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Abstract: The first blind nonlinear equalizer using affinity propagation (AP) clustering is 

experimentally demonstrated for single-channel and WDM CO-OFDM. AP outperforms fuzzy-

logic c-means clustering and digital-back propagation for both QPSK and 16-QAM formats. 
OCIS codes: (060.2330) Fiber optics communications; (060.1660) Coherent communications; (060.4080) Modulation. 

 

1. Introduction  

Endeavors to surpass the Kerr nonlinearity limit in long-haul coherent communications have been attempted in 

digital domain by Volterra-based nonlinear equalization (V-NLE) [1] and digital-back propagation (DBP) [2]. V-

NLE and DBP however, can only tackle deterministic nonlinearities such as self-phase modulation, without 

considering the stochastic nonlinear interaction from polarization-mode dispersion and amplified spontaneous 

emission noise caused by cascaded optical amplifiers. On the other hand, full-step DBP (FS-DBP) is very complex 

and V-NLE shows marginal performance enhancement accompanied with a significant amount of floating-point 

operations, thus forbidding their implementation in real-time communications. Moreover, albeit the Kerr-induced 

nonlinear process is deterministic, in multicarrier schemes like coherent optical OFDM (CO-OFDM) the resulting 

nonlinear interaction between subcarriers becomes very complicated appearing random due to its high peak-to-

average power ratio (PAPR) [3]. Recently, unsupervised and supervised machine learning such as K-means 

clustering [4] and artificial neural network classification [3] have been introduced in optical communications to 

combat stochastic source of noises, performing blind and non-blind NLE, respectively. Here, we demonstrate the 

first blind-NLE using affinity propagation (AP) clustering for single-channel and WDM CO-OFDM. AP 

outperforms fuzzy-logic C-means (FL) and K-means clustering, as well as digital deterministic solutions such as FS-

DBP and V-NLE, by reducing a significant amount of stochastic nonlinear noise on middle subcarriers.  
 

         
(a)                                                                                                 (b) 

Fig. 1. (a) Affinity propagation (AP) clustering procedure (e.g. QPSK). (b) Experimental setup for single- and multi-channel CO-OFDM. 

2. Affinity propagation (AP) clustering performance in CO-OFDM 

In clustering, defined data learn a set of centers such that the sum of squared errors between data points and their 

nearest centers is small [5]. When the centers are selected from actual data points, they are called “exemplars.” K-

means begins with an initial set of randomly selected exemplars and iteratively refines this set so as to decrease the 

sum of squared errors [4]. In AP [5], every symbol is a potential exemplar and by viewing each symbol as a node 

that recursively transmits real-valued messages (separately for amplitude and phase) along the edges of the NLE 

network until a good set of exemplars and corresponding clusters emerges. ‘Messages’ are updated by simple 

formulas that search for minima of an appropriately chosen energy function. At any symbol in time the magnitude of 

each message reflects the current affinity that 1 symbol has for choosing another symbol as its exemplar. Let x1 

through xn be a set of complex data (symbol), with no assumptions made about their internal structure, and let S be a 

function that quantifies the similarity between any 2 symbols, such that S(xi, xJ)>S(xi, xk) if xi is more similar to xJ 

than to xk. For this example, the negative squared distance of 2 symbols was used i.e. for points xi and xk, 

. The diagonal of S (i.e. S(i,i)) is particularly important, as it represents the input preference, 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/157781053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:elias.giacoumidis@dcu.ie


meaning how likely a particular input is to become an exemplar. When this is set to the same value for all inputs, it 

controls how many classes the algorithm can produce. A value close to the minimum possible similarity produces 

fewer classes, however, a value close or larger to the maximum possible similarity, produces many classes 

(initialized to the median similarity of all pairs of inputs). AP proceeds by alternating 2 message passing steps to 

update the ‘responsibility, R(i, k)’ and ‘availability, A(i, k)’matrices, where R quantifies how “well-suited” xk is to 

serve as the exemplar for xi compared to other candidate exemplars, while A shows how “appropriate” it would be 

for xi to pick xk as its exemplar, taking into account other points’ preference. R and A, are initialized to zero being 

viewed as log-probability tables and then AP is iteratively updated for R and A by: 
 

  (1)             (2) 
 

The exemplars are extracted from the final updated matrices where 'responsibility + availability' is positive. Fig. 1(a) 

shows the aforementioned AP iterative result of R and A for QPSK middle-channel in WDM CO-OFDM at 3200 

km for optimum launched optical power (LOP) per channel of –5 dBm, where 13 iterations are required for 

convergence. While K-means and AP are deterministic types of clustering, probabilistic also exist such as FL [6], 

permitting the symbols to fluctuate the data membership degree. The experimental setup shown in Fig. 1(b) for both 

single-channel and WDM CO-OFDM at 2000 km and 3200 km of transmission, respectively, are identical to Refs. 

[7,8]. 400 OFDM symbols (20.48 ns length) were generated using a 512-point IFFT on 210 QPSK/16-QAM 

subcarriers. To eliminate inter-symbol-interference from linear effects, a cyclic prefix (CP) of 2% was included. For 

clustering, FS-DBP, V-NLE and without (w/o) NLE, the raw bit-rates were ~20 Gb/s (QPSK) and 40 Gb/s (16-

QAM). The offline OFDM demodulator included timing synchronization, frequency offset compensation, channel 

estimation and equalization with the help of an initial training sequence, as well as IQ imbalance and dispersion 

compensation using an overlapped frequency domain equalizer. For WDM CO-OFDM a laser grid of 100 kHz-

linewidth DFBs on 100 GHz grid was used. The NLEs performances were assessed by Q-factor 

(=20log10 ) measurements averaging over 10 recorded traces (~106 bits) by error counting (HDD).  
 

                 
                                   (a)                                        (b)                                                (c)                                                             (d) 

Fig. 2. (a) Q-factor vs. launched optical power (LOP) per channel for QPSK. (b) Received constellation diagrams at –7 dBm of LOP. (c) 

Middle subcarriers Q-factor distribution at –5 dBm of LOP. (d)  Q-factor vs. LOP for single-channel 16-QAM CO-OFDM. 

 

In Fig. 2(a), the Q-factor against the LOP per channel is plotted for all adopted NLEs for QPSK (middle channel) WDM 

CO-OFDM and in Fig. 2(b) constellations are depicted for AP and K-means at -7 dBm of LOP. AP tackles nonlinearities 

more effective than FL [6], K-means, FS-DBP and V-NLE since it compensates parametric noise amplification and the 

accumulated inter-subcarrier four-wave mixing (FWM) which appears random (due to high PAPR). This is corroborated in 

Fig. 2 (c), where the Q-factor for the middle subcarriers is plotted which suffers the most mainly from FWM (secondary from 

cross-phase modulation). In Fig. 3(c), we show that AP is effective for single-channel 16-QAM at high LOPs enhancing the 

Q-factor by 1 dB over FS-DBP, while significantly outperforming the benchmark clustering algorithms and V-NLE.  
 

3. Conclusion  

We experimentally demonstrated the first AP clustering-based blind NLE in single-channel and WDM CO-OFDM 

for up to 3200 km of transmission. AP outperformed FL, K-means, FS-DBP and V-NLE for both QPSK and 16-

QAM formats, by reducing a significant amount of stochastic nonlinear noise on middle subcarriers. 
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