
A Framework to Evaluate Defect Taxonomies

Diego Vallespir1, Fernanda Grazioli1, and Juliana Herbert2

1 Instituto de Computación, Facultad de Ingenieŕıa
Universidad de la República, Montevideo, Uruguay.

2 Herbert Consulting
Porto Alegre, RS, Brazil.

dvallesp@fing.edu.uy , fgrazioli@adinet.com.uy,

juliana@herbertconsulting.com

Abstract. This paper presents a framework for evaluate and compare
different defect taxonomies. Six well-known taxonomies are evaluated
with it and the results are showed. We found deficiencies in every tax-
onomy once they are evaluated with the framework.

Key words: Software engineering, Software verification and validation,
Defect taxonomies

1 Introduction

There are different reasons for using defect taxonomies. In software development
they can be used to know which defect types are normally injected, improv-
ing both the verification activity and the software development process. Defect
taxonomies have been used in many ways in empiric software engineering (ESE).

Knowing what defect types are injected, allows to look for them in a partic-
ular way. So, the verification activity could take less time and find more defects.
For example, if 90% of the defects are in the requirements specification, it is pos-
sible to thoroughly verify this specification and reduce the time used in verifying
other software products. In other words, to guide the verification considering the
knowledge about the defects that are injected.

Also, the classification of defects gives an idea of the phases, activities, dis-
ciplines, etc. of the development process where most of the defects are injected.
With this data the software development process can be improved by reducing
the quantity of defects injected during the development.

For example, in ESE the defect taxonomies have been used to study the
impact that different verification techniques have on different defect types. The
goal is to know if different verification techniques find different defect types.
By knowing this it can be possible to optimize the combination of different
verification techniques in order to maximize the number of defects found.

Not only these reasons but many others that have not been exposed here
show the importance of defect taxonomies in software development and in ESE.
Unfortunately, there is not an universally used taxonomy, neither in software

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15777785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


development nor in ESE. This situation causes a lot of problems, for example,
it is difficult or even impossible to compare some results between researchers.

A wide variety of taxonomies exists on the industry and in the literature. It
is important to compare them from different points of view, trying to identify
strengths and weaknesses of each one.

In this paper we analyze the most important taxonomies we found: Hewlett-
Packard Taxonomy [1], Kaner, Falk and Nguyen’s Taxonomy [2], Robert Binder’s
Taxonomy [3], IEEE Standard Classification for Software Anomalies [4], Orthog-
onal Defect Classification [5] and Beizer’s Taxonomy [6]. Due to space reasons
the taxonomies are not presented so we must assume they are known.

The paper is organized as follows. Section 2 presents a meta-taxonomy. A
framework for the taxonomies comparison is presented in section 3. The tax-
onomies’ comparison is presented in section 4. Section 5 presents the conclusions
and the future work.

2 Meta Taxonomy

There is a lack of literature on meta taxonomies. We developed our comparison
framework based on a previous work of Freimut [7]. From section 2.1 to 2.3
the Freimut proposal is presented. This proposal is divided in different aspects:
attributes3, structure types and properties.

Section 2.4 presents a taxonomy classification proposed in [8].

2.1 Attributes

A taxonomy is composed of attributes. Each attribute has a set of possible
values. The values represent defect characteristics that must be registered at the
classification moment.

The attributes to be considered must be those that are relevant to a future
analysis. The attributes proposed by Freimut are listed below.

Location It refers to where the defect is located. The amount of detail in the
specification may vary either indicating the system’s high level entity on
which the defect is found (Design, Code) or indicating the name of the
software product it belongs to.

Timing It refers to the project’s phase in which the injection, detection and/or
correction of the defect is produced.

Symptom It refers to what it is observed when a failure is generated or to a
description of the activity that is causing the failure.

End Result It refers to the description of the failure caused by the defect. This
attribute usually contains values such as performance and usability among
others.

Mechanism It refers to how the defect was injected, detected and/or corrected.

3 In the original they are called key elements



Cause (Error) It refers to the human error that caused the injection of the
defect (communication, lack of time and others).

Severity It refers to how serious the defect or failure is.
Cost It refers to the time and effort devoted to finding and/or correcting a

defect.

Sometimes, the difference between symptom and end result is not clear.
Symptom refers to what it is observed, maybe without knowing what is re-
ally happening, when a failure occurs. On the other hand, end result refers to
what it really happens when the failure occurs.

For example, a simple error message could be a symptom of a failure. Once
the defect (that causes the failure) is found it can be known the real extent of
the effects of the failure (end result). For example, the database is corrupted and
a error message is shown (the same one as in the symptom).

2.2 Structure Types

The existing relationships between the attributes in a taxonomy determine its
structure type.

One of the possible structures is a hierarchy. The values of an attribute in a
certain level are refined by values of attributes in the next level of the hierarchy.
An example is Beizer’s taxonomy [6].

A tree is another structure in which the attributes are not independent. The
choice of a value in an attribute determines the possible values of the following
attributes.

Another possible structure is the orthogonal in which values of each attribute
are assigned independently of the other attributes. An example of this is the ODC
taxonomy [5].

Another structure is the semi-orthogonal. There is no dependence among
some attributes while among others the choice of a value determines the possible
values of another attribute. The HP taxonomy [1] is an example of this.

2.3 Properties

If a taxonomy is not properly defined, problems may arise in order to get correct,
reliable and good quality results. Therefore, the analysis of the results may be
questionable. To avoid these problems, it is desired that taxonomies include the
following requirements and properties.

Mutually exclusive attribute values When choosing the value of an attribute,
only one value is appropriate.

Orthogonal attributes As it was previously explained, orthogonality refers to
the independence between attributes.

Complete attribute values The set of values must be complete for each at-
tribute. This means that when classifying an attribute for a given defect it
is possible to choose an appropriate value for it.



Small number of attribute values The set of possible values for each at-
tribute should not be very big. Having a small set of values not only makes
the classification process simpler but also makes it less probable of mistakes.
However, if the taxonomy is meant for a thorough analysis, it is possible
that a bigger set of values may be needed in order to achieve an adequate
precision in the results.

Description of attribute values It is important that all the possible values
are defined clearly and stated with examples of defects that classified under
that value.

2.4 Taxonomy Classification

In [8], it is presented a classification of what they call defect classification sys-
tems. These are divided in three categories: defect taxonomy, root cause analysis
and defect classification.

The defect taxonomies are defects types categorizations. An example is the
Beizer’s taxonomy.

In root cause analysis not only defects are analyzed, but also their cause.
The main goal is to identify the roots of these causes and eliminate them in
order to avoid more defects. This approach is considered rather elaborated, so
the cost/benefit relation is not clear. There are proposals for this in [9] and [10].

The defect classification uses multiple dimensions to classify defects. The goal
is to reduce the costs and maintain the benefits of root cause analysis. Examples
of this are ODC, HP and IEEE taxonomies.

In this paper we use the term taxonomy for any of these classification sys-
tems.

3 Comparison Framework

In this section it is presented our comparison framework. The best way to evalu-
ate taxonomies in a correct and coherent way is to build a framework in which the
characteristics, strengths and deficiencies of each taxonomy can be objectively
and evenly evaluated.

Freimut also made an interesting comparison since he evaluates the attributes
of various taxonomies, including HP, IEEE and ODC. However, as taxonomies
can also be evaluated by their properties it is not enough to achieve our goal.
Besides, this comparison does not include all the taxonomies evaluated here nor
is completely coherent with its definitions.

In order to reach the objective of carrying out a complete and correct the-
oretical balance, we propose the development of a comparison framework. The
framework will consist of two views: Attribute and Property.

The Attribute view takes Freimut’s proposal as the main idea, which is
modified in the framework by the addition of more specific attributes. The target
of this view is to evaluate the capacity of a taxonomy to describe defects. The
description of each attribute of the framework is as follows. The original name



of those which derive from Freimut’s proposal appears between brackets at the
end of the description. Otherwise appears “new”.

Suspected location It refers to the place where the defect is suspected to be.
(Location)

Real location It refers to the place where the defect really is. (Location)
Failure’s causing phase It refers to the project phase in which occurs the

failure. (Timing)
Injection’s phase It refers to the project phase in which the defect is injected.

(Timing)
Symptom It refers to what is observed when the failure occurs. (Symptom)
Type It refers to the defect type that was detected. (New)
Failure’s causing mechanism It refers to the activity that drives to the fail-

ure. (Mechanism)
Injection’s mechanism It refers to how the defect was injected. (Mechanism)
Correction’s mechanism It refers to the activity that corrected the defect.

(Mechanism)
Failure’s impact It refers to the impact the failure has on the product when

the failure occurs. (End result)
Defect’s impact It refers to the impact the defect has on the project. (End

result)
Cause (Error) It refers to the human error that caused the defect’s injection.

(Cause)
Responsible source It refers to where the product (in which the defect was

injected) was developed (In house, external, etc.). (New)
Re-correction It refers to whether or not the defect was introduced when fixing

a previous defect. (New)
Occurrence’s Probability It refers to the estimated odds in favour of the

failure to occur. (New)
Severity It refers to how serious the failure is. (Severity)
Priority It refers to how fast the defect has to be corrected. (New)
Detection’s cost It refers to the time consumed in the detection of the defect

after the failure appeared. (Cost)
Estimated cost of correction It refers to the estimated time its correction

will take. (Cost)
Real cost of correction It refers to the time consumed in the defect’s correc-

tion. (Cost)

The Property view, is based on the desired properties proposed by Freimut
including as well other properties that we believe are necessary and useful. Below
are described the properties that have not been previously presented and the
possible set of values for each one.

Quality of attribute value’s description It refers to expressing what level
of quality the descriptions of the attributes’ values have. For this property
there are no possible values defined, therefore the existing quality level for
each taxonomy must be expressed.



Quality of attribute value’s examples It refers to expressing what level of
quality the examples of attributes’ values have. The possible values for this
property would be “Good”, “Bad” or “No examples contained”.

Classification It refers to the way of classifying taxonomies according to [8].
The possible values for this property would be “Defect taxonomy”, “Root
cause analysis” or “Defect classification”.

Structure It refers to the structure of the taxonomy. The possible values for this
property would be “Hierarchical”, “Tree”, “Orthogonal” or “Semi-Orthogonal”.

Generality’s level It refers to the capacity of a taxonomy to be applied in
different software projects or processes. The possible values for this property
would be “Specific” (can be applied only for particular software), “Interme-
diate” (can be applied only in a phase of software development) or “Generic”
(can be applied in any phase of the development process).

Adaptability It refers to the capacity of expansion and modification of the tax-
onomy depending on the requirements. The possible values for this property
would be “Adaptable”, “Adaptable with terms” or “Non adaptable”.

Learning time It refers to the time it takes to learn how to use certain taxon-
omy. The possible values for this property would be “High”, “Medium” or
“Low”.

Classification time It refers to the time it takes to classify a defect in a tax-
onomy after knowing how to use it. The possible values for this property
would be “High”, “Medium” or “Low”.

The properties proposed in section 2.3 and the possible set of values for each
one are listed below.

Mutually exclusive attribute values “Yes” or “No” are the possible values
for this property.

Orthogonal attributes The possible values for this property would be “Yes”,
“No” and “Does not apply”. The last value applies only when the taxonomy
is composed by one attribute.

Complete attribute values The possible values for this property would be
“Yes”, “Aparent” and “No”.

4 Comparison

The way the attribute view should be used is as follows: for each attribute in the
view, look for a corresponding attribute in the taxonomy under evaluation. Table
1 shows the evaluation of the six taxonomies against the framework’s attribute
view. It is observed that the only attribute included in all taxonomies, is the
defect type.

Binders, Kaner, Beizer an HP classify the defect only when it has been de-
tected. ODC and IEEE carry out the classification once the failure occurs and
also after the defect is detected. IEEE also carries out the classification once the
defect is corrected and when the tracking of the defect is finished.



Table 1. Taxonomies’ comparison against the Attribute view

Attribute HP Kaner Binder IEEE ODC Beizer

Suspected loca-
tion

Suspected Cause

Real location Origin Source, Actual
Cause

Target

Failure’s causing
phase

Project Phase

Injection’s phase

Symptom Symptom, Prod-
uct Status

Type Type Type Type Type Type Type

Failure’s causing
mechanism

Project Activity Trigger, Activity

Injection’s mecha-
nism

Mode Type Qualifier

Correction’s
mechanism

Corrective Ac-
tion, Resolution

Failure’s impact Customer value,
Mission/Safety

Impact

Defect’s impact Project Cost,
Project Qual-
ity/Reliability,
Project Risk,
Societal

Cause (Error)

Responsible
source

Source, Age

Re-correction Age

Occurrence’s
Probability

Repeatability

Severity Severity

Priority Priority

Detection’s cost

Estimated cost of
correction

Project Schedule

Real cost of cor-
rection

We can observe that there are attributes of the framework that are not con-
templated in any of the taxonomies. The following presents each of them and
the reasons for the addition in the framework.

Injection phase It is interesting to register the phase in which the defect is
injected because that information can be used to prevent the injection from
similar defects in future projects.



Cause (Error) It is interesting to register which was the human error that led
to the defect. By being aware of the problem, defects in future projects can
be avoided. Some results of root cause analysis studies give possible values
for this attribute. For example, in [9], a Cause attribute is proposed with
the values Education, Communication and Tools. In [10] an attribute that
captures different types of causes is proposed: Human causes, Project causes,
Revision Causes.

Detection’s cost It is interesting because a costs’ analysis could be made de-
pending on the different defect types. This allows to estimate changes in the
project’s schedule.

Real cost of correction Such as the detection’s cost, its registration is inter-
esting for a future analysis of costs.

Table 2 presents the comparison of the six taxonomies against the frame-
work’s property view.

In HP, Kaner, IEEE and ODC taxonomies the values for an attribute are
mutually exclusive. However, in Binder and Beizer’s taxonomies, the set of values
for an attribute does not present this property, which can generate inconsistent
data since a defect could be classified in different ways.

Observing the orthogonality of attributes, this property is not classified by
Kaner, Binder or Beizer’s taxonomies because these constituted of only one at-
tribute. For IEEE and ODC, this property is fulfilled since the value of each
attribute is completely independent of the values of the other attributes. How-
ever, for HP this does not apply because the values of the Type attribute depends
on the value chosen for the Origin attribute.

The property of having a complete set of attribute values is a difficult one to
demonstrate. The Beizer is the only taxonomy that fulfills this property due to a
special value that means “others”. This value is used when a defect characteristic
does not correspond to any of the other values.

Regarding the quality of the descriptions and examples of the values of an
attribute, a variation among the different taxonomies is observed. Anyhow, the
HP, IEEE and ODC taxonomies can be grouped under a level of good quality
since they present complete and clear descriptions, also they include concise
examples. On the other hand, Kaner, Binder and Beizer’s taxonomies can be
grouped under a level of bad quality given their attributes are ambiguous or
incomplete and they do not have descriptions or examples.

Regarding the learning time, the taxonomies that are considered easily un-
derstandable were grouped with “Low”, either because of the clarity and no am-
biguity of its presentation, and/or because the taxonomies have a small amount
of attributes. The taxonomies presented by Binder and Beizer were tagged with
a “High” value. Although they are composed by only one attribute, many pos-
sible values exist for it. This, added to vague descriptions and examples of poor
quality, result in a longer learning time than the other group. The taxonomy
presented by IEEE is also considered to have “High” learning time because it
contains such a large amount of attributes that they have to be studied and
understood.



Table 2. Taxonomies’ comparisons against the Property view

Property HP Kaner Binder IEEE ODC Beizer

Mutually
exclusive
attribute
values

Yes Yes No Yes Yes No

Orthogonal
attributes

No Does not
apply

Does not
apply

Yes Yes Does not
apply

Complete at-
tribute values

Aparent Aparent Aparent Aparent Aparent Yes

Quality of at-
tribute value’s
description

Good:
clear de-
scriptions,
no ambigu-
ities

Bad: not
all val-
ues are
explained

Values
are not
described

Good:
clear de-
scriptions,
no ambigu-
ities

Good:
clear de-
scriptions,
no ambigu-
ities

Bad: su-
perficial
description,
ambiguous
in some
cases

Quality of at-
tribute value’s
examples

Good No ex-
amples
contained

No ex-
amples
contained

Good Good Bad

Classification Defect
classifica-
tion

Defect
Taxonomy

Defect
Taxonomy

Defect
classifica-
tion

Defect
classifica-
tion

Defect Tax-
onomy

Structure Semi-
Orthogonal

Does not
apply

Does not
apply

Orthogonal
and Hier-
archical

Orthogonal Hierarchical

Generality’s
level

Generic Generic Specific Generic Generic Generic

Adaptability Adaptable Adaptable Adaptable Adaptable Adaptable Adaptable

Learning time Low Low High High Low High

Classification
time

Low Low High High Low High

The proposed reasoning for the time of classification is analogue. Those tax-
onomies, with no ambiguous descriptions, good examples and/or few attributes
to classify, are grouped under the value “Low”. The taxonomies with higher
amount of attributes as well as those that are not clearly defined or exemplified,
take a longer time for the user to classify because of a lack of certainty among
two or more values, are considered to have a “High” time of classification.

It is clear that classifying time as “High”, “Medium” or “Low” is subjective,
with the connotations that it implies. In the future, an average of the times of
learning and classification could be calculated for each taxonomy, and then be
able to formulate a better comparison, more representative of the reality.

It is observed that the amount of attributes, the quality of the descriptions’
values of the attributes and the quality of the examples presented in each tax-
onomy; significantly influence both the learning and the classification times of
the taxonomy.



5 Conclusions

We developed and presented an original comparison framework for defect tax-
onomies. This framework extends and improves Freimut ideas. It contains two
relevant views: attribute and property. The first view is useful to evaluate those
defects’ characteristics that are considered for a given taxonomy. The second
view is useful to evaluate desired properties each taxonomy should have.

Using the framework we evaluate and compare six well-known taxonomies.
The results show that each taxonomy considers different characteristics of a de-
fect. Some of them are more complete, from an attribute point of view, than
others. However, those less complete have a bigger set of values for their at-
tributes, for example, Beizer and Binder. The analysis also shows that there are
differences in the properties among the taxonomies.

As a future work it is important to: analyze the impact of whether having
or not a specific framework’s attribute in a taxonomy, analyze the values pro-
posed in each taxonomy for each attribute, analyze if different test levels (unit,
integration, system) require different taxonomies and finally analyze the way
taxonomies have been used in the industry. We are currently working on these
last two points.

References

1. Grady, R.B.: Practical Software Metrics For Project Management and Process
Improvement. Hewlett-Packard (1992)

2. Kaner, C., Falk, J., Nguyen, H.Q.: Testing Computer Software (2nd. Edition).
International Thomson Computer Press (1999)

3. Binder, R.V.: Testing Object-oriented Systems Models, Patterns, and Tools.
Addison-Wesley (1999)

4. IEEE: IEEE 1044-1993 Standard Classification for Software Anomalies. Institute
of Electrical and Electronics Engineers (1993)

5. Chillarege, R.: Handbook of Software Reliability Engineering. IEEE Computer
Society Press, McGraw-Hill Book Company (1996)

6. Beizer, B.: Software Testing Techniques, Second Edition. Van Nostrand Reinhold
Co. (1990)

7. Freimut, B.: Developing and using defect classification schemes. Technical report,
Fraunhofer IESE (2001)

8. Wagner, S.: Defect Classifications and Defect Types Revisited. Technische Uni-
versitt Mnchen (2008)

9. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.: Experiences with defect
prevention. IBM SYSTEMS JOURNAL (1990)

10. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis.
Proceedings of the 22nd international conference on Software engineering (2000)


