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Highlights 15 

 Cis-elements can be randomly assembled to construct short plant promoters 16 

 Synthetic promoters have higher mRNA expression level than the endogenous PpAct7  17 

 Synthetic promoters have similar protein expression levels to AtUBQ10 promoter 18 

 19 

  20 



Abstract 21 

Securing a molecular toolbox including diverse promoters is essential for genome engineering. 22 

However, native promoters have limitations such as the available number or the length of the 23 

promoter. In this work, three short synthetic promoters were characterized by using the yellow 24 

fluorescent protein Venus. All of the tested promoters were active and showed mRNA activity higher 25 

than housekeeping gene PpAct7, and similar protein expression level to AtUBQ10 promoter. This 26 

study shows that few cis-elements are enough to establish a strong promoter for continuous 27 

expression of genes in plants. Along with this study, enhance the number of available promotors to 28 

be used in P. patens. It also demonstrate the potential to construct multiple non-native promoters on 29 

demand, which would aid to resolve the bottleneck issue of multiple pathway expression in P. patens 30 

and other plants. 31 

 32 
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Introduction 35 

Genes in eukaryotes consist of three major regions, the promoter, the coding strand and the 36 

terminator. The promoter controls the gene expression by regulating the binding of transcription 37 

factors to recruit RNA polymerase (Latchman 1997). Thus, the synthesis of mRNA is directly 38 

correlated with the promoter activity that may lead to the production of protein. The promoter is 39 

situated  thousands of base pairs (bp) upstream from the transcription start site (TSS), to about 30 bp 40 

downstream from the TSS (Porto et al. 2014). Promoters come in different type of switches, some 41 

are constitutive, some react to specific stimuli, and some are inducible and maintain a strict on/off 42 

style switch.  43 

Plants are known to have larger promoter sequences than those found in fungi and prokaryotes. Plant 44 

promoters typically range from 500 bp to over 2,000 bp (Liu and Stewart 2016). As the possibilities 45 

in synthetic biology advances, it is often necessary to introduce multiple genes and promoters to 46 

achieve the desired traits. However, endogenous plant promoters are often of limited use in plant 47 

synthetic biology as multiple copies of the same promoter can trigger homology-dependent gene 48 

silencing (Halpin 2005). Therefore, characterizing multiple promoters from heterologous species has 49 

become important for fine-tuning of multiple genes.  50 

Physcomitrella patens is a plant model system that has been used extensively to study plant evolution, 51 

physiology, and development (Vesty et al. 2016). The full genome is sequenced (Rensing et al. 2007)  52 

and development growth media and transformation methods are well described (Bach et al. 2014). 53 

Its ability to perform efficient homologues recombination, that now can be explained with RecQ 54 

helicase function (Wiedemann et al. 2018), is unique among plants enabling in vivo assembly of 55 

multiple DNA fragments followed by targeted genome integration by homologues recombination 56 

(King et al. 2016). Collectively, such distinct features make P. patens attractive as an industrial 57 



production platform for small natural products, which requires integration of numerous genes (Zhan 58 

et al. 2014; Ikram et al. 2015; Pan et al. 2015; Sabovljević et al. 2016; Khairul Ikram et al. 2017).  59 

Monocot housekeeping gene promoters and the 35S promoter from Cauliflower mosaic virus (CaMV) 60 

have shown a high-level of gene expression in P. patens (Horstmann et al. 2004; Saidi et al. 2005). 61 

However, the limited number of available promoters are a bottleneck in introducing complex 62 

pathways into P. patens and typically long plant promoters are difficult to handle in multiple gene 63 

integrations. Therefore, developing strong and short synthetic promoters has emerged as a major 64 

interest to provide a solution. 65 

Synthetic promoters are relatively short (300-500 bp) and can be generated in countless number with 66 

similar strength or function, and could improve the genome stability (Roberts 2011). Cis-regulatory 67 

elements (CREs) of native promoters are non-conserved among genes that are similarly expressed. 68 

Thus, the synthetic promoters can be reasonably constructed to give high gene expression with a 69 

smaller size (Liu and Stewart 2016). The strength of synthetic promoters depends on the selection, 70 

spacing of CREs and the copy number. Using bioinformatic algorithms, novel CREs could be 71 

discovered, by comparing the upstream sequence of differentially regulated genes. These CREs could 72 

be put together rationally to design new synthetic promoters (Roberts 2011). Furthermore, the 73 

strength of the synthetic promoter could be enhanced by proper spacing and increasing the CRE copy 74 

number (Liu and Stewart 2016).  75 

Here, we have tested three synthetic promoters in P. patens, developed using an automated high-76 

throughput screening method. The promoters were built using computational analysis of large 77 

transcriptomic functional data set to identify cis-elements, which form the building blocks of 78 

synthetic promoter libraries. All three synthetic promoters had higher mRNA expression than the 79 

housekeeping gene PpAct7 and showed similar protein expression pattern to AtUBQ10 promoter. 80 

  81 



Materials and Methods 82 

Promoter construction 83 

The synthetic promoter library was constructed at Synpromics using random assembly techniques of 84 

cis-elements through expression data analysis of Zea mays. Genes showing strong expression strength 85 

above Ubiquitin1 transcripts were labeled constitutive. Using transcription factor binding site 86 

database TRANSFAC, cis-elements of the constitutively expressed genes were identified from the 87 

1,500bp upstream and 500bp downstream of the transcription start site. Subsequently, Synpromics 88 

Ltd Syn-score algorithm was applied to the identified regions to rank the cis-elements  (Roberts et al. 89 

2017). Further, a synthetic promoter library was constructed by, random assembly of the chosen cis-90 

elements (300bp-800 bp), attached upstream to CaMV 35S minimal promoter (position -46 to +89). 91 

Later, functional promoters were identified by the expression analysis of the Luciferase gene. 92 

 93 

Growth media 94 

P. patens (Gransden ecotype, International Moss Stock Center #40001) was grown on solid and liquid 95 

PhyB media (Bach et al. 2014) under sterile conditions, with continuous 20–50 W/m2 light intensity 96 

at 23°C.  97 

 98 

DNA preparation and transformation protocol 99 

DNA fragments for transformation were prepared in blocks as below. First block, a 2.7 kb region 100 

with 108 5’ neutral locus, G418 selection marker with CaMV 35S promoter/ CaMV poly(A) signal 101 

was amplified from the pRH004 plasmid. Second block, the synthetic promoter sequences developed 102 

by Synpromics, and the Arabidopsis Ubiquitin10 (AtUBQ10) promoter was amplified with 20~22 nt 103 

overhangs homologous to block one and three. Block 3, with the Venus fluorescent protein, OCS 104 

terminator and the 108 locus homologous recombination flanking region was amplified from pRH004 105 



plasmid (Figure 1A). Purified 1.5 pmol of each DNA block (Figure 1B) was transfected into the 106 

isolated moss protoplasts during transformation process and selected for positive colonies according 107 

to previously published methods (King et al. 2016; Khairul Ikram et al. 2017).  108 

 109 

Arabidopsis Ubiqutin10 promoter 110 

Arabidopsis UBQ10 promoter with a length of 634 bp of (Grefen et al. 2010) was cloned from 111 

Arabidopsis genomic DNA using primer set; UBQ10 F 5’-GTCGACGAGTCAGTAATAAACGG-112 

3’ and UBQ10 R 5’-CTGTTAATCAGAAAAACTCAGATTAATC-3’. For moss transformation, 22-113 

nt overhangs that are identical to the next fragments (block one and three) were attached to both ends 114 

by second PCR using overhang primers. 115 

 116 

Detection of Venus fluorescence 117 

Venus fluorescence was detected on protonemal cells grown for seven days in PhyB liquid media. P. 118 

patens protonema cells were visualized and photographed using a confocal laser-scanning 119 

microscope. Z-stacks were performed on each line using the 488nm laser line and YFP emission 120 

filter. Z-stacks were put together using the Zeiss software built-in maximum projection function. 121 

Fluorescent level of each promoter lines was calculated from digital Images using the software 122 

ImageJ (https://imagej.nih.gov/ij/). A previously published method on fluorescent cell analysis was 123 

used to calculate the corrected total cell fluorescence (CTCF) levels (Burgess et al. 2010; McCloy et 124 

al. 2014). 125 

For each cell, measurements were taken for the cell area, integrated density and mean grey value. 126 

Final corrected total cell fluorescence (CTCF) was calculated using the following formula. 127 

CTCF= Integrated Density- (Area of selected cell X Mean fluorescence of background reading) 128 

 129 



RNA extraction and qPCR 130 

Total RNA was extracted from the appropriate lines (7 days after blending), using Spectrum™ Plant 131 

Total RNA Kit (Sigma, STRN250). To synthesize cDNA, 1 μg of extracted total RNA was reverse 132 

transcribed by iScript cDNA synthesis kit (Bio-rad, 1708891), followed by PCR amplification of the 133 

following transcripts, PpAct7 and Venus. PCR reactions were carried out using (Qiagen kit name) 134 

and (Bio-rad machine name), by denaturation at 95°C 5 min, 40 cycles with 95°C for 10 sec and 60°C 135 

for 10 sec, and melting curve analysis to check the specificity. Relative Venus gene expression from 136 

each promoter line was analyzed by ExpVenus=2ΔCt[promoter], ΔCt[promoter]=Ct[Actin]-Ct[Venus]. 137 

  138 



Results and discussion 139 

Assembly of cis-elements to construct constitutive plant promoters  140 

To generate synthetic promoters, functional cis-elements should be collected since cis-elements will 141 

form the building blocks of synthetic promoters. We used automated high-throughput screening 142 

method. In this method, computational analysis of large transcriptomic functional data sets of Zea 143 

mays was used to identify cis-elements from constitutively expressed genes. We ranked collected cis-144 

elements by applying Syn-score algorithm and randomly assembled selected cis-elements to generate 145 

promoter library (Roberts et al, 2017). This technique has an advantage since elements are selected 146 

based on the requirements for the synthetic promoters (e.g., inducible, constitutive and tissue- or 147 

developmental stage-specific), which is a more focused approach than using completely random 148 

elements. The promoter candidates consist of randomly assembled cis-elements of varying lengths 149 

up to 30bp. Therefore, the promoter length and the position of cis-elements vary (Figure 1C). It has 150 

been shown that the position of cis-elements relative to each other markedly influences promoter 151 

strength (Rushton et al. 2002), which was shown in the transcription data of the synthetic promoters 152 

we tested (Figure 2).  153 

The synthetic promoters can be used for gene stacking in P. patens, as they do not resemble each 154 

other on the sequence level and contain small cis-elements rather than large promoter fragments, 155 

which greatly reduces the risk of homology-induced gene silencing. As it is an automated system, it 156 

is reproducible, robust and faster than a manual approach. Thus, multiple functional promoters in P. 157 

patens could be constructed on demand. 158 

 159 

Promoter activity analysis of synthetic promoters 160 

To analyze the activity of synthetic promoters, we used fluorescence protein Venus. The coding 161 

sequence of Venus was placed downstream of each promoter including well-known constitutive 162 



AtUBQ10 promoter, and all constructs were stably transfected to P. patens 108 neutral locus (Bach 163 

et al. 2014). We performed qPCR to compare the promoter activity. The mRNA expression level of 164 

Venus was calculated in relative to the endogenous housekeeping gene Actin7 (PpAct7). Actin is an 165 

essential component of the plant cytoskeleton and is known to be a ubiquitous protein that is 166 

constitutively expressed in eukaryotes (Meagher et al. 1999). It is also shown that PpAct7 is 167 

preferable to be used as a housekeeping gene (Le Bail et al. 2013) and perform dual functions as a 168 

control and a housekeeping gene in the data analysis of this experiment. Expression of human VEGF 169 

protein using the 5´ promoter region of the PpAct7 depicted an eight-fold increase in the production 170 

of the VEGF protein compared to the constitutive CaMV 35S promoter (Weise et al. 2006). This 171 

suggests PpAct7 is highly expressed compared to the 35S promoter that was quantified previously 172 

(Horstmann et al. 2004). Thus, the mRNA expression of PpAct7 can be compared to the Venus 173 

transcript levels driven by the synthetic promoters. All three synthetic promoters showed higher 174 

expression than PpAct7 (Figure 2). Synthetic promoter I2-10 yielded the highest mRNA expression 175 

level at 304.51 ± 4.21 fold relative to PpAct7 followed by 45.91 ± 0.88, 124.93 ± 3.4, 258.38 ± 0.09 176 

for I2-48, I2-79, and AtUBQ10, respectively. The I2-10 promoter was 2.43X and 6.63X expressed 177 

than I2-79 and I2-48. This high level of expression can be attributed to the presence of G-box in I2-178 

10 (Figure 1A). The G-box is a regulatory element in plant promoters, playing an essential role in 179 

plant promoter responsiveness to light, stress, and hormones (Menkens et al. 1995). Some of the G-180 

box motifs have been shown to aid high-level constitutive protein expression in some plant species 181 

(Ishige et al. 1999). 182 

 183 

Protein expression analysis of synthetic promoters in P. patens protonema cells 184 

After mRNA expression analysis, we wanted to identify if the protein expression would show similar 185 

pattern, because protein level does not always correspond to that of mRNA. The Venus protein 186 



expression level was calculated for each synthetic promotor line. This was performed in 14 days old 187 

P. patens protonema cells (Figure 3). Micrographs of I2-10, I2-48, I2-79, and AtUBQ10 promoter 188 

lines were processed to measure the fluorescence intensity of Venus via ImageJ.  189 

All three synthetic promoters showed a similar level of Venus fluorescent protein expression (Figure 190 

3). Compared to the medium-strength of the AtUBQ10 promoter (Grefen et al. 2010), the synthetic 191 

promoters, I2-10, I2-48 and I2-79 displayed 1.6X, 1.5X and 1.5X decrease in protein expression, 192 

respectively. All synthetic promoters share the identical sequence -123 bp from ATG, thus we 193 

excluded the possibility of ribosome entry for the discrepancy in expression of mRNA and protein 194 

level, and assume structure-related factor made the difference. These synthetic promoter candidates 195 

were derived from a screen conducted in Zea Mays, where Synpromics has shown that they mediate 196 

two- four-fold higher protein expression (firefly luciferase) compared to the ubiquitin-1 promoter. As 197 

one would expect we have seen that the promoters show maximum activity in the organism in which 198 

they were screened. The fact that promoters developed for another plant species show such high 199 

activity in P. patens, bodes well for the further development of promoters for use in this chassis 200 

organism. 201 

The short length of 634 bp makes the AtUBQ10 promoter an ideal control. However, the AtUBQ10 202 

promoter consisted of the first 5’ intron expanding 304 bps, while synthetic promoters contained 203 

none. Deletion of the first 5’ intron in AtUBQ10 has shown to result in 3-fold lower protein activity 204 

than the first intron intact (Norris et al. 1993). Thus, adding an either synthetic or natural first 5’ 205 

intron section to the synthetic promoters would likely lead even higher expression of the following 206 

coding sequences.  207 

 208 

In conclusion, we have tested the activity of three synthetic promoters in P. patens. All three 209 

promoters showed high expression of mRNA compared to the PpAct7 and similar protein activity to 210 



the medium-strength AtUBQ10 promoter. Previously, published works have revealed that the addition 211 

of the first 5’ intron increase the stability of the mRNA and yield several folds of higher protein 212 

activity. Thus, adding a 5’ intron to the end of synthetic promoters would likely increase the strength 213 

of the promoters. Further, range of promoters mediating a range of different expression levels is 214 

essential in building genetic circuitry in synthetic biology applications, such that synthetic promoters 215 

can control the correct stoichiometry of different component proteins of the circuit at the 216 

transcriptional level.  217 
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Figure text 310 

Figure 1: A) vector map of linearized pRH004 vector. 311 

B) Three PCR fragments (blocks) were constructed to transform the promoters to the P. patens 108 312 

neutral loci. Block 1 was amplified from the pRH004 vector with the 108 neutral locus and resistance 313 

to Geneticin driven by CaMV 35S promoter. Block 2 depicts, PCR amplified AtUBQ10, I2-10, I2-48 314 

and I2-79 promoter sequences. Followed by the final block 3, containing the Venus fluorescent 315 

protein with the OCS terminator sequence and the 108 loci. 316 

C) Schematic of randomly assembled cis regulatory elements to construct the synthetic promoters. 317 

 318 

Figure 2: Overview of promoter strength based on Venus expression, using PpAct7 promoter as 319 

background measurement. 320 

 321 

Figure 3: Confocal images of Venus expression, driven by synthetic promoters and AtUBQ10 322 

promoter. All lines are grown and imaged in identical conditions. B) Representative, promoter 323 

strengths of I2-10 (n=54), I2-48 (n=41), I2-79 (n=48) and AtUBQ10 (n= 32) lines. Promoter strength 324 

was calculated by measurement of the fluorescence intensity for each cell by the use of confocal 325 

micrographs and ImageJ software. Scale bar =0.01 mm 326 
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