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Low crowding agent concentration destabilizes against pressure unfolding
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H I G H L I G H T S

• Crowding agents stabilize against heat
unfolding only above a threshold
concentration.

• Crowding agents destabilize against
pressure unfolding at low concentra-
tion.

• Dextran and Ficoll was used as
crowding agent, BSA and lysozyme as
test protein.

• Hydration volume change plays role in
the pressure destabilization.

• Effect of hydration and excluded vo-
lume are discussed to explain our
findings.
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A B S T R A C T

The concentration of macromolecules inside a cell is very high, which can affect the behavior of the enzymes,
and consequently influence vital biological processes. This is called macromolecular crowding. Since the most
important effect of macromolecular crowding is the excluded volume, we performed pressure experiments,
where the volume (as conjugate parameter to the pressure) is the crucial factor. We measured the temperature
and pressure stability of bovine serum albumin and lysozyme with various concentrations of crowding agents,
dextran, Ficoll™ and lysozyme itself. Our most interesting finding is that low concentration of all the studied
crowding agents decreases the pressure stability of the proteins. We explain this by the reduced hydration
volume change in the crowded environment. Furthermore, we discuss the volumetric parameters and emphasize
the difference between the partial volume of the protein and the volume it influences, and their relation to the
excluded volume which is responsible for the macromolecular crowding.

1. Introduction

Although, the interior of a cell is highly crowded due to the presence
of large amounts of soluble and insoluble macromolecules including
proteins, nucleic acids, ribosomes, and carbohydrates; most of the in
vitro protein studies have been carried out in quite dilute solutions
(usually less than 1 mg/ml). The question arises: to what extent can
these properties be extrapolated to the crowded environment of the
cell?

Crowding in the cell means that a significant fraction of the cell's
volume is not available to other macromolecules. The concentration of
macromolecules in the cytoplasm is in the range of 80–400 mg/ml
[1,2]. In physiological fluids all macromolecules collectively occupy
10% to 40% of the total volume [3]. Although the effect of this “mac-
romolecular crowding” is obvious, but often underappreciated. Re-
cently, an increasing amount of evidence suggests that proteins may
behave quite differently in this crowded environment. A great impact of
this crowding phenomenon was demonstrated on the thermodynamics
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and kinetics of many biological processes, including protein binding,
folding, and aggregation.

Crowding induced stabilization of the native state of the protein was
observed in several cases. This was explained by the fact that the native
state is more compact. Presence of the crowding agent increased the
unfolding temperature of phosphoglycerate kinase [4]. Similarly the
heat denaturation temperature of hen egg white lysozyme at pH 2 was
increased by 1–3 °C depending on the crowding agent concentration
[5]. The most pronounced effect was observed in case of flavodoxin,
where the presence of 400 mg/ml crowding agent increased the
thermal unfolding temperature by 20 °C [6].

The influence of the crowded environment on the aggregation and
fiber forming of proteins depends on several factors. This can explain
the variety of the experimental findings. Seelinger et al. studied the
fibrillation of the type-2 diabetes mellitus related human islet amyloid
polypeptide. Stabilization of the monomeric form and consequently
suppression of the fibrillation was found [7]. On the contrary the ad-
dition of high concentrations of different polymers dramatically ac-
celerated alpha-synuclein fibrillation in vitro depending on the nature,
length and concentration of the polymer [8]. Crowding enhances ag-
gregation propensity of several proteins like apoflavodoxin, creatine
kinase [9,10], but almost completely inhibits amyloid formation of ly-
sozyme and stabilizes lysozyme activity [1,11]. The paradoxical results
can be understood probably by recalling, that aggregation needs some
kind of destabilization of the protein. Native proteins do not aggregate,
only intermediate structures do so, which are mostly partially unfolded.
Crowding seems to increase the aggregation of these destabilized
structures, but their formation from the native state is presumably
suppressed by crowding. This can be rationalized by the bigger volume
occupied by the destabilized intermediaries.

Enzymatic activity can also be influenced by crowding. Activity of
phosphoglycerate kinase was increased in presence of crowding agents.
The explanation is that the active conformation is the more compact
one, which was favored by the crowded environment [4].

Crowding induced stabilization can be explained by the excluded
volume effect. The excluded volume is the volume, which is not
available for the central point of the test molecule, because other mo-
lecules exclude it from this area [12] (Fig. 1).

According to the excluded volume effect theory, any reaction that
amplifies the available volume will be stimulated by macromolecular
crowding [13]. It was suggested that crowding may have a stabilizing
effect on the folded protein indirectly, because the native state is more
compact. Therefore, the general belief was that crowding enhances
protein stabilization against denaturation by heat, cold or chemical
denaturants. However, as it was pointed out recently, macromolecular
crowding has both positive and negative effects on protein folding,
structure and stability. The negative effect is represented by promotion

of aggregation and amyloid formation [2]. These negative effects of the
macromolecular crowding can be understood by considering that a fi-
brous state may also be more compact than the native one, which leads
to favoring aggregation over correct folding [14].

Experimentally crowding is studied in vitro mostly by adding high
concentration of crowding agents to the dilute solution of the target
protein. These crowding agents can be hard particles like dextran or
relatively open structures like Ficoll [13]. Another possibility is to use
proteins (other than the test protein) [7]. The aim is to select a
crowding agent, which does not have any specific interaction with the
test protein, and allows measuring purely the excluded volume effect.

One of the most widely used crowding agents is Ficoll™, which is a
copolymer of sucrose and epichlorohydrin. It is uncharged, highly so-
luble in water and commonly used to adjust density and viscosity of
solutions [15]. Dextran is a polymer of D-glucopyranose. It is quite
flexible and linear with less than 5% branching.

Despite of the large number of chemical, biochemical, and bio-
physical investigations performed as a function of temperature, the
pressure is still a less known and rarely used thermodynamic parameter.
Pressure as a thermodynamic parameter is conjugated to volume. This
means, that pressure experiments provide more insightful information
compared to temperature or chemically-induced conformational
changes, since pressure induced effects can be related to volume
changes [16–20].

Pressure favors the conformation with smaller volume [17,21].
Therefore, it is important to understand how the volume of a protein is
composed. In case of proteins in a solution, the partial volume of the
protein is defined as the volume increase of the system due to insertion
of a small amount of a protein over the number of moles of the added
protein [16]:

= ⎛
⎝

∂
∂

⎞
⎠

v V
nprotein

n p T, ,j (1)

here V is the volume of the solution and n is the number of moles of the
solute added [16].

This implies that the volume of the protein molecule cannot be
obtained simply as the interior of a certain compartment, but it is
composed of three factors:

= + +V V V VΔ ,protein atom void hydration (2)

where the two first terms are volumes of the atoms and of the voids in
the interior of the folded protein [16,22]. The latter is due to in-
complete packing of the side chains. The third term is associated with
the interaction of the protein with the solvent. It is known that the
solvent has altered density in the surrounding of the protein. This
tightly packed layer is only a few angstroms in size [23]. The volume of
water in this shell is smaller than the volume of the same amount of

Fig. 1. The excluded volume effect. The crowding agent
molecules are indicated by black circles. The black circles
and the gray (pink) rings around them together represent
the excluded volume. The test protein is shown by a striped
circle. As the size of the test protein increases the excluded
volume increases also considerably. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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water molecules in the bulk phase. This leads to the remarkable feature
of ΔVhydration namely that it gives a negative contribution.

Considering the pressure effect on proteins, three major effects can
be observed depending on the magnitude of the pressure. Elastic effects
already appear at the smallest pressure values. These are reversible
distortions of the primary and secondary bonds. The compression of the
primary chemical bonds is very small; their contribution to the volume
change of the system is negligible. Compression of the hydrogen bonds
can lead to the distortion of the molecular conformation, which can
reduce the size of the internal cavities in the protein.

Typically if the pressure reaches 200 MPa the intermolecular in-
teractions and the tertiary structure are destabilized [24–26].

Higher pressure can unfold the proteins. The typical pressure re-
quired for unfolding is around 500 MPa but this varies from protein to
protein, in the range of 100 MPa to 1 GPa or even higher pressures in
special cases [27]. The voids disappear if the protein unfolds. Since the
ΔVhydration is proportional to the surface of the protein, the absolute
value of this term increases too, which means this term becomes more
negative. Both the void volume and the change in the hydration volume
contribute to the volume decrease at the pressure unfolding. Which one
of these factors is more important, was the subject of a long debate
[28,29]. From our perspective both of them might have their distinct
role, and their relative contribution can vary according to the actual
situation. Although pressure is well-known to unfold proteins, to our
knowledge there are only a few studies reported on the effect of
crowding on pressure-induced unfolding [30,31]. Wang et al. found
that in crowded solutions high-pressure unfolding of staphylococcal
nuclease was impeded [30]. According to the results of Zai et al. in-
creasing concentrations of crowding agent dextran simply shifted the
pressure stability curves of ribonuclease A towards higher pressures
[31]. However, the net stabilizing effect was found to depend on the
summarized effect of more stabilizing and destabilizing factors in the
case of temperature stability. A similar delicate balance could govern
the pressure stability too.

Our aim was to study, how the stability is modified by presence of
crowding agents. The importance of this question is underlined by the
fact, that both phenomena are governed by volume effects. However,
there are also differences, since the volume occupied by the protein and
the excluded volume effect caused by macromolecular crowding are of
different kind, therefore their effect cannot be added simply. Our
question is: what is the relationship between the volume induced
pressure unfolding and the excluded volume induced stabilization of
the native state.

For test proteins we have chosen relatively simple ones, with dif-
ferent size. Bovine serum albumin (BSA) is an average size protein with
a 66 kDa molar mass, but lysozyme is considerably smaller (14 kDa).
These proteins have been well characterized by several spectroscopic
techniques, and the pressure behavior of these proteins in absence of
crowding agents is also known [32–35].

2. Materials and methods

2.1. Sample preparation

Albumin from bovine serum (Sigma) and Lyozme VI from chicken
egg white (ICN Biomedicals Inc.) were available in lyophilized forms.
Proteins were dissolved at the concentration of 75 mg/ml in 1 M Bis-
Tris (Sigma) D2O buffer prior to the measurements. The pD of the buffer
was adjusted to 7.0 by deuterated chemicals (DCl and NaOD) under N2

stream in order to avoid hydrogen contamination. The theoretical pH
was measured and the pD was calculated from the following equation:
pD = pH meter reading +0.4 [36].

Dextran Standard 25,000 (Sigma) and Ficoll PM 70 (GE Healthcare)
were applied as crowding agents in 10%, 20% and 30% concentrations.

A diamond anvil cell (Diacell, Leichester, UK) suitable for high
pressure infrared studies was filled with the above solutions.

2.2. Infrared spectroscopy

The infrared spectra were recorded with a Bruker Vertex80v (Bruker
Optics, Billerica, MA) FTIR spectrometer equipped with a high sensi-
tivity MCT (mercury-cadmium-telluride) detector. Each spectrum was
collected averaging 256 scans at 2 cm−1 resolution. The infrared beam
was focused on a high pressure diamond anvil cell (Diacell, Leichester,
UK) using a Bruker A525 type beam condenser. The diamond cell is
suitable to reach more than 1 GPa pressure under controlled tempera-
ture conditions. The thickness of the gasket was 75 μm. This was in-
dented before the measurement which resulted in an optical path length
of 50 μm. BaSO4 were used as internal calibrant to determine the
pressure [37]. Sample temperature was controlled by a Eurotherm
controller (typ 2216e, Durrington, UK) and measured by a thermo-
couple (OMEGA Engineering, Stamford, CT). The heating rate was
0.2 °C/min.

Basically, we performed two types of experiments: pressure ex-
periments (increasing pressure at constant temperature) and tempera-
ture experiments (increasing temperature at constant pressure). Both
experiments were performed in the diamond anvil cell, because of its
small sample volume. In case of temperature studies special care was
taken to keep the pressure under 1 kbar.

2.3. Data analysis

Infrared spectra were deconvoluted with the following parameters:
Lorentzian band shape, band width = 5.2 cm−1 and resolution en-
hancement factor = 1.84 using the OPUS (Bruker) software.

The pressure- and temperature-induced transitions were fitted with
the following formulas, respectively, either of which can be derived
from the two-state transition model:

= + +
+

+ −( )
y p a bp

a bp
( )

Δ Δ

1 exp p p V
RT

( )Δ1 2
(3)

for pressure transitions, and

= + + +

+ −( )( )
y T a bT a bT( ) Δ Δ

1 exp H
R T T

Δ 1 1
1 2 (4)

for temperature scans. Here y is the physical parameter to be fitted (e.g.
position of a certain spectral line) a and b are the parameters describing
the linear dependence of y(p) or y(T) below the transition, Δa and Δb
are the changes of a and b during the transition, p1/2 and T1/2 are the
transition midpoints, all the other symbols have their usual meaning.

The unfolded ratio at a given temperature or pressure was de-
termined from the fitted curves with the following formula:

R p y p a bp a bp= − + Δ + Δ( ) ( ( ) ( )) ( )u (5)

R T y T a bT a bT= − + Δ + Δ( ) ( ( ) ( )) ( )u (6)

These values vary between 0 and 1, giving 0 for a completely folded
case and 1 for the fully unfolded one. At the midpoints of the transitions
(p1/2 and T1/2) they are equal to 1/2.

3. Results and discussion

3.1. BSA in crowded environment

First we used BSA as a test protein to investigate the effect of the
increasing concentration of different crowding agents. Fig. 2 shows the
specific range of the infrared spectrum, which contains relevant in-
formation about the protein. The amide I band at 1653 cm−1 (at am-
bient conditions) reflects the helical structure of the protein [38,39].
The amide I vibration is concentrated at the backbone of the protein.
The carbonyl stretching gives 85% of the energy of the amide I
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vibration. In a folded secondary structure, the oxygen atom of the
carbonyl group takes part in a hydrogen bond. This bond perturbs the
C]O bond and consequently the amide I vibration too, which makes
the amide I band very sensitive to the secondary structure. In a folded
protein the amide I band is composed of several sub-bands according to
the conformation of the protein. It widens and shifts to 1645 cm−1 if
the protein unfolds as it can be seen in d and e curves of Fig. 2 [40,41].
Further information can be obtained from the amide II band and from
the infrared absorption line of the tyrosine vibration. The amide II vi-
bration is the bending vibration of the hydrogen atom connected to the
backbone nitrogen. This can report the tertiary structure of the protein.
In heavy water solutions the amide II band shifts tremendously due to
H/D exchange, when the tertiary structure loosens. If the nitrogen atom
of the backbone is protonated, the amide II band appears in the range of
1545–1550 cm−1. This position is hardly dependent on the secondary
structure, but it shifts to roughly 1450 cm−1 if the hydrogen is ex-
changed by a deuterium atom. Here it is called as amide II’ band. Since
our experiments have been performed in D2O buffer solutions, the
amide II band is considerably reduced compared to aqueous solutions,
where it is almost as intensive as the amide I band. This means that the
majority of the hydrogen atoms are accessible for the solvent, and they
have been exchanged already in the native state. We observed later that
the remaining amide II band at 1547 cm−1 will disappear parallel with
the unfolding of the protein. The small absorption band at 1515 cm−1

originates from the tyrosine ring vibrations [42]. BSA contains 20 tyr-
osine residues (3.4%); most of them are hidden in the interior of the
protein.

The temperature stability of BSA was investigated in the presence of
two crowding agents, dextran and Ficoll. Neither of them affects the
secondary structure of the protein up to a 30% concentration, as it can
be seen from the spectra b and c of the Fig. 2 This proves the absence of
any specific interactions between our test protein (BSA) and the
crowding agent. Therefore, our observed effects will result from the
presence of the macromolecular crowding effect and not from direct
molecular contacts among the test protein and the crowding agent.

We investigated the heat unfolding of BSA systematically in the
concentration range of 0–30% in the case of both Ficoll and dextran.
The unfolding was followed using all the possible spectral parameters:
the maximum position of the amide I band, the width of the amide I
band, the amplitude of the amide II band, and in some cases also the
position of the tyrosine peak. Fig. 3 shows the temperature dependence

of the width and position of the amide I band and the amplitude of the
amide II band in a typical case (20% Ficoll). In addition, the fitted
curves (see Materials and Methods section) are plotted and the mid-
point of the transition is indicated too. The fitted parameters vary
slightly on the spectral parameter we fitted. This, however, is not a
pitfall or an artifact; the transition temperatures show a quite logical
order. The transition of the amide II is at the lowest temperature,
showing that the first step in the unfolding process is the loosening of
the tertiary structure. This loosening allows the hydrogen/deuterium
exchange of the inner part of the protein, which was not accessible in
the native conformation. The width and the position of the amide I peak
are at a slightly higher temperature, but in most cases near to each
other. In order to compare the transition curves obtained at different
crowding agent concentrations, we normalized the spectral changes
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showing later only the folded ratio defined in the Materials and
Methods section.

As control Ficoll and dextran solutions were measured as function of
the temperature, but the infrared spectra did not show any sign for
structural changes in the 20–95 °C range (data not shown).

Fig. 4 shows the normalized transition curves of the heat-unfolding
of BSA in case of increasing dextran (a) and Ficoll (b) concentrations.
The high concentration of the crowding agents clearly stabilizes the
protein. However, this stabilizing effect is far from being proportional
to the concentration of the crowding agent. As shown on the inserts, in
the case of both crowding agents a certain critical concentration is re-
quired for an active stabilization. In the case of Ficoll even a slight

destabilization can be observed at low concentrations. The transition
curves run almost parallel to each other; only the 0% curve of Fig. 4a
diverges from this rule, but the slopes of the curves at the transition
points which can be related to the enthalpy changes (ΔH) do not differ
more than± 15% from each other. This means that the energetics of
the transition is not significantly influenced by the presence of the
crowding agent molecules. Nonlinear dependence of the stabilization
on the crowding agent concentration was also observed by Sasahara
et al. in case of dextran induced stabilization of lysozyme [5]. In their
experiment the unfolding temperature was hardly affected by 10%
dextran, but 30% crowding agent caused doubled increase of the un-
folding temperature compared to 20% dextran. It is remarkable that
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they also did not obtain significant changes in ΔH of the transition.
Similar tendency was observed by Zhai and Winter: increasing the
dextran concentration from 20% to 30% had almost as large increase in
the temperature stability of Rnase A as it was caused by the con-
centration increase from 0 to 20%.

In the case of pressure unfolding, the stability curves were even
more surprising. As it is shown in the insert of Fig. 5, there is a clear
concentration range, where the crowding agent causes destabilization
of our target protein. Although both crowding agents managed to

stabilize the protein at the highest concentration we used (30%). The
unfolding pressure was considerably lowered in the range of 10–20%.
This is an important finding, which to our knowledge was never ob-
served in pressure experiments on macromolecular crowding published
earlier [30,31]. Actually closer look to the data published by Wang
et al. one can recognize, that they observed a slight destabilization
(although within the experimental error level) in case of 16% PEG. 25%
PEG caused a clear increase in the unfolding pressure in their experi-
ments [43]. They however did not discuss this concentration effect in
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their paper.

3.2. Crowding effect in lysozyme

In order to see whether this u-shape destabilization curve is a rare
exception or a general phenomenon, we also investigated another
target protein hen egg white lysozyme. We observed a similar effect.
The unfolding pressure decreases first with increasing Ficoll con-
centration. However, above 10% another stabilization range begins.
The change of the unfolding pressure versus Ficoll concentration can be
seen in Fig. 6. The similarity of this plot with the insets of Fig. 5 points
towards the generality of the biphasic effect of macromolecular
crowding on the pressure stability of the proteins.

The similarity between Figs. 5b and 6 could raise the question
whether the behavior of Ficoll is the main source of this u-shape be-
havior. To rule out this hypothesis, and exclude the effect of direct
interaction between the crowding agent and the test molecule, we
achieved crowding conditions without any foreign crowding agent
molecule. This was done by using high concentrations of the test pro-
tein lysozyme. In this case both the test and the crowding agent was the

same molecule. Therefore we call this situation as self-crowding. Fig. 7
shows the change in stability as function of the protein concentration.
As it can be seen, the u-shape curve appears here too. This result rules
out any direct interaction between the crowding agent and the test
protein and shows that crowding condition itself is responsible for the
u-shape curve.

3.3. Volume and excluded volume effects in a crowded environment

In order to explain the u-shape destabilization curve in the case of
pressure unfolding, one has to consider the volume effects. As men-
tioned earlier, pressure acts through volume changes.

The macromolecular crowding effect is also explained frequently by
the excluded volume. However, we must keep in mind the difference
between excluded volume and volume. Excluded volume is the volume,
which is not accessible for the (middle point of the) test molecule due to
the presence of the crowding agent. It is remarkable that this volume
does not equal with the volume occupied by the crowding agent.
Furthermore, it also depends on the size of the test molecule, as it can
be seen in Fig. 1. This is a well-defined part of the solvent. On the
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contrary, the volume of the protein is not a confinable volume, but as
we have seen earlier it is the volume, which is associated to the pre-
sence of the protein (see Eq. (2)).

In the case of pressure unfolding, the volume of the protein de-
creases, although the size of the protein might increase. This could be
visually explained as follows: if we want to put the folded and the
unfolded proteins both into a (microscopic, theoretical) sack, the size of
the sack for the unfolded protein would be greater, because it contains a
loosened protein structure and a considerable amount of water. The
sack for the native protein is smaller, since the native conformation is
more compact. We will call the volume of the sack as the influenced
volume of the protein (Vinfl).

Assuming spherical crowding agents and test protein molecules, the
excluded volume of the solution can be written on the basis of the Fig. 1
to a first approximation as:

= + ∗V r r N4π( ) 3excluded ca inf
3

ca (7)

where rca is the radius of the crowding agent, rinfl is the radius of the
influenced volume of the test protein, and Nca is the number of the
crowding agent molecules. Although, this approximation neglects the
overlapping excluded volume spheres belonging to the neighboring
crowding agent molecules, it is a good approximation to create a simple
theory to explain the observed effects. On the other hand, the volume of
the crowding agent itself is:

= =V r N V c4π 3ca ca
3

ca solution ca (8)

where cca is the concentration of the crowding agent. Combining these
equations one gets the available volume:

= − = ∗ − ∗ + + +V V V V c(1 (α 3α 3α 1))avail solution excl solution ca
3 2 (9)

where α denotes the ratio of the radii of the influenced volume of the
test protein and that of the crowding agent.

Zocchi's mechanical size measurements [44,45] showed a 9 nm in-
crease in the linear size of BSA upon chemical denaturation. This means
the doubling of the original linear dimension of the protein.

Taking into account the Stokes radius of Ficoll 70, which is 5.1 nm
and the size of BSA, which is 3.5 nm [46] the original α parameter
changes from 0.7 to 1.4. Fig. 8 shows the available volume fraction
calculated above as the function of the α parameter at different
crowding agent concentrations. As it can be seen, for α= 0.7 the
available volume decreases below the partial volume of the protein (c.a.

6%) if the crowding agent concentration increases above 20%. In the
case of α= 1.4 the calculation gives a negative available volume even
at 10% crowding agent concentration, which means the molecules are
in contact with each other. This leads to the stabilization of the folded
state of the protein at high crowding agent concentration.

On the contrary, we have a clear destabilization effect at lower
crowding agent concentrations against the pressure unfolding. This will
be explained by the effect of the crowding agent on the volume of the
protein. As it can be observed in Fig. 9 the volume change associated to
the unfolding (ΔV) changes also with the concentration of the crowding
agent. The concentration dependence of ΔV shows also a u-shape curve,
similarly to the tendency obtained from the unfolding pressure values.
How can the presence of a crowding agent decrease the unfolding vo-
lume? To answer this question, we have to recall the way the volume of
the protein is composed of the volume of the atoms, voids and of the
contraction of the surrounding water (see Eq. (2)). Since Vatom does not
change in this pressure range, only the two other terms of Eq. (2) can
play a role. If the cavities were influenced by the crowding, the protein
would be swollen and the loosened structure would allow the com-
pletion of the hydrogen/deuterium exchange. Since the amide II band
has the same intensity in the spectra a, b and c in Fig. 2, crowding itself
does not influence the folded conformation. This means that the loos-
ening of the secondary structure and consequently any change in the
void volume can be excluded. The observed volume effect can therefore
occur only due to the hydration volume change. In the presence of a
crowding agent the water structure can be more ordered than in the
absence of a crowding agent. This phenomenon reduces the volume
gain (ΔVhydration) during the insertion of a protein into a solution. Si-
milarly, the hydration volume change associated to the unfolding de-
creases. This is shown in Fig. 10. This phenomenon can explain the
decrease in the unfolding volume change at low crowding agent con-
centrations. However, the increase in volume change at high crowding
agent concentrations cannot be explained by this mechanism. Never-
theless, we should remember, that in this range (over 15% crowding
agent concentration) we have almost no free volume left for the test
protein in the unfolded case. This implies that a direct mechanical
contact with the crowding agent and a consequent mechanical de-
formation of the crowding agent can occur. This might lead to a slight
compaction of the crowding agent structure. On the other hand, the
unfolded protein is in a random flexible conformation, consequently
this contact drives the protein in the direction of the more compact

Fig. 8. Available volume fraction as function of α calculated
from the Eq. (9). See the text for the details of the calculation.
The horizontal broken line represents the volume fraction of the
test protein in our experiments.
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state too. This can be one of the reasons of the stabilization at high
crowding agent concentrations. It is to be remembered, that the ex-
periment measures the volume change of the total system. If the un-
folding of the protein influences the crowding agent, the volume
changes in the crowding molecule can be added to the volume changes
of the protein. This way the unfolding volume change increases again at
high crowding agent concentrations. This effect is quite similar in the
case of both crowding agents.

4. Summary

We observed the stabilizing effect of crowding agents dextran and
Ficoll on the heat unfolding, but only above certain threshold con-
centration. In the case of pressure unfolding, we have an initial desta-
bilization and stabilization only at high concentrations of the crowding
agents. The unfolding volume change has identical characteristics to
this. This u-shape curve was explained by the counteracting effects of
reduced hydration volume gain and excluded volume effect. Because
the hydration state can influence the activity of proteins, the crowding
conditions can influence the cellular processes via two opposite ways.
Since the cell's interior is a highly crowded environment, this finding is
of great relevance in understanding the essential physiological pro-
cesses.
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