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Closed loop identification of a
piezoelectrically controlled radial gas
bearing: Theory and experiment

André Krabdrup Sekunda1 , Hans Henrik Niemann1 ,
Niels Kjølstad Poulsen2 and Ilmar Ferreira Santos3

Abstract
Gas bearing systems have extremely small damping properties. Feedback control is thus employed to increase the damp-
ing of gas bearings. Such a feedback loop correlates the input with the measurement noise which in turn makes the
assumptions for direct identification invalid. The originality of this article lies in the investigation of the impact of using
different identification methods to identify a rotor-bearing systems’ dynamic model when a feedback loop is active. Two
different identification methods are employed. The first method is open loop Prediction Error Method, while the other
method is the modified Hansen scheme. Identification based on the modified Hansen scheme is conducted by identifying
the Youla deviation system using subspace identification. Identification of the Youla deviation system is based on the
Youla–Jabr–Bongiorno–Kucera parametrisation of plant and controller. By using the modified Hansen scheme, identifica-
tion based on standard subspace identification methods can be used to identify the Youla deviation system of the gas
bearing. This procedure ensures the input to the Youla deviation system, and the noise is uncorrelated even though the
system is subject to feedback control. The effect of identifying the Youla deviation system compared to direct subspace
identification of the gas bearing is further investigated through a simulation example. Experiments are conducted on the
piezoelectrically controlled radial gas bearing. A dynamic model is identified using the modified Hansen scheme as well
as using Prediction Error Method identification. The resulting models are compared for different imperfect nominal mod-
els, to examine under which conditions each method should be used.
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Introduction

Active gas bearings are an interesting alternative to
more commonly used bearings such as ball and mag-
netic bearings. Compared to ball bearings, active gas
bearings have extremely low friction. At the same time,
active gas bearings are open loop stable for appropri-
ately low rotational speeds, unlike magnetic bearings,
which are always open loop unstable. The active gas
film itself delivers low damping. Because of the low
damping, the rotor system may become unstable due to
self-excited rotor whirling. Control is therefore still
required although it is less limited than for unstable sys-
tems. Designing models of gas bearings has, however,
been shown to be less straightforward, compared to the
frictionless alternative of magnetic bearings. A success-
ful mathematical model for active gas bearings was first
introduced in Pierart and Santos1 with extensions to

the model presented in Pierart and Santos.2–4 Recently,
a low order model able to describe the dynamics of the
active gas bearing was presented in Theisen et al.5 Such
low order models greatly simplify the control design
phase.
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Identification of gas bearings has been a subject of
some interest recently.6,7 It has been shown possible to
identify appropriately low order models that mimic the
behaviour of the gas bearing in a satisfying manner
when no feedback loop is active. Usually the gas bear-
ing will operate under conditions at which the damping
is so small that feedback control is needed for safe oper-
ation. It is therefore of extreme relevance to be able to
identify an appropriate model for the gas bearing under
conditions where it is only possible to obtain identifica-
tion data while the gas bearing is part of a closed loop
system.

There are plenty of different methods for identifying
closed loop systems. One of such methods transforms
the closed loop identification problem of the plant into
an open loop identification problem by using the Youla
parametrisation. Well-known subspace identification
methods are in this article used for identifying the
Youla deviation system. It has become increasingly
popular to use subspace identification methods due to
their natural connection to multiple-input and multiple-
output state space models.8 Some of the most well-
known subspace identification methods are the
Numerical algorithm for Subspace IDentification
(N4SID) proposed in Van Overschee and De Moor9

and the Multivariable Output-Error State-sPace
(MOESP) proposed in Verhaegen and Dewilde.10 Both
methods, as with most subspace identification methods,
assume the noise and input to be uncorrelated; hence,
the methods are based on assumptions that are only
valid for open loop identification. Some work has been
done on extending the subspace identification methods
to identification of closed loop systems. Several differ-
ent methods for coping with feedback connection have
been proposed.8 However, often such methods show
the same weakness of depending on being able to iden-
tify the noise signal imposed on the system.

One possible indirect identification method is sub-
space identification of the Youla deviation system. The
Youla deviation system is used to reformulate the
closed loop to open loop identification problem using a
coprime factorisation of the nominal plant model and
the controller. This identification procedure is known
as the Hansen scheme and was first introduced in
Hansen et al.11 The original version of the Hansen
scheme used external excitation signals to indirectly
excite the Youla deviation system. A modified version
of the Hansen scheme, first introduced in Sekunda et
al.,12 is used instead in this article, which makes it pos-
sible to directly impose an excitation signal onto the
Youla deviation system. A gas bearing easily becomes
an unstable system when the rotational speed is
increased. However, the Youla deviation system identi-
fied by the modified Hansen scheme will always be sta-
ble. The open loop identification technique is thus
applicable where direct open loop identification of the
gas bearing is not. The modified Hansen scheme, how-
ever, has the drawback of loss of physical understand-
ing of the system.

The key contribution of this article is to offer insight
into when it can be advantageous to identify an active
gas bearing using the modified Hansen scheme instead
of the more traditional Prediction Error Method
(PEM) identification. This article thus focuses on com-
paring known identification techniques for identifica-
tion of a gas bearing when being part of a closed loop
system. The results are gathered by a combination of
simulations and experiments conducted on a laboratory
installation.

The article is structured as follows: in the following
section, the model of the gas bearing is introduced; in
the third section, some preliminary theory is introduced
in order to let the article stand alone; in the fourth sec-
tion, the three methods used for identification of the
gas bearing are discussed; in the fifth section, the identi-
fication procedure is given and the quality of the nom-
inal model is discussed; in the sixth section, the
experimental methods are presented, and the resulting
model identified using each of the three different identi-
fication methods is shown. Finally, in the last section, a
discussion of the results and future possible improve-
ments is given.

Gas bearing system

The gas bearing test rig used in this article has already
been subject to different identification methods, with
the focus on its physical behaviour in literatures2,13,14

and on the system dynamics in Theisen and col-
leagues.5–7 These methods, however, have all been both
conducted and verified under open loop conditions. All
identification in this article are based on the gas bearing
being subject to feedback control. The nominal model
is based on the model structure introduced in Theisen
et al.5 which showed it possible to model the vertical
and horizontal positions of a disc attached to a flexible
shaft. The shaft is held in position by the gas bearing,
using gas injected into the bearing in both the horizon-
tal and vertical directions using a sixth-order model. A
picture of the test rig is presented in Figure 1(a).

An illustration of the gas bearing actuators is shown
in Figure 1(b). The air is going into the bearing through
the small pipe; a piezo electric actuator is attached,
which controls how much air is able to get into the
bearing, and thus controls the preasure inside the
bearing.

The model of the gas bearing is based on the mass–
springer–damper model in equation (1) for the nonro-
tating case

€l�D_l� Kl=Bm ð1Þ

Here, l is a vector with the position in the horizontal
and vertical directions, and m is the state of the actua-
tor dynamics. K is the specific stiffness matrix given in
½N=kgmm�, D is the specific damping matrix in
½Ns=kgmm� and B is the actuator gain matrix in
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½N=kgV�. Using equation (1), the state vector is defined
in equation (2)

x=
l
_l
m

2
4

3
5 ð2Þ

The structure of the state space model is given
in equations (3)–(6), where each element is a
2 3 2 matrix

A=
0 I 0
K D B

0 0 �P

2
4

3
5 ð3Þ

B=
0
0
P

2
4

3
5 ð4Þ

C= I 0 0½ � ð5Þ
D= 0½ � ð6Þ

The matrix P is a diagonal matrix with each element
pj, defined by equation (7)

hj sð Þ=
pj

s+ pj
j 2 1, 2f g ð7Þ

hj is the first order low pass filter through which the
system is actuated. The state space model is thus given
in equation (8)

G : =
_x=Ax+Bu
y=Cx+Du

� �
ð8Þ

In order to conduct closed loop identification of the
system, the parameters of the model have been identi-
fied with the disc not rotating as part of an open loop

scheme. The identified matrices are given in equations
(9)–(12)

D=
�224:9 3:97
9:12 �267:7

� �
ð9Þ

K=
�1:869 � 106 �8577
�9510 �1:737 � 106

� �
ð10Þ

B=
�6:126 � 106 3:154 � 105
�1:571 � 105 �4:516 � 106
� �

ð11Þ

P=
989 0
0 942:5

� �
ð12Þ

Theory

The first part of this section is dedicated to presenting
some definitions to the reader in order to make the rest
of the article stand alone. A nominal plant is given by
G(0) and a stabilising controller is given by K. The
coprime factorisation of G(0) and K is given by

G 0ð Þ=NM�1 = ~M�1 ~N,N,M, ~N, ~M 2 RH‘ ð13Þ
K=UV�1 = ~V�1 ~U,U,V, ~U, ~V 2 RH‘ ð14Þ

Here, N and M denote the right coprime factorisa-
tion of the nominal plant, and ~N and ~M denote the left
coprime factorisation of the nominal plant.
Equivalently, the right coprime factorisation of the
controller is given by V and U, and the left coprime
factorisation is given by ~V and ~U such that the Bezout
identity given in equation (15) is satisfied

I 0

0 I

� �
=

M U

N V

� �
~V � ~U

� ~N ~M

" #

=
~V � ~U

� ~N ~M

" #
M U

N V

� � ð15Þ

It will be assumed in this article that K is a stabilising
controller for both the nominal plant and the real plant
G(S). This is the case if equation (15) is true. Here, S is
the Youla deviation system describing the divergence
between the nominal model and the real plant. With
the controller and plant model factorisations defined in
equations (13) and (14), the real plant is given by equa-
tion (16) using the right coprime factorisation and
equation (17) using the left corpime factorisation

G Sð Þ= N+VSð Þ M+USð Þ�1,S 2 RH‘ ð16Þ

G Sð Þ= ~M+S ~U
� ��1 ~N+S ~V

� �
,S 2 RH‘ ð17Þ

With a formulation of the true plant as in equation
(17), only the Youla deviation system (S) is unknown
and needs to be identified. G(S) from equation (16) can
be formulated using a linear fractional transformation
(LFT) given by

G Sð Þ=F u JG,Sð Þ ð18Þ

where

Figure 1. (a) Picture of the experimental test rig used for
conducting active fault detection. The different parts of the test
rig are as follows: a, vertical piezo actuator; b, horizontal piezo
actuators; c, flexible shaft; d, vertical displacement sensor; e,
disc and f, horizontal displacement sensor. (b) Cross-section
illustration of the actuator. The further out the pin is moved the
more air is able to flow in which increase the pressure. The
position of the shaft is thus controlled by changing the flow of
air through the inlet valve.
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JG =
�M�1U M�1

~M
�1

G(0)

� �

Here, the input and output signals of JG are pre-
sented in equation (19)

h

y

� �
= JG

e

ucr

� �
ð19Þ

The closed loop system using the system description
in equation (18) is shown in Figure 2, where v1 and v2
are two possible excitation signals and n is the noise.

Using equation (18) and the setup in Figure 2, the
vector introduced, e, is given in equation (20)

e=Sh ð20Þ

Equation (20) shows that the identification of S is
straightforward using the signals h and e. The two sig-
nals e and h in equation (20) are not directly accessible.
However, it is shown that using the available signal vec-
tors v1, v2, y and u, it is possible to generate e and h. It
is therefore not possible to inject h directly for the open
loop identification of S.11 Instead, including the Youla
parametrisation of all controllers in the closed loop, it
will be possible to have a direct access to e and h as
shown further on. Let the Youla parametrisation of all
stabilising controllers for the nominal system G(0) be
given by the following LFT description

K Qð Þ=F l JK,Qð Þ ð21Þ

where

JK = K ~V
�1

V�1 �V�1N

� �

The input and output signals of JK are in equation
(22)

u
b

� �
= JK

y
a

� �
ð22Þ

Again it is possible to introduce two new signals in
order to determine Q

a=Qb ð23Þ

The two new signals b and a are part of the control-
ler and can thus be directly measured and inserted. The
relationship between the signals in the plant and

controller can therefore give a significant advantage for
direct identification of S.

The relationship between the signals h, e, b and a

can be calculated as a Redheffer star product as defined
in Zhou and Doyle.15 The resulting relationship is
shown in equation (24)

a

b

� �
= JGHJK =

1 0
0 1

� �
h

e

� �
ð24Þ

Here, H denotes the Redheffer star product. The
Youla deviation system is therefore possible to identify
using the signals found in the controller, which is used
for the closed loop identification. Based on the system
description given in Figure 2, the Youla deviation sys-
tem can thus be identified using equation (25)

b=Sa+ ~M+S ~U
� �

n ð25Þ

This ability to directly impose the excitation signal
on the Youla deviation system S is the advantage of
the modified Hansen scheme compared to the original
version. The modification is believed to make the iden-
tification more intuitive and was first introduced in
Sekunda et al.12

Identification methods

In all tests conducted, the plant is subject to a feedback
loop with an a priori designed controller. In order to
conduct a proper comparison between the methods, all
methods use data from the same experiment.
Furthermore, the noise (n) has been found to be
approximately white Gaussian from an open loop data
set without any excitation.

Identification using the modified Hansen scheme

It was argued in Sekunda et al.12 that the signals should
be obtained directly from the controller by modifying it
to the form, shown in Figure 3.

Using the signals a and b, it is possible to cast an
identification problem as given in equation (25) by tak-
ing advantage of the relationship found in equation
(24). Since a does not depend on the noise n as shown

Figure 2. Closed loop system with the plant represented as a
nominal part ( JG) and the unknown Youla deviation system S.

Figure 3. Representation of a YJKB parametrised controller
for generation of signals for identification.
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in Anderson,16 it is clear from equation (25) that the
noise and excitation signal are not correlated. The sys-
tem S is identified using the subspace method N4SID
for identification. The choice of using a subspace
method for identification is twofold. One of the great
advantages of using subspace identification is the direct
identification of Multiple Input Multiple Output
(MIMO) state space models. The other important
advantages of choosing a subspace identification
method are that the methods are based on zero a priori
knowledge. Unlike the true system G(S), it is rather dif-
ficult to determine a proper initial structure of the
Youla deviation system S. This comes from the fact
that the nominal system is believed to be the best initial
guess possible. All prior knowledge therefore points
towards the Youla devitation system being 0.

Direct grey box identification

This identification method, as the name suggests, does
not use any information regarding the feedback loop
and the controller to determine the model. The method
was presented in Ljung17 and is based on obtaining
input and output data of the plant and determining the
model. In this article, it is implemented as a PEM. The
method uses the input–output data together with a
nominal model as the information for parameter
identification.

Preliminary open loop identification

Identification is conducted in two separate steps. First,
a nominal model is generated to use as a basis for iden-
tification of the plant when part of a closed loop
scheme. Such a model is obtained using data acquired
from an open loop experiment conducted when the
active gas bearing is not rotating. The identification
results for the nominal model are based on the method
described in Theisen et al.7

The identified nominal model is able to predict the
displacement to an acceptable degree. The parameters
identified through the experiment were presented in the
first section. In order to give a quantitative measure of
the quality of the different identification procedures
used during the experiments, a goodness of fit is calcu-
lated using equation (26), which is the normalised root
mean square error

R2 =1� jjy� ŷjj
jjy� �yjj ð26Þ

Here, y is the measured output, �y is the mean of the
measured output and ŷ is the estimated output using
the model. Based on the nominal model, a controller is
designed and a coprime factorisation is conducted. In
the experiment, only the left factorised form is used. In
order to show the effect of the closed loop identifica-
tion, the nominal model has been degraded in several
different ways to examine the ability of the different

identification procedures when the plant is part of a
closed loop scheme. Finally, a controller has been
designed using the Linear-Quadratic Regulator (LQR)
function in MATLAB and implemented using the con-
troller design presented in Figure 3.

Simulation results

It is in this section investigated which benefits there are
from identifying the Youla deviation system.
Identifying the Youla deviation system is compared to
other more well-known methods. It is decided to com-
pare the method with grey box PEM identification and
subspace identification. Normal subspace identification
is independent of the nominal model. Grey box PEM
identification on the other hand uses information from
the nominal model.

Inferior a priori knowledge of the system dynamics

A definition of the inferior model from which the sys-
tem has to be identified is needed to compare the identi-
fication methods. For the first test, inferior knowledge
about the system dynamics has been investigated. The
system matrix of the initial model is defined in equation
(27), where Amodel has inferior knowledge relative to the
real system matrix A

Amodel =(1� u) � A ð27Þ

Here, A is the system matrix of the system to be iden-
tified, Amodel is the system matrix of the nominal model
and u is a uniformly distributed random variable in the
interval 0–1. The nominal model thus contains a system
matrix, where all elements are smaller than for the real
plant. A simulation has been conducted, where 500 dif-
ferent initial models were constructed using equation
(27). For each model, a controller was designed that
would stabilise the initial model and the real plant.
Noise has been added as output noise and the system
has been excited using a series of square waves. For
each initial model, an input–output set has been gath-
ered and an identification has been conducted. In each
case, a second verification data set has been obtained,
where noise was omitted from the system. The identifi-
cation results are shown in Figure 4 for identification
using PEM and subspace identification of the Youla
deviation system.

It can be seen from Figure 4 that for small devia-
tions between the real system and the initial model,
both methods produce similar results. However, as u is
increased, the PEM identification starts to produce a
lower R2 fit.

With the methods compared, it is concluded that
identification of the Youla deviation system using sub-
space identification is resulting in higher R2 fit when
sufficient a priori knowledge of the system dynamics is
lacking. Identifying the Youla deviation system instead
of the plant directly increases the complexity. The effect

Sekunda et al. 5



has therefore been examined when compared to direct
subspace identification of the plant. Again 500 initial
models were constructed using equation (27).
Identification was conducted using subspace identifica-
tion to identify the plant directly and to identify the
Youla deviation system. A box plot of the resulting fit
of the identified models is shown in Figure 5.

It is seen from Figure 5 that when the plant is
directly identified, using a subspace identification
method, the variance of the R2 fit increases.
Furthermore, the mean of the R2 fit is higher when
identifying the Youla deviation system. Identifying the
plant indirectly by identification of the Youla deviation
system thus produces better results. Since both methods
suffer from the loss of physical understanding of the
models produced, it is decided not to look further into
direct subspace identification.

Experiments and results

With the controller designed and nominal model identi-
fied using the method described in Theisen et al.,5

experiments have been conducted under three different
conditions. The results have been summarised in
Table 1 for all three experiments. In all experiments,
the same two identification methods have been applied:
PEM using a fixed a priori model structure and identi-
fication of the Youla deviation system. The identifica-
tion signals are found as shown in equation (28) for

direct identification of S. The system has been excited
using the input signal denoted a in Figure 3

b= ~My� ~Nu ð28Þ

The Youla devitation system is identified based on
equation (25). The first experiment is conducted, where
the disc is nonrotating, and the nominal model has

Figure 4. Plot of the R2 fit in the horizontal direction (top plot) and vertical direction (bottom plot) using the PEM for
identification and subspace identification of the Youla system.

Figure 5. Boxplot of the R2 fit given direct identification of the
plant and identification of the Youla deviation system. The left
plot is for the horizontal direction, whereas the right plot is for
the vertical direction.
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been degraded so that it is not able to mimic the plant
dynamic in a satisfying manner. The degradation of the
nominal model was achieved by multiplying all ele-
ments of the system matrix with 0:5. The result of the
identification is shown in Figure 6, where the nominal
model and the two identified models have been com-
pared with a verification data set.

It is shown in Figure 6 that with a poor nominal
model, identification of the Youla deviation system is
able to recover the system dynamics. It is also noticed
that the PEM is unable to identify a model of the same
quality and obtains a lower R2 fit when the nominal
model is of such low quality. The same trend was
observed in section when u is equal to 0.5. The result is
summarised in column 2 in Table 1.

To further examine the effect of the identification
methods for low-quality nominal models, an experi-
ment is conducted, where the disc is rotating with
2500 r/min. Here, it has instead been chosen to multiply
all elements of the input matrix with 0:7 so that the
input gain is higher than expected. The verification
data together with the predicted output for each of the
models are shown in Figure 7.

The nominal model is better than in the previous
example at predicting the position of the disc; however,
the nominal model is still having a fit lower than what
is expected possible to obtain. This is seen from the rel-
atively large increase in the fit for each of the identifica-
tion methods. The result is summarised in column 1 in
Table 1. Finally, an experiment is conducted to

Table 1. Model fit using each of the two identification methods.

2500 r/min High deviation: 0 r/min Small deviation: 0 r/min

Horizontal Vertical Horizontal Vertical Horizontal Vertical

Nominal model 51.36% 54.13% 3.19% 3% 83.21% 76.12%
Open loop PEM model 62.87% 75.78% 48.91% 39.47% 83.9% 84.63%
Modified Hansen scheme, G(S) 61.94% 69.19% 76.76% 83.58% 83.53% 81.18%
Modified Hansen scheme, Gred(S) 60.71% 69.33% 76.73% 83.53% 83.07% 79.59%

PEM: Prediction Error Method.

The fit is R2 fit shown in equation (26).

Figure 6. Comparison of a verification signal (blue) with the predicted output given the nominal model (red) and each of the three
identified models. The nominal model G was found to have a fit of 3.188% in the horizontal direction and 2.999% in the vertical
direction. The PEM (yellow) was found to have a fit of 48.91% in the horizontal direction and 39.47% in the vertical direction.
Identification of the Youla deviation system (purple) gave a fit of 76.76% in the horizontal direction and 83.58% in the vertical
direction.

Sekunda et al. 7



examine the identification methods’ ability to recover
small deviations. Again the nominal model has been
tampered with to degrade its performance. The ele-
ments of the system matrix have been multiplied by
0:97 so that the dynamics of the real plant is slightly
faster than for the nominal model. Identification of the
Youla deviation system using equation (28) has thus
been conducted, and a plot of the signal b measured
and predicted using the identified system is shown in
Figure 8.

The nominal model and plant are fairly similar
because noise is expected to dominate the b signal.
This is seen in Figure 8, where the measured signal b is
presented. It is clear that the signal contains a domi-
nant noise part in the horizontal direction. It is clear
from Figure 8 that the identification should improve
the model in the vertical direction mainly. Again, the
identified model has been compared with a verification
signal, which is shown in Figure 9.

It can be seen from Figure 9 that the nominal model
does indeed produce a better fit. Still, both methods are
able to improve the model. As clearly seen from Figure
8, the improvement of the identified model was mostly
in the vertical direction. A zoom on the verification
experiment is shown in Figure 10.

It is clear from Figure 10 that the identified models
have improved the prediction accuracy in the vertical
direction. Both models show a clear improvement com-
pared to the nominal case as shown in the third column
of Table 1. The results of the three experiments for each
of the identification methods using equation (26) to
determine the quality of the identified model are shown
in Table 1 together with the fit of the nominal model.

As seen in Table 1, using PEM or subspace identifi-
cation of the Youla deviation system based on the mod-
ified Hansen scheme (G(S)) gives similar results for
small deviations. However, in the case where the nom-
inal model lacks significant insight to the plant (low fit
for nominal model), the PEM results in a lower fit.

Model reduction of the identified models

The models identified using the modified Hansen
scheme are all of a inconveniently high order. This is a
well-known result of the identification method, and it is
therefore found useful to investigate the impact on the
quality of the identification when model reduction is
conducted. Model reduction has, in this article, been
conducted by requiring all models to be of the same
order as the nominal model (sixth order). The same

Figure 7. Comparison of a verification signal (blue) with the predicted output given the nominal model (red) and each of the three
identified models. The nominal model G was found to have a fit of 51.36% in the horizontal direction and 54.13% in the vertical
direction. The PEM (yellow) was found to have a fit of 62.87% in the horizontal direction and 75.78% in the vertical direction.
Identification of the Youla deviation system (purple) gave a fit of 61.04% in the horizontal direction and 69.19% in the vertical
direction.
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Figure 8. Comparison of the measured b signal with the predicted b signal, using the two identified models of the Youla deviation
system. The blue line represents the measured signals, and the red line represents the predicted signals given an Youla deviation
system identified using the modified Hansen scheme.

Figure 9. Comparison of a verification signal (blue) with the predicted output given the nominal model (red) and each of the three
identified models. The nominal model G was found to have a fit of 81.93% in the horizontal direction and 76.12% in the vertical
direction. The PEM (yellow) was found to have a fit of 83.9% in the horizontal direction and 84.63% in the vertical direction.
Identification of the Youla deviation system (purple) gave a fit of 83.53% in the horizontal direction and 81.18% in the vertical
direction.
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systems as identified previously have been compared in
Table 1, where those systems identified using the
Hansen scheme have been reduced to be of sixth order.
The identified plant after model reduction is given in
equation (29)

Gred Sð Þ=modred G Sð Þð Þ ð29Þ

Here, modred() denotes the model reduction func-
tion used, and G(S) is the originally identifed plant
using the modified Hansen scheme. The results of the
models for which model reduction has been conducted
are shown in Table 1. The model reduction technique
used is described in Varga,18 and the resulting sixth-
order approximations are shown to have a similar fit to
the full order identified systems as shown in Table 1. It
is worth noting that the initially identified models had
as much as 40 states, which makes control design
problematic.

Conclusion

Identification of a gas bearing as part of a closed loop
system has been conducted. It was shown possible to
identify the gas bearing, as part of a closed loop sys-
tem, by reformulating the problem into identification
of the Youla deviation system which is a standard open
loop identification problem. Furthermore, using an
open loop PEM method for identification gives similar
results when the nominal model predicts the system
dynamics with high accuracy. A simulation example
was given which pointed towards the identification of
the Youla deviation system to produce better results on
average for poor knowledge of the plant dynamics.

Experiments showed that for a poor nominal model,
the modified Hansen scheme method did indeed pro-
duce better results, with a fit 28% in the horizontal
direction and 44% higher in the vertical direction for
poor a priori knowledge of the plant dynamics. The
PEM method furthermore used considerably longer
time to identify a model than the subspace identifica-
tion method used to determine the Youla deviation sys-
tem. This result might be due to how the PEM method
is restricted to the model structure determined while
the modified Hansen scheme is not. The identified sys-
tems using the Youla deviation system, however, also
have some disadvantages. Any physical understanding
related to model parameters of the gas bearing is lost
when using the modified Hansen scheme. Furthermore,
the methods produced models of higher order than the
nominal model and the plant identified using the PEM
for identification. This tendency of order increase
comes naturally from the construction of the plant
when the Youla deviation system has been identified.
Unnecessary high-order model solutions are thus well-
known consequences when using the modified Hansen
scheme. Model reduction has therefore been conducted
which was able to produce acceptable results. It has
thus been shown that the method has its clear advan-
tage over PEM identification when model expert
knowledge is lacking.
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Figure 10. Zoom-in on the comparison of a verification signal (blue) with the predicted output given the nominal model (red) and
each of the two identified models, PEM (yellow) and Youla deviation system (purple).
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