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Abstract: This paper reviews past studies of airborne transmission between occupants in 

indoor environments, focusing on the spread of expiratory droplet nuclei from mouth/nose to 

mouth/nose for non-specific diseases. Special attention is paid to summarizing what is known 

about the influential factors, the inappropriate simplifications of the thermofluid boundary 

conditions of thermal manikins, the challenges facing the available experimental techniques, 

and the limitations of available evaluation methods. Secondary issues are highlighted and 
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some new ways to improve our understanding of airborne transmission indoors are provided. 

The characteristics of airborne spread of expiratory droplet nuclei between occupants, which 

are influenced correlatively by both environmental and personal factors, were widely 

revealed under steady-state conditions. Owing to the different boundary conditions used, 

some inconsistent findings on specific influential factors have been published. The available 

instrumentation was too slow to provide accurate concentration profiles for time-dependent 

evaluations of events with obvious time characteristics, while CFD studies were mainly 

performed in the framework of inherently steady Reynolds-averaged Navier-Stokes 

modelling. Future research needs in three areas are identified: the importance of the direction 

of indoor airflow patterns, the dynamics of airborne transmission, and the application of CFD 

simulations.  

 

Keywords: Airborne transmission; cross-infection risk; experiment; CFD; manikin; review 

 

Practical implications 

This literature review makes it possible to draw two main conclusions. First, the influence of 

various parameters is not straightforward. This must be taken into account when formulating 

control measures for the transmission of airborne infectious diseases indoors. Second, fast, 

transient, measurements and/or simulations are required to adequately describe the dynamics 

of airborne transmission for events with obvious time characteristics.  
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1. Introduction 

Airborne transmission has been shown to be a valid person-to-person respiratory 

transmission route for a number of infectious diseases.
1-2

 It has become an important research 

topic within the indoor air sciences.
3-9

 Although airborne transmission has been shown to 

occur over larger distances, such as  between different rooms on a same floor
10-11

, between 

different flats in the same building
12-18

, and even between adjacent buildings
11

, this paper 

focuses only on that within an enclosed indoor space. 

 

Airborne transmission between occupants indoors takes place mainly by the generation of 

infectious droplets from an infected person, the spread of infectious droplet nuclei indoors, 

and the inhalation of infectious droplet nuclei by an exposed person,
19-21

 as illustrated in 

Figure 1. Human respiration activities, such as breathing, talking, coughing and sneezing, can 

generate tens of thousands of droplets.
6,22-26

 The majority of these droplets evaporate fast to 

half of their initial size and become droplet nuclei.
20

 In particular, the evaporation process 

completes instantaneously for small droplets with an initial size of less than 20 µm.
20

 Some 

previous studies show that droplets from human respiration activities are mostly less than 5-

10 µm in diameter.
22,27-34

 This size range is considered to be the lower cut-off size for 

droplets and is used to differentiate between airborne and droplet transmission (the latter 

occurs over short distances by direct transfer between occupants of relatively large 

respiratory droplets). Owing to various influential factors, including particularly the air 

humidity
35

, different cut-off sizes were suggested in different contexts.
3,36-37

 Lindsley et al.
38

 

measured influenza virus in droplet nuclei generated by a coughing patient and reported that 

42% of detected viruses were found in droplet nuclei < 1 µm, 23% in droplet nuclei of 1-4 

µm and 35% in droplet nuclei > 4 µm. Airborne droplet nuclei could remain suspended in air 

for a prolonged period and be transported over an extended distance by indoor airflows.
9,23,39-
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42
 Considering also the long survival time of many pathogens in aerosols

6,43-44
 and the 

increased ability of small particles to penetrate into the lower respiratory tract,
6,36,45-46

 

airborne transmission via virus-laden droplet nuclei may constitute a high risk of cross-

infection. 

 

 

Figure 1 A schematic view of the whole process of airborne transmission indoors and the 

general governing flows of droplet nuclei dispersion.   

 

The spread of droplet nuclei between occupants of the same indoor space is strongly 

influenced by the complex interaction
47-48

 of ventilation flow, human body boundary layer 

flow,
47

 and respiratory flow (see Figure 1). Ventilation is widely recognized as the most 

influential engineering method for controlling airborne transmission indoors.
41,49-55

 Room air 

pattern and ventilation airflow rate are two key factors shaping indoor air distribution. 

Compared to the total volume air distribution, advanced air distribution methods, such as 

Personalized Ventilation (PV)
56

 and Personalized Exhaust (PE)
57

, have shown a better 

performance in reducing the risk of cross-infection by airborne transmission.
58

 Recent 

studies
47,59-60 

 of the human micro-environment reveal that the rising plume around a human 

body could, on the one hand, entrain pollutants in the vicinity and elevate the exposure 

concentration,
61-62

 and on the other hand, function as an air curtain that protects the occupant 
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from the incursion of expiratory flows from others.
47

 The characteristics of breathing flows 

depend strongly on breathing activities
63-64 

and breathing modes
47,65-66

. Obviously, coughing 

and sneezing generate a higher expiratory speed and droplet concentration but a lower event 

duration and frequency when compared to breathing and talking. While inhalation from both 

mouth and nose is aerodynamically the same,
66

 exhalation from mouth and nose produce very 

different expiratory flow patterns.
48,63-64,67

 In addition, some important parameters, such as 

the relative distance between the infected and exposed occupants, their posture and relative 

orientation, and occupant movements in the vicinity, all further complicate the interaction of 

airflows and thus increase the uncertainty of airborne transmission. Although many consistent 

findings regarding these parameters have been obtained from past studies, some inconsistent 

aspects and even unexplored areas still await investigation.  

 

In engineering field, airborne transmission between occupants indoors is usually 

investigated using both experimental and CFD methods. Experimental methods include 

physical measurement of the concentration field in breathing zones and imaging visualization 

of expiratory flows.
67-76

 Chamber experiments using breathing thermal manikins
65-66

 have 

been the primary method of investigating airborne transmission between occupants and to 

quantify the risk of cross-infection.
66

 Breathing, coughing, and sneezing can be simulated 

using ancillary machines
77-78

, while droplet nuclei formed by the human respiratory processes 

are usually simulated using a tracer gas and particles. In general, chamber experiments can 

provide reliable results as they take full account of the indoor aerodynamics of real 

ventilation flows and tracer gas/particles. However, they are low-resolution in both space and 

time. As an alternative, CFD methods
79

 employing computational thermal manikins and well-

established mathematical models for the transport of tracer gas/particles can provide a high-

resolution whole-field flow and concentration data.
48,80-83

 However, CFD simulations must be 
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experimentally validated and they are very dependent on the knowledge of the practitioners. 

In addition, past CFD simulations of airborne transmission indoors employed mostly 

Reynolds-averaged Navier-Stokes (RANS) two-equation turbulence models,
84-85

 which have 

inherent deficiencies in capturing complex and dynamic flow interactions. For both 

experimental and CFD studies, a basic prerequisite is the proper definition of thermofluid 

boundary conditions of thermal manikins, which are compromised by our limited knowledge 

of the thermofluid boundary conditions of human beings. 

 

A good understanding of airborne transmission is fundamental for formulating effective 

control measures for an outbreak of infectious disease. The objective of this paper is to 

provide a review of past studies of airborne transmission between occupants indoors. Neither 

microbiological and medical studies on the mechanisms of droplet generation from mucus to 

mouth/nose and the deposition from mouth/nose onto mucus, nor the viability and infectivity 

of infectious agents have been included. Four closely associated topics of airborne 

transmission indoors are covered in the following sections: the influential factors, the 

thermofluid boundary conditions of thermal manikins, the research techniques and the 

evaluation methods. The review was conducted as a systematic investigation of relevant 

publications in peer-reviewed journals and proceedings, and of professional standards issued 

by leading international organizations. Particular attention was paid to studies that complied 

with the following criteria: well-justified research methodology, quantitatively evaluated 

cross-infection risk, and accurately simulated human body geometry. The limitations of 

published studies falling within the above four topics are discussed, inconsistent findings and 

some underinvestigated areas are identified, and future perspectives for improved 

understanding of airborne transmission indoors are discussed.  
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2. Current understanding of airborne transmission indoors  

This section is intended to review the general influence of factors on the airborne 

transmission indoors. However, it should be noted that different types of indoor environment 

(e.g., residential buildings, office buildings, schools, hospitals and aircraft cabins) could have 

very distinctive issues and characteristics of airborne transmission, basically because of their 

different geometries and layouts of indoor spaces, air distribution methods, supply flow rates, 

occupant densities, occupants’ behaviours, etc.
86 

For examples, residential buildings do not 

have a fixed layout of occupants and they are mostly naturally ventilated when the outdoor 

air temperature is acceptable. Office buildings are typically ventilated by mechanical 

ventilation systems, where the layouts of occupants are usually fixed. Schools, mostly 

classrooms, have high occupant densities and specific building and ventilation designs, as 

well as strongly dynamic movements. Hospitals, mostly hospital wards and consultation 

rooms, normally have high ACH values and specific layouts and postures of occupants. 

Aircraft cabins and other vehicle indoor environments have very high occupant densities, 

special ventilation designs and occupants’ layout. 

 

2.1 The importance of air distribution 

Commonly used total volume air distribution methods include mixing ventilation (MV), 

displacement ventilation (DV), under floor air distribution (UFAD), and downward 

ventilation (DnV).
87-88

 In addition, more and more studies show the benefits of combining 

these basic air distribution methods with advanced ventilation technologies, such as PV and 

PE. 
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2.1.1 Total volume air distribution 

Past studies that have evaluated the influence of MV, DV and UFAD on airborne 

transmission reported some inconsistent findings. Some studies
58,81,89-90

 suggested that DV 

and UFAD are better at reducing the risk of cross-infection than MV, whereas other studies
90-

93
 show that MV performs better than DV and UFAD. Studies finding that DV and UFAD 

perform better than MV demonstrated that the vertical diluting function of DV and UFAD 

can reduce the horizontal dispersion of exhaled flows and can thus reduce the risk of cross-

infection. This finding was found to be valid not only for tracer gas
81,89-90

 but also for small 

particles less than 5 µm in diameter.
81,90

  

 

The studies reporting that MV performs better than DV and UFAD were usually based on 

two findings. First, that droplet nuclei could travel a longer distance indoors with DV than 

with MV.
90,92-94

 Second, that expiratory droplet nuclei could be more easily trapped in the 

breathing zone by the thermal stratification created by DV and UFAD.
91-92,95

 Both findings 

imply that a lower exposure risk for co-occupants can be achieved with MV. The different 

findings may be attributed to the different airflow interactions in the two types of air 

distribution and to the boundary conditions used in the different studies. It should be 

highlighted that the influence of boundary conditions could be comparable to that of the air 

distribution methods. In addition, the relative importance of the two functions of DV, namely 

diluting pollutants vertically and increasing pollutants dispersion horizontally, may change 

with distance
81,90 

and vertical
 
location of the exhaust opening

96
. It is therefore important to 

clarify the exact boundary conditions when interpreting a specific finding.  
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DnV is recommended for hospital environments.
97-99

 However, the downward flow often 

cannot penetrate the microenvironment around supine patients, leading to a high risk of cross-

infection.
100

 The underperformance of DnV is basically due to the counteraction of the 

buoyancy-driven thermal plumes generated from occupant(s) and heat sources against the 

momentum-driven downward flows from supply diffuser(s).
101-102

  The interaction between 

the upward and downward flows is governed by the dimensions of ceiling diffuser(s), the 

location of occupant(s) and other heat sources, the momentum of the supply flows, and the 

intensity of the buoyancy generated from occupant(s) and other heat sources. In addition, it 

was reported that the location of the return openings can be optimized to better distribute the 

infectious expiratory flows.
52

  

 

2.1.2 Advanced air distribution 

The excellent performance of PV in reducing the risk of airborne infection in indoor 

spaces conditioned by various background ventilation methods has been widely documented 

in the literature,
58,103-105

 which suggests that PV can be a suitable supplement to traditional 

methods of infection control. The efficiency of PV in mitigating airborne transmission is 

influenced by the type of PV and the air terminal devices used.
58,81,106

 Pantelic et al.
69

 

reported that, compared to MV, desk-based PV could reduce the intake of cough-released 

droplets by 41-99%. This efficiency is higher when the distance between the exposed 

individual and the cough generator is small.
68

 However, their studies were limited to 

situations in which the PV is used only by the exposed individual, not the infected source. 
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Figure 2 Percentage reduction (compared to the case with no PV) in the intake of the 

expiratory flow from the infected individual (yellow) by the exposed individual (blue) when 

using PV
58

 (a)  and using PV and/or PE
107

 (b), where RMP denotes a round movable panel 

mounted on a movable arm-duct attached to a desktop. 

 

Obviously, the use of PV by the infected individual would increase the dispersion of 

exhaled pollutants, and the resultant risk of cross-infection would then depend on the 

direction of supplied PV airflow, the background air distribution pattern and the orientation 
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of the infected and exposed individuals.
 
Li et al.

81
 investigated the risk of cross-infection 

between two face-to-face individuals with a separation distance of 2 m, where the PV 

supplied airflow upwards. They found that when only the infected individual uses PV, the 

risk of cross-infection is lower than that when DV is used alone but is slightly higher than 

when MV is used alone. Cermak and colleagues
58,104 

examined a face-to-back arrangement 

with the infected individual in front, where the PV supplied airflow horizontally towards the 

person. It was reported that the use of PV by the infected individual could result in a 

significant increase in the risk of cross-infection with DV, even when the exposed individual 

also uses PV (see Figure 2 (a)). In general, these findings imply that the use of PV by an 

infected individual should be avoided.  

 

Various types of PE devices have been investigated in different situations, including top-

PE and shoulder-PE for a patient in a consultation room,
89

 wearable PE for an infected 

doctor,
57

 a bed integrated local exhaust system for a supine patient
108-109

 and seat-mounted 

local exhaust in an aircraft cabin.
111

 In general, all types of PE showed excellent performance 

in controlling the source of airborne transmission, although their efficiency was influenced by 

other factors, including their relative orientation to the infected individual. The use of PE for 

an infected individual shows much better performance when compared to the use of PV for a 

healthy individual only (Figure 2 (b)). It is important to realise that the use of PV helps a little 

when PE is already used, although the combination of PV-PE can achieves the lowest cross-

infection risk.
107

 Such a PV-PE combination is also effective in capturing the expiratory flow 

and thus reducing the risk of cross-infection in aircraft cabins.
111

 For PV and PE and their 

combination, a systematic investigation of the influential factors and their increased 

flexibility in various situations, such as different background ventilation methods and relative 
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orientation of occupants, is necessary to improve their performance in controlling airborne 

transmission. 

 

2.2 The importance of supply flow rate 

A minimum air change rate per hour (ACH) is usually recommended by ventilation 

standards and guidelines
112-113

 to maintain an acceptable IAQ or to control personal exposure, 

which is based on the complete-mixing theory that a certain amount of fresh air can dilute the 

concentration of airborne pollutants. This recommendation was supported by several 

studies.
51,52,92

 However, Grosskopf
53

 stated that increasing ACH is not necessarily an 

effective method if the pollutant is released continuously at a certain location and the 

concentration is non-uniform in the space. Bolashikov and colleagues
54,108,114-115

 conducted a 

series of experiments to examine the influence of ACH on cross-infection in a hospital 

environment. They reported that, under certain circumstances, a higher exposure of coughed 

CO2 can be measured at 12 h
-1

 rather than at 6 h
-1

 and 3 h
-1

. It was concluded that the 

complex flow interaction around a human body does not interact linearly with a change of 

ACH. A study by Pantelic and Tham
55

 proved again that increasing ACH could increase 

exposure risk. They suggested that ACH should not be used as the sole indicator of the 

performance of ventilation systems in reducing exposure to airborne agents. Figure 3 

provides a summary of the evidence showing that increasing the ACH could contribute to an 

increased exposure. In general, increasing the ACH would have two possible effects to the 

spread of expiratory droplet nuclei: enhancing the dilution and increasing the dispersion. The 

former would decrease the risk of cross-infection but the latter could increase the risk, given 

that the expiratory flow has an obvious direction. Such a counteraction between the two 

effects should become more significant in the period before the steady-state condition is 

achieved. Further studies are still required to clarify this counteracting effect under both 
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steady-state and transient conditions. Despite of the fact that the risk of cross-infection could 

increase with the increase of ACH under some arrangements, it must be borne in mind that 

the design practices normally assume the complete-mixing conditions. . 

 

 

Figure 3 Risk of cross-infection due to coughed flows in front under different ACH values; 

the risks were normalized by those at ACH = 6 h
-1

; for the study by Bolashikov et al
54

, the 

exposed peak concentration was used as an indicator for the risk, and for the study by 

Pantelic and Tham
55

, the volume of droplets in the breathing zone was used as an indicator 

for the risk; D denotes separation distance between the source and the exposed manikin..  

 

2.3 The importance of relative distance 

A qualitative relationship between the risk of cross-infection and relative distance from 

infected occupant is shown in Figure 4. In general, the risk of cross-infection will be high 

when the infected and the exposed individuals are positioned so closely that breathing flows 
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can approach each other’s faces. The risk decreases sharply with the increase of distance 

down to a certain threshold distance, at which the exposure corresponds approximately to 

what it would be with complete mixing. A knowledge of this threshold distance is important 

for selecting the correct measures for controlling airborne transmission. The fact is that 

different studies have suggested different threshold distances, including 0.8 m between two 

standing individuals
100,116

 and between two supine individuals,
52

 1.0 m between two standing 

or one standing and one sitting individuals,
117

 1.1 m between a supine and a standing 

individual,
54,118

 and 1.0-1.5 m between two standing individuals.
119

 The difference of the 

reported threshold distances is probably due to the different influential factors and thus 

different boundary conditions that were considered in the studies.  

 

 

Villafruela et al.
48

 investigated the role of various flows in determining airborne 

transmission between two individuals at different distances. They reported that the human 

microenvironment and the interaction between breathing flows are the key factors 

determining the airborne transmission over short distances (< 0.5 m), while the indoor 

ventilation flow is more important for long distances (> 0.5 m). After evaluating this effect 

under five different air distribution systems, Nielsen et al.
120

 explained that the level of cross-

infection is contributed from two routes: one is through the mixed room air as background 

concentration and the other is through the direct exhaled flow from the infected individual. 

Such a finding leads to two observations. First, since the use of PV and PE can modify the 

human microenvironment and thus the flow interactions around the breathing zone, it should 

change our current understanding of the relationship between relative distance and the risk of 

cross-infection.
68-69

 Second, the indoor ventilation flow is important because it determines the 

threshold distance defined above. However, the characteristics of indoor ventilation flow, 
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especially its direction, have rarely been taken into account in past studies. These topics 

should be the focus of future studies.  

 

Figure 4 A summary of the general relationship between the risk of cross-infection and 

distance from the infected source; the variation of the quantitative relationship is influenced 

by many factors, including ventilation method,
116

 relative location to the supply diffuser and 

exhaust grille,
100

 relative orientation,
116

 ACH,
54

 and breathing mode
119

 the distance ranges 

investigated and the different normalization methods. 

 

 

Figure 5 Influence of relative orientation and posture on cross-infection risk, where the 

cross-infection risk decreases from (a) to (e) when using MV
69,107,116

 and from (f) to (h) when 

using DV
107

; note that the left-hand manikin represents the infected individual and the right-

hand one the exposed individual. 
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2.4 The importance of posture and relative orientation  

Owing to the directionality of expiratory flows, posture and relative orientation of infected 

and exposed individuals are important factors in determining the cross-infection risk, 

especially over short distances. This is summarized in Figure 5. Using MV, face-to-face 

orientation causes the highest risk of cross-infection and face-to-back the lowest risk.
69

 Using 

DV, one sitting and one standing occupant causes the highest risk,
107

 as the upward flow 

generated by DV increases the transmission of expiratory flows from a sitting individual to a 

standing individual.
116 

 

For hospital wards, the maximum exposure of a standing doctor and a second patient is 

found when the patient is lying sideways and facing them, and the minimum exposure is 

observed when the patient is lying on his back
54

 or sitting up
52

. A doctor standing sideways 

can reduce the exposure considerably. In general, the high risk of cross-infection between 

two closely located, face-to-face, occupants is caused by the mutual penetration of their 

breathing flows. In this connection, the head posture of both individuals would have a 

considerable influence on the possibility and degree of interaction of the two breathing flows, 

although this has rarely been investigated. 

 

The human head is not limited to facing straight forward or to a fixed position. It is quite 

usual to rotate the head from time to time, to face horizontally from right to left and vertically 

from ground to ceiling. The posture of the head directly determines the exhalation flow 

direction, which is one of key factors influencing the risk of cross-infection. Together with 

various breathing modes, different head postures and their variation in time will cause large 

variations in the risk of cross-infection between two closely located individuals. Despite of 

these variations, the worst cases should be paid a special attention. 
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2.5 The importance of breathing function and mode 

The breathing function of the exposed individual is also important for cross-infection 

evaluation,
66

 as it could result in an approximately 15-30% change in exposure to 

approaching airborne pollutants.
61

 A study by Poon and Lai
78

 indicated that it is the 

exhalation, rather than the inhalation, of the exposed individual that makes the greatest 

difference. For episodic emissions, the effect of exhalation in reducing inhaled quantity easily 

overwhelms the enhanced effect of inhalation. Compared to the non-breathing mode, the 

exhalation cycle reduces the inhaled quantity and this effect increases with breathing rate. 

However, their study was limited to sneezing activity, which has a high expiratory speed and 

a short event duration. Moreover, no comparison of the exposure level was made between 

exhalation through mouth and nose. 

 

 

 

 

(a) Breathing mode NM (b) Breathing mode MN

0.5 s

1.0 s

1.5 s

2.0 s

0.5 s

1.0 s

1.5 s

2.0 s
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Figure 6 Iso-surfaces of tracer gas N2O concentration equal to 5% of the concentration in the 

exhalation of the infected (source) manikin (bronze coloured) at different times, when the 

relative distance is 0.5 m and the ventilation method is DV;
48

 note that no break between 

exhalation and inhalation was considered; NM indicates the exhalation modes for the exposed 

and the infected manikins are through nose and mouth, respectively, while both manikins 

inhale through the nose; MN is in reverse for the exhalation modes. 

 

With regard to breathing mode, the exhaled flow through mouth is important for both 

infected and exposed individuals.
48

 Exhaled flow through the mouth of an infected individual 

can easily penetrate the breathing region of a nearby individual, while exhaled flow through 

the mouth of an exposed individual has a cleaning effect on the breathing region. The highest 

exposure is therefore found when the infected individual exhales from the mouth and the 

exposed individual exhales from the nose, while the lowest exposure is found when the 

infected individual exhales from the nose and the exposed individual exhales from the mouth 

(see Figure 6 for a comparison of these two scenarios). However, the exposure is also 

dependent on the interaction between the exhaled flow and the strength of the Convective 

Boundary Layer (CBL), which is functional of several factors (e.g., surrounding air 

temperature, furniture design and location, clothing, body posture, etc.). In addition, the break 

between exhalation and inhalation was not considered in these studies.
48

 In fact, the break has 

a considerable influence on exposure, as an approximately 1.0 s break period allows the CBL 

to recover and thus to affect the exposure.
122

 In addition, exhalation through the mouth of an 

infected individual may cause an even higher exposure risk from airborne transmission than 

coughing for a nearby exposed individual,
119

 provided that the two are close to each other (< 

1.0 m). The lower infectious risk due to coughing is because the exposure time of the 

coughing flow is short, because coughing is highly directional and because it is unusual to 

face other people when coughing. These findings, especially the directionality and cleaning 

effect of the exhaled flows, suggest the importance of properly simulating the breathing mode 
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when investigating airborne transmission. Measurements made with unrealistic breathing 

modes, especially non-breathing and only continuous inhalation or exhalation, would cause 

misleading dosing and sampling at the infected and exposed individuals. 

 

2.6 The importance of particle size 

A few studies considered different particle sizes when evaluating the risk of cross-

infection. Li et al.
81,90

 simulated airborne transmission between occupants using both tracer 

gas (CO2) and particles (1, 5, and 10 µm). For normal breathing, using MV and UFAD, the 

intake fraction (see section 5.1 for definition) decreases with particle size (see Figure 7). This 

sequence was reversed using DV. A number of other studies
61,78,80,82,119

 examined different 

particle sizes, but they mostly had no conclusion on the influence of particle size on the risk 

of cross-infection. Liu and Novoselac
123

 analysed the spread behaviour of three particle sizes 

(0.77, 2.5 and 7.0 µm) generated from a cough and reported that the larger particles have a 

lower concentration in the vicinity of the receiver occupant in front. However, they used only 

very simplified dummies at a fixed separation distance of 1.2 m. Further studies are required. 

Previous studies have reported that small particles, namely 0.7 μm,
124

 3-5 μm,
125

 and 

aerosolized Bacilus Subtilus bacteria
126

 behave very like tracer gas in ventilated indoor 

environments. Our recent studies
127

 further compared the human exposed concentration of 

tracer gas and monodispersed particles (0.07 μm, 0.7 μm and 3.5 μm) using a thermal 

manikin and the findings confirmed that tracer gas can be used reliably to simulate these 

small particles in measurements of airborne transmission.  
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Figure 7 Intake fraction of a co-occupant for the pollutants exhaled by an infected 

individual;
90

 the same trend was observed when PV was used.
81 

 

2.7 The importance of human movement  

Human movements investigated in the past included hand, arm and whole-body 

movements. It has been reported that the localized hand motions of a sitting person had 

insignificant effects on the thermal plume above the head of that person
61

, while the arm 

movement influenced the dispersion of pollutants in the breathing zone and thus should be 

included in exposure analysis
128

. 
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Figure 8 Influence of human movement on the co-occupant’s exposed concentration of 

pollutants exhaled by an infected individual in a room with DV and PV,
134

 where ‘before’ 

represents the background condition in which nobody is walking, W1-1P only one person 

walking on route one (close to a DV diffuser), W2-1P only one person walking on route two 

(at a distance from a DV diffuser), and W-2P two persons walking, one on each route. 

 

A moving human body can create much stronger air movements than hand and arm 

motions. Locally, the air movements created by a moving person can overwhelm that 

person’s body thermal plumes when the walking speed is above 0.2 m/s.
129

 They can also 

easily break down the stratification of the expiratory flow and the CBL around a nearby 

person.
117

 In general, a walking person enhances air mixing in the whole room,
130

 which 

could result in unexpected spread of pollutants.
131

 Some examples of increased risk of cross-

infection due to a moving person can be found in past studies.
132-134

 Particularly, a numerical 

study by Han et al.
135

 shows that in an aircraft cabin, the walking of a crew member may not 

considerably increase the risk of cross-infection to seated passengers, but the walking person 

himself/herself does have a higher exposure risk due to the vortexes generated. Certainly, this 

finding is dependent on the location of the infected person in relation to the walking person. 

In addition, the influence of walking on airborne transmission between occupants in a room 

using DV was quantitatively examined
134

 (see Figure 8). The increased air mixing caused by 

walking resulted in a considerable increase in the risk of cross-infection. As might be 

expected, walking closer to the displacement diffuser caused greater disturbances. The 
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presence of a second walking person had only a slight influence on the exposed concentration 

when compared to the scenario with only one person walking near the diffuser. 

 

Although the considerable influence of human movements on indoor flow and 

concentration distributions have been shown, the influence of occupant movements on 

airborne transmission between individuals has been less thoroughly investigated. In addition, 

moving speed and other related activities such as door opening should be expected to have an 

influence on airborne transmission
136-137

, and they should be explored in future research. 

 

Apart from the influential factors reviewed above, there are some important factors that 

were less investigated in the past studies. The design of the chair and the distance between 

the table and the body play an important role in the formation and characteristics of the CBL 

around the human body and the thermal plume above the body and thus influence 

exposure.
59,138-139

 However, the influence of the furniture on the risk of cross-infection 

between occupants has not been investigated. The metabolism can influence both the 

breathing characteristics and the CBL around a person
140,143

, which would therefore influence 

the risk of cross-infection. This applies to both the infected and the exposed individual. In 

addition, difference in the height of the infected and the exposed individual was shown to be 

another important factor.
140

 

 

3. Thermofluid boundary conditions for thermal manikins  

3.1 Thermal characteristics of bodies 

The thermal characteristics (namely, the heat power, surface temperature and clothing 

insulation) of a thermal manikin have an important influence on its microenvironment, 

especially when the local ventilation flow is relatively weak.
47,66,102

 An elevated room air 
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temperature results in an increased surface temperature, which in turn decreases the 

development of the CBL around the thermal manikin.
102

 However, the influence of room air 

temperature on airborne cross-infection is still awaiting exploration. The heat power of a 

thermal manikin was usually defined to be a constant value ranging from 60 to 102 W.
61,95,103

 

The surface temperature range between different body segments was specified to be 29-34.5 

℃.
62, 100,116, 119

 Light clothing with an overall thermal insulation ranging from 0.5 clo to 0.8 

clo was widely used.
69,89,103,111,117

 The estimation of clothing insulation values usually 

followed ISO Standard 9920.
141

  

 

These body thermal characteristics defined in past studies are slightly different from the 

human subject studies reported in the ASHRAE Handbook.
142

 Typically, human skin 

temperatures during sedentary activities in a state of thermal comfort are 33-34 ℃. The 

sensible heat output for a resting adult is about 58 W/m
2
, or 55-70 W/m

2
 for sedentary office 

activities. In a thermally neutral condition, these thermal characteristics depend strongly on 

physical activity and room air temperature.
143

  

 

Clothing insulation also has an important influence on the development of CBL and 

thermal plume, which would therefore influence the risk of cross-infection. The study by 

Licina et al.
59

 suggested that the clothing insulation has an obvious influence on the peak 

velocity of CBL in the breathing zone of a manikin. Compared to the nude case, the thin and 

the thick clothing ensembles reduce the peak velocity from 0.205 m/s to 0.166 m/s and 0.124 

m/s, respectively. Zukowska et al.
174

 reported that, compared to the nude case, the loose 

clothing changes the shape and increases the volume flux of the plume above the manikin 

head by 24%, while tight clothing and chair design do not affect the volume flux of the 

plume. 
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3.2 Geometry of mouth and nose  

The geometry of the mouth and nose influences the characteristics of breathing flows, 

particularly the speed and direction of expiratory flows. Table 1 summarizes the geometrical 

characteristics of the mouth and nostrils of manikins as defined in past studies. There were 

three shapes for the mouth opening, namely semi-ellipsoid, circular and ellipsoid, while 

nostril openings were all circular. Area of the mouth opening ranged from 100 mm
2
 to 123 

mm
2
 during normal breathing, but exceeded 300 mm

2
 during coughing.

54,82
 The total area of 

the nostrils during normal breathing varied considerably, from 100 to 226 mm
2
, and was 

defined as 330 mm
2
 during coughing.

82
 The limited and varied data was available from 

human subject tests. Grymer et al.
145

 reported that the mean area of nostrils during normal 

breathing was 264 mm
2
. Gupta et al.

63
 reported that the opening area of the mouth during 

normal breathing was 120 ± 52 mm
2
 for male and 116 ± 67 mm

2
 for female subjects, while 

those of the nostrils were 142 ± 46 mm
2
 for male and 112 ± 20 mm

2
 for female subjects. 

During coughing, it was found that the mouth opening area was 400 ± 95 mm
2 

for male and 

337 ± 140 mm
2 

for female subjects.
64 

 

A few studies
48,58,67,117,144

 specified that, when the manikin was sitting or standing upright, 

the two jets from the nostrils were declined 45
o
 downward from the horizontal plane and 30

o
 

from each other. Expiratory flows from the mouth were normally specified to be in a 

horizontal direction. These directions of expiratory jets were supported by some of previous 

human subject studies,
146-147 

although measurements by Gupta et al.
63

 indicated that jets from 

the nostrils were declined 60 ± 6
o
 downwards and 42 ± 16

o
 from each other. In addition, 

Gupta et al.
64

 found that the coughing jet from the mouth was declined nearly 30
o
 downwards 

from the horizontal plane, which differs radically from the widely assumed horizontal 

direction.  
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Figure 9 Comparison of the geometry of mouth and nose defined in previous studies of 

airborne transmission and those obtained from human subject studies; ‘vertically downwards’ 

indicates that the angle declined downwards from the horizontal plane and ‘between jets’ the 

angle between the two nose jets. 

Figure 9 presents a comparison of mouth and nose geometry as defined in previous studies 

of airborne transmission and those obtained from human subjects. Except for the mouth 

opening area, the large differences between previous manikin studies and human subject data 

and between different human subject studies are apparent. The different results obtained from 

the limited number of human subject studies are probably due to differences in both 

experimental subjects and instrumentation. More human subject studies are required. Based 

on human subject studies, it will be necessary to define standard mouth and nose geometries 

for breathing thermal manikins,
65-66

 which would make possible cross comparisons between 

different studies. 
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Table 1 Summary of the geometry of the mouth and nose, characteristics of the breathing 

flow and the expiratory medium as defined in previous studies of airborne transmission. 

References Exposed manikin Infected manikin 

Geometry 

of mouth 

Geometry 

of nose 

Pulmonary 

rate (L/min) 

Breathing 

frequency 

(times/min) 

Breathing 

temperature (

℃) 

Geometry of 

mouth 

Geometry 

of nose 

Pulmonary 

rate (L/min) 

Breathing 

frequency 

(times/min) 

Breathing 

temperature (

℃) 

Expiratory 

medium 

Yang et al., 

201680 

    32     32  

Villafruela 

et al., 201648 

Semi-

ellipsoid 

shape: 123 

mm2 

 9.9 

 

15  Semi-

ellipsoid 

shape: 123 

mm2 

 11.34 19.9  N2O, 2.7% 

Villafruela 

et al., 2016 

(CFD)48 

122 mm2 225 mm2 9.9 

 

15 34 122 mm2 225 mm2 11.4 

 

20 34  

Liu et al., 

2016119 

100 mm2 100 mm2 10 15  100 mm2 100 mm2 11.0 15  N2O, 4% 

Yang et al., 

201589,107 

       8.4 10 34 N2O 

Lipczynska 

et al., 

2015103 

       6   SF6 

Bolashikov 

et al., 201557 

       6  38 R134a, 252 

mg/min 

Cao et al., 

2015148 

123 mm2  8.8 16  123 mm2  8.8 16  N2O 

Olmedo et 

al., 2013100 

Circular 

shape, 100 

mm2 

 6.6  10 34±1 Semi-

ellipsoid 

shape, 123 

mm2 

 10.95  14.6 34±1 N2O 

Melikov and 

Dzhartov, 

2013111 

  6 10 34   6 10 34 R134a 

Li et al., 

201381 

  8.4     8.4  35 Particles: 1, 5, 

10 µm and gas 

Bolashikov 

et al., 

2013115 

       6   R134a 

Olmedo et 

al., 2012116 

Circular 

shape, 113 

mm2 

Circular 

shape, 226 

mm2 

9.9 

 

15 34±0.5 Semi-

ellipsoid 

shape, 123 

mm2 

Circular 

shape, 226 

mm2 

10.83 

 

19 34±0.5 N2O, 0.3 

L/min 

Nielsen et 

al., 201295 

Circular 

shape, 113 

mm2 

 10 15.5 34 Semi-

ellipsoid 

shape, 123 

mm2 

 11 

 

19 34 N2O, 0.3 

L/min 

Bolashikov 

et al., 201254 

     Circular 

shape, 346 

mm2 

     

Poon and 

Lai, 201178 

  7, 15 and 23 15        

Melikov et 

al., 2011109 

       14.4  38.6 R134a 

Li et al., 

201190 

  8.4  35   8.4 

 

 35  

Nielsen et 

al., 201052 

       6.22 9.76 34 N2O, 0.4 L/s 

Rim and 

Novoselac, 

200961 

   12       Particles, 0.03, 

0.77 and 3.2 

µm, 1050 

kg/m3; SF6, 

0.1% 

Pantelic et 

al., 200968 

  6 10 34       

Qian et al., 

2008101 

  6 

 

10  Semi-

ellipsoid 

shape, 123 

mm2 

Circular 

shape, 226 

mm2 

6 10 32 from nose 

and 34 from 

mouth 

N2O 

Nielsen et 

al., 2008121 

       18 12   

Gao and 

Niu, 2007149 

  8.4        Particles, 1, 5, 

10 µm and 

CO2 
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Cermak and 

Melikov, 

2007104 

  6 

 

10    6 

 

10  SF6 and N2O 

Zhu et al., 

200682 

350 mm2 330 mm2 24   350 mm2 330 mm2     

Qian et al., 

200692 

  6 

 

10    6 

 

10 32 nose and 

34 from 

mouth   

NO2 

Gao and 

Niu, 200683 

  8.4   250 mm2 150 mm2 8.4 

 

17 34 

 

 

Cermak et 

al., 200658 

Ellipsoid 

shape: 25 

mm width 

and 5 mm 

height 

Circular 

shape, 100 

mm2 

6 

 

10  Ellipsoid 

shape: 25 

mm width 

and 5 mm 

height 

Circular 

shape, 100 

mm2 

6 

 

10  SF6 

Bjørn and 

Nielsen, 

2002117 

 Circular 

shape, 226 

mm2 

6 10 33-34 from 

mouth and 32-

33 from nose 

 Circular 

shape, 226 

mm2 

6 

 

10 33-34 from 

mouth and 32-

33 from nose 

N2O, 4%, 160 

ml/min 

Brohus and 

Nielsen, 

1996144 

 Circular 

shape, 226 

mm2 

    Circular 

shape, 226 

mm2 

   N2O and He 

 

\ 

3.3 Breathing mode 

The most widely investigated breathing mode in previous studies, for both the infected and 

exposed individual, was ‘exhalation through mouth and inhalation through 

nose’.
48,57,89,92,100,111

 A number of studies were carried out using the ‘non-breathing’ mode for 

the exposed manikin.
103,107,109,115

 Most CFD studies simulated an ‘inhalation only’ mode for 

the exposed manikin
81,82,90,119

 and an ’exhalation only’ mode for the infected 

manikin.
48,80,83,119

 However, as reviewed and discussed in section 2.5, these unrealistic 

breathing modes will have biased the predicted cross-infection risks and so should be 

discounted.  

 

A sinusoidal cycle ‘2.5 s inhalation + 2.5 s exhalation + 1 s break’ was the most widely 

used.
57,89,103,107

 However, many studies used a cycle without a break, such as ‘2 +2 s’.
78,80,119

 

As discussed above, the break between exhalation and inhalation would influence the 

measured exposure,
122

 and this should thus not be ignored. CFD studies simulating 

‘exhalation only’ or ‘inhalation only’ assumed a steady and constant breathing flow rate.
81-

83,90,150,151
 Although some human subject tests have been conducted to measure the 

characteristics of a natural breathing flow,
152-153

 they were carried out for medical 
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applications and no quantification of the evolution of the breathing flow rate over time was 

obtained. Based on human subject studies, Gupta et al.
63

 reported recently that the variation 

of the breathing flow rate takes an approximately sinusoidal form.  

 

3.4 Characteristics of breathing flow 

Table 1 summarizes the characteristics of breathing flow assumed in previous studies, 

including the pulmonary ventilation rate, the breathing frequency, and the temperature of the 

expiratory flow. In general, pulmonary ventilation rates from 6.0 to 10.0 L/min were widely 

used to simulate light activities in sitting and standing postures. A breathing frequency of 

10.0 times/min was usually used for a pulmonary ventilation rate of 6.0 L/min, and 15.0 

times/min for 10.0 L/min. In fact, both pulmonary rate and breathing frequency depend on 

many physiological factors, such as body size, metabolic rate, gender and age.
142

 However, 

the influence of pulmonary rate and breathing frequency on the risk of cross-infection during 

other breathing activities has rarely been investigated. 

 

The temperature of the expiratory flow was usually specified to be 34 ℃. In some studies 

the expiratory air were heated to 38 ℃ in order to achieve the same density as expiratory 

flows having high humidity.
57-58,83,104,109

  An earlier human subject study
154

 found that the 

temperature of the expiratory flow varies largely with the ambient air temperature, and the 

temperature from both mouth and nose is approximately 34 ℃ at an ambient temperature of 

23 ℃.  

 

Only a few reports stated the speed of the expiratory flow for normal breathing, which was 

3.0 m/s (at peak) from the nose,
80

 2.0-3.0 m/s (at peak) from the mouth,
67

 4.74 m/s (at peak) 

from the mouth
116

 and 2.67 m/s (averaged)
121

. These expiratory values were much higher 
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than those reported from human subject studies, where the peak speed during normal 

breathing was approximately 1-2 m/s.
47,147,155-156

 This difference implies an inaccurate 

definition of either pulmonary rate or mouth/nose opening area. In addition, human subject 

studies indicated that the expiratory speed could be as much as 16.0 m/s during speech,
23

 but 

was on average 2.3-4.1 m/s while speaking.
22,157

 With such speeds, the expiratory jets could 

project droplets typically up to 1.0 m for normal breathing and several meters for coughing 

and sneezing.
24-25,42

 Note that the dynamics of the inhalation flow very close to the mouth and 

nose are similar.
146,158 
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Table 2 Summary of the characteristics of a cough/sneeze as defined in previous studies of 

airborne transmission. 

Reference Cough/sneeze rate and 

frequency 

Cough medium Cough 

duration (s) 

Cough 

speed (m/s) 

Yang et al., 201680  Water, volatile fraction 98.2%, 10 

and 100 µm; gas 

 10 

Liu et al., 2016119  N2O, 4%   

Pantelic et al., 201569, 

Pantelic and Tham, 201355 

1.4 L/cough; 

Once/90 s; 

20 coughs/location 

Water 90% and glycerin 10% 0.5  

Licina et al., 201562  Water 94% and glycerin 6%, 0.5-

0.65 µm 

 10 

Cao et al., 2015161 1.4 L/cough Particles, 0.77 µm 1 6 

Melikov et al., 2012118 Peak 14±1.7 L/s, totally 

1.9±0.1 L/cough,  

15-20 coughs for average 

CO2, 100% 0.55 52 

Bolashikov et al., 201254,108 Peak: 10 L/s, totally 2.5 

L/cough, 15-20 coughs for 

average 

CO2, 100% 0.5 28.9 

Poon and Lai, 201178  

(sneeze) 

 NaCl solution, 0.01-0.2 µm  15, 30 

Li et al., 201190 4.8 L/s Particles, 1-10 µm 0.5 22 

Pantelic et al., 200968 0.4 L/s Water 94% and glycerin 6% 1 10 

Zhu et al., 200682  Particles, 30-500 µm  11.2 

Gao and Niu, 200683  

(sneeze) 

4.17 L/s Gas, 1000 ppm   

 

 

3.5 Coughing and sneezing 

Compared to normal breathing, coughing and sneezing flows have a higher concentration 

of droplets
23

 but a lower event duration and a lower event frequency. Table 2 summarizes the 

characteristics of a cough and a sneeze as defined in previous studies of airborne 

transmission. Few of these studies provided a detailed evolution of the cough/sneeze flow 

rate over time. Melikov and his colleagues
54,108,118

 used the peak rates as 14 L/s and 10 L/s in 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

their studies. The duration of each cough was often specified as 0.5 s, 0.55 s or 1.0 s. Overall, 

the total flow volume for a cough was usually stated to be around 1.4-2.5 L. The cough flow 

volume obtained in human subject studies varied largely between different studies, including 

0.8-2.2 L with an average of 1.4 L,
82

 up to 5.0 L with an average of 3.0 L
159

 and 0.4-1.6 L for 

male and 0.25-1.25 L for female subjects
64

. 

 

The speeds of coughing flows reported in previous studies of airborne transmission were 

usually between 6.0 and 52.0 m/s, even though some of these were average values and some 

were peak values. A similarly large difference is to be found in the reports of human subject 

studies. Tang et al.
160

 found that the peak coughing speed was 5.0 m/s, which was very 

similar to the peak sneezing speed of 4.5 m/s.
155

 Some other studies reported a much higher 

peak coughing speed of 6-22 m/s (> 10 m/s on average),
22,64,82,156-157

 and even a very high 

sneezing speed, up to 100 m/s.
24-25 

 

It should be noted that the flow rate and mouth opening area during a cough are highly 

time dependent. The cough flow rate over time usually follows a combination of gamma 

probability distribution functions.
64

 Due to the limited number of human subject studies and 

their highly different results, most previous studies of airborne transmission did not 

accurately simulate cough/sneeze characteristics. In addition, the horizontal direction of 

cough/sneeze flows that was widely assumed in previous studies may not be common in 

practice.
64 

Poon and Lai
78

 indicated that an increase in the pulmonary ventilation rate can 

reduce personal exposure to an approaching sneezing flow, because the cleaning effect of the 

exhalation overwhelms the enhancing effect of the inhalation 

 

. 
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3.6 Expiratory mediums 

Table 1 shows a summary of the expiratory mediums of infected individuals that were 

used in previous studies of airborne transmission, as a basis for the following observations. 

Most studies used a tracer gas or a mixture of tracer gas and air to simulate the expiratory 

flows. The most widely used gases included N2O, SF6, R134a and CO2, which all have the 

general advantages of a tracer gas.
162-163

 The rationale for using tracer gas to simulate 

expiratory droplet nuclei assumes that a significant proportion of the expiratory droplet nuclei 

is smaller than 2-3 µm in diameter
22,27,28,30,33

 and that such fine particles behave very like 

gas.
124-127,149

 Some studies did work with particles. Relatively small particles in the range 0-

10 µm in diameter were usually investigated, mainly because this is the dominant range of 

expiratory droplet nuclei for almost all breathing activities.
36,164

  

 

Most studies defined the concentration of expiratory mediums, but few explained the 

reasoning behind their particular definition (e.g., 2.7% of N2O). Generally, in mouth 

exhalation, nose exhalation, coughing and talking, coughing produces the largest droplet 

concentrations
166

 and nose exhalation the least.
27

 In addition, droplet concentration can be 

influenced by other factors, such as body weight, gender and age.
167-169

 To the best of the 

author’s knowledge, the influence of concentration on the risk of cross-infection has not yet 

been investigated. In addition, the survival of pathogens in the indoor environments was 

influenced by many factors, including particularly the air humidity. The survival time is an 

important factor determining the risk of cross-infection. However, the comparison of the 

survival of the exhaled pathogens and the time constants of ventilation systems was rarely 

carried out in past studies. 
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4. Experimental and CFD techniques  

The following sections summarize the most widely used experimental and CFD techniques 

in previous studies and discuss the factors that may influence the reliability of estimates of 

airborne transmission. 

 

4.1 Thermal manikins 

A thermal manikin is an advanced experimental facility used to investigate airborne 

transmission.
57,61,69,95,100,103,107,170-171

 Owing to its accurate geometry and close-to-human 

thermal and breathing characteristics, a thermal manikin makes reliable modelling of airborne 

transmission possible.
65-66

 Thermal manikins used in previous studies of airborne 

transmission had 17-26 body segments, all of which could be heated and individually 

controlled to maintain a surface temperature equal to the skin temperature of an average 

human being in thermal comfort. The breathing process was simulated with additional 

artificial lungs. Note that dummy(s) were also frequently used together with manikins in 

many studies.
54,57,108,111,115

 Compared to thermal manikins, dummies have less accurate 

geometries, do not have the accurate mouth and nose openings to simulate breathing 

activities, and cannot simulate the human body surface temperature in comfort state. The 

detailed comparisons of various simplified body geometries and the generated thermal 

plumes can be found in references.
172-175 

 

Two important factors in the use of thermal manikins are proper dosing of the expiratory 

medium from the infected manikin and accurate sampling of the medium inhaled by the 

exposed manikin. The best dosing approach is to dose through the breathing system of a 

thermal manikin, rather than to dose through a separate machine. For tracer gas, this is 

relatively convenient and has been widely used in previous studies. However, few studies 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

have successfully dosed aerosols through the breathing system of a thermal manikin and a 

separate generator for aerosols was generally used. The authors’ experience of the integration 

of an aerosol generator into the breathing system of manikin indicates that the breathing 

system can easily become blocked by the aerosols, due to the narrow ‘respiratory tract’ and 

the low expiratory speed. Regarding sampling, many past studies did not provide an accurate 

sampling location. Melikov and his colleagues
54,57,108,109,115,118

 defined their sampling 

locations, which were usually at 5 mm, or less, away from the mouth. Some studies reported 

their sampling locations as 10 mm or above away from the mouth.
55,61,68,69,176

 Sensitivity 

studies conducted by Melikov and Kaczmarczyk
66

 suggested that accurate measurements of 

inhalation can be obtained if the sampling location is at the upper lip with a distance of less 

than 10 mm from the face. However, a recent study by Bivolarova et al
122

 indicated that the 

location of the pollutant source is important; the measurements should be performed in 

inhaled air if the pollutants are located close to the breathing zone. 

 

4.2 Flow techniques 

The flow techniques used were Particle Image Velocimetry (PIV), smoke particles 

visualization and a Schlieren imaging technique. PIV is a commonly used technique for 

visualizing the instantaneous velocity field on a relevant plane across a breathing zone.
59,68-

70,102,177-180
 The speed and direction of the target velocity field can be calculated accurately 

from the imaged seeding particles. The captured velocity field provides a clear indication of 

an exhalation jet and thus of the zone it affects in front of a thermal manikin. Smoke particles 

illuminated by a laser light sheet can also be used to visualize the expiratory flow plumes.
71-72

 

This technique illustrates the movement of air, which, however, cannot quantitatively 

estimate the concentration of particles. The Schlieren imaging technique
67,73-75,67,181

 relies on 

temperature differences in the flow to refract a light beam and so visualize the expiratory 
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flows. This technique does not use smoke particles or tracer gas, so it is suitable for work 

with human subjects. The two last-named approaches are convenient for comparing the 

efficiency of different infection control measures (such as masks and ventilation systems) and 

to evaluate their qualitative influence on airborne transmission. For instance, the visualized 

images obtained can indicate clearly how well a strong turbulent cough jet that penetrates 

forward and impinges on a nearby person can be stopped by wearing a mask.
181-182

 In general, 

flow techniques are limited to a relatively small measurement area in the breathing zone of 

one thermal manikin or person. Although they are useful for providing a straightforward 

understanding of expiratory flows, they provide no quantitative estimates of the risk of cross-

infection. 

 

4.3 Tracer gas techniques 

Tracer gas techniques have been widely used to investigate airborne transmission between 

occupants (see also section 3.6). The cross-infection risk can be estimated quantitatively 

based on the measured tracer gas concentrations in the exhalation of the infected manikin and 

in the inhalation of the exposed manikin (see section 5).
 89,100,107,116,119,122

 The main drawback 

of most tracer gas instruments is their long response time (of the order of 10-60 s), which 

largely exceed the scale of breathing activities (of the order of 1 s). Such slow instruments are 

deficient in at least in two aspects. Firstly, it is impossible to investigate the dynamics of 

airborne transmission (see section 6.2). Secondly, even though steady-state measurements are 

acceptable, it may still be difficult to obtain an accurate time-averaged concentration for 

evaluating the risk of cross-infection (see section 5) for events with obvious time 

characteristics. In order to obtain a higher sampling rate, Melikov and his colleagues
54,108,118

 

recently used a faster instrument (PS331) for sampling tracer gas, with a time constant of 0.8 
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s and a sampling rate of 4 Hz. This much faster approach is expected to improve our 

understanding of the dynamics of airborne transmission.  

 

4.4 Aerosol techniques 

Aerosol techniques have increasingly been used to investigate airborne transmission 

indoors.
55,68,69,78,161,178

 Several major aerosol dosing methods have been applied in recent 

studies. The Collison Nebulizer
61

 can generate monodisperse particles (of uniform size in the 

dispersed phase), which make it possible to examine the influence of particle size on airborne 

transmission. Most dosing methods
178 

generate a range of particle sizes simultaneously and it 

is not possible to discover the concentration distribution of each size bin. In addition, as 

discussed in section 4.1, there are technical problems with integrating aerosol generators into 

the breathing system of thermal manikins. Even if stand-alone particle generators are able to 

simulate breathing flows accurately, they cannot simulate the influence of occupants and their 

thermal boundary conditions, while a breathing thermal manikin can. The sampling rate of 

the aerosol instruments used in previous studies was 1 Hz.
 69,161,178

 Although this sampling 

rate is much higher than that of tracer gas monitors, it is still of the same order as the time 

scale of human breathing activities. In order to explore the dynamic process of airborne 

transmission, there is a need to develop still faster aerosol samplers. Another problem is that 

the presence of aerosol samplers could disturb the flow development, essentially because that 

they have to be placed relatively close to the sampling locations. 

 

4.5 Cough machines 

At least two cough machines were developed and used to investigate airborne transmission 

following a cough. The cough machine developed by the Technical University of 

Denmark
54,108,118

 worked with tracer gas and was used together with a dummy. Another 
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cough machine developed by the Hong Kong University of Science and Technology
69

 

worked with aerosols (namely, a mixture of water and glycerin
77

), and was used separately, 

without a thermal manikin or dummy. Basically, a good cough machine should be able to 

simulate the most important cough characteristics, such as the varying cough flow rate over 

time and the proper mouth opening area. However, as shown in section 3.5, the simulated 

coughing characteristics in previous studies have been oversimplified when compared to the 

data obtained from human subjects. In order to improve our understanding of airborne 

transmission from a cough, more realistic, accurate and reliable cough machines that can 

work with tracer gas and/or aerosols will have to be developed. 

 

4.6 CFD techniques 

CFD studies usually employ computational thermal manikin(s) to investigate airborne 

transmission. The definition of the thermofluid boundary conditions of a computational 

thermal manikin was similar to that of a physical thermal manikin, except for two aspects. 

First, a uniform surface temperature was usually defined for a computational thermal 

manikin: 33 ℃ in Yang et al.
80

 and 31 ℃ in Gao and Niu
83,149

. Second, computational 

manikins used in past studies simulated nude bodies, as the effect of clothing was not 

considered. The presence of clothing could bring two effects. One is reduced surface 

temperature, which reduces the development of the CBL. Another is increased turbulent 

mixing. Licina et al.
183

 reported that loose clothing induces more turbulence than closely 

fitting clothing. How these effects of clothing influence exposure is still unclear. 

 

CFD simulation of airborne transmission was limited to using the two-equation RANS 

turbulence models.
84-85

 However, the RANS turbulence models define turbulent fluxes in a 

time-averaged way, employing Reynolds isotropic decomposition and Boussinesq 
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approximation
184

, which are inherently incapable of capturing any dynamic flow 

characteristics
84 

(see section 6.3 for detailed discussion).  

 

5. Evaluation methods 

A number of evaluation methods for the risk of cross-infection can be found in the 

literature. The concentration and the normalized concentration in the inhaled airflow of an 

exposed individual were most commonly used as an indicator of infection 

risk.
48,51,55,57,61,78,80,82,95,100,111,116,119,149,161,176

 In addition, Melikov et al.
185

 and Bolashikov et 

al.
54,108

 proposed peak concentration level (PCL) and peak concentration time (PCT) to assess 

the exposure risk to a cough, where the former is defined as the maximum concentration in 

the inhaled airflow of an exposed individual after a cough and the latter is defined as the time 

at which the PCL is reached. Although the concentration is a useful indicator to compare 

different cases, it provides limited information for an evaluation of the risk of cross-infection. 

Based on the concentration field, some more accurate evaluation methods have been 

developed. Note that these evaluation methods were mostly developed based on the outbreak 

of infectious diseases and were thus widely used to evaluate epidemically the risk of cross-

infection among a large group of people. 

 

5.1 Intake fraction 

Intake fraction (  ) is defined as the proportion of exhaled pollutant mass from the 

infected individual that is inhaled by the exposed individual.
186-187

 It is called the rebreathed 

fraction in some studies.
103

 The intake fraction (   ) can be expressed as: 

 

   
     

     
 

          
  
 

          
  
 

                                                                                (1) 
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where    is the inhaled pollutant concentration of the exposed individual,    the exhaled 

pollutant concentration of the infected individual,    and    mass flow rates of inhaled 

airflow of the exposed individual and exhaled airflow of the infected individual, respectively, 

      and       the inhaled pollutant concentration of the exposed individual and the exhaled 

pollutant concentration of the infected individual at time  , respectively,    and    the 

exposure time of the exposed individual and the release time of the infected individual, 

respectively.  

 

The intake fraction cannot reveal the influence of particle size or the viability and 

infectivity of any pathogen in the aerosol. In addition, the time-dependent model requires an 

accurate concentration profile over time, which can only be obtained from fast measurements. 

Even though the steady-state model is acceptable, it may still be difficult for slow 

measurements to provide an accurate estimate of the time-averaged concentration (see section 

6.2) for events with obvious time characteristics. 

 

5.2 Wells-Riley model 

The well-known Wells-Riley model
189

 was developed to estimate the probability ( ) of 

airborne transmission of an infectious agent in the indoor environment. 

 

          
     

 
                                                                  (2) 

 

where   is the number of infected individuals,   the breathing rate per person,   the quantum 

generation rate by an infected individual (quanta/s),    the total exposure time, and   the 

supply rate of outdoor air. Note that a quantum means an infectious dose. This model has 

been widely applied to assess the risk of cross-infection by airborne transmission. However, 
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as pointed out by Rudnick and Milton,
190

 this model assumes steady-state, complete-mixing 

conditions and requires the measurement of the outdoor air supply rate. Inaccurate or even 

unreasonable results are to be expected if these assumptions cannot be achieved.
191

 However, 

for airborne transmission where the exhaled pollutants from an infected individual can be 

regarded as a point source, concentration gradients would usually be established indoors, and 

the steady-state assumption would not be valid for short-term events. 

 

5.3 Reproductive number 

The reproductive number (   ) is the number of secondary infections that arise when a 

single infector is introduced into a population in a shared indoor environment,
104,190

 which is 

defined as: 

 

                  
     

 
                                                           (3) 

 

where   is the number of persons in a ventilated space and    the volume fraction of inhaled 

air that is exhaled by an infected individual, which is calculated as: 

 

    
 

 
 

     

  
                                                                             (4) 

 

where     is the concentration in the ventilation system supply airflow. In the original model 

by Rudnick and Milton
190

, CO2 generated by every person in a shared space is used as the 

expiratory air marker. For experiments using breathing thermal manikins, tracer gas 

simulating the exhaled flows can be used as an air marker.
104

 As for the Wells-Riley model, 

this model is based on the complete-mixing assumption.  
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In some past studies, the risk of cross-infection was estimated according to an exponential 

dose-response model, which includes the major parameters that influence cross-infection 

risk.
68,178, 192-193

 However, those parameters cannot be determined completely by engineering 

methods alone, as they also involve the medical and microbiological sciences.  

 

6. Discussions and future perspectives  

Previous sections reviewed our current understanding of airborne transmission between 

occupants in indoor environments and other related issues, where their limitations were 

discussed. Based on the literature review in previous sections, this section discusses further 

some important issues. 

 

6.1 Direction of indoor airflow pattern 

Although many studies have investigated the influence of ventilation method and supply 

airflow rate on airborne transmission, few studies considered the influence of the direction of 

the indoor airflow pattern. This is basically because that the indoor air speeds are mostly 

sufficiently small to be independent of direction. Some studies investigated the relative 

location of diffuser and exhaust grille in relation to the manikins in a hospital ward 

conditioned by DnV.
100-101

 They indicated that the risk of cross-infection and the removal 

efficiency of expiratory pollutants are both influenced considerably by the layout of diffuser 

and exhaust grilles. Their studies imply the importance of the direction of the indoor airflow 

pattern, although they did not analyse the influence of indoor airflow direction explicitly. 

Licina et al.
102

 investigated the influence of local uniform airflows on human exposure and 

reported that transverse flow from in front and from the side can effectively minimize or even 

eliminate exposure to pollutants from both the feet and a cough-simulated source in front, 

while an opposing flow from above can increase exposure to pollutants from the feet. This 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

finding clearly demonstrates the importance of indoor airflow direction. Nevertheless, the 

findings of this study are limited to conditions with ideally uniform airflows. 

 

The direction of the indoor airflow pattern is shaped mainly by the relative position of 

diffuser(s) and exhaust grille(s), which is especially important for ventilation systems with 

diffuser(s) and exhaust grille(s) on opposite sides of a room. Typical examples of air 

distribution methods that have an obvious local flow direction is PV and that have an obvious 

overall flow direction in the room is Stratum Ventilation (SV)
194

, where the latter was 

proposed to use in warm regions to fulfil the requirement of elevated room air temperature. 

Figure 10 presents schematically two possible layouts of the occupants in relation to the flow 

direction when the SV is used. By analysing the two scenarios illustrated in Figure 10, it may 

be predicted that increasing the supply airflow rate could increase the cross-infection risk 

between an upstream infected person and a downstream exposed person (in Figure 10 (a)), 

but may help to decrease the risk for the reverse layout (in Figure 10 (b)). Similar to the 

situation of increasing ACH (see section 2.2), the flow with an obvious direction would have 

two effects to the spread of expiratory droplet nuclei: enhancing the dilution and increasing 

the dispersion. The counteracting effect of these two could be different, depending on 

whether the steady-state or the transient condition is considered. Here further studies are 

required. 

In general, including the influence of the direction of the indoor airflow pattern may 

modify our current understanding of the relationship between cross-infection risk and the 

factors that affect it. In particular, the cross-infection risk may decrease more or less rapidly 

with the increase of the relative distance between the source and the exposed person when the 

indoor airflow direction changes. Systematic investigation is required in order to make clear 

the influence of the direction of the indoor airflow pattern.  
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Figure 10 Schematic view of two possible layouts of the exposed and infected persons in 

relation to the direction of indoor airflow pattern when SV is used. 

 

 

Figure 11 Fast breathing activities: (a) a normal breathing process and (b) a cough process. 

 

6.2 Dynamics of airborne transmission 

Human breathing activities are highly dynamic processes (see Figure 11 for examples). A 

typical breathing cycle includes 2.5 s inhalation, 2.5 s exhalation and 1 s break, which has a 

time scale of the order of 1 s. It should be borne in mind that, within a breathing cycle, the 

infectious airflows from an infected individual are exhaled for only 2.5 s over a 6 s cycle, 

while for an exposed individual there is still only a 2.5 s inhalation of the infectious flows 

after the cleaning effect of a 2.5 s exhalation and a 1 s break. In order to improve the estimate 
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of the risk of cross-infection, it is important to accurately distinguish and measure the 2.5 s 

exhaled concentration of an infected individual and the 2.5 s inhaled concentration of an 

exposed individual. The expiratory process for a cough and a sneeze is even more dynamic, 

considering their short duration, uncertain frequency and highly varying flow rate (see Figure 

11 (b)).  

 

Together with the interaction with the human body thermal plume and a turbulent 

ventilation flow, dynamic breathing activities are difficult for existing slow instruments to 

follow, considering their long response times, which are of the order of at least 10 s for tracer 

gas and 1 s for particles (see sections 4.3 and 4.4 for details). Because of this, previous 

studies using tracer gas techniques were mostly performed under steady-state conditions, and 

thus only time-averaged results were obtained. In addition, the peak values during inhalations 

cannot be captured by such slow instruments, although they are very important for the 

evaluation of exposure risk.  

For a certain type of infectious disease, the risk of cross-infection is determined by the 

exposed dose, which includes both exposed concentration and period. With a high exposed 

concentration, even a very short exposed period might be sufficient to accumulate a dose that 

could cause infection. Accurate sampling of the exposed concentration over time is especially 

important for short-term events with obvious time characteristics, such as a doctor visiting a 

hospital ward and a doctor consultation. In addition, it is meaningful to compare the time 

scale required to accumulate a dose and the survival time of a certain pathogen, so as to 

formulate more effective intervention measures. If the survival time is shorter than the time 

scale needed to accumulate a dose, no cross transmission would occur. However, all these 

time related processes can only be investigated in detail by using fast measurements or 

simulations.  
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For two closely positioned persons, the direct exposure time is sometimes very short and a 

large amount of the infectious flow dissipates into the room. It is possible that part of this 

dissipated infectious flow will be transported by the circulating room air back to the breathing 

zone. The airborne transmission process must therefore be divided into two stages, namely a 

primary direct exposure stage and a secondary indirect exposure stage. This two-stage 

exposure might be especially worthy of separate investigation when evaluating the 

performance of some control measures, such as face masks and PV. Evidently, these control 

measures can effectively avoid the high-concentration direct exposure, but the secondary 

indirect exposure may still be sufficient to cause infection.
90,148

 In general, in order to 

understand the whole transmission process and the role of direct and indirect transmissions, 

transient studies will be required. In addition, human movements introduce obvious time 

characteristics to airborne transmission (see section 2.7), where transient studies would help 

improve current understanding. 

 

6.3 Application of CFD simulations  

Chamber experiment has so far been the dominant research technique for investigating 

airborne transmission indoors. There is no doubt about the importance of experimental 

measurements. However, an important disadvantage of chamber experiments is that 

measurements usually take place at only a few points. Although visualization techniques such 

as PIV and Schlieren imaging allow in principle 2D or even 3D velocity fields to be obtained, 

they cannot provide a quantitative evaluation of the cross-infection risks. Another 

disadvantage that has been mentioned above is the limitation of current experimental 

techniques, namely slow instruments for concentration measurement and weak integration of 

aerosol generators with thermal manikins. In addition, the presence of flow and concentration 

sensors near the mouth/nose of a thermal manikin may cause some flow disturbances. In 
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addition, because thermal manikins are expensive, airborne transmission between multiple 

persons has rarely been investigated. 

 

Numerical modelling with CFD can be a powerful alternative as it can avoid these 

limitations, although care is required for quality assurance. CFD simulation provides detailed 

information on relevant flow and concentration parameters in the whole computational 

domain. Such parameters can be generated in a very high temporal resolution, e.g., 0.01 s, far 

less than the time scale of human breathing activities. Numerically, both tracer gas and 

aerosol can be generated accurately from the mouth/nose of an infected individual and then 

samples can be taken at the mouth/nose of an exposed individual. There are therefore no 

restrictions on the integration of dosing systems with manikins and no flow disturbance 

caused by physical instruments. In addition, CFD simulations have full control over the 

boundary conditions so parametric studies can be used to evaluate different cases. With these 

advantages, CFD is particularly suitable for the detailed investigation of the complex and 

dynamic flow interactions that take place in the breathing zones, especially when two 

individuals are positioned close together. It is also convenient for CFD to investigate airborne 

transmission between multiple persons in a same room, simply by including multiple 

computational thermal manikins. 

 

However, an important matter of concern for CFD simulations is the predicted 

accuracy,
195

 which is influenced by geometrical oversimplification of the physical models, 

grid generation, specification of boundary conditions, and selection of methods of solution. 

Numerical and modelling errors can occur throughout these processes. The selection of a 

suitable turbulence model is very important to ensure acceptable accuracy of prediction. 

Zhang et al.
196 

reviewed published studies that compared some typical turbulence models 
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used in simulating several different types of indoor air movement. In general, the V
2
-f 

model
196-197

 shows the overall best performance, followed by the large eddy simulation (LES) 

model
198

. The most widely used RNG     model performs well for forced and mixed 

convection, but relatively underperforms for natural convection and strong buoyancy flow. 

However, in past studies, other turbulence models (except for RNG and standard    ) have 

rarely been used to investigate airborne transmission and thus their performance is still 

unknown. 

 

Regarding CFD simulations of airborne transmission, an important issue is the large 

difference in spatial scales when breathing thermal manikin(s) are used. The dimensions of 

the ventilation openings (namely, diffuser and exhaust grille) are in the scales of 0.1-1.0 m, 

whereas those of breathing organs (namely, mouth and nose) are of 0.001-0.01 m. In 

addition, air jets from diffusers and from breathing organs have large differences in speed, 

turbulence and temperature. It is important to accurately resolve both scales of flows 

simultaneously, which places a high demand on the turbulence model used. Such a large 

difference in scales also places high demands on the development of a high-resolution and 

high-quality computational grid, which means a relatively large number of cells and a high 

computational cost. Another issue is the accurate modelling of the dispersion of aerosols. 

Adherence to surfaces is the eventual fate of aerosols, and this is the most important cleaning 

mechanism for large aerosols. An accurate prediction of this fate is therefore important for 

accurate prediction of the risk of cross-infection. However, in the near-wall regions, the most 

widely-used RANS turbulence models using wall functions assume the same decomposition 

of flow variables along the normal-to-wall direction as along the other two directions.
84,199

 

This assumption would apparently lead to an over-prediction of the deposition rate on walls. 

Again, more suitable turbulence models are still awaiting exploration. 
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In order to guarantee the quality of CFD simulations, the general consensus on 

engineering practice is to have high-quality model verification and validation before any 

actual CFD studies are conducted. A systematic verification of various computational 

parameters, particularly the grid arrangement and the turbulence model, is an important step 

to ensure suitable selection. To the best of the authors’ knowledge, these precautions have not 

been taken in past studies of airborne transmission. Model validation against high-quality 

experimental data is the final step to examine the quality of CFD simulations. However, most 

studies have validated their CFD models by using experiments with no breathing thermal 

manikins. The benchmark measurements for validating CFD models should include basically 

the measurement of the exposed concentration of a breathing thermal manikin located in a 

well-controlled climate chamber. On the other hand, because of slow instrumentation, there 

are no high-temporal-resolution experimental data that could be used to validate CFD 

models. Overall, while the use of CFD in engineering practice is becoming quite well 

established for ventilation applications,
79,200-204

 this is not yet the case for airborne 

transmission applications. 

 

7. Summary and conclusions 

This paper provides a review of published studies on airborne transmission between 

occupants in indoor environments. It is not intended to cover all past research efforts on this 

topic, but rather to focus on studies of the spread of expiratory agents from mouth/nose to 

mouth/nose for non-specific diseases. Four closely associated topics are covered, including 

the most important factors of the risk of cross-infection, the thermofluid boundary conditions 

of thermal manikins, research techniques and evaluation methods. 
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Air distribution plays a significant role in influencing airborne transmission. However, 

some inconsistent findings have been obtained on the performance of various total volume 

ventilation methods. The excellent performance of PV and PE in reducing the risk of cross-

infection has been widely documented. However, the use of PV to the infected individual can 

enhance the dispersion of expiratory flows and so should be avoided. The use of PE for the 

infected individual only is much better than PV for the healthy individual only. Increasing 

supply flow rate does not necessarily result in a decreased risk of cross-infection, because the 

expiratory agents are not uniformly distributed in a room and the flow interactions in the 

human microenvironment are not straightforward.  

 

The relative distance between the infected and the exposed individuals is one of key 

factors determining the risk of cross-infection. Sufficient evidence indicates that the risk 

decreases sharply with the increase of distance up to a certain distance, namely 0.8-1.5 m. In 

general, the flow interactions in the human microenvironment dominate airborne 

transmission over short distances (< 0.5 m), while the general ventilation flow is more 

important over long distances (> 0.5 m). The importance of the posture and orientation of 

individuals on airborne transmission is greater for short distances. Owing to the possible 

mutual penetration of breathing flows, face-to-face orientation results in the highest risk of 

cross-infection. The breathing function and mode must both be considered when investigating 

airborne transmission. In particular, the exhaled flow through the mouth of the infected 

individual can result in a high exposure risk for an exposed individual in front.  

 

Owing to the limited number of human subject studies and the very varied results 

obtained, many assumptions and simplifications about the definition of the thermofluid 

boundary conditions of thermal manikins have had to be made. Although more human subject 
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tests are required, a better exploitation of existing knowledge would allow an improved 

definition of the thermofluid boundary conditions. Most studies use tracer gases to simulate 

the expiratory mediums. Although some studies tend to support the use of tracer gas as a 

surrogate of small particles (<2-3 µm), there is still no experimental evidence for the 

influence of particle size on the risk of cross-infection. 

 

Tracer gas techniques provide a quantitative evaluation of airborne transmission, but are 

restricted by slow instrumentation (of the order of >10 s) and the fact that tracer gas is only 

representative of small particles. Aerosol techniques can closely model the transmission of 

expiratory droplet nuclei, but aerosol generators are seldom integrated with breathing thermal 

manikins. Aerosol instruments can sample relatively rapidly at 1 Hz, i.e. at the same order as 

the time scale of breathing activities, but it is still impossible to investigate the dynamics of 

airborne transmission. CFD methods employing computational thermal manikins overcome 

these disadvantages, but quality assurance is a basic prerequisite and there are currently no 

high-temporal-resolution experimental data on airborne transmission for the model validation 

of transient CFD simulations. 

 

Most studies use concentration (or its normalized form) measured in the breathing zone of 

an exposed individual to evaluate airborne transmission, although it provides only very 

limited information. Based on concentration profiles, other evaluation models have been 

developed, such as intake fraction, the Wells-Riley model, and Reproductive number. It 

should be noted that each model has its assumptions and applicable context. In particular, 

both the Wells-Riley model and Reproductive number are only valid if the complete-mixing 

assumption is true. In general, fast measurements are required to provide accurate 

concentration profiles for time-dependent evaluations, especially for short-term events. 
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Overall, restricted by the limitations of existing research techniques and the limited 

knowledge of the thermofluid boundary conditions of human beings, the current 

understanding of airborne transmission indoors needs to be improved. In addition to the 

specific aspects summarized above, further attention should be paid to the following aspects. 

 

 As ventilation flow is an important parameter governing airborne transmission, the 

direction of the indoor airflow pattern should be taken into account in future studies. 

 Airborne transmission between occupants indoors is sometimes highly dynamic. In order 

to describe the dynamics, fast, transient, measurements/simulations are required. 

 Further efforts should be made to extend the application of CFD in airborne transmission, 

and to improve the quality assurance. 
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