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We show that nanoparticles can have very rich ground-state chemical order. This is illustrated by
determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of
the nanoparticles is described using a cluster expansion model, and a mixed integer programming approach
is used to find the exact ground-state configurations for all stoichiometries. The chemical ordering varies
widely between the different stoichiometries and displays a rich zoo of structures with nontrivial ordering.
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Ever since the surprising discovery by Haruta et al. that
gold is catalytically active in nanoparticulate form [1], there
has been intense research into the catalytic properties of
gold [2–6] and silver [7] nanoparticles, including bimetallic
Ag-Au nanoparticles [8–10]. These particles also display
interesting optical and plasmonic properties, see, e.g., the
reviews by Feng et al. [11] and Boote et al. [12], and show
promising medical applications [13].
The catalytic properties of a nanoparticle often depend

critically on the detailed atomic configuration [14,15]. This
is particularly important for bimetallic nanoparticles, which
can preferentially exhibit one or the other material on the
surface, and often can be designed in so-called core-shell
structures with one of the metals as the catalytically active
shell. It has been demonstrated that the ability to tailor
materials that naturally form desirable atomic-scale struc-
tures may significantly enhance catalytic activity and/or
selectivity towards the desired reaction [15].
It is thus important to be able to predict the shape and

chemical ordering of nanoparticles [16,17]. This is, however,
a difficult task both due to the difficulty of calculating the
energy of a given configuration accurately and mostly due to
the very large configurational space that one must sample.
This is usually done with Monte Carlo–based techniques,
such as genetic algorithms [18–20], simulated annealing
[21], basin hopping [22], or minima hopping [23]. While all
these methods can efficiently find configurations that are
close to the global minimum, one cannot in principle know
howclose to the optimum the solutions are, nor can one know
for sure if the global optimum has been found.
In this Letter, we address the relatively simple case of

bimetallic Au-Ag nanoparticles with 309 atoms in the
Mackay icosahedral form. This is one of the so-called
“magic number" structures where the per-atom energy is
particularly low, leading to a morphology that is very robust
to changes in stoichiometry and chemical ordering. We
therefore only consider the chemical ordering, keeping the

morphology constant. Even in this case, the search space is
so large that it is unlikely that the stochastic methods find
the ground state, for example, there are 4.7 × 1091 possible
chemical orderings of the Ag154Au155 cluster. We address
this by describing the energy of the nanoparticle using a
cluster expansion (CE) model [24] fitted to the semi-
empirical effective medium theory (EMT) [25] potential.
This allows us to use a mixed integer programming (MIP)
[26,27] approach to provably find the chemical ordering of
the ground-state configuration. Details about the method
can be found in the section on the computational approach.
We find ground-state configurations displaying a rich

zoo of ordered structures, where the sites exposed on the
nanoparticle surface vary dramatically with varying chemi-
cal composition of the nanoparticle. The configurations are
not intuitive ground states, fitting into none of the well-
studied categories of core-shell, Janus, or phase mixing
nanoparticles [28].
Results.—We have minimized the energy to find the

optimal configuration of the nanoparticle at every compo-
sition between 0 and 309 Au atoms. The nanoparticle
exhibits a surprisingly complex structural evolution, as
shown in Fig. 1. Figure 2 shows the number of Au atoms in
each shell as a function of composition. Quite noticeable is
that no shell shows a monotonic increase in Au content.
Here, the second shell is particularly illustrative, in that it
increases in Au content from 18 Au atoms, but has zero
Au content again at 104 Au atoms. A further example (not
shown in Fig. 2) is the central atom, which is occupied by a
Au atom at 13 and 309 Au atoms only.
Figure 3 shows the convex hull of the formation energy

of the ground-state configurations at every composition.
The formation energy of a configuration σ with fractional
compositions xAg and xAu is given by

EfðσÞ ¼
1

309
½EðσÞ − xAgEAg − xAuEAu�: ð1Þ
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The convex hull contains a high number of compositions
(99), which causes it to be a largely smooth function of
composition. As such, the compositions highlighted are
those where the energy gradient changes rapidly. These
configurations (shown in Fig. 1) are remarkable in that they
exhibit strong ordering, either rotationally symmetric order-
ing [Figs. 1(a)–1(c), 1(g), and 1(h)], or ordered geometric
patterns [Figs. 1(d)–1(f)].
In many cases, regular patterns are formed inside the

nanoparticle. Of particular interest is the Ag205Au104 cluster
shown in Fig. 1(c), which forms an onionlike structure with

alternating layers of pure Ag and Au. This structure has
perfect icosahedral symmetry and is also the cluster with
the most negative formation energy. A similar five-ring
onion structure has been proposed by Cheng et al. [29]
for Pd-Pt clusters, also using a semiempirical potential.
The symmetric configurations at Ag296Au13 and Ag13Au296
[shown in Figs. 1(a) and 1(h), respectively] highlight
the preference for occupation of subsurface corners for
Au atoms, and second shell corners for Ag atoms.

FIG. 1. A selection of ground-state configurations in a 309-atomMackay icosahedron Ag-Au nanoparticle. The configurations exhibit
a diverse range of highly ordered interior and surface structures. (a),(b) The transparent atoms represent a single layer of Ag atoms;
(g),(h) they represent two layers of Au atoms. The Au atoms exhibit a strong preference for subsurface shell sites, in particular, the
subsurface corners (a), followed by the subsurface edges (b). The Ag atoms show a strong preference for second shell corner sites (g),(h),
as well as the central atom. The lowest energy configuration (c) (shown as a slice through the nanoparticle) has a perfectly ordered
onion-shell structure. At high Au concentrations, the preference of Au atoms for corner, edge, or interior sites of the surface facets varies
as a function of composition (d)–(f).

FIG. 2. Number of Au atoms in each shell vs the total number
of Au atoms in the nanoparticle. The structural evolution exhibits
a complex interplay between the shells, with no monotonically
increasing shell occupancies.

FIG. 3. Energy of formation (from EMT) vs the number of
Au atoms in the nanoparticle. The gray dots show configurations
sampled for CE model construction. The blue line shows the
convex hull of the ground-state configurations. Compositions at
which the nanoparticle exhibits strong ordering (shown in Fig. 1)
are marked with a circle.

PHYSICAL REVIEW LETTERS 120, 256101 (2018)

256101-2



The flowerlike surface decoration shown in Fig. 1(e)
is energetically favorable in the local concentration
region. As can be seen in Fig. 2, the number of Au atoms
in the fourth shell increases almost linearly in the range
110–284 Au atoms. However, there is a noticeable plateau
in the region 181–190 Au atoms, where the flowers are
present. Although the surface layer of the flower structure
has icosahedral symmetry, the symmetry is broken in the
interior layers.
From a graph theoretical perspective, the triangular Ag

islands in the surface layer of the structure at 234 Au atoms
[shown in Fig. 1(f)] exhibit a further peculiarity. Although
the symmetry is broken (and one island is missing an atom),
the eight islands fulfill the criteria of a maximum inde-
pendent vertex set [30] in the dodecahedral platonic graph.
This graph consists of 20 vertices (one for each facet of the
nanoparticle) and 30 edges, which exist between adjacent
facets. This means that no more than eight islands can be
placed on the surface without overlap.
Other than strong geometric ordering, a characteristic of

the structures is the change in preference for occupation
of different site types as a function of concentration. For
example, the nanoparticle in Fig. 1(d) shows how Au atoms
form three-atom islands next to but not at the corners of the
icosahedron. When the Au content is increased, however,
the Au forms islands that switch to being centered on the
corners [Fig. 1(e)]. Similarly, Ag atoms disfavor subsurface
corners [Fig. 1(a)], but partially occupy these sites when the
flower structures are present in the surface layer; this effect
is shown in Fig. 2 by the dip in third shell occupation,
which accompanies the plateau in the fourth shell (again, in
the region 181–190 Au atoms).
All nanoparticles with up to 111 Au atoms only present

Ag atoms in the surface, and all particles with more than
282 Au atoms only present Au atoms in the surface, in spite
of the lower surface energy of Ag. This is contrary to the
results of studies of other bimetallic nanoparticles in which
the driving force of surface segregation is the relative
surface energies [31]. Instead, the driving force [32] of the
structural evolution as a function of composition is a trade-
off between the large energetic differences between site
types (shown in Fig. 4) and a preference for Ag and Au to
form heteroatomic bonds, which in bulk materials at 0 K

results in the formation of ordered alloys (see also
Supplemental Material, Sec. S1 [33]).
To a first approximation, ground-state configurations

are stable at moderate temperatures if the first excited
state differs in the site-occupancy or nearest-neighbor
coordination statistics. At a majority of concentrations,
the density of low-energy states is high. Nonetheless, we
have identified more than 10 ground-state structures
where the energy gap to the first excited state is in the
range 10–30 meV (see Supplemental Material, Sec. S2
[33]); this suggests that production and observation of some
of these structures should, in principle, be possible in a
moderately cooled laboratory setting.
The remarkably rich chemical ordering has been

obtained despite the use of a relatively simple semiempir-
ical potential, with no angular-dependent terms and a
significantly lower complexity than a full ab initio
Hamiltonian. We note that, regardless of the energetic
model used, Monte Carlo methods are incapable of
determining the optimality of a configuration; the con-
clusions of the present work rely on the ability of the MIP
model to guarantee that the structures found are indeed
the ground-state structures of the CE model.
The nanoparticle ground-state structures can viewed

online at the Computational Materials Repository [34].
Computational approach.—Given a fixed site geometry,

a cluster expansion uses pseudospin variables at each site
in conjunction with an orthogonal basis (the clusters)
to model configurational properties of the system.
Specifically, a cluster Hamiltonian is of the form

EðσÞ ¼ V0 þ
X

i∈C1

Vð1Þ
i σi þ

X

ði;jÞ∈C2

Vð2Þ
i;j σiσj

þ
X

ði;j;kÞ∈C3

Vð3Þ
ði;j;kÞσiσjσk þ � � � ; ð2Þ

where EðσÞ is the energy of a configuration σ, Cn is the set
of all n-body clusters, each containing cluster instances i,
ði; jÞ, or ði; j; kÞ for one-, two-, or three-atom clusters,
respectively, collectively referred to as cf in the following;

VðnÞ
cf are the effective cluster interactions (ECIs) for the

FIG. 4. Change in formation energy in pure nanoparticles upon the replacement of a single atom with the opposite species, for all sites
in the outer three shells. This simple measure accounts for much of the variation in the ground-state structures, but is tempered at higher
concentrations by a preference for heteroatomic bonding.
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n-body cluster instances, and σi is the pseudospin variable
at each site i.
A standard transformation is to change the spin variables

σi ∈ f−1; 1g to binary variables xi ∈ f0; 1g using the
relation σi ¼ ð2xi − 1Þ, which produces an equivalent
Hamiltonian with different ECIs, but only binary variables.
It can be written compactly as

EðxÞ ¼ E0 þ
X

cf

Ecf

Y

i∈cf

xi; ð3Þ

where Ecf are the new ECIs. With a Hamiltonian in this
form, we can formulate a MIP model in order to find
provably optimal configurations. MIP models, which are a
generalization of linear programming models, solve prob-
lems of the form

minimize cTx ðobjective functionÞ;
subject toAx ≤ b ðconstraintsÞ:

A linear program consists of a set of n continuous variables
x ∈ Rn, an associated set of costs for each variable c ∈ Rn,
and a set ofm linear constraints, denoted here byA ∈ Rm×n

and b ∈ Rm. The goal, or “objective function," is to find
values for the set x such that the total cost is provably
minimized, while respecting the constraints. In a MIP
model, some or all of the variables are furthermore con-
strained to have integer values.
Table I shows the MIP model for determining the ground-

state chemical ordering of a bimetallic nanoparticle. Each
predetermined site, with index i, has an associated binary
variable xi (S1) which determines whether an A- or B-type
atom is placed at that site. The system can (optionally)
be constrained to contain NB B-type atoms, using Eq. (S6).
The activity of a cluster instance, indicated by a binary
variable ycf (S2), is governed by Eqs. (S7) and (S8); taken
together, these constraints are equivalent to the relation
ycf ¼

Q
i∈cfxi. Finally, associated with each cluster is a

predetermined ECI (S3) which is used to determine the total
energy of the system (S5). Thus, the objective of the model

is to choose how to order the A- and B-type atoms such that
the total energy of the system is minimized.
In addition to ground-state configurations, a MIP model

can be extended to find configurations of higher energy by
adding linear constraints that forbid specific solutions, known
as “set-covering constraints" [35]. Given a known ground-
state configuration x0, we can forbid it with the constraint

X

i∶x0i¼0

xi þ
X

i∶x0i¼1

ð1 − xiÞ ≥ 1: ð4Þ

Constraints of this form are added for all solutions that are
symmetrically equivalent to x0. When resolving the MIP
model, the ground-state solution is now forbidden, and the
lowest excited state is found instead.
The MIP method we apply is a widely used technique

in applied mathematics, logistics, and industrial planning,
but has not previously been used for the solution of ground
states and excited states in a CE model. A different
approach to finding provably optimal ground states was
recently demonstrated by Huang et al. [36], making use of
pseudo-Boolean optimization, rather than MIP, and apply-
ing it to bulk alloys.
Cluster selection and ECI fitting—For a system as large

as a 309-atom nanoparticle, full electronic structure energy
calculations are very time consuming. As such, sampling a
sufficient number of configurations for a CE model is
impractical. Instead, we use the semiempirical EMT [25]
potential to calculate energies. Semiempirical potentials
are fast to evaluate and highly accurate in bulk systems,
but typically mispredict the energies of surface atoms.
Nonetheless, while the energies might be quantitatively
inaccurate, the different site types in a 309-atom nano-
particle have such great variation in energy that we can
expect the energy difference of different configurations to
be at least qualitatively correct.
To fit the ECI parameters, we have sampled 75 000

chemical ordering configurations at a range of high and
low energies (cf. Fig. 3). The energy of each configuration
has been minimized using gradient descent to allow local

TABLE I. A MIP model for determining the configuration that provably minimizes the energy of a CE model. The placement of the
sites as well as the ECIs are fixed; the model determines the optimal chemical ordering only. For any cluster instance with a positive
(negative) ECI, the constraint given by Eq. (S7) [Eq. (S8)] is redundant.

Variables: xi ∈ f0; 1g ∀i Type of atom site i (A ¼ 0, B ¼ 1) (S1)
ycf ∈ f0; 1g ∀cf Cluster instance variable (off ¼ 0, on ¼ 1) (S2)

Parameters: EC ∈ R ∀C Energy of cluster C (S3)
NB ∈ N Number of B-type atoms (S4)

Minimize:
P

C

P
cf∈C ECycf Total energy of system (S5)

Subject to:
P

ixi ¼ NB Fixed number of B-type atoms (S6)
ycf ≤ xi ∀i ∈ cf Any atom absent from cf ⇒ ycf off (S7)

ycf ≥ 1 − jcfj þ
P

i∈cf xi All atoms present in cf ⇒ ycf on (S8)
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relaxations without changing the overall structure of the
nanoparticle. The constructed CEmodel, which contains 60
one-, two-, and three-body clusters, has a root-mean-square
error of 0.060 meV=atom. Full details on the CE model
can be found in the Supplemental Material, Sec. S3 [33].
The approach described here is not specific to 309-atom

Mackay icosahedra—it generalizes well to other nano-
particle morphologies. A precondition for the use of a CE
model, however, is the ability to identify a set of atomic
sites. Given sufficient training data, the energetic effects
of relaxations can be captured in the CE model, given that
the relaxations are of limited magnitude and strictly local;
i.e., they do not affect the neighbor relationships between
atomic sites. While the solution time of a MIP model is
dependent on many factors, our experience with the nano-
particle described here suggests that solving systems larger
than a few hundred atoms is prohibitively expensive
without reducing the number of clusters and thereby the
accuracy of the CE model.
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