
An Object-Oriented Bridge among Architectural Styles,
Aspects and Frameworks

J. Andrés Díaz Pace

ISISTAN Research Institute, Faculty of Sciences, UNICEN University
Campus Universitario, Paraje Arroyo Seco, (B7001BBO) Tandil, Buenos Aires, Argentina

Also CONICET - Argentina
Email: adiaz@exa.unicen.edu.ar

It is generally agreed that designing high-quality frameworks results a difficult task, mainly because
this process often relies more on the designer's expertise than the technology used to implement such
designs [4]. Besides, frameworks should also take into account several quality attributes. Therefore,
framework development practices typically involve considerable efforts. This would indicate that
some  aspects of the domain could not be directly modeled in terms of object-oriented concepts. The
problem  is how to break the tradeoffs imposed by a pure functional decomposition versus a pure
object-oriented  decomposition of a system.

In this context, a design approach driven primarily by architectural models focuses on the solution of
design problems taking as main driver the organization of software components as a function of the
quality attributes affecting the system. In this way, developers should be able to construct a given
system by assembling and elaborating certain architectural fragments, as independently as possible of
particular implementation technologies. Nonetheless, improved software quality cannot be achieved
simply by focusing on isolated architectural styles and their associated quality attributes. In fact, as
software complexity gets bigger, designers need to deal with a variety of special computing concerns
or aspects [6] (e.g., synchronization, error-checking strategies, resource sharing or usage, distribution
and performance, among others) in order to fulfill these quality factors. Particular styles may be able
to address specific aspects, but the final system architecture needs to be built considering a number of
relevant concerns, which usually present uneven organizations. Moreover, the intrinsic nature of
concerns makes it difficult to cleanly segregate them [5]. Once the system architecture is given, the
underlying organization of its concerns comes attached. The discussion is not just about new
mechanisms or artifacts to handle software concerns, rather it involves how technologies can
contribute to effectively reason about concerns by promoting good design practices.

We propose an architecture-driven design approach based on the concept of proto-frameworks [1],
aiming to provide an intermediate stage in the transition from architectural models to object-oriented
frameworks or applications. The approach is based on an object-oriented materialization of
domain-specific architectures derived from domain models, that is the production of concrete
computational representations of abstract architectural descriptions using object-oriented technology.
A proto-framework materializes, in object-oriented terms, the infrastructure required for cooperation
and communication of each architectural component type. In other words, a proto-framework provides
the essential abstractions to derive new applications or frameworks by inheritance from the
proto-framework classes. In this case, the framework provides very abstract hooks to map specific
domain components into a class hierarchy in a white-box  fashion. This mapping can produce a
specific application, but more important yet, it can produce new domain-specific frameworks that
adopt the underlying architectural model. Using an architecture-oriented approach, developers are able
to better identify relevant concerns and reason about them at the very conception of the system
architecture [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The main contribution of the approach is that proto-frameworks make explicit some essential
architectural choices by means of object-oriented constructs, which can serve later as basis for the
development of either traditional frameworks or final applications. Therefore, the tradeoffs among
quality attributes selected by framework developers for this design can determine different alternatives
of building frameworks on top of proto-frameworks.

Object-oriented Materialization of Software Architectures

By materialization we mean the process of producing a concrete computational representation from an
abstract description using a given technology. Starting with an abstract domain model and one or more
architectural styles (e.g. pipeline, blackboard, hierarchical layers, etc.) suitable for the domain, we
obtain a first architectural materialization of the domain. This materialization is driven primarily by
quality attributes (non-functional requirements) that predominate in that domain. In the proposed
approach (see Figure 1), we can basically identify two stages. First, developers should figure out the
problem architecture, that is an architecture representing the primary organization of the software to
build and the tradeoffs imposed by non-functional requirements and architectural styles. Here,
concerns are initially mapped to architectural constructs, instead of be coded using framework or
languages constructs. Second, as a result of this general description of relevant concerns, the approach
enables a materialization of these concerns into a proto-framework, and then several kinds of
framework implementations, whereas these frameworks retain the properties inherited from the
original system architecture.

Figure 1. Materialization approach to framework design

. . .

Framework 1

C2
C1

C4

Framework 2

C3
C4 C2

Application k

C3 C4
C2

Applications

concern mapping

C1, C2, C3, C4: relevant software concerns

Problem
Architecture

Architectural Styles
Problem
Domain

C4

C3

C1

C2

Scenario-based
Analysis Techniques

(quality factors)

Phase A:
O-O Architectural

Materialization

Proto-Framework

C2
C3

C4 C1

Phase B:
O-O Refinement
 (Smartbooks)



In order to make this approach effective, it is necessary to provide techniques assisting developers to
bridge the gap between architectural specifications and concrete object-oriented implementations. In
this line, we are working on a novel approach called Smartbooks [7], initially conceived to improve
framework usability by means of knowledge-driven documentation. This method can be easily
adapted to the second phase of our approach because a proto-framework is an object-oriented
framework itself. Moreover, we believe this can transcend the framework scope to be applied at higher
levels of abstraction. If we insert proto-frameworks, it would be reasonable to count with means to
transform architectural designs into proto-framework structures. We are currently investigating the use
of smart techniques for aspect-oriented software development [2], so that high-level aspect
specifications can be mapped into aspect implementations (for example, aspect-oriented frameworks
or aspect languages) by using adequate documentation knowledge. We believe this approach (with
some modifications) can be extended to fulfill the requirements of our problem regarding
object-oriented materialization of software architectures.

At this moment, we have developed a proto-framework called Bubble derived from previous research
in the subject. The model can be informally summarized as a set of cooperating agents, that we call
bubbles, which perform certain computations and use an event-based implicit-invocation style to
notify other bubbles about their computations. Bubbles are also equipped with associated sensors,
which are registered to process certain kinds of events according with predefined relevance criteria.
The behavior of any bubble in the system is defined through tasks using a condition-action format. In
this way, complex interactions, structures and behaviors can be modeled combining these primary
blocks. The current version of the Bubble model has been implemented in Java, and it allows
developers to define and configure different kinds of components, such as: entities, groups, tasks,
sensors, and interaction protocols. We have partially validated the feasibility of the approach with
several applications/frameworks implemented on top of Bubble, namely: a multi-agent simulation of
bubbly flow, a framework for Enterprise Quality Management systems (EQM) called InQuality [1],
and a soccer simulation. These examples served to compare alternative framework implementations
derived from a target proto-framework.

Presentation

The poster presentation will be based on the following topics:
• Frameworks and proto-frameworks
• The role of aspects in software design
• Object-oriented materialization of software architectures
• An example with the Bubble model
• Application of AI techniques to support the approach

References

[1] Marcelo Campo, Andrés DiazPace, and Mario Zito. Developing Object-Oriented Enterprise Quality
Frameworks using Proto-Frameworks. Software Practice and Experience 32(8): 837-843. Theme Issue on
Enterprise Frameworks, 2002.

[2] Andres Diaz Pace, Marcelo Campo and Federico Trilnik. Assisting the Development of Aspect-based Multi-
Agent Systems using the Smartweaver Approach. Proceedings SELMAS 2002. LNCS Springer Special Volume
on Software Engineering for Large-Scale Multi-Agent Systems, 2003



[3] Marcelo Campo and Andres Diaz Pace. Analyzing the Role of Aspects in Software Design. CACM 44(10):
66-73 - Special Issue on Aspect-Oriented Programming , 2001.

[4] Mohamed Fayad, Douglas Schmidt, and Ralph Johnson. Building Application Frameworks, Object-Oriented
Foundations of Framework Design. Wiley Computing Publishing, 1999.

[5] Walter Hürsch and Cristina Videira Lopes. Separation of concerns. Technical Report NU-CCS-95-03,
College of Computer Science, Northeastern University, Boston, Massachusetts, February24 1995.

[6] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-oriented programming. In Mehmet Ak›sit and Satoshi Matsuoka, editors, ECOOP '97 --
- Object-Oriented Programming 11th European Conference, Jyväskylä, Finland, volume 1241 of Lecture Notes
in Computer Science, pages 220--242. Springer-Verlag, New York, NY, June 1997.

[7] Alvaro Ortigosa, Marcelo Campo, and Roberto Moriyon. Towards agent-oriented assistance for framework
instantiation. In Proceedings of the Conference on Object-Oriented  Programming, Systems, Languages and
Application (OOPSLA-00), volume 35.10 of ACM Sigplan Notices, pages 253--263, N. Y., October 15--19
2000. ACM Press.


