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Abstract: Management of the vertical long-term deflection of a high-speed railway bridge is a
crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts
to predict the vertical deflection of a railway bridge based on physics-based models representing
various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is
not an easy task because the vertical deflection of a railway bridge generally involves several
sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian
process to construct a model to predict the vertical deflection of a railway bridge based on actual
vision-based measurement and temperature. To deal with the sources of uncertainty which may
cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters.
Once the hyperparameters are identified through the Gaussian process regression using training
data, the proposed method provides a 95% prediction interval as well as a predictive mean about
the vertical deflection of the bridge. The proposed method is applied to an arch bridge under
operation for high-speed trains in South Korea. The analysis results obtained from the proposed
method show good agreement with the actual measurement data on the vertical deflection of the
example bridge, and the prediction results can be utilized for decision-making on railway bridge
maintenance.

Keywords: railway bridge; vertical deflection; probabilistic prediction; Gaussian process; training
data

1. Introduction

Rail transport is one of the essential infrastructure systems that support human life and carry a
large amount of freight and many passengers. Various research efforts have been devoted to
develop faster and safer train systems, and as a result, high-speed trains, such as the Shinkansen in
Japan, Inter City Express (ICE) in Germany, Train a Grande Vitesse (TGV) in France, and Korea
Train eXpress (KTX) in Korea are in operation worldwide. In addition to the development of
high-speed trains, the importance of building and managing railway structures that allow
high-speed trains to operate safely has been recognized. Especially, managing the long-term vertical
deflection of a bridge is essential for the traffic safety and passenger comfort of the high-speed trains.

In the case of a railway bridge, vertical deflection is one of the important indicators for
inspecting its overall safety and for reporting abnormalities [1]. Moreover, it significantly influences
the running stability of a train vehicle, particularly when traveling at high speed [2]. Therefore,
keeping the vertical deflection of a railway bridge below a certain level is crucial for high-speed
trains. Indeed, several standards, such as UIC CODE 518 OR (2009), Design Guide for Steel Railway
Bridges of UK (2004), and Guideline of Track Maintenance of Korea Rail Network Authority (2016),
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regulate guides to check the safety and comfort of rail traffic in terms of an acceptable vertical
deflection at mid-span [3-5].

Thus, many researchers have been trying to develop efficient sensors and methods to measure
the vertical deflection of railway bridges. A conventional contact type sensor is a linear variable
differential transformer (LVDT), which uses electric signals and has been used widely for structural
health monitoring [6]. However, it requires installing a device at a measurement point on a robust
platform of a bridge, which is often infeasible or impractical [7]. The accelerometer, which is
another widely used contact type sensor, does not require such installation. However, deflection
results based on accelerometers may have numerical errors, because the deflection calculation
requires the double integral of the measured acceleration [7]. To overcome the limitations of contact
type sensors, various non-contact type sensors, such as global positioning systems (GPS), laser
Doppler vibrometers (LDV), Radio Detection and Ranging (RADAR), and vision-based systems,
have also been developed. Although GPS, LDV, and RADAR can measure the vertical deflection of
a bridge accurately, they are relatively expensive [8—11].

On the other hand, vision-based systems, which use video images to measure the bridge
deflection, are widely used [7, 12, 13] because these systems are (1) relatively affordable; (2)
sufficiently precise for measuring the vertical deflection of bridges; (3) easy to install; (4) equipped
with small-sized and lightweight hardware; and (5) easy to upgrade by introducing a
high-frame-rate camera [14, 15]. Vision-based systems have been advanced in several aspects: target
or non-target approaches, feature detection, and coordinate transform algorithms [12]. In order to
detect features, the target-based approach utilizes a target marker which is attached to a structure
[12, 13, 16]; whereas the non-target-based approach uses features directly from a structure [7, 17].
For example, Lee et al. (2017) developed a target-based system [12], and Fukuda et al. (2013)
suggested a system without the installation of a target panel [7]. A more comprehensive review on
vision-based systems is provided by Lee ef al. [12]. Despite the recent advances in vision-based
systems, the measurement results are also known to be affected by several factors such as
wind-shaking and camera location, which may produce measurement errors.

Meanwhile, research efforts have attempted to predict the vertical deflection of railway bridges,
and many of the previous studies focused on the derivation of physics-based models about the
vertical deflection [18-20]. Especially, prestressed concrete girders, which are often used for railway
bridges, are known to be deflected for various reasons including temperature changes, concrete
creep, shrinkage, and train loads. Thus, Guo et al. (2010) attempted to construct an equation to
mathematically represent the vertical deflection of a railway bridge by considering these physical
phenomena, and the actual measurement results were mainly used to validate the equation [18].
Similarly, Khan and Kim (2012) presented finite element model-based prediction on long-term
beam deflection which fitted to the experimental measurement [21]. Although the prediction on the
vertical deflection in these studies showed decent agreement with the actual measurement data, the
physics-based models need to be sophisticated when factors which were not considered in the
models need to be addressed [22]. In addition, most of the previous studies did not take into
account the uncertainty factors associated with railway bridges and could not give probabilistic
prediction on their vertical deflection [23].

Therefore, this study proposes a probabilistic method employing a Gaussian process (GP) to
predict the vertical deflection of a railway bridge based on actual vision-based measurement data
and temperature. The vision-based measurements of an example bridge were obtained using the
method of Kim and Kim (2014), in which a Digital Image Correlation (DIC) technique is introduced
to estimate the vertical deflection of a target [24-27]. To deal with the sources of uncertainty which
may cause prediction errors, the GP is modeled with multiple kernels and hyperparameters. Once
the hyperparameters are identified through GP regression using training data, the proposed method
provides the 95% prediction interval as well as the predictive mean of the vertical deflection of a
railway bridge.

2. Proposed Method
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2.1. Gaussian Process Regression

This research aims to construct a probabilistic model to predict the vertical deflection of a
railway bridge, based on actual measurement data on vertical deflection and temperature. When a
prediction model is developed, in general, there are several sources of uncertainty related to the
model such as model misspecification, limited data size, and inherent variability, which are known
to introduce errors of bias, model variance, and noise into the model [28, 29]. Using the prediction
error decomposition proposed by Geman et al. (1992), the expectation of a squared prediction error
can be decomposed into these errors [30]. As model variance and bias occur because of
misspecification of the model or limited data size, these values are reducible. Meanwhile, noise
cannot be reduced because it occurs owing to inherent variability, and it is an irreducible error [31].
When constructing a prediction model, it is thus important to introduce an appropriate
mathematical model capable of addressing these three types of errors.

In this respect, many researchers have constructed probabilistic prediction models for their
engineering problems and tested these models by setting a confidence interval (CI) or a prediction
interval (PI) [32]. The term CI refers to an interval concerning only the reducible error (i.e., bias and
model variance). Meanwhile, the PI considers the irreducible error (i.e., noise) in addition to the
reducible error. This study aims to develop a probabilistic prediction model which can deal with
both of the reducible and irreducible errors and provide prediction results with a PI about the
vertical deflection of high-speed railway bridges.

To build a probabilistic prediction model, in this study, a GP is introduced. It is a machine
learning based method building a flexible Bayesian model [33], and it requires regression analysis to
identify appropriate GP parameters based on training data through optimization. The details of GPs
can be found in Rasmussen and Williams (2006) [34], and are briefly explained in this paper.

GPs are based on the Gaussian (i.e., normal) distribution, and a GP can be modeled by a
regression mean and a covariance matrix, which often requires high computational costs. Despite
their high costs, GPs have been widely utilized in many applications owing to their theoretical
simplicity and great performance to build a probabilistic model [34].

GPs are based on the following assumptions: 1) every data point is associated with a normally
distributed random variable; and 2) the finite collection of these random variables is multivariate
normally distributed, also explained as jointly normal. The multivariate normality is often
introduced to explain a set of correlated random data which cluster around the mean, and it
simplifies the related calculations with its definition that any sub-vector of the multivariate random
variables is again a Gaussian random vector [35]. For example, when one has a noisy training dataset
D from Np times of measurement, which consists of a training input matrix X and a training output
vector y, the dataset can be expressed as

D={(X,¥)} = {04, ¥)[i =1, Np3 j =1, N, | (1)

where xj is an element of the training input matrix X, which is constructed from Nbp times of
observation for Nx variables, and yi is an element in the training output vector y whose size is No by 1.
Then, the two assumptions of GPs enable the prediction of the Gaussian mean and variance of the
output.

For a prediction purpose, when a test input matrix X« is introduced to estimate the
corresponding unknown test output vector f,(-), the combined vector of the known training output
y and the unknown test output f£,(-) is expressed as the multivariate Gaussian variables:

y
ﬁ(x*,é

K+o2 I K.

noise

K’ K. +02 @

=N(0,Z)=N 0,{
) noiseI
where N denotes the multivariate Gaussian distribution, O is the zero matrix, which is often
introduced as a prior mean function for numerical simplicity [29, 33, 34], ¥ is the symmetric and

positive semidefinite covariance matrix, K is the covariance matrix of the training input matrix X, K«
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is the covariance matrix between training (X) and test (Xs) inputs, K« is the covariance matrix of the
test input matrix Xs, and onoise? is the variance of noise. In the covariance matrix },, noise is assumed
to be independent and identically normally distributed. Because the noise exists in the test data as
well as in the training data, the noise variance onise? is added to all diagonal terms in the covariance
matrix }.. When the sizes of the training input matrix and the test input are Noby Nx and Nrby Nx,
respectively, the sizes of the covariance matrices K, K., K«, and }, are Noby No, Noby Nr, Nrby N,
and (Nbp + Nr) by (Nb + Np), respectively:

I<+O—r30iseI K. _
Z ) K’T K.+ O-r?oisel B
k(x,x,) - k(xl,xND) _k(xl,xf) k(xl,xLP)__

k(xND,xl) k(xND,xND) _k(xND,xf) k(xND,xLP)_

T — —
* * * * * *
k(xl,xl) k(xl,pr) k(xl,xl) k(xl,xNP)
* * * * * * (3)
k(xND,xl) k(xND,xNP) _k(xNP,xl) k(xNP,xNP )_
5 _
le O-x1 xNDpxlxND O-Xl lpx]xr xlo-x’;\lp xleP
2
O-XNDO-xIpXNDxI O-XND O-XNDO-xT'OxNDxT O-XNDO-XLP "ND"*NP
T 0'2 oo O' O'
O-Xlaxrpxlxr leo-xappxle\lp XT XT XLP pXTXLP
2
o, O. « O, O. « O. O« + =° O .
XNp xg prDxl XNp XNp © XNpXNp Xy X prle XNp

where x’sand x"s are the 1by Nx vectors of training and test inputs, k(-) is an element termed the
kernel in the covariance matrix ¥, py,x, is the correlation between x. and xs, and oy is the variance
of Xa.

In Equation (3), the covariance is often modeled by a kernel function associated with the
Euclidian distance between two inputs [34], and one popular choice of the kernel considering
correlation is the squared exponential (SE) kernel shown below:

| ii:[xa (l,i)—xb (l,i)]2

kSE(Xaﬂxb):G? eXp _5 B 4)

where of is the variance hyperparameter of inputs which controls the vertical scale of the function
change and [ is a length-scale hyperparameter that is associated with the horizontal scale of the
function change [29].

However, as shown in Equation (3), the covariance matrix }, requires additional variance terms
for its diagonal terms (i.e., 0;,;s.1). This study introduces the Kronecker delta function [34]:

I(var (Xa’Xb) = G? '5(Xa’xb) (5)
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where 0(x;,x;) is the Kronecker delta function, which becomes one when the two inputs are the same,
and zero when they are different.

In other words, kst and kv need to be introduced to construct the covariance matrix. Based on
this idea, a new kernel was proposed by summing up existing kernels without any loss of properties
as kernel [34]:

| \/?Zj[xa(l,i)—xb(l,i)]z

k(Xa,Xb)Zéo 28Y 5 & +é2'5(xaaxb)+és (6)
1

where 8, and 8, are hyperparameters for non-diagonal terms, 8, is a hyperparameter to control
the variance in diagonal terms, and 85 is a hyperparameter to control the level of the overall values
in the covariance matrix. The kernel in Equation (6) was applied to several previous studies [36—38],
and it is introduced to this study for building the covariance matrix in Equation (3).

A GP is sensitive to these hyperparameters; thus, for the purpose of prediction, the
determination of these parameters based on the given measurement data through optimization is
important to build an accurate prediction model. For the task, the concept of maximum likelihood is
often introduced [28].

Regarding Equations (1) and (2), the likelihood of observing the training output vector y given
the training input X can be expressed as a conditional probability using the multivariate normal
distribution as follows:

I 1 rel
P(Y|X)=T'exp(_5yTz lyj @)
(27)2 [z

For numerical convenience, the natural logarithm is introduced for conditional probability and is
multiplied by minus one:

|

— _1 T 2 = 1 2 N
L——lnp(y|X)—5y (K+0'n0isel) y+51n‘K+0'noise +7Dln(27z) 8)

where L is the log-likelihood function. The three terms on the right in Equation (8) represent the
three errors in the prediction model described in Section 2.1 (i.e., the bias, model variance, and
noise).

Then, the best hyperparameters 0,.5: can be determined through optimization to minimize
the sum of these errors (i.e., the log-likelihood function L in Equation (8)):

0, =argmin(L) )
0

Since the conditional probability was multiplied by minus one as shown in Equation (8), 8,
obtained from the minimization problem in Equation (9) become the parameters which maximize
the likelihood of observing the training output vector y given the training input X.

Once the hyperparameters are identified using Equation (9), the kernel in Equation (6) is
constructed. Then, the optimal covariance matrix in Equation (3) is composed and the mean and the
variance vectors of the test inputs can be calculated by the property of the multivariate Gaussian
distribution. Based on the derivation by Muirhead (2009), given test input X, the conditional
multivariate Gaussian distributions of the test outputs f.() are estimated as follows [39]:

()

Using Equation (10), the predictive mean and the PI can be estimated.

noise noise noise

y,X,K~N(KZ(K+62 I)_ly, K**-K*T(K+O'2 I)_IK,F+02 I) (10)



191

192
193
194

195
196
197
198
199
200
201

202
203
204

205

206
207
208
209
210

211
212
213

214

215

216
217
218
219

Sensors 2018, 17, x FOR PEER REVIEW 60f18

2.2. Performance Assessment of Predictive Mean and Prediction Interval

First, for the performance assessment of the predictive mean, a prediction error index is
defined. In this regard, the root-mean-square error (RMSE) has been widely used to quantify the
prediction error [40]:

Np
S (fix,)-y(x,)7
RMSE ={|+=-—

p

(11)

where f(x;) is the predictive mean at the test input xi and y(x:) is the actual measurement.
Although the RMSE is a great test indicator of the predictive mean, it is also known to have
limitations for a fluctuating dataset, which can be easily found in the dataset of vertical deflection of
a railway bridge. A fluctuating dataset and the associated prediction, which is not overfitted and
follows the fluctuating trend, could have a large RMSE due to the inherent variability underlying
the data. For assessing how well the prediction follows the trend of the fluctuating dataset, the
mean-error (ME) is widely used as a good alternative indicator [41-43]:

N,
D (f(x)-y(x;))
ME =
N

p

(12)

Second, for the performance assessment of a PI, its coverage probability needs to be assessed
[32]. The coverage probability is generally defined by the percentage of actual measurement values
covered by a PI. A popular index is the PI coverage probability (PICP):

NP
PICP =LZCi (13)
Np i=1

where Ciis the Boolean value which can be evaluated as:

Ciz{(l)’ yle[LHuz] (14)
, yie[L U]

where yi is the i measurement data, Li is the lower bound, and Ui is the upper bound of the PI
When all the measurement values are located in the PI, PICP becomes 1. In practice, the PI is built
with the nominal confidence of (1-a) %, which is known as the PI nominal confidence (PINC), and a
good PI should have a similar PICP with the given confidence level. In this respect, the average
coverage error (ACE) was defined with PICP and PINC as a performance measure of the PI [44]:

ACE = PINC - PICP (15)

In this study, RMSE and ME are used to assess the performance of the predictive mean, and
ACE is introduced to estimate the performance of the PL

3. Application Example

3.1. Example bridge: Eonyang Arch Bridge

The proposed method was applied to Eonyang Arch Bridge, which is a set of arch bridges for
high-speed trains and is located in Ulsan, South Korea. As shown in Figure 1, two twin bridges are
neighbored for north- and southbound traffic, respectively. The northbound bridge was used as the
test target structure in this study, and is shown in Figure 1.
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Figure 1. Eonyang Arch Bridge.

7 of 18

Eonyang Arch Bridge was constructed in 2009 as a steel-concrete composite arch bridge for
high-speed trains, the Korea Train Express (KTX), and Figure 2 shows its design drawings in the
plan and front views. The bridge has a total length of 231.8 m, a center span of 70.4 m, a height of 10
m. Its substructure consists of three main arches rigidly connected to the foundation and several
small arches over the main arch ribs. This unique structure consisting of main and small arches is

designed to reduce the additional axial force of continuously welded rail on the bridge, and to
provide a uniform level of stiffness over the entire bridge to enhance the comfort of passengers
traveling in high-speed trains. Since the arch ribs are rigidly connected to the foundation, they
deform vertically because of temperature change. The effect of this vertical deformation was
evaluated for traffic safety and passenger comfort [45] and showed that upward deformation can
adversely affect passenger comfort in hot weather over 40 degrees Celsius.

231,800 (Steel-concrete Composite Arch)

Northbound Line | 4 o 55,000 ) 70,32 ) 55,000 16,508
Southbound Line | 23 900 55,000 \ I 70,392 . | 55.000 . 2!.503
R A o ] gy —
i 2] ! H—
— : ° ﬁ:;/h_ | IER m ﬁ
- - """ N — T — - | B —
(a)
231,800 (Steel-concrete Composite Arch)
Northbound Line U900 55,000 \ 70,392 55,000 , 16.508
Southbound Line | 2300 55,000 I 70,392 , I 55,000 \ 2]_5&3

Figure 2. Design drawings of Eonyang Arch Bridge: (a) plan view; (b) front view.
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3.2. Measurement

The vertical deflection of Eonyang Arch Bridge and temperature were measured by the
vision-based system and the Resistance Temperature Detector (RTD), respectively. First, the
deflection at the center of the mid-span was measured as shown in Figure 3(a). Two HDTV video
cameras were installed at a slope at the end of the bridge. The cameras have image sensors with
progressive scan RGB CMOS 1/2” with 1920x1080 pixels and zoom lenses with focal lengths of
10-350 mm with a 35X zooming feature. The cameras were installed approximately 100 m from the
bridge target and anchored to a concrete wall to minimize the movement of cameras as shown in
Figure 3(b).

One camera was for measuring the deflection of the bridge and focused on a target installed at
the web of the main arch crown. Figure 3(c) shows an example of an image captured by the camera.
A preliminary measurement showed that the concrete wall at the slope showed some movement
along with temperature change, which generated a large amount of noise during the vision
measurement. As the target is 100 m from the camera, only 0.03 degree of vertical rotation of the
camera can result in 50 mm of vertical deflection in the bridge. Therefore, even a small movement of
the camera should be carefully corrected.

The other camera, which was for correcting the movement of the camera system, focused on a
sign board installed at a building as a fixed reference point. Figure 3(d) shows a sign board image
from the camera. If the concrete wall is displaced, the image of the fixed reference point from the
building sign moves and the deflection from the first camera can be corrected by using this
correcting movement. The algorithm used for the correction procedure is given in the previous
study [27].

Second, the bridge temperatures were measured by using the Resistance Temperature Detector
(RTD) in Figure 3(e), which can measure temperatures in the range from -50 to 100 degrees Celsius
with a resolution of 0.5 degrees Celsius. The RTD sensor was installed on the inner side of the center
span to avoid direct exposure to sunlight.

/
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Figure 3. (a) Measurement location; (b) two video cameras; (c) bridge target video camera view for
deflection measurement; (d) reference target video camera view for camera movement correction; (e)
RTD and its installation.

Using the measurement systems, the vertical deflection and the bridge temperature were
measured every 30 minutes for 4.5 months, from July 15 to November 27, 2016. Table 1 provides part
of the results including the time, temperature, and deflection, and these were used as training data
in this example. In Table 1, the time index is given in units of one day. Thus, it starts at 0.2500, which
means 6:00 AM on July 15, 2016, and ends at 135.7292, which means the measurement was
conducted for 135 days (i.e., 4.5 months). The positive and negative signs of the vertical deflection
signify upward and downward deflection, respectively.

Table 1. Part of the measurement data on Eonyang Arch Bridge

Training input data Training output data
L Measuring time index | Bridge temperature Vertical deflection

Measuring time

[day] [°C] [mm]

2016.7.15, 6:00 0.2500 21.45 1.195

2016.7.15, 6:30 0.2708 23.59 2.455

2016.7.15, 7:00 0.2917 25.73 3.565

2016.11.27, 16:00 135.6875 9.55 -6.127

2016.11.27, 16:30 135.7083 9.26 -6.638

2016.11.27, 17:00 135.7292 8.69 -7.300

The measurements that were recorded for 4.5 months produced a total of 2,292 datasets of the
vertical deflection and bridge temperature, and they are plotted in Figure 4(a) and (b). Although
there are some ranges without any data because the measurement devices malfunctioned, it is
clearly observed that both of the vertical deflection and bridge temperature fluctuate with the same
cycle within one day, which means the vertical deflection and bridge temperature are correlated.
For this reason, in this example, a GP model is constructed with introducing temperature data as
input.

Indeed, other factors than temperature such as creep, shrinkage, and train loads may also have
an effect on the vertical deflection of a bridge. According to Nilson (2003), creep proceeds at a
decreasing rate and ceases after two to five years at a final value and shrinkage continues at a
decreasing rate for the first several months [46]. It was also stated by the American Concrete
Institute (2008) that most of the shrinkage effects are manifested in the first year [47]. Because the
example bridge was built in 2009 and the measurement was made in 2016, it was assumed in this
study that the creep and shrinkage may not have a significant effect on the vertical deflection of the
bridge. In addition, train load was not introduced as an important input in the example because
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trains only remain on the bridge for a few seconds while passing one to two times per hour and it is
thus difficult to expect that a train would be passing at the moment when the bridge deflection is
being measured. For these reasons, in this example, the temperature is assumed to be the most
critical factor influencing the vertical deflection and is introduced as input.

Figure 4(c) clearly shows the positive correlation between the bridge temperature and vertical
deflection. Through regression analysis, the mean and 95% prediction intervals are obtain, and the
R-squared value is estimated to be 0.466, which means the temperature is an important factor
relating to vertical deflection. However, it also means there can be other influential factors which
were not measured in the experiment. Therefore, it is necessary to introduce probabilistic upper
and lower bounds of the output, when the prediction model is built using the temperature as input
data in this study.

When there is only one input as in this case, a simple regression can also give a mean equation
and confidence interval for lower costs. However, a GP model can provide more flexible predictive
mean and variance than regression [33, 34]. Furthermore, it enables the construction of a covariance
matrix with a kernel function in Equation (4) which decreases as the time interval increases. For
these reasons, GP is introduced to predict the vertical deflection in this example.
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Figure 4. Measurement data: (a) vertical deflection; (b) bridge temperature; (c) bridge temperature
versus vertical deflection.

For the construction of a GP model, the measuring time index and the bridge temperature are
considered as input data to construct the training input matrix X in Equation (1), and the measured
vertical deflection is used as output data in the same equation to construct the training output
vector y. To predict the deflection based on the training data, the test input matrix X« in Equation (2)
is constructed for the time of interest and the corresponding temperature, which were obtained
from the database of the Korea Meteorological Administration [48].

4. Analysis Results

The vertical deflection of Eonyang Arch Bridge was predicted by using the proposed method
and the measurement data for 4.5 months, and Figure 5 shows the results of predictive mean and 95%
PL. As shown in the left figure, the actual measurement data on vertical deflection fluctuate on a
daily basis, and the daily deflection ranges are approximately up to +15 mm from the average. This is
mainly because the vertical deflection is correlated with the temperature which also changes on a
daily basis. In addition, as shown in the right figure, another cycle with a period of hundreds of days
can be found in the prediction, which is thought to be due to the seasonal changes in the
temperature.

Furthermore, Guideline of Track Maintenance of Korea (2016) suggests that, in the case of the
example bridge, maintenance actions need to be taken when the absolute value of vertical deflection
exceeds 18 mm [5]. Figure 5 shows that the measured absolute values are mostly smaller than the
threshold, but there is a small probability of violating the regulation within the next few months.
Thus, it is recommended to keep monitoring the vertical deflection, even though maintenance on the
example bridge does not need to be done immediately.
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Figure 5. Analysis results of predictive mean and 95% PI from the entire measurement data (right)
and its zoom-in view (left).

To test the performance of the proposed method, predictions were made using different
durations of the measurement time as training data. In addition, actual measurement data that were
not included in the training data were used to validate the prediction results obtained from the
proposed method.

Figure 6 shows how the predictive mean and 95% PI are updated sequentially by additional
measurement data. For example, the black solid and dotted lines plotted in Figure 6(a) are
respectively the predictive mean and 95% PI obtained from the black measurement data in July,
2016 only. However, when blue additional data of the next month (i.e,, August 2016) are also
considered for training, the predictive mean and 95% PI are updated in blue. Likewise, the
sequentially updated predictive means and 95% Pls after considering data in September, October,
and November are shown in Figures 6(b), 6(c), and 6(d), respectively.
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Figure 6. Sequentially updated predictive mean and 95% PI by adding the measurement data in: (a)
August; (b) September; (c) October; and (d) November.

The models constructed in Figure 6 were checked by calculating the RMSEs with respect to the
given datasets. Table 2 presents these results, and the RMSE values are estimated to be
approximately 5 mm overall, with minimum and maximum values of 4.01 mm and 6.20 mm,
respectively. As discussed in Section 2.2, the RMSE is calculated by comparing the predictive mean
and the actual measurement results every 30 minutes in this example, which means the overall 5
mm represents the inherent variability of the vertical deflection which cannot be reduced. In
addition, the RMSE values of 5 mm overall also mean the constructed models based on different
durations of measurement time have a similar level of inherent variability.
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Table 2. RMSE values with respect to different sets of training data.

13 of 18

Given Model of Model of Model of Model of Model of
training Jul. Jul.-Aug. Jul.-Sep. Jul.—Oct. Jul.-Nov.
data [mm] [mm] [mm] [mm] [mm]
Jul. 2016 4.01 4.09 4.60 4.28 4.71
Aug. 2016 - 5.43 5.58 5.39 5.66
Sep. 2016 - - 4.78 4.24 4.21
Oct. 2016 - - - 5.89 6.2
Nov. 2016 - - - - 4.49

These can be confirmed more clearly from Table 3, which shows the results of ME with respect
to the given datasets utilized for training. As shown in the table, the ME values are generally close
to zero, exactly in between —1.49 mm and 0.59 mm. This is because the inherent variabilities in the
prediction models are canceled out (as mentioned before), which means the prediction models are
close to being unbiased.

Table 3. ME values with respect to different sets of training data.

Given Model of Model of Model of Model of Model of
training Jul. Jul.—Aug. Jul.—Sep. Jul.-Oct. Jul.-Nov.
data [mm] [mm] [mm] [mm] [mm]
Jul. 2016 -0.84 -1.00 -1.04 -1.09 -0.81
Aug. 2016 - 0.29 -0.67 0.56 -0.93
Sep. 2016 - - -0.82 0.59 -0.26
Oct. 2016 - - - -1.40 -1.49
Nov. 2016 - - - - -141

Meanwhile, Figure 7 compares the prediction results and the actual measurement data. For
example, Figure 7(a) shows the predictive mean and 95% PI (in black) based on the measurement
data in July only and compares them with the actual measurement data obtained from August
through November. It is clearly seen that the prediction accuracy gradually decreases as the
moment of prediction moves farther away. However, as the duration of the measurement time for
training data becomes longer, more accurate prediction models are obtained, and the prediction

results become quite similar to the actual measurement data.
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Figure 7. Comparison between the actual measurement data and the prediction results based on the
datasets within: (a) July; (b) Jul. to Aug.; (c) Jul. to Sep.; (d) Jul. to Nov.

These points can be observed more clearly using performance assessment indices. Table 4
shows the RMSE values with respect to different sets of test data. From the table, it is first seen that
the RMSE values are relatively small when the prediction results are compared with the
measurement data of the subsequent months and the RMSE values increase as the moment of
prediction moves farther away. Second, it is also observed that the RMSE values decrease as
measurement data for a longer duration is used.

Table 4. RMSE values with respect to different sets of test data.

) Model of Model of Model of Model of Model of
Given Jul. Jul.—Aug. Jul.—Sep. Jul.-Oct. Jul.-Nov.
test data [mm] [mm] [mm] [mm] [mm]
Jul. 2016 - - - - -
Aug. 2016 6.82 - - - -
Sep. 2016 7.55 3.98 - - -
Oct. 2016 7.97 5.27 4.29 - -
Nov. 2016 12.28 7.06 3.35 3.42 -

These findings are more evident with ME, where the inherent variabilities are canceled out.

Table 5 provides the results of ME with respect to different sets of test data. As shown in the table,
although the model that was constructed based only on the measurement data in July may seem
acceptable for August with 2.36 mm, the ME values continue increasing as the moment for
prediction is taken farther away from the measurement period (i.e., July). However, whenever an
additional dataset is added to the training data, the absolute ME value generally decreases, which
means the accuracy of the prediction model improves. For example, the ME value of the prediction
model constructed using the data from July to October has a small ME value of 0.49 mm, when the
model is compared with the actual measurement data for November.

Table 5. ME values with respect to different sets of test data.

) Model of Model of Model of Model of Model of
Given Jul. Jul.—Aug. Jul.—Sep. Jul.-Oct. Jul.-Nov.
test data
[mm] [mm] [mm] [mm] [mm]
Jul. 2016 - - - - -
Aug. 2016 2.36 mm - - - -




387
388
389
390
391

392

393
394
395
396
397
398
399

400

401

402

403
404
405
406
407
408
409
410
411
412

Sensors 2018, 17, x FOR PEER REVIEW 15 of 18
Sep. 2016 6.76 mm 1.73 mm - - -
Oct. 2016 5.94 mm 0.37 mm -1.47 mm - -
Nov. 2016 11.82 mm 6.22 mm -1.66 mm 0.49 mm -

On the other hand, to check the results of 95% Pls, the ACE values are calculated with respect to
the given dataset. Table 6 shows the ACE values with respect to different sets of training data, and it
can be seen that the ACE values are close to zero overall. This means the PI of each prediction model
covers the specified portion (i.e., 95% in this example) of the given data.

Table 6. ACE values with respect to different sets of training data.

Given Model of Model of Model of Model of Model of
training Jul. Jul.-Aug. Jul.-Sep. Jul.—Oct. Jul.-Nov.
data [mm] [mm] [mm] [mm] [mm]
Jul. 2016 -0.0411 0.0170 -0.0165 0.0125 -0.0188
Aug. 2016 - -0.0045 0.0285 -0.0293 0.0120
Sep. 2016 - - 0.0104 -0.0379 -0.0065
Oct. 2016 - - - 0.0474 0.0460
Nov. 2016 - - - - -0.0197

In addition, Table 7 presents the ACE values with respect to different sets of test data. The two

facts that were already observed with RMSE and ME are clearly noticeable. First, it is seen that ACE
values are relatively small when the Pls are compared with the measurement data of the
subsequent months and the absolute values of ACE increase as the moment of prediction moves
farther away. Second, it is also observed that the absolute values of ACE decrease as measurement

data for a longer duration are used.

Table 7. ACE values with respect to the test datasets.

) Model of Model of Model of Model of Model of
Given Jul. Jul.-Aug. Jul.-Sep. Jul.—Oct. Jul.-Nov.
test data [mm] [mm] [mm] [mm] [mm]

Jul. 2016 - - - - -
Aug. 2016 -0.0335 - - - -
Sep. 2016 0.0273 -0.0258 - - -
Oct. 2016 0.2248 -0.0397 0.0460 - -
Nov. 2016 0.5864 0.0482 -0.0478 -0.0284 -

5. Conclusions

This paper proposes a probabilistic method which employs a Gaussian process to construct a

model to predict the vertical deflection of a railway arch bridge based on actual computer vision
measured data. To deal with the sources of uncertainty which may cause errors in a prediction
model, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the
hyperparameters are identified through the Gaussian process regression using training data, the
proposed method provides the predictive mean and 95% prediction interval of the vertical
deflection of the target bridge. The proposed method was tested by applying it to Eonyang Arch
Bridge, which is a railway bridge operated for high-speed trains in South Korea. The corresponding
analysis results showed that as additional training data were introduced, both the predictive mean
and predictive interval could be updated. In addition, the analysis results of predictive mean and 95%
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PI obtained from the proposed method showed good agreement with the actual measurement data
on the vertical deflection of the example bridge, and it was shown that the prediction results could
be utilized for decision-making on railway bridge maintenance.
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