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Abstract 

Background: Risk-benefit assessment (RBA) of foods aims to assess the combined negative and positive health 

effects associated with food intake. RBAs integrate chemical and microbiological risk assessment with risk and 

benefit assessment in nutrition.  

Scope and Approach: Based on the past experiences and the methodological differences between the 

underlying research disciplines, this paper aims to describe the recent progress in RBAs, identifying the key 

challenges that need to be addressed for further development, and making suggestions for meeting these 

challenges. 

Key Findings and Conclusions: Ten specific challenges are identified and discussed. They include the variety of 

different definitions and terminologies used in the underlying research disciplines, the differences between the 

“bottom-up” and the “top-down” approaches and the need for clear risk-benefit questions. The frequent lack of 

data and knowledge with their consequential uncertainties is considered, as well as the imbalance in the level of 

scientific evidence associated with health risks and benefits. The challenges that are consequential to the need 

of considering substitution issues are discussed, as are those related to the inclusion of microbiological hazards. 

Further challenges include the choice of the integrative health metrics and the potential scope of RBAs, which 

may go beyond the health effect. Finally, the need for more practical applications of RBA is stressed. 

Suggestions for meeting the identified challenges include an increased interdisciplinary consensus, 

reconsideration of methodological approaches and health metrics based on a categorisation of risk-benefit 

questions, and the performance of case studies to experience the feasibility of the proposed approaches. 
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1. Introduction 14 

Food is a basic requirement for life, providing the essential nutrients and energy required for optimal health. 15 

However, food may also be associated with adverse health effects, because it may contain natural toxins, 16 

hazardous chemical substances or pathogenic microorganisms that can affect health negatively. 17 

Additionally, it is possible that the dietary intake of specific nutrients in foods is either too low or too high, 18 

resulting in potential deficiencies or toxicity symptoms.  19 

The diverse causes of these health effects associated with food consumption and the demand for advice on 20 

safe and healthy diets have led to the development of different research disciplines in food safety and 21 

nutrition. The negative health impact of human exposure to chemical substances and pathogenic 22 

microorganisms through food is evaluated in two separate disciplines, chemical and microbiological risk 23 

assessment. Apart from that, both health risks and health benefits associated with foods and diets have 24 

been studied through the discipline of nutrition. However, in the past decade, the joint assessment of risks 25 

and benefits associated to hazardous agents, food compounds, nutrients, single foods and whole diets has 26 

been taken up, resulting in the establishment of “risk-benefit assessment” (RBA) as a new multidisciplinary 27 

and integrated scientific discipline (Boué et al., 2015; Tijhuis et al., 2012; Verhagen et al., 2012a). 28 

With the overall aim of exploring how RBA can be further developed, this paper aims to describe the recent 29 

progress in RBAs and to identify and discuss key challenges in RBA research. To clarify the fundamentals of 30 

RBA and to provide a basic understanding of the background of many of the challenges, the main concepts 31 

of the underlying disciplines chemical risk assessment, microbiological risk assessment and nutritional risk 32 

and benefit assessment are explained. Following that, the developments in RBA thus far are addressed. The 33 

major part of the paper is devoted to a discussion of ten challenges, as well as to suggestions for how they 34 

can be met. The conclusion summarizes the authors’ vision on the future developments of the research area.   35 

1.1. Risk and benefit assessment in food safety and nutrition 36 

The use of risk assessments has traditionally been an integrated part of a common risk analysis framework 37 

(Figure 1), where risk assessment is done by risk assessors who provide scientific advice to support decision 38 

making by risk managers, such as food authorities or food producers, on the potential risks associated with 39 

food consumption. Risk communication is an essential part of the risk analysis, both between risk assessors 40 

and risk managers, and between assessors, managers and other stakeholders (FAO/WHO 2006a). 41 

Risk assessment was first formalised for chemicals by the establishment in 1980 of the International 42 

Programme on Chemical Safety (IPCS), which proposed a scientifically based process including four 43 

elements: hazard identification, hazard characterization, exposure assessment and risk characterization 44 

(Figure 2). The first step, hazard identification, involves the identification of the inherent toxicological 45 

properties of a chemical substance in the food that may affect human health adversely. Depending on the 46 

nature of the chemical substance, the information on hazards may stem from in vitro studies (for example on 47 

genotoxicity), experimental animal studies, and human data. The next step, hazard characterization, involves 48 

dose-response evaluations of the toxicological effects of the chemical substance that are identified in the 49 
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previous step, including identification of critical effect levels such as no observed adversary effect level 50 

(NOAEL), lowest observed adversary effect level (LOAEL), or a benchmark dose (BMD) (IPCS, 2010). 51 

These critical effect levels are based on either acute or chronic effects and are usually determined on the 52 

basis of results obtained from animal experiments. After applying uncertainty factors to account for 53 

differences in sensitivity between species (e.g., animal to man) and within the human population, the critical 54 

effect levels are translated to health-based guidance values such as acceptable daily intake (ADI), tolerable 55 

daily intake (TDI) or acute reference dose (ARfD) (IPCS, 2010). In exposure assessment of the chemical 56 

substance, the exposure from food is estimated by use of accurate and representative data of relevant food 57 

consumption and occurrence of chemical substances in the foods. The last step, risk characterisation, 58 

integrates the outcomes of the hazard characterisation and the exposure assessment, and the output is 59 

given to the risk managers. 60 

Microbiological risk assessment has mainly been used for bacterial pathogens, but it has also been applied 61 

to viruses and parasites. It was developed after chemical risk assessment was established and adopted 62 

much of the terminology. However, the nature of microorganisms has led to specific challenges, which 63 

resulted in some essential differences in the definitions (see Section 2.1), as well as in the risk assessment 64 

methodology (Lammerding, 2013).  65 

First, the definition and identification of the microbiological hazard are complicated by the fact that 66 

microorganisms adapt and evolve over time, so new strains can emerge with different characteristics than 67 

those that were originally described. Next, the dose-response relation typically describes acute health 68 

effects, with the probability of acute illness being described as a function of the ingested dose in a single 69 

meal. Due to the differences in responses between humans and animals, data for microbiological dose-70 

response models can usually not be derived from animal experiments. As an alternative, human data are 71 

required, but these are not easily obtained. The use of biologically plausible “single hit” models that assume 72 

that, with low probability, a single bacterial cell can lead to illness, is a general practice in microbiological 73 

dose-response modelling (Haas et al., 2014; FAO/WHO, 2003). Exposure assessment is complicated by the 74 

fact that living organisms can multiply, and consequently, the occurrence of microbial growth and inactivation 75 

imply that concentrations can change during food processing and storage. Therefore, concentration data 76 

alone are insufficient and the ingested doses have to be estimated by means of mathematical modelling in 77 

so called “process risk models” that apply predictive models for growth and inactivation (FAO/WHO, 2008; 78 

Zwietering & Nauta, 2007). Note that this implies that, in contrast to chemicals, exposure depends on the 79 

growth and inactivation characteristics of the microorganism of concern (Figure 2). Critical limits for the 80 

presence of microorganisms are generally not determined on the basis of the hazard characterization only, 81 

so equivalents of NOAEL and BMD as used in toxicology are not applied. Instead, risk-based microbiological 82 

targets such as food safety objective (FSO) are used, which are derived from risk characterization, i.e., a 83 

combination of hazard characterisation and exposure assessment (FAO/WHO, 2006b). 84 

Risk assessment of essential nutrients follows the same principles as chemical risk assessment, with the 85 

notion that essential nutrients have a dual risk relationship with risks occurring at both the upper end 86 

(‘excess’) and lower end (‘deficiency’) of the intake range (NCM, 2014). Another distinct feature is that data 87 
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on adverse effects in relation to excessive or deficient amounts of nutrients are often available from human 88 

studies, which compared with chemical risk assessments overall, may reduce the size of uncertainty factors 89 

applied. The tolerable upper intake level (UL) is the maximum level of chronic daily nutrient intake from all 90 

sources judged to be unlikely to pose a risk of adverse health effects to humans (EFSA, 2006) and thus 91 

includes an uncertainty factor as in the case of chemicals. The lower threshold intake (LTI) is the level of 92 

intake below which, on the basis of current knowledge, almost all individuals will be unable to maintain 93 

“metabolic integrity”, according to the criterion chosen for each nutrient (EFSA, 2010b).  94 

Consideration of specific nutrient intakes associated with adverse health effects above or below specific 95 

intake levels has received less attention in the nutrition area compared with non-nutrients, such as drugs, 96 

food additives, and pesticides (IOM, 2007). The concept of the risk assessment of nutrients was stimulated 97 

by the IPCS in 2002 (IPCS, 2004), and by the Codex Alimentarius, FAO/WHO, EFSA and others 98 

(FAO/WHO, 2006c; Aggett, 2010; Taylor & Yetley, 2008). In addition, the implementation of an organized 99 

nutritional risk assessment approach for scientific reviews has been stimulated by the increased use of food 100 

supplements, fortified- and functional foods and subsequent requests by regulatory agencies to identify 101 

upper levels of nutrient intake (Taylor & Yetley, 2008; Taylor, 2007). In 2010, EFSA published a scientific 102 

opinion on the general principles for development and application of dietary reference values (DRVs) (EFSA, 103 

2010b), and other DRV processes have followed the same risk assessment approach, including the update 104 

of the Nordic Nutrition Recommendations (NCM, 2014).  105 

Current approaches thus predict a threshold above which the nutrient intake is excessive, and another 106 

threshold below which the intake is inadequate, while an intake range between these two boundaries can be 107 

considered an ‘optimal’ intake range within which the recommended intake and the benefit assessment is set 108 

(NCM, 2014). Nutritional benefit assessment may thus be considered as the intake range beyond which 109 

there is a risk. Nutritional RBA can be broadened to not only consider nutrients, but also to include any 110 

excess or deficient intake of foods, diets or energy. 111 

One example of the application of benefit analyses is the European health claim regulation, which states that 112 

health claims should be “substantiated by generally accepted scientific evidence and by taking into account 113 

the totality of the available scientific data, and by weighing the evidence” (EU Commission, 2006). The steps 114 

involved in the assessment of health claims include identification and characterization of the food or the food 115 

compound, definition of the effect and assessment of whether such an effect can be considered beneficial to 116 

human health. Finally, the scientific substantiation for a beneficial effect is assessed based on the totality of 117 

the current evidence between the consumption of the food or the food compound and the claimed effect 118 

studied in the appropriate target group (EU Commission, 2006). 119 

A comparison of the application of risk and benefit assessment for chemical substances, microorganisms 120 

and nutrients shows that, traditionally, risks are considered for all, but benefits only in nutrition. An essential 121 

difference between different types of risk and benefit assessment is illustrated in Figure 3. Typically, looking 122 

at both acute and chronic adverse effects, chemical and microbiological risk assessments investigate 123 

situations where exposure is to be considered “too high”. This implies that the risk increases with higher 124 
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doses, and threshold doses may be derived as cut-off points below which the intake is considered safe, or 125 

the associated risk is considered acceptable (Barlow et al., 2015). In contrast, within nutrition, both the 126 

situation where there is a risk of nutritional deficiency and the situation where there is a risk of nutrient 127 

intoxication are relevant, creating a “window of benefit” (Palou et al., 2009; Tijhuis et al., 2012)). Interestingly, 128 

research in situations where the intake is too high (above the upper intake level (UL)) is commonly referred 129 

to as toxicology, whereas research considering beneficial intake or too low intake, is part of nutrition. 130 

1.2 The development of risk-benefit assessment 131 

Although independent risk and benefit assessments have proven to be useful for decision support in food 132 

safety and nutrition, their results may be too much focused on one hazard, one food compound or one health 133 

effect. When establishing guidelines and advice on food consumption, nutrient intake and diet choices, there 134 

is a need for an overarching approach, in which all of the relevant health risks and benefits are included and 135 

compared. This need for RBAs has been identified earlier in several publications ( EFSA, 2007; EFSA, 136 

2010a; Renwick et al., 2004) and led to the development of RBA of foods as a new research discipline. An 137 

RBA is multidisciplinary by nature, and may require expertise from not only toxicologists, microbiologists, and 138 

nutritionists, but also from epidemiologists, chemists, librarians, statisticians, and medical scientists. As 139 

proposed in the EU-funded project BRAFO (Benefit-Risk Analysis of FOods) (Boobis et al., 2013), it is 140 

common to use the risk analysis and risk assessment frameworks (Figures 1 and 2) as the basis for the RBA 141 

methodology by applying the established concepts to both risks and benefits. A recent extensive review of 142 

studies related to the combined RBA of foods, nutrients and compounds shows that the majority of published 143 

studies have been related to fish consumption where the nutritional beneficial effects are compared with the 144 

adverse effects from chemicals (Boué et al., 2015). This RBA of fish (e.g. (Hoekstra, Hart, et al., 2013)) is an 145 

example of an RBA case where the content of polyunsaturated fatty acids, and in particular 146 

docosahexaenoic (DHA), and eicosapentaenoic fatty acids (EPA), recognized for their health benefits, is 147 

counterbalanced by the content of pollutants such as methylmercury and dioxins, known to potentially induce 148 

adverse health effects. There is also an example of microbiological aspects being added to an RBA of fish 149 

(Berjia et al., 2012).  150 

Several European projects have been conducted in which methods and modelling frameworks were 151 

developed, leading to considerable progress in the risk-benefit area (Boobis et al., 2013; Hart et al., 2013; 152 

Hoekstra et al., 2012; Verhagen et al., 2012a). Among others, the BRAFO project and EFSA developed the 153 

”tiered approach” to be used as a general framework for RBA1 (Fransen et al., 2010; Hoekstra et al., 2012). 154 

The basis is that a number of tiers have to be evaluated before making a decision on the required steps to 155 

be taken in the RBA. This approach proposes that a qualitative assessment is sufficient if data are scarce or 156 

there is clear evidence that risks outweigh the benefits (or vice versa). If the balance between benefits and 157 

risks is unclear, the assessment has to be performed at a higher tier, including quantitative assessment. As 158 

part of the BRAFO project, a number of relevant risk-benefit studies that illustrate the usefulness of a tiered 159 

                                                      
1 Within the BRAFO project, the term benefit-risk assessment was preferred over risk-benefit. For 
consistency we consequently use risk-benefit assessment (RBA) throughout this paper. 
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approach for RBAs have been performed (Hoekstra et al., 2008; Schütte et al., 2012; Verhagen et al., 160 

2012b; Watzl et al., 2012). A specific software tool, QALIBRA, has been developed to facilitate the 161 

performance of quantitative assessments in the final tier (Hart et al., 2013; Hoekstra, Fransen, et al., 2013).  162 

2. Challenges in risk-benefit assessment 163 

Although significant progress has been made in the development of methods and terminology in RBA, 164 

several challenges remain. Some of these challenges relate to the differences between the underlying 165 

research disciplines, which have different use of terminology and different approaches for the assessment of 166 

health effects related to the consumption of food. Other challenges relate to the specific objective of RBAs, 167 

the scarcity of the required data, or the complexity of the characterization of health effects. Below, we 168 

provide a description of ten major challenges that were identified during the course of working with RBAs, 169 

with explanations of the challenges and discussion on the way forward for meeting them in the future.    170 

2.1 Definitions  171 

The different approaches used in the disciplines contributing to RBA (Section 1.1) apply different terminology 172 

or may apply the same terminology in a different way. Dissimilar definitions can lead to confusion and lack of 173 

understanding of the risk-benefit question (Section 2.3). As an example, the central concept of ”hazard” is 174 

defined differently in various contexts. Published definitions of hazard include “inherent property of an agent 175 

or situation having the potential to cause adverse effects when an organism, system, or (sub)population is 176 

exposed to that agent” (IPCS, 2004), ”the potential of a risk source to cause an adverse effect(s)/event(s)” 177 

(Renwick et al., 2003) and ”a biological, chemical or physical agent in, or condition of, food with the potential 178 

to cause an adverse health effect” (CAC, 2011). In the latter definition, the hazard is the agent (or risk 179 

source, that is the pathogen, chemical substance or food compound) and in the others it is an inherent 180 

property or the potential of this agent. Due to this difference in definitions, the hazard is usually synonymous 181 

to the pathogen(s) of concern in microbiological risk assessment, whereas it usually is the potential health 182 

effect caused by the chemical substance or food compound in chemical risk assessment and nutrition  183 

(Barlow et al., 2015).  184 

Similarly, there are different definitions of ”risk”, for example ”the probability of an adverse effect in an 185 

organism, system, or (sub)population in reaction to exposure to an agent” (IPCS, 2004; EFSA, 2010a), or ”a 186 

function of the probability of an adverse health effect and the severity of that effect, consequential to a 187 

hazard(s) in food” (CAC, 2011). So in one definition the risk is a probability, in the other, it is a combination of 188 

probability and severity.  189 

When mirroring risk assessment to benefit assessment, the benefit is defined at a level comparable to both 190 

the hazard and the risk (EFSA, 2006; Boobis et al., 2013), so ”benefit” is both the counterpart of ”hazard” 191 

and the counterpart of ”risk”. Hence, the term ”benefit” can be used for anything between the agent causing 192 

the health effect and the probability and magnitude of that effect. Moreover, when used as equivalent of 193 

”risk”, the benefit is not necessarily interpreted as the probability of a positive effect, but commonly as the 194 
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decrease in the probability of an adverse health effect. This wide interpretation of the one of the central 195 

concepts in RBA can be considered confusing.  196 

The present definitions can be well understood in a historical perspective, given that RBA has evolved from a 197 

variety of disciplines. However, for further development, the discipline ”risk-benefit assessment of foods” 198 

needs a clearer set of definitions and harmonized terminology that is comprehensible for all those involved. 199 

To accommodate the fact that some agents or food compounds (i.e. “hazards” of “benefits”) can be both a 200 

source of positive and negative health effect depending on the exposure (Figure 3), Boué et al. (2015) 201 

propose to use the term ”health effect contributing factor” (HECF) for ”the agent able to cause an adverse or 202 

positive health effect in the case of exposure”. This is a useful first step in the reconsideration of the 203 

terminology used in RBA. Consensus within the international research community is required for clarification 204 

and harmonization purposes and definitely when it would be used for regulatory purposes. Obtaining such a 205 

consensus is a process that should be led by international authorities, and should include representatives of 206 

all relevant disciplines involved in RBA.    207 

2.2 Bottom-up versus top-down approach 208 

In this paper, we distinguish between two overall approaches to assess health effects in RBA and refer to 209 

them as “bottom-up” and “top-down”. This terminology is derived from studies in microbiological food safety 210 

aimed at ranking microbiological food risks (EFSA, 2015; Cassini et al., 2016). The two approaches are 211 

characterised by their different starting point. The typical risk assessment approach, which starts with the 212 

hazard identification for the food product or its ingredients and finishes with the human health outcome 213 

obtained after combining the exposure assessment with a dose-response model (Figure 2), is referred to as 214 

the bottom-up approach. The alternative top-down approach starts with the adverse (or beneficial) health 215 

outcomes as obtained from human observational studies, i.e., incidence data and identified risk factors. 216 

These are then traced back to the food sources that caused the disease of concern (or benefit of desire), 217 

thus linking the health effect to the food product.  218 

A similar distinction in approaches can be made in nutritional and chemical risk assessment. The usual risk 219 

assessment approach (i.e., bottom –up) is targeted at intake of specific nutrients or food compounds, and 220 

the dose-response relation is typically derived from animal experimental data. The alternative top-down 221 

approach is an approach where relative risk estimates from human observational studies are used and 222 

linked to foods or food compounds that are identified as risk factors. In the review of the BRAFO project, 223 

Boobis et al. (2013) identify these two approaches as one based on experimental animal data (bottom-up) 224 

and one based on human observational studies (top-down). We prefer the bottom-up and top-down 225 

terminology as it is more generic and can also be applied for microbiological risk assessment, which does 226 

not apply animal data.  227 

Hence, with the bottom-up approach, the assessment starts with the food product, food compound or 228 

contaminant, followed by an exposure assessment and a dose-response model used for the risk-benefit 229 

characterization. An advantage of this approach is a direct causal link between intake of the food product or 230 
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food compound (or contaminant) of concern and the associated health effect. A disadvantage is that there 231 

may be a large uncertainty attending the exposure assessment and (especially) the dose-response.  232 

With a top-down approach, the starting point of the analysis is the incidence of a health outcome in the 233 

consumer. Typically, data from epidemiological studies (case-control studies, cohort studies, randomized 234 

controlled trials) are used to associate human health outcomes with risk factors that are defined in terms of 235 

food consumption, allowing for the estimation of metrics such as the odds ratio or the relative risk. These 236 

measures of association are then combined with population statistics and incidence data to estimate the 237 

actual health risks in the population. The relative risks may also be used to construct a dose-response 238 

relation, where the relative risk is a function of the intake as specified in the underlying study. The strength of 239 

human observational studies is that they are based on actual health effects, measured in specified 240 

populations. Weaknesses are that the observed associations are not a proof of causation, that the studied 241 

population may not be representative for the population group of interest and that many data are required if 242 

the health effect of interest is small. For microbial pathogens, a top-down approach can be used to estimate 243 

the number of cases of disease caused by a pathogen due to its presence in a specific food, a method 244 

referred to as “source attribution” (Pires et al., 2009). Here incidence data on a specific health outcome (e.g., 245 

gastroenteritis caused by salmonellosis) is traced back to a specific food source (e.g., chicken meat) by the 246 

use of subtyping information of isolates of the pathogen in human cases and food sources.  247 

Generally, within RBA, it is necessary to use different approaches for different health effects of food 248 

compounds or contaminants. For example, in the studies on fish of (Berjia et al., 2012; Hoekstra, Hart, et al., 249 

2013) (Figure 4), the effects on coronary heart disease, stroke and neurological development of children (IQ) 250 

are derived from top-down approaches, but those related to exposure to dioxins and Listeria monocytogenes 251 

are derived from bottom-up approaches. The reason for the application of these different approaches is 252 

obviously the availability of data, which in turn is related to the feasibility of acquiring the requested data and 253 

also the quality of the studies providing the data. Still, if different approaches are used to obtain different 254 

heath effect estimates in the same RBA, it may be hard to compare them. Not only can there be a difference 255 

in the known bias associated with the approach (such as a potential to overestimate the risk obtained from 256 

dose-response models derived from animal experiments), but also the nature of the uncertainties associated 257 

with the assumptions of the approaches will be different (Section 2.5).  258 

Studies that combined and compared bottom-up and top-down approaches may help clarify how the two 259 

methods can be integrated in RBA. For example, Bouwknegt et al. (2014) compared the approaches in a 260 

case study on Campylobacter in the Netherlands and identified the differences in the underlying 261 

uncertainties. They found that the difference in the point estimates of the risks as found by the different 262 

approaches can be large, but they still have overlapping uncertainty intervals. This implies that one cannot a 263 

priori conclude that one approach is better than the other. It is advisable to aim for evidence synthesis by 264 

using an approach that takes advantage of all available data and combines bottom-up and top-down 265 

approaches. One option for evaluating such a combined approach is the performance of simulation studies 266 

where the expected results of a hypothetical epidemiological study are investigated on the basis of a risk 267 

assessment.  268 
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2.3 The risk-benefit question 269 

The crucial initial step of an RBA is the definition of the risk-benefit question (Hoekstra et al., 2008) or 270 

problem definition (Boobis et al., 2013; Boué et al., 2015; EFSA, 2010a). The risk-benefit question is 271 

generally a comparison between two, or a series of, choices, alternative policies or courses of action, 272 

described in the form of scenarios (Boobis et al., 2013). In these scenarios, both positive and negative health 273 

effects have to be taken into consideration. When a series of scenarios is compared, the risk-benefit 274 

question can be used to identify the optimum intake (Berjia et al., 2014). An aim of the risk-benefit question 275 

is to specify the RBA-task in such a way that it is feasible and will provide useful results. For example, an 276 

RBA of fish should indicate what sort of fish (e.g., lean/fatty, farmed/wild), target population group, and in 277 

general any other constraint that could narrow the risk-benefit question. In the end, the level of specification 278 

of the question will also depend on the data available.    279 

As a variety of risk-benefit questions can be asked, it can be helpful to categorise them and to identify 280 

specific approaches that can be used to answer these different categories of questions. Here, one type of 281 

categorisation is the level of aggregation: the risk-benefit question can be targeted at a food compound level 282 

(a nutrient, a chemical or microbiological contaminant), a food product level (e.g., fish) or a diet level 283 

(Hoekstra et al., 2008). 284 

When the risk-benefit question is targeted at the food compound level, it should be a compound that is 285 

associated with both positive and negative health effects, e.g., a (micro-) nutrient. Examples for RBAs 286 

directed at the food compound are those for folic acid (Hoekstra et al., 2008) and vitamin D (Berjia et al., 287 

2014) (Figure 4). The choice between a bottom-up or top-down approach will depend on whether the health 288 

effects associated with food compounds are obtained from animal experiments or human observational 289 

studies. To assess the total intake of the food compound, it will be necessary to consider the intake of all 290 

relevant foods and food products in the diet that contain it, and the concentrations of the compound in these 291 

foods and food products have to be known. As this can be rather complicated, one can choose a risk- benefit 292 

question that only considers a difference in intake or concentration in one or a few food products, making 293 

some assumptions for the background diet.    294 

When the risk-benefit question considers a food product, the positive and negative health effects can be 295 

associated with different food compounds or contaminants that it contains. Typical examples of RBAs 296 

directed at this level of aggregation are those performed for fish (Berjia et al., 2012; Hoekstra, Hart, et al., 297 

2013; Figure 4.) The health effects of the intake of the food product may be directly available from 298 

epidemiological data or a human trial study, allowing the use of a top-down approach. Relative risk estimates 299 

can inform about the health impact of one intake scenario compared with another. Alternatively, a bottom-up 300 

approach may be used where all relevant food compounds (and contaminants) in the food product have to 301 

be identified and comprised in the RBA to assure that the health effects of interest are included. In that case, 302 

a selection of relevant food compounds and contaminants needs to be made based on the associated levels 303 

of evidence and the precise risk-benefit question. However, because in some cases only exposure through 304 
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the selected food product is considered, and not the total exposure from all food products containing the 305 

compounds, it is difficult to use a bottom-up approach with a dose-response relation for each compound.  306 

When considering a whole diet, the bottom-up RBA approach will usually not be feasible, unless the risk-307 

benefit question is clearly delimited: the number of food compounds (and contaminants) and their combined 308 

intakes easily get too large for a complete exposure assessment and hazard characterisation. However, a 309 

top-down approach using studies on human consumption may be possible if the appropriate data are 310 

available, for example from a dietary intervention study. Van Kreyl et al., 2006, performed a study to analyse 311 

the health effects of the current diet in the Netherlands that may be regarded as an RBA of diets, but 312 

otherwise, to our knowledge, no formal RBAs of whole diets have been performed so far.  313 

In each of these three categories of risk-benefit questions, the options for inclusion and exclusion of food 314 

compounds and contaminants, food products and health effects are large. To clarify the selected elements in 315 

the risk-benefit question, we propose the use of schematic framing of the risk-benefit question, as 316 

exemplified in Figure 4 for four published risk-benefit studies for food compounds or food products. A 317 

scheme like this is broadly applicable and may offer a transparent way to identify different types of risk-318 

benefit questions and clarify how the risk-benefit question is addressed. In the case of an RBA of a whole 319 

diet, the scheme would be pretty complex, which stresses the difficulty of doing an RBA of a whole diet. 320 

2.4 Lack of data and knowledge and the consequential uncertainties  321 

The data needs for an RBA are large and diverse. RBAs frequently face data gaps and lack of knowledge, 322 

such as lack of human data, information on dose-response and intake levels for specific population groups. 323 

These challenges are also faced in other modelling exercises (such as many risk assessments), and need to 324 

be addressed by documentation and discussion of the assumptions made. A consequence of limited data 325 

and lack of knowledge is that the uncertainty related to the assessment may be large. Yet,  characterising 326 

this uncertainty is crucial in the risk-benefit characterisation.   327 

As part of the QALIBRA project, Hart et al., 2013, provided an overview and discussion on the importance 328 

and challenges related to uncertainty in RBA and described strategies to deal with uncertainty. The 329 

QALIBRA software tool developed in the project allows the user to perform stochastic RBA and, as part of 330 

that, analyse uncertainty, either by quantitative methods or by qualitative scenario analyses. This has been 331 

an important step forward for the analysis of uncertainty within RBAs.  332 

Still, as previously identified by Boobis et al., 2013, and others, there are different areas within RBAs where 333 

lacking data creates a major challenge. An important area is dose-response modelling. For chemical 334 

substances, the dose-response relations are usually derived from animal experimental data, where a set of 335 

assumptions is needed to establish a threshold that can be applied for human consumers. As the objective 336 

of these dose-response relations in animals is often to identify potentially dangerous doses and to set safe 337 

health-based guidance values such as the ADI or TDI, the assumptions may tend to overestimate the true 338 

human health risks. Yet, for RBAs, it is important to derive the magnitude of the positive and negative health 339 

effects in the same way and therefore one needs the best possible estimate of the likelihood of the health 340 
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effect from a dose-response relationship, not the “worst case” value. For chemical dose-response 341 

relationships, this means that the use of BMD models may be preferred over NOAELs and LOAELs, and that 342 

the uncertainty factors used to translate animal data to human guidance values may not be appropriate if the 343 

dose-response relationship is to be applied in RBAs.  344 

The uncertainty attending the dose-response relations for microbial pathogens is also large. These dose-345 

response relations are usually based on human volunteer studies or outbreak data, which means they are 346 

based on limited data sets, for specific strains and specific population groups, and generalised thereafter. 347 

Dose-response relations based on studies with healthy young volunteers may be expected to underestimate 348 

the risk, whereas those derived from outbreaks (with more virulent strains) may overestimate the risk. 349 

Further, it is known that immunity plays an important role and may lead to overestimation of the risk, but it is 350 

difficult to include this in the modelling (Havelaar & Swart, 2014).  351 

Another uncertain element of the dose-response modelling is the long-term effect of exposure, which is 352 

specifically relevant for chemical substances. An acute effect is the direct consequence of in individual 353 

ingested dose and therefore relatively easy to describe in dose-response model. For long-term effects, 354 

however, it is much harder to identify how different doses accumulate into health effects. The use of 355 

physiologically-based pharmacokinetic (PBPK) models (Boobis et al., 2013; Zeilmaker et al., 2013) can be 356 

useful, but these models still need further development. 357 

If the dose-response modelling is based on relative risk estimates obtained from human observational 358 

studies, uncertainties may be large as well. Some important issues are, for example, the uncertainty 359 

regarding the causality of observed associations between risk factor and effect and the representativeness of 360 

the data. To account for the uncertainties, top-down approaches (using this type of effect modelling) and 361 

bottom-up approaches (using the other dose-response relations) may be combined in a comparative 362 

analysis (Section 2.2). 363 

Uncertainties are an inevitable intrinsic element of science, risk assessment and RBAs, and it is of utmost 364 

importance that they are not ignored. A challenge here is that, as in risk assessment, it is not primarily the 365 

objective of an RBA to assure that the uncertainty is small enough (as aiming for a p-value smaller than 366 

0.05), but to indicate how large the uncertainty actually is (Nauta, 2007). One should deal with the identified 367 

uncertainties by explicitly addressing and characterizing them in the assessment and by clearly 368 

communicating them to all stakeholders. By framing the risk-benefit question (Figure 4) and addressing the 369 

required data, RBA models can be important in identifying the most important data gaps and the crucial lack 370 

of knowledge. Thus, they can guide future data generation and research. Setting the future research agenda 371 

based on the most important sources of uncertainty can therefore be one of the key outputs of an RBA. 372 

2.5 The imbalance in level of scientific evidence 373 

The level of scientific evidence needed for identifying negative and/or positive health effects of a food 374 

compound, food or diet is not consistent (Boobis et al., 2013), because the presence of benefits and the 375 

absence of risks need to be guaranteed (Hoekstra, Hart, et al., 2013; Tijhuis et al., 2012). In the case of 376 
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health claims, a nutritional benefit needs to be scientifically substantiated with convincing evidence of the 377 

cause and effect relationship, before it can be accepted according to the current EU regulation (Section 1.1).  378 

At the other hand, in the case of setting dietary guidelines, a nutritional benefit of a food or food group may 379 

only need to be scientifically substantiated at the level of probable likelihood of an association (Kromhout et 380 

al., 2016; Tetens et al., 2013; WHO, 2003). Finally, the level of scientific evidence needed for identifying 381 

risks or negative health effects may be small, as only an indication of a risk is sufficient for the scientific 382 

substantiation.  383 

Due to this discrepancy in the level of scientific evidence needed for considering a food compound or 384 

contaminant as a “hazard” or a “benefit”, risks are more likely to be included in an RBA than benefits, thus 385 

leading to a potential bias in the RBA (Boobis et al., 2013; Hoekstra, Hart, et al., 2013; Tijhuis et al., 2012). 386 

Another consequence of this discrepancy is that different types and levels of uncertainty will be associated to 387 

the risk assessment on the one hand and the benefit assessments on the other, which complicates the 388 

characterization of the combined RBA even further (Section 2.4).  389 

The imbalance in the required level of scientific evidence for risks and benefits demands a paradigm shift 390 

from the RBA as a sum of risk and benefit assessment to the RBA as a well-integrated risk-benefit 391 

assessment. Such a well-integrated RBA deals not so much with studying a hypothesis about the presence 392 

or absence of a health effect associated with the intake of a (certain amount of) food product or food 393 

compound or contaminant, but predominantly with the size of the health effects. Even though the strength of 394 

evidence for the presence of a health effect is strongly correlated to the size of the effect, these are not the 395 

same thing. Stochastic modelling techniques, which include quantification of uncertainty and variability, allow 396 

an evaluation of potential health effects, even if the effects themselves are not statistically significant. In 397 

doing so, it may be possible to study how the estimated size of the effect, and some alternative scenarios 398 

about these effects, may impact public health. From this, one might conclude that the risk or benefit is not 399 

very large, even if the evidence would be convincing, or the opposite, that a risk or benefit may be large, 400 

even if the level of evidence is low. Findings like this can indicate crucial data gaps (Section 2.4) and may, in 401 

an objective way, help identify where further research is needed.    402 

2.6 Substitution 403 

In general, an RBA compares the health effects of two or more intake scenarios, defined as specified 404 

changes in the amount or type of food consumed. As a side effect, these specified changes in intake may 405 

also imply a change in the intake of other food products to compensate for the part of the diet that is deleted 406 

or added. So far, however, such “substitution” is rarely included in an RBA. The risks and benefits of 407 

increasing fish intake are for example frequently studied, but the related decrease in the intake of one or 408 

more other foods and the consequential health effects of that decrease are not included in the assessment 409 

(Berjia et al., 2012; Hoekstra, Hart, et al., 2013). Ideally, the risks and benefits of the change in intake in 410 

these other foods are included in the comparison of intake scenarios, but this severely complicates the RBA 411 

because it extends the list of risks and benefits to be included in the assessment. A complicating factor in 412 
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this context is also that this substitution in terms of alternative amounts and types of food eaten may vary 413 

among individuals, adding even more to the complexity of the RBA.  414 

Alternatively, it can be that substitution is the specific purpose of the RBA, as for example in the case of food 415 

fortification, when a non-fortified food is replaced by a fortified food, and substitution is an inevitable part of 416 

the scenarios investigated (Hoekstra et al., 2008). Likewise, substitution has been investigated in an RBA 417 

when added sugar is substituted by artificial sweeteners (Hendriksen et al., 2011; Husøy et al., 2008; 418 

Verhagen et al., 2012b). In the first case, no additional precautions need to be taken, as the fortified and 419 

non-fortified diets are similar except for the content of the specific nutrient. In the sugar-artificial sweetener 420 

case, the substitution leads to non-isocaloric diets and this may need to be addressed because it implies that 421 

the diet may change in more aspects than just the intended substitution.    422 

To meet this challenge, it is a prerequisite that substitution is acknowledged in the RBA, either by specifically 423 

addressing it in the intake scenarios that are analysed, or by referring to it in the discussion of the 424 

assumptions and in the uncertainty characterization. As simplified substitution scenarios, one can consider 425 

replacements in the same food groups (e.g. meat and fish) and isocaloric alternatives (to make sure the 426 

energy intake stays similar). Next, the impact of substitution can be analysed in separate scenarios, where 427 

different options for substitution are compared. 428 

2.7 The use of quantitative metrics 429 

Within the tiered approach for RBA (Fransen et al., 2010; Hoekstra et al., 2012), a qualitative approach can 430 

be sufficient if it is clear that the risks dominate the benefits or vice versa. If, alternatively, a quantitative 431 

approach is applied, the use of one common integrated health metric is needed to combine different positive 432 

and negative health effects in an RBA and to compare different health effects within and between 433 

assessments. The quantitative metric that is used most in published RBAs of foods is the disability adjusted 434 

life years (DALY). The DALY is a measure that indicates how many healthy years of life are lost due to 435 

premature death or due to decreased quality of life associated with a disease or hazard (Devleesschauwer et 436 

al., 2014; Havelaar et al., 2000; Hoekstra et al., 2008; Murray, 1994). The quality of life is determined by the 437 

duration of illness and a weighing factor that indicates the severity of the specific disease considered 438 

(Salomon et al., 2015). The DALY is increasingly used for risk ranking (Van der Fels et al., 2018) and in 439 

burden of disease studies (Havelaar et al., 2015), which aim to compare and prioritise health risks, it is used 440 

as an aid to policy makers when they have to decide where to spend their available resources. Methods 441 

used and results obtained in these studies are also useful for RBAs because the health effects considered 442 

can be the same and a large part of the underlying calculations is similar. 443 

The DALY is commonly applied at a population level. Burden of disease, for example, is defined as the sum 444 

of individual DALY across the population, and applied as a measurement of the gap between current health 445 

status and an ideal health situation where the entire population lives to an advanced age, free of disease and 446 

disability (WHO, 2013). As risk-benefit questions are usually targeted at a change of intake scenario within 447 

the population (Section 2.3), the DALY is also commonly applied as a population metric in an RBA. However, 448 

populations consist of a large variety of individuals with varying food preparation habits, consumption 449 
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patterns and sensitivity to food hazards. When the RBA is done and the risk-benefit balance for the 450 

population is interpreted as the risk-benefit balance for the average consumer, this does not mean that this 451 

balance is the same for all individual consumers. It can be that the balance goes in different directions for 452 

different subpopulations, e.g., the elderly, pregnant women or children, and because there are differences in 453 

intake and sensitivity between individuals. Therefore, the variability between consumers has to be taken into 454 

consideration, for example by using a stochastic approach (Hart et al., 2013).  455 

Apart from the DALY, other metrics can be used, such as monetary integrated metrics like the cost-of-illness, 456 

which aims to calculate the direct and indirect monetary costs to society related to disease and death, or 457 

willingness-to-pay, a stated preference method which elicits the resources an individual is willing to give up 458 

for a reduction in a specific health risk. We refer to Mangen et al., 2014, for a comprehensive overview of 459 

these different metrics.  460 

Even though the use of the DALY seems to be an established choice in RBAs, one should consider 461 

alternatives and remain critical on the choice of the preferred metric. Because this choice guides part of the 462 

data needs of the RBA and may have an impact on the interpretation of the final result, this choice should be 463 

made when the risk-benefit question is defined. As different metrics may convey different messages, the use 464 

of more than one metric could be considered as well. When metrics are used beyond the level of the general 465 

population, it is important to consider the impact of variability between consumers. Both the risk-benefit 466 

assessors and the decision makers should be aware of the strengths and weaknesses of the health metric 467 

chosen, as well as the underlying ethical dimensions (Arnesen & Kapiriri, 2004; Arnesen & Nord, 1999; Van 468 

der Fels et al., 2018).       469 

2.8 Including Microbiology 470 

As RBAs have predominantly been developed within the research areas of nutrition and toxicology, the 471 

concepts and definitions used are largely based on these two research areas (Section 1.1) and microbiology 472 

is not often included (Magnússon et al., 2012). Even though one of the first RBA publications relates to the 473 

risks and benefits of drinking water disinfection (Havelaar et al., 2000), only 7 of the 70 references indicated 474 

in the RBA review of Boué et al. (2015) include microbiology. Among those, there is only one from the 475 

BRAFO project, which, among topics not related to microbiology, discusses heat treatment of milk (Schütte 476 

et al., 2012). Microbiological benefits, e.g., the use of probiotic bacteria, have to our knowledge not yet been 477 

included in an RBA.  478 

Reasons for this underrepresentation of microbiology in RBA are probably the intrinsic differences in the 479 

underlying research disciplines and the different nature of the associated health effects. Microbiological risks 480 

are often linked with mild health effects such as short episodes of gastro enteritis. They can also lead to 481 

long-term sequelae and severe chronic effects, but these are typically not registered and less often 482 

measured (Havelaar et al., 2012). In principle, microorganisms can rather easily be eliminated from foods by 483 

application of a heating process, which might suggest that microbiological risks from food can quite easily be 484 

prevented. However, microbial contamination of food products and exposure are common, and, to some 485 

extent, more easily accepted by consumers (Kher et al., 2013).  486 
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Burden of disease studies (Section 2.7) show an opposite trend compared with published RBA studies: 487 

because the availability of the relevant data is larger, the recent World Health Organization (WHO) study on 488 

the global burden of foodborne disease (Havelaar et al., 2015) is primarily focused on microbiological 489 

hazards, and only four chemical substances have been considered in the WHO report. The results suggest 490 

that the disease burden related to the exposure to microorganisms may be larger than that for chemicals, but 491 

more comparable disease burden estimates for chemical substances are required before an overall 492 

comparison between the burden of chemical substances and microbiological pathogens can be made. 493 

However, the results confirm that risk associated with microbiological hazards can be quantified and that it is 494 

important to include microbiological risks in RBAs as well. 495 

The inclusion of microbiological risks and benefits in RBAs requires that the specific characteristics of 496 

microbiological agents are acknowledged, and that they are included in case studies. As illustrated by Berjia 497 

et al. (2012) microbiological risks can specifically be of importance when the effects of food processing are 498 

included in the risk-benefit question, as the doses largely depend on the storage and food preparation. It 499 

would therefore be advisable that data on food preparation (such as storage times, temperatures and the 500 

applied cooking style) are included in dietary surveys.  501 

The challenges from differences in approach between chemical and microbiological risk assessment needs 502 

further study to allow the development of a more integrated approach towards RBAs (Sections 1.2 and 2.5). 503 

Recently developed tools that are increasingly adapted to allow comparisons between chemical and 504 

microbiological health risks (e.g. FDA-iRisk; Chen et al., 2013) can help to address these challenges.  505 

2.9 The scope of risk-benefit assessments 506 

The scope of a risk-benefit question in relation to food may be much wider than direct health impact and can 507 

include socio-economic, psychological and/or environmental dimensions (Boobis et al., 2013). When 508 

consumers select their food, the health effect is only one of the concerns; others include cost, taste, quality 509 

and sustainability of the production. An indicated health risk may be counterbalanced by each of these, for 510 

example, if low price and good taste are considered benefits that outbalance the health risk.  511 

One may consider widening the scope of RBAs of foods and include some of the aspects mentioned above. 512 

Cost is an obvious choice, which is an intrinsic part of the RBA when metrics such as the cost-of-illness or 513 

willingness-to-pay are used (Section 2.7). It can also be added to the RBA by means of a cost-utility, cost-514 

benefit or cost-effectiveness analysis, as for example done for the costs of intervention strategies that aim to 515 

lower the public health risks of Campylobacter from broiler meat (Mangen et al., 2007; Van Wagenberg et 516 

al., 2016). Measurements such as the “cost per avoided DALY” can be highly informative for risk-benefit 517 

managers because they can indicate the economic consequences of scenarios in RBAs and allow for a 518 

comparison of policies.  519 

Also, environmental sustainability can be taken into account, for example by the use of life cycle assessment 520 

(LCA), a product-oriented environmental assessment tool that provides a systematic way to quantify the 521 

environmental effects of individual products or services (Hermansen & Nguyen, 2012). A methodology is 522 
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being developed to include nutritional health impacts in LCA (Stylianou et al., 2016), which could clearly 523 

contribute to the development of RBAs with a scope beyond immediate health effects of food intakes. 524 

Ultimately, it can be attractive to address all of the relevant aspects in one overall analysis, for example by 525 

the use of multi criteria decision analysis (MCDA). This method has for example been applied to the 526 

prioritisation of foodborne pathogens (Ruzante et al., 2010), taking into account public health impact 527 

(expressed in DALY and cost-of-illness), market impact, consumer perception and acceptance, and social 528 

sensitivity to impacts on vulnerable consumer groups and industries. In MCDA, an integrating scoring 529 

method is developed, which weighs the importance of different factors that are considered relevant for the 530 

decision making, allowing one to come with a final ranking that includes all of these factors.  531 

Defining the scope of the RBA is clearly an issue that should be decided upon when the risk-benefit question 532 

is formulated. A broader scope includes more relevant issues, but also implies an increasing demand for 533 

resources in terms of research efforts, data and method development. Clearly, challenges that complicate 534 

RBAs, such as the lack of data and knowledge, and the consequential uncertainties, the imbalance in level 535 

of scientific evidence and the use of quantitative metrics, only get more weight when a broader scope is 536 

taken. Yet, the ongoing developments show that progress can be made, and with multidisciplinary scientific 537 

collaboration and investment in research supporting RBAs, this progress can be strengthened in the future.    538 

2.10 The application of risk-benefit assessments 539 

So far, several RBAs have been performed, but mainly within research projects that were directed at the 540 

development of RBA frameworks and methodology. The aim of these RBAs was primarily to illustrate the 541 

potential of the methodology and the risk-benefit question was not posed by independent risk-benefit 542 

managers but by the researchers themselves. There is now a need for more experience with the practical 543 

application of RBAs and the proposed methodologies. These practical applications of RBAs can fall into two 544 

categories: those leading to recommendations or guidelines to food safety and health authorities, and those 545 

leading to process and formulation design by industry (Boué et al., 2015). The first application is the one 546 

considered most often and typically the request for such an RBA originates from national or international 547 

food and health authorities that have a mandate to advise the public on a particular food or diet and have 548 

identified a need to establish a scientific basis for this advice. Examples are an RBA on fish and fish 549 

products performed in Norway (Skåre et al., 2015) and an RBA on nuts performed in Denmark (Mejborn et 550 

al., 2015). Another reason for the authorities to make requests for an RBA is a need for an evaluation of 551 

health effects of proposed fortification of foods, as for example with vitamin D, folic acid (Hoekstra et al., 552 

2008) or iodine (Zimmermann, 2008).   553 

Food producers may have an interest in RBAs when they change their production or the formulation of their 554 

products. This is especially of interest when this change is based on a wish to decrease one specific health 555 

risk that can go at the expense of another. For example, when a heating step is introduced to decrease 556 

microbiological health risks, this can go at the expense of the formation of potentially carcinogenic 557 

substances (Havelaar et al., 2000) and/or decreased vitamin levels. In such cases, RBA can be an excellent 558 

tool to settle a dispute that cannot be solved on the basis of the identification of risks and benefits alone.  559 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

17 
 

The challenge from increased application of RBAs can only be met by initiating more specific RBA projects 560 

based on current demands of risk-benefit managers and by performing RBAs in practice. Food safety and 561 

health authorities and the food industry should be open for multidisciplinary collaboration and should be 562 

made aware of the potential of RBAs. When RBAs are performed, they should be published in the 563 

international peer-reviewed literature, even if a lack of data or major uncertainties obstruct firm conclusions. 564 

This is important to assure the scientific quality, to increase the experience in the research community and to 565 

aid the international discussion on the potential and challenges of RBAs.  566 

3. Conclusion 567 

RBA is an evolving discipline in food safety and nutrition that takes advantage of achievements in a variety of 568 

underlying disciplines. As it integrates various health concerns, it is a valuable method to estimate the overall 569 

health effects related to food consumption and diet choice, which can be applied both by food and health 570 

authorities and the food industry. Recognizing the progress that has been made in the past decade and 571 

based on previous work, we have identified a series of challenges that should be met to develop the area 572 

further and indicated steps that should be taken for further progress. The challenges and suggested ways 573 

forward in meeting them are summarized in Table 1. 574 

To meet the challenges of RBA, it is important that researchers in underlying disciplines and stakeholders in 575 

food regulation, production, retail and consumption from different regions in the world agree on definitions 576 

and concepts that are practical and agreeable for all. Based on relevant risk-benefit questions, a series of 577 

risk-benefit studies should be performed, not so much to develop methods, but predominantly to identify the 578 

practical challenges that are met when working on RBA case studies. When investigating these practical 579 

challenges, steps can be made in categorizing them and in developing and harmonising agreeable methods 580 

to address them. 581 

For the future development of the RBA area, it is important to perform methodological research into some of 582 

the identified challenges because they cannot be met by performing case studies alone. Examples are 583 

studies into the differences and similarities in results obtained from top-down compared with bottom-up 584 

approaches (by the application of comparative analytical tools and simulation studies), research into 585 

uncertainty analysis and comparative studies on integrated health metrics and metrics outside the health 586 

domain. Additionally, risk communication is one of the key pillars in risk analysis and should also be an 587 

inherent part of RBAs of foods, particularly for the communication of quantitative metrics and their attending 588 

uncertainties to all stakeholders. 589 

Overall, with an increasing demand from different stakeholders for holistic and objective assessments of the 590 

health effect of foods, multidisciplinary RBA is a promising research area for the future. Impressive progress 591 

has been made and, despite the remaining challenges, we expect that more progress will be made in the 592 

next decade. The steps forward proposed in this paper will be useful in taking the research area further, 593 

allowing for transparent and reliable RBAs to be performed on a wider scale in the future. 594 

 595 
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Figure captions 825 

Figure 1. The risk analysis framework with the elements risk assessment, risk management and risk 826 

communication.  Adapted from WHO (2005). 827 

Figure 2. The elements of risk assessment as used in toxicology, microbiology and nutrition. Differences in 828 

the approach used in the three disciplines are explained in the text. Traditionally, the link between hazard 829 

identification and exposure assessment is not indicated in toxicology and nutrition, whereas it is essential in 830 

microbiology, where exposure depends on the microorganism of concern. 831 

Figure 3. A comparison of approaches for hazard characterization used in toxicology and microbiology (left) 832 

and nutrition (right). In toxicology and microbiology, the risk increases with the dose; benefits are not defined. 833 

In nutrition, intake of a food compound can be too low or too high; intake between these levels (“the window 834 

of benefit”) is considered beneficial for health. X: Dose with critical response as used in chemical risk 835 

assessment (e.g., LOAEL or BMD); no equivalent metric exists in microbiological risk assessment. LTI: 836 

Lower threshold intake, intake below this level represents a deficiency; UL: Upper intake level, intake above 837 

this level could give a toxic effect.  838 

Figure 4: Examples of risk-benefit frames where the level of aggregation is the food product (above) or the 839 

food compound (below). The first two examples represent elements of the studies from Hoekstra, Hart, et al., 840 

2013, and Berjia et al., 2012, and illustrate how an RBA of a food product may include several food 841 

compounds and contaminants, which each can have several health effects (either negative or positive, 842 

indicated by + and -). Alternatively, effects can be directly linked to the intake of the food products (i.e., CHD 843 

and stroke). The other two examples are derived from Berjia et al., 2014, and Hoekstra et al., 2008, and 844 

illustrate how an RBA of a food compound can include several health effects and several food products, or 845 

even other sources of exposure. Note that Berjia et al., 2014, does not specifically study the sources of 846 

vitamin D and Hoekstra et al., 2008, only considers scenarios involving fortified bread.  847 

  848 
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Figure 2.   850 
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Figure 3.  852 
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Figure 4. 854 
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Table 1: A summary of the challenges in risk-benefit assessment as discussed in this paper, with a brief 855 

indication of the proposed way forward.  856 

Topic Challenge Suggested way forward 

 

Definitions Definitions of basic concepts differ between 

disciplines underlying RBA. 

Create awareness and reach 

consensus. 

Top-down versus 

bottom-up 

Risk and benefit assessments can be based 

on top-down human observational evidence or 

bottom-up risk assessment approaches, 

which may provide different health effect 

estimates of food compounds or 

contaminants. 

Perform studies that combine the 

two approaches to compare 

potential bias and uncertainties, 

either by case studies or 

simulation studies. 

Risk-benefit question A wide and confusing range of questions is 

possible, which may require different 

methods. 

Define the risk-benefit question in 

close collaboration with risk-

benefit managers. Categorise 

questions and frame the risk-

benefit question schematically. 

Lack of data and 

knowledge; 

uncertainty 

Missing data and knowledge can lead to large 

uncertainties attending RBA. 

Identify, characterise and 

communicate uncertainties; fill up 

the crucial identified data gaps. 

Imbalance of level of 

evidence 

The level of evidence required for benefits is 

usually larger than for risks, hence risks are 

more likely to be included in RBAs.  

Put emphasis on the size of the 

health effect rather than on the 

presence or absence of the 

health effect. 

Substitution When an alternative intake scenario implies a 

change in consumption of one food product, it 

will have consequences for others. There can 

be many options for substitution. 

Find a comparable food product 

and include it in the analysis, use 

isocaloric alternatives, or 

compare several scenarios.  

Quantitative metrics Qualitative and quantitative approaches can 

be used and various health metrics can be 

selected. They can be applied both at 

population level and individual level. 

More than one metric can be 

useful, quantitative assessments 

can be preferable even if the risk-

benefit balance is clear. Well 

balanced choices for the metrics 

applied have to be made when 

the risk-benefit question is 

defined. 

Including 

microbiology 

Microbiology is not well integrated in current 

RBA methods, definitions and concepts may 

Perform more RBAs that include 

microbiological hazards, take 
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be different. Yet it is an intrinsic part of food 

safety with significant health implications and 

therefore it should be included in RBAs. 

advantage of experience in 

disease burden estimation and 

risk ranking. 

Scope The scope of RBAs can be extended beyond 

health concerns, for example by including 

costs and environmental sustainability. 

Develop methods and metrics to 

do this further, integrate methods 

such as LCA and MCDA into 

RBAs. 

Application The (Quantitative) RBA methodology has not 

yet been applied much, it is unclear to what 

extent the developed methods are practically 

applicable. 

With case studies, show how 

useful the RBA can be in different 

areas and discuss experiences. 

  857 
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Nomenclature 858 

 859 

ADI Acceptable daily intake 

ARfD Acute reference dose 

BMD Benchmark dose  

BRAFO  Benefit and Risk Analysis for Foods (EU project) 

DRV Dietary reference value 

DHA  Docosahexaenoic acid 

EFSA  European Food Safety Authority 

EPA Eicosapentaenoic acid 

FAO  Food and Agriculture Organization of the United Nations 

FSO  Food safety objective 

IPCS International Programme of International Safety 

LCA Life cycle assessment 

LOAEL Lowest observed adversary effect level 

LTI Lower threshold intake 

MCDA Multi criteria decision analysis 

NOAEL No observed adversary effect level 

RBA Risk-benefit assessment 

TDI Tolerable daily intake 

UL  Upper intake level 

WHO World Health Organization 

 860 
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Highlights  

• RBA combines chemical and microbial risk assessment with risk and benefit assessment in nutrition.  

• Key challenges in risk-benefit assessment of foods are addressed. 

• Challenges relate to interdisciplinarity, methods, data, health metrics and applications. 

• Suggestions for meeting the identified challenges are discussed.  

 


