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Abstract: Research on the synthesis of nanomaterials using metal-organic frameworks (MOFs),
which are characterized by multi-functionality and porosity, as precursors have been accomplished
through various synthetic approaches. In this study, copper and copper oxide nanoparticles
were fabricated within 30 min by a simple and rapid method involving the reduction of
a copper(II)-containing MOF with sodium borohydride solution at room temperature. The obtained
nanoparticles consist of a copper core and a copper oxide shell exhibited catalytic activity in the
oxygen reduction reaction. The as-synthesized Cu@Cu2O core-shell nanocatalyst exhibited an
enhanced limit current density as well as onset potential in the electrocatalytic oxygen reduction
reaction (ORR). Moreover, the nanoparticles exhibited good catalytic activity in the Huisgen
cycloaddition of various substituted azides and alkynes under mild reaction conditions.

Keywords: Cu@Cu2O; metal-organic framework; nanocatalyst; electrocatalyst; oxygen reduction
reaction; Huisgen cycloaddition

1. Introduction

The extensive progress in synthesizing and manipulating nano-sized materials made in recent
years has led to the development of numerous metal and metal oxide-based nanomaterials.
These nanomaterials have been applied in many fields based on their unique properties, including
their physical, chemical and electrical stability. In particular, copper and copper oxide-based materials
with various oxidation states have received much attention for application in semiconductors,
catalysts, energy storage, electrodes, gas sensors and antibiotics [1–18]. The catalytic properties
of copper and copper oxide-based materials are greatly influenced by the particle size and morphology.
Interestingly, copper nanoparticles, in which copper oxide (CuO, Cu2O) shells are naturally formed,
have different Cu0/Cu+ surface ratios depending on the particle size and shape. This ratio was
found to be an important factor affecting the catalytic activity [19,20]. Such copper-copper oxide
(Cu-CuO, Cu-Cu2O, Cu2O-CuO) core-shell nanoparticles are widely used as catalysts for several
organic transformations, including cross-coupling reactions, cycloaddition reactions, catechol oxidation
reactions, styrene oxidation reactions, CO oxidation, photocatalytic degradation and reductive
degradation [21–31]. In addition, when combined with other metal species or supports, copper/copper
oxide hybrid nanoparticles not only exhibit better catalytic activity, but also present superior stability
and physicochemical properties. For example, CuFe2O4 nanoparticles and Fe3O4@mSiO2@Cu4

core-shell nanomaterials have the advantage of being magnetically recoverable and reusable, as
demonstrated in the N-arylation reaction and oxidation of cycloalkanes [32–34]. Co3O4@CuO,
TiO2@CuO, Cu/TiO2, ZnO-CuO core-branch, Pd/Cu and CuPd-graphene bimetallic nanoparticles
exhibit bifunctional catalytic activity and stability for organic reactions and electrocatalysis [35–39].
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Recently, metal-organic frameworks (MOFs), comprised of metal species and organic ligands,
have attracted attention in the fields of catalysts, sensors, and drug delivery due to their large
surface area, multi-functionality and adjustable size, shape and porosity [30,40–47]. In particular,
the integration of metal nanoparticles and MOFs has led to enhancement of the physicochemical,
magnetic and optical properties of these species. MOFs themselves can be used as supports for
encapsulating nanoparticles, and can also be used as precursors for porous graphitic carbon and
as shell materials after thermal or chemical treatment of their organic ligands. Moreover, the metal
species of MOFs have been employed as precursors to form nanocomposites with uniform shapes
and high porosity. By directly producing or incorporating metal nanoparticles into the pores, cavities
and channels of MOFs, improved structural properties of the nanomaterials can be achieved, thereby
enhancing their application as catalysts, gas sensors and storage materials. In a different approach,
nanoparticles have been coated with MOFs to hinder agglomeration of the nanoparticles, thereby
retaining the catalytic activity and improving the reusability of the nanoparticles. Furthermore,
the metal ions and organic ligands of MOFs can be used as a template or a metal precursor to form
a porous metal nanoframe or to generate metal and metal oxide nanoparticles. In the structure of MOF,
metal ions combined with organic ligands are scattered throughout the MOF and these scattered metal
ions can be reduced to form a uniform sized and shaped nanoparticles without any surfactants and
stabilizing agents [47–54].

In this context, we report the generation of MOF-derived Cu@Cu2O core-shell nanocatalyst
by a facile treatment. The Cu(II)-MOF, formed by the coordination of copper ions and
benzene-1,3,5-tricarboxyate linkers, is transformed into smaller Cu@Cu2O nanoparticles using sodium
borohydride solution as a reducing agent at room temperature. The catalytic activity of the obtained
nanoparticles consisting of a copper core and a copper oxide shell, Cu@Cu2O core-shell nanocatalyst,
in the oxygen reduction reaction and the azide-alkyne Huisgen cycloaddition is also investigated.

2. Results and Discussion

2.1. Catalyst Characterization

The copper-based MOF, Cu3(BTC)2 (referred to hereinafter as “Cu(II)-MOF”), was prepared
using copper(II) nitrate and H3BTC (H3BTC = benzene-1,3,5-tricarboxylic acid) in a mixture of
N,N-dimethylformamide, ethanol and water through the solvothermal method reported in the
literature [55–58]. The copper-based MOF was transformed into smaller copper nanoparticles (referred
to hereinafter as “Cu@Cu2O core-shell nanocatalyst”) by reduction with 10 eq. of sodium borohydride
solution. The scanning electron microscope (SEM) images of the Cu(II)-MOF and MOF-derived
Cu@Cu2O core-shell nanocatalyst are displayed in Figure 1a,b. The Cu(II)-MOF comprised irregular
microstructures with an average diameter of approximately 5.0 µm. Generally, the metal nanoparticles
which are formed from metal ions of MOF are very close to each other due to the structure of the
MOF, so that the metal nanoparticles easily form small agglomerates [16,48,52,59,60]. As shown in
Figure 1c–e, the SEM and transmission electron microscope (TEM) images confirm that the copper ions
in the Cu(II)-MOF are transformed to spherical nanoparticles with average diameter of approximately
14.8 nm and copper nanoparticles tend to form small agglomerates. The elemental mapping image in
Figure 1f shows that more oxygen is distributed on the outer surface of copper nanoparticles showing
that surface of the small agglomerate of the copper nanoparticles is unevenly oxidized to copper
oxide shell.
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Figure 1. (a,b) SEM images of Cu(II)-MOF; (c) SEM and FE-SEM (inset) images of Cu@Cu2O 
core-shell nanocatalyst and (d,e) TEM images of Cu@Cu2O core-shell nanocatalyst; (f) elemental 
mapping and HAADF-STEM image (inset) of Cu@Cu2O core-shell nanocatalyst (red for copper, 
green for oxygen). 
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Figure 1. (a,b) SEM images of Cu(II)-MOF; (c) SEM and FE-SEM (inset) images of Cu@Cu2O core-shell
nanocatalyst and (d,e) TEM images of Cu@Cu2O core-shell nanocatalyst; (f) elemental mapping and
HAADF-STEM image (inset) of Cu@Cu2O core-shell nanocatalyst (red for copper, green for oxygen).

The Fourier transform infrared (FT-IR) spectrum and powder X-ray diffraction (XRD) pattern were
acquired to verify the formation of Cu(II)-MOF and Cu@Cu2O. The FT-IR spectrum of Cu(II)-MOF in
Figure 2a shows absorption peaks near 480 and 730 cm−1 that can be assigned to the characteristic
Cu–O stretching vibration. The characteristic peaks near 1110, 1380 and 1640 cm−1 are attributed to
CO–Cu stretching and the two CO stretching vibrations of the carboxyl group. The XRD pattern in
Figure 2b shows very sharp diffraction peaks at 11.56◦, 13.39◦, 14.64◦, 15.01◦, 16.42◦, 17.44◦, and 19.04◦,
corresponding to the (222), (400), (331), (420), (422), (333), and (440) crystalline planes of Cu(II)-MOF.
Figure 2c shows that the XRD pattern of Cu@Cu2O core-shell nanocatalyst is consistent with the
reference data for Cu and Cu2O. The crystalline size and shell thickness of Cu (111) and Cu2O (111)
calculated from XRD data are 13.5 nm and 5.07 nm, respectively. And the Cu/Cu2O ratio was calculated
from ICP and elemental analysis data and the ratio was confirmed as 1:0.8. The presence of copper and
oxygen as the main elements was confirmed by ICP and elemental analysis data, and the Cu/Cu2O
ratio was 1:0.8 which was calculated based on the amount of oxygen.
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Figure 2. (a) FT-IR spectrum of Cu(II)-MOF; X-ray diffraction patterns of (b) Cu(II)-MOF and (c) 
Cu@Cu2O core-shell nanocatalyst. 
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Figure 2. (a) FT-IR spectrum of Cu(II)-MOF; X-ray diffraction patterns of (b) Cu(II)-MOF and (c) Cu@Cu2O
core-shell nanocatalyst.

Furthermore, X-ray photoelectron spectroscopy (XPS) was used to characterize the composition
and chemical state of Cu(II)-MOF and Cu@Cu2O core-shell nanocatalyst. The XPS survey spectrum
of Cu(II)-MOF in Figure 3a shows peaks at ca. 531.8 eV for O 1s, ca. 399.4 eV for N 1s and ca.
284.6 eV for C 1s; two characteristic peaks of Cu(II) were observed in the Cu 2p region at binding
energies of 934.9 and 954.7 eV, corresponding to Cu 2p3/2 and Cu 2p1/2, respectively. Furthermore,
Cu(II)-MOF (Figure 3a) reveals the presence of two strong satellite features on the higher binding
energies centered at 938–946 eV and 961–965 eV corresponding to Cu 2p, which is also evidence
the presence of Cu(II) in Cu(II)-MOF. To note, the binding energy values of the Cu 2p3/2 (932 eV)
and Cu 2p1/2 (952 eV) in Cu@Cu2O core-shell nanocatalyst (Figure 3b) are shifted as compared to
the Cu 2p3/2 and Cu 2p1/2 values in Cu(II)-MOF (Figure 3a). And, the binding energy of peaks
corresponding to the satellite features of Cu@Cu2O core-shell nanocatalyst (Figure 3b) showed very
tiny peak intensities (due to the insignificant amount of CuO formation from slightly oxidized surface
of Cu2O shell via atmospheric exposure) as compared to the peak intensities of Cu(II)-MOF (Figure 3a).
Thus, the shifts in the binding energy values of Cu 2p3/2, Cu 2p1/2 and reduction of strong satellite
(Figure 3a, 938–946 eV and 961–965 eV) to very tiny peak observed at 945 eV suggests the possibilities
of formations of Cu and Cu2O from Cu(II)-MOF and effective stable nature of Cu2O on Cu@Cu2O
core-shell nanocatalyst [61,62]. Considering both the XRD and XPS results, it is reasonable to deduce
that the copper ions in the MOF were adequately reduced to Cu@Cu2O core-shell nanocatalyst.
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Figure 3. XPS spectra (survey and Cu 2p region) of (a) Cu(II)-MOF and (b) Cu@Cu2O core-shell nanocatalyst.

2.2. Electrocatalytic Activity of Cu@Cu2O Core-Shell Nanocatalyst

In order to assess the ORR electrocatalytic activity of the Cu@Cu2O core-shell nanocatalyst, cyclic
voltammetry (CV) and linear sweep voltammetry (LSV) in O2-saturated 0.1 M KOH using a glass
carbon (GC) disk electrode loaded with the Cu@Cu2O core-shell nanocatalyst were employed as
convenient and efficient tools (as described in the Materials and Methods section). The CV curve of
the Cu@Cu2O core-shell nanocatalyst (Figure 4a) was used to explore the redox reactions involved.
In the strong 0.1 M KOH electrolyte, a pair of anodic (1.075 V vs. reversible hydrogen electrode
(RHE)) and cathodic (0.69 V vs. RHE) peaks was clearly observed at a scan rate of 0.02 V s−1,
which indicates Faradaic redox reactions (Cu2+/Cu+) of the Cu@Cu2O core-shell nanocatalyst. Further,
the electrocatalytic activity towards the ORR is clearly demonstrated in Figure 4b, where the oxygen
reduction peak potential shifted to a more positive direction with a high peak current density in the
presence of O2 (Figure 4b curve i) than in the presence of Ar (Figure 4b curve ii).

Nanomaterials 2017, 7, x FOR PEER REVIEW  6 of 13 

 

number (Figure 5b). The corresponding K–L plots show good linearity and also parallelism of plots 
indicate the first order kinetics towards ORR in alkaline electrolyte. The electron transfer number of 
Cu@Cu2O core-shell nanocatalyst estimated from the slope of the K–L plots is averagely 3.97 at 0.45–
0.7 V, suggested a principal 4-electron transfer pathway. The n = 3.97 is higher than already reported 
on various shape controlled Cu2O nanostructures (Cu2O-70 (n = 3.74); Cu2O-50 (n = 3.22) and 
Cu2O-20 (n = 2.04)) [65]. These are confirmed that the Cu@Cu2O core-shell nanocatalyst has direct 
4-electron transfer pathway in ORR due to the synergistic morphological effects of a core-shell 
nanostructure, well dispersed Cu2O and the high, strong adsorption of O2 on Cu@Cu2O surfaces. 
There are might be the reasons for the superior electrocatalytic activity of Cu@Cu2O core-shell 
nanocatalyst towards ORR. These results evidently suggested that the prepared Cu@Cu2O 
core-shell nanocatalyst is the highly selective 4-electron transfer pathway with more positive  
Eonset = 0.93 V vs. RHE toward ORR. 

(a) (b)

Figure 4. (a) CV curve of Cu@Cu2O core-shell nanocatalyst on glassy carbon disk electrode in 
O2-saturated 0.1 M KOH with a scan rate of 0.02 V s−1; (b) LSV curves of Cu@Cu2O core-shell 
nanocatalyst on glassy carbon electrodes in O2-saturated (i) and Ar-saturated (ii) 0.1 M KOH with a 
scan rate of 0.02 V s−1. 

(a) (b)

Figure 5. (a) Steady-state voltammograms of the ORR profiles at different rotation rates  
(400–2400 r.p.m.) and (b) Koutecky–Levich (K–L) plots of Cu@Cu2O core-shell nanocatalyst in 
O2-saturated 0.1 M KOH solution with a scan rate of 0.02 V s−1. 
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Figure 4. (a) CV curve of Cu@Cu2O core-shell nanocatalyst on glassy carbon disk electrode in O2-saturated
0.1 M KOH with a scan rate of 0.02 V s−1; (b) LSV curves of Cu@Cu2O core-shell nanocatalyst on glassy
carbon electrodes in O2-saturated (i) and Ar-saturated (ii) 0.1 M KOH with a scan rate of 0.02 V s−1.
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In order to elucidate the mechanism of enhancement of the electrocatalytic activity of the
Cu@Cu2O core-shell nanocatalyst in the ORR, LSV measurements (Figure 5 a) were performed using
a rotating-disk electrode (RDE) in the applied potential range of 0.2–1.4 V vs. RHE in O2-saturated
0.1 M KOH solution (scan rate = 0.02 V s−1; the electrode rotating speed was varied as 400, 800, 1200,
1600, 2000 and 2500 r.p.m.). The ORR polarization curves of the Cu@Cu2O core-shell nanocatalyst
demonstrate enhancement of the limit current density as well as the more positive onset potential
(Eonset = 0.93 V vs. RHE). The Cu@Cu2O core-shell nanocatalyst showed a half-wave potential
(E1/2) of 0.86 V vs. RHE at 1600 r.p.m., which is comparatively higher than the reported values
for Cu-based ORR catalysts such as rGO–TADPyCu (E1/2 = 0.795 V) [63], Cu-Nx/C [0.755 V] [64].
To quantitatively evaluate the ORR electrocatalytic activity of Cu@Cu2O core-shell nanocatalyst,
the Koutecky–Levich (K–L) plots based on the LSV measurements in the potential range of 0.45–0.70 V
vs. RHE at various rotating speeds were used to calculate the corresponding electron transfer number
(Figure 5b). The corresponding K–L plots show good linearity and also parallelism of plots indicate
the first order kinetics towards ORR in alkaline electrolyte. The electron transfer number of Cu@Cu2O
core-shell nanocatalyst estimated from the slope of the K–L plots is averagely 3.97 at 0.45–0.7 V,
suggested a principal 4-electron transfer pathway. The n = 3.97 is higher than already reported on
various shape controlled Cu2O nanostructures (Cu2O-70 (n = 3.74); Cu2O-50 (n = 3.22) and Cu2O-20
(n = 2.04)) [65]. These are confirmed that the Cu@Cu2O core-shell nanocatalyst has direct 4-electron
transfer pathway in ORR due to the synergistic morphological effects of a core-shell nanostructure,
well dispersed Cu2O and the high, strong adsorption of O2 on Cu@Cu2O surfaces. There are might be
the reasons for the superior electrocatalytic activity of Cu@Cu2O core-shell nanocatalyst towards ORR.
These results evidently suggested that the prepared Cu@Cu2O core-shell nanocatalyst is the highly
selective 4-electron transfer pathway with more positive Eonset = 0.93 V vs. RHE toward ORR.
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2.3. Catalytic Activity of Cu@Cu2O Core-Shell Nanocatalyst in Azide-Alkyne Huisgen Cycloaddition

Huisgen azide-alkyne cycloaddition is a representative reaction of click chemistry, especially under
the copper catalysis, produces a 1,2,3-triazoles as a product which can be applied in organic synthesis,
pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic activity of the
Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of benzyl azide to phenyl
acetylene. The catalytic reactions were carried out at 50 ◦C for 5 h using benzyl azide, phenylacetylene
and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O core-shell nanocatalyst led to
complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the desired products, whereas the reaction
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carried out using Cu(II)-MOF as the catalyst resulted in a low conversion of 12%. Moreover, it was
found that the cycloaddition reactions with electron-withdrawing substituents and electron-donating
substituents were efficiently catalyzed by the Cu@Cu2O core-shell nanocatalyst. As examples,
the hydroxy-substituted alkynes gave the expected products, i.e., (1-benzyltriazol-4-yl)methanol
and 2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as
a single regioisomer with 99% and 87% conversion (Table 1, 1j and 1k). In a recent related study,
copper-catalyzed Huisgen azide-alkyne cycloadditions were conducted at room temperature to 70 ◦C and
reaction time 3–12 h using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O
core-shell nanocatalyst provided the desired triazole with satisfactory conversion under similar mild
reaction conditions [72–76].

Table 1. Huisgen cycloaddition of azides with terminal alkynes catalyzed by Cu@Cu2O core-shell nanocatalyst 1.
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
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conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
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conditions [72–76]. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
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1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 
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nanocatalyst 1. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 

Table 1. Huisgen cycloaddition of azides with terminal alkynes catalyzed by Cu@Cu2O core-shell 
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water:t-BuOH = 2:1, 50 °C, 5 h. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 
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synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 

Table 1. Huisgen cycloaddition of azides with terminal alkynes catalyzed by Cu@Cu2O core-shell 
nanocatalyst 1. 

 

 
1a, 100% 

 
1b, 95%

 
1c, 80% 

 
1d, 100% 

 
1e, 100%

 
1f, 64% 

 
1g, 69% 

 
1h, 83%

 
1i, 97% 

 
1j, 99% 

 
1k, 87%

 
1l, 100% 

1 Reaction conditions: azide (1.0 mmol), alkyne (1.5 mmol), Cu@Cu2O core-shell nanocatalyst (2.3 mol %),  
water:t-BuOH = 2:1, 50 °C, 5 h. 

  

N
N

N N
N

N N
N

N

N
N

N

OH

N
N

N

OH

N
N

N

O

N
N

N

F

N
N

N
F

N
N

N
Cl

N
N

N
MeO

N
N

N

OMe

N
N

N

OH

O
O

1i, 97%

Nanomaterials 2017, 7, x FOR PEER REVIEW  7 of 13 

 

synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 

Table 1. Huisgen cycloaddition of azides with terminal alkynes catalyzed by Cu@Cu2O core-shell 
nanocatalyst 1. 

 

 
1a, 100% 

 
1b, 95%

 
1c, 80% 

 
1d, 100% 

 
1e, 100%

 
1f, 64% 

 
1g, 69% 

 
1h, 83%

 
1i, 97% 

 
1j, 99% 

 
1k, 87%

 
1l, 100% 

1 Reaction conditions: azide (1.0 mmol), alkyne (1.5 mmol), Cu@Cu2O core-shell nanocatalyst (2.3 mol %),  
water:t-BuOH = 2:1, 50 °C, 5 h. 

  

N
N

N N
N

N N
N

N

N
N

N

OH

N
N

N

OH

N
N

N

O

N
N

N

F

N
N

N
F

N
N

N
Cl

N
N

N
MeO

N
N

N

OMe

N
N

N

OH

O
O

1j, 99%

Nanomaterials 2017, 7, x FOR PEER REVIEW  7 of 13 

 

synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 

Table 1. Huisgen cycloaddition of azides with terminal alkynes catalyzed by Cu@Cu2O core-shell 
nanocatalyst 1. 

 

 
1a, 100% 

 
1b, 95%

 
1c, 80% 

 
1d, 100% 

 
1e, 100%

 
1f, 64% 

 
1g, 69% 

 
1h, 83%

 
1i, 97% 

 
1j, 99% 

 
1k, 87%

 
1l, 100% 

1 Reaction conditions: azide (1.0 mmol), alkyne (1.5 mmol), Cu@Cu2O core-shell nanocatalyst (2.3 mol %),  
water:t-BuOH = 2:1, 50 °C, 5 h. 

  

N
N

N N
N

N N
N

N

N
N

N

OH

N
N

N

OH

N
N

N

O

N
N

N

F

N
N

N
F

N
N

N
Cl

N
N

N
MeO

N
N

N

OMe

N
N

N

OH

O
O

1k, 87%

Nanomaterials 2017, 7, x FOR PEER REVIEW  7 of 13 

 

synthesis, pharmaceuticals and biological materials [66–71]. As shown in Table 1, the catalytic 
activity of the Cu@Cu2O core-shell nanocatalyst was evaluated in the Huisgen cycloaddition of 
benzyl azide to phenyl acetylene. The catalytic reactions were carried out at 50 °C for 5 h using 
benzyl azide, phenylacetylene and 2.3 mol % of catalyst. The reaction performed with the Cu@Cu2O 
core-shell nanocatalyst led to complete conversion to the 1,4-disubstituted 1,2,3-triazoles as the 
desired products, whereas the reaction carried out using Cu(II)-MOF as the catalyst resulted in a 
low conversion of 12%. Moreover, it was found that the cycloaddition reactions with 
electron-withdrawing substituents and electron-donating substituents were efficiently catalyzed by 
the Cu@Cu2O core-shell nanocatalyst. As examples, the hydroxy-substituted alkynes gave the 
expected products, i.e., (1-benzyltriazol-4-yl)methanol and 
2-(1-benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol, as single regioisomers with complete conversion 
(Table 1, 1d and 1e). The ortho- and para-methoxy group respectively gave the expected 
1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole and 
1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole as a single regioisomer with 99% and 87% 
conversion (Table 1, 1j and 1k). In a recent related study, copper-catalyzed Huisgen azide-alkyne 
cycloadditions were conducted at room temperature to 70 °C and reaction time 3–12 h  
using water and alcohol as solvent to achieve high yield. The prepared Cu@Cu2O core-shell 
nanocatalyst provided the desired triazole with satisfactory conversion under similar mild reaction 
conditions [72–76]. 

Table 1. Huisgen cycloaddition of azides with terminal alkynes catalyzed by Cu@Cu2O core-shell 
nanocatalyst 1. 

 

 
1a, 100% 

 
1b, 95%

 
1c, 80% 

 
1d, 100% 

 
1e, 100%

 
1f, 64% 

 
1g, 69% 

 
1h, 83%

 
1i, 97% 

 
1j, 99% 

 
1k, 87%

 
1l, 100% 

1 Reaction conditions: azide (1.0 mmol), alkyne (1.5 mmol), Cu@Cu2O core-shell nanocatalyst (2.3 mol %),  
water:t-BuOH = 2:1, 50 °C, 5 h. 

  

N
N

N N
N

N N
N

N

N
N

N

OH

N
N

N

OH

N
N

N

O

N
N

N

F

N
N

N
F

N
N

N
Cl

N
N

N
MeO

N
N

N

OMe

N
N

N

OH

O
O

1l, 100%
1 Reaction conditions: azide (1.0 mmol), alkyne (1.5 mmol), Cu@Cu2O core-shell nanocatalyst (2.3 mol %),
water:t-BuOH = 2:1, 50 ◦C, 5 h.

3. Materials and Methods

3.1. General Remarks

The morphology of the samples was analyzed by using a Zeiss Supra 40 VP field
emission scanning electron microscope (FE-SEM) and FEI Quanta 200 scanning electron microscope
(FEI, Hillsboro, OR, USA) operating at 15 kV. The size and morphology were characterized by using
a JEOL JEM-2100F transmission electron microscope (JEOL Ltd., Tokyo, Japan) at an accelerating
voltage of 200 kV. X-ray diffraction (XRD) patterns were recorded on a Rigaku D/MAX-RB (12 kW;
Rigaku, Shibuya-ku, Japan) diffractometer. Fourier-transform infrared spectra (FT-IR) and X-ray
photoelectron spectra (XPS) were recorded on Nicolet 380 (Thermo, Waltham, MA, USA) and ESCALab250
(Thermo, Waltham, MA, USA) instruments, respectively. Electrochemical measurements were performed
by using an electrochemical workstation (CHI600E, CH Instruments, Austin, TX, USA) with a
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three-electrode system. The progress of the catalytic reaction was observed by gas chromatography-mass
spectrometry (GC/MS; Shimadzu-QP2010 SE, Shimadzu, Kyoto, Japan). All chemicals were used as
received without further purification.

3.2. Synthesis of Cu3(BTC)2 MOF (Cu(II)-MOF) and Cu@Cu2O Core-Shell Nanocatalyst

Cu(NO3)2·2.5H2O (10 g) and benzene-1,3,5-tricarboxylic acid (H3BTC; 5 g) were combined in
250 mL of a mixture of dimethyl formamide (DMF), ethanol and water (1:1:1 v/v). The mixture was
stirred for 10 min and heated to reflux at 85 ◦C for 20 h. The obtained blue crystals were washed and
filtered with DMF and then dried at 60 ◦C for 5 h.

The as-synthesized Cu(II)-MOF (0.5 g) was dissolved in deionized (DI) water (20 mL) with stirring.
NaBH4 solution (10 eq.) was added dropwise with stirring in an ice-bath. The mixture was stirred at
room temperature for 30 min. The resultant particles were washed with water and ethanol and dried
under vacuum.

3.3. Electrode Preparation and Electrochemical Measurements

The electrochemical and electrocatalytic performance of the Cu@Cu2O core-shell nanocatalyst
was investigated through cyclic voltammetry (CV) and by using a rotating disc electrode (RDE,
AFMSRCE, Pine Research Instruments, Durham, NC, USA) in an O2-saturated (0.1 M KOH) electrolyte
at a scan rate of 20 mV s−1. For the three-electrode system, a silver/silver chloride (Ag/AgCl) and
graphite electrode were used as the reference and counter electrodes, respectively. The Cu@Cu2O
core-shell nanocatalyst (5 mg) was dispersed in 200 µL of ink solution containing isopropyl alcohol
(140 µL), deionized water (40 µL) and Nafion solution (20 µL) in a 7:2:1 (v/v) ratio and the mixture was
ultrasonicated for 1 h to obtain a homogeneous suspension of the prepared ink solution. The Cu@Cu2O
core-shell nanocatalyst ink (10 µL) was dropped onto the surface of a glassy carbon disk (working
electrode, area = 0.1963 cm2) and dried at 60 ◦C for 30 min. A conventional RDE three-compartmental
glass cell was used. All experiments were performed at room temperature. The ORR performance
was measured in O2-saturated 0.1 M KOH electrolyte. To avoid the influence of the reduction of Cu2+

and set the background correction, an Ar-saturated 0.1 M KOH electrolyte was used under the same
experimental conditions. In this study, all reported potentials were converted from the Ag/AgCl
to the RHE scale using E (RHE) = E (Ag/AgCl) + 0.198 V in 0.1 M KOH. The number of electrons
transferred during the ORR was calculated from the Koutecky–Levich (K–L) plot, which is determined
by Equations (1) and (2).

1/J = 1/JL + 1/JK = 1/Bω1/2 + 1/JK (1)

where J, JL and JK are the values of the experimentally measured current and kinetic and
diffusion-limiting current densities, respectively; ω is the angular velocity of the disk, and B can
be defined as follows:

B = 0.62nFCO(DO)
2/3ϑ−1/6 (2)

where F is the Faraday constant (96,485.34 C mol−1), CO is the bulk concentration of O2

(1.2 × 10−6 mol cm−3), ϑ is the kinematic viscosity of the electrolyte (ϑ = 0.01 cm2 s−1, DO is the
diffusion coefficient of O2 in 0.1 M KOH (1.9 × 10−5 cm2 s−1) and n is the number of electrons
transferred during the electrochemical reaction. The value of n can be calculated from the slope of the
J−1 vs. ω−1⁄2 plot.

3.4. General Procedure for Azide-Alkyne Huisgen Cycloadditions

Benzyl azide (1 mmol), phenyl acetylene (1.5 mmol), water (2.0 mL), tert-butyl alcohol (1.0 mL)
and Cu@Cu2O nanocatalyst (2.3 mol %) were placed into a 10 mL sealed aluminum vial with a butyl
gum septum. The mixture was stirred at 50 ◦C for 5 h. After the reaction, the Cu@Cu2O core-shell
nanocatalyst were separated from the clear solution. The products were analyzed by 1H-NMR and
GC/MS.
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4. Conclusions

In summary, Cu@Cu2O core-shell nanocatalyst with a diameter of 74 nm was easily synthesized
through the sodium borohydride reduction of Cu(II)-MOF and Cu3(BTC)2. The ORR polarization
curves of the Cu@Cu2O core-shell nanocatalyst show an improved limit current density and onset
potential (Eonset = 0.93 V vs. RHE). The electron transfer number for the Cu@Cu2O core-shell
nanocatalyst is 3.97 and this catalyst operates by a 4-electron transfer pathway in the ORR. We have
reason to believe that the Cu@Cu2O core-shell nanocatalyst will extend the understanding of non-noble
metal/metal oxide catalysis and direct the rational strategy of non-noble metal/metal oxide catalysts
for the ORR. Also, Cu@Cu2O core-shell nanocatalyst exhibits good catalytic activity in the azide-alkyne
Huisgen cycloaddition of various substituents under mild reaction conditions. The simply-obtained
MOF-derived copper-copper oxide nanoparticles were successfully employed as a nanocatalyst in
both organic reactions and electrochemical catalysis. The prepared Cu@Cu2O core-shell nanocatalyst
can circumvent the problems encountered with peroxide, such as corrosion or premature degradation
of the cells. However, in order to replace costly platinum-based catalysts in fuel cells with the current
type of composites, systematic studies should be conducted to enhance the kinetic current density as
well as stability of the catalysts.
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