obtain a clear e+e− sample (e.g.
in Au + Au collisions at 1.23 GeV/nucleon up to 200 charged particles in an
event are passing the acceptance of the spectrometer and the dilepton signal
is of the order of 10−4);

• a signal-to-background ratio greater than 1 for the mass region Minv ≤ 1 GeV/c2

• a low material budget (X/X0 ∼ 2×10−3 for tracking chambers) to reduce back-
ground from secondary particles produced in detector material
and multiple scattering of particles

• a high trigger rate of the order of 10 − 40 kHz sufficient for collection of statistics
necessary to study rare dielectron decays

The spectrometer (Fig. C.1) is divided azimuthally into 6 sectors and covers the
polar angles within 18○ ≤ θ ≤ 85○ and almost all azimuthal angles, excluding the edges
of sectors and magnet coils. It consists of:

• a START detector: two Start and Veto modules, in front of and behind the target

• a RICH (Ring Imaging Cherenkov) hadron-blind threshold detector for the iden-
tification of electrons/positrons

• a set of four multiwire drift chambers (MDC) for reconstruction of the trajec-
tory of the charged particles: two chambers (MDC I, II) in front of and two
(MDC III, IV) behind the magnet
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• a superconducting toroidal magnet: for the maximum field of 3.5 T (for a current
of 3500 A) passing particles acquire transverse momentum ≤ 100 MeV/c

• a time-of-flight (TOF) detector, made of scintillator bars: in the area of polar
angles 45○ ≤ θ ≤ 85○ it is a high resolution detector (in terms of spacial and time
measurement), while for 18○ ≤ θ ≤ 45○ the TOFino, with smaller granularity and
one-side readout was used; the TOFino detector was replaced by the Resistive
Plate Chambers (RPC) during the spectrometer upgrade in 2010

• a PreShower electromagnetic cascade detector that improves the identification of
dielectrons in the polar angles 18○ ≤ θ ≤ 45○, where pions and electrons carry high
momentum, and serves as a position sensitive reference detector for the TOFino

• a Forward Wall (FW) detector is a fine granularity matrix of plastic scintillators,
which was positioned in most of experiments in a distance of 7 meters downstream
the beam, in order to detect charged particles at low polar angles 0.33○ ≤ θ ≤ 7○

Figure C.1: Expanded view of the HADES detector with its main components (left
picture), and schematic cross section view of HADES spectrometer (right panel) with-
out the Forward Wall detector, which was placed 7 meters from the target behind
the spectrometer.

C.1 HADES detectors

In the following sections, a brief description of the elements composing the HADES
spectrometer are given: RICH, MDCs, TOF/TOFino, PreShower (detectors), and ILSE
(magnet). Since 2007, for dp at 1.25 GeV/nucleon and pp at 3.5 GeV measurements,
the Forward Wall (FW) detector has been added to the detector set-up. After the first
decade of experiments, the spectrometer has been significantly upgraded: the TOFino
was replaced by the Resistive Plate Chambers (RPC), the START/VETO diamond
detectors were redesigned and installed before the measurements with pion beam and
Au + Au collisions (2010). In order to monitor the pion-beam momentum, the pion
tracker (PT) has been built. It was operating during data taking in 2014, the details
are presented in App. C.1.8.
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C.1.1 START and VETO detector

The basic task of the START detector in the HADES spectrometer is to provide
the starting point, which measures the time-of-flight of particles from the target to the
TOF and TOFino detectors. Signals from particles that have not interacted with the
target are eliminated. This selection is made by choosing the signal coincidence between
the START module (positioned in front of the target) and the corresponding VETO
module (positioned behind the target), so that the start signal is given for more than
107 particles per second. An additional task of the detector is to monitor the good
positioning of the impinging beam. The first generation of the START and VETO
detectors was made of poly-crystalline diamond material produced by Chemical Vapor
Deposition (CVD) method [Spe94]. However, as noted in Ref. [Pie10], this technology
resulted in significant losses of collected charge in this type of sensors and was not
suitable for the detection of minimum-ionizing particles. The signal from the diamond
detector in the case of lighter nuclei (e.g. carbon) was within the range of 70 − 80 mV,
therefore not much above the limit of electronic noise. The START detector was not
operating during all measurements of the HADES until the spectrometer upgrade in
2010. In those cases the absolute time-of-flight had to be reconstructed based on the
relative time between a pair of particles and proper particle identification hypothesis
(see description in App. C.3.4).

Figure C.2: START and
VETO detectors used
duringAu+Au and pion-
beam experiments.

The second generation of the detector was developed based on a mono-crystalline
CVD diamond semiconductor (see Ref. [Pie10]) and successfully used during Au +Au
and π + p/A experimental runs. The START detector (Fig. C.2, left panel) is a 4.7
mm broad and 70 µm thick module and consists of 16 stripes in a horizontal and a
vertical direction. The segmentation allows for beam focusing and protects against the
efficiency losses due to radiation damage (see Ref. [Pie14]). The diamond efficiency
was found to be above 95% and the estimated time resolution amounts to about 50 ps.
The VETO detector (Fig. C.2, right panel) is a 100 µm thick, poly-crystalline CVD
diamond module, located behind the target. It is divided into 8 active pads and is used
to exclude reactions, where no interaction with the target took place.

C.1.2 RICH detector

The RICH detector (Ring Imaging Cherenkov) plays a key role in the e+/e− iden-
tification in the HADES spectrometer [Zei99]. It is the innermost detector and covers
the same polar and azimuthal angles as the spectrometer. The RICH consists of two
separate chambers filled with gases (Fig. C.3). A chamber around the target is filled
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with C4F10 radiator gas at atmospheric pressure, in which passing e+ or e− produce
photons in the Cherenkov effect. The photons are reflected from a spherical carbon
mirror, pass the crystalline window CaF2, and are focused to form a ring on a sur-
face of a photon detector. Each sector of the photon detector is an independent wire
chamber filled with CH4, operating in a proportional mode. Photoelectrons, extracted
out of the cathode coated with cesium iodide (CsI) by Cherenkov photons, create a
charge on the anode wire under the voltage of 2500 V, which gives a gain of 105. The
detector plane is divided into a matrix of 96×96 pads from which the signal is read.
The response to a passing e− or e+ is a ring with a nearly constant diameter of about
5.5 cm (corresponding to 8 − 9 pads). The ring image is formed by the sequence of
the cathode electrodes on which the charge above the electronic threshold was induced.
Therefore, proper particle identification requires a non-trivial signal analysis based on
image recognition.

Figure C.3: Cross section view of the RICH detector. The trajectory of the electron
emitted from the target (marked in red) passing through the radiator gas causes the
emission of Cherenkov photons (blue cone), reflected further from the mirror and focused
on the surface of the photon detector in the form of a ring. The magnified area on the
right size shows the crystalline CaF2 window and multiwire proportional chamber with
photocatode pads coated with CsI.

The RICH is a threshold detector, sensitive in the wavelength region 145 nm < λ <
220 nm. Figure C.4 presents the optical properties of the RICH media: transmittance
of the C4F10 and CH4 gas at a distance of 400 mm, CaF2 crystal of a thickness 5
mm, and the quantum efficiency of photoelectron extraction from the CsI coating the
pad plane (see Ref. [Fab03]). The optical refractivity of radiator gas (C4F10) is n =
1.00151, hence γthr = 1/

√
1 − 1/n2 = 18.3. The Cherenkov photons appear for a charged

particle with the velocity β ≥ 0.9985. For energies available at the SIS accelerator in the
HADES experiment, only electrons and positrons are the source of Cherenkov radiation,
therefore the RICH detector remains completely insensitive to hadrons. For electrons
(m0 = 0.511 MeV/c2) the momentum at the threshold is 9.3 MeV/c, for charged pions
(m0 = 139.6 MeV/c2) 2.55 GeV/c, and for protons (m0 = 938.27 MeV/c2) 17.1 GeV/c.
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Figure C.4: Transmittance of radiator gas C4F10, multiwire proportional chamber gas
CH4, and crystal window CaF2, as well as the CsI quantum efficiency. The quartz
transmission is shown for comparison.

The average number of Cherenkov photons amounts to 110. It is proportional to
the distance traveled by the charged particle in the radiator gas and varies, with the
increasing polar angle, from 38 to 68 cm. The detection of conversion photons is limited
on the one hand side by the radiator gas transmission coefficient, falling rapidly to zero
for wavelengths smaller than 145 nm, on the other hand, the quantum efficiency of
CsI, falling to zero for photons with wavelengths greater than 210 nm. The quantum
efficiency of the CsI which decreased over years of operation due to the aging effect,
led to an idea of replacing the MWPC by an array of Photo-Multiplier Tubes (PMTs),
which will be operational in HADES from 2019 on.

C.1.3 MDC detectors

The system for the reconstruction of the trajectory of charged particles in the
HADES spectrometer consists of four planes of Mini Drift Chambers (MDCs), two of
which (MDC I, II) are in front of and two (MDC III, IV) are behind the area of the
magnetic field produced by the superconducting magnet (Fig. C.5, left panel). The
dimensions of the trapezoidal detectors in a given sector increase from 80×88 cm2 for
the smallest module (MDC I) to about 230×280 cm2 for the largest chamber (MDC IV),
to provide a constant coverage in the solid angle per sector. The single drift chamber
(MDC detector) is assembled from the six layers of anode wires (with a potential of
0 V) and cathode wires (with a potential of −2 kV) separated by cathode wire planes.
The sense and field wires are at different angles, ±0○, ±20○, and ±40○ (Fig. C.5, right
panel), in order to achieve the greatest possible precision in the particle trajectory
reconstruction. Cathode wires in all planes are set at an angle of 90○. The distances
between the wires, and thus also the size of a single drift cell (the area between the
signal wire and adjacent field wires, with the top and bottom cathode wire) varies
from 5×5 mm2 for MDC I to 14×10 mm2 for MDC IV. The HADES drift chambers
are optimized towards the multiple scattering minimization, therefore each chamber is
only 3 − 6 cm thick. The chambers are filled with a mixture of argon (70 − 84%) and
quenching gases (CO2 or isobutane) which absorb the photons from photoemission.
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Figure C.5: Schematic layout of the HADES tracking system. Left panel: Two sets of
Mini Drift Chambers (MDCs) with 24 wire planes per sector are placed in front and
behind the magnetic field to measure particle momenta. Right panel: Schematic view
of the six anode wire frames inside a HADES MDC.

The position of the chambers with a few hundred µm accuracy was obtained using
the photo alignment method for MDC II (see Ref. [Sch08]). Further improvement in
the description of the absolute position of chambers was obtained using minimization
procedures based on the beam and cosmic tracks [Pec15]. The particle trajectory can be
precisely determined with the good knowledge of the chamber position. The resolution
in the polar angle direction is 60 − 100 µm and in azimuthal direction 120 − 200 µm
[Mar05]. The single cell efficiency amounts to about 95%.

Figure C.6: The energy loss
dE/dx as a function of mo-
mentum in Mini Drift Cham-
bers. The curves indicate val-
ues expected for different parti-
cle species deduced from Bethe-
Bloch formula.

The readout electronics of drift chambers is able to extract the width of measured
signal defined as time-over-threshold, which can be translated by a non-linear transfor-
mation into energy loss dE/dx of a particle in MDC. Figure C.6 shows the energy loss
versus particle momentum. Electrons and pions cannot be distinguished by this quan-
tity but the energy loss can be used for rejection of protons and, in general, as additional
particle signature in a multi-parameter analysis.
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C.1.4 Magnet

The superconducting magnet ILSE (IronLess Superconduction Electromagnet) con-
sists of six toroidal coils that form a hexagonal structure of the HADES spectrometer
(Fig. C.7, left panel). The RICH, MDC I and II detectors are placed in the inner part of
the magnet, whereas MDC III and IV, as well as TOF, TOFino and PreShower detectors
are placed outside the magnet. The materials used to build the magnet were selected
to minimize their contribution to the production of secondary particles. The cassettes
are made of aluminum, the coils are made of niobium alloy and titanium in the form
of twisted rods embedded in copper and then in the aluminum layer. The aluminum is
necessary in the event of shutdown of the field, so that the energy of 1.41 MJ, stored
in the field, does not damage the magnet. The discharged energy is converted into an
external heat resistor. The coils can operate at maximum current I = 3566 A under the
voltage of 200 V, which allows to produce a field 3.77 T in the coil and 0.8 T in the air
between the coils. The coils of the magnet are cooled by a single phase liquid helium at
p = 2.8 bar and T = 4.7 K. The magnet weighs 3.5 tons. In the HADES experiments
the magnet current was set to either 3200 A (strong field) or 2500 A (medium field).

superconducting coils

target

Figure C.7: Photography of a magnet during the assembly (left panel) and a cross
section view of a superconducting coil (right panel).

The magnetic field is produced in a wide range of polar angles (18○ − 85○) and in
the full range of azimuthal angles (excluding coils). It vanishes in the region, where the
detectors (RICH, MDC, TOF/TOFino and PreShower) are located. The geometry of
the toroidal coils has been optimized in such a way that the the ratio of the transverse
momentum (∆pT ) to the total momentum (p) of a particle is almost independent of the
polar angle at which the charged particle enters the field area, and also independent
of a particle momentum. The optimization of the field strength was performed for
vector meson decays from Au +Au collisions and beam energy of 1 GeV/nucleon. For
electrons/positrons with momenta within 300 − 800 MeV/c range, the relative change
of the momentum, ∆pT /p, amounts to 14±1%. It means that the electron is deflected
in the field always by an angle α ≈ 8○.
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C.1.5 Time of Flight detectors

The time of flight detectors are mounted in six sectors, covering the full range
of azimuthal angles. The TOF detector (Fig. C.8, left panel) covers the upper polar
angles 45○ < θ < 88○. It is composed of eight modules with eight scintillator rods
each, with lengths from 147.5 cm to 236.5 cm. The four lower modules use rods with
a cross-section of 2×2 cm2, in four upper modules the rods have cross section 3×3 cm2.
The signal from each scintillator is read with photomultiplier tubes (PMT) attached on
both sides. With its high granularity the TOF-detector allows to identify the polar angle
with a resolution of 2 − 3 cm and the azimuthal angle coordinate is constrained with a
resolution of 2.5 cm. A time resolution amounts to σ ≈ 150 ps [Ago98]. The efficiency
of the TOF detector is about 95 − 97%. It is constrained by two factors, its own time
resolution, and multiplicity of charged particles in a given reaction. For the Au + Au
collisions at 1.23 GeV/nucleon and for the 4% of most central collisions selected, the
probability that more than one particle crosses the same TOF rod is about 4% [Har17].
The TOF signal amplitude allows for the specific energy loss dE/dx which can be used
for a particle identification (Fig. C.9).

Figure C.8: The time-of-flight detector TOF (left panel) covers polar angles 45○ < θ < 88○

and consists of six sectors with 8×8 scintillator modules, containing 8 strip each. The
TOFino wall (right panel) covers the polar angles 18○ < θ < 45○ and consists of four
almost equal scintillator pads per sector.

In the area of low polar angles (18○ < θ < 45○), a simplified version of the time-of-
flight detector, the TOFino (Fig. C.8, right panel), was used. In 2010 it was replaced by
the Resistive Plate Chambers (see below). The TOFino detector was mounted directly
on the PreShower detector frame and had a trapezoidal shape. In six sectors of the
spectrometer there were 24 scintillator strips (4 per sector), which were read only at
one side. The TOFino did not work as an independent detector, because the position of
the flying particles could be determined only with the help of the PreShower detector.
The large geometric surface of a single scintillator strip and its location close to mid-
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rapidity region made the TOFino detector feasible for time-of-flight measurements with
small charged particle multiplicities only. For example, in C + C collisions at beam
energy 1.9 GeV/nucleon, two or more hits per one plastic strip were in about 20% of
events. In such a situation, there is no possibility to distinguish which particle a given
signal could come from. The time resolution of the TOFino detector is about σ ≈ 450 ps.

Figure C.9: The energy

loss dE/dx as a function of
momentum in the TOF de-
tector. The curves indicate
values expected for differ-
ent particle species deduced
from Bethe-Bloch formula.

In order to handle high particle multiplicities in Au + Au collisions, the TOFino
detector was replaced with the Resistive Plate Chambers (RPC) in 2010 (Fig. C.10),
with a very high time resolution and a granularity sufficient for the high multiplicity
regime of Au +Au central collisions.

Figure C.10: Internal structure
of a HADES RPC sector and
the reference coordinate system.
The detector is composed of strip
counters with variable width, or-
ganized in two partially overlap-
ping layers with 31 rows and
3 columns each.

The RPC wall consists of two layers [Bel09], each subdivided into three columns
containing 31 strips (cells). The cell length ranges from 12 to 52 cm, and height ranges
from 2.2 to 5 cm. The resistive material in cells are two glass electrodes and three
aluminum electrodes (the middle at high voltage, the upper and lower are grounded)
where the signal is read from. Cells are filled with the mixture of C2H2F4 (90%) and
SF4 (10%) [Bla12]. Each single cell is shielded in order to prevent crosstalk effect and
minimize the cluster size created by charged particles. During the Au+Au experiment
at 1.23 GeV/nucleon [Kor14], the RPC efficiency was measured to be 95%. The time
resolution was below σ = 70 ps, and the deduced time resolution for electrons, including
contributions from the START detector and tracking, amounted to σ = 81 ps. For the
most central collisions selected, the probability, that more than one particle crosses the
same RPC cell, was about 5%.
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C.1.6 PreShower detector
The PreShower electromagnetic cascade detector [Bal04] is the outermost HADES

spectrometer detector. It covers the polar angles in the range 18○ ≤ θ ≤ 45○ and full
azimuthal angles. The PreShower consists of six identical sectors, arranged similarly to
other detectors, in accordance with the hexagonal structure of the spectrometer. Each
sector is an independent detection system and consists of three multiwire chambers,
separated by lead-converter layers (Fig. C.11, right panel). A single chamber is limited
by the cathode surfaces. One of the cathodes is a steel plate 0.5 mm thick, the other is
the fiber glass plane with copper electrodes - pads, where the signal is read from (Fig.
C.11, left panel). The pad shapes and the respective sizes were determined by Monte
Carlo simulation in order to obtain a homogeneous average distribution of induced
charge over the entire cathode surface in heavy-ion reactions. A layer of grounded field
wires and signal wires, being the anodes in the chamber at the voltage of about 2500
V, is placed between cathode planes. The chambers are filled with a gas mixture of
argon (30%) and isobutane (70%) with the admixture of heptane as a quenching gas.
The selection of the gas mixture and voltage on the anode wires allows to choose the
operation mode of the chamber. Primarily, the PreShower was designed to work in a self-
quenching streamer mode, characterized by high amplitude of a signal, independent of
the energy deposited by a passing particle. However, the detector was operating more
stable and efficient enough at lower voltage, hence in a proportional mode.

Figure C.11: The PreShower detector scheme of one-sector pad plane (left panel). The
cathodes are arranged in 32 rows with 32 pads on a wider side and 20 pads on a nar-
rower side. Schematic cross section view through the PreShower detector (right panel),
composed of three gas chambers (pre-, post1-, and post2-chamber) separated with lead
layers. Fast leptons create an electromagnetic cascade in lead converters.

A charged particle (e.g. electron, pion, or proton) passing through the chamber
(see Fig. C.11, right panel), loses part of its energy in the gas, causing an avalanche
of electrons developing towards the anode wire. The charge of a few pC is induced on
the cathode electrodes, from where it is read by the electronics. The identification of
electrons/positrons in the PreShower detector is based on the electromagnetic radiation
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(bremsstrahlung) induced by passing electrons in the lead converters. Radiated photons
may convert in the same material into e+e− pairs, which in turn may emit further
bremsstrahlung photons. This leads to development of a cascade (or shower) of charged
particles and thus the larger charge in the post1- and post2-chambers. The charge of
the electromagnetic shower is integrated on the area of 3×3 pads surrounding the pad
with the highest local charge value. The quantity

∑
post1

Q(p) + ∑
post2

Q(p) − ∑
pre

Q(p) ≥ Qth(p), (C.1)

where Qth(p) in the momentum-dependent threshold, helps in discrimination between
electrons (or positrons) and hadrons. The emission of bremsstrahlung in case of pions or
protons is strongly suppressed due to their large masses. The fraction of fake candidates
is about 10% for minimum ionizing protons or pions and increases for low momentum
protons. However, this can be reduced without affecting the electron identification effi-
ciency by applying a time-of-flight window obtained from the TOFino detector. Using
the PreShower condition (Eq. C.1) and the time-of-flight window, more than 90% of
the hadrons are rejected and the electron (positron) detection efficiency is at 80% and
more for higher momenta.

The outer system of detectors, consisting of TOF, PreShower/TOFino (or RPC)
detectors, is combined into Multiplicity Electron Trigger Array (META) and used for
the trigger condition.

C.1.7 Forward Wall detector

The Forward hodoscope Wall (FW) was installed in 2007 and first it was suc-
cessfully used for tagging the spectator proton in the deuteron beam experiment (see
Sect. 2.2.1). The FW is placed at 7 m behind the target and it covers polar angles
0.33○ < θ < 7.17○. The mechanical set-up of the detector consists of 287 scintillator
modules read out by photomultipliers. During the data taking from dp collisions at
1.25 GeV/nucleon not all modules were active (263 modules were operational).

Figure C.12: Layout of the forward-wall
with all scintillator blocks surrounding the
beam line (red: 4×4 cm2, green: 8×8 cm2

and blue: 16×16 cm2).

– 163 –



Appendix C. HADES Spectrometer

In order to achieve a reasonable angular and position resolution the size of the
cells was selected in the following way: the innermost part was covered with cell sizes
4×4 cm2 (see Fig. C.12, red squares), which increased to cell sizes of 8×8 cm2 (green
squares) and the outer region was covered with 16×16 cm2 cells (blue squares). The
thickness of the cells is 2.54 cm. The total transverse dimensions are 180×180 cm2. Each
cell is equipped with an individual PMT readout. The high voltage of each PMT is
individually tuned in order to achieve overall high detection efficiency for protons. The
estimated time resolution of the FW depends on the scintillator size and varies from
550 ps to 800 ps. Thus, the estimated momentum resolution of the detected particles
(protons) is about 11 − 15%. The time resolution of the detector is rather poor and in
the lack of magnetic field the detected hits are assigned to a given particle hypothesis.
In d+p→ n+p+(pspect) experiment, the signal from the fastest particle was considered
as a spectator proton. The d+p→ d+p channel could be separated by the time-of-flight
(or momentum calculated), too. Its signal can be enhanced by the coplanarity condition
between momentum vector of the incoming deuteron beam and scattered deuteron and
spectator proton, as it has been demonstrated in Ref. [Kuc15]. Another possibility,
utilized in the strangeness production analysis in pp at 3.5 GeV, is the kinematical refit
(see Refs. [Sie10,Epp14]).

C.1.8 Pion Tracker
The idea of a pion beam facility at SIS18 dates back to the beginning of the HADES

project (early 1990s). The first commissioning tests took place in 1999 [Sim99,Día02].
The secondary pion beam is generated by a primary 14N beam provided by the SIS18
synchrotron with an intensity of 0.8−1.0×1011 ions/spill close to the space-charge limit.
Pions are then transported to the HADES target located 33 meters downstream from
the production point. The beam line consists of 9 quadrupole and 2 dipole magnets
(see Fig. C.13).

π-beam

dispersive plane

pion target

silicon sensors

quadrupole

dipole

start detector

HADES target
18 m

(x1, y1) (x2, y2)

3 m

Figure C.13: Pion beam line from the production point (pion target) to the HADES
target position. Quadrupole and dipole magnets guide the pions (the dashed line)
through the in-beam tracking detectors (indicated by the arrows) [HC16c].

A transmission of 56% is achieved for a given central momentum with a distribution
which can be described by a Gaussian with σ = 1.5%. The maximum pion intensity of
106 pions/spill was achieved at a momentum p = 1.0 GeV/c and decreased by half for the
momenta p = 0.7 GeV/c or 1.3 GeV/c. The purity of the π− beam is high and the small
contamination of electrons and muons, lower than a few percent, does not influence
the experimental results. A measurement of the momentum of each beam particle is
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provided by a dedicated tracking system CERBEROS [Lal16,HC17a]. It is composed
of two double-sided silicon detectors, 0.3 mm thick, covering the area of 10 × 10 cm2

and segmented into 128 horizontal and vertical strips. The first silicon sensor (see
Fig. C.13) is located close to the intermediate focal plane in order to minimize the
multiple scattering effect and is sensitive mostly to the momentum offset. The second
sensor is installed in the HADES cave and provides additional spatial information on
the pion momentum vector at the target point. Combination of the measured hit
position (X, Y) from both silicon planes allows to reconstruct the pion momentum with
a resolution of about 0.3%. The focused pion beam spot exceeds the diameter of the
target (φ = 12 mm) what can result in severe contamination from interactions with the
beam tube or target holder. In order to avoid this background and provide a start time
information, a position sensitive diamond detector (see App. C.1.1) was placed 30 cm
in front of the HADES target.

Figure C.14: The trigger distribution and data acquisition system diagram. Triggers
are sampled by the central trigger unit (CTU) and transported via the trigger bus to
the Detector Trigger Units (DTUs). The data is stored in the LVL1 pipe. At the same
time pattern recognition algorithms are performed in Image Processing Units (IPUs)
and if a Matching Unit (MU) forms a positive decision, the data is read out via the
VME CPUs and sent to the Event Builder. Figure from [HC09].

C.2 Data acquisition and trigger

The trigger and data acquisition system of HADES is a distributed system (Fig.
C.14). The Central Trigger Unit (CTU) manages and transmits the trigger signals to
the individual subsystems, reacting on external trigger input sources such as multiplicity
triggers, minimum bias or calibration triggers. The detector subsystems and the data
readout boards are connected within a special network protocol, the TrbNet [Mic12].
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The signals from the frontend electronics of the different detectors (RICH, MDC, TOF,
PreShower) are collected by means of dedicated end-point boards linked to hubs and
streamed via the Gigabit Ethernet to the event builders. The combined data are saved
in HLD (Hades List Data) files, stored on hard drives, and further on tapes. In order
to reduce the amount of data stored and the dead time of the acquisition, a Central-
Trigger-System (CTS) manages a two-level trigger system in the HADES experiments.

The first level trigger (noted as LVL1) consists of a fast hardware selection of central
collisions, by measuring the hit multiplicity in the META system. It is possible to
apply multiplicity condition in TOF, TOFino (RPC) and FW detectors independently,
and sector-wise (e.g. two opposite sectors), in order to enhance the interesting decay
channels. The decision time is around 100 ns, which is on average much faster than the
time between two collisions.

The second level trigger (noted as LVL2) is devoted to selects events containing
electron candidates. This is done by Image Processing Units (IPUs), using dedicated
electron recognition algorithms in the different detector subsystems (for details, see
Ref. [HC09]). The Matching Unit (MU) combines the IPU information into a single
LVL2 trigger decision. It is then forwarded via the CTU to all subsystems with the
latency corresponding to several events. Therefore, the detector readout boards need to
buffer the data (LVL1 pipes) until the LVL2 trigger signal has been received. Depending
on decision, the data are either copied into a separate memory (LVL2 pipe) or discarded.

The summary of trigger conditions used in the elementary collisions measured by
HADES is given below.

Trigger configuration ∶ pp at T = 1.25 GeVTrigger configuration ∶ pp at T = 1.25 GeVTrigger configuration ∶ pp at T = 1.25 GeV

The data readout in this experiment was started upon a first-level trigger (LVL1) de-
cision with two different settings requiring: (LVL1A) a charged-particle multiplicity
MULT ≥ 3 in HADES or (LVL1B) MULT ≥ 2 with hits in opposite sectors of the time-
of-flight detectors, with at least one in the TOFino. The trigger conditions were chosen
to enrich inclusive electron pair production (pp → e+e−X) and elastic pp scattering for
normalization purposes, respectively. The LVL1 condition was followed by a second
level trigger (LVL2) requesting at least one lepton track candidate to record events of
the type e+e−X. The LVL1A trigger efficiency amounts to 0.84 and it has been deduced
in Monte Carlo simulations to be independent of the e+e− pair mass. All events with
a positive LVL2 decision and every fifth LVL1 event, disregarding the LVL2 decision,
were written to tape (in total 7.9 × 108 events).

Trigger configuration ∶ dp at T = 1.25 GeV/nucleonTrigger configuration ∶ dp at T = 1.25 GeV/nucleonTrigger configuration ∶ dp at T = 1.25 GeV/nucleon

In the deuteron induced quasi-free np reactions, the running conditions were the same
as the ones used for the pp run, except that LVL1A also required a coincidence with
at least one charged particle hit in the Forward Wall. In total, 1.3 × 109 events were
recorded for dp reactions.

Trigger configuration ∶ pp at T = 2.2 GeVTrigger configuration ∶ pp at T = 2.2 GeVTrigger configuration ∶ pp at T = 2.2 GeV

The events were selected upon the following trigger conditions: a first-level trigger
(LVL1) selected events with at least four charged hits in the time-of-flight (TOF) wall
with additional conditions of two opposite sectors hit, two hits at polar angles < 45○.
A second-level trigger (LVL2) required an electron or positron candidate. This trigger
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scheme favored exclusive e+e− production in the p + p → p + p + η reaction with a sub-
sequent η Dalitz decay. The inclusive e+e− emission still can be investigated with the
trigger bias correction established in Monte Carlo simulations. The pp elastic scattering
events were measured in the same experimental run, with an additional scaled-down
(by a factor 32) LVL1 trigger condition, requiring only two charged hits in opposite
HADES sectors. The total number of 2.7×108 LVL1 events were recorded, and 4.1×107

fulfilling the LVL2 condition.

Trigger configuration ∶ pp at T = 3.5 GeVTrigger configuration ∶ pp at T = 3.5 GeVTrigger configuration ∶ pp at T = 3.5 GeV

The data readout was started upon a first-level trigger (LVL1) decision. Depending on
the reaction channel of interest, two different settings of the LVL1 trigger were required:
a charged-particle multiplicity MULT ≥ 3 to enhance inclusive dielectron production,
and MULT ≥ 2 with hits in opposite sectors of the time-of-flight detectors to enrich
elastic pp events used for the absolute normalization of the dielectron data. The LVL1
was followed by a second-level trigger (LVL2) requesting at least one electron candidate
recognized in the Ring-Imaging Cherenkov Detector (RICH) and time-of-flight/pre-
shower detectors. All events with positive LVL2 trigger decision and every third LVL1
event, irrespective of the LVL2 decision, were recorded (in total 1.17×109 events).

C.3 Analysis strategy

The ultimate goal of the data analysis of a given reaction channel is the association
of the subsequent detector response to charged particles, combination of the space and
time correlated signals into tracks, and finally, providing the description of a track
candidate in terms of momentum and particle velocity. This allows for the particle
identification hypothesis, which in the simplest case is a graphical two-dimensional
selection on momentum vs β plane. Track candidates of a given particle species are
then combined into a specific physical channel hypothesis. The cuts used are optimized
in terms of the efficiency and purity of the signal maximization. The analysis strategy
has been presented in detail in Ref. [HC09], and described in numerous PhD theses (e.g.
see Refs. [Har17,Sch16,Sie13,Gal09]). The key aspects are summarized below.

C.3.1 Software package

The HADES software has been written in C++ and based on the ROOT frame-
work [Bru97], which is object oriented framework for large scale data analysis. The
main analysis code, called HYDRA [Gar03] (Hades sYstem for Data Reduction and
Analysis), is the scalable modular framework containing detector-specific and task-
specific classes. The data can be retrieved from many sources, e.g. event servers, raw
data files stored by the data acquisition system, and ROOT files created at the various
stages of analysis. The data processing is realized via configurable task lists, which can
define a sophisticated analysis work flow. The initialization of geometry, set-up and
calibration parameters is handled from an Oracle database and/or from ROOT files,
with full version management implemented. The analysis can be run in stand-alone
batch mode or from interactive ROOT sessions. The important step of the analysis is
the DST (Data Summary Tapes) production which is a common basis of all analyses
in the HADES collaboration. At this level, detector electronic signals are translated to
physical information, e.g. hits on RICH, MDC, TOF, TOFino or RPC, and PreShower,
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with the corresponding parameters (hit coordinates, time-of-flight values, energy loss)
and higher level structures, e.g. reconstructed trajectories. Further data analysis de-
pends on the reaction type. In elementary collisions, track combinations of particles
expected in the final state of a given reaction channel are investigated within the PAT
(PostDST Analysis Tool) framework, developed by the author. This framework allows
for agile hypothesis definitions, correlation cuts, multi-variable selection cuts, and time
recalibration, resulting in the identification of the final state. The ultimate analysis
stage is based on user defined FAT (Final Analysis Tool) module, providing e.g. his-
tograms, small ntuples or just figures. The Monte Carlo simulations of the spectrometer
response are performed with the package GEANT3 [Gea94] from CERN. The detailed
geometry and constructing materials, as well as the optical properties of detectors, are
implemented. The realistic response of detectors hit with the passing particles is sim-
ulated within the HYDRA framework, and the corresponding detector parameters are
verified for each experimental measurement separately. Event overlay, e.g. the embed-
ding of simulated tracks into real events for efficiency and performance investigations,
is supported as well. The reaction models are realized within the PLUTO event gener-
ator [Frö07,Doh10]. The PLUTO is a standalone simulation framework for heavy ion
and hadronic physics reactions. Different models can be selected or defined, and the
particles in the final state can be filtered with dedicated acceptance matrices for fast
investigation. The input files for a full scale GEANT simulation, and further analy-
sis, can be also produced. In this way, the realistic spectrometer response is obtained,
allowing for the efficiency and acceptance corrections.

MDC IV
Layer 6

MDC III
Layer 3

Kick plane

MDC II
Layer 6

MDC I
Layer 3

Projection plane

Y

Z

X

Target

Projection plane

Track

Figure C.15: Method of search-
ing for track candidates in HADES.
The drift chambers are approxi-
mated by only one layer (black
lines). Red lines show the pro-
jection planes between the inner,
respectively outer, drift chambers.
Blue lines point to the vanishing
point of the projection plane. The
magenta line sketches the virtual
kick plane, where the particle is de-
flected according to its momentum.
Figure taken from Ref. [HC09].

C.3.2 Track reconstruction

The reconstruction of the particle trajectories in the tracking system of HADES is
based on the correlated signal from the drift chambers (MDCs). In each chamber the
crossing fired drift cells form wire clusters which are defined by the geometrical positions
of wires. This is done by projection to a virtual plane, where a maximum representing
a crossing point of fired wires corresponds to a point traversed by a particle (Fig.
C.15). The target position and the location of the maximum in the projection plane
define a straight (inner) track segment in space. The deflection of a charged particle by
the toroidal magnetic field of the HADES magnet can be approximated by a momentum
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kick on a nearly flat virtual kick plane in the field region (see Ref. [Gar03]). The track
direction behind the field is defined then by the outer wire clusters and the intersection
point of an inner segment with the virtual momentum kick plane. Finally, particle
trajectory candidate is reconstructed from the matching of two points before (inner
track segment) and two points behind (outer track segment) the magnetic field. The
spatial resolution of the track candidate search is defined by the wire angles and spacing,
which have been optimized for best resolution in the direction of particle deflection.

The standard method to determine the momentum of a particle traversing a known
magnetic field is Runge-Kutta algorithm [Pre07]. Solving of the second-order differential
equations of motion requires initial parameters, e.g. preliminary momentum, polarity
and vertex. They are retrieved from the spline momentum reconstruction method,
matching inner and outer track segments. The magnetic field is defined by a measured
three-dimensional field map. The result of Runge-Kutta tracking is the charged particle
trajectory reconstruction (with momentum and vector at the emission vertex), provided
with the χ2

RK value. It can be used either as a criterion for track quality selection or
as a method for particle identification.

C.3.3 Particle identification

The HADES spectrometer is capable to identify all charged particles simultane-
ously in wide momentum range, particularly electrons which are rare signals. Two
approaches of particle identification (PID) have been implemented, either using a set
of cuts on various observables (the default approach), or applying a Bayesian method.
The observables used for cuts are momentum, velocity, energy loss in MDC and TOF,
and hit patterns in RICH and PreShower. For all tracks reconstructed in MDC cham-
bers, the outer track segments are matched with hit points in the META detectors
(TOF or PreShower/TOFino, RPC), providing another χ2

META value of the matching
quality. The main condition on electron/positron identification is the matching of the
inner segment track with a ring in the RICH detector. If there is no ring correlated
with a track, the particle is considered to be a hadron. Figure C.16 shows an example
of particle species separation for reconstructed tracks matched with the TOF detector
in the case of Ar +KCl reaction. The graphical cut on correlated variables of β vs
momentum allows for particle selection. Another cut can be applied on energy loss as
a function of momentum (see Figs. C.6 and C.9).

Figure C.16: The particle
separation on two-dimensional
plane of velocity (β) vs momen-
tum in the TOF detector. Solid
curves represent ideal values for
a given particle species. Figure
taken from Ar +KCl at 1.756
GeV/nucleon measurement (see
Ref. [Sch08]).
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C.3.4 Time reconstruction

The correct particle velocity (β) can be deduced from the track length and absolute
time-of-flight measured between the START detector and the TOF/TOFino detector
signals. In experimental measurements of elementary collisions, performed before the
spectrometer upgrade in 2010, the START detector was not operating. As a conse-
quence, the start time was given for each event by the trigger signal, which was related
to the earliest signal in either TOF, TOFino or FW detectors. Therefore, there was no
common time reference for tracks in different events. The absolute time-of-flight can,
however, be calculated for a defined hypothesis, where each reconstructed trajectory is
assigned to be a given particle species. With the known trajectory length, momentum
and ideal particle mass, the time-of-flight for each particle is calculated,

tcalci = l
track
i

β ⋅ c
, (C.2)

where ltracki is the i−th particle track length, β depends on the assigned ideal mass.
In a general case of N particles, the reference particle (here, j−th) has to be chosen.
The reference time for each (i, j) pair is defined as the mean time

t̄j =
tcalci + tcalcj

2
. (C.3)

If the measured (relative) time is texpi and texpj , with the help of half time difference

∆tj =
texpj − texpi

2
, (C.4)

the reconstructed time can be calculated as follows:

trecij = t̄j −∆tj

trecii =

N

∑
j,j≠i

t̄j

N − 1
.

(C.5)

Finally, the χ2
tot for a given hypothesis is a measure which particle combination assign-

ment is the best in terms of the reconstructed time-of-flights:

χ2
tot =

¿
ÁÁÀN

∑
i

χ2
i , χ

2
i =

¿
ÁÁÁÀ

N

∑
j

(trecij − tcalcj )2

σ2
j (TOF,TOFino)

. (C.6)

The χ2 calculation includes the TOF and TOFino detector resolution. In most cases
there is no need to calculate all combinations in the event, as the reference particle is
preferably measured in the TOF detector, and with a negative polarity (e.g. e− or π−),
depending on a given hypothesis. The proper particle assignment results in the correct
β vs momentum dependency.
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C.3.5 Physical observables

C.3.5.1 Invariant mass

A common method to reconstruct a particle that decays into several charged
secondary particles before it reaches the detector is to calculate the invariant mass.
In a two-body decay, for the daughter particles identified with the masses m1 and m2,
energy E1 and E2, momenta p1, p2 and their relative opening angle θ12, the invariant
mass reads:

minvc
2 =

√
(E1 +E2)2 − (p⃗1c + p⃗2c)2, (C.7)

and further,

minv =
√

(m2
1 +m2

2) + 2 (
√
m2

1 + (p⃗1c)2
√
m2

2 + (p⃗2c)2 ) − 2 ∣p⃗1∣ ∣p⃗2∣ c2 cos θ12. (C.8)

Usually, after identification of the daughter particles, the ideal masses m1 and m2 are
used. In this case, the errors from the time-of-flight measurement, as well as further
systematic errors, are not propagated into the invariant mass spectrum. Accordingly,
the width of the particles and resonances is composed only of their own decay widths,
as well as the pulse resolution. In the case of dielectron pairs, the masses are neglected
(m1 =m2 ≈ 0), and the formula is simplified (here in units c = 1):

minv = 2
√

∣p⃗1∣ ∣p⃗2∣ sin
θ12

2
. (C.9)

C.3.5.2 Signal and combinatorial background

In the low mass region me+e− < 1 GeV/c2 the dominant sources of dileptons are
π0/η semi-leptonic or photon decays, followed by the photon conversions in the target
and detector material. Moreover, several pions can be produced per event. Hence, a
certain number of electron tracks (n−) and positron tracks (n+) can be identified within
an event. In combination of all unlike sign pairs (ntot

+−
) it is not possible to decide which

pairs derive from the same decay vertex and which are an accidental combination of
individual tracks of separate decay processes. Therefore, two classes of unlike sign
pairs can be distinguished: the signal of correlated dielectrons, nsig

+−
and the so-called

combinatorial background (CB) pairs, ncb
+−
. Hence, the signal is calculated as follows:

nsig
+−

= ntot
+−

− ncb
+−
. (C.10)

Both signal and combinatorial background are continuous spectra. The pairs of e+

and e− produced in different decays form an uncorrelated background. However, in
π0/η → γe+e− Dalitz decays, or π0/η → γγ decays, followed by the γ → e+e− conversion
in detector material, some e+e− pair combinations are correlated in the phase space
since they originate from the same grandparent particle (e.g. pseudoscalar meson).
Such a contribution to the background is referred to as correlated background (see Fig.
C.17). The combinatorial unlike sign background can be estimated by the same-event
like sign method or by the mixed event technique. The first method is based under the
assumption that the same-event combinatorial like-sign background is identical to the
combinatorial unlike-sign background and if acceptance and efficiency for electrons and
positrons being the same. The like sign background can be described by the geometric
mean of unlike sign combinatorial background (see Refs. [Gaz00, Abr00] for detailed
derivation):

⟨ncb
+−

⟩ = 2
√

⟨n++⟩⟨n−−⟩ . (C.11)
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Figure C.17: The combi-
natorial background of cor-
related pairs (marked with
ellipses) deriving from the
π0/η Dalitz decays (left fig-
ure) and decays to two
photons, followed by the
e+e− pair conversion in the
target or detector material
(right figure).

This result assumes that the reconstruction probability does not depend on the
sign of the pair, which is true in most cases for large pair opening angles, but in
general, a finite two-track resolution affects like-sign and unlike-sign pairs differently (for
a correction factor calculation see Ref. [PC10]). Another disadvantage of the like-sign
background estimation method are limitations in the available statistics. The respective
error can be approximated as

σ(
√

4⟨n++⟩⟨n−−⟩) ≈
√

⟨nlike−sign⟩, (C.12)

where
√

⟨nlike−sign⟩ ≈ 2⟨n++⟩ ≈ 2⟨n−−⟩, (C.13)

and Poissonian distribution for the statistical error and statistical independence of the
positive and negative like-sign pair samples were assumed. It is worth noticing that the
combinatorial background can be approximated by an arithmetic mean. Provided, that
n+ and n− are larger than ∣n+ − n−∣, one can write e.g. n−− = n++ + ε, and

√
n++n−− = n++

√
1 + ε

n++
≈ n++ (1 + 1

2

ε

n++
) = n++ +

ε

2
= n++ + n−−

2
. (C.14)

The arithmetic mean always overestimates the geometrical mean. The CB has to be
calculated for every distribution under investigation, e.g. the differential formula for
the invariant mass:

dNCB
dMe+e−

= 2

√
( dN
dM

)
e+e+

( dN
dM

)
e−e−

, (C.15)

where e+e+ and e−e− stand for the same-event like-sign pairs.

In the mixed-event technique, tracks from different events are combined to yield the
combinatorial unlike-sign background, thus they are inherently independent. In contrast
to the same-event technique, requiring at least two tracks per event, the mixed-event
approach utilizes also events with single tracks, what has to be taken into account during
the data analysis. In order to obtain the mixed-event background, the mixed unlike-sign
distribution has to be properly normalized with the number of same event pairs. The
advantage of the mixed-event background distribution is that the statistical error can be
easily reduced by increasing the number of mixed events (for details, see Ref. [Her02]).
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C.3.5.3 Reference frames

The laboratory system is a natural reference frame for detectors, but there are
other important reference systems allowing for the correct visualization of physical
processes, including the production and decay mechanisms. Besides the rest mass, which
is Lorentz invariant observable, the leading role play various angular projections in
center-of-mass (c.m.s.) system, the Gottfried-Jackson (GJ) angle and the helicity angle.

π

p p

n π+

Δ++

p

A            B

Figure C.18: An example of the ∆
resonance production and decay in
the one-pion exchange description.
The ∆++ decays further into p and
π+, making three particles in the fi-
nal state. Various angular distribu-
tions can be studied (see text for
details).

The graph in Fig. C.18 is an example of the
∆++ resonance production in the one-pion ex-
change description, with three particles (n, p,
π+) in the final state. The two initial pro-
tons are indistinguishable, i.e. it is not known
which is the projectile or the target. The
graph will be used for an illustration of the
aforementioned angular projections.

The center-of-mass system (c.m.s.) is the
Lorentzian frame, where the total momentum
is 0, and the projectile and target particles
(in figure, pbeam and ptarget) have identical
momenta in opposite directions. Figure C.19
presents an example of one-pion production in
the p+p→ n+p+π+ channel, with three parti-
cles in the final state. The θnc.m.s. distribution
is the mirror reflection of the two-body θpπ

+

c.m.s.

distribution. An intermediate ∆++ resonance
influences the angular distribution of the par-
ticles (as described by the one-pion exchange
models, see Sect. 1.2) and the observed angu-
lar distribution should be very anisotropic.

pbeam ptarget

π+

θp

p

n
θnθπ+

c.m.s.

c.m.s.

c.m.s.

Figure C.19: Final state of three
particles (n, p, π+) and the sub-
sequent angles (θnc.m.s., θpc.m.s.,
θπ

+

c.m.s.) in the center-of-mass sys-
tem. The anisotropic angular dis-
tribution is sensitive to production
and decay mechanisms but is also
challenging from the experimental
point of view, requiring large ac-
ceptance coverage.

The angular distributions in the center-of-mass are sensitive to the characteristics of
the exchange meson. Light meson exchange (here π+) results in very anisotropic dis-
tributions, whereas the exchange of heavy mesons are more isotropic. In elementary
collisions discussed in the following chapters (pp or np), the center-of-mass system is
calculated as a fixed value. However, in the case of the secondary beam which is the
pion beam, the momentum is not fixed but has a certain beam momentum profile. If the
fixed value is used for the center-of-mass frame determination, the obtained distribu-
tions are smeared additionally with the beam momentum resolution. In such a case
a pion tracker can deliver information on the pion projectile momentum, which can be
used for the c.m.s. calculation.
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p
beam

ptarget

π +
n

p
θn
pn

Figure C.20: The Gottfried-
Jackson angle is defined as the an-
gle between projectile and a par-
ticle in the final state, where both
are observed in the same rest frame
made e.g. out of two particles, and
one of the rest frame components
is a particle used for the GJ angle.

The Gottfried-Jackson (GJ) frame [Got64] (Fig. C.20) is the rest frame of two (e.g.
nπ+) out of three (e.g. n, p, π+) produced particles. In this frame, the GJ angle (e.g.
θπ

+

nπ+) is defined as the angle between one of the rest frame particles (e.g. π+) and the
initial particle (e.g. p) boosted to the same rest frame. The superscript denotes the
selected particle for the angle calculation, whereas the subscript indicates which rest
frame is used. In the case of one-pion exchange (as in Fig. C.18), the nπ+ (or pπ+)
rest frame is equivalent to the rest frame of the exchanged pion (π+∗) and the proton
contributing to the vertex B. In such a case the reaction description is reduced from
2 → 3 to 2 → 2 of the form π+∗ + p → p + π+, and only the kinematics at vertex B
plays a role. The GJ angle distribution does not need to be symmetric. In addition, if
two protons collide, the production may occur either at vertex A or vertex B, and the
angular distribution has to be calculated by using the angle to both protons.

p
b
eam

ptarget

π+
n

p

θn-π+
pn

Figure C.21: The helicity angle is
defined as the Lorentzian frame of
two particles, i.e. it is the identi-
cal Lorentzian frame as the respec-
tive Jackson frame. Three helicity
frames can be constructed by cyclic
permutation for the three-body fi-
nal state (nπ+, pπ+, and np in this
example). E.g. the θp−π

+

nπ+ angle is
calculated between p and π+ mea-
sured in the rest frame of nπ+.

The helicity frame (Fig. C.21) is also the rest frame of two particles (e.g. nπ+), but
the helicity angle is defined between one of rest frame particles and the third particle
(e.g. p) in the final state, observed in the same rest frame, e.g. θp−π

+

nπ+ with a proton
boosted to the nπ+ reference frame. Therefore the superscript contains both particles
selected for the helicity angle calculation. If the Dalitz plot is distorted due to physical
or kinematical effects, it must result in characteristic distributions in helicity frames.
For example, the ∆++ resonance decaying into p+π+ manifests its presence in the m2

nπ+

(or m2
np) axis in a Dalitz plot. The properties of mass and width of the resonance are

seen in the nπ+ and np helicity frames. The decay pattern characteristic for the angular
momentum of the resonance shows up in the pπ+ helicity frame. It is different from
the isotropic if the resonance carries angular momentum L > 0 and if it is polarized,
or if more resonances decay into the same channel and thus the interference effects can
influence the distribution. The final-state interaction may also distort a Dalitz plot and,
consequently, can be seen in helicity angle distributions.
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In summary, three particles in the final state can be studied by plotting nine an-
gular distributions (three center-of-mass angles, three GJ angles, and three helicity
angles). Not all of these observables are kinematically independent from each other.
The energy and momentum conservation reduces nine degrees of freedom to five, and
with the azimuthal symmetry, only four independent degrees of freedom remain.

C.3.6 Normalization

In order to plot the differential cross section of a given physical channel, the ref-
erence reaction has to be identified. In all elementary NN reactions as well as π−p
collisions, the elastic scattering has been measured in parallel to inelastic channels,
allowing, with the use of the known cross sections from other experiments, for the
deduction of the normalization for all channels.

C.3.6.1 Normalization in pp and np collisions

The normalization of the experimental yields is performed using the pp elastic scat-
tering yield, recorded usually with the dedicated trigger condition, requiring only two
particles in opposite sectors of the HADES spectrometer. The momentum conservation
leads to the following relations between polar (φ) and azimuthal (θ) angles of both
protons:

∣ φ1 − φ2 ∣ = 180○ ,

tan θ1 × tan θ2 =
1

γ2
c.m.s.

,
(C.16)

where γc.m.s. is the Lorentz factor of the center-of-mass system. The elastic events
are selected by a two-dimensional elliptic cut in the (∣ φ1 − φ2 ∣, tan θ1 × tan θ2) plane,
with semi-axes corresponding to 3σ for each variable. These constraints account for
the detector resolution and the momentum spread of the proton. Figure C.22 shows
a proton polar angle in the laboratory system within the HADES acceptance. The data
have been overlayed with the simulation of the pp elastic events at T = 1.25 GeV.

[deg]pΘ
20 40 60

[m
b/

de
g]

Θ
/dσd

0

0.05

0.1

0.15
pp E=1.25 GeV→pp

HADES data
 MC simulation

Figure C.22: pp elastic scattering at
T = 1.25 GeV. Proton polar angle in
the laboratory system: data (dots)
corrected for efficiency are presented
within the HADES acceptance. They
are compared to the Monte Carlo sim-
ulation using the cross section param-
etrization published in Ref. [EC04]
(black solid line histogram).
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The reference pp elastic cross section for the polar angle range between 46○ and
134○ in the c.m.s. amounts to 3.99 ± 0.19 mb, as measured by the EDDA Collaboration
(see Ref. [EC04]). The normalization error is estimated to be 8%, where 5% is derived
from the error of the reference differential cross section and 6% is the systematic error
of the reconstruction of events with elastic scattering. It the case of dp collisions at
1.25 GeV/nucleon, the quasi-elastic pp scattering yield was recorded with the trigger
condition, requiring two particles in the opposite TOF/TOFino sectors and no particle
registered in the FW. The proton momentum distribution in the deuteron and the de-
pendence of the cross section on the pp center-of-mass energy were taken into account
in the Monte Carlo simulation, using realistic momentum distributions implemented in
the PLUTO event generator [Frö07]. The overall normalization error was estimated to
be 7%, where 4% was derived from the error of the reference differential cross section
from Ref. [EC04] and almost 6% was the systematic error of the reconstruction of events
with elastic scattering in HADES [HC15b]. It the case of pp collisions at T = 3.5 GeV
the pp elastic cross section has been obtained from Ref. [Kam71].

C.3.6.2 Normalization and carbon subtraction in π−pπ−pπ−p collisions

π−p elastic scattering was measured in the pion beam experimental run to serve as
the normalization for all other channels. First, events were pre-selected with the help
of a cut on coplanar pion and proton reconstructed tracks (±5○) and tan θπ− × tan θp > 1
selection. Events originating from scattering on polyethylene target (composed of both
carbon and proton atoms in the ratio 1 : 2) and carbon target are depicted in Fig. C.23
(left panel) showing π−p missing mass squared. The proportion of carbon events (red
curve) was scaled such that the left tail, far from the dominating elastic scattering peak
on protons, should match the tail from polyethylene events (black curve). This scaling
factor is in agreement with the number of all events recorded in the START detector
(see App. C.1.1) during the measurement with the polyethylene target and the carbon
target, respectively (after correction for the data acquisition dead time and taking into
account different carbon densities of both targets). Scaling factor for the polyethylene
and carbon target events, deduced in the elastic scattering channel, was used further to
all inelastic channels.

The next step, performed for all investigated channels separately, was matching
events of the same kinematic characteristics from polyethylene target and carbon target.
Events were grouped into bins of similar missing mass values, then for all combinations
among tracks measured with the polyethylene and the carbon target those with the
lowest χ2 were paired together. The calculation of the χ2 correlation included: (a) the
momentum, and (b) polar angle of the measured particles (π+, π−, proton), and (c)
invariant mass of π+π− and pπ−, respectively. This method delivers pure pion-proton
reaction candidates. The event by event tagging and rejection of carbon events allows
also for the further cut refinement, e.g. elastic scattering selection what is not possible
when having also events with the pion scattering on carbon. A few approaches were
investigated (e.g. two-dimensional graphical cuts on angle and momentum of p and π−

or condition on the same momentum of particles in the c.m.s.) in order to estimate the
systematic error of the elastic scattering identification.
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Figure C.23: Example of π−p → π−p elastic scattering at nominal beam momentum
800 MeV/c (791.1 MeV/c measured with the pion tracker). Left panel: uncorrected
data, π−p missing mass squared with events from (C2H4)n (polyethylene) target (black
histogram), C (carbon) target rescaled (red histogram) and their difference (blue dotted
curve) - signal obtained by matching scattering on carbon in polyethylene target with
scattering on carbon target on the event by event basis. Finally, elastic scattering
selection (dark red dashed area). Right panel: angular projection of π− in c.m.s. from
π−p elastic scattering, corrected for the reconstruction inefficiencies and acceptance
(black dots) compared with the distribution from the SAID database [Arn03] within
the fiducial volume 60○ < θc.m.s.π− < 110○ (limited by the vertical blue dashed lines).
Inset: ratio of SAID data to reconstructed elastic events (red histogram).

To describe elastic scattering, events were generated in the framework of the
PLUTO event generator [Frö07] with the angular parameterization taken from Ref.
[Bro71]. Then, the full GEANT simulation of the detector response, followed by the
same analysis strategy as used for the experimental data, were performed. Simulated
elastic scattering events describe the measured data within the HADES acceptance very
well and are used for the one-dimensional acceptance correction. The contribution from
quasi-elastic scattering from C (red histogram) has been subtracted based on the miss-
ing mass distributions measured with polyethylene and carbon separately (as described
above) and the difference agrees with the line shape expected for π−p events obtained
from the full Monte Carlo simulations. The simulations took into account the momen-
tum reconstructed with the help of the pion tracker (see App. C.1.8), with the most
probable values of 654.1 MeV/c, 683.5 MeV/c, 738.9 MeV/c and 791.1 MeV/c. The
corrected data are normalized to the distribution from the SAID database [Arn03] of
the known differential π−p elastic scattering. It amounts to 3.01 mb, 3.10 mb, 3.08 mb
and 2.59 mb for the subsequent pion beam momenta in the polar angle range between
60○ − 110○ in c.m.s. The corrected data for the pion beam momentum 791.1 MeV/c
(nominal value 800 MeV/c) are presented in Fig. C.23, right panel. The deviation
between SAID and experimental values is in the range 2−3% (root-mean-square error).
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C.3.7 Efficiency and acceptance corrections

To facilitate fast and easy comparison with the various reaction models, the de-
tector acceptance and the reconstruction efficiencies were calculated and stored in the
form of three-dimensional matrices (momentum, polar and azimuthal emission angles)
for each particle species (p, π+, π−, e+, e−). The acceptance matrices describe the ge-
ometrical acceptance of the spectrometer, while the efficiency matrices account for the
detection and reconstruction losses within the detector acceptance. The resolution ef-
fects were included by means of smearing functions acting on the generated momentum
vectors.

Another approach is based on corrections calculated individually as
one-dimensional functions. The correction function is constructed, for a given dis-
tribution, as ratio of the model yield in the full solid angle and the yield within the
HADES acceptance, including all detection and reconstruction efficiencies obtained us-
ing the full analysis chain. It consists of three steps: (i) generation of events in the full
space according to a specific reaction model, (ii) processing of the events through the
realistic detector acceptance using the GEANT package, and (iii) applying specific de-
tector efficiencies and the reconstruction steps as for the real data case. The respective
correction functions are calculated as ratios of the distributions obtained after steps
(ii) and (iii). In some cases the correction factors were calculated as two-dimensional
functions of the dielectron invariant mass and the given angle using two reaction models.

The differences among models were used to estimate systematic errors related to
model corrections. The models were verified to describe the measured distributions
within the HADES acceptance reasonably well.
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