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Abstract

In this paper, we construct a hierarchical model for spatial compositional data, which is used

to reconstruct past land-cover compositions (in terms of coniferous forest, broadleaved forest,

and unforested/open land) for five time periods during the past 6 000 years over Europe. The

model consists of a Gaussian Markov Random Field (GMRF) with Dirichlet observations. A block

updated Markov chain Monte Carlo (MCMC), including an adaptive Metropolis adjusted Langevin

step, is used to estimate model parameters. The sparse precision matrix in the GMRF provides

computational advantages leading to a fast MCMC algorithm. Reconstructions are obtained by

combining pollen-based estimates of vegetation cover at a limited number of locations with scenarios

of past deforestation and output from a dynamic vegetation model. To evaluate uncertainties in the

predictions a novel way of constructing joint confidence regions for the entire composition at each

prediction location is proposed. The hierarchical model’s ability to reconstruct past land cover is

evaluated through cross validation for all time periods, and by comparing reconstructions for the

recent past to a present day European forest map. The evaluation results are promising and the

model is able to capture known structures in past land-cover compositions.

Keywords: Gaussian Markov Random Field, Dirichlet Observation, Adaptive Metropolis adjusted

Langevin, Pollen records, Confidence regions.
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1 Introduction

Modelling the spatial distribution in species composition and the relative abundances of different

species is a common problem in environmental studies. (Aitchison, 1986; Paciorek and McLachlan,

2009; Billheimer et al., 2001; Tjelmeland and Lund, 2003; Pirzamanbein et al., 2014). In this paper we

develop a statistical model for spatial compositional data and a way of assessing the uncertainties in

the resulting compositional reconstructions at unobserved locations. The model is used to reconstruct

past land-cover composition over Europe from local pollen-based estimates of vegetation cover.

1.1 Spatial Interpolation of Compositional Data

A common approach to modelling compositional data is Gaussian modelling of log-ratio transformed

data (Aitchison, 1986), where the spatial structure can be captured using Gaussian fields (Billheimer

et al., 2001; Tjelmeland and Lund, 2003; Pirzamanbein et al., 2014). However, modelling transformed

compositions as Gaussian might understate the uncertainty in the data, especially in cases of over-

dispersion (Paciorek and McLachlan, 2009).

To capture the variability in our observations, we propose a Bayesian hierarchical model (described

in Sec. 2) where the compositional data are seen as Dirichlet observations of an underlying latent

field of probabilities. The field of compositional probabilities is in turn modelled using a transformed

Gaussian Markov Random Field (GMRF) (Rue and Held, 2004; Lindgren et al., 2011). The sparsity in

the precision matrix of the GMRF allows us to compute the Hessian for the entire latent field, allowing

for fast estimation (see Sec. 3) using a Metropolis Adjusted Langevin algorithm (MALA) (Girolami

and Calderhead, 2011; Roberts and Stramer, 2003).

To describe the uncertainties in the compositional reconstructions we propose a novel way of

computing joint confidence and prediction regions for compositional data (Sec. 4). The method accounts

for the interdependence among the components of the compositional data and allows us to illustrate

the joint uncertainty in the composition at each prediction location.

1.2 Climate Studies and Past Land Cover

For climate modelling studies the land-cover composition is commonly divided into three land cover

types: coniferous forest, broadleaved forest, and unforested/open land. The spatial distribution of

these land cover types play an important role in the climate system (Claussen et al., 2001). Accurate,

spatially continuous, descriptions of past land cover types are necessary to assess past land cover-climate

interactions (Brovkin et al., 2006) and the impact of anthropogenic land-cover changes on climate
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(Strandberg et al., 2014; Gaillard et al., 2010, 2015; Pirzamanbein et al., 2014).

Historic maps and surveys of past land cover have limited temporal coverage (rarely more than

the past 300 to 500 years) and is often spatially fragmented due to a lack of transnational databases.

Land-cover in climate models is currently implemented using a combination of dynamic vegetation

models (e.g. LPJ-GUESS Smith et al., 2001) and scenarios of anthropogenic land-cover changes (e.g.

Kaplan et al., 2009; Klein Goldewijk et al., 2011; Pongratz et al., 2008). Here, the dynamic vegetation

models provide a climate-induced, potential vegetation, which is modified by the anthropogenic scenarios

to account for human activities (mainly deforestation).

Land-cover reconstruction from fossil pollen records is an alternative, to the dynamic vegetation

model simulations and anthropogenic scenarios, that may provide more realistic descriptions of past

land cover for climate modelling studies (Gaillard et al., 2010; Trondman et al., 2015). Given pollen

records extracted from lakes and bogs, pollen-based estimates of vegetation cover are obtained using a

model (here the REVEALS model of Sugita, 2007a,b). The model provides estimates of pollen-based

land-cover composition (hereafter called PbLCC) for a limited area (ca. 100 km x 100 km) around

each lake or bog. For use in climate modelling these PbLCC estimates need to be interpolated into

continuous maps of past land-cover composition at sub-continental to global scales (Pirzamanbein et al.,

2014; Paciorek and McLachlan, 2009).

The PbLCC data used in this paper are available for five time periods during the past 6 000 years,

and the proposed Bayesian model and estimation procedure is used to interpolate the PbLCC data

for each time period. The results are validated using present-time forest maps and cross-validation

(Sec. 5.3). The model shows good predictive power, capturing known structures and historical changes

in land-cover composition.

The paper ends with some brief conclusion in Sec. 6.

2 Model

To model the spatial structure in the compositional data we propose a hierarchical model, where

the observed compositions at each location are modelled as draws from a Dirichlet distribution. The

Dirichlet is parametrized using a scale (or concentration) parameter and a vector of probabilities. The

spatial dependence in these compositional probabilities is modelled using a transformed GMRF. Details

regarding the observational model are given in Sec. 2.1, and Sec. 2.2 describes the latent field.
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2.1 Dirichlet Distribution and Link Function

Compositional data are discussed in detail by Aitchison (1986), here a brief overview is given. Let

ys = (ys,1, ys,2, · · · , ys,D) be the D-compositional data at location us ∈ R2, s = 1, · · · , No, the

restrictions for compositional data imply that: ys,k ∈ (0, 1) and
∑D

k=1 ys,k = 1. Conditional on the

transformed underlying field, z = f(η), we assume that the data, Y = {ys}Nos=1, are independent draws

from a multivariate Dirichlet distribution,

P(Y |α,z) =

No∏
s=1

( Γ(α)∏D
k=1 Γ(αzs,k)

D∏
k=1

y
αzs,k−1
s,k

)
, α > 0, (1)

and

zs,k ∈ (0, 1),
D∑
k=1

zs,k = 1

where α is a Dirichlet scale parameter.

The link function, f , between z and η can be any function from Rd×No to (0, 1)D×No such that:

f(η1, · · · , ηd) = (Z1, · · · , Zd, ZD),

D∑
k=1

Zk = 1, and d = D − 1.
(2)

Here Zk is a No × 1 column vector containing the kth component of the D-compositional data and ηk is

a column vector with the kth latent field, i.e. the probabilities and latent fields for location s are given

by {zs,k}Dk=1 and {ηs,k}dk=1, respectively.

In this paper the link function is constructed by applying the additive log-ratio (Aitchison, 1986)

transform

ηs,k = log zs,k − log zs,D, k = 1, . . . , D − 1 (3)

for each location s. The possible choices of transforms at each location also include the isometric

log-ratio transformation (Egozcue et al., 2003). However, it excludes the central log-ratio transformation

(Aitchison, 1986), which gives a latent η-field with unidentifiable mean.

2.2 Latent Field

Given a total of N ≥ No locations at which we want to provide composition predictions the latent

field, ηall, is multivariate with d = D − 1 elements at each location (N ≥ No since we are providing

predictions at the observed and additional locations). To simplify notation the latent field is represented
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as a Nd× 1 vector ηall = (η>all,1, · · · , η>all,d)>, where each ηall,k is spatial field with N locations.

The latent field and its connection to the observed locations is given as:

η = Aηall

ηall = Bβ +X.

(4)

where A = Id×d⊗A extracts the observed elements from ηall, with A being a No×N sparse observation

matrix; B = Id×d ⊗B with B being a N × p matrix of covariates; β is a dp× 1 matrix of regression

coefficients; and X = (X>1 , · · · , X>d )> is a spatially correlated multivariate field. With this structure,

the spatial dependence X, can be modelled as a GMRF with a separable covariance structure, i.e.

ρ⊗Q−1, which captures the dependency among and within the fields;

X ∼ N (0,ρ⊗Q−1(κ)). (5)

Here ρ is a d× d matrix of covariances among the d multivariate fields (Xk, k = 1, · · · , d), and Q(κ)

is a N ×N precision matrix of a GMRF with spatial scale parameter κ. Q is chosen as a precision

matrix which approximates a stationary Matérn field (Matérn, 1960) with smoothness ν = 1;

Q(κ) = κ4C + 2κ2G+GC−1G. (6)

Here C is a diagonal matrix and G is a finite difference approximation of the negative Laplacian (cf.

Appendix A in Lindgren et al., 2011). This precision is also a solution to a stationary stochastic

partial deferential equation (SPDE) field with α = 2 (see Lindgren et al., 2011, for details). While

the smoothness, ν, of the latent field is known to affect spatial prediction (Stein, 1999) it is also very

hard to estimate (Haran, 2011) and a popular default is to use the exponential covariance (ν = 0.5).

For GMRF models in R2, ν has to be integer resulting in our choice of ν = 1; a value also suggested

by Whittle (1954). It should further be noted that for ν = 1 (or α = 2) the special-case of κ = 0

(infinite range) gives Wahba (1981) splines, providing a link between spline smoothing and Gaussian

spatial-processes (Kimeldorf and Wahba, 1970; Nychka, 2000).
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2.3 Hierarchical Model and Priors

The full hierarchical model (Fig. 1) based on Dirichlet observations (1) of a transformed latent GMRF

(5) becomes

ys|α,η ∼ Dir(αfs(η)), s = 1, . . . , No

ηall = Bβ +X, η = Aηall,

X|κ,ρ ∼ N (0,ρ⊗Q−1(κ)),

β ∼ N (0, Iq−1β ), α ∼ Γ(aα, bα)

κ ∼ Γ(aκ, bκ), ρ|κ ∼ IW (aρI, bρ)

(7)

where I are appropriate identity matrices. To make X and β jointly normal, we use a vague Gaussian

prior for β with precision qβ = 10−3. The Dirichlet scale parameter, α, and spatial scale parameter,

κ, are given gamma priors, and for ρ we choose a conjugate prior for covariance matrices, the inverse

Wishart (IW ). The conjugacy of the inverse Wishart provides computational advantages when updating

the parameters of our multivariate latent field.

A suitable prior on κ can be obtained by noting its link with the range of the field: range ≈
√

8ν/κ

(Lindgren et al., 2011). This link is used by R-INLA to create reasonable defualt priors where the

range is related to the size of the domain (Lindgren and Rue, 2015). An alternative option is presented

by Fuglstad et al. (2016) and Simpson et al. (2015), introducing a prior that shrinks towards κ = 0,

the intrinsic field (i.e. a spline smoother). This prior is motivated by the intrinsic field representing a

simpler model, to be prefered in the absence of convincing data. The prior in Fuglstad et al. (2016)

corresponds to aκ = 1 with bκ chosen to give a suitably small prior-probability to short ranges. A 1%

probability of range < 1 results in bκ = − log(0.01) · 1/
√

8, the range of 1 is based on the unit distance

between our gridcell centroids. For the inverse Wishart prior on ρ, we chose uninformative prior with

aρ = 1 and bρ = 10. The inverse Wishart is proper if the degree of freedom is bρ > d − 1, has finite

mean if bρ > d+ 1 and has finite variance if bρ > d+ 3. In practice bρ is often chosen somewhat larger

than these lower bounds (see e.g. Schmidt et al., 2010). Given our lack of intuition for α we pick

uninformative prior resulting in the following values of all hyper parameters:

aα = 1.5, aκ = 1, aρ = 1,

bα = 0.1, bκ =
log(100)√

8
, bρ = 10.

Having detailed the model, parameter estimation and reconstruction of ηall, using MCMC, are
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aκ bκ df I

κ ρqβ aα bα

ηall = Bβ +X α

z = f(Aηall)

Y

Figure 1: Directed acyclic graph describing the conditional dependencies on the hierarchical model.

described in the following section.

3 Estimation Using MCMC

A block-updated MCMC algorithm is used to estimate the latent field ηall and the unknown parameters

α, κ,ρ. For GMRF, joint updating of parameters in as large blocks as possible has been shown to

improve mixing and convergence (Knorr-Held and Rue, 2002). Therefore, the algorithm in this paper

updates the unknowns by alternating between two blocks: the first block updates the latent fields and

the Dirichlet scale parameter using MALA (Girolami and Calderhead, 2011; Roberts and Stramer,

2003), the second block updates the parameters of the GMRF, κ and ρ, using a combination of random

walk proposals and the conjugate posterior for ρ.

3.1 Updating ηall and α

To update ηall = Bβ+X and α we use a Metropolis-Hastings step to draw samples from the conditional

distribution

P(X,β, α|κ,ρ,Y ) ∝
( No∏
s=1

P(ys|fs
(
Aηall

)
, α
)
· P(X|κ,ρ) · P(β) · P(α)

∝
No∏
s=1

(
Γ(α)∏D

k=1 Γ(αzs,k)

D∏
k=1

y
αzs,k−1
s,k )

· exp
(
− 1

2
X>

(
ρ−1 ⊗Q(κ)

)
X
)

· exp
(
−
qβ
2
β>β

)
· αaα−1e−α·bα .

(8)
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The Metropolis-Hastings step uses a MALA proposal:

X∗,β∗, α∗|X,β, α ∼ N
(

(X,β, α)> +
ε2

2
I−1∇l, ε2 I−1

)
, (9)

where ε is the step size of MALA, ∇l is a vector of derivatives of logP(X,β, α|κ,ρ,Y ) w.r.t. X,β and

α (for computational details see Appendix A.2) and I is the expected Fisher information matrix, (see

Appendix A.3). At each iteration, I−1∇l gives a sampling direction from the current state which is

similar to a Newton-Raphson step (Givens and Hoeting, 2012, Ch. 2). Further, the proposal variance,

I−1, accounts for the dependency among the parameters. Due to the GMRF structure of the latent

fields, I will be a sparse matrix reducing the computations to sampling from a GMRF, for which

efficient algorithms exist (Rue and Held, 2004).

In order to get reasonable acceptance rate, an adaptive MCMC method (Andrieu and Thoms, 2008)

is used for the step size, ε, with the following updating rule;

εi+1 = εi + γi+1(âccX,β,α(εi)− 0.57) (10)

where εi is the step size for the ith MCMC iteration, γi = i−1/2, âcc is the acceptance probability of

the ith step, and 0.57 is the target acceptance rate for a MALA proposal as suggested in Roberts and

Rosenthal (1998).

3.2 Updating κ and ρ

The second block is updated using a combination of the conjugate posterior for [ρ|X, κ] and a

Metropolis-Hastings random walk (in log scale) for [κ|X]. The joint posterior of [κ,ρ|X] can be written

as

P(κ,ρ|X) = P(ρ|X, κ) · P(κ|X). (11)

Due to the conjugate prior for ρ the conditional posterior for ρ is inverse Wishart;

[ρ|κ,X] ∝ IW (aρI + x>Q(κ)x, N + bρ) (12)

with x being a N ×d matrix given by x = [X1, · · · , Xd]. The conjugacy makes it possible to marginalize

over ρ (see Appendix B) giving

P(κ|X) ∝
∫

P(ρ|κ,X)P(κ)dρ ∝ a
dbρ
2
ρ |Q(κ)|

d
2

|aρI + x>Q(κ)x|
N+bρ

2

P(κ). (13)
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Samples from [κ,ρ|X] are now obtained by first sampling from the posterior (13) using a Metropolis-

Hastings step random-walk proposal in log scale,

log κ∗ = log κ+ εκ, εκ ∼ N (0, σ2κ).

Given a proposal κ∗, ρ∗ is sampled from (12). These two steps can be seen as a joint Metropolis-Hastings

step for ρ and κ with proposal density q(κ∗,ρ∗|κ, ,ρ) = P(ρ∗|X, κ∗) · q(κ∗|κ) and acceptance ratio:

accκ,ρ = min

(
1,

P(κ∗,ρ∗|X)

P(κ,ρ|X)
· q(κ,ρ|κ

∗,ρ∗)

q(κ∗,ρ∗|κ,ρ)

)
= min

(
1,

P(ρ∗|κ∗,X) · P(κ∗|X)

P(ρ|κ,X) · P(κ|X)
· P(ρ|X, κ) · q(κ|κ∗)
P(ρ∗|X, κ∗) · q(κ∗|κ)

)
= min

(
1,

P(κ∗|X)

P(κ|X)
· κ
∗

κ

)
.

(14)

Since the acceptance ratio depends only on κ we can delay the sampling of ρ∗ until we know if the

suggested κ∗ has been accepted.

The proposal variance, σ2κ, is determined using an adaptive scheme similar to (10), with target

acceptance rate of 0.4 (Roberts et al., 1997). The difference in target acceptance rate is due to the

difference between MALA and random-walk Metropolis-Hastings (see Rosenthal, 2011, for a discussion).

4 Uncertainty

To obtain uncertainties in the composition estimates at each location, we use the MCMC samples of η

at each location. Given the model structure with a Gaussian prior for η we base the joint confidence

regions for the composition estimates on the elliptical confidence regions obtained for multivariate

Gaussian distributions. Using the sample mean, µ, and the sample covariance, Σ, in the MCMC

samples, we construct the confidence region for each location as the ellipse

(η − µ)>Σ−1(η − µ) = Cα. (15)

The quantile Cα is taken as the α-quantile of the above squared Mahalanobis distance computed for

all the MCMC samples (for a multivariate Gaussian Cα = χ2
α(d)). Thereafter, the confidence ellipse

is transformed from Rd to (0, 1)D using (2). The new ternary region is considered as 95% confidence

region for the transformed η, i.e. the composition estimates. The procedure is illustrated for D = 3 in

Fig. 2.

To illustrate the changes in compositions, we choose the maximum and minimum along each
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dimensions of the ternary plot, i.e. in each component. This way, we get a joint lower bound (minimum)

and upper bound (maximum) for each composition together with the corresponding changes in the

other compositions “most likely” to occur at the bounds (Fig. 2).

In addition, we compute prediction regions for the compositions by simulating new Dirichlet

observations for each MCMC sample of η and α. These D-composition Dirichlet-simulations are then

transformed to Rd using the link function. The procedure above is then used to obtain prediction

ellipses and ternary prediction regions.

Figure 2: The left plot shows the 95% elliptical confidence region for the η samples at location s. The
middle ternary diagram shows the transformed samples and ellipse. The right hand ternary diagram
shows the joint maximum and minimum in each composition, C, B, and U; together with the confidence
interval for the other two compositions.

5 Application

The model presented in Sec. 2 was applied to the Pollen data with the goal of reconstructing past

land cover over Europe. Two versions of the model in (4) were considered: 1) a full spatial model with

ηall = Bβ +X, and 2) a regression model with no spatial structure where ηall = Bβ; the regression

model is included to allow an evaluation of the need for spatial structure. The intrinsic GMRF model

(κ = 0), also considered in Pirzamanbein et al. (2014), performed similar to or slightly worse than the

full spatial model with Dirichlet observations, hence those results have been excluded for brevity.

The remainder of this section consists of: a description of the data (Sec. 5.1), parameters estimation

and spatial reconstruction results for the models (Sec. 5.2), and validation of model performance (Sec.

5.3).
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5.1 Data

The data used for the reconstruction of past land-cover composition over Europe consists of pollen-based

REVEALS estimates (here called pollen-based land-cover composition data — PbLCC) of the three land

cover types: Coniferous forest, Broadleaved forest and Unforested land. The PbLCC data was obtained

using the REVEALS model (Sugita, 2007b) and a detailed description of the data is given by Trondman

et al. (2015). REVEALS is mechanistic model that takes into account the size of sedimentary basins

and inter-taxonomic differences in pollen productivity and dispersal to estimate regional vegetation

cover from pollen records. Trondman et al. applied REVEALS to 636 pollen records from lakes and

bogs; producing estimates of regional land cover for 25 plant taxa which were then grouped into the 3

land cover types (see Table 1 and Appendix S2 in Trondman et al., 2015, for details). The regional

estimates from REVEALS were obtained for 1◦ × 1◦ grid cells, with each estimate being based on the

pollen records from all lakes and bogs within that grid cell (Hellman et al., 2008; Trondman et al.,

2015). The 1◦ × 1◦ grid is an appropriate scale for climate models, which currently work at this or

higher resolutions (Trondman et al., 2015). Since the sedimentary pollen records used by REVEALS are

obtained from lakes and bogs the grid based REVEALS estimates are limited to providing land cover

in grid cells surrounding the lakes and bogs. This leads to a PbLCC dataset with incomplete coverage

across Europe, which needs to be interpolated to produce land cover compositions for the entire region.

The PbLCC data are available for five time periods centred around 1900, 1725 and 1425 CE, 1000

and 4000 BCE, with 175, 181, 193, 204 and 196 observed grid cells, respectively (Trondman et al.,

2015); strictly the time periods are: present–1850 CE, 1850–1600 CE, 1600–1250 CE, 1250–750 BCE,

and 4250–3750 BCE; where “present” should be interpreted as the most recent pollen records recovered

at each site. These time periods are commonly used in both climate modelling and palaeoecological

studies since they represent major climatic and historical events; Recent Past, Little Ice Age, Black

Death, Late Bronze Age, and Early Neolithic.

To capture large scale structures in the land-cover composition, covariates consisting of potential

natural vegetation cover adjusted for human land use, and elevation were used. The choice of covariates

was based on the best model found in Pirzamanbein et al. (2014), and detailed descriptions of the

covariates can be found in that paper. Here we only provide a brief summary.

Dynamic vegetation model based estimates of climate-induced potential natural vegetation, for

the study area and specified time periods, were obtained using the LPJ-GUESS model (Smith et al.,

2001). To account for human land use, the potential natural vegetation was adjusted for anthropogenic

deforestation using the KK10 scenarios of Kaplan et al. (2009). The KK10 scenarios provide assessments

of human induced deforestation based on estimates of past human population densities, land area
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required for food production to sustain that population, and a model of land suitability for food

production. Combining the potential natural vegetation cover from LPJ-GUESS and the KK10

scenarios of deforestation resulted in a land cover covariate, denoted LPJ-GUESSKK.

The elevation data were obtained from the Shuttle Radar Topography Mission (Becker et al., 2009)1

and upscaled by averaging from the original resolution of 3 arc-seconds to the 1◦ × 1◦ grid cells. The

upscaled data was truncated to ≥ 0 to handle a few grid cells along the Norwegian coast which otherwise

would have negative average elevation due to the presence of deep coastal fjords.

Since the potential land cover, LPJ-GUESSKK, is compositional it was transformed using (2), and

the covariate matrix, B consisted of the following columns: B0 – intercept; B1, B2 – additive log ratio

transformed LPJ-GUESSKK1,2 ; and B3 – elevation.

To evaluate our results we used present-time European forest maps compiled by the European Forest

Institute. These maps are based on a combination of satellite data (NOAA-AVHRR) and national

forest-inventory statistics from 1990–2005 (Päivinen et al., 2001; Schuck et al., 2002) 2. The European

Forest Institute forest maps (EFI-FM; with proportions of coniferous- and broadleaved-forest cover)

were upscaled by averaging from 1 km ×1 km to 1◦ × 1◦ resolution. The proportions of unforested area

were calculated by subtracting the total sum of forested cover from 1.

5.2 Results

To estimate the parameters for each model, we ran 100 000 MCMC iterations with a burn-in sample

size of 10 000. Diagnostics for the chains indicate a fast convergence for α,ρ and β; autocorrelation

plots show good mixing of all parameters after burn-in.

Parameter estimates for the 1900 CE time period are given in Table 1; the parameter estimations

for the other time periods can be found in Appendix C. As expected the α estimate for the regression

model is lower than for the full spatial model, indicating higher observational variation in the regression

model. Note that not all the regression coefficients, β, are significant. However we cannot exclude a

covariate from one component of the composition and keep it for the other components. Similarly for

the transformed potential land cover composition we need to include all or none of the compositional

components.

1downloaded from ftp://topex.ucsd.edu/pub/srtm30_plus/ on 20110903
2downloaded from the European Forest Institute webpage http://www.efi.int/portal/virtual_library/

information_services/mapping_services/forest_map_of_europe
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Table 1: Parameter estimates (Est) and 95% confidence intervals (CI) for the two models (Full —
spatial model and RM — regression model) fitted to the PbLCC data from the 1900 CE time period.

1900 CE

Full RM
Parameter Est (CI) Est (CI)

α 10.86 ( 8.10 , 15.41 ) 6.36 ( 5.58 , 7.18 )
κ 0.28 ( 0.14 , 0.45 ) - -
ρ11 0.78 ( 0.12 , 2.61 ) - -
ρ12 0.57 ( 0.05 , 1.96 ) - -
ρ22 0.60 ( 0.10 , 1.97 ) - -
β10 -0.68 ( -1.64 , 0.15 ) -0.13 ( -0.25 , -0.02 )
β11 0.16 ( 0.08 , 0.24 ) 0.24 ( 0.22 , 0.27 )
β12 0.02 ( -0.09 , 0.14 ) -0.03 ( -0.09 , 0.02 )
β13 0.05 ( -0.15 , 0.26 ) -0.10 ( -0.19 , -0.01 )
β20 -0.94 ( -1.83 , -0.22 ) -0.38 ( -0.51 , -0.26 )
β21 0.04 ( -0.05 , 0.12 ) 0.13 ( 0.11 , 0.16 )
β22 0.01 ( -0.09 , 0.11 ) -0.05 ( -0.10 , 0.00 )
β23 -0.04 ( -0.24 , 0.16 ) -0.24 ( -0.34 , -0.14 )

Reconstructions of the land-cover composition for the two models and the 1900 CE time period

are shown in Fig. 3. Results for the other time periods are available in Appendix D. Figure 3 shows

that the land-cover reconstructions from the two models captured the structure in the PbLCC data.

However, the results from regression model is smoother than from the Full model. The Full model

better captures the high abundance of unforested land in Poland, Denmark and south east Norway.

The uncertainties in the land-cover reconstructions were computed using the method described

in Sec. 4. Results for the 1900 CE time period are presented in Fig. 4 and 5, with results for the

remaining time periods given in Appendix E. The confidence and prediction regions represent the

uncertainty in the latent field reconstruction, zs and the potential uncertainty in new PbLCC data, ys,

for a given grid cell, respectively. In general the full spatial model has larger confidence regions but

smaller prediction regions than the regression model (Fig. 4). This is due to the spatial component in

the Full model being able to better capture spatial variation resulting in a lower uncertainty (larger α)

in the Dirichlet observations as compared to regression model. The maps of confidence regions (Fig. 5)

illustrate rather large uncertainties in the predicted land-cover composition in general, and especially

for Southeast Europe, a region with very few observations.
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Figure 3: Results for the 1900 CE time period: the top row shows the PbLCC data from REVEALS,
the bottom row shows the EFI-FM and the remaining rows show the reconstructions for the full spatial
model (Full) and the regression model (RM).
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Figure 4: The first row shows the locations of the three selected grid cells. The second row shows the
ternary confidence regions and the land-cover reconstructions for the two models (Full — spatial model
and RM — regression model) together with the PbLCC data from REVEALS, the LPJ-GUESSKK land
cover covariate and the EFI-FM for each location. The third row shows the ternary prediction regions.
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Figure 5: The first column shows the reconstructed land-cover composition for the 1900 CE time period
using the full spatial model. Columns 2 and 3, row 1 (with thick/red axes), show the maximum and
minimum of 95% elliptical confidence regions for Coniferous; rows 2 and 3 give the corresponding
Broadleaved and Unforested compositions. Columns 4 and 5 (row 2 with thick/red axes) gives the
bounds for the Broadleaved composition while columns 6 and 7 show the bounds for Unforested land
(row 3 with thick/red axes). The concept of joint confidence interval for compositions is shown in Fig 2.

5.3 Validation

To evaluate the performance of the models, we compared the land-cover reconstructions for 1900 CE to

the EFI-FM by computing the average compositional distances (ACD). The compositional distances

(Aitchison et al., 2000; Aitchison, 1992, 1986) were computed for each location as

ACD(u,v) = [(u− v)TJ−1(u− v)]1/2 (16)

where u and v are additive log-ratio transforms of the compositions to be compared and J is a

d× d-matrix with elements Jp,l = 2 if p = l, and Jp,l = 1 if p 6= l. These compositional distances are

then averaged over all grid cells. In terms of the original compositions, pu and pv, the distance in (16)

can be written as (Aitchison et al., 2000)

ACD(pu,pv) =

[
D∑
i=1

(
log

pui
g(pu)

− log
pvi

g(pv)

)]1/2
,
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where g(p) is the geometric mean, g(p) = D
√
p1p2 · · · pD.

Although a temporal misalignment exists between the PbLCC data (PbLCC data are from 1850

to the present) and the EFI-FM (inventory and satellite data are from 1990-2005); EFI-FM provides

the best complete and consistent land cover map of Europe for present times, making it a reasonable

choice for the comparison. Figure 3 shows the maps of PbLCC data and EFI-FM. The main differences

between the EFI-FM data and the PbLCC data for the 1900 CE time period are: 1) a lower abundance

of broadleaved forest around most of Europe, 2) a higher abundance of coniferous forest in Sweden

and Finland, and 3) a higher abundance of unforested land in North Norway in the EFI-FM data than

in the PbLCC data. Compositional distances between land-cover reconstructions and EFI-FM were

computed using (16) and averaged over all grid cells. The resulting ACD are 1.4757 and 1.5025 for the

full spatial model and the regression model, respectively. This indicates that the full spatial model

provides a reconstruction closer to EFI-FM than the regression model.

These results can also be compared to a model with Gaussian observations of transformed latent

fields, (Pirzamanbein et al., 2014). The resulting ACD of the Gaussian observation models compare

to the EFI-FM are 1.6007 (for the intrinsic GMRF model) and 1.6140 for the regression model. The

differences between what Pirzamanbein et al. (2014) reported (1.5201 and 1.5177, respectively) and

our results using their models are due to an increase in available data leading to more grid cells in our

reconstructions. These results indicate smaller distances between the land-cover reconstructions and

EFI-FM for the models with Dirichlet observations proposed in this paper compared to similar models

with Gaussian observations.

Since no ground truth exists for the other time periods, we applied a 6-fold cross-validation scheme

for the models for each of the five time periods (Friedman et al., 2001, Ch. 7.10). The cross-validation

was run for 10 different, randomly selected 6 folds to assess the variability due to different cross

validation groupings. Average compositional errors and standard deviations are shown in Table 2. The

full spatial model gives the best predictions for all the five time periods.

Table 2: Average compositional error (and standard deviation) from 10 different 6-fold cross-validations
for each of the models, and time periods.

Full Regression
Time CVerror (sd) CVerror (sd)

1900 CE 1.0169 (0.0122) 1.1439 (0.0061)
1700 CE 1.1448 (0.0084) 1.2891 (0.0054)
1400 CE 1.2009 (0.0071) 1.4061 (0.0042)
1000 BCE 1.3260 (0.0083) 1.5287 (0.0062)
4000 BCE 1.2131 (0.0109) 1.3396 (0.0045)
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6 Conclusion

In this paper we have introduced a model for spatial interpolation of compositional data that relies

on Dirichlet observations of an underlying multivariate GMRF. In theory the formulation allows for a

wide class of link-functions between the GMRF and the compositional probabilities in the Dirichlet

observations; we used the additive log ratio transformation throughout the paper. Since the sparse

structure in the precision matrix of the GMRF carries over to the expected Fisher information used

in MALA, the model formulation with a latent GMRF allows for fast MCMC-based estimation of

parameters and latent field. As a result our MCMC produced 10 samples per second using matlab®

on a standard desktop (Intel® CoreTM i7− 2600 CPU (2011) with 8 GB memory) for a latent field

with 2160 nodes (bivariate field on a 27-by-40 grid); resulting in a total run time of less than 3 hours

for a chain with 100 000 samples.

To evaluate prediction uncertainties we also proposed a method for construction of joint confidence

and prediction regions for the compositions at each location. The idea behind the method is to use the

MCMC samples to first construct elliptical confidence regions for the transformed latent fields; these

are then transformed from Rd to (0, 1)D using the inverse link-function, giving confidence regions in

compositional space. Having joint confidence regions for the compositions allowed us to evaluate the

behaviour of all components as each individual component attains their lower and upper bounds in the

confidence regions.

The statistical model was used to reconstruct past land-cover composition over Europe for five

time periods using PbLCC data (Trondman et al., 2015) obtained from the REVEALS model (Sugita,

2007b). The land-cover reconstructions for the most recent time period were evaluated against present-

time forest maps, and reconstructions for all time-periods were evaluated using cross-validation. The

evaluations showed that a model containing both explanatory covariates and spatial dependence

structure outperformed a model with only covariates, indicating that the addition of a spatial random

effect improves predictions. Evaluations using the present-time forest maps showed that a model

with Dirichlet observations outperformed previously developed models using Gaussian observations of

transformed fields (Pirzamanbein et al., 2014).

The reconstructed maps of land-cover composition can be used both in studies of climate models

and to analyse changes in land-cover composition during the past millennia. For example, Fig. 6 uses

the compositional distances (16) to illustrate the changes in land-cover composition between the five

time periods considered in this study. This simple analysis shows that the largest changes in land cover

between 4000 BCE and 1900 CE have occurred in Switzerland and Central France; along the North Sea
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coast in the UK, the Low Countries, Denmark, and southern Norway; and along the south Baltic coast

in northern Germany and Poland.

The reconstructions of past land-cover composition obtained here are encouraging, as they clearly

show the ability to recover continuous maps of past land cover from PbLCC data. The reconstructions

from the full spatial model appear to conserve the information and trends from the pollen-based

REVEALS estimates of past land cover (as discussed in Trondman et al., 2015) the best. They are also

clearly better than previous spatial reconstructions in terms of e.g. the degree of openness and tree

cover in the northernmost parts of Europe and the western coasts of Norway. Our future goal is to

use these land-cover reconstructions in climate modelling studies and to gain insight into the effect

of past anthropogenic deforestation. It is outside the scope of this paper to provide a discussion of

the land-cover reconstructions in terms of historical changes in vegetation abundance, land cover and

human impact over the past 6 000 years. However, the methods developed here provide (some of) the

tools needed for such a discussion.

Figure 6: Compositional distances between the Full model land-cover reconstructions for the different
time periods.
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transformations for compositional data analysis. Math. Geol., 35(3):279–300, 2003. ISSN 1573-8868.

doi: 10.1023/A:1023818214614.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer

series in statistics Springer, Berlin, 2001.

G.-A. Fuglstad, D. Simpson, F. Lindgren, and H. Rue. Interpretable priors for hyperparameters for

Gaussian Random Fields. Technical Report 1503.00256v2, arXiv, 2016. URL http://arxiv.org/

abs/1503.00256v2.

M.-J. Gaillard, S. Sugita, F. Mazier, A.-K. Trondman, A. Brostrom, T. Hickler, J. O. Kaplan, E. Kjell-
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A Derivatives and Fisher Information of [ηall, α|Y ]

To construct the MALA updates for ηall = Bβ +X, α we need the derivatives and Fisher information

of the log-posterior (8),

l(X,β, α|Y ) = log

(
No∏
s=1

P(ys|fs
(
Aηall

)
, α)P(X|κ,ρ)P(β)P(α)

)

=

No∑
s=1

log Γ(α)−
No∑
s=1

D∑
k=1

log Γ(αzs,k)

+

No∑
s=1

D∑
k=1

(αzs,k − 1) log ys,k −
1

2
X>

(
ρ−1 ⊗Q(κ)

)
X

−
qβ
2
β>β + (aα − 1) log(α)− αbα + const.

(17)

Here Aηall is the latent Rd-field at observed locations, {us}Nos=1, zs is the corresponding D-composition

(i.e. defined on (0, 1)D, with d = D−1), and const is an additive constant. Before computing derivatives

of the log-posterior, l(X,β, α|Y ), we need some results for the compositional transformation.

A.1 Derivatives of Compositional Transforms

The compositional transform used in this paper is the additive log-ratio, (3), with inverse

zk =


exp(ηk)

1+
∑d
k exp(ηk)

, if k = 1, . . . , D − 1

1
1+

∑d
k exp(ηk)

, if k = D.

(18)

Here z is a D-compositional value (i.e. (0, 1)D) and η is RD−1.

For the MALA-computations the first and second derivatives of the inverse transformation are

needed. These can be expressed in terms of the compositions, zk; for the first derivatives

∂zk
∂ηi

=


zk(1− zk) if k = i,

−zkzi if k 6= i.

(19)
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and for the second derivatives

∂2zk
∂ηi∂ηj

=



zk(1− zk)(1− 2zk), if i = j, k = i

−zkzi(1− 2zi), if i = j, k 6= i

−zjzk(1− 2zk), if i 6= j, k = i

2zkzizj , if i 6= j, k 6= i, k 6= j,

(20)

the case i 6= j, k = j is obtained by symmetry.

One consequence of the sum to one constraint of compositional data is that the derivatives (19) and

second derivatives (20) sum to zero:

D∑
k=1

∂zk
∂ηi

= zi(1− zi)−
∑
k 6=i

zizk = zi

(
1−

D∑
k=1

zk

)
= 0

D∑
k=1

∂2zk
∂η2i

= zi(1− zi)(1− 2zi)−
∑
k 6=i

zkzi(1− 2zi) = 0

D∑
k=1

∂2zk
∂ηi∂ηj

= −zjzi(1− 2zi)− zizj(1− 2zj) +
∑
k 6=i,j

2zkzizj = 0

(21)

A.2 Derivative of l(X,β, α|Y )

Recall that the latent field η is a linear combination of the mean zero spatial field(s) X and the

regression coefficients β given as

η = A
( [

I B

]X
β

) =

[
A AB

]X
β

 .
Therefore, the updates of η are done by updating the underlying fields and regression coefficients. Thus

we need the derivatives of l(X,β, α|Y ), i.e. ∇l, w.r.t θ =

[
X> β>

]>
and α.

∇θl(X,β, α|Y ) =

[
A AB

]>
∇η logP(Y |f(η), α)−

(ρ−1 ⊗Q(κ)
)
X

qββ

 (22a)

∂l(X,β, α|y)

∂α
=

No∑
s=1

ψ(α)−
No∑
s=1

D∑
k=1

zs,kψ(αzs,k)

+

No∑
s=1

D∑
k=1

zs,k log ys,k +
aα − 1

α
− bα

(22b)
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where ∇θl is the gradient w.r.t. θ (a Nd-column vector) and ψ(·) is the digamma function. The elements

of the gradient ∇η logP(Y |f(η), α) (a Nod-column vector) are

∂ logP(Y |f(η), α)

∂ηs,k
=

D∑
l=1

(
−αψ(αzs,l) + α log ys,l

) ∂zs,l
∂ηs,k

,

where the derivatives, ∂zs,l/∂ηs,k, depend on the choice of link function (see (19) for the additive log

ratio case).

A.3 The Fisher Information

The Fisher information used in the MALA updates is computed as the expectation of the Hessian over

observations, Y , given all parameters and latent fields:

I = −EY (H(l) |X,β, α,ρ, κ) =

Iθ,θ Iθ,α

Iα,θ Iα,α

 (23)

where H(l) is Hessian of l(X,β, α|Y ). The resulting matrix consists of four blocks: two with second

derivatives w.r.t. θ and α, and two with cross partial derivatives; each of the blocks is described below.

For brevity we use E(H(l) | •) to denote the conditional expectation in (23), and note that

E(log ys,k | •) = ψ (αzs,k)− ψ

(
D∑
l=1

αzs,l

)
= ψ(αzs,k)− ψ(α). (24)

Similar to (22a) the top left block can be written as

Iθ,θ =

[
A AB

]>
Hη

[
A AB

]
+

ρ−1 ⊗Q(κ) 0

0 qβI

 ,
where Hη is a symmetric Nod×Nod matrix with elements

H
(sk,s′k′)
η = −E

(
∂2 logP(Y |f(η), α)

∂ηs,k∂ηs′,k′

∣∣∣∣ •) .
The elements in Hη are indexed by their spatial location, s = 1, . . . , No, and which latent field,

k = 1, . . . , d, they belong to (i.e. which transformed compositional component). For elements at

different locations

H
(sk,s′k′)
η = 0, if s 6= s′,
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leaving only

H
(sk,sk′)
η =− E

(
∂2 logP(Y |f(η), α)

∂ηs,k∂ηs,k′

∣∣∣∣ •)
=− ∂

∂ηs,k′
E

( D∑
l=1

(
−αψ(αzs,l) + α log ys,l

) ∂zs,l
∂ηs,k

∣∣∣∣ •)

=α2
D∑
l=1

ψ′(αzs,l)
∂zs,l
∂ηs,k′

∂zs,l
∂ηs,k

+ α

D∑
l=1

(
ψ(αzs,l)− E(log ys,l | •)

) ∂2zs,l
∂ηs,k∂ηs,k′

.

Using the expectations in (24) gives

H
(sk,sk′)
η =α2

D∑
l=1

ψ′(αzs,l)
∂zs,l
∂ηs,k′

∂zs,l
∂ηs,k

+ αψ(α)

D∑
l=1

∂2zs,l
∂ηs,k∂ηs,k′

,

and with the sum to zero result in (21) the elements of Hη simplify to

H
(sk,sk′)
η =α2

D∑
l=1

ψ′(αzs,l)
∂zs,l
∂ηs,k′

∂zs,l
∂ηs,k

.

Derivation of (22a) w.r.t. α gives

Iθ,α =−
[
A AB

]>
E

(
∂

∂α
∇η logP(Y |f(η), α)

∣∣∣∣ •) ,
since only the Dirichlet part of the log-likelihood contributes too the cross-derivatives. The part

concerning the gradient, ∇η logP(Y |f(η), α), gives a column vector of length Nod with elements

E

(
∂2 logP(Y |f(η), α)

∂α∂ηs,k

∣∣∣∣ •) =
D∑
l=1

(
−ψ(αzs,l)− αzs,lψ′(αzs,l)+

+ E(log ys,l | •)
) ∂zs,l
∂ηs,k

,

=− α
D∑
l=1

zs,lψ
′(αzs,l)

∂zs,l
∂ηs,k

.

The last equality is obtained from (24) and (21). Symmetry gives that Iθ,α = I>α,θ.
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The last block of (23) is

Iα,α =− E

(
∂2l(X,β, α|y)

∂α2

∣∣∣∣ •)
=−

(
No∑
s=1

ψ′(α)−
No∑
s=1

D∑
k=1

z2s,kψ
′(αzs,k)−

aα − 1

α2

)
.

B The Posterior κ|X

The posterior of κ|X is obtained by integrating out ρ from the joint posterior of κ,ρ|X. With the

densities for X and ρ given as

X|κ,ρ ∼ N
(
0,ρ⊗Q−1(κ)

)
and ρ ∼ IW (aρI, bρ) (25)

in (7) the posterior κ|X is

P(κ|X) ∝
∫

P(X|κ,ρ)P(κ)P(ρ)dρ

∝
∫ ∣∣ρ−1 ⊗Q(κ)

∣∣ 12 exp

(
−1

2
X>

(
ρ−1 ⊗Q(κ)

)
X

)
P(κ)

· |aρI|
bρ
2 |ρ|−

bρ+d+1

2 exp

(
−1

2
tr
(
ρ−1aρI

))
dρ.

(26)

Introducing vectorization such that vec(x) = X, where x = (X1, · · · , Xd) is a N × d-matrix version of

the column-vector X, the exponential term can be rewritten as

− 1

2
X>

(
ρ−1 ⊗Q(κ)

)
X = −1

2
X> vec

(
Q(κ)>xρ−1

)
=− 1

2
tr
(
x>Q(κ)xρ−1

)
= −1

2
tr
(
ρ−1x>Q(κ)x

)
.

The posterior in (26) now simplifies to

P(κ|X) ∝ P(κ) |aρI|
bρ
2 |Q(κ)|

d
2

∫
|ρ|−

N+bρ+d+1

2 exp

(
−1

2
tr
(
ρ−1

(
aρI + x>Q(κ)x

)))
dρ.

Recognizing the density of an unnormalized inverse-Wishart distribution under the integral sign we

normalise and obtain the posteriors

ρ|κ,X ∼ IW
(
aρI + x>Q(κ)x, bρ +N

)
,

P(κ|X) ∝ P(κ) · a
dbρ
2
ρ |Q(κ)|

d
2

|aρI + x>Q(κ)x|
N+bρ

2

.
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C Parameter Estimates

Table 3: Parameter estimates (Est) and 95% quantile (CI) for the two models (Full — spatial model
and RM — regression model) used to reconstruct past land-cover composition from the PbLCC data.

1700 CE

Full RM
Parameter Est (CI) Est (CI)

α 9.55 ( 7.64 , 12.93 ) 6.07 ( 5.31 , 6.86 )
κ 0.23 ( 0.12 , 0.39 ) - -
ρ11 0.50 ( 0.13 , 1.83 ) - -
ρ12 0.23 ( 0.01 , 1.11 ) - -
ρ22 0.25 ( 0.07 , 0.90 ) - -
β10 -0.72 ( -1.85 , 0.23 ) -0.13 ( -0.24 , 0.00 )
β11 0.17 ( 0.08 , 0.26 ) 0.28 ( 0.25 , 0.31 )
β12 -0.01 ( -0.12 , 0.10 ) -0.08 ( -0.12 , -0.03 )
β13 -0.01 ( -0.20 , 0.18 ) -0.14 ( -0.24 , -0.05 )
β20 -0.74 ( -1.56 , 0.02 ) -0.35 ( -0.49 , -0.23 )
β21 0.07 ( -0.01 , 0.15 ) 0.13 ( 0.11 , 0.16 )
β22 -0.05 ( -0.13 , 0.03 ) -0.08 ( -0.12 , -0.04 )
β23 -0.20 ( -0.38 , -0.03 ) -0.30 ( -0.40 , -0.20 )

Table 4: Parameter estimates (Est) and 95% quantile (CI) for the two models (Full — spatial model
and RM — regression model) used to reconstruct past land-cover composition from the PbLCC data.

1400 CE

Full RM
Parameter Est (CI) Est (CI)

α 8.75 ( 7.22 , 10.76 ) 5.18 ( 4.57 , 5.83 )
κ 0.18 ( 0.08 , 0.31 ) - -
ρ11 0.37 ( 0.10 , 0.98 ) - -
ρ12 0.12 ( -0.02 , 0.47 ) - -
ρ22 0.17 ( 0.06 , 0.44 ) - -
β10 -0.70 ( -2.34 , 0.77 ) -0.09 ( -0.21 , 0.03 )
β11 0.16 ( 0.05 , 0.26 ) 0.28 ( 0.26 , 0.31 )
β12 0.02 ( -0.10 , 0.13 ) -0.07 ( -0.12 , -0.02 )
β13 0.09 ( -0.10 , 0.28 ) -0.09 ( -0.19 , 0.00 )
β20 -0.56 ( -1.78 , 0.51 ) -0.15 ( -0.28 , -0.03 )
β21 0.07 ( -0.03 , 0.16 ) 0.14 ( 0.11 , 0.17 )
β22 -0.03 ( -0.12 , 0.06 ) -0.07 ( -0.11 , -0.03 )
β23 -0.18 ( -0.36 , -0.01 ) -0.32 ( -0.42 , -0.22 )
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Table 5: Parameter estimates (Est) and 95% quantile (CI) for the two models (Full — spatial model
and RM — regression model) used to reconstruct past land-cover composition from the PbLCC data.

1000 BCE

Full RM
Parameter Est (CI) Est (CI)

α 7.02 ( 5.89 , 8.37 ) 4.42 ( 3.91 , 4.96 )
κ 0.19 ( 0.08 , 0.30 ) - -
ρ11 0.32 ( 0.10 , 0.80 ) - -
ρ12 0.07 ( -0.04 , 0.27 ) - -
ρ22 0.16 ( 0.06 , 0.37 ) - -
β10 0.19 ( -1.40 , 1.57 ) 0.50 ( 0.37 , 0.63 )
β11 0.24 ( 0.13 , 0.35 ) 0.30 ( 0.27 , 0.33 )
β12 -0.03 ( -0.17 , 0.10 ) 0.05 ( -0.01 , 0.11 )
β13 0.15 ( -0.06 , 0.37 ) -0.02 ( -0.12 , 0.09 )
β20 0.19 ( -1.07 , 1.21 ) 0.55 ( 0.43 , 0.68 )
β21 0.07 ( -0.01 , 0.16 ) 0.12 ( 0.09 , 0.14 )
β22 0.03 ( -0.08 , 0.13 ) 0.02 ( -0.03 , 0.07 )
β23 -0.02 ( -0.20 , 0.18 ) -0.11 ( -0.22 , -0.01 )

Table 6: Parameter estimates (Est) and 95% quantile (CI) for the two models (Full — spatial model
and RM — regression model) used to reconstruct past land-cover composition from the PbLCC data.

4000 BCE

Full RM
Parameter Est (CI) Est (CI)

α 7.58 ( 6.26 , 9.84 ) 5.36 ( 4.72 , 6.02 )
κ 0.20 ( 0.10 , 0.32 ) - -
ρ11 0.21 ( 0.07 , 0.69 ) - -
ρ12 0.10 ( -0.02 , 0.64 ) - -
ρ22 0.24 ( 0.06 , 1.03 ) - -
β10 0.41 ( -0.70 , 1.48 ) 0.38 ( 0.24 , 0.53 )
β11 0.23 ( 0.13 , 0.33 ) 0.23 ( 0.20 , 0.26 )
β12 -0.19 ( -0.36 , -0.03 ) -0.04 ( -0.11 , 0.03 )
β13 0.04 ( -0.17 , 0.25 ) -0.04 ( -0.14 , 0.07 )
β20 0.61 ( -0.66 , 1.58 ) 0.99 ( 0.85 , 1.12 )
β21 0.01 ( -0.09 , 0.10 ) 0.08 ( 0.06 , 0.11 )
β22 -0.01 ( -0.16 , 0.14 ) 0.00 ( -0.06 , 0.05 )
β23 -0.05 ( -0.24 , 0.15 ) -0.25 ( -0.35 , -0.15 )
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D Maps of Estimated Land Cover

Figure 7: Results for the 1725 CE time period: the first row shows the PbLCC data, and the other
rows show the reconstructions for the full spatial model (Full) and the regression model (RM).

32



Figure 8: Results for the 1425 CE time period: the first row shows the PbLCC data, and the other
rows show the reconstructions for the full spatial model (Full) and the regression model (RM).
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Figure 9: Results for the 1000 BCE time period: the first row shows the PbLCC data, and the other
rows show the reconstructions for the full spatial model (Full) and the regression model (RM).

34



Figure 10: Results for the 4000 BCE time period: the first row shows the PbLCC data, and the other
rows show the reconstructions for the full spatial model (Full) and the regression model (RM).
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E Uncertainties in Estimated Land Cover

E.1 Maps of Uncertainties

Figure 11: The first column shows the reconstructed land-cover composition for the 1725 CE time
period, using the full spatial model. Columns 2 and 3, row 1 (with thick/red axes), show the maximum
and minimum of 95% elliptical confidence regions for Coniferous; rows 2 and 3 give the corresponding
Broadleaved and Unforested compositions. Columns 4 and 5 (row 2 with thick/red axes) gives the
bounds for the Broadleaved composition while columns 6 and 7 show the bounds for Unforested land
(row 3 with thick/red axes). The concept of joint confidence interval for compositions is shown in Fig 2.
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Figure 12: The first column shows the reconstructed land-cover composition for the 1425 CE time
period, using the full spatial model. Columns 2 and 3, row 1 (with thick/red axes), show the maximum
and minimum of 95% elliptical confidence regions for Coniferous; rows 2 and 3 give the corresponding
Broadleaved and Unforested compositions. Columns 4 and 5 (row 2 with thick/red axes) gives the
bounds for the Broadleaved composition while columns 6 and 7 show the bounds for Unforested land
(row 3 with thick/red axes). The concept of joint confidence interval for compositions is shown in Fig 2.
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Figure 13: The first column shows the reconstructed land-cover composition for the 1000 BCE time
period, using the full spatial model. Columns 2 and 3, row 1 (with thick/red axes), show the maximum
and minimum of 95% elliptical confidence regions for Coniferous; rows 2 and 3 give the corresponding
Broadleaved and Unforested compositions. Columns 4 and 5 (row 2 with thick/red axes) gives the
bounds for the Broadleaved composition while columns 6 and 7 show the bounds for Unforested land
(row 3 with thick/red axes). The concept of joint confidence interval for compositions is shown in Fig 2.
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Figure 14: The first column shows the reconstructed land-cover composition for the 4000 BCE time
period, using the full spatial model. Columns 2 and 3, row 1 (with thick/red axes), show the maximum
and minimum of 95% elliptical confidence regions for Coniferous; rows 2 and 3 give the corresponding
Broadleaved and Unforested compositions. Columns 4 and 5 (row 2 with thick/red axes) gives the
bounds for the Broadleaved composition while columns 6 and 7 show the bounds for Unforested land
(row 3 with thick/red axes). The concept of joint confidence interval for compositions is shown in Fig 2.
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E.2 Confidence Regions for Selected Locations
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Figure 15: The first row shows the locations of the three selected grid cells for the 1725 CE time period.
The second row shows the ternary confidence regions along with the reconstructions for the two models
(Full—spatial model; RM—regression model) and the values of the PbLCC data and the LPJ-GUESSKK

land cover covariate at each location. The third row shows the ternary prediction regions and the same
values.
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Figure 16: The first row shows the locations of the three selected grid cells for the 1425 CE time period.
The second row shows the ternary confidence regions along with the reconstructions for the two models
(Full—spatial model; RM—regression model) and the values of the PbLCC data and the LPJ-GUESSKK

land cover covariate at each location. The third row shows the ternary prediction regions and the same
values.
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Figure 17: The first row shows the locations of the three selected grid cells for the 1000 BCE time
period. The second row shows the ternary confidence regions along with the reconstructions for the
two models (Full—spatial model; RM—regression model) and the values of the PbLCC data and the
LPJ-GUESSKK land cover covariate at each location. The third row shows the ternary prediction
regions and the same values.
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Figure 18: The first row shows the locations of the three selected grid cells for the 4000 BCE time
period. The second row shows the ternary confidence regions along with the reconstructions for the
two models (Full—spatial model; RM—regression model) and the values of the PbLCC data and the
LPJ-GUESSKK land cover covariate at each location. The third row shows the ternary prediction
regions and the same values.

43


	1 Introduction
	1.1 Spatial Interpolation of Compositional Data
	1.2 Climate Studies and Past Land Cover

	2 Model
	2.1 Dirichlet Distribution and Link Function
	2.2 Latent Field
	2.3 Hierarchical Model and Priors

	3 Estimation Using MCMC
	3.1 Updating bold0mu mumu all and 
	3.2 Updating  and bold0mu mumu 

	4 Uncertainty
	5 Application
	5.1 Data
	5.2 Results
	5.3 Validation

	6 Conclusion
	A Derivatives and Fisher Information of [bold0mu mumu all, |bold0mu mumu YYYYYY]
	A.1 Derivatives of Compositional Transforms
	A.2 Derivative of l(bold0mu mumu XXXXXX,bold0mu mumu , |bold0mu mumu YYYYYY)
	A.3 The Fisher Information

	B The Posterior |bold0mu mumu XXXXXX
	C Parameter Estimates
	D Maps of Estimated Land Cover
	E Uncertainties in Estimated Land Cover
	E.1 Maps of Uncertainties
	E.2 Confidence Regions for Selected Locations


