
Reactive Mobility by Failure

Alejandro Zunino

ISISTAN Research Institute - UNICEN University
Campus Universitario (B7001BBO), Tandil, Bs. As., Argentina
TEL/FAX: +54 (2293) 440363 - azunino@exa.unicen.edu.ar

Abstract

Mobile agent development is mainly supported by Java-based platforms. However, the weak
mobility model they use, added to the inherent complexity of building location-aware software,
impose strong limitations for developing mobile agents. In this article we present MoviLog, a
platform for building Prolog-based mobile agents with a strong mobility model. The major con-
tribution of MoviLog is itsReactive Mobility by Failure(RMF) mechanism. MRF is a mechanism
that acts when an agent needs a resource that is not available at the current executing site. RMF
uses a distributed multi-agent system to transparently transport the executing agent to the site
where the resource is available, thus reducing the development effort with respect of traditional
platforms, while maintaining its advantages.

1 Introduction

The wide diffusion of the Internet and the WWW are providing a global platform for the development
and deployment of massively distributed systems. Despite recent advances on technologies and stan-
dards, the development of such a massively distributed applications remains expensive and difficult.
Moreover, the near future appears much more complex. Just image the WWW with >1000 millions
of hosts, many of these hosts with unreliable connections, several different operating systems and
hardware. One of the main risks with such a complex scenery is to under exploit its resources, not
taking advantage of its huge volumes of resources.

Mobile agents, software able to autonomously migrate between network hosts in order to achieve
their users’ goals, emerged as a novel paradigm offering advantages over traditional stationary soft-
ware in distributed systems [4]. Mobile agents are different from stationary software in one very
important aspect: mobile agents arelocation aware. As a consequence mobile agents are able to
choose, for example, whether to remotely access to a non-local resource or to migrate to the place
where the resource is located, depending both on the cost of remotely accessing to the resource and
the cost of migrating.

Although the well known advantages of mobile agents [6] and the availability of many platforms
that support mobile agents [5, 7, 8], their usage is still limited to small applications. We believe this is
caused by the fact that mobile agents are inherently more complex than traditional stationary systems.
Clearly, mobile agent developers have to provide mechanisms to decide when and where to migrate.
Therefore, though agents’ location awareness may be very beneficial, it also adds further complexity
to the development of mobile agents, specially with respect of stationary applications.

In this paper we describe MoviLog [11], a platform for Prolog-based mobile agents that aims
at reducing the development effort while fully exploiting available network resources. MoviLog is
based on a novel concept calledReactive Mobility by Failure(RMF). The idea behind RMF is to use a
stationary multi-agent system (MAS) distributed across the network to assist a mobile agent on taking
decisions onwhenandwhereto move, based on resource needs. In order to retain agents’ autonomy,
RMF only interferes with the normal execution when it detects afailure. A failure occurs when an
agent accesses to a specially declared resource that is not available at the current executing site.

The paper is organized as follows: the next section describes RMF, then, section 3 describes its
implementation; finally, the conclusions are presented in section 4.

2 Reactive Mobility by Failure

MoviLog is a mobile agent platform that implements a new form of mobility called Reactive Mo-
bility by Failure which aims at reducing the effort of developing mobile agents by automating some
decisions about mobility. RMF is based on the assumption that mobility is orthogonal to the rest of
attributes that an agent may possess (intelligence, agency, etc) [2]. Under this assumption it is pos-
sible to think of a separation between these concerns at the implementation level [3]. RFM exploits
this separation by allowing the programmer to focus his efforts on the stationary functionality, and
delegating mobility issues on a distributed MAS that is part of MoviLog.

Though some of the concepts of RMF are language independent, we will limit the scope of the pa-
per to Prolog-based agents calledBrainlets. Brainlets are written in JavaLog [1, 10], a multi-paradigm
language that integrates Java and Prolog. A Brainlet is composed of Prolog clauses, Java objects and
a number ofprotocols. A protocol is a declaration of the interface used to access a resource. By re-
source we mean, for example, data (Prolog clauses, databases, Web pages, Java objects, etc) or code
(Prolog clauses, Web accessible programs, Java methods, etc).

When a predicate of a Brainlet declared as a protocol fails (it is not possible to evaluate the
predicate at the current site, or there are no more choices left), RMF moves the Brainlet to another
site having definitions for such a predicate and continues the normal execution to try to find a solution.
The implementation of this mechanism requires the MoviLog inference engine, named MARlet, to
know where to send the Brainlet, thus the MARlet has to know the protocols available at every site of
the network. In order to maintain this information, some of the mobility agents named PNS (protocol
name servers) discover MARlets and keep up to date the protocols offered by each site. The next
section describes the main concepts of RMF and its differences with proactive mobility.

2.1 Proactive Mobility vs. RMF

In order to clarify the concepts introduced up to now we will describe a distributed meeting scheduling
system developed with MoviLog. In this system, each user is represented by a Brainlet that manages
his calendar. A Brainlet stores and incrementally updates a profile of the user, including its preferred
places, meetings, contacts, etc. When a Brainlet receives a proposal for a meeting, it begins a ne-
gotiation with its counterpart. Since the counterpart may reside in a different place of the network
and the negotiation involves several interactions, it may be beneficial to migrate. By using traditional
proactive mobility, each agent autonomously decides whether to migrate or not. The following code
shows a fragment of a Brainlet that uses proactive mobility. The clauseproposalListeneris invoked
when the Brainlet receives a message proposing a meeting. When this occurs the Brainlet analyzes
whether to move to the site where the counterpart is located and then initiates a negotiation.

PROTOCOLS
CLAUSES
proposalListener(User,P) :- in(role(User,OtherAgent,Role)),
moveToOrStayHere(User,OtherAgent,Role,P), in(consensus(User,C)), eval(User,C).

moveToOrStayHere(User,OtherAgent,’persuader’,P) :-
getBrainletsForRole(OtherAgent,id(_,H)), (estTraffic(negotiation,H,Tn),
estTraffic(move,H,Tm), Tn>Tm -> moveTo(H)), negotiate(User,OtherAgent,
’persuader’,P), return.

...

In this example, the parts of the code in bold decide whether to move to the remote site or not based
on the estimated network traffic generated by the negotiation and the estimated network traffic used
to migrate the agent. Since MoviLog provides strong mobility, the execution of the agent is resumed
at the remote site after themovepredicate.

Though the support for strong mobility provided by MoviLog is easier from a programmer’s point
of view than the weak mobility model provided by most Java-based platforms [5, 8, 7], it is still

difficult to use and exploit. A simple fact will back our claim: non-mobile agent development it is
well-know for being a challenging task [9], thus adding mobility to those already complex agents
just make everything much harder. This is the problem that RMF addresses by combining proactive
mobility (decided by the mobile agent) and reactive mobility (decided by PNSs and mobility agents).

RMF acts only when a predicate declared as a protocol fails, thus in order to modify the previous
example to use RMF we have to define a number of protocols. Let us assume that an agentAgentId
asserts the factrole(User, AgentId, Role)when it wants to negotiate a meeting with the roleRolefor
a given user. By declaringrole/3 as a protocol, other agents may take advantage of RMF by simply
calling role as a goal. If one or more factsrole/3 are present at the local MARlet, then they will be
tried one by one. When no more choices are left, RMF will migrate the agent to a remote MARlet
where some Brainlet assertedrole, if considers appropriate to do so. In the code, the clausemoveEval
is used to tailor the decision mechanism of RMF to this specific application.

PROTOCOLS
role/4.

CLAUSES
init :- moveEval(role/4, estTraffic(negotiation,H,Tn),
estTraffic(move,H,Tm), Tn>Tm).
proposalListener(User,P) :-
in(role(User,OtherAgent,Role)), role(User,OtherAgent,Role),
negotiate(User,OtherAgent,’persuader’,P), in(consensus(User,C)),
return, eval(User,C).

...

As can be seen, the code using RMF is cleaner and simpler than the code using proactive mobility.
Note that a simpler code implies that less code is transferred through the network. As a consequence
RMF potentially may be faster than proactive mobility [11].

3 The MoviLog Platform

MoviLog is an implementation of the concept of RMF. MoviLog is an extension of JavaLog [1, 10],
a framework for building agent-oriented languages, to support mobile agents on the Web. MoviLog
supports the execution of Prolog-based mobile agents namedBrainlets. Those Brainlets run on top of
MARlets, special Java servlets encapsulating the MoviLog inference engine and providing services to
access it. A set of MARlets distributed across several sites where all the MARlets listen exactly the
same port number is called alogical network. As a consequence, a host may execute more than one
MARlet, however, all of them would belong to different logical networks. The rest of the section is
devoted to describing MoviLog and its main features.

3.1 MARlets

In order to enable mobility across sites, each host belonging to a MoviLog network must be extended
with a MARlet which provides the runtime support running on top of a Web server. In this way,
MARlets enable Brainlets to interact with standard Web technology. Additionally, a MARlet is able
to provide intelligent services under request, such as performing logic queries, adding and deleting
logic modules, activating and deactivating logic modules, etc. In this sense, a MARlet can also be
used to provide inferential services to legacy Web applications or lightweight agents.

3.2 Brainlets

A Brainlet is composed ofcode, data, execution stateandprotocol clauses. Code and data consist
of Prolog clauses and Java objects. JavaLog, the framework on which MoviLog is based, provides
a smooth integration between Prolog and Java that is useful when developing agents. An agent’s

Table 1: A simple logical network

M1 M2 M2

hd(#123,eide,wd,5400,40,72)
hd(#23,eide,maxtor,7200,40,79)

hd(#45,eide,ibm,5200,30,114)

hd(#78,scsi,ibm,15000,36.7,187)

hd(#33,eide,quantum,7200,20,54)

hd(#22,scsi,seagate,7200,36,210)

hd(#44,eide,panasonic,7200,30,582)

execution state consists of one or more Prolog threads. Protocol clauses are used by RMF to automat-
ically migrate a Brainlet when a failure occurs. A protocol has the syntax functor/arity, for example,
article/3denotes all the clauses with the form article(_,_,_,_).

3.3 Mobility

MoviLog supports strong mobility in its two forms: proactive (initiated by the agent itself) and reac-
tive (initiated by an external event). With respect to proactive mobility, it is triggered by the execution
of the Prolog predicatemoveTo(host).When a Brainlet executesmoveTo, its threads are suspended.
Then information on how to resume these threads is serialized, including the current program counter
and execution stack (choice points, variables and network itinerary); and send through the network to
the destination MARlet. At the destination, after verifying the integrity of the received information,
the Brainlet is restored from its compressed serialized representation, and the threads are resumed.

RMF is a novel concept introduced by MoviLog [11]. RMF acts when the evaluation of a predicate
declared in the protocols section fails. Let us show a simple example that will clarify this:

PROTOCOLS
hd/4.

CLAUSES
preferred(L,ID) :- ...
run :- findall(ID+Pr,hd(ID,scsi,Brand,RPM,MB,Price),L), preferred(Data,ID), buy(ID).

Table 1 shows the databases of three MARletsM1, M2 andM3. The goal of the Brainlet is to find a
hard disk that satisfies several constraints. The predicatefindall(Term, Goal, Bag)unifiesBag with
a list of all the instances ofTerm for which Goal succeeds.Termsin Bag are in solution order, i.e.
the first term corresponds to the first solution found, and so on. If the Brainlet starts its execution
at M1, findall will try with all the predicateshd/3. The failure will occur after trying withhd(#45,...).
At this point mobility agents will ask the local PNS agent for MARlets offering the protocolhd/4.
In this particular case, the result will be{M1,M2,M3}. Then, mobility agents will build an itinerary
and reactively migrate the Brainlet to the next destination, for exampleM2, by using the same strong
migrating mechanism asmoveTo. At M2 andM3 the process will be similar. As a resultfindAll will
evaluate alternatively all the clauseshd/4offered by the MARlets. At this point it is worth noting that
RMF can be adapted in a number of ways. For example, it is possible to specify how to build the
itinerary, how to decide whether to migrate or not, and how to estimate costs.

4 Conclusion

Intelligent mobile agents represent one of the most challenging research areas due to the different fac-
tors and technologies involved in their development. Strong mobility and inference mechanisms are,
undoubtedly, two important features that an effective platform should provide. MoviLog represents a
step forward in that direction. The main contribution of our work is thereactive mobility by failure
concept. It enables the development of agents using common Prolog programming style, making in
it easier thus for Prolog programmers. This concept, combined with proactive mobility mechanisms,
also provides a powerful tool for exploiting the Web.

References

[1] Analía Amandi, Alejandro Zunino, and Ramiro Iturregui. Multi-paradigm languages support-
ing multi-agent development. In Francisco J. Garijo and Magnus Boman, editors,Multi-Agent
System Engineering, volume 1647 ofLecture Notes in Artificial Intelligence, pages 128–139,
Valencia, Spain, June 1999. Springer-Verlag.

[2] Jeffrey M. Bradshaw.Software Agents. AAAI Press, Menlo Park, USA, 1997.

[3] A. Garcia, C. Chavez, O. Silva, V. Silva, and C. Lucena. Promoting Advanced Separation of
Concerns in Intra-Agent and Inter-Agent Software Engineering. InWorkshop on Advanced Sep-
aration of Concerns in Object-Oriented Systems (ASoC) at OOPSLA’2001, Tampa Bay, Florida,
USA, 14 October 2001.

[4] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus. Mobile Agents: Motivations
and State-of-the-Art Systems. Technical Report TR2000-365, Dartmouth College, Computer
Science, Hanover, NH, April 2000.

[5] Danny B. Lange and Mitsuru Oshima.Programming and Deploying Mobile Agents with Java
Aglets. Addison-Wesley, Reading, MA, USA, September 1998.

[6] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.Communications
of the ACM, 42(3):88–89, March 1999.

[7] Gian Pietro Picco.µCode: A Lightweight and Flexible Mobile Code Toolkit. In K. Rothermel
and F. Hohl, editors,Proceedings of the 2nd International Workshop on Mobile Agents, vol-
ume 1477 ofLecture Notes in Computer Science, pages 160–171. Springer-Verlag: Heidelberg,
Germany, 1998.

[8] Alberto Silva, Miguel Mira da Silva, and José Delgado. An overview of AgentSpace: A next-
generation mobile agent system.Lecture Notes in Computer Science, 1477:148–158, 1998.

[9] M. J. Wooldridge and N. R. Jennings. Software engineering with agents: Pitfalls and pratfalls.
IEEE Internet Computing, 3(3):20–27, 1999.

[10] Alejandro Zunino, Luis Berdún, and Analía Amandi. Javalog: un lenguaje para la programación
de agentes.Revista Iberoamericana de Inteligencia Artificial, (13):94–99, 2001.

[11] Alejandro Zunino, Marcelo Campo, and Cristian Mateos. Simplifying mobile agent develop-
ment through reactive mobility by failure. In Guilherme Bittencourt and Geber Ramalho, ed-
itors, Advances in Artificial Intelligente, volume 2507 ofLecture Notes in Computer Science.
Springer-Verlag, November 2002.

