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RNA-binding proteins (RBPs) have been implicated as regulatory proteins 
involved in the post-transcriptional processes of gene expression in plants that 
influence floral development, circadian rhythms, hormone signaling, plant 
growth, abiotic stress response and tolerance. RBPs have received much 
attention in Arabidopsis, tobacco and rice. Oil palm (Elaeis guineensis Jacq.) is 
the most efficient oil-yielding crop in the world. Environmental stresses have a 
major impact on oil palm production mainly plant growth, physiology and oil yield. 
However, the biological functions of RBPs in post-transcription regulation of 
gene expression in response to stresses are still poorly understood in oil palm. 
This study aimed to understand the regulation of target transcripts by a RBP 
from oil palm at post-transcriptional level, the regulatory factors associated with 
the target RBP in the ribonucleoprotein complex and the involvement of RBP in 
post-transcriptional RNA mechanism in response to environmental stimuli in oil 
palm. In this study, a gene designated as EgRBP42, encoding a plant 
heterogeneous nuclear ribonucleoprotein-like RBP was isolated from oil palm. 
EgRBP42 was identified from an expressed sequence tag (EL684239) from the 
oil palm female inflorescence.  EgRBP42 protein consists of two N-terminal RNA 
recognition motifs and a glycine-rich domain at the C-terminus. The upstream 
region of EgRBP42 has multiple light-responsive, stress-responsive and flower 
development related regulatory elements. Real-time RT-PCR analysis showed 
that EgRBP42 was expressed in all oil palm tissues tested, including leaf, shoot 
apical meristem, root, female inflorescence, male inflorescence and mesocarp 
with the lowest transcript level in the roots. EgRBP42 protein interacted with 
transcripts associated with stress responses, transcription and translation. 
Validation of consensus sequence of interactive transcripts binding to EgRBP42 
indicated that EgRBP42 binds to the AG-rich region on its interactive transcripts. 
Three variants of EgRBP42 at the 3’-untranslated regions were detected from 
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oil palm leaf tissue. The accumulation of EgRBP42, its interacting transcripts 
and its alternative 3’-UTR variant transcripts were up-regulated (> 2 fold change) 
by abiotic stresses, including salinity, drought, submergence, cold and heat 
stresses in leaf discs (short-term stress treatment for 30 min to 28 hr) and leaves 
from oil palm seedlings (long-term stress treatment for 7 days). Co-
immunoprecipitation and yeast II hybrid interaction studies showed that 
EgRBP42 protein interacted with various regulatory factors involved in 
transcription, nucleocytoplasmic transport, mRNA degradation and translation. 
The protein accumulation of EgRBP42 was up-regulated (> 2-fold change) by 
heat, cold, drought and salinity in oil palm seedlings exposed to long-term stress 
treatments for 7 days. Collectively, the data suggested that EgRBP42 is 
responsive to various abiotic stresses. It is potentially a nucleocytoplasmic 
transporter of stress-responsive mRNAs from nucleus to cytoplasm for their 
rapid translation in response to heat, cold and drought stresses. This study 
provided information on post-transcriptional regulatory mechanisms of 
EgRBP42 in oil palm. Hence, EgRBP42 may be useful for the engineering of 
stress tolerant oil palm.  
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Protein pengikatan-RNA (RBPs) adalah protein pengawalatur yang terlibat 
dalam proses pasca transkripsi pengekspresan gen dalam tumbuh-tumbuhan 
dari segi perkembangan bunga, irama sirkadian, isyarat hormon, perkembangan 
tumbuhan, tindakbalas dan ketahanan terhadap tekanan abiotik. RBPs 
mendapat banyak perhatian dalam bidang penyelidikan pertumbuhan seperti 
Arabidopsis, tembakau dan beras. Kelapa sawit (Elaeis guineensis Jacq.) 
adalah tumbuhan yang paling cekap dalam penghasilan minyak di dunia. 
Tekanan persekitaran mempunyai kesan yang amat besar terhadap 
penghasilan minyak kelapa sawit, terutamanya dari segi perkembangan 
tumbuhan, fisiologi dan hasil minyak. Tetapi, fungsi biologi RBPs sebagai 
pengawalatur ekpresi gen di peringkat pasca transkripsi terhadap tekanan 
abiotik pokok kelapa sawit masih tidak diketahui. Kajian ini bertujuan untuk 
memahami pengawalatur RBP daripada kelapa sawit terhadap transkrip 
sasaran di peringkat pasca transkripsi, faktor-faktor pengawalatur yang 
berkaitan dengan RBP dalam kompleks ribonucleoprotein dan juga penglibatan 
RBP dalam mekanisme RNA di peringkat pasca transkripsi dan tindakbalasnya 
terhadap rangsangan alam sekitar di dalam kelapa sawit. Dalam kajian ini, gen 
yang dinamakan sebagai EgRBP42, mengekodkan ribonucleoprotein nuklear 
heterogen telah dipencilkan dan diklonkan daripada kelapa sawit. EgRBP42 
didapati daripada tag jujukan terekspres (EL684239) bunga betina kelapa sawit. 
EgRBP42 mengandungi dua motif pengenalan RNA di pangkalan-N dan satu 
domain kaya dengan glisin di pangkalan-C. Rantau penganjur EgRBP42 
mengandungi pelbagai elemen pengawalaturan yang berkaitan dengan 
tindakbalas terhadap cahaya, tindakbalas terhadap tekanan dan perkembangan 
bunga. Analisis RT-PCR masa nyata menunjukkan bahawa EgRBP42 
digekspres dalam semua tisu-tisu kelapa sawit yang diuji, termasuk daun, pucuk 
meristem apikal, akar, bunga betina, bunga jantan dan mesokarp dengan aras  
transkrip yang paling rendah di dalam akar. Protein EgRBP42 berinteraksi 
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dengan transkrip yang berkaitan dengan proses tindakbalas terhadap tekanan, 
transkripsi dan terjemahan protein. Pengesahan jujukan konsensus pada 
transkrip berinteraktif kepada protein EgRBP42 menunjukkan bahawa 
EgRBP42 terikat kepada transkrip berinteraktif yang mempunyai urutan 
nukleotida yang kaya dengan adenine dan guanine. Tiga varian EgRBP42 pada 
lokasi 3’ yang tidak diterjemahkan, telah dikenalpasti daripada tisu daun kelapa 
sawit. Ekspresi EgRBP42, transkripsi yang berinteraksi dengan protein 
EgRBP42 dan transkripsi varian EgRBP42 di lokasi 3’ yang tidak diterjemahkan, 
ditingkatkan (> 2 kali ganda ) oleh tekanan abiotik, termasuk kemasinan, 
kemarau, banjir, kesejukan dan kepanasan di cakera daun (rawatan tekanan 
jangka masa pendek selama 30 min sehingga 28 jam) dan daun anak benih 
kelapa sawit (rawatan tekanan jangka masa panjang selama 7 hari). Kajian ko-
pengendapan imun dan interaksi yis II hibrid menunjukkan bahawa protein 
EgRBP42 berinteraksi dengan pelbagai faktor pengawalaturan yang terlibat 
dalam tindakan transkripsi, pengangkutan nukleus-sitoplasma, degradasi 
mRNA dan terjemahan mRNA. Ekspresi protein EgRBP42 telah ditingkatkan (> 
2 kali ganda) dalam anak benih kelapa sawit yang terdedah kepada kepanasan, 
kesejukan, kemarau dan kemasinan dalam rawatan tekanan jangka masa 
panjang selama 7 hari. Secara keseluruhan, data yang diperolehi 
mencadangkan bahawa protein EgRBP42 bertindakbalas terhadap pelbagai 
tekanan abiotik dan ia berpotensi sebagai pengangkut nukleus-sitoplasma 
kepada mRNA yang responsif terhadap tekanan alam sekitar supaya 
penerjemahan cepat akan dijalankan sebagai tindakbalas terhadap kepanasan, 
kesejukan dan kemarau. Kajian ini memberi maklumat berguna mengenai 
mekanisma pasca transkripsi yang dikawalatur oleh EgRBP42 di dalam kelapa 
sawit. Oleh itu, EgRBP42 mungkin memainkan peranan yang penting dalam 
kejuruteraan genetik kelapa sawit untuk meningkatkan tahap ketahanan 
terhadap tekanan persekitaran.  
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ds-cDNA double stranded cDNA 
DEPC   diethyl pyrocarbonate  
DMSO  dimethylsulphonyl oxide  
DTT  dithiothreitol  
EtBr   ethidium bromide 
EDTA   ethylenediaminetetraacetic acid  
EGTA   ethylene glycol bis-(β-aminoethyle ether) 
EgRBP42 Elaeis guineensis RNA-binding protein 42 kDa 
eIFs  translation initiation factors 
EJC  exon junction complex 
EMSA  electrophoretic mobility shift assay 
FCA  flowering control locus A 
FLC  FLOWERING LOCUS C 
FLK  flowering locus K 
FPA  flowering time control protein A 
FY  flowering locus Y 
GA  giberrellin acid 
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g   gram  
GR-RBP glycine-rich RNA-binding protein 
GST-His6  glutathione-S transferase-hexsa histadine 
HCl  hydrochloric acid 
His   histidine 
HEPES  N-2-hydroxyethylpiperazine-N' -2-ethanesulfonic acid 
hr  hours 
hnRNA  heterogeneous nuclear ribonucleic acid  
hnRNP  heterogeneous nuclear ribonucleoprotein 
IPTG   isopropyl-β-D-thioga1actoside  
k   kilo 
kb   kilo base pair 
KCl  potassium chloride  
kDa  kilot Dalton   
KH  K homology  
KOAc  potassium acetate 
L   liter 
Leu  leucine 
LHP1  LIKE HETEROCHROMATIN PROTEIN1 
LIF2  LHP1–Interacting Factor 2 
LiCl   lithium chloride 
M   molar 
M9  M9 nucleocytoplasmic export signal 
MBE  Musashi binding element 
mg   milligram  
MgCl2   magnesium chloride 
MgSO4  magnesium sulphate 
min  minutes 
miRNA  microribonucleic acid 
mL  millilitre 
μL  microlitre 
mm   millimeter 
mM   millimolar 
MOPS   3-(N-morpholino) propane-sulphonic acid  
mRNA   messenger ribonucleic acid 
mRNP  messenger ribonucleoprotein 
NaCl   sodium chloride 
NaOAc  sodium acetate 
NaOH   sodium hydroxide 
NBT   nitro blue tetrazolium 
NIB  nuclear isolation buffer 
ng   nanogram 
N-terminal  amino terminal 
NTFs  nuclear transport factors 
NPCs  nuclear pore complexes 
npcRNA non-protein coding ribonucleic acid 
OD   optical density 
ORF   open reading frame 
P bodies processing bodies 
PABP  polyadenylation-binding protein 
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PAGE   polyacrylamide gel electrophoresis 
PABPII  polyadenylation binding protein II 
PAP  polyadenylation polymerase 
PBS   phosphate buffer saline 
PCR   polymerase chain reaction 
pI   isoelectric point 
PMSF  phenylmethyl-sufonyl fluoride 
poly (A)  polyadenylation 
pre-mRNA precursor messenger ribonucleic acid 
PTB  polypyrimidine-tract binding 
PVDF  polyvinylidene difluoride 
PVPP  polypolyvinylpyrrolidone 
qRT-PCR quantitative real-time RT-PCR 
RBD  RNA-binding domain 
RBP  RNA-binding protein 
RGG  arginine-glycine-glycine 
RNA   ribonucleic acid 
rRNA  ribosomal ribonucleic acid 
RNAPII   RNA polymerase II  
RNase  ribonuclease 
RNP  ribonucleoprotein 
rpm  revolutions per minute 
RRM  RNA recognition motif 
RT  reverse transcriptase 
sec  second 
SD  synthetic dropout 
SDS  sodium dodecyl sulphate 
snRNP  small ribonucleoprotein particles  
SR  serine/arginine rich  
TAE  tris acetate EDTA 
TCA   trichloro-acetic acid 
TE  tris-EDTA 
TEMED  N,N,N',N'-tetrametylethylenediamine 
Tris   tris[hydroxymethyl]aminomethane 
Tris-HCl tris[hydroxymethyl]aminomethane hydrochloride 
Trp  tryptophan 
U  unit 
UTR  untranslated region 
μL  microliter 
μg  microgram 
μm  micrometer 
v/v  volume per volume 
WAP  weeks after pollination 
w/v  weight per volume 
x g   relative centrifugal force  
X-gal  5-bromo-4-chloro-3-indolyl-β-D-galactopyronoside 
X-α-Gal  5-bromo-4-chloro-3-indolyl alpha-D-galactopyranoside 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Gene expression during growth and development is governed by both 
transcription and post-transcription regulation of mRNAs. Transcription 
regulation affects the expression of genes. However, the discordance between 
the mRNA and protein levels in eukaryotes is mainly due to post-transcriptional 
processing and regulation. This regulation can be achieved either directly by 
RNA binding proteins (RBPs) or indirectly via modulation of other regulatory 
factors in eukaryotes (Lorkovic, 2009). Gene encoding RBPs with RNA 
recognition motifs (RRMs) have received more attention in plant research 
recently. These RBPs are emerging as multifunctional cellular regulatory 
proteins involved in RNA metabolism including the regulation of transcriptional 
processes such as RNA synthesis, pre-mRNA splicing, capping, 
polyadenylation, exporting RNA from nucleus, pre-rRNA complex formation, 
mRNA stability and degradation. Besides that, RBPs participate in all aspects of 
translational processes whereby they regulate translation of functional mRNAs 
and storage of non-translated mRNAs. Some RBPs are also involved in 
chromosome structuring such as telomere maintenance that is important for 
chromosome stability and integrity (Chen and Varani, 2005; Glisovic et al., 
2008). 
 
 
Functional studies and RNA sequencing of plant RBPs clearly showed that a 
family of RBPs that are defined as heterogeneous nuclear ribonucleoprotein 
(hnRNP)-like proteins are also expressed in higher plants and serve specific 
plant functions (Lambermon et al., 2000; Lorkovic et al., 2000). In plants, these 
hnRNP-like proteins have been reported to influence floral induction and 
development, circadian rhythms, hormone signaling, differentiation, chloroplast 
regulation, phloem translocation, stress response and stress tolerance 
(Nakamura et al., 1999; Li et al., 2002; Macknight et al., 2002; Quesada et al., 
2003; Simpson et al., 2003; Razem et al., 2006; Staiger et al., 2003; Ham et al., 
2009; Tillich et al., 2009). Post-transcriptional gene regulation plays a crucial 
role in the response of plants towards stress stimulus. Regulatory factors such 
as small RNAs and RBPs have emerged as regulators of RNA mechanism in all 
aspects of post-transcriptional gene regulation in plant stress responses, 
tolerance and adaptation. RBPs respond to stress signals through the regulation 
of downstream stress-related genes expression and enhance tolerance of plants 
towards various abiotic adversities (Lee et al., 2009). 
 
 
Oil palm (Elaeis guineensis Jacq.) is the most efficient oil-yielding crop in the 
world. Oil palm produces 32% of global oils and fats and utilizes the least global 
land area for cultivation (5.5%) compared to other oilseed crops (Oil world 2013). 
One hectare of oil palm plantation produces up to ten times more oil (average 
oil yield of ~4 tonnes of oil per hectare) than other oilseed crops (Oil world 2013). 
Palm oil is the most consumed oil among 17 major oils and fats traded globally 
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and the global consumption for palm oil was 52.1 million tonnes in 2012 (Oil 
world 2013). The palm oil industry is one of the key economic drivers of the 
agricultural sector in Malaysia. Malaysia is the second largest palm oil producer 
utilizing 5.1 million hectares of land for oil palm cultivation, and accounted for 
10% or 18.8 million tonnes of global vegetable oils and fats output in 2012 (Oil 
world 2013).  
 
 
Environmental stresses have a major impact on oil palm production mainly plant 
growth, physiology and oil yield. Environmental stresses such as flood, drought, 
cold and heat stress have been reported to affect abortion of inflorescence, 
determination of inflorescence ratio and bunch ripening in matured oil palm 
(Corley and Donough, 1995; Gawankar et al., 2003; Cha-Um et al., 2010). 
Intermittent water stress (rainfed) reduces 91% of oil palm fresh fruit bunch 
production resulting in 88.46% reduction in the yield of fresh fruit bunches 
(Gawankar et al., 2003). Under intermittent water stress, oil palm female 
inflorescence production is reduced by 86% while leaf production is reduced by 
30% in the early growth phase and 12.5% in the later growth phase (Gawankar 
et al., 2003).  
 
 
The biological functions of RBPs in post-transcription regulation of gene 
expression in response to stresses are still poorly understood in oil palm. Hence, 
an in-depth functional analysis of RBPs mediated regulation of target RNA 
metabolisms will increase the understanding of the roles of RBPs in oil palm 
stress responses and adaptation that are vital for the engineering of stress-
tolerant plant. The aim of this research was to understand the functional role of 
oil palm RBP and the network of gene regulation operating at the post-
transcriptional level in response to environmental stimuli in oil palm. Through the 
study of messenger ribonucleoproteins (mRNPs) and the constituents of RNP 
complexes, networks of gene regulation and the underlying mechanism 
operating at the post-transcriptional level in response to environmental stimuli in 
oil palm can be elucidated.  

 
 

The specific objectives of this study were: 
1. To clone and isolate full length cDNA, variants, promoter and the gene 

encoding putative RBP (EgRBP42) from Elaeis guineensis Jacq. 
2. To identify transcripts interacting with the EgRBP42 protein and their 

consensus binding site. 
3. To identify the regulatory factors associated with EgRBP42 in the 

ribonucleoprotein complex and the functional roles of EgRBP42 in post-
transcriptional regulation.  

4. To profile the protein accumulation and transcript abundance of EgRBP42 
and its variants under various abiotic stress conditions in oil palm. 
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