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Robustness and mode selectivity in 
parity-time (PT) symmetric lasers
M. H. Teimourpour1, M. Khajavikhan2, D. N. Christodoulides2 & R. El-Ganainy1

We investigate two important aspects of PT symmetric photonic molecule lasers, namely the 
robustness of their single longitudinal mode operation against instabilities triggered by spectral 
hole burning effects, and the possibility of more versatile mode selectivity. Our results, supported by 
numerically integrating the nonlinear rate equations and performing linear stability analysis, reveals 
the following: (1) In principle a second threshold exists after which single mode operation becomes 
unstable, signaling multimode oscillatory dynamics, (2) For a wide range of design parameters, single 
mode operation of PT lasers having relatively large free spectral range (FSR) can be robust even at 
higher gain values, (3) PT symmetric photonic molecule lasers are more robust than their counterpart 
structures made of single microresonators; and (4) Extending the concept of single longitudinal mode 
operation based on PT symmetry in millimeter long edge emitting lasers having smaller FSR can be 
challenging due to instabilities induced by nonlinear modal interactions. Finally we also present a 
possible strategy based on loss engineering to achieve more control over the mode selectivity by 
suppressing the mode that has the highest gain (i.e. lies under the peak of the gain spectrum curve) and 
switch the lasing action to another mode.

Semiconductor lasers are indispensable tools that play important roles in several applications such as fiber optics 
communication networks, optical memory, medical diagnosis and surgery, and sensing. Commercial semicon-
ductor lasers fall into two main categories: surface and edge emitting devices1–3, the design details of which can 
vary widely depending on the material system, photonic architecture, emission wavelength and operation envi-
ronment. The former can be tailored to support only one longitudinal mode. The latter however, due to the 
relatively large gain bandwidth curve of semiconductors compared to atomic gas and the longer optical path of 
a full roundtrip inside the cavity, can be multimoded. Several strategies have been developed to overcome this 
problem. One common techniques is based on distributed feedback mechanism which relies on periodic modula-
tion of optical refractive index4. The quest for continuous miniaturization and lower power consumption (ideally 
threshold-less devices) has sparked interest in novel laser cavities such as microdiscs5–12, microrings13–15, photonic 
crystals16, 17 and plasmonics18. Although, several methods for achieving single mode emission in these geometries 
have been proposed12–14, a commercially viable option is still lacking.

Recently, the novel concept of PT symmetry19, 20 was introduced in optics and photonics21–25, which subse-
quently led to intense investigations26–43. Inspired by some of these recent activities, non-Hermitian engineering 
of laser emission near exceptional points have been theoretically investigated and experimentally reported by 
several research groups44–52. In particular the work in ref. 45 demonstrated the possibility of single mode oper-
ation in PT symmetric photonic molecules made of microring resonators. Subsequent theoretical studies have 
investigated nonlinear interactions between the optical supermodes in these systems53–55 assuming that each res-
onator supports only one optical mode (with the exception of ref. 54 which also considered spatial hole burning 
effects in multimode cavities).

Motivated by these rapid developments, here we investigate PT symmetric photonic molecule lasers (see 
Fig. 1(a)), taking into consideration the nonlinear interactions between the intrinsic single cavity modes (not just 
the supermodes). Our study, complementing previous works and providing insight into the operation dynamics 
of PT symmetric lasers, reveal the following important results: (1) PT symmetry can provide superior perfor-
mance (in terms of single longitudinal mode operation) in microcavities having relatively large FSR, and (2) 
Extending the concept to millimeter long edge emitting lasers can be challenging due to nonlinear instabilities, 
and (3) More general loss engineering schemes can be used to achieve more control over mode selectivity.
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To this end, we start by considering a photonic molecule laser made of two coupled isospectral optical cavities 
that support only one transverse mode and several longitudinal ones. We assume that the pumping (electrical or 
optical) is applied only to one cavity while the other remains passive as illustrated schematically in Fig. 1(a). We 
denote the identical intrinsic loss coefficients of any mode n in either cavity by αn (which in general can include 
material and radiation loss as well as any mechanism for extracting laser light such as evanescent coupling to 
waveguides). Our model so far coincide with that presented in ref. 45. In order to demonstrate the possibility of 
engineering a more complex lasing selectivity, we depart from ref. 45 (which treats only the case of cavities having 
equal loss) by assuming that the passive cavity can exhibit an extra contribution to the modal loss and we denote 
this additional part by γn. Under these conditions and by eliminating the fast carrier dynamics adiabatically from 
the rate equations, we arrive at:
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In equation (1), an and bn are the electric field amplitudes associated with mode n in cavities a and b respec-
tively, and gn is the gain coefficient in cavity a while κn is the coupling coefficient between modes n. Here, ωn 
corresponds to resonance frequency of mode n. Finally, snn (snm) are the self (cross) gain saturation coefficient 
(usually snn > snm)15. Below or at the lasing threshold, the eigenvalues of the above system, as expressed in the basis 
exp(−iΩnt), are given by:
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Above the lasing threshold, nonlinear interactions are crucial and must be taken into consideration.
Having introduced the model, we now proceed to investigate the robustness and mode selectivity of single 

longitudinal mode PT symmetric lasers in the following sections. In the rest of this work, single mode opera-
tion refers to the longitudinal modes. Additionally, for illustration purpose and in order to gain insight into the 
physics of the problem, we will consider only two modes per cavity, denoted by n = μ (the mode corresponds to 
ωμ that lies under the peak of the gain curve gmax) and the other mode indicated by ων which experiences a gain 
rgmax. As the pump is increased, the value of gmax increases but we assume that the ratio r < 1 remains constant. 
Furthermore, we assumed κμ = κν ≡ κ45.

Robustness and stability of single mode PT lasers
In this section, we study the robustness of single mode PT lasers against spectral hole burning effects that  
might trigger multimode operation. Here we assume that γn = 0 and αμ = αν ≡ α. According to equation (2), the 
system starts lasing in the broken PT phase if α > κ. Under this condition, the lasing threshold is given by 

α κ α= +µg /th 2 49. To first demonstrate the possible different lasing regimes, we integrate equation (1) numeri-
cally for α = 1.5, κ = 1, r = 0.75 and gmax = 1 or gmax = 3.3. This set of parameters are chosen to ensures that the first 
lasing mode μ starts in the broken phase while the other mode is still in the PT phase (equation (2)). Our simula-
tions indicates the existence of two regimes of operation: (I) a single mode steady state emission when 
g g gth

max
th< <µ ν

; and (II) a multimode oscillatory behavior when <νg gth
max, where g th

µ
 is the lasing threshold 

and g th
ν  is the second (instability) threshold1, 2. Figure 2(a) and (b) depict typical temporal behaviors correspond-

ing to these two regimes, respectively. In plotting the results of Fig. 2 we chose Δω = ωμ − ων = 1 for illustration 

Figure 1. (a) A schematic of the photonic molecule laser investigated in this work. It consists of two identical 
coupled optical cavities (a and b), each of which supports in general several modes (later we focus only on 
two modes). The coupling coefficients between each pair of the modes is assumed to be the same and equal κ. 
Moreover, pumping is applied only to cavity a. A typical semiconductor gain curve along with the assumed 
modal frequencies are shown in (b) where gmax and rgmax are gain values experienced by modes μ and ν 
respectively.
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purposes (note that the actual value of Δω affects only the modal gain ratio r). Intuitively, one can understand the 
behavior observed in Fig. 2 by noting that, in our model, each cavity supports two modes. As the pump levels 
increase above the first threshold, the first mode starts to lase and both the modal gain ratio r and the cross gain 
saturation act together to suppresses the second lasing mode. However, as the pump is further increased, this 
steady state solution might become unstable which can then lead to multimode laser oscillations with beating 
effects.

Further simulations for different system’s parameters shows that νg th increases as sμν increases or r decreases. 
These parameters depend on the material system, cavity design (emission frequency and modal overlap), thus one 
expect different systems to enter the multimode regime at different pumping levels. In order to fully characterize 
this behavior, we use linear stability analysis. The steady state lasing solutions can be found by substituting: 
aμν = η1,3exp(iλt) and bμν = η2,4exp(iλt) to obtain: λη1–4 = f1–4(η1–4), where the nonlinear functions f1–4 can be 
found from equation 1. Here we are interested in the case where only one mode is lasing, i.e. we set η3,4 = 0, to 
arrive at:

η λ η
κ

κ α
α

αη
η

η κη

→ = → =





−







−
+

+ =
µµ

M M

g
S

,
0 0

0
0 0

,

1
0

(3)
R

max

R
R I1

1
2 1 2

where, η η η η=
→

[ , , ]R R I
T

1 2 2 , with the subscript T denoting matrix transpose and the subscripts R, I indicate real 
and imaginary parts, correspondingly. In writing equation 3 we assumed that ηI1 = 0 since only the relative phase 
between η1,2 matters. This eigenvalue problem has two different solutions: (1) PT phase: λ κ α= ± −2 2 , 
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values, they might not be unique in certain regimes. The stability of these steady state solutions, which determines 
the lasing characteristics can be found by performing linear stability analysis2. By introducing a small perturba-
tion vector δ δη δη=
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 is a function of that particular solution. If max(Re(θ)) > 0, where θ are the eigenvalues of the 

matrix J, the perturbation grows and the solution is unstable. On the other hand, the solution is stable if 
max(Re(θ)) <  02.

Figure 3(a) and (b) show that stability maps of a PT symmetric laser when α = 1.5, sμμ = sνν = 1 and sμν = sνμ = 0.5 
as a function of the gain ratio r and the coupling coefficients κ for two different values of the maximum pumping 
gain gmax = 5, 10. As we can see from Fig. 3(a), starting from a low value of r the single mode operation is found 
to be stable over a wide range of the coupling parameter κ (the regime below the white dashed line). As r is fur-
ther increased, an intermediate domain (between the dashed white and black lines) with mixed stability features 
is entered. In this regime, the system is unstable for lower κ values and can be stabilized by increasing κ. Above a 
certain value for r, the laser becomes unstable for all κ’s in the specific range. Similar behavior is also observed in 
Fig. 3(b) with the exception that the unstable domain is now expanded at the expense of stable and intermediate 
domains. Also the values of r at which the transitions between the different domains for fixed κ is down-shifted.

Figure 4(a) and (b), on the other hand depict the different stability regimes when κ = 1 as a function of r and 
sμν again for different pump values gmax = 5, 10. All other parameters are similar to those in Fig. 3. Here also one 
can identify three different operating regimes: stable, intermediate and unstable. As expected the area under the 
unstable domain increases as a function of gmax. In perfect agreement with our previous discussion, we find that 
the system can transit from a stable to an unstable operation as sμν decreases or as r increases.

Figure 2. Lasing dynamics of the photonic laser molecule of Fig. 1 in the broken PT regime when (a) gmax = 1.0, 
and (b) gmax = 3.3. In both figures, red and blue lines correspond to |aμ + aν|2 and |bμ + bν|2, respectively. Here 
sμμ = sνν = 1 and sμν = sνμ = 0.25.
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Finally, for completeness, we present the stability maps for a single laser cavity (having the same parameters 
as in Fig. 4) in Fig. 5 where we observe a noticeable expansion of the instability domain. This result indicate that, 
at least for small r values, PT symmetric lasers indeed exhibit superior performance over single cavity systems.

Mode selectivity via dissipation engineering
In multimode semiconductor laser systems, the lasing thresholds of different modes are determined by the cavity 
geometry and the central frequency/bandwidth of the gain curve. In the experimental work of ref. 45, the two 
coupled cavities had identical loss coefficients (i.e. γn = 0). As a result, the first lasing mode was the one that falls 
under the peak of the gain curve (mode μ in Fig. 1). Here we explore whether a more general scheme can provide 
extra flexibility over the mode selectivity. For example let us assume that it is required to engineer the system 
properties to suppress mode μ and promote other mode ν to lase first, i.e <ν µg gth th. To do so, we employ a tech-

Figure 3. (a) Stability maps of a PT symmetric laser as a function of the gain ratio r and the coupling 
coefficients κ when gmax = 5. Starting from a low value of r, the single mode operation in both cases is found to 
be stable over a wide range of the coupling parameter κ (the regime below the white dashed line). As r is further 
increased, an intermediate domain (between the dashed white and black lines) with mixed stability features is 
entered. In this regime, the system is unstable for lower κ values and can be stabilized by increasing κ. Above a 
certain value for r, the laser becomes unstable for all κ’s in the specific range. (b) Same as in (a) but for gmax = 10. 
Here, as expected, the unstable domain is larger and the values of r at which the transitions between the different 
domains for fixed κ is down-shifted. In both figures, the blue shaded areas represent the stable domain and the 
color map represent the values of νg th.

Figure 4. Stability maps as a function of r and sμν for the same parameters used in Fig. 3 when κ = 1 and (a) 
gmax = 5 and (b) gmax = 10. Here also one can identify three different operating regimes: stable, intermediate and 
unstable. As discussed in text smaller values for r and larger sμν lead to better stability features.
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nique similar to that demonstrated in refs 47–49 and, in contrast to the previous section, we assume a finite value 
for the asymmetric loss coefficients, i.e. γμ,ν ≠ 0. By neglecting the nonlinear modal interactions for the moment, 
one can identify four different regimes of operation based on the classification of the lasing modes (either PT or 
broken PT (BPT)) according to the linear eigenvalues of Eq. (2): (A) PT-PT if (γν + 2αν)/r < γμ + 2αμ, (B) PT-BPT 
if (γν + 2αν)/r < αμ + κ2/(γμ + αμ), (C) BPT-PT if (αν + κ2/(γν + αν))/r < γμ + 2αμ, and (D) BPT-BPT if (αν + κ2/
(γν + αν))/r < αμ + κ2/(γμ + αμ). These criteria can be experimentally satisfied by using spatial and/or spectral loss 
distribution as we discuss in more details in the conclusion section.

As an example, Fig. 6 depicts these domains as a function of γν,μ for the parameters mentioned in the caption. 
We note that although nonlinear interactions play a crucial role in the laser dynamics above threshold, identify-
ing the domains (A)–(D) based on linear analysis is important for choosing a suitable initial design parameters 
that allow mode ν to be the first lasing mode. By inspecting Fig. 6, we can draw several important conclusions. 
For example, in domain A, γμ > γν while the converse is true in C. At first glance, it might appear surprising in 
this last case that mode ν can be still the first lasing mode even when γμ < γν. However by recalling that in this 
regime, mode ν is in the broken phase while μ is in the PT phase, it is straightforward to show that the modal 
loss of supermode formed by the hybridization of modes ν in both cavities is less than that associated with μ — a 
peculiar effect of broken PT phase after crossing exceptional points44, 49, 54. In order to further illustrate our results, 
we plot the imaginary parts of eigenvalues associated with the modes for four different points (each chosen to lie 
within one of the distinct domains of Fig. 6) as shown in Fig. 7.

We have so far discussed the behavior of the linear model described by equation (1) and demonstrated the 
possibility for mode selectivity in photonic molecule PT lasers by applying pump only to one cavity while engi-
neering the modal dissipation on the second cavity. In that analysis, we neglected nonlinear self gain saturation 
as well as nonlinear modal interaction via cross gain saturation. Here we study how these nonlinearities affect 
the lasing dynamics. To do so, we numerically integrate equation (1) for some initial noise. We are particularly 
interested in domain C where mode ν is in the broken phase (thus experiences more gain) while mode μ is in the 
PT phase where it experiences more loss. Figure 8(a) plots the lasing dynamics (total intensity in each cavity) for 
the point indicated in domain C in Fig. 6. The system reaches its steady state after some transient response. We 
have inspected the intensity of the individual modes and found that indeed only mode ν is participating in the 
lasing action. In Fig. 8(b) we plot the field intensity under the same conditions as in (a) but for a higher gain value. 
Again single mode steady state lasing is observed. As the gain is further increased, the lasing action can undergo 
multimode instabilities manifested by the oscillatory behavior in (c). However, the system can be driven back to 
its single mode stable operation by adjusting the losses as shown in (d). In practice, for every gain value, a stability 
map superimposed on Fig. 6 would determine the stable operation regimes.

Conclusion
In this work, we have investigated two different aspects of PT symmetric lasers: that of the robustness of their single 
mode operation and the possibility of a more versatile mode selectivity based on generalized loss engineering 
scheme. We have shown that in general, multimode operation can be triggered by instabilities arising from nonlinear 
modal interactions. By performing linear stability analysis and presenting the stability map under different condi-
tions, we found that PT symmetry can provide superior performance and robust single mode operation (compared 
to single cavities) in systems made from microcavities having relatively large FSR. For systems made of long resona-
tors with large optical path between roundtrips, the situation might be different. For example, consider a microring 
resonator having a radius of R = 10 μm and a typical waveguide-based edge emitting laser having a length of say 
L = 1 mm. Rough estimations based on simplified models gives: F FSR FSR/ 30ring strip

L
R
~≡ =

π
. As a result, the 

Figure 5. Stability maps for single cavity laser. All parameters are similar to those in Fig. 4. Evidently, in this 
case, the area under the unstable regime is larger, thus confirming the superior performance of PT symmetric 
lasers.
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optical modes in edge emitting lasers are more densely packed than those of microrings, resulting in larger r values 
and consequently stronger mode competition which eventually can lead to instabilities (see large r regimes in Figs 3 
and 4). Future experimental work using these platforms will definitely shed more light on performance of these 
systems. It will be also interesting to investigate nonlinear laser dynamics in complex laser networks having higher 
order exceptional points32.

Additionally, we have investigated the possibility of controlling the lasing modes by employing a more general 
scheme of loss engineering. Our analysis shows that by carefully engineering the modal loss in the passive cavity 
independently from that associated with the active one, a secondary mode can be enhanced at the expense of fun-
damental mode. This can be achieved for instance by depositing meta-absorbers whose dispersion properties are 
tailored to match the frequency of the desired mode. The advantage of this approach is the possibility of tuning the 
absorption spectrum by means of geometric design of the absorbers. However, this can work only if the free spectral 

Figure 6. Different lasing regimes for photonic molecule laser as a function of γν and γμ. The design parameters 
are chosen to be κ = 1, αν = αμ ≡ α = 0.1 and r = 0.75. The shaded and the white areas correspond to domains 
where mode ν and μ lases first, correspondingly.Vertical and horizontal lines mark the transition between 
PT and BPT phases for modes μ and ν, respectively. The black dots represents specific design parameters to 
investigated in more details. Importantly, the different lasing domains are broad enough which allows for large 
design and implementation tolerance.

Figure 7. Imaginary part of the eigenvalues of Eq. (2) as a function of gmax are plotted for the different points 
indicated in each lasing regimes in Fig. 6: (a) Both modes lase in PT regime for: γν = 0.1 and γμ = 0.7 (PT-PT), 
(b) Mode ν lases first in the PT regime followed by mode μ lases in broken PT regime for: γν = 0.1 and γμ = 1.1 
(PT-BPT), (c) The first lasing mode ν start to lase in broken PT phase then the second mode μ in PT regime for: 
γν = 2.5 and γμ = 0.75 (BPT-PT), and (d) both modes lase in broken PT phase γν = 2.5 and γμ = 1.1 (BPT-BPT). 
Note that always g gth th<ν µ

.
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range of the cavity is larger than the bandwidth of th meta-absorbers. Another alternative is to use dopant material 
with narrow absorption bandwidth. However, this is a material-dependent approach and may not provide much 
flexibility. A different possibility is to exploit the modal intensity distribution to design meta-absorbers that target 
only certain modes. This strategy has been employed recently in refs 14, 46. This latter approach also opens the door 
for dynamically controlling the laser emission by using meta-absorbers made of material platforms whose electric 
properties can be tuned by carrier injection56. We explore some of these possibilities in future work.

Finally we note that even though we focused here only on two lasing modes, additional modes (longitudinal 
or transverse) can be treated exactly in the same manner after extracting their physical parameters (resonant 
frequencies, quality factors and coupling coefficients) using full electromagnetic simulations. Given that these 
modes will experience smaller gains, their effect is not expected to alter our results dramatically. In particular, 
they will change the boundaries between the different lasing regimes without affecting their existence.

Methods
Our numerical analysis for the linear eigenvalue problem of laser system at threshold was carried out by using 
standard eigenvalue solver. The dynamics of photonic molecule laser were obtained by solving the nonlinear rate 
equations using the RK4 algorithm. The linear stability analysis is performed numerically.
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