
Learning Users’ Assistance Requirements with WATSON
Silvia Schiaffino

ISISTAN Research Institute – Fac. Cs. Exactas – UNICEN
Paraje Arroyo Seco, Campus Universitario – Tandil, Argentina

sschia@exa.unicen.edu.ar
Also CONICET

Abstract. Interface agents are computer programs that provide personalized assistance to users with their computer-
based tasks. The interface agents developed so far have focused their attention on learning a user's preferences in a
given application domain and on assisting him according to them. However, in order to personalize the interaction with
users, interface agents should also learn how to best interact with each user and how to provide them assistance of the
right sort at the right time. Particularly, an interface agent has to determine when the user wants a suggestion to solve a
problem, when he requires only a warning about it, when he wants the agent to execute an action to deal with the
problem and when he wants the agent to do just nothing. In this work we propose a learning algorithm, named
WATSON, to tackle this problem. The WATSON algorithm enables an interface agent to adapt its behavior and its
interaction with a user to the user's assistance requirements.

1. Introduction

Interface agents have become a technology widely used to provide personalized assistance to users
with their computer-based tasks. Interface agents are computer programs that have the ability of
learning a user's preferences, and helping him to deal with one or more computer applications,
reducing in this way the user's workload.

A commonly used metaphor for understanding interface agents paradigm is comparing them
to a human secretary or personal assistant who is collaborating with the user in the same work
environment [9]. Initially, a personal assistant is not very familiar with the habits and preferences of
her employer and may not be very helpful. However, the assistant becomes gradually more effective
and competent as she acquires knowledge about him. This knowledge can be acquired by observing
how the employer performs tasks, by asking the employer for information, by receiving explicit
instructions and feedback from him, or by learning from the experience of other assistants. Then,
the assistant can perform tasks that were initially performed by the employer, she can suggest him
the execution of tasks, she can notify the employer about situations interesting for him and warn
him about problems that may arise. In the same way, an interface agent can become more
competent as it interacts with a user and learns about him.

The many interface agents that have been developed focus their attention on learning a user's
preferences in a given application domain and on assisting the user according to them. However,
interface agent developers have paid little attention to some key issues when assisting a user: how to
best interact with each user and how to provide them assistance of the right sort at the right time.

In this context, Horvitz [7] has pointed out some problems with the use of interface agents:
poor guessing about the goals and needs of users, inadequate consideration of the costs and benefits
of each agent action and poor timing of agent actions. In addition to these problems, we have
identified a specific problem that has to be solved in order to personalize and improve the
interaction between an interface agent and a user. When an interface agent detects a problem
situation or situation of interest, it has to decide between warning the user about the problem and let
him decide how to deal with it, suggesting him how to solve the problem or solving it on the user’s
behalf. This decision will be mainly influenced by the knowledge the agent has to make a
suggestion, since if it does not know what to suggest or what to do, it will merely warn the user
about the problem. However, although the agent probably knows what to suggest, it has to learn if
the user wants it to suggest him something or not in that particular problem situation, or if he does
not even want to be warned. In order to take the best decision, the agent must determine when the
user wants a suggestion to solve a problem, when he requires only a warning about it and when he
wants the agent to solve the problem.

Consider, for example, an interface agent that helps a user with the organization of his
agenda. When a conflict between two activities arises, the agent can warn the user about it, it can
also suggest the user how to solve it, i.e. suggest which event(s) the user should reschedule, or it can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reschedule the events on behalf of the user. However, the user does not handle all the conflicts in
the same way. He wants the agent's help in some situations but he wants to handle some other
conflicts by himself. Thus, an agent should learn when and how the user wants to be assisted in
order to personalize its interaction with the user and become then more competent and usable.

In this work we propose a learning algorithm, named WATSON, to tackle the problem
presented before. The learning algorithm uses association rules to determine when the user wants a
given type of assistance. WATSON enables an interface agent to adapt its behavior and its
interaction with a user to the user's assistance requirements.

This work is organized as follows. Section 2 presents our proposed learning algorithm. Section
3 reports some experimental results. Section 4 describes some related work. Finally, Section 5
presents our conclusions and future work.

2. WATSON Learning Algorithm

The goal of our algorithm is learning which assistance action the user expects from an interface
agent in each problem situation or situation of interest that may arise. The following subsections
describe in detail our algorithm.

2.1. Inputs and Outputs

The input for our learning algorithm is a set of user-agent interaction experiences in a given application
domain. An interaction experience Ex is described by four arguments: a problem situation P, the
assistance action AA the agent executed to deal with the problem, the user feedback UF obtained
after assisting the user and an evaluation E of the assistance experience (success or failure). Each
problem situation P is described by a set of features and the values these features take,
P={(featurei,valuei)}. An assistance action may be a suggestion, a warning or an action. A
suggestion is described by the suggestion the agent has made, the problem originating it and a
justification of the proposed solution. Similarly, an action is described by a set of parameters
describing the action performed (these parameters are application dependent), the problem
originating it and a justification of the decision of executing that action. A warning is simply
described by the problem situation the user is being warned about. The user feedback may be
explicit, if the user explicitly evaluates the agent's actions, or implicit if the agent has to obtain it
from the user's actions. In turn, the user feedback can be positive or negative. It is positive if the
user accepts the assistance provided by the agent, i.e. if the assistance action executed by the agent
was the one the user expected. Otherwise, the feedback is negative. According to this feedback, the
experience can be evaluated as a success or as a failure.

The output of our algorithm is a set of facts establishing which assistance action the user
requires in a given problem situation. These facts may adopt one of the following forms: “in
problem situation P the user requires a warning W”, “in problem situation P the user requires a
suggestion S”, “in situation P the user wants the agent to execute action A” or “the user does not
want assistance (in situation P)”. Each fact F is accompanied by a certainty degree Cer(F), which
indicates how certain the agent, is about this fact. The following sections describe how we obtain
these facts from the set of user-agent interaction experiences.

2.2. WATSON Overview

The algorithm uses the information contained in a set of user-agent interaction experiences to
formulate some hypotheses about the user's assistance requirements. A hypothesis expresses the
agent's belief that the user requires a certain type of assistance in a given problem situation. A
hypothesis H expresses that whenever problem situation P occurs, the user will require assistance
action AA with a certainty degree of Cer(H). Then, if a hypothesis is highly supported, i.e. if its
certainty degree is greater than a threshold value δ, it is turned into a fact.

In this work we propose the utilization of association rules to formulate hypotheses from a
set of user-agent interaction experiences. Association rules imply an association relationship among
a set of items in a given domain. In our domain, they can be used to determine relationships among
problem situations and the assistance actions required by users.

The association rules generated from the set of user-agent interaction experiences are post-
processed in order to derive useful hypotheses from them. This post-processing includes detecting
the most interesting rules from the generated ones, eliminating redundant and insignificant rules and
summarizing the information in order to formulate the hypotheses more easily. The certainty degree
of a hypothesis is computed using metrics used in association rule mining, as we will see later.
Algorithm 1 shows the main steps our algorithm involves. The following sections explain in detail
how we perform each of them.

Algorithm 1. WATSON Overview

2.3. Mining Association Rules from User-Agent Interaction Experiences

An association rule is a rule that implies certain association relationships among a set of objects in a
database, such as occur together or one implies the other. Association discovery finds rules about
items that appear together in an event (called transactions), such as a purchase transaction or a user-
agent interaction experience. Association rule mining is commonly stated as follows [1]: Let
I={i1,...,in} be a set of items, and D be a set of data cases. Each data case consists of a subset of
items in I. An association rule is an implication of the form X→Y, where X⊂ I, Y⊂ I and X∩=∅ . X
is the antecedent of the rule and Y is the consequent. The support of a rule X→Y is the probability
of attributes (or attribute sets) X and Y occurring together in the same transaction. The rule has
support s in D if s% of the data case in D contains X ∩ Y. If there are n total transactions in the
database, and X and Y occur together in m of them, then the support of the rule X→Y is m/n. The
rule X→Y holds in D with confidence c if c\% of data cases in D that contain X also contain Y. The
confidence of rule X→Y is defined as the probability of occurrence of X and Y together in all
transactions in which X already occurs. If there are s transactions in which X occurs, and in exactly
t of them X and Y occur together, then the confidence of the rule is t/s.

An example of an association rule is: “30% of transactions in a supermarket that contain
beer also contain diapers; 2% of all transactions contain both items.” In this example, 30% is the
confidence of the rule and 2% the support of the rule. Given a transaction database D, the problem
of mining association rules is to find all association rules that satisfy: minimum support (called
minsup) and minimum confidence (called minconf). Minsup is an input parameter to the algorithm
for generating association rules. It defines the support threshold, and rules that have support greater
than minsup are the only ones generated. Minconf is an input parameter that defines the minimum
level of confidence that a rule must possess.

There has been a lot of research in the area of Association Rules, and as a result there are
various algorithms to discover association rules in a database. The most popular is the Apriori
algorithm [1], which is the one we use to find our association rules. In this work we are not
concerned about how association rules are generated. If readers want more information about
association rule mining can read [1], [10], [2].

INPUT: A set Ex of user-agent interaction experiences Exi=<Pi, AAi, UFi, Ei>
(where P: situation, AA: assistance action, UF: user feedback, E: evaluation)
OUTPUT: A set F of facts and a set H of hypotheses representing the user's
assistance requirements

1. F ← ∅
2. H ← ∅
3. Generate a set of association rules AR (using Apriori algorithm for
example) from Ex
4. AR1 ← Filter out uninteresting rules from AR
5. AR2 ← Eliminate redundant and insignificant rules from AR1
6. H ← Transform rules in AR4 into hypotheses (just notation transformation)
9. FOR (i=1 to size of H){

10. Cer(Hi) ← compute certainty degree of Hi
11. IF (Cer(Hi) ≥δ)

12. F ← F ∪ Hi }

2.4. Post-processing of rules

In our work, we are interested in some particular association rules generated from a set of user-
agent interaction experiences. The rules we are interested in are those association rules of the form
“problem description, assistance action → user feedback, evaluation” having appropriate support
and confidence values. Other combinations of items are irrelevant since we are trying to discover
which problem situation-assistance actions pairs received a positive user feedback and were
evaluated in consequence as a success.

We can use an intuitive approach [5] to select those rules we are interested in. Relevant (and
also irrelevant) classes of rules can be specified with templates. Templates describe a set of rules by
specifying which attributes occur in the antecedent and which attributes occur in the consequent. A
template is an expression of the form: A1,...,Ak → Ak+1,..,An, where each Ai is an attribute name, a
class name, or an expression C+ and C*, which correspond to one or more and zero or more
instances of the class C, respectively. A rule B1,...,Bh→ Bh+1,...,Bm matches the pattern if the rule
can be considered to be an instance of the pattern. Our agents will be interested in those rules where
the Problem Description and the Assistance Action are on the left side and the User Feedback and
the Evaluation are on the right side.

Once we have filtered those rules that were not interesting for us, we will still have many
rules to process, some of them redundant or insignificant. We can then use a technique that removes
those redundant and insignificant associations and then finds a special subset of the unpruned
associations to form a summary of the discovered rules [8]. Many discovered associations are
redundant or minor variations of others. Thus, those spurious and insignificant rules should be
removed. For example, consider the following rules:

R1: EventType=doctor, warning → failure, askforsuggestion [sup:60%;conf:90%]
R2: EventType=doctor, Priority=high, warning → failure, askforsuggestion [sup:40%,conf=91%]

If we know R1, then R2 is insignificant because it gives little extra information. It thus

should be pruned. R1 is more general and simple.
The remaining rules are the ones we consider to build hypotheses. The certainty degree of a

hypothesis is computed using the support associated to the rule originating it.

3. Experimental Results

In order to evaluate the performance of our learning algorithm we used one of the metrics defined in
[3]. The precision metric measures an interface agent's ability to accurately provide assistance to a
user. We define our precision metric as shown in Equation 1.

Mprecision = number of correct assistance actions (1)
number of assistance actions

The precision metric is used to evaluate the performance of an interface agent when it has to

decide among a warning, a suggestion or an action. In this case, for each problem situation, we
compare the number of correct assistance actions against the total number of assistance actions the
agent has executed. An assistance action is correct if it is the one expected by the user in a given
problem situation. The user's feedback tells us whether an assistance action is correct or not.

We tested our algorithm with a set of 20 users of an agenda system. For this purpose, we
incorporated the WATSON algorithm into an agent that provided assistance to these users. We
compared the assistance capability of this agent with WATSON and without WATSON. We obtained
the user feedback after each assistance action executed by each agent and we classified the
assistance experience as a success or a failure. We used the WEKA1 package to implement the
process of association rules finding. The graph in Figure 1 plots the evolution of the precision
metric both for an agent using WATSON and for an agent not using it. For each assistance session
the graph plots the average precision value. We used the following numeric parameters to perform

1 http://www.cs.waikato.ac.nz/~ml/weka

the tests: Minconf=0.8, Minsup=0.2, δ=0.5, number of association rules generated=2000, number of
assistance actions=14.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 3 5 7 9 11 13

Assistance Session
P

re
ci

si
on Precision with

WATSON

Precision without
WATSON

 Figure 1. Evaluation of precision

4. Related Work

Related works have considered different approaches to decide among several possible agent actions.
Some of them adopt a decision theory approach, such as [7] and [4], and others use confidence
values associated to actions to decide what to do, such as [9] and [6]. However, although different
factors are considered to compute the benefits and costs of different actions, and to calculate
confidence values, the ones taking into account how the user wants to interact with the agent are
missing in these approaches.

5. Conclusions

The WATSON algorithm enables interface agents to determine how to best assist users,
personalizing in this way the interaction with each of them. The results obtained so far are quite
promising, since our agents improve their assistance capabilities and their assistance actions tend to
the users' needs.

References

1. R. Agrawal and R. Srikant - Fast Algorithms for Mining Association Rules – In Proceedings 20th Int. Conf. Very

Large Data Bases (VLDB) – (1994) 487 – 499
2. R. J. Bayardo Jr. and R. Agrawal - Mining the Most Interesting Rules - In Proceedings of the 5th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining – (1999)
3. Brown, S. and Santos, E. - Using explicit requirements and metrics for interface agent user model correction. In

Proceedings of the 2nd International Conference on Autonomous Agents – (1998)
4. Fleming, M. and Cohen, R. – A utility-based theory of initiative in mixed-initiative systems – In IJCAI 01

Workshop on Delegation, Autonomy and Control: Interacting with Autonomous Agents – (2001) 58 - 65
5. Klementinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A. I. - Finding interesting rules from

large sets of discovered association rules. In 3º Int. Conf. on Information and Knowledge Management – (1994)
6. Kozierok, R. and Maes, P. - A learning interface agent for scheduling meetings. In ACM-SIGCHI International

Workshop on Intelligent User Interfaces – (1993) 81 - 93.
7. E. Horvitz - Principles of mixed-initiative user interfaces - In ACM SIGCHI - Conference on Human Factors in

Computing Systems – (1999)
8. Liu, B., Hsu, W., and Ma, Y. - Pruning and summarizing the discovered associations - ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining – (1999)
9. Maes, P. – Agents that reduce work and information overload – Comm. of the ACM 37 (7) - (1994) 31 - 40
10. Srikant, R. and Agrawal, R. - Mining Generalized Association Rules - Future Generation Computer Systems, 13 (2-

3) – (1997)

