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Stepwise heating in Stille polycondensation toward
no batch-to-batch variations in polymer solar cell
performance
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For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (Mw)

and polydispersity index (Ð) can lead to inconsistent process-dependent material properties

and consequent performance variations in the device application. Using a stepwise-heating

protocol in the Stille polycondensation in conjunction with optimized processing, we obtained

an ultrahigh-quality PTB7 polymer having high Mw and very narrow Ð. The resulting

ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion

efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with

commercially available PTB7. Moreover, we observe almost negligible batch-to-batch var-

iations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed

stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-

quality semiconducting polymers that can significantly improve device yield in polymer-based

solar cells, an important factor for the commercialization of organic solar cells, by mitigating

device-to-device variations.
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π-conjugated polymers continue to revolutionize the field of
printed and flexible organic electronics1–4. Pertinent to
synthesis, versatile organic building blocks have been widely

coupled to form sp2–sp2 carbon bonds with polyaromatic con-
jugations via various cross-coupling reactions5–9. With a large
number of functional groups available under less harsh reaction
conditions along with high yields, palladium-catalyzed Stille
polycondensation has been extensively employed for construction
of various π-conjugated donor–acceptor (D–A) polymers10–12.
This has led to the advanced technologies for numerous appli-
cations, ranging from polymer light-emitting diodes13, polymer
field-effect transistors14, and polymer solar cells (PSCs)15. Owing
to the current impetus in advancing the field of energy-pertinent
polymer applications, many chemists have recently developed
state-of-the-art polymers for bulk-heterojunction (BHJ) PSCs,
achieving power conversion efficiencies (PCEs) exceeding 10%
16–19. Despite such successful accomplishments, they have a
ubiquitous experimental limitation. Unlike the well-defined
structures of small molecular semiconductors, for a given poly-
mer prepared from transition metal-catalyzed cross-coupling
reactions, the batch-to-batch variations in molecular weight (Mw)
and polydispersity index (Ð) have given rise to inconsistent
process-dependent material properties and consequent perfor-
mance variations in deviceQ1 applications20–24. Therefore, opti-
mized synthetic methodologies have been rigorously investigated
to improve Stille polycondensation reaction protocols, e.g.,
through examining the role of the catalyst, solvent, and other
reaction conditions10,25,26. Nonetheless, to date, such attempts
have not surmounted the aforementioned batch-to-batch pro-
blems. Therefore, a formidable challenge in π-conjugated polymer
chemistry is to develop a robust synthetic methodology toward
higher-quality polymeric precision with high Mw and narrow Ð,
thus overcoming the current limitation of the statistically deter-
mined nature of synthetic polymers.

Here, we report an efficient and facile stepwise Stille poly-
condensation with an additionally embedded low-temperature
step for the preferential step growth of low-Mw fractions to for-
mulate high-quality polymers. We choose a well-known high-
performance polymer, poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-
b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbo-
nyl]thieno[3,4-b]thiophene-4,6-diyl] (PTB7)27, as a test-bed
polymeric material for our study (Fig. 1). After extensive
screenings of the key aspects of the polymerization in context, we
employ stepwise Stille polycondensation upon the optimized
synthesis condition, affording ultrahigh-quality PTB7 having high
Mw (223 kDa) and very narrow Ð (1.21). Despite the similar
optical, electrochemical, and morphological properties between
the stepwise protocol-derived and commercially available PTB7
polymers, the resulting ultrahigh-quality polymer-based solar
cells exhibit superior PCEs of up to 9.97% with impressively
negligible device-to-device performance variations, constituting a

substantial improvement from control devices based on the
commercial polymer. The stepwise Stille polycondensation pro-
cess is readily adoptable to a wide range of general π-conjugated
polymers requiring ultrahigh quality and can be immediately
incorporated into synthetic organic chemists’ repertoire as a
principal reaction protocol.

Results
High purities in a pair of D- and A-monomers play pivotal roles
for a precise stoichiometric balance in polymer chemistry, and
even marginal imbalances in stoichiometry can have a significant
impact on the degree of polymerization20,28,29. Therefore, to
minimize the possibility of stoichiometric imbalances from the
impurity of the reactant monomers, we further refined two pur-
ified monomers (1 and 2) using a JAI-LC9160II preparative gel
permeation chromatograph (GPC) with a reversed-phase column
in acetonitrile:THF (6:4 vol). We verified the resulting high purity
by elemental analysis and high-resolution mass spectrometry
(HRMS; Supplementary Fig. 1 and Table 1). Previous work27,30

reports the Stille polycondensation of PTB7 using Pd(PPh3)4
(4.0 mol%) in Q9toluene:DMF (4:1 vol, 0.10M) at 120 °C under
argon for 12 h, providing a high-performance polymeric material
in PSCs. Therefore, we first performed Stille polycondensation
under the same conditions, which allowed us to obtain PTB7 with
an acceptable Mw of 70.6 kDa and a Ð of 2.18 in 76% yield (entry
1, Table 1). We evaluated the Mw and Ð values by high-
temperature GPC at 120 °C using 1,2,4-tricholorobenzene as the
eluent.

To determine the optimal combinatorial settings for a further
improved Stille polycondensation condition of PTB7, we exam-
ined the overall synthesis scope and optimized the reaction
conditions with respect to parameter control such as the catalyst,
reaction time, temperature, solvent, and concentration. Initially,
we attempted to utilize a more air-stable Pd2(dba)3:P(o-tolyl)3
(2:8 mol ratio) precatalytic system compared to the aforemen-
tioned Pd(PPh3)4-based scheme, which led to a slightly lower Mw

of 61.2 kDa in 55% yield. Considering the Mw and yield of the
polymer, we thus adopted Pd(PPh3)4 as the optimal catalyst to
examine the following polymerization processes.

For prolonged reaction times of 24 and 36 h (entries 3 and 4,
respectively), the corresponding Mw values (70.9 to 72.7 kDa)
were similar to that obtained from the analogous reaction con-
ducted over the course of 12 h, suggesting that the poly-
condensation reaction proceeded to completion in <12 h under
the specific test conditions. Although employing different tem-
peratures (100 and 140 °C) offered narrower Ð values of 1.70 to
1.90, there was a trade-off of lowered Mws. The evaluated tem-
perature of 140 °C resulted in a yield as high as 82%, which is
twice that at 100 °C. In addition, we observed a sharp decline of
Mw to 28.4 kDa with only toluene solvent (entry 7). This indicates
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Fig. 1 Synthetic pathways for the PTB7 test-bed polymer. a Conventional Stille reaction is comprised of only steady heating procedure at 120 °C and b
stepwise Stille polycondensation in this work adopted cooling step at 60 °C after which initial heating was applied at 120 °C for first 1 h
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that the toluene:DMF system can improve the solubility of
polymers with the catalyst-stabilizing effects, leading to excellent
yields of high-Mw polymers. Such benefits induced by mixed
solvent systems have been previously reported25,31,32. However, a
higher DMF-to-toluene ratio (1:1 vol) severely lowered the Mw,
which may be attributed to the insufficient solubility of the
growing polymer chain in the mixed ratio despite more pro-
nounced catalyst stabilization. With an optimal toluene:DMF
(4:1 vol) system, the polymerization employing a lower monomer
concentration (down to 0.05M) was more effective in generating
a high yield of higher-Mw polymers (94.2 kDa) having narrow Ð
(1.95). Table 1 summarizes the aforementioned polymerization
conditions and relevant data for the PTB7 polymer.

We speculate that various components with different Mws,
formed during the initial stages of polymerization, lead to broad
Mw distributions when the duration of the step-growth poly-
merization is extended. The Ð data of the polymers synthesized
under the short reaction times (entry 10 and Supplementary
Fig. 3a) corroborates this speculation. In principle, the different
Mw components undergo different kinetics and thermodynamics
driven toward coupling reactions. Therefore, we assume that their
reaction selectivity can be controlled by the reaction temperature,
and the temperature-dependent Ð values (see entries 5 and 6)
validate this assumption. Therefore, we further investigated pre-
cise temperature-controlled Stille polycondensations in combi-
nation with stepwise-heating protocols to obtain a higher quality

of PTB7 polymer under the optimized solvent (toluene:DMF,
4:1 vol), catalyst [Pd(PPh3)4, 4.0 mol%], and concentration
(0.05 M) experimental conditions.

We first performed polymerization at the optimal temperature
(120 °C) for 1 h and then cooled the reaction mixture to 60 °C for
11 h as a selectivity control step. Over this time period, the low-
Mw species would react preferentially, and thus, the window of
the Mw distributions can potentially be reduced (Supplementary
Fig. 3b). It is noteworthy that all of the polymeric fractions
formed at the low-temperature step (60 °C) are readily dissolved
in the mixed reaction solvent (Supplementary Fig. 3c), suggesting
that the reactivity variation caused by their solubility issues is
negligible. After the cooling stage, we reverted the reaction tem-
perature to the initial setting for finalizing the step-growth
reaction. Such a stepwise polymerization approach yielded
higher-Mw polymeric fractions (Mw greater than 90 kDa) having
a narrower Ð of 1.34 (entry 11, Table 2). High Mw values of the
PTB7 polymer could also be obtained through the temperature
changes (80 and 100 °C) from the preference-control step, but
this approach adversely affected the Ð values (entries 12 and 13).
Therefore, we further investigated the effect of changes in the
concentration and catalyst quantities at a fixed temperature of
60 °C over the course of the low-temperature maturation process
(entries 14 to 18).

A comparison of the entries’ results tested for various con-
centrations and catalysts indicates that in addition to the notably

Table 2 Stepwise Stille polymerization with the optimization dataQ11

Entry Solvent (Conc.) Catalyst (mol%) Mn (kDa)a Mw (kDa)a Ða Yield (%)b

11 Toluene/DMF (0.05M) Pd(PPh3)4 (4.0) 67.2 90.1 1.34 -c

12d Toluene/DMF (0.05M) Pd(PPh3)4 (4.0) 43.9 82.6 1.88 -c

13d Toluene/DMF (0.05M) Pd(PPh3)4 (4.0) 42.5 99.8 2.35 -c

14 Toluene/DMF (0.10M) Pd(PPh3)4 (4.0) 31.3 65.1 2.08 63
15 Toluene/DMF (0.026M) Pd(PPh3)4 (4.0) 82.1 125 1.52 65
16 Toluene/DMF (0.026M) Pd(PPh3)4 (3.0) 110 151 1.37 81
17 Toluene/DMF (0.026M) Pd(PPh3)4 (2.0) 151 195 1.29 79
18 Toluene/DMF (0.026M) Pd(PPh3)4 (1.0) 184 223 1.21 85
19e Conventional polymerization 46.9 75.8 1.62 72

The stepwise Stille polycondensation was carried out under an argon atmosphere in a long Schlenk tube of monomer 1, 2, and Pd(PPh3)4, and procedures included the initial heating at 120 °C for 1 h, the
cooling step at 60 °C for 11 h, and the final heating at 120 °C for 1 day
a Mn, Mw, and Ð values were determined from GPC measurement using 1,2,4-trichlorobenzene at 120 °C calibrated with polystyrene as standard
b Yields were estimated from the amounts of the chloroform fractions
c Each fraction was extracted by a syringe, then precipitated in methanol with Soxhlet purification for only GPC analysis
d The cooling temperature was investigated at 80 and 100 °C for entries 12 and 13, respectively
e 1.0 mol% Pd catalyst was employed for conventional Stille polymerization

Table 1 Conventional Stille polymerization of PTB7 under screening reaction parameters

Entry Solvent (ratio) Temp. (o C) Time (h) Mn (kDa)a Mw (kDa)a Ða Yield (%)b

1 Toluene/DMF (4/1) 120 12 32.3 70.6 2.18 76
2c Toluene/DMF (4/1) 120 12 26.9 61.2 2.28 55
3 Toluene/DMF (4/1) 120 24 34.1 70.9 2.08 62
4 Toluene/DMF (4/1) 120 36 32.6 72.7 2.23 71
5 Toluene/DMF (4/1) 100 36 25.1 42.8 1.70 43
6 Toluene/DMF (4/1) 140 12 31.5 59.7 1.90 82
7 Toluene 120 36 17.1 28.4 1.66 37
8 Toluene/DMF (1/1) 120 12 16.3 46.4 2.84 33
9d Toluene/DMF (4/1) 120 12 48.3 94.2 1.95 75
10 Toluene/DMF (4/1) 120 1 12.7 40.0 3.15 -e

6 20.9 60.9 2.91 -e Q10

The conventional Stille polycondensation was carried out under an argon atmosphere in a long Schlenk tube of monomers 1 and 2 in 0.10M solution, and 4mol% of Pd(PPh3)4
a Mn, Mw, and Ð values were determined from GPC measurement using 1,2,4-trichlorobenzene at 120 °C calibrated with polystyrene as standard
b Yields were estimated from the amounts of the chloroform fractions
c Different catalyst system, Pd2(dba)3/P(o-tolyl)3 (2/8mol%) was adopted
d The concentration of solutions was lowered to 0.05M
e Each fraction was extracted by a syringe, then precipitated in methanol with Soxhlet purification for only GPC analysis

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03718-7 ARTICLE

NATURE COMMUNICATIONS | _#####################_ |DOI: 10.1038/s41467-018-03718-7 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications
Panic
강조

Panic
스티커 노트
Solvent (vol%) 로 변경

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
스티커 노트
모두 Toluene:DMF (4:1) 로 변경

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
스티커 노트
Pd2(dba)3 (2.0 mol%):P(o-tolyl)3 (8.0 mol%)
로 변경

Panic
스티커 노트
모든 테이블 주석에서 superscript 공백 삭제

Panic
스티커 노트
Number-average (Mn), weight-average (Mw), and Ð

로 표현

Panic
스티커 노트
1과 2 bold체 변경

Panic
스티커 노트
4.0 mol% 로 변경경

Panic
스티커 노트
모든 주석의 문장 뒤 마침표 삽입

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
스티커 노트
Toluene:DMF 로 변경

Panic
스티커 노트
Pd(PPh3)4 로 똑같이 catalyst 에 삽입열

Panic
스티커 노트
수치들 밀림 수정

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
강조

Panic
스티커 노트
A mixture of monomer 1, 2, and Pd(PPh3)4 in a binary solvent of toluene and DMF (4:1 vol%, 0.026 M) was reacted at 120 °C for 1 day in a long Schlenk tube under an argon condition.
로 변경

Panic
스티커 노트
모든 테이블 주석 문장 뒤 마침표 삽입

Panic
스티커 노트
모든 주석의 superscript 공백 삭제

Panic
스티커 노트
1과 2 bold체 표기

Panic
강조

Panic
스티커 노트
(Pd(PPh3)4, 4.0 mol%) 중괄호로 변경

Panic
강조

Panic
강조

Panic
강조



UNCORRECTED P
ROOF

high Mws observed (exceeding 125 kDa at 0.026M), Ð values
gradually reduced in accordance with the decreasing catalyst
loading. This is probably attributable to the suppression of
multiple reaction pathways at low catalyst loading6,25,33,34.
Through further optimization processes, we obtained the best-
quality PTB7 polymer having Mw of 223 kDa and Ð of 1.21 using
a combination of 0.026 M concentration and a catalyst con-
centration of 1.0 mol%. For a fair comparison, the conventional
Stille polycondensation was also performed using the optimized
condition above, producing PTB7 with only moderate Mw (entry
19), which clearly corroborates the efficacy of stepwise poly-
merization to achieve a higher-quality PTB7 with high Mw and
narrow Ð. Supplementary Table 4 lists the remainder of the
conditions tested over the course of our study.
Several reports have demonstrated the influence of polymer

Mws on various optical, physico-chemical, and morphological
properties35–40. In this regard, we explored the optical and elec-
trochemical properties, morphology, and molecular organization
for two representative batches (entries 17 and 18) using ultra-
violet (UV)–visible (Vis) absorption spectroscopy, cyclic vol-
tammetry, atomic force microscopy, transmission electron
microscopy, and grazing-incidence wide-angle X-ray diffraction
(GIWAXD), summarized in the Supplementary Table 4 and
Table 5. The film absorption coefficients (ε) varied from 93,900 to
133,000 cm−1 for entries 17 and 18, implying that the increase of
Mws can result in the enhanced light-absorbing capability.
Nonetheless, the two test samples exhibited similar physical fea-
tures (nearly identical absorption shape, optical bandgap of
1.67 eV, HOMO:LUMO of −5.34:−3.61 eV, small surface
roughness of 1.0 nm, lamellar distance of 19.5 Å, and π−π
stacking distance of 3.9 Å), as revealed by a series of the afore-
mentioned analysis (Fig. 2), which to some extent may reflect the
sufficiently high quality that correlates with nearly identical
structural aspects.
Next, we further compared and quantified the difference

between the resulting polymers prepared from our optimized
stepwise and conventional protocols (entries 17, 18, and 19) and

commercially available PTB7 products, which we purchased from
Derthon and 1-Material companies. As shown in Fig. 3, both
entries 17 and 18 show significantly higher Mw and narrower Ð
values than those of the entry 19 and commercial products, which
we determined by the same processing GPC analysis (Supple-
mentary Table 7). Note that the different commercial products
used in this study are denoted as Commer-1 and Commer-2,
respectively. These results clearly indicate that stepwise poly-
merization is an effective strategy to achieve a narrow distribution
of high-Mw polymers.

To assess the effect of polymer quality control on photovoltaic
properties, we fabricated archetypal single junction PSC devices
(ITO/PEDOT:PSS/PTB7:PC71BM/Al) based on four polymers
(entries 17, 18, 19, and Commer-1). In accordance with the
aforementioned optimized processing conditions, we spin-coated
the PTB7:PC71BM blend (1:1.7 wt%), 12 mgmL−1 concentration,
in a mixed solvent of chlorobenzene (CB):1,8-diiodooctane (DIO)
(97:3 vol%). We chose Commer-1 as a commercial reference
sample because of its higher quality from a materials standpoint
and better PSC characteristics in the initial screening test relative
to that of Commer-2 (Supplementary Fig. 6 and Table 8). The
result of entry 19 obtained from conventional Stille polymeriza-
tion was also included in the evaluation of the PSC performance
for the sake of comparison.
Figure 4a shows the current density−voltage (J–V) curves

measured under the simulated AM 1.5 G at 100 mW cm−2 irra-
diance, and Table 3 shows the corresponding key photovoltaic
parameters. The Commer-1:PC71BM control device showed a
short-circuit current density (JSC) of 16.5 mA cm−2, an open-
circuit voltage (VOC) of 0.72 V, and a fill factor (FF) of 61%. This
indicates a PCE of 8.02% (PCEavg= 7.26%), which is similar to
the results previously reported from the highly optimized PTB7-
based devices41–45. The device performance for the entry 19 was
lowest with a PCE of 6.98% (PCEavg= 5.92%). On the other hand,
both entries 17- and 18-based devices display significant
improvements in the JSC, having Q12similar VOC of 0.71 V and FFs of
62%. The increase in JSC values is in good agreement with the
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Fig. 2 Optical, electrochemical, and morphological properties of entries 17 and 18. a UV–Vis absorption spectra and cyclic voltammograms. b AFM height
images in a scale of 500 nm with inset TEM images (5 nm scale). c GIWAXD images of in-plane and out-of-plane
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results of external quantum efficiency (EQE) measurements from
the corresponding devices (Fig. 4b). In addition, the trend of the
EQE enhancements is well-matched with the increased absorp-
tion spectra of the blend films (Supplementary Fig. 7), which is
consistent with what was previously reported in that the photo-
current correspondingly increases with Mw valuess46,47. Conse-
quently, we achieved a PCE of up to 9.97% (PCEavg= 9.69%) in
the best-quality entry 18-based device, which, our best knowl-
edge, is the highest value reported for PTB7-based PSCs. More
importantly, the entry 18-based device shows superior reprodu-
cibility in regard to all photovoltaic parameters; more than 30
devices lie within trivial error ranges of 5.88% (to 95% confidence
level), whereas the control devices (entry 19 and Commer-1)
show large performance variations in each device type (Fig. 4c).
The origin of improvements in both the PCEs and reproducibility
of PSCs based on entry 18 is consistent with what was previously
suggested in that a lower density of radical-type paramagnetic
defects in PTB7 with high Mw leads to improved device func-
tionality48. These observations imply that polymer chain quality
control is an important contributor to resolving the challenging
issue of device-to-device variations in PSCs.

Moreover, to explore the versatility of the stepwise-heating
protocol, we attempted to prepare various other polymers,
including thienopyrroledione-, diketopyrrolopyrrole-, quinoxa-
line-, and thiophene-based monomeric systems by using con-
ventional- and stepwise-heating systems, respectively
(Supplementary Fig. 8 and Note 1). As can be seen in the relevant
GPC results (Supplementary Fig. 9 and Table 9), in all cases, the
stepwise polymerization produced the polymeric components
with higher Mw and narrower Ð values compared to those of the
corresponding ones obtained from the conventional method. The
PSCs based on the resulting polymers were comparatively

investigated in the same device architecture as described above
(Supplementary Note 2, details of the optimized conditions for
each polymer). The devices based on the stepwise batches showed
higher PCEs than those of the corresponding ones fabricated
from the conventional method (Supplementary Fig. 10). Note that
the higher-quality Q13PBDT-TPD prepared from the stepwise tool
exhibited a slightly lower PCE than that of the sample with
conventional tool, due to its poorer film formation with aggres-
sive aggregation behavior induced by the low solubility and
processability upon the device fabrication49,50. These overall
results propose the feasibility of stepwise Stille polymerization for
a broader application.

Discussion
In summary, we introduced the stepwise-heating protocol for
Stille polycondensation, applied it to the preferential step growth
of low-Mw fractions, and successfully demonstrated our protocol
for the PTB7 system. We optimized the process conditions by
thoroughly screening a comprehensive set of control parameters,
including catalyst, reaction time, temperature, solvent, and con-
centration. Compared to the commercial PTB7 product-based
PSCs, the ultrahigh-quality PTB7 (high Mw and narrow Ð) pre-
pared via optimized stepwise polymerization shows substantial
improvement of the JSC exceeding 20 mA cm−2. This results in an
outstanding PCE of up to 9.97% (PCEavg= 9.69%), which is by
far the highest value reported for PTB7-based PSCs. Moreover,
the quality-controlled PTB7 can significantly suppress the batch-
to-batch variations in solar cell performance, leading to excellent
reproducibility in the overall PCE values. Our findings will not
only provide important progress for prevalent semiconducting
polymer reactions but also help overcome the inveterate dis-
advantage of polymer-based electronics applications.

Methods
Materials and monomer synthesis. All the chemicals including solvents, reagents,
and catalysts for this work, were purchased from Sigma-Aldrich, Alfa Aesar che-
mical company, Tokyo Chemical Industry Co., Ltd., and Derthon Optoelectronic
Materials Science Technology Co., Ltd. Unless otherwise specified, such chemicals
were used without any further purification. (Caution: Trimethyltin chloride and
other organotin-related compounds are highly toxic to cause irritation and burns of
the skin and eyes with fatal damage on the central nervous system. High and
repeated exposure can cause loss of hearing, weakness, confusion, and sei-
zures51,52.) 2,6-Bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b’]
dithiophene was synthesized according to the literature30 and 2-ethylhexyl-4,6-
dibromothieno[3,4-b]thiophene-2-carboxylate was purchased from Derthon, both
of which were purified with recrystallization and chromatography using a reverse-
phase column, JAIGEL-ODS-AP, SP-120–10 Q14(2.0φ × 25 cm, i.d., Japan Analytical
Industry Co., Ltd.) in a mixture of acetonitrile and THF as the mobile phase. The
elution was monitored at 256 nm with a UV detector.

Conventional Stille polycondensation. We dissolved monomers 1 (100 mg,
0.13 mmol) and 2 (61.1 mg, 0.13 mmol) in a single solvent or a mixture of toluene
and DMF (0.10 and 0.05M) in a long Schlenk tube. After intensive bubbling with
argon for 20 min, for accuracy, we injected the solution of Pd catalyst in toluene
(5.2 mM, 4.0 mol%) with subsequent purging for 10 min. We kept the mixture in a
preheated oil bath at certain temperatures for various durations. Table 1 sum-
marizes the pertinent conditions. After cooling to room temperature, we purified
the precipitates in methanol by Soxhlet extraction with methanol, acetone, hexane,
and chloroform. We quantitated the Mn, Mw, and Ð values by high-temperature
GPC and estimated the yields from the isolated fraction in chloroform. The
additional screenings in the conventional reactions were performed with changes in
the method (see the Supplementary Table 3).

Stepwise Stille polycondensation. We dissolved monomers 1 (100 mg,
0.13 mmol) and 2 (61.1 mg, 0.13 mmol) in a binary mixture of toluene and DMF
(0.10 to 0.026 M) as a 4:1 ratio in a long Schlenk tube. After intensive bubbling with
argon for 20 min, we injected the solution of Pd catalyst in toluene (5.2 to 1.3 mM)
with subsequent purging for 10 min. We reacted the mixture in a preheated oil bath
at 120 °C for 1 h for the initial stage, after which allowed the temperature to reduce
and kept the tube cooled for 11 h. We then reset the temperature to 120 °C and
continuously maintained this temperature for 1 day. We extracted small quantities
of the mixture for GPC measurement with a syringe before subsequent heating and
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Fig. 3 GPC data for test batches and commercial polymers. GPC profiles of
entries 17, 18, 19, Commer-1, and -2. The multiple curves were
deconvoluted through the fitting of each GPC curve
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then performed rapid precipitation in methanol as well as Soxhlet purification. We
confirmed the high-temperature 1H NMR results (Supplementary Fig. 11 of
representative entries 17 and 18 and Commer-1).

General characterization. Elementary analyses were performed by a Flash 2000
element analyzer (Thermo Scientific). HRMS spectra were measured using a Q
Exactive™ Plus Hybrid Quadrupole Orbitrap™ mass spectrometer (Thermo Scien-
tific). The polymers used for comparison in this work were purchased from Der-
thon and 1-Material and the characterization data for polymeric parameters are
summarized in Supplementary Table 7. 1H NMR spectra were recorded on a
Varian VNRS 600MHz spectrometer using deuterated 1,1,2,2-tetrachloroethane
C2D2Cl4) as solvent at 348 K. UV–Vis–NIR absorption spectra were obtained using
a UV-1800 (SHIMADZU) spectrophotometer. GPC with Waters 150C GPC was
used to determine number-average (Mn) and weight average (Mw) molecular
weights, and polydispersity index (Ð) of the polymer products against a series of
monodisperse polystyrenes as standards in 1,2,4-trichlorobenzene (HPLC grade) at
120 °C. For multiple column usage, three GPC columns for high-temperature were
connected in series of GPC-HT-803, -804, and -805 (product code: F62085700,
F6208710, and F6208720, column size: 8.0 × 300 mm, usable temperature: 100 to
150 °C, particle size: 13 µm, pore size: 500, 1500, and 5000 Å, and, exclusion limit:
70, 400, and 40,000 kDa, ShodexTM). The monodisperse polystyrene standards with
a broad range of Mws were used for the GPC calibration curves with theQ15 equation,
Y(logMw)=−0.31854*X(min)+ 9.02902 and the correlation factor, 0.9998350 (see
the Supplementary Table 2 and Fig. 2). To avoid errors caused by extrapolation,
Fig. 3 was replotted with the calibration curve and points, as shown in the Sup-
plementary Fig. 5. Cyclic voltammograms (CV) of entries 17 and 18 on a platinum
working electrode were obatained by AMETEK Versa STAT 3 at a scan rate of

100 mV s−1. For a three-electrode cell system in a nitrogen bubbled 0.1 M tetra-n-
butylammonium hexafluorophosphate (n-Bu4NPF6) solution in acetonitrile, Ag/Ag
+ electrode and a platinum wire were used as the reference electrode and counter
electrode, respectively. A Fc/Fc+ redox couple as an internal standard was used to
calibrate the Ag/Ag+ reference electrode. Oxidation potential of Fc/Fc+ was set at
−4.8 eV with respect to a zero vacuum level. EHOMO/ELUMO=−(φoxonset/φredonset

− φferrocene
onset+ 4.8) (eV) was used for calculating the HOMO/LUMO energy

levels. AFM Q16investigations were carried out by a multimode V microscope (Veeco,
USA) in the tapping mode with a nanoscope controller using Si tips (Bruker). The
AFM phase images were provided in the Supplementary Fig. 4. TEM analysis was
performed using a JEOL USA JEM-2100F (Cs corrector) transmission electron
microscope. GIWAXD measurement was carried out at the PLS-II 6D UNIST-PAL
beamline of the Pohang Accelerator Laboratory in Korea. A double crystal
monochromator with a 2D CCD detector (Rayonix SX165) was used to mono-
chromate the X-ray coming from the in-vacuum undulator (λ= 1.1099 Å), which
was focused both horizontally and vertically ((450 (H) × 60 (V) µm2 in FWHM
(full width at half maximum) @sample position) using K-B type mirrors. The 7-
axis motorized stage was used for the fine alignment of samples, and the incidence
angle of X-ray beam was set to be 0.12o for the neat polymers and the blend films.
Diffraction angles were calibrated using a sucrose standard (Monoclinic, P21, a=
10.8631 Å, b= 8.7044 Å, c= 7.7624 Å, β= 102.938°) and the detector was located
at a distance of ≈232 mm from the sample center.

Device fabrication and characterizations. The conventional devices were adop-
ted to assess the performance of polymers:PC71BM-based solar cells with the device
architectures of glass/ITO/PEDOT:PSS/photoactive materials/Al. ITO-coated
glasses were washed using deionized water, acetone and isopropyl alcohol, dried in
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Fig. 4 Photovoltaic performance from the selected entries and Commer-1. a J–V characteristics for BHJ solar cells. b EQE spectra in a range from 300 to
900 nm. c Variations in device parameters of JSC, VOC, and PCEs. All error bars with average values were obtained from more than 30 devices for each
polymer

Table 3 Device parameters for entries 17, 18, 19, and Commer-1

Samples JSC (mA cm−2) VOC (V) FF (%) PCE (%) max avg.−1a

Entry 17b 19.8 ± 0.4 0.71 ± 0.02 62 ± 2 9.35/8.93a

Entry 18b 20.9 ± 0.3 0.71 ± 0.01 62 ± 2 9.97/9.69a

Entry 19b 16.3 ± 0.6 0.72 ± 0.03 60 ± 3 6.98/5.92a

Commer-1b 16.5 ± 0.5 0.72 ± 0.02 61 ± 1 8.02/7.26a

avg.average
a The average values were obtained from over 30 devices with the standard deviation
b The thicknesses of the polymer blending films with PC71BM are 85, 80, 78, and 83 nm, respectively
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an oven. Solutions of the PTB7-based polymers in chlorobenzene/1,8-diiodooctane
solvent (97:3 vol%) at concentrations of 12 mgmL−1 were used for the blending
solutions polymer:PC71BM (1:1.7 wt%). PEDOT:PSS was spin-coated on the sub-
strates at 4000 rpm for 1 min and dried at 150 °C for 10 min. The prepared blend
solutions were spin-coated at 900 rpm for 2 min onto PEDOT:PSS-coated ITO in
the glove box under nitrogen condition. Subsequently, the Al (100 nm) counter-
electrode was thermally evaporated under a vacuum (B106 Torr), which defines the
device area of 13 mm2. J–V characteristics were obtained in the glove box with a
xenon arc lamp solar simulator under AM 1.5 G illumination (100 mW cm−2)
using a Keithley 2635 A source measurement unit, and QE system (Model QEX7)
from PV measurements Inc. (Boulder, Colorado) was used for EQE measurement
under ambient conditions.

Data availability. All relevant data supporting the findings of this study are
available from the authors on request
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