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Preface

This thesis concludes my PhD studies on “State-space modelling in marine science” at the Technical
University of Denmark (DTU), National Institute of Aquatic Resources (DTU Aqua), where I have been
enrolled from December 1st 2014 to November 30th 2017 under supervision of Senior Researcher Anders
Nielsen (DTU Aqua) and Associate professor Uffe Høgsbro Thygesen (DTU Aqua; DTU Compute since
June 2017). The project was funded by the PhD School at DTUAqua and the EuropeanMaritime Fisheries
Fund.

During my studies, I have been privileged to visit Head of Stock Assessment ProgramMark Maunder
and colleagues at the Inter-American Tropical Tuna Commission during the first half of 2016, with finan-
cial support in the form of personal travel grants from Augustinus Fonden, Christian og Ottilia Brorsons
Rejselegat, Knud Højgaards Fond, and Oticon Fonden. I have also had the pleasure of visiting Profes-
sor Joanna Mills Flemming and colleagues at Dalhousie University at several occasions for workshops, a
conference, and collaboration. Experiences from which I have learned a lot.

This thesis consists of three parts. The first part is a synopsis describing the state-of-the-art in state-
spacemodelling with relation to fisheries stock assessment and individual animal movement. My aimwith
the synopsis is to provide a broader context and motivation for my studies than the individual manuscript
introductions can do. The next part consists of three published manuscripts and two manuscripts in the
final stage of preparation. Finally, the last part gives a short description of four software packages devel-
oped during my studies.

�
Christoffer Moesgaard Albertsen
Kongens Lyngby, November 2017
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Summary

State-space models provide a natural framework for analysing time series that cannot be observed without
error. This is the case for fisheries stock assessments andmovement data frommarine animals. In fisheries
stock assessments, the aim is to estimate the stock size; however, the only data available is the number
of fish removed from the population and samples on a small fraction of the population. In marine animal
movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must
be used yielding observations with large errors.

Both assessment and individual animal movement models are important for management and conser-
vation of marine animals. Consequently, models should be developed to be operational in a management
context while adequately evaluating uncertainties in the models.

This thesis develops state-space models using the Laplace approximation within fisheries stock as-
sessment and individual animal movement. In a fisheries stock assessment context, several observational
likelihoods are implemented and evaluated using the Laplace approximation. Further, a model for multi-
ple fish stocks is proposed. The model connects single stocks through correlation in the survival process,
without requiring any data not used in the individual assessments. Both studies show improvements in
evaluating the status of a stock for management.

In an individual animal movement context, the use of a normal distribution for Argos data is compared
to the use of t-distributions, both implemented in a state-space model and estimated using the Laplace
approximation. Using the heavy tailed t-distribution for the uncertain Argos data improves reconstruction
of the true movement trajectories. Further, the commonly used first-Difference Correlated RandomWalk
is generalized to allow irregular time steps and drift in the movement.

Finally, an approximate filter and smoother based on sequential Laplace approximations are intro-
duced for state-space models with Markov switching. The method can potentially be used in both animal
movement and stock assessment models to account for structural changes in behaviour or environmental
effects.
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Resumé

Tilstandsrumsmodeller er et naturligt værktøj til at analysere tidsrækker, der ikke kan observeres uden
fejl. Eksempler på dette er bestandsvurderingsmodeller for fisk og bevægelsesmodeller for individuelle
havdyr. I bestandsvurderingsmodeller for fisk er målet at estimere bestandsstørrelsen. Imidlertid er det
eneste tilgængelige data antallet af fisk, der er fjernet fra bestanden, samt stikprøver baseret på en lille
andel af bestanden. I individuelle bevægelsesmodeller for havdyr kan præcise positionssystemer somGPS
ikke benyttes. I stedet må upræcise alternativer bruges, hvilket giver observationer med store målefejl.

Både bestandsvurderings- og bevægelsesmodeller er af stor betydning for forvaltning og beskyttelse
af havdyr. Derfor bør modeller udvikles, så de er operationelle i en forvaltningssammenhæng, samtidig
med, at de giver realistiske vurderinger af usikkerhederne i modellerne.

Denne afhandling udvikler tilstandsrumsmodeller, som benytter Laplaces integraltilnærmelse indenfor
bestandsvurderings- og bevægelsesmodellering. Inden for bestandsvurderingsmodellering implementeres
og sammenlignes en række fordelinger til at beskrive observationerne givet den sande bestandstilstand.
Dette gøres ved hjælp af Laplaces integraltilnærmelse. Derudover præsenteres en model til at vurdere
flere bestande sammen. Modellen forbinder enkelte bestande gennem korrelationer i overlevelsesforløbet
uden at kræve andre oplysninger end de allerede benyttede for hver enkelt bestand. Begge undersøgelser
forbedrer evnen til at vurdere bestandens tilstand til brug i forvaltning.

Inden for bevægelsesmodeller for individuelle havdyr sammenlignes brugen af normalfordelte
målefejl for Argos-observationer med brugen af t-fordelte målefejl. Begge implementeres i en
tilstandsrumsmodel og estimeres ved hjælp af Laplaces integraltilnærmelse. Brugen af den tung-
halede t-fordeling til at modellere de usikre Argos-observationer forbedrer genskabelsen af de sande
bevægelsesbaner. Derudover generaliseres den ofte brugte selv-korrelerede Brownske bevægelse på
første-ordens-differencer, således at den tillader varierende tidsskridt, samt drevet bevægelse.

Endelig præsenteres en tilnærmet filtrerings- og udglatningsmetode baseret på fortløbende Laplace-
integraltilnærmelser til tilstandsrumsmodeller med Markovianske parameterskift. Metoden kan potentielt
benyttes til bevægelses- såvel som bestandsvurderingsmodeller for at tage højde for strukturelle ændringer
i adfærd eller miljøpåvirkninger.
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Chapter 1

Introduction

State-space models are time series models where there is not only stochasticity in the process evolving
over time, but also in the measurements given the process. That is, where a classical time series model
describes a process by the transition densities, Xt | Xt−1, a state-space model has an additional layer for
the measurement stochasticity described by the conditional distribution Yt | Xt. In the state-space model,
the process, Xt, is not observed. Therefore, inference can only be based on the marginal observation pro-
cess, Yt, which is similar to random effects models; however, obtaining the marginal observation process
requires integrating over the entire Xt process, which can be computationally demanding. In the most
general setting, Xt and Yt can be vectors of any dimension with values in any measurable space.

The separation of processes and measurements makes state-space modelling a natural framework for
marine science. In fisheries stock assessment models, the aim is to estimate the abundance of a fish stock;
however, the fish stock is only measured indirectly, and with error, through catches and scientific surveys.
In this setting, the abundance is the unobserved process, Xt, while catches and survey indices of abun-
dance combine to a measurement process, Yt. Likewise, models for individual marine animal movement
must account for both the inherent stochasticity of the movement behaviour and the stochasticity of the
imprecise measurements that can be obtained in marine environments. In this setting, the actual position
of the animal is the unobserved process,Xt, while a location measurement from, for instance, tagging the
animal are the observed measurement process, Yt.

While seemingly very different fields, fisheries stock assessment models and individual animal move-
ment models not only share statistical methodology, but can both be used for management and conser-

State-Space Models

Fisheries Stock Assessment

Individual Animal Movement

Manangement and Conservation

Figure 1.1: Fisheries stock assessment models and individual animal movement models are connected
by the common statistical framework, and the common importance for management and conservation of
marine living resources. Further, individual movement models can be included in assessment models.



CHAPTER 1. INTRODUCTION

vation of marine animals. To be operational in a management and conservation context, models should
be able to run in a reasonable time; should require the same input as models already used; and should
produce output comparable to models already used.

Recent advancements in computational statistics have facilitated the use of the Laplace approximation
for maximum likelihood inference in advanced state-space models. While simulation-based methods such
as Markov Chain Monte Carlo may take hours or days to produce results, software utilizing the Laplace
approximation require seconds or minutes, at the cost of a less general framework.

The aim of this PhD study has been to investigate the applicability of the Laplace approximation to
efficiently approximate marginal observation processes, Yt, in state-space models in marine science, and
produce operational models that can be applied in, and improve upon, management and conservation of
marine animals.

Paper I and Paper II contributes to the fisheries stock assessment literature. Paper I compares several
choices of observational likelihoods in an age-based assessment model and illustrates that the choice can
influence subsequent management decisions. Paper II extends the same age-based assessment model from
a single-stock to a multi-stock model. The paper combines stocks through correlated survival processes;
a highly operational approach, albeit simple, that does not require any data sources not used in the single-
stock model. Three case studies illustrate that correlations are in fact present in the data, while simulation
studies show the consequences of ignoring these correlations.

Paper III and Paper IV contributes to the animal movement literature. Paper III investigates the ap-
plicability of the Laplace approximation for a movement model. The method is compared to a Kalman
filter and Markov Chain Monte Carlo; both in simulations and for real data. Further, the paper extends
a previous model from requiring Gaussian data to allow the more appropriate t-distribution for the error
prone movement data. Likewise, Paper IV generalizes one of the most frequently used animal movement
models to allow irregular time points and drift in the movement.

Finally, Paper V introduces a method for maximum likelihood-based analysis of state-space models
with Markov switching parameters. The method has potential to be used in both animal movement and
fisheries stock assessment models. In animal movement models, Markov switching parameters are fre-
quently considered, but in a Bayesian context. Markov switching state-space models are not as widely
used in fisheries stock assessment models; however, they have been considered recently (e.g., Fay, 2015;
Baggio, 2016).

The following four chapters describe the state-of-the-art of state-space modelling in marine science.
Chapter 2 describes modern methods for state-space models common for both fisheries stock assessment
and animalmovementmodelling. Chapter 3 focuses on state-spacemodelling in fisheries stock assessment
modelling with a focus on age-based models, while Chapter 4 provides a similar overview for individual
animal movement. All three chapters also attempts to provide a broad context and motivation for the
included papers. Chapter 5 concludes on the previous chapters. Following these synopsis chapters, the
five papers and four short descriptions of software developed during the studies are included.
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Chapter 2

State-space models

Many systems, especially in marine environments, cannot be observed directly. When modelling these
systems, it is convenient to separate the stochasticity of the system process and the stochasticity of the
measurements conditional on the system process. This is exactly what state-space models does. State-
space models are time series models consisting of two parts: a model for the system process, and a model
for the measurements given the process. That is, the state-space of the process is modelled separately
from the observation-space. In a general setting, the current state of the system, Xt, is a Markov process
given by the transition distribution Xt | Xt−1 ∼ Fθ with density fθ, while the observations Yt are
independent given the process. In other words, the process is determined by the conditional distributions
Yt | Xt ∼ Gθ with density gθ. In the most general setting, both Xt and Yt can be vectors of any
dimension. Both distributions are parameterised with a parameter vector θ ∈ Θ ⊂ Rp. The state-space
model can conveniently be expressed by the state and measurement equations:

Xt = ϕ(Xt−1, θ, ϵt)

Yt = γ(Xt, θ, νt),
(2.1)

where ϵt and νt are random variables. In this way, themodel can be described intuitively through functions,
ϕ and γ, of parameters, θ, and random variables

(
Xt−1 and ϵt, respectively Xt and νt

)
instead of through

the corresponding conditional densities, fθ and gθ.

State-space models have been given several names in the literature such as hidden Markov models,
dynamic (linear) models, partially observedMarkov processes, latent variable models, and random effects
models. Here, “hidden Markov model” will be used for a system developing over time where the state-
space is discrete, Xt ∈ X d ⊂ Nd, and “state-space model” will be used for systems developing over time
where the state-space is continuous, Xt ∈ X d ⊂ Rd.

State-space models have a strong tradition in engineering, in particular in control theory. The classical
linear Gaussian state-space model,

Xt = AXt−1 + But + ϵt

Yt = HXt + νt

(2.2)

has been thoroughly investigated. In this setting, A is a matrix giving the autoregressive properties of the
process,B is a matrix of effects of the input ut, andH is a matrix giving the expected measurements con-
ditional on the states. Finally, ϵt and νt are independent random variables following normal distributions
with covariances Q and R respectively. In control theory, the objective is to influence the system in an
optimal way through the inputs, ut; however, in the models presented in this thesis, the objective is not to
control the system, but to learn from and predict the system.



CHAPTER 2. STATE-SPACE MODELS

2.1 Maximum likelihood inference

To learn from data generated by a system with imperfect measurements, maximum likelihood inference
can be used. In a state-space model, the model description directly leads to a likelihood function for the
fully observed system; the joint likelihood of data and latent variables:

L(θ; X0:T , Y0:T ) = fθ(X0)gθ(Y0 | X0)
T∏

t=1

fθ(Xt | Xt−1)gθ(Yt | Xt),

that is, the joint probability of observing the data at hand as a function of the parameters. From the
likelihood function, the aim is to find the parameters that makes the data at hand most likely.

In state-space models, however, the state process is not observed. Therefore, only the marginal like-
lihood of the actual observations1,

LM(θ; Y0:T ) =

∫
L(θ; X0:T , Y0:T , Y )dX0:T

can be used to obtain the estimates

θ̂ = argmaxθ LM(θ; Y0:T )

In general, finding themarginal likelihood of the data is impossible to do analytically. Several approximate
methods exist to obtain the maximum likelihood estimates. In the sections below, only the methods used
in the appended papers will be introduced, while other methods such as the EM algorithm (Dempster et al.,
1977), Markov Chain Monte Carlo (e.g., Jacquier et al., 2007), importance sampling (e.g., Geweke, 1989;
Skaug and Fournier, 2006; Kleppe and Skaug, 2012), discretization of the state-space (e.g., Pedersen et
al., 2011), numerical integration, and others, are silently left out.

2.2 Filters

One approach to calculate the marginal likelihood is through recursive filters. Originating in engineer-
ing, the filters are constructed to filter the measurement noise from the signal of the state process. As
a by-product the likelihood function can be calculated during the process. In a maximum likelihood
framework, the viewpoint is reversed. The filtering process consists of three steps in a recursion (e.g.,
Kitagawa, 1987). For a model defined by the transition density of Xt | Xt−1, fθ, and the measurement
density of Yt | Xt, gθ, the first step is predicting the next state given the previous observation. Know-
ing the density of Xt−1 | Y0:(t−1) from the previous step in the recursion, the density of Xt | Yt−1 can
be calculated through the joint distribution Xt, Xt−1 | Y0:(t−1), using the transition density, fθ, since
Xt | Xt−1

D
= Xt | Xt−1, Y0:(t−1). Hence,

p(Xt | Y0:(t−1)) =

∫
fθ(Xt | Xt−1)p(Xt−1 | Y0:(t−1))dXt−1.

Here, p denotes derived densities. For instance, p(Xt | Y0:(t−1)) is the density of the conditional distri-
bution Xt | Y0:(t−1). The derived densities only depend on parameters through fθ and gθ. Therefore, the
parameter dependendence is excluded from the notation for simplicity.

1Throughout the thesis, the region of integration is omitted when it is the entire space.
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2.3. LAPLACE APPROXIMATION

Second step is calculating the likelihood of the next information, Yt, given the previous, Y0:(t−1).
Again, this can be calculated through a joint distribution. The joint density of Yt, Xt | Y0:(t−1) can be
calculated using the density of Yt | Xt, Y0:(t−1)

D
= Yt | Xt, gθ, and the density of Xt | Y0:(t−1):

p(Yt | Y0:(t−1)) =

∫
gθ(Yt | Xt)p(Xt | Y0:(t−1))dXt.

Final step is updating the state estimate with information from a new observation. The density of
Xt | Y0:t can be calculated by Bayes’ formula,

p(Xt | Y0:t) = p(Xt | Yt, Y0:(t−1)) = gθ(Yt | Xt)
p(Xt | Y0:(t−1))

p(Yt | Y0:(t−1))
.

The marginal likelihood can be calculated by

LM(θ; Y0:T ) = p(Y0)
T∏

t=1

p(Yt | Y0:(t−1))

In few cases, the equations can be solved analytically. For the linear Gaussian state-space model
(Equation (2.2)), the Kalman filter (Kalman, 1960) can be used. When the state space is discrete, for
a hidden Markov model, the likelihood calculation reduces to a series of matrix products. When the
equations cannot be solved analytically, numerical integration or simulation-based Monte Carlo methods
can be used instead. In the latter case, the method is known as a particle filter or a sequential Monte Carlo
method (Gordon et al., 1993). If a simulation-based method is used, the likelihood function calculated
becomes a stochastic function, which requires special methods to obtain maximum likelihood estimates
(e.g., Ionides et al., 2011, 2015).

2.3 Laplace approximation

A general and computationally efficient alternative to filters and simulation methods is the Laplace ap-
proximation. The Laplace approximation replaces the joint likelihood with a log-convex function that can
easily be integrated. From the joint log-likelihood,

ℓ(θ; X0:T , Y0:T ) = logL(θ; X0:T , Y0:T ),

a second order Taylor series is constructed around the mode of the latent variables,

X̂θ = argmaxX0:T
ℓ(θ; X0:T , Y0:T ).

Since the gradient at the mode is zero,

ℓ(θ; X0:T , Y0:T ) ≈ ℓ(θ; X̂θ, Y0:T )− 1

2
(X0:T − X̂θ)

T H(θ)(X0:T − X̂θ)

where H(θ) is the Hessian with respect to the latent states,

H(θ) = −∇2
X0:T X0:T

ℓ(θ; X0:T , Y0:T )
∣∣
X0:T =X̂θ

.
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Inserting this approximation in the formula for the marginal likelihood

LM(θ; Y0:T ) =

∫
L(θ; X0:T , Y0:T )dX0:T

=

∫
exp(ℓ(θ; X0:T , Y0:T ))dX0:T

≈
∫

exp
(

ℓ(θ; X̂θ, Y )− 1

2
(X0:T − X̂θ)

T H(θ)(X0:T − X̂θ)

)
dX0:T

= L(θ; X̂θ, Y0:T )

∫
exp
(
−1

2
(X0:T − X̂θ)

T H(θ)(X0:T − X̂θ)

)
dX0:T

= L(θ; X̂θ, Y0:T ) · (2π)n/2 · det(H(θ))−1/2

Taking the logarithm, we obtain the approximation

ℓM(θ; Y0:T ) = ℓ(θ, X̂θ; Y0:T )− 1

2
log(det(H(θ))) +

T + 1

2
log(2π)

Using the Laplace approximation requires an optimization of the joint log-likelihood and obtaining
the Hessian with respect to the latent states. To obtain the gradient of ℓM (e.g. Skaug and Fournier, 2006),
note that X̂θ is an implicit function of θ. To be explicit, write

ℓM(θ,X0:T ; Y0:T ) = ℓ(θ,X0:T ; Y0:T )− 1

2
log(det(H(θ))) +

T + 1

2
log(2π).

That is, ℓM(θ; Y0:T ) = ℓM(θ, X̂θ; Y0:T ) where X̂θ is a function of θ. By the chain rule,

∂ℓM(θ; Y0:T )

∂θ
=

∂ℓM(θ,X0:T ; Y0:T )

∂θ

∣∣∣∣
X0:T =X̂θ

+
∂ℓM(θ, X̂θ; Y0:T )

∂θ

=

(
∂X̂θ

∂θ

)T
∂ℓM(θ,X0:T ; Y0:T )

∂X0:T

∣∣∣∣
X0:T =X̂θ

+
∂ℓM(θ, X̂θ; Y0:T )

∂θ

where the implicit function theorem yields

∂X̂θ

∂θ
= −H(θ)−1 ∂ℓ(θ; X0:T , Y0:T )

∂X0:T ∂θ

∣∣∣∣
X0:T =X̂θ

Ignoring parameter uncertainty, the covariance of the state estimates can be approximated by

V (X̂θ̂) = H(θ̂)−1.

Including uncertainty in parameter estimates (Kass and Steffey, 1989; Skaug andYu, 2014), the covariance
approximation becomes

V (X̂θ̂) = H(θ̂)−1 +
∂X̂θ

∂θ

∣∣∣∣∣
θ=θ̂

Σθ̂

(
∂X̂θ

∂θ

∣∣∣∣∣
θ=θ̂

)T

, (2.3)

whereΣθ̂ is the covariance of the estimator. Using these few equations, the Laplace approximation can be
used for a wide range of models with unobserved data provided there is a unique, or at least very dominant,
maximum, X̂θ. The generality of the Laplace approximation makes it a useful tool for software packages
such as INLA (Rue et al., 2009)2, AD Model Builder (Fournier et al., 2012), and Template Model
Builder (Kristensen et al., 2016); however, as it is an approximation, its accuracy is a concern.

2Note that INLA does not use the Laplace approximation in the way outline in this section. Instead, INLA
approximates p(X0:T | θ, Y0:T ) to calculate p(θ | Y0:T ) and in turn p(Xt | Y0:T ), in a Bayesian framework.
Bayesian statistics will not be discussed here.
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2.3. LAPLACE APPROXIMATION

2.3.1 Accuracy of the Laplace approximation

The Laplace approximation is usually justified in a setting where the number of observations grow faster
than the number of random effects (e.g., Barndorff-Nielsen and Cox, 1989; Kass and Steffey, 1989; Tier-
ney et al., 1989a,b; Kass et al., 1990; Erkanli, 1994; Pinheiro and Bates, 1995). This is the typical case
in, for instance, (generalized) linear mixed models. In the literature, most theoretical results concern this
asymptotic case where the number of random effects is fixed while the number of observations increases;
or, at least, where the number of random effects per observation goes to zero. This is, however, not the
case in state-space models. In a typical time series model, the ratio is fixed as the number of observations
increases; for each new time point, additional states must be included in the model.

Ogden (2017) provides conditions for estimators based on approximate likelihoods to be consistent
when the likelihood approximation does not improve with the number of observations. Instead, the error
in the score function must go to zero; however, verifying the conditions is difficult in practice when the
true marginal likelihood is unavailable. There are, nonetheless, general approaches that can be used:
simulation studies, comparing to higher order approximations or simulation-based methods.

Effectively, the Laplace approximation approximates the joint distribution of states and observations
by a multivariate Gaussian distribution. In most cases, this is a poor point-wise approximation; how-
ever, the resulting integral approximation often performs well. For example, consider the case with one
observation, Y , and a latent variable, X , such that

X ∼ Γ(α, β)

Y ∼ Pois(X)

The gamma distribution is parameterised with shape parameterα and scale parameter β. Figure 2.1 shows
the joint likelihood, P (X,Y ), for α = β = 2 and observed value Y = 3.

While the point-wise approximation as a function of X is clearly poor, the integral approximation is
fairly good. For X < X̂θ, the Gaussian approximation is larger than the true density, while it is lower for
x > X̂θ; however, the two cases nearly cancel out. Specifically,

∫ X̂θ

−∞
f(X)− f̃(X)dx = −0.0156112

while ∫ ∞

X̂θ

f(X)− f̃(X)dx = 0.0183204

Combined, the Laplace approximation underestimates the integral. The approximated value is 97.94% of
the true value for these parameters.

2.3.2 Transformation of non-Gaussian state variables

For a fixed data set, the Laplace approximation may be improved by a change of the integration variable
(Kleppe and Skaug, 2012). In the example above, the gamma distributed latent variable can be expressed
as a transformation of a Gaussian random variable, thereby changing the scale at which the integral is
approximated.

In the example above, let pΓ be the density of the gamma distributed latent state with cumulative
distribution function Γ and pPois be the conditional density of the observation given the latent state as a
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Figure 2.1: Illustration of the Laplace approximation. The dashed line shows the likelihood of the true
model, while the dotted line is a second order Taylor approximation. The grey area indicates the difference
between the two integrands.
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Figure 2.2: Illustration of the transformed Laplace approximation. The dashed line shows the likelihood
of the true model, while the dotted line is a second order Taylor approximation. The grey area indicates the
difference between the two integrands. The dashed and dotted grey lines show the corresponding values
in the untransformed model.

function of the state. Employing the transformation

h(x) = Φ−1(Γ(x))

with inverse
h−1(y) = Γ−1(Φ(y)),

where Φ is the standard normal cumulative density function, the integral of pΓ(x)pPois(x) can be trans-
formed to an integral of ϕ(y)pPois(h

−1(y)), where ϕ(y) is the standard normal density function, since
∫

R+

pΓ(x)pPois(x)dx =

∫

R+

ϕ(h(x))pPois(x)|h′(x)|dx

=

∫

R
ϕ(h(h−1(y)))pPois(h

−1(y))|h′(h−1(y))||h−1′(y)|dy

=

∫

R
ϕ(y)pPois(h

−1(y))dy.

In this model, applying the Laplace approximation to the last integral is more accurate than applying
the Laplace approximation to the first integral. The two approaches are compared in Figure 2.2. With the
transformation, the integral approximation still underestimates the integral; however, the error is much
smaller. The new approximated value is 99.93% of the true value for these parameters. Further, the
relative error is less dependent on the parameter values. On the original scale, the error of the Laplace
approximation decreases as the scale parameter increases (Figure 2.3). In contrast, the relative error of the
Laplace approximation on the transformed scale is nearly constant as a function of the scale parameter.
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Figure 2.3: Marginal negative log-likelihood approximations (left panels) and their relative error (right
panels) compared to the true likelihood (black line) with gamma distributed random effect (purple dashed
line) and transformed Gaussian random effects (red dashed line) as a function of α with β = 2 (upper
panels) and as a function of β with α = 2 (lower panels).
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2.3. LAPLACE APPROXIMATION

2.3.3 Functions of latent states

The ratio between latent states and observations is not only an issue for the accuracy of the Laplace approx-
imation, but also for calculating the uncertainty of transformations of latent states. In many applications,
it is not only the parameters and latent states that are of interest. Derived quantities may also be an integral
part of the analysis and interpretation of the data at hand. Extending the arguments of Kass and Steffey
(1989; e.g., Kristensen et al., 2016), the covariance of latent states and parameters can be approximated
by

V

(
X̂θ

θ

)
=

(
H(θ)−1 0

0 0

)
+ JT ΣθJ,

where J is the p × (T + 1 + p) Jacobian matrix of (X̂θ, θ)
T with respect to θ. Note that extracting the

marginals corresponding to X̂θ simplifies to Equation (2.3). From this, the delta method can be used to
approximate the mean and variance of a function of the estimates, f(θ̂, X̂θ), by

E
(
f(X̂θ, θ̂) | Y0:T

)
≈ f(X̂θ, θ̂)

V
(
f(X̂θ, θ̂) | Y0:T

)
≈ f ′(X̂θ, θ̂)

T V

(
X̂θ

θ

)
f ′(X̂θ, θ̂)

This is the procedure used in both ADMB and TMB (Kristensen et al., 2016).

Using the delta method relies on asymptotic normality of the parameters. However, in a state-space
model the number of observations per latent state is fixed, as previously discussed. Therefore, the usual
asymptotic normality cannot be used. This can result in a bias if transformations of random effects are
not corrected.

To obtain the mean of the transformed variable, as opposed to the transformed mode, Thorson and
Kristensen (2016) note that

E(f(θ̂, X0:T ) | Y0:T ) =

∫
exp
(
ℓ(θ̂; X0:T , Y0:T )

)
f(θ̂, X0:T )dX0:T

∫
exp
(
ℓ(θ̂; X0:T , Y0:T )

)
dX0:T

where ℓ(θ,X0:T ; Y0:T ) is the joint log-likelihood of data and random effects. Defining the function

g(θ̂, X0:T , ϵ; Y0:T ) = − log
(∫

exp(ℓ(θ̂; X0:T , Y0:T )− ϵf(θ̂, X0:T ))dX0:T

)
,

the gradient with respect to ϵ is

∂

∂ϵ
g(θ̂; X0:T , ϵ; Y0:T ) =

∫
exp
(
ℓ(θ̂; X0:T , Y0:T )− ϵf(θ,X0:T )

)
f(θ̂, X0:T )dX0:T

∫
exp
(
ℓ(θ̂; X0:T , Y0:T )− ϵf(θ,X0:T )

)
dX0:T

Evaluating the gradient at ϵ = 0, the mean of the transformed variable is obtained:

∂

∂ϵ
g(θ̂, X0:T , ϵ; Y0:T )

∣∣∣∣
ϵ=0

= E(f(θ̂, X̃0:T ) | Y0:T )

In summary, the mean of f can be obtained by appending ϵf(θ,X0:T ) to the negative log-likelihood
and evaluate the gradient of the new marginal likelihood of data with respect to ϵ. The integral can be
evaluated by the Laplace approximation; however, then the calculated mean is also an approximation.
Similar calculations can be made for the variance.
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2.4 Using the Laplace approximation in filters

A clear limitation of using the Laplace approximation on the joint log-likelihood of the entire time series,
ℓ(θ; X0:T , Y0:T ), is the requirement of a unique mode

X̂θ = argmaxX0:T
ℓ(θ; X0:T , Y0:T ).

This requirement can be circumvented by combining the filtering method and the Laplace approximation
(e.g., Shimada and Tsukuda, 2005; Koyama et al., 2010; Paper V Albertsen, 2017b).

Koyama et al. (2010) use the Laplace approximation to approximate the filtering distribution,
p(Xn | Yn), while the prediction density is calculated by numerical integration or an asymptotic expan-
sion. Shimada and Tsukuda (2005) and Paper V (Albertsen, 2017b) use a slightly different approach.
Instead of the filtering distribution, they apply the Laplace approximation to the one step prediction
p(Yn | Yn−1), while an approximate filtering distribution is obtained as a by-product. The filtering
distribution is approximated by a Gaussian distribution where the mode and Hessian from the Laplace
approximation are used as mean and precision, respectively. With this approach, it is enough to have
a unique maximum of gθ(Yn | Xn)p(Xn | Yn−1) for each time step in the filter. This is an important
observation for Paper V (Albertsen, 2017b) to allow regime switching in the model.

2.5 Regime switching state-space models

In many dynamical systems, it is reasonable to consider changes in the parameters. For instance, in
econometrics, the return of an asset may alternate between high volatility and low volatility periods;
an economy may be expanding or contracting; in fisheries stock assessment models, a fish stock may
alternate between high and low production periods; and in animal movement models, an animal may
alternate between migration and foraging. These changes in behaviour of the system dynamics can be
linked to an abrupt change in the parameters. This change can be modelled by extending the state-space
model with a latent finite state Markov process, St. The current state of the Markov chain determines the
parameters to use.

Extending the model for the fully observed system is straight forward. The general state-space model
defined in Equation (2.1) becomes

P (St = j | St−1 = k) = ptkj

Xt = ϕ(Xt−1, θSt , ϵt)

Yt = γ(Xt, θSt , νt),

(2.4)

In words, the probability of going from regime k to regime j is ptkj , which may depend on time. Naturally,∑
j ptkj = 1 for all t and k. The process and measurement equations are changed such that the parameter

vector used depends on the current state of St.

Although extending the full system model is simple, calculating the marginal likelihood of the ob-
servations is complicated even further than for the regular state-space model. To obtain the marginal
likelihood, the discrete latent states must be summed over, while the continuous latent states must be
integrated over. One approach to solve the problem is to sum over the discrete latent states and apply
the Laplace approximation to the resulting joint likelihood of X0:T and Y0:T ; however, this will cause
problems for the Laplace approximation.

12



2.6. AUTOMATIC DIFFERENTIATION

To illustrate the problem, consider the simple case of a linear Gaussian model with two time steps and
a regime switching mean parameter, µ1 = −1 and µ2 = 1:

X0 ∼ N(µS0 , 0.5
2)

X1 ∼ N(µS1 + 0.5(X0 − µS1), 0.5
2),

where the regime transition densities are given by

P (St = 1 | St−1 = 1) = P (St = 2 | St−1 = 2) = 0.7,

and the observations are given by
Yt ∼ N(Xt, σ

2
Y ).

Even in this simple example, summing over the discrete states, S0 and S1, results in a multimodal distribu-
tion of the continuous states for fixed data (Figure 2.4). Clearly, there is no unique optimum to construct
a Taylor polynomial around, and if one of the modes is used, a Gaussian approximation will be poor.
Increasing the information contained in the data by reducing the measurement variance will eventually
lead to a unimodal distribution. Therefore, this approach may be feasible with high quality observations.

An alternative approach, taken by Paper V (Albertsen, 2017b), is to use the Laplace approximation be-
fore the summation for each time step of a filter. In the example above, without observations, the bimodal
distribution of continuous latent variables, reduces to four regime-wise unimodal Gaussian distributions,
that can be integrated by the Laplace approximation and combined to give the data likelihood (Figure 2.5).

In the linear Gaussian state-space model, Kim (1994) used this approach to extend the Kalman filter
to a regime switching model. For each time step, the Kalman filter updates are made conditional on the
current and the previous regime. Afterwards, the regime-wise likelihood contributions are weighted by
the regime probabilities to give the marginal likelihood of the data at the current time step, given data
from all previous time steps.

Building on the ideas of Kim (1994), Paper V (Albertsen, 2017b) replaces the Kalman filter updates
with regime-wise Laplace approximations in each time step to calculate the marginal likelihood. In the
special case of one regime, the procedure is similar to Shimada and Tsukuda (2005). By using sequential
regime-wise Laplace approximations, the multi-modality problem is circumvented; however, it is at the
cost of assuming the filtering distributions p(Xt | Yt, St) are Gaussian. In Paper V (Albertsen, 2017b),
the mean and variance of p(Xt | Yt, St) is approximated directly from the Laplace approximation. It
may be feasible to describe the filtering distribution using higher order moments using, for example, the
corrections discussed in subsection 2.3.3; however, thais is a topic for future research.

2.6 Automatic differentiation

Applying the Laplace approximation requires optimizing the joint likelihood and calculating theHessian at
the optimum; both involves calculating derivatives of the joint likelihood. This process can be automated
using automatic differentiation (AD, see e.g. Griewank, 2000; or Skaug and Fournier, 2006, combined
with Software III for a simple implementation).

Given a computer program that defines a function, AD computes the derivatives by traversing the
computational graph. The computer program is a long list of simple operations such as addition, multipli-
cation, exponential, and square root. For each of these operations, the derivative is known, and the chain
rule can be used to combine them:

(f(g(x)))′ = f ′(g(x))g′(x);
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Figure 2.4: Highest density regions (Hyndman, 1996) of 10% ( ), 20% ( ), 30% ( ), 40% ( ), 50%
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without a likelihood contribution from the observations (upper left), with σY = 3σX (upper right), with
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Figure 2.6: Computational graph for f(x, y) = exp
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Table 2.1: Computations for forward mode AD of f(x, y) = exp
(

−x2

y

)
+ y with respect to x.

Node Operation Value Derivative

t1 x · x x2 ∂t1
∂x

= 2x
t2 t1/y x2/y ∂t2

∂t1

∂t1
∂x

= 1/y · 2x
t3 −t2 −x2/y ∂t3

∂t2

∂t2
∂x

= −1 · 2x/y

t4 exp(t3) exp(−x2/y) ∂t4
∂t3

∂t3
∂x

= exp(t3) · (−2x/y)

t5 t4 + y exp(−x2/y) + y ∂t5
∂t4

∂t4
∂x

= 1 · (− exp(t3) · 2x/y)

R t5 exp(−x2/y) + y ∂R
∂t5

∂t5
∂x

= −2x/y · exp(−x2/y)

or in a more convenient notation,
∂z

∂x
=

∂z

∂y

∂y

∂x
.

To calculate the derivative of the entire function, the computer only needs to keep track of all the simple
operations used, use the simple derivative formulas, and combine them by the chain rule. Two variants
of AD exist. Forward mode AD calculates derivatives while traversing forward through the graph, while
reverse mode AD calculates derivatives while traversing backward through the graph.

2.6.1 Forward mode AD

To illustrate the calculations of forward mode AD, consider the function

f(x, y) = exp
(−x2

y

)
+ y (2.5)

with the computational graph shown in Figure 2.6.

To calculate the derivative ∂
∂x

f(x, y), start with input values x and y. The first operation, node t1, is
multiplication of x with itself. The derivative of x · x with respect to x is known to be 2x. Hence, the
value x2 and the derivative 2x can be recorded at node t1. The next node, t2, is the division t1/y. The
derivative of this operation with respect to t1 is 1/y. By using the chain rule, the derivative of t2 with
respect to x is 1/y · 2x, which can be recorded together with the value x2/y at note t2. This procedure is
continued until the final result is returned (Table 2.1).
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Figure 2.7: Reversed computational graph for f(x, y) = exp
(

−x2

y

)
+ y after a forward sweep recording

the function value.

Table 2.2: Computations for reverse mode AD of f(x, y) = exp
(

−x2

y

)
+ y.

Edge Derivative to calculate Calculated derivative Combined derivative

R← t5
∂R
∂t5

1 ∂R
∂t5

= 1

t5 ← t4
∂t5
∂t4

1 ∂R
∂t4

= 1

t4 ← t3
∂t4
∂t3

exp(t3) ∂R
∂t3

= exp(−x2/y)

t3 ← t2
∂t3
∂t2

−1 ∂R
∂t2

= − exp(−x2/y)

t2 ← t1
∂t2
∂t1

1/y ∂R
∂t1

= − exp(−x2/y)/y

t1 ← x ∂t1
∂x

2x ∂R
∂x

= −2x exp(−x2/y)/y

t5 ← y; t2 ← y ∂t5
∂y

; ∂t2
∂y

1;−t1/y
2

∂R

∂y
=

∂R

∂t5

∂t5
∂ty

+
∂R

∂t2

∂t2
∂ty

= − exp(−x2/y) · (−x2/y2) + 1 · 1

At the final node, R, we have the value exp(−x2/y) + y and derivative ∂
∂x

f(x, y) = −2x/y ·
exp(−x2/y). To calculate the derivative with respect to y, the graph is traversed again.

2.6.2 Reverse mode AD

To calculate derivatives of the function (2.5) using reverse mode AD, a forward sweep through the compu-
tational graph must be made to record the function value at each node. Afterwards, the graph is traversed
in reverse (Figure 2.7), starting at the final node, R.

Sweeping backwards through the graph, the derivative at each egde is calculated. The first edge in
the sweep is t5 → R corresponding to the derivative ∂R

∂t5
. Going from t5 to R, the result is returned.

The derivative of this operation is 1. The next edge is t4 → t5 corresponding to the derivative ∂t5
∂t4

. The
derivative of t4 + y with respect to t4 is 1. By using the chain rule, the combined derivative, ∂R

∂t4
, is

obtained:
∂R

∂t4
=

∂R

∂t5

∂t5
∂t4

= 1 · 1 = 1.

This procedure is continued until the parameter nodes are reached (Table 2.2). Special care is needed for
y. Since two edges are leaving the y node, the derivative with respect to y is calculated as the sum of the
derivatives obtained from each path.
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CHAPTER 2. STATE-SPACE MODELS

After a single reverse sweep of the computational graph, the full gradient

∇f =

(
∂f

∂x
,
∂f

∂y

)

evaluated at the input parameters has been calculated. Higher order derivatives can be calculated by
constructing the computational graph for the gradient and apply reverse mode AD on the new graph.

In statistical applications, the function of interest is the negative log-likelihood, ℓ : Rp 7→ R. Hence,
with reversemodeAD, the score,∇θℓ, can be obtainedwith a single forward sweep and a single backwards
sweep; irrespectively of the dimension, the cheap gradient principle yields that (in theory) the gradient
can be calculated with less than four3 times the computational cost of calculating the function value (e.g.,
Skaug and Fournier, 2006) Likewise, for the Laplace approximation the first and second order derivatives
of the joint log-likelihood is needed for finding the mode and calculating the marginal likelihood. These
can be obtained automatically through AD.

2.7 Sparsity of Hessians

While the gradient of the joint likelihood of a state-space model can efficiently be calculated using AD,
the Hessian (i.e., the gradient of the function ∇X0:T ,θℓ : RT+1+p 7→ RT+1+p) requires more work as the
graph must be traversed several times. Further, finding the mode of latent states requires computations
involving the large Hessian matrix.

Therefore, care must be taken in formulating the state-space model to be used with the Laplace ap-
proximation. If the Hessian matrix with respect to the latent states is dense, the computational complexity
will increase rapidly with the number of states. On the other hand, if the Hessian matrix is sparse, matrix
algorithms can utilize the structure to reduce the computational complexity.

For illustration, consider a random walk with measurement error. It can be formulated through the
independent state increments

∆Xt
iid∼ N (0, σ2

s)

where the observations are

Yt =
t∑

i=0

∆Xi + ηt

with ηt
iid∼ N (0, σ2

o). Alternatively, the same model can be formulated through the state locations as

Xt = Xt−1 + ϵt

Yt = Xt + ηt

where ϵt
iid∼ N (0, σ2

s) and ηt
iid∼ N (0, σ2

o).

Both formulations describe the same statistical model; however, the former is not suited for efficient
inferencewith the Laplace approximation. With the iidmodel formulation, theHessianmatrix of the latent
states is dense (Figure 2.8 upper left panel). As a result, using the Laplace approximation is slow, and the
time to compute the marginal likelihood increases rapidly with the number of time steps. Conversely, the
location-based model formulation results in a sparse Hessian matrix. The sparse Hessian results in faster

3or three to five depending on the assumptions (Griewank, 2000).
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Figure 2.8: Hessian for 100 latent states (upper panels) and time to calculate the marginal likelihood as a
function of the number of latent states (lower panels) for the iid (left panels) and location (right panels)
based formulations of the random walk with measurement error. In the Hessian matrices, white indicates
a structural zero while the remaining colour breakpoints are:[-10; 0) ( ), [0; 10) ( ), [10; 20) ( ), [20;
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CHAPTER 2. STATE-SPACE MODELS

calculations and better scaling of the problem to longer time series. In the example above, evaluating the
marginal likelihood for 1000 latent states took 1.111 seconds in the iid parameterisation, while it only
took 0.028 seconds in the location based parameterisation (Figure 2.8).

2.8 Model validation and selection

Another difficulty in state-space models is validation. Using the marginal model, regular statistical con-
cept such as forecast residuals, hypothesis test and information criteria can be used for model validation
and evaluation. Further, a model may be validated by its consistency when adding data, and its predictive
ability. If a system is adequately modelled, the model should be able to predict new observations gener-
ated by the system. Likewise, from a certain point, adding new observations should not drastically change
parameter or state estimates.

2.8.1 Forecast residuals

Through one-step predictions, residuals are often used to investigate shortcomings of amodel; autocorrela-
tion, non-zero mean or variance heterogeneity may indicate, for instance, missing dependence, covariates
or flexibility in the model. In general non-linear non-Gaussian models, simulation based quantile resid-
uals may be used for model validation (Smith, 1985). In a time series context, the quantile residuals of
continuous observations, yt, rely on the probability

Ut = P (Yt ≤ yt | Y0:t−1 = y0:t−1).

Under the true model, the Ut’s are independent and uniformly distributed. Independent standard normally
distributed residuals are obtained by the transformation

Zt = Φ−1(Ut),

where Φ is the cumulative distribution function of a standard normal distribution. For discrete observa-
tions (Smith, 1985; Früiiwirth-Schnatter, 1996), Ut defined above is not uniformly distributed. Instead, a
random interpolation can be used to calculate Ut,

Ui = (1− αt)P (Yi ≤ yi − 1 | Y1:i−1 = y1:i−1) + αtP (Yi ≤ yi − 1 | Y1:i−1 = y1:i−1),

where αt ∼ Unif(0, 1). This corrected version of Ut will be continuous uniformly distributed on (0, 1).

In filters, quantile residuals can be calculated during the recursive loop over time steps (Früiiwirth-
Schnatter, 1996). During the recursion, p(Yt | Yt−1) is readily available and the residuals can be calculated
through

P (Yt ≤ yt | Y0:t−1 = y0:t−1)

∫ yt

−∞
p(Yt = y | Yt−1)dy,

provided that the Markov property can be invoked. The integral can be solved by, for example, numerical
methods.

For models marginalized by the Laplace approximation, the one-step data predictions are not readily
available. Instead, Thygesen et al. (2017) provides a procedure for calculating the residuals; also when
the Markov property does not hold. Thygesen et al. (2017) recognize the uniform residuals, Ut, as

Ut =
P (Yt ≤ yt, Y0:t−1 = y0:t−1)

P (Y0:t−1 = y0:t−1)
.
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2.8. MODEL VALIDATION AND SELECTION

Defining
ft(y) = P (Yt = y, Y0:t−1 = y0:t−1)

=

∫
fX0:T Y0:t(X0:T , [y1:i−1, y]; θ)dX0:T

where fX0:T Y0:t is the joint density of all states and all observations up to time i, and [y1:i−1, y] is the
reduced data set up to time i where yi is replaced by the integration variable y. Using ft, the uniform
residuals can be calculated by

Ut =

∫
(−∞,yt]

ft(y)dy
∫

fi(y)dy

=

∫
(−∞,yi]

fi(y)dy
∫

(−∞,yi]
fi(y)dy +

∫
(yi,∞)

fi(y)dy

Note that if the observations are discrete, the integrals reduce to a sum. In this expression, fi(y) can be
calculated by the Laplace approximation, and integrated by numerical integration.

It is important to note that using the Laplace approximation, Pearson residuals based on the state
estimates, Y0:T − X̂θ, will not be independent. A dependence is introduced because the state estimates
naturally provided by the Laplace approximation are smoothed in the sence that they depend on the entire
data set, Y0:T .

2.8.2 Akaike information criterion

While residuals are used for validating a single model, information criteria can be used for comparing sev-
eral models. Several information criteria exist; however, the Akaike information criterion (AIC; Akaike,
1974) has a convenient interpretation. The AIC is calculated by

AIC = −2ℓ(θ̂) + 2p

where ℓ(θ̂) is the log-likelihood function evaluated at the maximum likelihood estimates, and p is the
number of parameters. Differences in the AIC between models asymptotically estimates the expected dif-
ference in Kullback-Liebler divergences to the true data generating system; a measure of the information
lost by using the candidate model instead of the true model.

Since the 2p term only holds asymptotically, several variants of the AIC exist where the term has been
replaced by other approximations derived for specific settings. Likewise, other information criteria exist
that does not estimate Kullback-Liebler divergence. Paper I (Albertsen et al., 2017a) and Paper II (Al-
bertsen et al., 2017b) use the AIC to compare models; however, another variant could be used instead.

While Paper II (Albertsen et al., 2017b) uses AIC to compare several nested models, Paper I (Al-
bertsen et al., 2017a) compares different measurement distributions in a fisheries stock assessment
model. As the data is multivariate, each measurement distribution defines a family of models where the
largest model estimates all parameters freely, and the smallest model estimates all parameters as equal,
θ1 = θ2 = . . . = θp. To give a fair comparison between measurement distributions, the model attaining
the minimal AIC from each family should be used. Calculating the AIC for each sub-model in each
family would require extensive model fitting. Instead, Paper I (Albertsen et al., 2017a) notes that a lower
and an upper bound for each family can be found. The upper bound for the minimal AIC within a family
is simply the lowest AIC of a model fitted from the family. A lower bound can be found by noting that
the minimal negative log-likelihood within the family is obtained for the full model, while the minimal
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number of parameters is found for the smallest model. Combining these two lower bounds for each term
in the AIC, a lower bound is obtained for the minimal AIC within the family. In other words, for n model
specifications where an i subscript indicates a value for the ith model,

min
i∈{1,...,n}

(AICi) ≥ min
j∈{1,...,n}

(ℓ(θ̂)j) + min
k∈{1,...,n}

(2pk)

Comparing the resulting intervals, poor models can be excluded.

For any model selection tool, care must be taken in subsequent use of parameter estimates and confi-
dence intervals, as these do not takemodel selection uncertainty into account (see e.g., Chatfield, 1995, for
a discussion). In marine ecological applications, model selection is not the only source of uncertainty not
taken into account. Often, data is not actually observed data, but aggregated or results from other models;
only a small subset of relevant predictors are available; measuring a system can influence it unpredictably;
and the data generating system is too complex to adequately describe by any model.

2.9 Using state-space models in marine science

There are several advantages to using state-space models over a regular time series model in marine
science. In many marine systems, it is often reasonable to believe, that there is a good understanding of
either the system dynamics, at least at some level, or the measurement errors.

Subject knowledge of physical or biological processes can provide the deterministic part of the state
dynamics in many cases. Likewise, when the measuring equipment can be tested, independent studies
with known fixed states can provide knowledge of the distribution of measurement errors. Extending the
deterministic system model to a marginal model of observations including both system and measurement
noise is, in general, not easy. However, using the state-space model frame-work, the procedure is obvious.
Similarly, extending a marginal time series model with subject knowledge of the measurement errors is
not straightforward without the separation of process and measurements the state-space model provides.

Further, state-space model can easily handle missing data and data from different sources. If a system
is observed in more than one way, both measurement equations can be included to utilize all available
information about the system. Conversely, if data is missing, the corresponding latent state variable can
still be included, while it is not influenced directly by an observation; corresponding to including an
observation censored on the entire observation space. In a marginal time series model, an observed value
is often needed to calculate the likelihood of the next observations.

Naturally, there are also limitations of state-space models. Because the data is often highly correlated,
some parameters can be weakly unidentifiable, unless the time series is long (e.g., Auger-Méthé et al.,
2016). Likewise, the ratio between measurement and process stochasticity can result in models emulating
either independent observations or observations without error. Further, since the process is unobserv-
able it is impossible to validate directly. It can only be validated by its internal consistency, through
observations, or by comparing with data from the same system collected differently. Finally, methods
for estimating state-space models are computationally demanding, even when based on approximations
such as the Laplace approximation. However, in systems that cannot be observed directly or perfectly,
state-space models are a necessity for statistical analysis.
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Chapter 3

Fisheries stock assessment

The first application of state-spacemodels in this thesis is in fisheries stock assessmentmodels. In fisheries
stock assessment models, the aim is to infer the abundance of a fish stock over time from catches and
scientific surveys. The true abundance can never be observed directly, which makes state-space models a
natural framework to use.

Contemporary fisheries stock assessment models depend on various biological and fisheries data for
the analysis. Further, several approaches exist to analyse these data for use in management and conser-
vation. Paper I (Albertsen et al., 2017a) and Paper II (Albertsen et al., 2017b) are focused on extending
current models for management and conservation in an operational way. For a model to be operational, it
must use the data sources currently used, be estimated quickly, and provide the output required by man-
agers. To limit the scope of this chapter, data and models will be described in a European management
context for data rich species with a focus on state-space models. Occasionally, the descriptions will branch
out to other regions and methods.

3.1 European fisheries management

In Europe, the International Council for the Exploration of the Sea (ICES) provides advice on sustainable
fisheries for policymakers. The advice builds on fisheries stock assessment models.

The production of the advice can be separated into four phases (ICES, 2016b). For advice in 2018, the
first phase is collecting data up to December 31st 2017. For some stocks, the data collection may continue
into 2018. In the second phase, the stock status by January 1st 2018 is assessed. Here, a stock assessment
model is used to estimate the size of the stock and the mortality induced by fishing. The next phase is to
make assumptions about 2018, as the year is not over yet, to use in the final phase. In the final phase, the
stock status is forecasted for 2019 based on the possible catch options to be taken in the year.

The advice production process poses some constraints on stock assessment models to be operational
for management. Firstly, the stock status should be assessed by January 1st. Secondly, the model must be
able to forecast the stock status given assumptions. Finally, European stocks are managed with a stock by
stock system, which requires that models deliver stock specific statuses (ICES, 2016a).

For each stock, reference points are set for the fisheries-induced mortality and the stock size, which the
management strategy should ensure the stock is below respectively over, to ensure a sustainable fishery.
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To be operational in fisheries management, models should either estimate the reference points or produce
output from which they can be derived.

3.2 Models

Several models have been developed for fisheries stock assessments. The models differ in complexity,
required data, and methodology; some models estimate the total biomass of a population while others
estimate a length or age distribution, and some models are space aggregated while others are spatially
explicit. Historically, state-space models have received limited attention in fisheries stock assessment
modelling (see e.g., Quinn, 2003; and Aeberhard et al., 2018, for historical accounts); however, the
framework has received renewed attention due to the technological advances in computational statistics
(Aeberhard et al., 2018). This section will focus on biomass models, which illustrates many of the current
management concepts, and age-based assessment models which are used in Paper I (Albertsen et al.,
2017a) and Paper II (Albertsen et al., 2017b).

3.2.1 Biomass models and reference points

The change in biomass of a stock can be expressed through the production, R(Bt), the natural mortality
rate, M , and the fisheries induced mortality rate, F (Schaefer, 1954):

dBt

dt
= R(Bt)−MBt − FBt

The production is a combination of growth and recruitment; both are functions of the current biomass.
Combining R(Bt)−MBt to a single term, P (Bt), the change in biomass can be expressed as the differ-
ence between the surplus production of the stock and the fisheries catch.

In its essence, fisheries management is built on the observation that a stable population is maintained
when dBt

dt
= 0; that is, when the catch equals the surplus production of the stock. If the catch is higher than

the surplus production, the stock size will decrease; on the other hand, if less than the surplus production
is caught, the stock size will increase, and a stable population could have been achieved with a higher
catch. For each stock size, a different fishing mortality will produce a stable population. The aim is to
select the level at which the production is maximized1, yielding the highest sustainable catch (or yield;
illustrated in Figure 3.1).

State-space models have been used to fit stochastic versions of the biomass model above and ex-
tensions (e.g, Freeman and Kirkwood, 1995; Millar and Meyer, 2000; Montenegro and Branco, 2016;
Pedersen and Berg, 2017). While the deterministic model can easily be extended to a stochastic differen-
tial equation, the resulting reference points must be corrected for stochasticity (e.g., Pedersen and Berg,
2017).

3.2.2 Stock recruitment relationship

When age-wise information is available, modelling mortality and recruitment separately is often
convenient, as age-wise mortality and maturity may be available. Instead of the total biomass, the

1Because of data and model uncertainty, a lower catch is usually used as the management target.
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Figure 3.1: Schaefer surplus productionP (Bt) = rBt

(
1− Bt

K

)
(upper left panel; full line) and determin-

istic biomass trajectories when fishing at the rate giving the maximum sustainable yield (lower left panel;
full line), when fishing at half the rate giving the maximum sustainable yield (upper right panel; full line),
and when fishing at 1.5 times the rate giving the maximum sustainable yield (lower right panel; full line).
Corresponding catch biomasses are indicated by dashed lines, while equilibrium biomass is indicated by
dotted lines.
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Figure 3.2: Stock-recruitment relationship for North Sea cod (left panel; data from http://standardgraphs.
ices.dk/ViewCharts.aspx?key=9251 accessed Nov. 25 2017) and North Sea herring (right panel; data
from http://standardgraphs.ices.dk/ViewCharts.aspx?key=8742 accessed Nov. 26 2017). Points indicate
estimated recruitment and spawning stock biomass from the assessment model used for the 2017 advice.
Lines are post-processed fitted Ricker (red line), Beverton-Holt (orange line), Hockey-stick (purple line),
semi-parametric (blue line), and constant (grey line) stock-recruitment relationships. All relationships
were fitted with log-normal errors. Note: For North Sea Cod, the Ricker and Beverton-Holt curves are
coinciding.

spawning-stock biomass is often used. To calculate the spawning-stock biomass, the age-wise biomasses
are weighted by the proportion of spawning individuals and added. The relationship between the
stock size and recruitment, R(S), is used to determine reference points for management (ICES, 2017).
Therefore, it is a key output of any assessment model not directly calculating reference points such as the
surplus production model.

The relationship between the stock size and the number of recruits, the production, can be modelled in
several ways. Two of the most common models are the Ricker and the Beverton-Holt models. The Ricker
model assumes the relationship is of the form

R(S) = αS exp(−βS)

with α, β > 0, while the Beverton-Holt stock-recruitment relationship is of the form

R(S) =
αS

β + S
, α, β > 0.
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Another convenient form of the stock-recruitment relationship is the hockey stick:

R(S)

{
αS

β
S ≤ β

α S > β
.

In Europe, a precautionary biomass reference point is defined from the biomass at which the stock is
considered to have reduced reproductive capacity (ICES, 2017). In the hockey stick stock-recruitment
relationship, this is exactly α. This level is the biomass limit, while the precautionary limit is corrected
for uncertainty in biomass estimates. While the models above have few parameters, Cadigan (2013)
proposes a flexible semi-parametric monotone decreasing B-spline for log

(
R
S

)
:

R(S) = exp(X(S)γ)S

where X(S) is a B-spline basis evaluated at S and the spline knot-parameters are, for instance,

γ1 = β1, γi = γi−1 − exp(βj)

with (β1, . . . , βj)
T ∈ Rj , which ensures a decreasing spline. For this model, the number of knots can

either be selected as a fixed number or numerous knots can be used with regularization on the parame-
ters. The models above are illustrated for North Sea cod and herring in Figure 3.2. Several extensions,
generalizations and other models have been proposed (see e.g., Needle, 2001), but will not be covered
here.

3.2.3 Age-based models

For many stocks, data on the age distribution is available. Instead of modelling the total biomass, the
additional information can be utilized to model the numbers-at-age for a stock. In a closed spatially
uniform stock, the size of an age cohort over time can be described by the exponential decay model

Na,y = exp (−(Fa−1,y−1 + Ma−1,y−1) + ϵN,a,y) Na−1,y−1.

Each year the cohort ages by one year, some die of natural causes while others die from fisheries; modelled
by Ma−1,y−1 and Fa−1,y−1 respectively. Often the natural mortality rate is assumed to be known. In this
case, the process variability can be thought of as a combination of inaccuracies in the known mortality
and the closed stock assumption. In the cohort equation, and the equations below, ϵs will usually be
independent Gaussian random variables. A new cohort is modelled by a stock-recruitment relationship
above:

N0,y = R (N0,y−1, . . . , NA,y) exp (ϵN,0,y) .

Besides the stock size, fishing mortality, Fa,y, is a quantity of interest for management. In non-state-
space models, it is often assumed that the fishing mortality can be separated into a yearly contribution
and an age contribution, Fa,y = Safy, such that the parameters can be estimated. The age contribution
describes the selectivity of the fishery, while the year contribution describes the fishing intensity.

In a state-space framework, Gudmundsson (1994) models fishing mortality with the separable struc-
ture extended with independent random deviations. To obtain a more flexible structure with time-varying
selectivity, Nielsen and Berg (2014) models the fishing mortality on log-scale by a random walk with
correlated increments,

logFa,y = logFa,y−1 + ϵF,a,y.
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The stock size and fishing mortality are only observed indirectly through the catch and scientific
surveys. The catch-at-age is often assumed to follow the Baranov catch equation,

Ca,y =
Fa,y

Fa,y + Ma,y

(1− exp (−(Fa,y + Ma,y))) Na,y exp (ϵC,a,y) .

In this equation, the catch during year y is calculated as the proportion that die from fishing, Fa,y

Fa,y+Ma,y
,

of the proportion that die (1− exp (−(Fa,y + Ma,y))) of the number of fish at the beginning of the year,
Na,y. The Baranov catch equation assumes constant mortality rates throughout the year.

Scientific surveys are used to produce indices of abundance. It is assumed that the catch from scientific
surveys are small enough to be ignored, while the resulting indices are proportional to the true stock size
at the time of the survey:

Ia,y = q exp (−(F + M)d/365) Na,y exp (ϵI,a,y) ,

where d is the day of the survey.

While state-spacemodelling is not the predominant framework for analysing catch-at-age data, several
examples exists of its use. For example, Gudmundsson (1994) and Schnute (1994)2 use Kalman filters to
estimate parameters and stock status in age-based state-space models. Brinch et al. (2011) investigated the
Laplace approximation and importance sampling based on Laplace approximations, and found that both
provided accurate estimates for a catch-at-age model. Likewise, Gudmundsson and Gunnlaugsson (2012)
compared the Kalman filter to the Laplace approximation with AD Model Builder and found that both
approaches provide accurate parameter and stock status estimates. The authors note two limitations of the
Laplace approximation compared to the Kalman filter: it does not produce residuals, and it is slower. The
former is now resolved by Thygesen et al. (2017), while the latter was correctly predicted to be a vanishing
problem as technology and methodology advances (see e.g., Kristensen et al., 2016). Nielsen and Berg
(2014) use the Laplace approximation to compare correlation structures for the fishing mortality rate,
modelled as random walks. This model is extended in Berg and Nielsen (2016) and Paper I (Albertsen
et al., 2017a) to investigate different observational models, and in Paper II (Albertsen et al., 2017b) to
estimate correlations between stocks (see also Software IV). As the final examples, Cadigan (2016) and
Van Beveren et al. (2017) use the Laplace approximation for models accounting for under-reporting of
catches through censored likelihoods.

3.3 Stock assessment data

As mentioned above, assessment models mainly rely on data from the fisheries and data from scientific
surveys. New data from European commercial fisheries are not readily available, however, the data used
in previous assessments can be found3. The commercial fisheries data available are age-wise yearly ag-
gregates over a management area.

In contrast, data from scientific surveys are available at a high resolution; however, for use in as-
sessment models, they are aggregated to abundance indices that match the spatio-temporal resolution
of the catch data. In both commercial and survey data, age-wise data is obtained through a series of
sub-sampling procedures. From the total catch (either commercial or survey), samples are weighed and

2Schnute (1994) also considers the “Error in Variables“ method, where the joint likelihood is used for estimation,
and latent states are estimated together with parameters. This approach is also used in Schnute and Richards (1995).

3e.g., at https://stockassessment.org
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measured to estimate the length distribution and average weight for each length. The measured samples
are then sub-sampled to estimate age-length keys used to divide the total catch into catch-at-age.

3.3.1 Distribution of data

For such a sampling procedure, it is difficult to find the true distribution of the aggregated data a priori. It
is further complicated by the fact that the sampled population - or even the sampling protocol - changes
over time.

Figure 3.3 shows the spatial distribution of samples with age readings from a scientific survey in four
different years. Clearly, the number of spatial samples have increased from 1987 to 2017; however, the
spatial distribution of the samples has also changed slightly. This affects the distribution of the aggregated
data. Similarly, changes in the spatial distribution of the population, or targeted fisheries, can influence
the distribution of measurements conditional on the true population.

Likewise, Figure 3.4 illustrates the distribution of age-length samples in the same survey. The number
of samples that could not be aged (group -9) has increased drastically. In 1987, 4 of 7,598 (0.053 %)
samples were classified with an unknown age. In 2017, the number of samples classified as unknown had
increased to 327 of 5,158 corresponding to 6.340%. Like the spatial sampling distribution, the distribution
of missing age readings can influence the result of an assessment, and the distribution of the aggregated
data.

Paper I (Albertsen et al., 2017a) recognizes this challenge and compares different likelihoods already
used for assessment data along with close extensions. Incorporating flexible correlation structures across
ages improved all four case study assessments, as measured by AIC. In particular the multivariate log-
normal and additive logistic normals performed well. The multivariate log-normal and additive logistic
normal symbolise a difference in tradition in stock assessment modelling; traditions of either modelling
catch numbers or catch proportions per age.

3.3.2 Numbers or proportions

In an age-based state-space model it is convenient to model age-wise catches, as each directly relate to a
single latent state. However, it may be more natural to divide the age-wise catches into a total catch (in
numbers or weight) and age-wise proportions of the catch, since the catch data is collected this way. In
general, total catch is accurately monitored to enforce quotas, while age-wise proportions are collected
through a series of subsamples; first to sample the length distribution, then to sample the age-at-length
distribution.

In many proportions-at-age models, the multinomial distribution has been a popular choice. Based
on the ageing procedure described above, it is also a natural choice; however, the covariance structure
does not match the actual data. In particular, the variance is often to small when using the true sample
size. As an ad hoc solution, the total sample size has been estimated as a parameter. That is, instead
of the proper distribution for a vector of integers summing to a fixed number, the density has been used
for the product of the observed proportions and a tuning parameter. In the latter case, it is not a proper
distribution. Therefore, the new tuning parameter cannot be estimated, but iterative schemes must be used
until the variance is adequately matched to data. Instead, a proper distribution for proportions can be used
such as the Dirichlet or transformations of a normal distribution.
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Figure 3.3: Map of survey hauls in 1987, 1997, 2007, and 2017 with age classifications in the North Sea
International Bottom Trawl Survey along with kernel density estimates (ignoring land).
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Figure 3.4: Bean plot (Kampstra, 2008) of length distributions per age group in the North Sea International
Bottom Trawl Surveys 1987, 1997, 2007, and 2017. Unknown age is indicated by -9.
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Paper I (Albertsen et al., 2017a) compares numbers-at-age with proportions-at-age distributions in
age-based stock assessments. For models adequately including correlations, it is concluded that both
formulations can be appropriate for real assessment data. Which of the alternatives is the most appropriate
is determined by several factors; however, the following example indicates that the relationship between
sampling error in the totals and sampling error in the proportions influences the optimal choice.

3.3.2.1 Comparing the multivariate log-normal to the additive logistic normal

Consider the following overly simplistic example for a stock with three ages where the relative stock
status over time is known without error (and therefore left out of this example). To emulate the sampling
scheme above, the reported catch, Ci, is simulated from a log-normal distribution with log-mean µ =
log(1000). Catch proportions-at-age, Qi,a, are sampled from a Dirichlet distribution with concentration
parameters αa = Paα, where Pa is the true age-distribution, Pa = exp(−(a−1))∑3

j=1 exp(−(j−1))
for a = 1, 2, 3. The

reported catch-at-age is calculated as Ci,a = Qi,aCi. Each simulated data set consists of 100 replications
of (Ci,1, Ci,2, Ci,3) (i = 1, . . . , 100). The simulation procedure has two parameters that determine the
sampling error: the standard deviation on log-scale for the totals (σ), and the concentration parameter for
the proportions (α). A lower value of σ indicates a more precise sample of total catches, while a higher
value of α indicates a more precise sample of the proportions.

For each simulated data set, a multivariate log-normal and an additive logistic normal with AR(1)
covariance, (Paper I, Albertsen et al., 2017a) were fitted. The AR(1) correlation structure is determined
by the age difference between catch groups. For the multivariate log-normal, the correlation between log-
catches are Cor(logCi,a, logCi,a′) = ρ|a−a′|. For the additive logistic normal, the AR(1) covariance is
not for the log-catch but for logit catch proportions. The log-normal model estimated the true catch-at-age
while the additive logistic normal was combined with a log-normal for the totals to estimate the true total
catch and the true catch proportions. For each simulation, the difference in AIC was calculated. Negative
values indicated that the multivariate log-normal had a better fit to data than the additive logistic normal.
Figure 3.5 shows the AIC differences for α = 0.5 as a function of σ. For each value of σ, 100 replications
were simulated. For low values of σ (i.e., for accurate samples of the total), the additive logistic normal
provided a better fit than the log-normal as measured by AIC. As σ increases, the log-normal provides
better data fits compared to the logistic normal.

Similarly, Figure 3.6 shows the AIC differences as a function of both σ and α. Again, for a fixed value
of α the log-normal provides a better fit for large values of σ, while the additive logistic normal provides
a better fit for small values of σ. Likewise, for a fixed value of σ, the log-normal provides a better fit for
large values of α, while the additive logistic normal provides the best fit for small values of α.

The simplistic simulation study indicates that modelling catch-at-age is appropriate when the catch
proportions are sampled with high precision relative to the precision of the total catch. Likewise, it is
indicated that modelling proportions-at-age is appropriate when the total catch is sampled with high pre-
cision relative to the precision of the proportions.

3.4 Extending the single stock model

One of the main assumptions of the age-based assessment model presented above is that the stock is
closed. There is no migration out of, or into, the management area, and interactions with other species are
completely determined through the known natural mortality. In many cases, this assumption is too strong.
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Figure 3.5: AIC difference per data point between the multivariate log-normal and the additive logistic
normal for α = 0.5.

Stocks may mix at the boundaries of management areas, and the data have to be split between the stocks
before single-stock models are used (e.g., Hüssy et al., 2016).

To account for connections between stocks, several models ranging in complexity have been devel-
oped. However, most ecosystem or multi-stock models require additional data on interactions between
stocks, or stocks and their surroundings, such as stomach content, migration data, or environmental data.
Collecting new data sources is time-consuming and costly. Before a data set can be incorporated in an
assessment, a time-series of several years is required. Further, complex ecosystem models often have a
vast amount of settings and can be difficult to calibrate and run.

The aim of Paper II (Albertsen et al., 2017b) is to provide an operational compromise between the sim-
ple single-stock model, and the complex ecosystem models. Without requiring any new data sources, the
single-stock model (described in subsection 3.2.3) is extended to include several stocks. Instead of deter-
ministic interactions, the model includes correlations in the survival between the stock. The correlations
are parameterized through partial correlations between the stocks. Conditional on the other stocks, ages
within a stock are assumed to be uncorrelated; this formulation provides a natural extension of the single-
stock models, where survival is typically uncorrelated. The proposed model improves the independent
individual assessment, as measured by AIC, in all three case studies considered.
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Figure 3.6: AIC difference between the multivariate log-normal and the additive logistic normal for vari-
ous values of σ and α. Upper panel: AIC difference at uniformly distributed points; larger points indicate
a larger difference - blue points indicate a positive difference, red points indicate a negative difference.
Lower panel: Smoothed surface calculated by local polynomial regression; colors show the estimated
differences (-1.566; -1.253) ( ), (-1.253; -0.94) ( ), (-0.94; -0.626) ( ), (-0.626; -0.313) ( ), (-0.313;
0) ( ), (0; 1.119) ( ), (1.119; 2.239) ( ), (2.239; 3.358) ( ), (3.358; 4.478) ( ), and (4.478; 5.597) ( ).
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3.5 Using state-space models for fisheries stock
assessment models

State-space models provide a natural framework for fisheries stock assessment models; both age-based,
length-based, and biomassmodels. Population processes naturally evolves stochastically over time, which
requires a time-series model for statistical analysis. Further, the true quantities of interest cannot be mea-
sured directly without uncertainty in marine environments. This is conveniently handled in state-space
models. The separation of population process and measurements allows a cohesive approach to combin-
ing different data sources measuring the population; similar to the popular approach integrated analysis
(e.g., Maunder and Punt, 2013).

Further, state-space models naturally allow variability from the deterministic population model. Al-
ternatives to state-space models can include additional parameters to allow time-varying deviations from
the deterministic model. However, to be identifiable a parametric form must be chosen, such as constant
blocks or overall trends. Finally, state-spacemodels for fisheries stock assessments inherits the advantages
and disadvantages of general state-space models. The framework can provide flexible and fast inference;
however, the structural form the latent states can be difficult to verify, and stock assessment models often
rely on short time-series, which can make inference difficult.
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Chapter 4

Individual animal movement

Understanding the movement behaviour of marine animals is crucial for evaluating the impact on their
conservation from humans and environmental changes. In individual animal movement modelling, the
aim is to reconstruct a movement path from uncertain data to learn about the behaviour causing the specific
path. Combining several paths, even more can be learned. Modelling several animals together, additional
information such as population parameters, diversity, migration patterns and spatial distributions can be
estimated; all of which are important for evaluating strategies for managing species. Nonetheless, for
the models to be applicable outside purely academic applications, they must be able to handle animals
observed at different time scales, and the inference methods must be efficient.

In particular in marine environments, it is difficult and expensive to gather observations from amoving
animal. Therefore, it is natural to separate the stochasticity in the data into two parts: the stochasticity
from the animal’s movement, and the stochasticity from the observation method. Therefore, like fisheries
stock assessment models, individual animal movement is a natural application of state-space models.

4.1 Movement data

Several methods exist to track moving animals. For animals that surface (and birds), a common obser-
vation method is using Argos transmitters. Argos transmitters transmits a signal which is received by
the Argos satellites. From the difference between the signal frequency emitted and the signal frequency
received, the Doppler effect can be used to calculate a position. An approximate position, with potentially
very large error, can be obtained even if the animal only surfaces shortly. The longer the animal surfaces,
the more satellites can receive the signal and, in turn, the more precise the calculated position will be. As
a by-product of the calculations, the Argos system provides a classification of the amount of error in the
positions. From best to worst, the classes are 3, 2, 1, 0, A, B, Z. In the last class, the position is considered
completely unknown. The error distribution is known to be non-normal with heavy tails for the worst
classes. Therefore, Argos data is often modelled by a Student’s t-distribution; either independent in the
coordinates (Jonsen et al., 2005) or a multivariate distribution (Paper III, Albertsen et al., 2015). Alter-
natively, the data can be pre-processed to remove the most error-prone locations and in turn be modelled
by a Gaussian distribution in the state-space model. Finally, several semi-parametric methods have been
used to model the measurement error of Argos data.

In marine environments, GPS can typically not be used because many marine animals surface too
briefly for the tag to communicate with the GPS satellites. Instead, the TrackTag or Fastloc-GPS system
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can use the GPS satellites to transmit signals, while requiring a shorter surface time; less than 60 ms (Rutz
and Hays, 2009). The accuracy of Fastloc-GPS positions is higher than the accuracy of Argos positions
(e.g., Hazel, 2009; Witt et al., 2010); however, only the lighter-weight Argos tags can be used for small
animals. With the high accuracy of GPS and Fastloc-GPS, the data is adequately described by a normal
distribution; in some cases, the measurement error can even be ignored to greatly simplify the modelling
framework.

For large animals that do not surface, a pop-up satellite tag can be used instead. These tags record,
amongst other variables, the light level and depth. Combined with a time stamp, these variables can be
used to infer the position. The resulting positions are often modelled by a normal distribution with a con-
stant variance in the longitudinal coordinate. In the latitudinal coordinate, however, the variance depends
on the time of year. Close to an equinox, the tags produce highly inaccurate positions in the latitude co-
ordinate. Therefore, an appropriate model must increase the measurement variance for observations on
days near an equinox (e.g., Sibert et al., 2003).

Alternatively, acoustic tags or passive integrated transponder (PIT) tags can be used tomonitor animals
in bounded regions. Both tags require a receiver to be close to the tag to get an observation. Acoustic
tags emit a sound signal, that can be caught by a receiver station. Knowing the positions of the receiver
stations and whether they receive a signal, the movement of an animal can be estimated (e.g., Pedersen
and Weng, 2013; Baktoft et al., 2017).

As the name suggests, PIT tags are passive until they are close to the receiver. An electro-magnetic
field from the receiver lets the tag transmit a signal containing a unique identifier to be recorded. The tag
itself does not indicate a position; however, since the tag must be within centimetres of the receiver, the
position can be inferred from the position of the receiver.

This thesis uses Argos data to model animal movement. Nevertheless, the separability of movement
and measurement in state-space models, allows the same movement models to be used with other data
sources. Using a new data source only requires a suitable modification of the distribution of an observation
given the true position. In the argosTrack package (Software I), the implemented movement models can
currently be freely combined with a multivariate normal, multivariate Student’s t-distribution, or normals
where the latitudinal variance depends on the day of year through a spline or a parametric form. The
package links observations to the process through the formula (e.g., Jonsen et al., 2005)

Ysj
= (1− q)Xti + qXti+1

+ ηj

such that ti ≤ sj < ti+1, q =
sj−ti
∆i+1

, and ηi is a zero-mean bivariate random variable for discrete time
models, and

Ysj
= Xsj

+ ηj

for continuous time models

4.2 Models

The movement models for individual animal movement are more diverse than for the measurements;
however, most models can be grouped into one of seven categories: Discrete time models of turning
angle and step length; discrete time models of location or velocity; continuous time location models;
continuous time velocity models; step-selection models; and functional models.
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One of the simplest ways to describe animal movement is the random walk with drift in discrete time:

Xi = Xi−1 + ci + ϵi

This model, which only includes dispersion parameters, is often used in settings with long periods between
observations (e.g., Anderson-Sprecher and Ledolter, 1991; Sibert et al., 2003; Nielsen et al., 2006; Nielsen
and Sibert, 2007; Lam et al., 2008; Nielsen et al., 2009; Thygesen and Nielsen, 2009). Data processed
from pop-up satellite tags is typically average locations based on light-levels throughout a time period
such as 12 or 24 hours. In this case, little information about small scale movement remains in the data at
hand, making the random walk a sufficient model to retrace the true trajectory.

4.2.1 Discrete time angle and step length model

When the random walk does not suffice, a natural way to think of animal movement is through a series of
step lengths and directions (e.g., Turchin, 1998; Morales et al., 2004; Gurarie et al., 2009; Tracey et al.,
2010; McClintock et al., 2012, 2014; Michelot et al., 2016). This way of thinking is inherently discrete in
time. Themodels are known as correlated randomwalks. Step lengths are often modelled by a distribution
on the positive numbers, such as a log-normal, Weibull, or gamma distribution,

Si ∼ Γ(α, β),

while the bearing is modelled by a circular distribution, such as a von Mises or wrapped Cauchy distribu-
tion where the mean angle depends on the last bearing,

ρi ∼ WCauchy(ρi−1, σ)

From the step lengths and bearings, the coordinate position is known by

X1,i =
N∑

i=0

Si cos(ϕi)

X2,i =
N∑

i=0

Si sin(ϕi)

(4.1)

For these models, the Laplace approximation is typically not an appropriate method for inference.
Firstly, the model structure is not sparse if the observations are modelled as coordinates, which will lead
to computational problems when the number of time points increases (section 2.7). For each time step,
the true location must be calculated using all previous locations. To circumvent this problem, the true
locations can be used as random effects instead. However, this leads to the second problem. If the variance,
modelled by σ, of the circular distribution is large, and the step length distribution is located far from
zero, the resulting one-step displacement distribution will be far from normal; it will wrap around zero as
a doughnut.

Consider the two cases where the turning angle follows a wrapped Cauchy distribution with location
parameter 0, and concentration parameter 1

4
and 3

2
, respectively (Figure 4.1). In both cases, the step length

is gamma distributed with shape parameter 90 and scale parameter 0.1; that is, mean 9 and variance 0.9.

Simulating 5,000 step lengths and turning angles, and calculating the corresponding displacements
by Equation (4.1), we get the corresponding displacement distribution Figure 4.2. In both cases, there
is a non-zero probability of the animal moving in any direction; however, when the wrapped Cauchy
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Figure 4.1: Rose plot of wrapped Cauchy distributions and histogram of step lengths.

40



4.2. MODELS

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

∆X

∆
Y

 0.01 

 0
.0

2
 

 0.03 
 0.04 

∆X

 0.002 

 0.002 

 0.004 

 0.006 

 0.008 

−10 −5 0 5 10

−
1

0
−

5
0

5
1

0

Figure 4.2: Resulting one-step displacement distributions.

distribution is concentrated, the majority of the probability mass is centred around one point. In this
case, the displacement distribution can reasonably be approximated by the Laplace approximation. On
the contrary, when the turning angle distribution has a larger variance, a large part of the displacement
distribution wraps around (0, 0). This can be a problem for the Laplace approximation; both for finding
the mode, and for the accuracy of the Gaussian approximation.

4.2.2 Discrete time models

An alternative to the step lengths and direction parameterisation is to model locations or velocities directly.
The first-Difference Correlated Random Walk (DCRW; Jonsen et al., 2005) was introduced as a random
walk on the differences in locations with a rotational transition matrix to mimic the step length-direction
formulations:

Xi = Xi−1 +

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(Xi−1 −Xi−2) γ + ϵi

With this formulation, the location process, Xi, is a second order Markov process with Gaussian incre-
ments. As a limiting case for γ → 0, the DCRW includes the random walk model without drift, ci = 0.
The model is frequently used for analysing movement data.
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4.2.3 Time irregular models

Recently, models extending the DCRW to data observed at irregular time intervals have been proposed.
Auger-Méthé et al. (2017) proposed a modified DCRW without rotation where the autocorrelation move-
ment displacements are scaled by the time intervals,

Xti = Xti−1
+

∆i

∆i−1

(
Xti−1

−Xti−2

)
γi + ϵi.

In this model,

ϵi ∼ N
(

0, ∆2
i

(
σ2

1 0
0 σ2

2

))

By examining the continuous time velocity model

dVt = −
(
− log γ1 θ
−θ − log γ2

)
(Vt − µ)dt + SdBt

= −Θ(Vt − µ)dt + SdBt

where the resulting locations are given by

dXt = Vtdt,

further steps can be taken in the direction of a time irregular DCRWmodel. By solving the velocity model
analytically and discretising the location model, Paper IV (Albertsen, 2017a) proposes the Generalized
first-Difference Correlated Random Walk (GDCWR):

Xti = Xti−1
+ ∆i exp(−Θ∆i−1)(Xti−1

−Xti−2
)/∆i−1 + ∆i (I − exp(−Θ∆i−1)) µ + ∆iϵti

The error terms, ϵti , follow a zero-mean normal distribution with variance

V ar(ϵti) = C − exp(−Θ∆i)C exp(−ΘT ∆i)

where
vec(C) = (Θ⊕Θ)−1 vec(Σ),

and Σ = SST is a covariance matrix. The GDCRW generalizes the DCRW in several ways. As the mod-
ified DCRW, the model allows irregularly observed data. Further, the model allows drift in the movement
and different autocorrelation parameters in the two coordinates. Finally, Paper IV (Albertsen, 2017a) pro-
vides time-scale invariant parameters, and illustrates how the parameters in the DCRW can be transformed
to be time-scale invariant. By decreasing the time steps, ∆i, the GDCRW can be interpreted as a contin-
uous time model.

4.2.4 Continuous time models

Both the discrete time models with equidistant time steps and irregular time steps can be constructed from
a continuous time model. The true animal behaviour most likely occurs in continuous time, making con-
tinuous time models more realistic. However, they are also more difficult to work with. Continuous time
models can be specified through stochastic differential equations (SDE). SDEs describe the instantaneous
change in the process; however, an analytical solution describing the actual process of interest can only
be obtained in few specific cases.
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For instance, a continuous time random walk with drift can be described by

dXt = cdt + σdBt.

The transition densities of the solution to the SDE are

Xt | Xs ∼ N
(
Xs + c · (t− s), σ2(t− s)

)
, t > s

Another model often used for animal movement is the Ornstein-Uhlenbeck process (e.g., Dunn and
Gipson, 1977; Blackwell, 1997, 2003; Pedersen and Weng, 2013; Breed et al., 2016; Niu et al., 2016). In
a simplified form, the model is described by

dXt = −β (Xt − µ) dt + σdBt

with transition densities

Xt | Xs ∼ N
(

µ + exp(β(t− s)) · (Xs − µ),
σ2

2β
· (1− exp(−2β(t− s))) I2×2

)

where I2×2 is a two-by-two identity matrix, β is a scalar autocorrelation parameter, and σ is a scalar
variance parameter. A solution can also be found in the case where the autocorrelation and variance are
modelled by matrices instead (see e.g., Paper IV (Albertsen, 2017a) or several of the references above).
Unlike the random walk, the Ornstein-Uhlenbeck process is stationary. The process reverts around the
mean, µ. An animal modelled by this process is assumed to stay close to the mean locations, which may
be the case for territorial and homing animals. As a result, the Ornstein-Uhlenbeck process can be used to
estimate a home range for an animal. A clear disadvantage of the Ornstein-Uhlenbeck process for animal
movement is that the attraction towards the mean increases linearly with the distance. That is, the further
an animal is from home, the faster it will move.

For animals that does not have a strong attraction to a small area, the Ornstein-Uhlenbeck process can
be used to model the velocity instead (Johnson et al., 2008).

dVt = −β (Vt − µ) dt + σXdBt

Locations are obtained as the integrated velocity process.

dXt = Vtdt

This model was introduced as a continuous time version of the DCRW; however, the DCRW and the
CTCRW are only the same in the specific case where the turning angle of the DCRW is zero, and the drift
of the CTCRW is zero. Rather, the continuous time model used to construct the GDCRW encompasses
both the DCRW and the CTCRW (Paper IV, Albertsen, 2017a).

A common difficulty for all continuous-time models, is the ability to obtain the transition densities
p(Xti | Xti−1

). The transition densities can only be obtained analytically for few models, such as the
Ornstein-Uhlenbeck and integratedOrnstein-Uhlenbeckmodels. In general, the transition densities cannot
be described in closed form. Instead, the process can be discretised to obtain approximate solutions. As
for the GDCRW, the Euler-Maruyama discretization can be used to approximate the process by Gaussian
increments in discrete time (e.g. Pedersen, 1995; Elerian et al., 2001; Cleur, 2001; Shoji, 1997; Preisler
et al., 2004; Prathumwan et al., 2012; Paper V Albertsen, 2017b; Russell et al., 2017). The approximation
can be improved by adding auxiliary time steps, such that the discretization steps are shorter (Pedersen,
1995). Integrating the auxiliary process observations out of the likelihood, the approximate likelihood
of the actual observations is obtained. In a state-space context, the auxiliary time points are added for an
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unobserved process which is already integrated out of the likelihood. If the Euler-Maruyama discretization
is not accurate enough, higher order approximations can be used (e.g., Hanks et al., 2017). Alternatively,
the change of the transition density in time can be described by the Fokker-Planck partial differential
equation, which can be solved numerically (e.g. Hurn and Lindsay, 1999; Lux, 2012; Albertsen et al.,
2014). Finally, methods not directly approximating the likelihood function can be used, such as themethod
of moments or estimating functions.

4.2.5 Functional models

Recently, functional data analysis (e.g., Ramsay and Silverman, 2005) has been used in the context of
animal movement. Instead of modelling the movement through a time-series of steps, a functional model
considers the entire trajectory as an outcome from a multivariate normal where the mean is a smooth curve
determined by a weighted sum of basis functions, for instance a B-spline (Buderman et al., 2016) but other
basis functions can be used (Hooten and Johnson, 2017). While functional data methods provide smooth
continuous time trajectories, the models can easily become detached from the time series structure of the
actual process. Further, when model parameters are spline weights they are not directly interpretable in
a movement context. However, in an attempt to bridge this gap, Hooten and Johnson (2017) provides a
class of velocity based functional movement models containing the CTCRW.

4.2.6 Models including available resources

All the models above solely utilize observed locations in the analysis. However, in many cases animal
movement and behaviour may be influenced by the environment and resources available.

To accommodate this, step selection models incorporate a regression on available resources in the
movement model. Two approaches exist to combine movement and resource selection. In the first ap-
proach (e.g., Rhodes et al., 2005; Forester et al., 2009; Potts et al., 2014; Avgar et al., 2016), the movement
density is weighted by a resource (or habitat) selection function such that the combined transition density
of moving from Xt to Xt+1 is

f(Xt+1 | Xt, Z) ∝ ϕ(Xt+1 | Xt; θ)ω(Z(Xt+1); β)

whereZ(Xt+1) are covariates at locationXt+1, θ and β are parameter vectors, ϕ is a resource independent
movement density and ω is, for instance, a log-linear function

ω(Z(Xt+1); β) = exp (Z(Xt+1)β)) .

In the second approach (e.g., Fortin et al., 2005; Duchesne et al., 2015; Nicosia et al., 2017), the
resource independent movement model, ϕ, is omitted. Instead, movement quantities such as the turning
angle and step length can be included in the log-linear function, ω. In both cases, the likelihood function
can be calculated by simulating J control points for each move. The probability of an observed move,
conditional on the control points X∗

1:J , can be calculated by

P (Xt+1 | Xt, Z,X∗
1:J) =

f(Xt+1 | Xt, Z)∑J
i=1 f(X∗

i | Xt, Z)

where the normalization constants cancel out. If the control points are not sampled uniformly, the sampling
must be accounted for.
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In a maximum likelihood framework, step selection models cannot easily be used for data with mea-
surement error, since incorporating measurement error would require integrating P (Xt+1 | Xt, Z,X∗

1:J)
over Xt and Xt+1, remembering that the control points depend on Xt.

4.2.6.1 Ornstein-Uhlenbeck with spatial constraints

In movement models based on stochastic differential equations with measurement error, environmental
and resource influence can be incorporated in the drift (e.g., Preisler et al., 2004). For instance, the case
study of Paper IV (Albertsen, 2017a) incorporates a location dependent velocity through a semi-parametric
surface (Software II, Albertsen, 2017c). Similarly, environmental covariates such as sea surface tempera-
ture or bathymetry could have been incorporated; however, the covariate must be available for any value
of the latent state.

As an example, consider the Ornstein-Uhlenbeck process

dXt = −β(Xt − µ)dt + σdBt.

To include spatial constraints, the drift term can be extended to include repulsion from the coast. The new
process is

dXt = −∇P (Xt)− β(Xt − µ)dt + σdBt.

where P (Xt) = −αmin(D(Xt), d0) and D(Xt) is the Euclidean distance to the coast. The movement
of an animal following this process will be a compromise of attraction towards µ and repulsion from the
coast. After a certain distance, d0, the movement will be a pure Ornstein-Uhlenbeck process. The process
is illustrated in Figure 4.3.

4.3 Using the Laplace approximation for animal
movement data

The Laplace approximation can readily be used for the discrete, irregular, and continuous time location and
velocity-based models above. Paper III (Albertsen et al., 2015) implements the CTCRWwith multivariate
t-distributedmeasurement errors using the Laplace approximation. Themodel is compared to the CTCRW
with Gaussian measurement errors, the CTCRW with Gaussian errors and pre-processed observations,
and the DCRW fitted with Bayesian methods. The paper illustrates that the Laplace approximation can
adequately be used for movement data. Further, in comparing the DCRW and CTCRW with t-distributed
measurement errors, the paper illustrates that more accurate trajectories are reconstructed by having latent
states at the same time as the observations.

The latter result is also found by Paper IV (Albertsen, 2017a). In Paper IV (Albertsen, 2017a), the
DCRW and GDCRW were compared in a simulation study, simulating from the underlying continuous
time model. The parameters were chosen such that the only difference between the DCRW and GDCRW
were the time steps. In the DCRW, the time steps were equidistant, while the GDCRW had latent states
at the time of the observations. The GDCRW provided more accurate reconstructed trajectories when the
measurement error was low, while there was no difference for large measurement errors.

Using the Laplace approximation for movement data allows rapid and accurate estimation and recon-
struction of movement trajectories (Paper III Albertsen et al., 2015; Paper IV Albertsen, 2017a; Auger-
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Figure 4.3: Potential functions and their gradients for the Ornstein-Uhlenbeck with spatial constraints.
Upper left panel: potential function for the coast repulsive part with gradient at different points (arrows);
upper right panel: potential function for the attraction part with gradient at different points (arrows);
lower left panel: Combined potential function with gradient at different points (arrows); lower right panel:
Combined potential function with a simulated trajectory.
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Méthé et al., 2017). The use of the Laplace approximation is, however, limited to models that fit within
the framework.

4.4 Incorporating behavioural switching

In the discrete and continuous time models described above, the animal is assumed to behave homoge-
neously throughout the sampled trajectory. This assumption can be relaxed in two ways; by incorporating
time-varying parameters or behavioural switching.

Time-varying parameters can be included in models fitted by the Laplace approximation. Auger-
Méthé et al. (2016) allows the autocorrelation parameter of the modified DCRW to vary over time. The
parameter is assumed to follow a random walk where the variance parameter is estimated. A similar
approach can be used in continuous time models; however, closed form transition densities will not be
available.

Including behavioural switching is, as previously discussed (section 2.5), conceptually straight for-
ward, but estimation is difficult in a maximum likelihood framework. In discretised models, the state-
space model can be extended to include regime-switching parameters by including a Markov process
determining which parameter value to use (e.g., Morales et al., 2004; Jonsen et al., 2005; Whoriskey et
al., 2017). Jonsen et al. (2005) presents the DCRW in a regime-switching state-space model in a Bayesian
context. In a maximum likelihood framework, Whoriskey et al. (2017) fits the DCRW to data without
measurement error, while Paper IV (Albertsen, 2017a) outlines how the switching model can be extended
to irregular data. Further researchwill determine if themethod proposed in PaperV (Albertsen, 2017b) can
be used to provide reliable estimates for movement models.

In continuous time models, behavioural switching can be included by extending the model with a con-
tinuous time Markov chain determining the parameter values. Continuous switching can be estimated by
simulation-based methods (e.g., Blackwell, 1997; Blackwell et al., 2016; Parton and Blackwell, 2017).
Alternatively, continuous time switching can be estimated by approximate methods. In the GDCRW, con-
tinuous time switching can be approximated by including auxiliary latent states with small time steps. The
filtering method in Paper V (Albertsen, 2017b) can easily incorporate the missing observations, however,
further research is needed to determine how the filtering method will behave in such a situation.
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Chapter 5

Conclusion

This PhD study has contributed to the field of fisheries stock assessment modelling and the field of in-
dividual animal movement modelling. In both fields, the contributions relate to the use of the Laplace
approximation for accurate and efficient maximum likelihood inference in complex state-space models.

With an increasing data collection, the demands for efficient data use and analysis is warranted. Ap-
plying the results of movement data analysis in dynamic and near real time management and conservation
of marine resources is not feasible if fitting single models of moderate amounts of data require hours or
days.

Providing rapid and accurate results is pivotal for management and conservation of large marine an-
imals. As increasing amounts of data are used in near real time for dynamic ocean management, data
analysis must be efficient, both in time and data use (e.g., Lewison et al., 2015). This makes state-space
models fitted with the Laplace approximation a promising framework for both animal movement and
fisheries stock assessment models. Further, the rapid inference using the Laplace approximation makes
it feasible to extend current models. For instance, it is within reach to extend fisheries stock assessment
models to include a spatial component, and to model raw survey data more directly than the aggregates
currently used.

Both fisheries stock assessment and individual animal movement modelling face a common chal-
lenge in adequately accounting for the distribution of data given the true process; in terms of the choice
of distribution family and in terms of including flexible correlation structures that matches the data. Pa-
per I (Albertsen et al., 2017a) compares two common, but usually completely separated, approaches to
modelling fisheries catch data; as numbers-at-age or proportions-at-age. The paper illuminates that both
approaches can be suitable for assessment data; however, further studies are needed to investigate when
one approach should be preferred over another. Likewise, Paper III (Albertsen et al., 2015) compares the
use of the normal distribution and a t-distribution for Argos data. The paper illustrates that using an ap-
propriate measurement distribution improves inference on the latent states. Together, Paper I (Albertsen
et al., 2017a) and Paper III (Albertsen et al., 2015) illustrates that the Laplace approximation is applicable
for a wide range of measurement distributions, and that the choice of distribution can be important for
subsequent management.

Paper II (Albertsen et al., 2017b) builds on Paper I (Albertsen et al., 2017a) by extending the model
to multiple stocks. The connection made is simplistic, but improves the individual independent assess-
ments by including correlations in the survival process. A similar approach might be used to account for
correlations in fishing mortality between fleets or stocks; for instance, for species where the catch of one
influences the catch of another.



CHAPTER 5. CONCLUSION

Paper IV (Albertsen, 2017a) generalizes the commonly used DCRW movement model. Combined
with the covafillr R package, the model allows including environmental and spatial effects to better
understand the drivers of animal movement. Drivers that needs to be understood for efficient manage-
ment and protecting of large marine animals. Finally, Paper V (Albertsen, 2017b) introduces a filter and
smoother for regime-switching state-space models that allows maximum likelihood inference of a wider
range of movement and assessment models while still being operational. Combined, the manuscripts con-
tribute models andmethods in marine science that can improve the basis for management and conservation
of marine animals. The models are directly applicable in current management frameworks.
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PAPER I. CHOOSING THE OBSERVATIONAL LIKELIHOOD IN…

Abstract

Data used in stock assessment models result from combinations of biological, ecological, fishery, and
sampling processes. Since different types of errors propagate through these processes it can be difficult to
identify a particular family of distributions for modelling errors on observations a priori. By implementing
several observational likelihoods, modelling both numbers- and proportions-at-age, in an age based state-
space stock assessment model, we compare the model fit for each choice of likelihood along with the
implications for spawning stock biomass and average fishing mortality. We propose using AIC intervals
based on fitting the full observational model for comparing different observational likelihoods. Using data
from four stocks, we show that the model fit is improved by modelling the correlation of observations
within years. However, the best choice of observational likelihood differs for different stocks, and the
choice is important for the short-term conclusions drawn from the assessment model; in particular, the
choice can influence total allowable catch advise based on reference points.

Keywords:

Numbers-at-age, proportions-at-age, data weighting, state-space model, stock assessment model

I.1 Introduction

Stock assessment models often use aggregated and uncertain data such as surveys and landings-at-age
which rely on age classification of effectively few individuals (Aanes and Pennington, 2003). Commer-
cial fishing and scientific surveys sample from populations that vary according to, for example, season,
sex, age and region. From this catch, samples are weighed and measured to estimate the length distri-
bution, weight-at-length, and total catch in numbers. Additional sub-samples are taken to age classify
individuals for estimating proportions-at-age; either directly or through an age-length key. The samples
consist of many individuals from few hauls (Aanes and Pennington, 2003), which may lead to underesti-
mated uncertainties of estimates if ignored. Finally, all this information is aggregated to numbers-at-age
for each year. This aggregation may be via models including e.g. spatial location, season, gear and length
effects. Even though the stock population growth process at this level of aggregation is well described
(Each year the fish age by one year, some die of natural causes, and others die from fishing) aggregat-
ing the different sources of uncertainty makes it difficult to find the optimal (or true) distributions of the
observations a priori.

Age-based stock assessment models can be divided into two classes depending on the way they uti-
lize the data. Either the data can be modelled as numbers-at-age or as proportions-at-age along with total
weight or numbers. Most currently used age-based stock assessment models exclusively consider ei-
ther numbers- or proportions-at-age and only one or few observational likelihoods (ICES, 2010b). When
modelling numbers-at-age, the normal distribution, parameterized to avoid too much probability on neg-
ative observations, has been used (Gudmundsson, 1994; Fryer, 2002) along with the log-normal distri-
bution (Cook, 2013; Nielsen and Berg, 2014) and its multivariate extension (Myers and Cadigan, 1995).
Although recommended over the log-normal by Cadigan and Myers (2001), the gamma distribution is
infrequently used to model numbers-at-age in assessment models (ICES, 2010b).

The multinomial distribution has been popular when modelling proportions-at-age (Fournier and
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Archibald, 1982; Methot Jr. and Wetzel, 2013; Williams and Shertzer, 2015). Based on the age
classification sampling, it is an intuitive choice; however, when using the true number of data generating
samples, the variances of the modelled proportions are often too small, and the correlation structure
too restrictive (Crone and Sampson, 1998; Aanes and Pennington, 2003; Francis, 2014). Efforts have
been made to increase the variance by estimating an effective sample size (McAllister and Ianelli, 1997;
Francis, 2011; Hulson et al., 2011, 2012). Nonetheless, the effective sample size must be estimated by
iterative optimization (McAllister and Ianelli, 1997; Francis, 2011; Maunder, 2011) since the multino-
mial distribution is improper when used for continuous data (Francis, 2014). Hence, the multinomial
distribution will not be considered here. To avoid iterative estimation of the effective sample size, it has
been suggested to replace the multinomial with the Dirichlet distribution (Williams and Quinn, 1998;
Francis, 2014) in which the variance is only determined by parameters.

While the Dirichlet distribution is an improvement over the multinomial distribution, they both have
a very restrictive variance-covariance structure that only allows negative correlations, which may not
be appropriate (Francis, 2014). Therefore distributions based on transformations of multivariate normals,
such as the additive logistic normal (Francis, 2014) and the multiplicative logistic normal (Cadigan, 2015),
have recently been proposed for proportions-at-age in stock assessment models.

Although several authors have compared different proportions-at-age models (Maunder, 2011; Fran-
cis, 2014), not much effort has been given to compare different observational likelihoods for numbers-at-
age data (Cadigan and Myers, 2001), and even less has been given to compare between the proportions-
and numbers-at-age. Using the R-package Template Model Builder (Kristensen et al., 2016), we im-
plement 13 observational likelihoods, including both numbers- and proportions-at-age models, in an age-
based state-space stock assessment model. Using assessment data from four European stocks, we compare
the model fit for each choice of likelihood along with the implications for key outputs such as spawning
stock biomass (SSB) and average fishing mortality (F̄ ).

I.2 Methods

We implemented age-based state-space stock assessment models (Nielsen and Berg, 2014) with 13 dif-
ferent observational likelihoods (Table I.1) for four different European stocks. For simplicity the same
observational likelihood was used for both commercial catch data and survey indices. While the process
model was kept unchanged for each stock, we compared the goodness-of-fit of the observational like-
lihoods by AIC. We considered models for numbers-at-age and proportions-at-age combined with total
catch. We considered seven different distributions for numbers-at-age. When using data in the form of a
total and proportions-at-age we followed the wide-spread convention of modelling total catch as univari-
ate log-normal, but considered two alternatives where the total was either in numbers or biomass. These
two alternatives for total catch were crossed with three alternative distributions for the proportions. The
observational likelihoods implemented cover frequently used distributions in fisheries stock assessments
and close extensions.

I.2.1 Process model

The processes described in the state-space model involved the true unobserved numbers-at-age in the
stock, and the true unobserved fishing mortality (See Nielsen and Berg, 2014, or Appendix I.A for de-
tails). Following Nielsen and Berg (2014), the logarithm of the fishing mortality was assumed to follow
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Table I.1: Overview of the observational models used in the case studies and some properties: if zero
observations are allowed; whether the Baranov catch equation determines the mean, median or location;
the number of estimated observational parameters per age (a) and fleet (f ); and whether a correlation
parameter is estimated. The models are divided in to model classes: Univariate numbers-at-age (UN@A),
multivariate numbers-at-age (MN@A), proportions-at-age with log-normal total numbers (P@AwN), and
proportions-at-age with log-normal total weight (P@AwW).

Model Distribution Class Allows 0 Baranov Est. par.s Est. cor.

M1 log-Normal UN@A No Median 1 a f † No
M2 Gamma UN@A Some Mean 1 a f No
M3 Generalized Gamma UN@A Some Location 2 a f No
M4 Normal UN@A Yes Mean 1 a f No
M5 Left Truncated Normal UN@A Yes Location 1 a f No
M6 log-Student’s t UN@A No Location 2 a f No
M7 Multivariate log-Normal MN@A No Median 1 a f+1 f ‡ Yes
M8 Additive Logistic Normal P@AwN No Location 1 a f+1 f Yes
M9 Multiplicative Logistic Normal P@AwN No Location 1 a f + 1 f Yes
M10 Dirichlet P@AwN No Mean 1 f No
M11 Additive Logisitc Normal P@AwW No Location 1 a f+1 f Yes
M12 Multiplicative Logistic Normal P@AwW No Location 1 a f + 1 f Yes
M13 Dirichlet P@AwW No Mean 1 f No

† Should be read: One per age per fleet.
‡ Should be read: One per age per fleet and one additional per fleet.

a multivariate Gaussian random walk, where the correlation had an AR(1) structure (model D in Nielsen
and Berg, 2014). The true population numbers-at-age were assumed to follow an exponential decay model
where the natural mortality is known. The model included recruitment to the first age group. The error-
terms for the true numbers-at-age were assumed to follow a log-normal distribution without correlation.
All variance, correlation and stock-recruitment parameters were estimated. Quantities such as weight-at-
age and maturity were assumed to be known. The process model was related to the observations through
the Baranov catch equation for catch data, and through an assumption of proportionality to abundance-
at-age for surveys. The proportionality constants were estimated. We denoted the calculated catch (or
survey index) by C̃a,f,y.

I.2.2 Observational models

Our model M1 was the log-normal distribution with its usual parameterization. The median was deter-
mined by C̃a,f,y, while a scale parameter was estimated for each age and fleet. The model M2 was the
gamma distribution parameterized to have constant coefficient of variation (Cadigan and Myers, 2001).
The mean was determined by C̃a,f,y, while a coefficient of variation (CV) was estimated for each age
and fleet. The generalized gamma distribution was included as model M3 with the parameterization of
Prentice (1974). This parameterization was preferred over the Stacy (1962) parameterization as it both
extends it, and is numerically more stable when reducing to the log-normal distribution (Prentice, 1974;
Farewell and Prentice, 1977). The log-location parameter was determined by log(C̃a,f,y) while a shape
and scale parameter was estimated for each age and fleet. The models M4 and M5 were the normal and
truncated normal (with left truncation at zero). Both were parameterized based on the mean determined
by C̃a,f,y and separate CV parameters for each age and fleet (which applied to the un-truncated values
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for the truncated normal). The Student’s t-distribution on log-scale was our model M6. The distribu-
tion was parameterized with a log-location parameter determined by log(C̃a,f,y) along with log-scale and
log-degrees-of-freedom parameters estimated separately for each age and fleet.

Model M7 was the multivariate log-normal with its usual parameterization. The marginal medians
were determined by C̃a,f,y, while a one-parameter AR(1) structure was used for the correlation between
ages on logarithmic scale (Pinheiro and Bates, 2000; Francis, 2014). Separate correlation parameters
were estimated for each fleet along with scale parameters estimated for each age and fleet. Our models
M8 and M9 were the additive logistic normal and the multiplicative logistic normal (Aitchison, 2003)
with log-normal total numbers. For both models, the location parameters were determined by the C̃a,f,ys
while the scale matrices were parameterized as M7. For the log-normal distributions, the medians were
determined by

∑
a C̃a,f,y, while a separate scale parameter was estimated for each fleet. The Dirichlet

distribution with log-normal total numbers was our model M10. The Dirichlet distribution was parame-
terized with concentration parameters proportional to (C̃1,f,y, . . . , C̃A,f,y)

T . A proportionality parameter
was estimated for each fleet. The log-normal distributions for total numbers were parameterized as M8

andM9. Finally, the modelsM11, M12, andM13 were the additive logistic normal, multiplicative logistic
normal, and Dirichlet with log-normal total weight parameterized as M8, M9, and M10 respectively. All
estimated observational parameters were assumed to be constant over years. The densities and further
details can be seen in Appendix I.A.

I.2.3 Comparing by AIC

To compare the different observational models, we employed the Akaike Information Criterion (Akaike,
1974). However, the AIC applies to comparison between specific models, whereas each observational
model represents an entire family of models, differing in assumed relationships between parameters for
different age groups. These families include “full models” where each age group and fleet are assigned
independent parameters, a “minimal model” where all age groups share common parameters, as well as
a range of models between these two extremes. A standard application of the AIC would require that the
optimal model in each family is identified, a task that would involve estimation of parameters in thousands
of models.

To avoid this step, which is computationally very demanding and tangential to our purpose, we chose
to identify an AIC interval which characterized each model family. This AIC interval gave an upper
and a lower bound on the optimal AIC within that family. The upper bound of the interval was attained
by the AIC for the full model. The lower bound of the interval was calculated as the AIC that would
hypothetically be obtained by the smallest possible nested sub-model if the negative log-likelihood would
not increase compared to the full model. The difference between the upper and lower bound is thus twice
the difference in the number of parameters between the full model and the minimal model.

A model family was considered clearly superior to another if the upper bound of its AIC interval
was below the lower bound of the other model family’s interval (i.e., the other model family had a higher
interval). Clearly inferior model families could be discarded. To compare the remaining model families, it
would be possible to narrow the AIC intervals through testing within each model family, but for simplicity
we base the comparison on the full model in each family.

Using AIC to compare the models required that the models were defined on the same data, which was
not the case when we compared between numbers-at-age models and proportions-at-age models. The
proportions-at-age data were, however, a one-to-one transformation of the numbers-at-age data. Thus,
using a standard transformation of densities we derived the log-likelihood for the numbers-at-age data
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Table I.2: Overview of the data sources used in the case study. Q1-Q4 indicates at which quarter of the
year the survey is conducted.

Fleet First year Last year First age Last age Years with missing Process parameters

Blue Whiting 7
Commercial 1981 2013 1 10
Survey Q1 2004 2014 3 8 2010
North-East Arctic Haddock 30
Commercial 1950 2013 3 11
Survey Q4 1991 2013 3 7
Survey Q1 1992 2013 3 7 1992-1995

2000-2002,2004
Survey Q1 1992 2013 3 8 1994,1995,2001
Survey Q3 2004 2013 3 8 2005
North Sea Cod 11
Commercial 1950 2011 1 7
Survey Q1 1983 2012 1 5
Northern Shelf Haddock 33
Commercial 1963 2011 0 8
Survey Q3 1977 1991 0 6
Survey Q3 1992 2011 0 6
Survey Q3 1982 1997 0 6
Survey Q3 1998 2011 0 6
Survey Q1 1982 2011 0 4

that is consistent with our specified distributions based on proportions and totals (Appendix I.B). Using
the transformed likelihood in the AIC calculation allowed for valid comparisons of models using numbers-
at-age directly versus those using totals and proportions-at-age. Note that a similar transformation was
required so that models that used total weight could be compared to models that used total numbers with
the proportions.

I.2.4 Case study

We implemented themodels for four different data sets used for assessments (Table I.2): The BlueWhiting
data set was the basis of the 2014 ICES advice (ICES, 2014a) for Subareas I-IX and XIV; the North-East
Arctic Haddock data was used for the 2014 ICES advice (ICES, 2014b) for Subarea IV (North Sea) and
Division IIIa West (Skagerrak); The North Sea Cod data was obtained from the 2012 ICES advice (ICES,
2012) for subarea IV (North Sea) and Divisions VII (Eastern Channel) and IIIa West (Skagerrak); and the
Northern Shelf Haddock data from the ICES advice for Subarea IV (North Sea) and Division IIIa West
(Skagerrak) in 2012 (ICES, 2012). A Beverton-Holt curve was assumed for the relationship between
stock and recruitment for North Sea Cod, whereas a random walk was assumed for the other stocks.
Two of the data sets had missing data. For the Blue Whiting data set a whole year was missing for the
survey, whereas for the North-East Arctic Haddock data set, values were missing for at most three ages per
year. The proportions-at-age models above could not easily handle years with missing age observations.
Hence, to give a fair comparison of the univariate and multivariate models, we treated years with missing
age observations as if it was missing all ages. Process model parameters were assumed equal between
ages in the same way as they were for the advice.
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I.3 Results
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Figure I.1: Last year fishing mortalities with 95% confidence intervals for models M1 to M13 (Table 1)
in the case studies: Blue Whiting (A), North-East Arctic Haddock (B), North Sea Cod (C), and Northern
Shelf Haddock (D). Vertical dashed grey lines separates the models in model classes (Table 1). Subscripts
to F̄ indicates the ages the average is over. All ages are weighed equally in the average.

In all four case studies we found that the estimated average fishing mortality (Figure I.1), spawning
stock log-biomass (Figure I.2), and their standard errors in the final year differed between models. In
particular, we found that for North Sea Cod, the highest fishing mortality was 2 times the lowest fishing
mortality, and the widest confidence interval was 1.7 times the narrowest. For Northern Shelf Haddock,
the confidence interval of the estimated final year spawning stock biomass for model M4, which had
the highest estimate, did not overlap with the confidence interval for model M9, which had the lowest
estimate.

We found that the models including correlation parameters obtained better fit to the data for the full
models than models without correlation parameters within each model class (Figure I.3); the AIC for the
full model (upper bound of the interval) was lower for the multivariate log-normal than for the univariate
numbers-at-age, and similarly the logistic normals had better model fits than the Dirichlet distribution,
which provided one of the highest AIC intervals of all models in all case studies. In the North Sea Cod
and Northern Shelf Haddock cases, the lower bounds of the AIC intervals for the Dirichlet distribution
were clearly separated from the upper AIC bounds of all other models with an AIC difference of more
than 190.
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Figure I.2: Last year spawning stock biomass logarithmic (log(SSB)) for models M1 to M13 (Table 1)
in the case studies: Blue Whiting (A), North-East Arctic Haddock (B), North Sea Cod (C), and Northern
Shelf Haddock (D). Vertical dashed grey lines separates the models in model classes (Table 1).
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Figure I.3: AIC intervals for models M1 to M13 (Table 1) in the case studies: Blue Whiting (A), North-
East Arctic Haddock (B), North Sea Cod (C), and Northern Shelf Haddock (D). The horizontal grey lines
indicate AIC differences of 50 starting at the lowest lower bound of the models. Vertical dashed grey lines
separates the models in model classes (Table 1).
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For North Sea Cod, the multivariate log-normal achieved the lowest AIC for the full model. The AIC
interval for this distribution (upper bound: 6407.32) only barely overlapped with the intervals for the gen-
eralized gamma (lower bound: 6405.52). Hence among the observational likelihoods we considered, the
multivariate log-normal was the most appropriate for the North Sea Cod data and this particular process
model. The multivariate log-normal also had the lowest AIC for the full model for North-East Arctic Had-
dock, whereas it was the multiplicative logistic normal with total weight for Northern Shelf Haddock and
the additive logistic normal with total numbers for Blue Whiting. However, in these cases the AIC inter-
vals of the multivariate log-normal, the additive logistic normals, and the multiplicative logistic normals
all overlapped. For the two haddock cases, the AIC interval of the generalized gamma also overlapped
with the AIC interval of the model with the lowest AIC interval upper bound. We further found that the
AIC intervals for proportions-at-age models using total weight overlapped with the corresponding model
using total numbers-at-age, except for the North Sea Cod where the total weight models had lower AIC
intervals. In addition, the intervals for the additive and multiplicative logistic normals overlapped for all
four data sets.
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Figure I.4: Estimated average fishing mortality, F̄ , for Multivariate log-Normal (dark grey line), Mul-
tiplicative Logistic Normal with log-Normal Weight (dashed black line), and Dirichlet with log-Normal
Weight (dotted black line) in the case studies: Blue Whiting (A), North-East Arctic Haddock (B), North
Sea Cod (C), and Northern Shelf Haddock (D). Horizontal dashed grey lines show the management plan
reference point. Subscripts to F̄ indicates the ages the average is over. All ages are weighed equally in
the average.

Overall, the trends in estimated fishing mortality (Figure I.4) and spawning stock biomass (Figure I.5)
were similar between the models (See also supplementary material). However, there were noticeable
differences in single years. For BlueWhiting, the estimated fishing mortality and spawning stock biomass
for multivariate log-normal, multiplicative logistic-normal, and Dirichlet distribution followed each other
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closely. The largest difference in average fishing mortality between the multiplicative logistic-normal and
the multivariate log-normal was 0.07 (16%), and the difference in spawning stock biomass was up to 12%.
In the North Sea Cod case, the multivariate log-normal and the logistic normals had larger differences in
fishing mortality and spawning stock biomass. The largest difference in mortality was 0.12 (11.2%), while
the spawning stock biomass differed as much as 23%. The resulting confidence intervals also differed
between the models. For North Sea Cod the standard errors of the estimated average fishing mortality
were up to 76.6% larger for the Dirichlet model, which had the highest AIC, compared to the multivariate
log-normal, which had the lowest AIC. Although the trends were similar to the other models, the spawning
stock biomass was estimated to be 3.8 to 14.2 times higher for the left truncated normal than for the other
models 1. Likewise, the average fishing mortality was estimated to be lower. For both North Sea Cod2
and Northern Shelf Haddock3, the logistic normals provided less volatile estimated time series of fishing
mortality and spawning stock biomass than other models. For these models the CVs for commercial catch
were estimated to be higher than for the other data sets4.
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Figure I.5: Natural logarithm of estimated spawning stock biomass, log(SSB), for Multivariate log-
Normal (dark grey line), Multiplicative Logistic Normal with log-Normal Weight (dashed black line),
and Dirichlet with log-Normal Weight (dotted black line) in the case studies: Blue Whiting (A), North-
East Arctic Haddock (B), North Sea Cod (C), and Northern Shelf Haddock (D). Horizontal dashed grey
lines show the management plan reference point.

For Blue Whiting, North-East Arctic Haddock, and Northern Shelf Haddock, estimated CVs were

1Figure S31
2Figures S34, S35, S37, S38
3Figures S47, S48, S50, S51
4Table S5
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similar for the two logistic normals5. The CVs were estimated to be between 0.09 and 0.37. For North
Sea Cod, the logistic normals with total numbers had higher CVs (0.32 for commercial catch; 0.27 for
survey) than the logistic normals with total weight (0.15 for commercial catch; 0.20 for survey). For the
multivariate log-normal, the estimated marginal CVs were estimated to be between 0.01 and 1.866. The
CVs were typically estimated to be higher for the first and last ages.

I.4 Discussion

When modelling highly aggregated stock assessment data, the optimal observational likelihood to use can
not be known a priori. We provide an objective method for limiting the number of candidate models. By
fitting each model with the largest possible number of parameters, upper and lower bounds for the lowest
attainable AIC can be calculated. After discarding models with AIC intervals that does not intersect with
the lowest interval, the remaining AIC intervals can be narrowed by combining parameters until a single
observational likelihood is left. Once a final stock assessment model is found, model validation tools such
as residuals and retrospective analysis should be used. AIC was used to determined the optimal observa-
tional likelihood, since the AIC estimates the Kullback-Liebler divergence between the candidate model
and the true data generating system (Akaike, 1974), i.e. the information lost by using the candidate model
instead of the true data generating system (Burnham and Anderson, 2002). The Kullback-Liebler diver-
gence can not be used directly because the calculation requires full knowledge of the true data generating
system. Although the AIC was used here, other criterias allowing multivariate data could be used instead.

Choosing the best possible observational likelihood for the data is vital for the short-termmanagement
and conservation of fish stocks (Figure I.1, Figure I.2). In 2012, the ICES advice for Northern Shelf
Haddock (ICES, 2012), based on XSA (Shepherd, 1999), suggested a 15% increase in the total allowable
catch. The suggested increase was based on the difference between the estimated average fishingmortality
in the last year and the management reference point. XSA can be seen as a special case of the univariate
log-normal (ICES, 2010a) by fixing parameters in a suitable way. Here we saw that the multivariate
log-normal and multiplicative logistic normal were more suitable for the Northern Shelf Haddock data
than the univariate log-normal, which in turn provides a better fit than the XSA. The estimated average
fishing mortality from both the multivariate log-normal and the multiplicative logistic normal are above
the reference point. Hence, using one of these models would have suggested a 19% decrease of the total
allowable catch to get the fishing mortality at a sustainable level (Figure I.4; panel D). Thus, the choice
of observational likelihood in an assessment model can have a substantial effect on the advice brought
forward to the fisheries management system.

All models implemented in this study fall in to one of two categories; either they are formulated for
numbers-at-age or proportions-at-age with total catch. Most assessment tools only consider one of these
categories. We have shown how to compare models between these two ways of using the stock assessment
data, and that models from both categories can be suitable, depending on the specific stock. Besides the
choice between modelling numbers or proportions there are other differences between the models in, e.g.,
tail probabilities and skewness, but there are also more subtle differences. When we choose between the
log-normal distribution and the gamma distribution, we also choose between whether the Baranov catch
equation should model the median or the mean observed catch. Some likelihoods can be re-parameterized
to link the Baranov catch equation to either the mean, median or modal observed catch. Although subtle,
this difference is important for prediction and interpretation of the results. These choices can be compared

5Table S5
6Table S1-S4
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objectively by including them in the analysis.

Accounting for the correlations in the data is also important for more reliable stock assessment mod-
els. In all four case studies, the distributions with correlation parameters, in particular the multivariate
log-normal, performed well. However, the correlation structure must be flexible enough to mimic the
data, unlike the Dirichlet distribution, which performed poorly, even compared to the models assuming
independence between ages. The Dirichlet distribution arises as the distribution of proportions of gamma
distributed numbers, where the gamma distributions have equal scale parameters. Stock assessment data
is often believed to have constant CV (Cadigan and Myers, 2001), which leads to a parameterization
of the gamma distribution where the scale parameters are not equal. Therefore the covariance struc-
ture of the Dirichlet distribution does not match the appropriate structure for the gamma distributions.
This corresponds with previous findings, that the additive logistic normal generally is more suitable than
the Dirichlet distribution in describing the correlation structure in stock assessment data (Francis, 2014).
For simplicity we restricted ourselves to the simple AR(1) structure for correlations in this study. The
correlation structure can easily be exchanged for other structures such as a linear, AR(2), ARMA(p,q),
compound symmetric, or unstructured covariance matrix (Pinheiro and Bates, 2000; Francis, 2014), and
some of these may be even more suitable than the AR(1) structure (Berg and Nielsen, 2016).

We only compared frequently used distributions in fisheries stock assessments and close extensions
of them, yet any conceivable distribution can be used in the framework we presented, as long as they are
all comparable. Correlations between age classes could be introduced in the univariate models through
copulas or multivariate extensions such as the multivariate t-distribution or multivariate gamma distribu-
tions. Likewise, different ways of handling zero observations, such as zero inflating the models, could
be included. For simplicity, years with missing data were removed to compare between univariate and
multivariate models. For multivariate numbers-at-age models, missing data may be handled by finding
the marginal distribution of the remaining ages. We also restricted the study to use the same likelihood for
both commercial catches and surveys. This can be relaxed by including combinations of models (such as
Cadigan, 2015), or if the survey index generation is well-understood, a suitable observational likelihood
may be derived a priori. Further, the analyses were made conditional on the process models specified in
the assessments from which the data was collected. A similar analysis could be made to choose the most
appropriate process model conditional on the observational model, or the analyses could be combined.
This may influence the specific choice of observational likelihood, as the observational model can, some-
what, compensate for misspecification in the process model and vice versa. Finally, these methods could
just as well be used for, e.g., length-based models.

Statistical assessment modelling involves a choice of observational likelihood, and current practice is
often to make this choice arbitrarily and subjectively. This applies particularly to the choice of whether
the data inputs should be numbers-at-age or proportions-at-age along with total catch in numbers. Here,
we have provided methods for an objective choice, by correcting the AICs so that they can be compared
between these two families, and we have outlined a computationally efficient method for choosing be-
tween families of distributions, by bounding the AICs, which avoids elaborate hypothesis testing within
each family, and demonstrated that the best fitting family depends on the particular case. These results
will allow stock assessment modellers to choose objectively between these representations of uncertainty
on observations, thereby improving model fit and ultimately allowing more accurate assessments.
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I.A Likelihoods

I.A.1 Process model

The process model is identical to Nielsen and Berg (2014). For a model including age groups from 1 toA+

(where age groupA+ contains all ages fromA and up), the fishing mortality is modelled by a multivariate
random walk, where the oldest modelled ages may be grouped together, indicated by usingA∗ rather than
A+. Let Fy = (F1,y, F2,y, . . . , FA∗,y)

T be a vector of age specific fishing mortalities in year y. Then

logFy = logFy−1 + ϵy,

where ϵy ∼ N(0, Σ). The covariance matrix, Σ, is parameterized by and AR(1) structure, Σi,j =
ρ|i−j|σiσj .

Given the fishing mortalities, the population is modelled by an exponential decay model,

logN1,y = log (R (w1,y−1, . . . , wA+,y−1, p1,y−1, . . . , pA+,y−1, N1,y−1, . . . , . . . , NA+,y−1)) + η1,y,

logNa,y = logNa−1,y−1 − Fa−1,y−1 −Ma−1,y−1 + ηa,y, 2 ≤ a < A+,

logNA+,y = log
(
NA+−1,y−1e

−FA+−1,y−1−MA+−1,y−1 + NA+,y−1e
−FA+,y−1−MA+,y−1

)
+ ηA+,y,

where all error terms are assumed independent normal distributed. The natural mortalities (Ma,y), the
age specific weight in stock (wa,y), and the proportion mature (pa,y) are all assumed to be known. The
function R describes the relationship between recruitment and spawning population. For North Sea Cod,
R was modelled by a Beverton-Holt curve,

R (w1,y−1, . . . , wA+,y−1, p1,y−1, . . . , pA+,y−1, N1,y−1, . . . , NA+,y−1) =
a · SSBy−1

1 + b · SSBy−1

, a, b > 0

with SSBy =
∑A+

a=1 pa,ywa,yNa,y, whereas for the other stocks, R was modelled by a random walk

R (w1,y−1, . . . , wA+,y−1, p1,y−1, . . . , pA+,y−1, N1,y−1, . . . , NA+,y−1) = N1,y−1.

I.A.2 Observational models

I.A.1 Univariate numbers-at-age models

We consider six univariate observational models for numbers-at-age. Their densities are listed below for
each age each year. The joint density for the vector of catches-at-age each year is the product of the
age-wise densities. Unless otherwise noted, x > 0 is the observed catch (or survey index) at a given
age, µ > 0 is the calculated catch at that age (or survey index) based on the Baranov catch equation (or
proportional to the total abundance), σ > 0 is a scale matrix, and τ ∈ R is a shape parameter.

I.A.1.1 Log-normal distribution

f1(x; µ, σ) =
1√

2πσ2
exp
(−(log(x)− log(µ))2

2σ2

)
x−1

The mean of the log-normal distribution is µ exp(σ2/2), the median is µ and the variance is
(exp (σ2)− 1) exp (2 log(µ) + σ2).
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I.A.1.2 Gamma distribution

f2(x; µ, σ) =
1

Γ(σ)
(

µ
σ

)σ xσ−1 exp (−xσ/µ)

The gamma distribution has mean µ and variance µ2

σ
.

I.A.1.3 Generalized gamma distribution

f3(x; µ, σ, τ) =




|τ |(τ−2)τ−2 exp

(
τ−2

(
τ log(x)−log(µ)

σ
− exp

(
τ log(x)−log(µ)

σ

)))
/(σxΓ(τ−2)) τ ̸= 0

(2π)−1/2 exp
(
− (log(x)−log(µ))2

2σ2

)
(σx)−1 τ = 0

Note that f3(x; µ, σ, 0) = f1(x; µ, σ), and f3(x; µ, σ, σ) = f2(x; µ, σ−2) for σ > 0 (Cox et al.,
2007). The mean of the generalized gamma is

µ(τ−2)
τ−2

Γ(τ−2)
(τ 2)

σ τ+1

τ2 Γ
(

σ τ+1
τ2

)
τ < 0

µ exp(σ2/2) τ = 0
µ

Γ(τ−2)
τ 2 σ

τ Γ
(

σ τ+1
τ2

)
τ > 0

and the variance is

− µ2

(Γ(τ−2))2

(
(τ−2)

2 τ−2

(τ 2)
2 σ τ+1

τ2
(
Γ
(

σ τ+1
τ2

))2 − (τ 2)
2 σ τ+1

τ2 (τ−2)
τ−2

Γ
(

2 σ τ+1
τ2

)
Γ (τ−2)

)
τ < 0

(exp (σ2)− 1) exp (2 log(µ) + σ2) τ = 0
µ2

(Γ(τ−2))2
τ 4 σ

τ

(
Γ
(

2 σ τ+1
τ2

)
Γ (τ−2)−

(
Γ
(

σ τ+1
τ2

))2)
τ > 0

I.A.1.4 Normal distribution

f4(x; µ, σ) =
1√

2π(µσ)2
exp
(−(x− µ)2

2(µσ)2

)

For the normal distribution x ∈ R and µ ∈ R. The mean is µ and the variance is µ2σ2

I.A.1.5 Truncated normal distribution

f5(x; µ, σ) =
f4(x; µ, σ)1x≥0(x)

1−
∫ 0

−∞ f4(y; µ, σ)dy

For the truncated normal distribution x ≥ 0 and µ ≥ 0. The mean of the distribution is

µ + µσ
f4(0; µ, σ)

1−
∫ 0

−∞ f4(y; µ, σ)dy

and the variance is
µ2σ2 − µ2σ2 f4(0; µ, σ)2

(
1−

∫ 0

−∞ f4(y; µ, σ)dy
)2
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I.A.1.6 Student’s t-distribution on log-scale

f6(x; µ, σ, τ) =
Γ
(

τ+1
2

)

σx
√

τπΓ
(

τ
2

)
(

1 +
((log(x)− log(µ))/σ)2

τ

)−(τ+1)/2

For the Student’s t-distribution on log-scale, τ > 0 is the degrees of freedom. As τ → ∞ the
distribution converges to a log-normal distribution. The distribution does not have mean and variance.

I.A.2 Multivariate numbers-at-age models

We consider one multivariate observational model for numbers-at-age. In the density listed below, A is
the number of ages, x > 0 is the observed vector of catches (or survey indices), µ > 0 is the calculated
catches (or survey indices) based on the Baranov catch equation (or proportional to the total abundance),
and Σ is an A× A symmetric positive-definite scale matrix.

I.A.2.1 Multivariate log-normal distribution

f7(x; µ, Σ) = (2π)−A/2|Σ|−1/2 exp
(
−1

2
(log(x)− log(µ))T Σ−1(log(x)− log(µ))

)
(x1 · · ·xk)

−1

For the multivariate log-normal distribution, the scale matrix is the covariance matrix of the
logarithm of the observations. When the scale matrix is diagonal, the distribution reduces to
univariate log-normals. The marginal means are µi exp

(
1
2
Σii

)
, and the variance/covariance is

µiµj exp
(

1
2
(Σii + Σjj)

)
(exp(Σij)− 1).

I.A.3 Proportions-at-age models

We consider three multivariate observational model for proportions-at-age. In the density listed below,
A is the number of ages, x > 0 with

∑A
i=1 xi = 1 is a vector of A observed catch proportions (or

survey proportions), µ > 0 with
∑A

i=1 µi = 1 is a vector of A calculated catch proportions (or survey
proportions) based on the Baranov catch equation (or proportional to the total abundance), and Σ is an
A− 1×A− 1 symmetric positive-definite scale matrix. A vector with subscript−A denotes the vector
without the Ath element.

I.A.3.1 Additive logistic-normal distribution

f8(x; µ, Σ) = (2π)−(A−1)/2|Σ|−1/2 exp
(
−1

2
(α(x)− α(µ))T Σ−1 (α(x)− α(µ))

)
(x1 · · ·xA)−1

Here, α is the additive logratio transformation α(x) = log
(

x−A

xA

)
. The scale matrix is the covari-

ance of the additive logratio transformed observations. Note that if a numbers-at-age vector y follows
a multivariate log-normal, then the proportions y/

∑
i yi follows an additive logistic-normal distribution

(Aitchison, 2003). The mean and variance does not have simple forms (Aitchison, 2003).
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I.A.3.2 Multiplicative logistic-normal distribution

f9(x; µ, Σ) = (2π)−(A−1)/2|Σ|−1/2 exp
(
−1

2
(m(x)−m(µ))T Σ−1 (m(x)−m(µ))

)
(x1 · · ·xA)−1

Here, m is the multiplicative logratio transformation

m(x) =

(
log
(

x1

1− x1

)
, . . . , log

(
xA−1

1− x1 − · · · − xA−1

))
.

The scale matrix is the covariance of the multiplicative logratio transformed observations. The mean
and variance does not have simple forms (Aitchison, 2003).

I.A.3.3 Dirichlet distribution

f10(x; µ, σ) =
Γ
(∑A

i=1 σµi

)

∏A
i=1 Γ(σµi)

A∏

i=1

xσµi−1
i

For the Dirichlet distribution, σ > 0 is a shape parameter. The marginal means of the Dirichlet distri-
bution are µi, the variances are

µi−µ2
i

σ+1
, and the covariances are −µiµj

σ+1
. The Dirichlet distribution is related

to the gamma distribution, since if each element of a numbers-at-age vector follows a gamma distribution
where the scale parameters in the usual parameterization are equal, then the vector of proportions y/

∑
i yi

follow a Dirichlet distribution. Note that f2 does not have the same scale parameters for all ages, as they
depend on the mean value.
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I.B Transformation of densities for proportions-
at-age models

To compare the AIC of models for numbers-at-age with models for proportions-at-age, the data must be
on the same scale. We note that we can transform the numbers-at-age data to proportions-at-age with total
catch in numbers by the function
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g
(
(x1, . . . , xA)T

)
=

(
x1∑A
i=1 xi

, . . . ,
xA−1∑A

i=1 xi

,
A∑

i=1

xi

)T

,

with inverse function

h
(
(y1, . . . , yA−1, ytotal)

T
)

=

(
y1 · ytotal, . . . , yA−1 · ytotal, (1−

A−1∑

i=1

yi) · ytotal

)T

.

Hence, if Y is a random vector of proportions-at-age with total catch in numbers with density f , then
the corresponding numbers-at-age is X = h(Y ). By a change of variable,

P (X ∈ B) = P (Y ∈ g(B))

=

∫

g(B)

f(y)dy

=

∫

B

f(g(x))| det(Dg)|dx,

the density for the numbers-at-age data is f(g(y))| det(Dg)|. Hence, to compare the AIC between the
(natively) numbers-at-age and proportions-at-age models, the log-likelihoods of the proportions-at-age
models must be corrected by the logarithm of the absolute determinant of the Jacobian of g, log | det(Dg)|.
The entries of (Dg) are (Dg)A,j = 1 for all j, (Dg)i,i = 1∑A

k=1 xk
− xi

(
∑A

k=1 xk)
2 for all i < A and

(Dg)i,j = −xi

(
∑A

k=1 xk)
2 otherwise. If the total is in weight, where the weight-at-age is assumed to be

known, then g is adjusted to

g
(
(x1, . . . , xA)T

)
=

(
x1∑A
i=1 xi

, . . . ,
xA−1∑A

i=1 xi

,
A∑

i=1

wixi

)T
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Abstract

Fisheries management is mainly conducted via single-stock assessment models assuming that fish stocks
do not interact, except through assumed natural mortalities. Currently, the main alternative is complex
ecosystem models which require extensive data, are difficult to calibrate, and have long run times. We
propose a simple alternative. In three case studies each with two stocks, we improve the single-stock mod-
els, as measured by AIC, by adding correlation in the cohort survival. To limit the number of parameters,
the correlations are parameterized through the corresponding partial correlations. We consider six models
where the partial correlation matrix between stocks follows a band structure ranging from independent
assessments to complex correlation structures. Further, a simulation study illustrates the importance of
handling correlated data sufficiently by investigating the coverage of confidence intervals for estimated
fishing mortality. The results presented will allow managers to evaluate stock statuses based on a more
accurate evaluation of model output uncertainty. The methods are directly implementable for stocks with
an analytical assessment and does not require any new data sources.

Keywords:

fisheries stock assessment, correlated survival, state-space model, data weighting, multi-stock model

II.1 Introduction

Fisheries management is often based on single-species models for single management areas where the
stocks are assumed to have no interaction with surrounding stocks or other species, except via the pre-
determined natural mortality. Such a simplification is often unrealistic (Eero et al., 2014), and ignoring
stock interactions can affect model output (Holsman et al., 2016). These assumptions in single-stock
models are, however, convenient as they reduce the data needed on interactions such as migration and
predator-prey relations.

Collecting fisheries data is costly and time-consuming: The current surveys require expensive scien-
tific cruises and lab processing; tagging studies require catching and manually tagging many individuals
with either low probability of recapture, or expensive electronic tags for gathering telemetry data; food-
web data such as stomach samples require manual sampling of stomach content and possibly subsequent
DNA analysis; spatially explicit catch data require extensive monitoring systems. Further, incorporating
such new data sources in stock assessment models requires historic data that covers a long period for
reliable statistical results.

Several methods ranging in complexity have been developed to improve single-stock assessments by
accounting for interactions between stocks (e.g. Gislason and Helgason, 1985; Christensen and Pauly,
1992; Begley and Howel, 2004; Fulton et al., 2004; Lewy and Vinther, 2004; Senina et al., 2008; Methot
and Wetzel, 2013). Migration between areas can be explicitly modelled by a transportation matrix that
moves, for example, a proportion of the population to another area (Methot andWetzel, 2013). These pro-
portions can be informed by tagging studies such as mark-recapture (Quinn et al., 1990; Hannesson et al.,
2008) or, for simplemodels, be estimated from catch and survey data; however, when estimated from catch
and survey data, the results may be influenced by other factors such as inaccuracies in the assumed natural
mortality or model misspecification. Likewise, predation can be modelled by a rate-of-consumption ma-
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trix (Hollowed, 2000b) consisting of factors which describe the predator induced mortality. Estimating
predator inducedmortality requires knowledge of complex foodwebs (Yodzis, 1998; Tarnecki et al., 2016)
along with consumption data from stomachs (e.g. Gislason and Helgason, 1985; Daan, 1987; Hollowed,
2000b; Frøysa et al., 2002; Lewy and Vinther, 2004; Richards and Jacobson, 2016).

Complex ecosystem or multi-species models often depend on extensive data from different sources
such as tagging studies, DNA analysis, environment data or stomach content data (e.g. Christensen and
Walters, 2004). Such data sources are not readily available from single-species assessments, are expensive
to produce, and may take several years to collect. Data requirements can also include human activity,
biochemistry, physiology, geology and oceanography (Link et al., 2010) raising the complexity and data
collection cost. Further, ecosystem models often have a vast amount of settings and can be difficult to
calibrate and run (Hollowed, 2000a; Chen et al., 2009; Ainsworth andWalters, 2015). Currently, there is a
gap between single-stock assessment models and the complex ecosystemmodels (Collie et al., 2016), with
a lack of operational models that combine multiple stocks while only utilizing the data readily available
for single-stock assessments, making it directly implementable for fisheries management.

The objective of this study is to introduce a method for combining single-stock state-space age-based
assessments models to provide a simple alternative to complex ecosystem models. The method is illus-
trated in three case studies including a total of six European stocks combined two by two. In each case
study, we investigate whether combining single-stock models improves the model fit to data compared to
individual assessments.

We extend the single-stock age-based state-space stock assessment model to allow simultaneous es-
timation for several stocks through correlated survival processes. Correlations are included in the model
through the corresponding partial correlations. Assuming Gaussianity, two random variables from a col-
lection of variables are partially uncorrelated correcting for the remaining variables in the collection if
and only if they are conditionally independent given the remaining variables in the collection. Hence,
modelling partial correlations allows a clear interpretation of reducing model parameters (i.e. by fixing
partial correlations at zero), while still allowing a flexible correlation structure. The multi-stock model
introduced does not require further data than the single-stock model.

II.2 Methods

II.2.1 Stock Assessment Model

We implemented age-based state-space stock assessment models for six European stocks (Table II.1). The
models were implemented with the R-package Template Model Builder (Kristensen et al., 2016).

II.2.1 Process Model

The process model for an individual stock, s, was identical to Nielsen and Berg (2014) model D. The
population process followed an exponential decay model,

logNs,a,y = logNs,a−1,y−1 − Fs,a−1,y−1 −Ms,a−1,y−1 + ηs,a,y, a ∈ {2, 3, . . . , A+
s − 2, A+

s − 1}

with special conditions for the last age groupA+
s (See Nielsen and Berg, 2014; Paper I, for details). In the

model, Fs,a,y is the fishing mortality, Ms,a,y is the natural mortality, and ηs,a,y is a random Gaussian zero
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mean increment, which allow inaccuracies in the deterministic part of the model. These inaccuracies can
be thought of as random deviations in the natural mortality, which is assumed to be known. While Nielsen
and Berg (2014) and Albertsen et al. (Paper I) model ηs,a,y as independent, we will allow correlations
across stocks and ages (see subsection II.2.2), while maintaining independence across years. Recruitment,
logNs,1,y, was modelled by a random walk. Configuration of model parameters with respect to coupling
across ages was done in the same way as for the official advice.

II.2.2 Observational Model

Following Albertsen et al. (Paper I), the observed log-catch conditional on the process model were
modelled by a multivariate normal where the covariance Σ

(O)
s had an AR(1) covariance structure,

(Σ
(O)
s )i,j = ρ

|i−j|
o,s τo,s,iτo,s,j with ρo,s ∈ (−1, 1) and 0 < τo,s,i for all indices i. The Catch vector,

Cs,y = (Cs,1,y, . . . , Cs,A+
s ,y), for stock s in year y followed the Baranov catch equation

logCs,y = logFs,y − log(Fs,y + Ms,y) + logNs,y + log (1− exp(−Fs,y −Ms,y)) + ϵ(O)
s,y

were ϵ
(O)
s,y ∼ N(0, Σ

(O)
s ), Ns,y = (Ns,1,y, . . . , Ns,A+

s ,y), Fs,y = (Fs,1,y, . . . , Fs,A+
s ,y), Ms,y =

(Ms,1,y, . . . , Ms,A+
s ,y), and all operations are element-wise. Likewise, survey indices were modelled by

log I(i)
s,y = log q(i)

s + logNs,y − (Fs,y + Ms,y)d
(i)
s /365 + ϵ(I,i)

s,y

where ϵ
(I,i)
s,y ∼ N(0, Σ

(I,i)
s ), I(i)

s,y is a vector of age observations for the ith survey in stock s year y, q(i) > 0,
d

(i)
S is the number of days into the year the survey is conducted, and Σ

(I,i)
s has an AR(1) structure. For

simplicity, years withmissing data for single ages were treated as if theyweremissing all ages for that fleet.
Alternatively, missing data could be handled by, for instance, imputing random effects. All observational
parameters were estimated; however, they were configured with respect to coupling across ages in the
same way as for the official advice.

II.2.2 Connecting stocks

For many stocks, assuming independence between the error terms, ηs,a,y, is unrealistic. Inaccuracies
in the assumed natural mortality will be correlated by connections not included in the model such as
environmental changes, migration, or predation. All other things held constant, environmental effects
will be seen as positive correlation; migration will be seen as negative correlation; while predation will
be seen as negative correlation in a predator-prey relation or as positive correlation if two stocks are
influenced by the same predator.

To connect the S individual stocks, we temporarily extended the stock log-population processes to
have the same number of ages, A, for convenience. As an example, consider a case with two stocks (such
as the Baltic cod case study presented in subsection II.2.3) where one stock includes ages two to eight,
while the other stock includes ages zero to seven. To construct the correlation matrix, both log-population
processes have to be temporarily extended to include ages zero to eight to combine the stocks.

The individual processes were stacked to one process,

Ny = (N1,1,y, . . . , N1,A,y, . . . , NS,1,y, . . . , NS,A,y)
T ,

for which wemodelled the error terms, ηy = (η1,1,y, . . . , η1,A,y, . . . , ηS,1,y, . . . , ηS,A,y)
T , by a multivariate

normal with covariance ΣN .
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The covariance was parameterized through the Cholesky decomposition of the precision matrix PN .
Defining L to be a lower triangular matrix of parameters with diagonal 1, a positive definite precision
matrix was obtained by

PN = LLT

If the precision matrix was scaled to have diagonal 1, the off-diagonal elements were the partial correla-
tions with opposite sign. With this construction, the diagonal elements of P could not be estimated freely.
To obtain the covariance matrix as the inverse precision, we scaled P to have diagonal 1 and added freely
estimated variance parameters. Including variance parameters at this stage maintained the interpretation
of the estimated parameters from the single-stock model, where the parameter is directly related to the
variance of the specific age. The scaling was done by defining a diagonal scale matrix, S, by

Sij =

{
σi√

(P −1)ii

i = j

0 i ̸= j

where σi > 0 were variance parameters. Then the covariance matrix for the population process was
obtained by

ΣN = SP−1ST

Hence, any covariance matrix, ΣN , can be constructed from a suitable choice of L and σi, i =
1, . . . , S · A. The marginal covariance matrix of the ages included in the assessments was found by
using the corresponding indices of ΣN . In the example above, ΣN would be an 18 × 18 matrix where
the indices three to nine corresponds to ages two to eight for the first stock, while indices 10 to 17 corre-
sponds to ages zero to seven for the second stock. We considered the modelsMα, α = 0, . . . , 5, defined
such that the off-diagonal partial correlation in the error terms of Ns,a,t and Ns′,a′,t was zero if s = s′ or
|a−a′| ≥ α (See Appendix II.A for details). Hence,M0 corresponded to independent assessments while
the between-stock correlation has a band structure forM1 toM5. The width of the band increases with
the model subscript. When the process is Gaussian as here, a zero partial correlation implies conditional
independence; hence, by setting all within-stock partial correlations to zero, any correlation within each
stock is a result of partial correlations between the stocks. Therefore, the individual stock models are only
changed as an effect of the between-stock connections introduced.

II.2.3 Case studies

We considered three case studies with two stocks each (Table II.1). Two cases represent stocks that are
known to migrate between management areas, while the last case represent stocks with intersecting man-
agement areas. The Baltic cod (Gadus morhua) case consists of the Eastern and Western Baltic cod
stocks; the data was the basis of the 2014 ICES advice (ICES, 2014) for sub divisions 25-32 and 23-24,
respectively (Figure II.1). The Baltic herring (Clupea harengus membras) case comprised data for the
Bothnian Sea and Central Baltic herring stocks used in the 2015 ICES advice (ICES, 2015a) for sub di-
visions 30 and 25-27,28.2,29,32, respectively (Figure II.1). Data for the Baltic mix case was obtained
from the 2015 ICES advice for the Baltic sprat (Sprattus sprattus; sub divisions 22-32; ICES, 2015a) and
Western Baltic herring (Clupea harengus membras; sub divisions 22-24; ICES, 2015b) stocks. Three
of the stocks considered had missing data (Table II.1). The Central Baltic Herring and Baltic Sprat data
had missing data for all ages in surveys; the Western Baltic Herring was missing data for one age in 1991
for the Q3 survey, while the remaining years with missing data were missing all ages. Process model
parameters were coupled between ages in the same way as they were for the advice.
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Table II.1: Overview of the data sources used in the case studies. Q1-Q4 indicates at which quarter of the
year the survey is conducted.

Fleet First year Last year First age Last age Years with missing

Baltic Cod Case Study
Eastern Baltic Cod (Sub divisions: 25-32)
Commercial 1966 2013 2 8
Survey Q1 1991 2000 2 6
Survey Q1 2001 2013 2 6
Survey Q4 2002 2013 2 5
CPUE tuning index 1997 2013 3 7
Western Baltic Cod (Sub divisions: 23-24)
Commercial 1970 2013 1 7
CPUE tuning index 1997 2013 3 6
Survey Q1 1992 2013 1 6
Survey Q4 1992 2013 0 5

Baltic Herring Case Study
Bothnian Sea Herring (Sub division: 30)
Commercial 1973 2014 1 9
Survey Q4 2007 2014 2 8
Survey Q2 1990 2014 3 9
Central Baltic Herring (Sub divisions: 25-27,28.2,29,32)
Commercial 1974 2014 1 8
Survey Q4 1991 2014 1 8 1993,1995,1997

Baltic Mix Case Study
Baltic Sprat (Sub divisions: 22-32)
Commercial 1991 2014 1 8
Survey Q4 1991 2014 1 8 1993,1995,1997
Survey Q2 2001 2014 1 8
Survey Q1 1992 2014 1 1 1994,1996,1998
Western Baltic Herring (Sub divisions: 22-24)
Commercial 1991 2014 0 8
Survey Q3 1991 2014 1 8 1991,1999
Survey Q4 1991 2014 0 8 1991-1993,2001
Survey Q2 1992 2014 0 0
Survey Q1 1991 2014 1 4
Survey Q3 1991 2014 1 4

84



II.3. RESULTS

IVcIVcIVcIVcIVcIVcIVcIVcIVcIVcIVcIVcIVcIVcIVcIVcIVc

2424242424242424242424242424242424
2222222222222222222222222222222222

2323232323232323232323232323232323 2525252525252525252525252525252525 2626262626262626262626262626262626IVbIVbIVbIVbIVbIVbIVbIVbIVbIVbIVbIVbIVbIVbIVbIVbIVb

28.228.228.228.228.228.228.228.228.228.228.228.228.228.228.228.228.2
28.128.128.128.128.128.128.128.128.128.128.128.128.128.128.128.128.12727272727272727272727272727272727IIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIaIIIa

2929292929292929292929292929292929
3232323232323232323232323232323232IVaIVaIVaIVaIVaIVaIVaIVaIVaIVaIVaIVaIVaIVaIVaIVaIVa

3030303030303030303030303030303030

3131313131313131313131313131313131

VIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIIdVIId

5°E 0°W 5°W 10°W 15°W 20°W 25°W 30°W

5
0
°
N

5
5
°
N

6
0
°
N

6
5
°
N

Figure II.1: ICES sub divisions in the North Sea and Baltic Sea (http://geo.ices.dk; accessed 08-02-2017).

Table II.2: AIC difference from the best model fit for each case study, with the number of free parameters
needed to obtain the correlation structure in parentheses.

Model Baltic Cod Baltic Herring Baltic Mix

M0 35.06 (0) 32.99 (0) 14.26 (0)
M1 37.52 (6) 0.00 (8) 24.90 (8)
M2 0.00 (18) 10.96 (23) 6.59 (23)
M3 3.04 (29) 7.48 (36) 0.00 (36)
M4 15.91 (38) 15.24 (47) 16.76 (47)
M5 24.94 (45) 38.27 (56) 13.07 (56)

II.2.4 Simulation study

We simulated data sets with 50 years from the stock assessment model above with Gaussian observations
(See Appendix II.B for details). The data sets were simulated with two stocks combined by partial cor-
relation modelsM0 toM5. For each model we simulated 150 data sets. To investigate whether the true
model could be identified by Akaike information criterion (AIC; Akaike, 1974), and in particular whether
AIC would favour overfitting, the modelsM0 toM5 were fitted to the data. Further, the coverage of
confidence intervals were compared between the models.

II.3 Results

II.3.1 Case studies

Including correlations in the survival process between stocks improved the model fit, as measured by AIC,
in all three case studies (Table II.2). For Baltic Cod,M2 had the lowest AIC followed byM3 with an
AIC that was 3.04 higher. ModelM3 achieved the lowest AIC for Baltic Mix. Here,M2 followed with
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Figure II.2: Estimated partial correlation (upper triangle) and corresponding correlation (lower triangle)
in non-fishery survival, Σ̂N , for modelM2 in the Baltic Cod case study between all stocks and ages.
Dark blue indicates a high negative correlation, white is no correlation, while dark red indicates a high
positive correlations. By construction, both correlation and partial correlation is 1 in the diagonal. The
matrix is extended to have the same ages in both stocks. Ages present in the data are represented by a
black rectangle in the diagonal. 95% Confidence intervals are included in parentheses (see Appendix II.C
for details). A black triangle in the upper right corner indicates that the (partial) correlation is significant.
Axis labels indicate the age group, e.g., A3 is age three in the first stock, while B2 is age two in the second
stock.

an AIC difference of 6.59. For Baltic Herring,M1 had the lowest AIC, followed byM3 with a difference
of 7.48.

For the Baltic Cod stocks (Figure II.2), the age difference in recruitment was two years. With the
recruitments two years apart, the partial correlation was zero by construction inM3. Further, the re-
cruitment to Eastern Baltic was estimated to be almost partially uncorrelated with Western Baltic age one
(Estimate: 0.02; lower: -0.03; upper: 0.05). The resulting correlation in recruitment was also low (Es-
timate: 0.15; lower: -0.51; upper: 0.50). However, both the partial correlation (Estimate: 0.78; lower:
0.12; upper: 0.97) and correlation (Estimate: 0.93; lower: 0.15; upper: 1.00) between ages two were esti-
mated to be high for the two stocks. For Eastern Baltic Cod, close age groups were estimated to be highly
correlated as a result of the partial correlations with Western Baltic Cod. These within-stock correlations
between age groups no more than two years apart were estimated to be above 0.6, except for ages six and
eight where the correlation was 0.48 (0.17; 0.61) and ages two and four where the correlation was 0.48
(-0.38; 0.92). A majority of the correlations between the stocks, 89%, were estimated to be positive. Of
these, 81% were above 0.25, and 53% were above 0.6. With respectively seven and eight age groups in
the two Baltic Cod stocks, 18 partial correlations were estimated forM3 based on the same number of
free parameters in the Choleskey decomposition. Of these estimates, 22% were estimated to be negative,
17% had an absolute value below 0.1, and 28% had an absolute value above 0.7.

For Baltic Herring, the recruitments were estimated to be highly partially correlated inM1 (Fig-
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Figure II.3: Estimated partial correlation (upper triangle) and corresponding correlation (lower triangle)
in non-fishery survival, Σ̂N , for modelM1 in the Baltic Herring case study between all stocks and ages.
Dark blue indicates a high negative correlation, white is no correlation, while dark red indicates a high
positive correlations. By construction, both correlation and partial correlation is 1 in the diagonal. The
matrix is extended to have the same ages in both stocks. Ages present in the data are represented by a
black rectangle in the diagonal. 95% Confidence intervals are included in parentheses (see Appendix II.C
for details). A black triangle in the upper right corner indicates that the (partial) correlation is significant.
Axis labels indicate the age group, e.g., A3 is age three in the first stock, while B2 is age two in the second
stock.
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Figure II.4: Estimated partial correlation (upper triangle) and corresponding correlation (lower triangle)
in non-fishery survival, Σ̂N , for modelM3 in the Baltic Mix case study between all stocks and ages.
Dark blue indicates a high negative correlation, white is no correlation, while dark red indicates a high
positive correlations. By construction, both correlation and partial correlation is 1 in the diagonal. The
matrix is extended to have the same ages in both stocks. Ages present in the data are represented by a
black rectangle in the diagonal. 95% Confidence intervals are included in parentheses (see Appendix II.C
for details). A black triangle in the upper right corner indicates that the (partial) correlation is significant.
Axis labels indicate the age group, e.g., A3 is age three in the first stock, while B2 is age two in the second
stock.

ure II.3) with an estimated coefficient of 0.94 (0.58; 0.99). For modelM1, the partial correlations are
equal to the correlations by construction. As with the recruitment, ages two had a high correlation. This
correlation was estimated to be highly negative (Estimate: -0.69) albeit with an uncertain estimate (95%
Confidence interval: -0.99; 0.96). Ages five and ages eight were both estimated to be positively correlated
with coefficients of 0.74 and 0.55 respectively. However, both 95% confidence intervals included zero
(Figure II.3). Likewise, the remaining estimated correlations had confidence intervals which included
zero. With respectively eight and nine ages in the two Baltic Herring stocks, eight partial correlations
were estimated forM1 using the same number of free parameters in the Choleskey decomposition.

In the Baltic Mix case (Figure II.4), recruitments were estimated (95% confidence interval) to have a
negative partial correlation inM3 of -0.53 (-0.77; -0.07). The resulting correlation in recruitment was also
highly negative with an estimated coefficient of -0.65 (-0.94; -0.03). Several age classes were estimated
to be highly correlated. Baltic Spart age 3 and Western Baltic Herring age 2 had an estimated correlation
of -1.00 (-1.00; -0.49); Sprat age 5 had an estimated correlation with Herring ages 3 to 5 of 0.91 (-0.85;
0.99), 0.99 (0.59; 1.00), and 0.93 (0.72; 1.00) respectively; and Sprat age 7 was estimated to be correlated
with Herring ages five and six with coefficients of 0.93 (0.55; 0.99) and 0.99 (0.29; 1.00). With eight
and nine ages respectively in the two Baltic Mix stocks, 36 partial correlations were estimated forM3

using the same number of free parameters in the Choleskey decomposition. Of these partial correlation
estimates, 39% were estimated to be negative, 47% had an absolute value below 0.1, and 14% had an
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Table II.3: Number of simulation studies that resulted in the lowest AIC for modelsM0 toM5.

Best Model

True Model M0 M1 M2 M3 M4 M5

M0 136 12 1 1 0 0
M1 0 140 6 1 2 1
M2 0 0 120 14 8 8
M3 0 0 5 105 32 8
M4 0 0 5 21 107 17
M5 0 0 0 0 33 117

Table II.4: Average (over time) coverage of Hessian based 95% confidence intervals of the logarithm of
the predicted average (over ages) fishing mortality in the simulation study.

Estimation Model

Simulation Model M0 M1 M2 M3 M4 M5

M0 0.945 0.943 0.941 0.940 0.940 0.940
M1 0.942 0.940 0.939 0.936 0.935 0.934
M2 0.916 0.933 0.939 0.936 0.937 0.936
M3 0.897 0.930 0.939 0.934 0.933 0.931
M4 0.885 0.921 0.929 0.928 0.929 0.931
M5 0.919 0.917 0.897 0.902 0.934 0.932

absolute value above 0.7.

II.3.2 Simulation study

The simulation study consisted of a total of 900 simulations from the six modelsM0 toM5. Of these
simulations, 81% of the re-estimations identified the correct model from the candidatesM0 toM5 (Ta-
ble II.3). Simulations fromM3 were the most difficult to identify. Of these, 70%were correctly identified
as generated byM3 whereas 21% were identified asM4, 5% asM5, and 3% were identified asM2.
Only 7.1% of all simulations obtained the lowest AICwith a smaller model than the true simulation model.

Although the AIC was able to identify the true model in most cases, spurious correlations were found
by the complex models when the true model did not include correlations. When simulating fromM0, all
the modelsM1 toM5 had high estimated correlations. ForM5, 67% of the simulations had one or more
estimated correlations with an absolute value above 0.5 while 10% had an absolute value above 0.75. The
number was reduced with model complexity. The modelsM1 toM4, had estimated correlations with
absolute values above 0.5 for 44, 57, 65, and 67% of the simulations, respectively. Likewise, respectively
3, 9, 11, and 10% of the simulations had estimated correlations with absolute values above 0.75.

Besides identifying the true model, the simulations were used to calculate the coverage of Hessian
based 95% confidence intervals of the logarithm of the average fishing mortality (Table II.4). When
simulating from the modelsM0 andM1, all four estimation models had an average coverage close to
95% based on 150 simulations. This was not the case in the simulations where substantial correlations
were included in the true model. When simulating fromM2 toM5, estimation modelM0 only had a
coverage of 91.6, 89.7, 88.5, and 91.9%, respectively. Likewise, when simulating fromM5, estimation
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modelsM1 toM3 had coverages of 91.7, 89.7, 90.2%, respectively, while modelsM4 andM5 had
higher coverages: 93.4%, and 93.2%, respectively.

II.4 Discussion

European fisheries management mainly relies on single-stock assessment models, which assumes that
stocks are not interconnected. For many stocks, this is not a reasonable assumption, as they are connected
by several interactions, such as predation, migration and influences from the environment. Currently,
the main alternative to single-stock models is complex ecosystem models, which are data intensive and
require extensive tuning and long run times. We introduced a simple and fast alternative: connecting
stocks by correlated survival variability. In our case studies, the models were fitted in 1.1 to 4.5 minutes.
The models only require the data already used in single-stock models, which makes it readily usable for
a wide range of stocks. Further, the model can be reduced to independent single-stock models, which
allows objective testing of whether connecting stocks is an improvement, through likelihood ratio tests,
AIC, or the like. We modelled complicated correlation patterns by a simple structure through the partial
correlations; however, other correlation structures could be used instead.

Unlike multi-species models and ecosystem models, which try to directly model interactions or com-
mon influences of stocks, the present approach estimates whether a good year for one cohort is also a good
year for another cohort it may be linked to. While simplistic and less informative about the ecosystem, this
approach is highly operational and easily implemented for any group of stocks with an analytical assess-
ment, since the model does not require any new data sources to be introduced. Further, the approach can
be used to model complex correlation structures in other parts of the model such as the fishing mortality
process.

The case studies presented were chosen to illustrate stocks that are believed to migrate and stocks
that share environment. In general, connecting stocks should be considered when: biological knowledge
suggests interactions, the management areas intersect, or patterns in model validation tools such as resid-
uals (e.g. Thygesen et al., 2017) or retrospective analysis (e.g. Hurtado-Ferro et al., 2015) are present. If
biological knowledge indicates migration or predator-prey relations, it should be tested whether assess-
ments can be improved by correlating the abundance processes. Likewise, when the management areas
intersects, the stocks likely share environmental conditions or compete for resources which can correlate
the abundance processes. Finally, common or opposite patterns in the residuals or retrospective analysis
can indicate missing biological knowledge which can lead to correlated abundance processes.

Although modelling partial correlations provides a simple interpretation of parameters, understanding
why they arise is not as simple in the present framework. Correlations among stocks or ages can be the
result of several processes such as migration, predation or environmental impact. While further research
is needed to evaluate the possibility of extending the framework to directly include any of these processes,
it is straight forward to evaluate whether stocks are similar in the sense that they could share parameters in
the assessment model. Testing whether parameters are shared among stocks can give a basis for evaluating
if stocks should be managed together or separately (Montenegro et al., 2009)

For all three case studies, the proposed model improved on the single-stock models as measured by
AIC. In general, modelM3 performed well for all stocks, although smaller models were preferred for
two of the cases. The model allows a flexible correlation structure to be estimated with relatively few
parameters. Bymodelling partial correlations with a band structure between stocks, we obtain very general
correlation structures, even within the individual stocks. With this model, correlations within each stock
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are interpreted as a result of a connection between the stocks. Hence, the model only changes the single-
stock model as an effect of the connection between stocks.

In the simulation study we showed that the true model can be identified by AIC, although with a risk of
choosing amodel including toomany partial correlations. It is well-known that AIC can favour overfitting,
when the true model has a finite parameter space, and is among the candidate models (Burnham and
Anderson, 2003). However, for stock assessment models the true data generating system is too complex
to be described by a simple model; observed data will depend on, amongst other things, the hydrological
systems, individual fish behaviour, individual fisherman behaviour, and a wide array of data accumulation
procedures. Any practically applicable candidate model will require strong simplifications; therefore, the
AIC does not necessarily select the true model in the case studies, but simply the model that has the best
fit to the data, while penalizing for the additional parameters used.

While the selected model provides the best fit to data, interpretation of individual correlation parame-
ters must be done with caution. Estimated correlations in the abundance process will be a result of several
effects such as environmental conditions, predation and migration, which can not be separated in the pre-
sented model. Further, if the correlation between, for example, observations are not adequately modelled,
the state-space model can somewhat compensate to increase the model fit using the correlations in the
abundance process (Thygesen et al., 2017). Finally, the typically short time series available for stock as-
sessment models can result in imprecise individual correlation estimates, which clutters the overall pattern
seen.

Ignoring correlations in data results in unreliable confidence intervals formodel output. In a simulation
study, we investigated the confidence intervals of the estimated fishing mortality; both when correlations
were present and absent. We found that when severe correlations are present in the data, (i.e. simulating
from modelsM3 toM5), ignoring the correlations results in confidence intervals that are too narrow.
When no correlations were estimated, Hessian based 95% confidence intervals only had a coverage of
89.7%, 88.5%, and 91.9%, respectively„ when simulating from modelsM3 toM5, while the more flex-
ible correlation structures provided confidence intervals close to the correct coverage.

Accurate assessments of model output uncertainty is important for sustainable fisheries management
(Chaput, 2004; Cadrin and Dickey-Collas, 2014). Underestimating the uncertainty of model output used
for management will increase the probability of overfishing (Punt et al., 2012). Hence, if correlations in
data are ignored, a fishery perceived as sustainable may in fact have a non-sustainable risk of depletion.

These results will allow managers and policymakers to make informed decisions based on a more
accurate assessment of model output uncertainty. As a simple extension of single-species assessments,
the model output can be evaluated per stock, while giving an accurate evaluation of uncertainty. Likewise,
connecting stocks may increase the accuracy of forecasts. Together with the estimated correlations, these
improvements can provide guidance on managing single stocks and the potential influence on surrounding
stocks. The procedure outlined is directly applicable without additional data sources.
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II.A Unstructured covariance matrix

Let L be a lower triangular of parameters with diagonal 1, and normalized such that ⟨Li·, Li·⟩ = 1 for
all i. Then Σ = LLT is an arbitrarily scaled covariance matrix. Off-diagonal elements of the covariance
matrix can be forced to be zero (e.g. https://github.com/admb-project/examples/tree/master/admb-tricks/
parameterization/covariance-matrices; accessed: 06-03-2017) by noting that

Σjk = ⟨Lj·, Lk·⟩.

Hence, by defining L̃ such that L̃j· = Lj· − ⟨Lj·, Lk·⟩Lk· and L̃i· = Li· for i ̸= j, then for the
covariance matrix Σ̃ = L̃L̃T ,

Σ̃jk = ⟨L̃j·, L̃k·⟩
= ⟨Lj· − ⟨Lj·, Lk·⟩Lk·, Lk·⟩
= ⟨Lj·, Lk·⟩ − ⟨Lj·, Lk·⟩⟨Lk·, Lk·⟩
= ⟨Lj·, Lk·⟩ − ⟨Lj·, Lk·⟩
= 0

While this method allows us to impose constraints on the covariance matrix, it is, in practice, difficult
to pre-determine which parameters will be redundant. Instead, the gradient and hessian of the resulting
likelihood function can be examined to determine parameters that do not affect the likelihood value. These
parameters must be fixed in optimization.

II.B Simulation study details

II.B.1 Stock structure

We simulated 100 years from the model and discarded the first half of the time series. Two stocks were
simulated with six age groups each. The last age group was considered a plus group. Natural mortality
was fixed at 0.2. The initial log-population size was set to 16 for the first age group and was 0.5 less for
each subsequent age group.

II.B.2 Fishing mortality

log-fishing mortality for stock s, age a, and year y was simulated by

logFs,a,y = cos
( y

10
+ 10 · 1{2}(s)

)
− 1 + ϵs,a,y

where
1{2}(s) =

{
1 if s = 2
0 if s ̸= 2

,

and ϵs,a,y ∼ N(0, 0.012).
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II.B.3 log-Population process

The log-population given fishing mortality was simulated from the models M0 to M5 above.
The off-diagonal non-zero entries, Pi,j , of the precision, P , matrix for Mα was constructed as
−(α + 1)/ (α− |ai − aj|+ 1)2, where ai is the age corresponding to the ith index of the process.
This construction ensures non-negligible partial correlations in the elements not included in the smaller
models. Diagonal elements, Pi,i, were set to

∑
j ̸=i Pi,j + exp(−α) to ensure the precision matrix was

positive-definite. The corresponding covariance matrix was scaled to have diagonal elements 0.12.

II.B.4 Observations

log-observations given fishing mortality and log-population were simulated from a multivariate normal
with AR(1) covariance structure. The AR(1) parameter was set to 0. For commercial data, the variances
for all ages were 1. A first quarter survey was simulated from amultivariate normal with AR(1) covariance
structure with parameter 0 and variances exp(−4). The catchability was set to exp(−7).

II.B.5 Re-estimation

Re-estimation was performed assuming an AR(1) structure for the correlations in the log-F random walk,
random walk recruitment, and univariate log-normal observations.

II.C Confidence interval for correlation parame-
ters

Simulation based confidence intervals for correlation parameters were constructed through the profile
likelihood. Splitting the parameter vector θ into correlation parameters θc and other parameters θo, we
simulated proposal parameters θ

(i)
c , i = 1, . . . , N , from the hessian based Gaussian approximation of the

distribution of the estimator. The proposal was accepted if the hypothesis θc = θ
(i)
c could not be rejected

by a likelihood ratio test with significance level α. Each accepted simulated correlation parameter vector
was transformed to a partial correlation and a correlation matrix. For each matrix element, minimum and
maximum values were used as (1 − α) · 100 % confidence interval. We simulated N = 1000 proposal
parameter vectors for each case study, and obtained acceptance rates of 0.80, 0.41, and 0.63 for Baltic
Herring, Mix and Cod, respectively. For Baltic Mix and Cod, the variance of the proposal distribution
was reduced to increase acceptance.
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Abstract

State-space models (SSM) are often used for analyzing complex ecological processes that are not ob-
served directly, such as marine animal movement. When outliers are present in the measurements, spe-
cial care is needed in the analysis to obtain reliable location and process estimates. Here we recommend
using the Laplace approximation combined with automatic differentiation (as implemented in the novel R-
package: Template Model Builder (TMB)) for the fast fitting of continuous time multivariate non-Gaussian
SSMs. Through Argos satellite tracking data, we demonstrate that the use of continuous time t-distributed
measurement errors for error-prone data is more robust to outliers and improves the location estimation
compared to using discretized time t-distributed errors (implemented with a Gibbs sampler) or using con-
tinuous time Gaussian errors (as with the Kalman filter). Using TMB, we are able to estimate additional
parameters compared to previous methods, all without requiring a substantial increase in computational
time. The model implementation is made available through the R-package argosTrack.

Keywords:

Argos system, Template Model Builder, outliers, state-space models, animal movement, Laplace ap-
proximation

III.1 Introduction

Studying individual animal movement is fundamental to determining the biological processes that affect
the dynamic structure and function of ecosystems (Nathan et al., 2008). Technological advances in satel-
lite telemetry, such as Argos archival data loggers, have allowed researchers to track animal movements
and behavior in difficult to study environments like marine systems. However, non-Gaussian measure-
ment errors are inherent to this technology (Jonsen et al., 2005), with the magnitude of each of these
errors associated with one of seven location classes. Thus our understanding of movement, which is al-
ready complicated by multiple spatiotemporal scales and interactions between habitat, life history, and
physiology, is further obscured by errors in the observation process (Patterson et al., 2008).

State-space models (SSMs) estimate the parameters and true locations underlying stochastic animal
movement processes (Jonsen et al., 2003; Sibert et al., 2003; Jonsen et al., 2005, 2012). A SSM can
explicitly account for error inherent to the Argos system while simultaneously fitting a movement model
to data, thereby separating the stochasticity in the movement from the stochasticity in the data collection
(Jonsen et al., 2005; Johnson et al., 2008; McClintock et al., 2012). Extensive research and development
in the past decade has produced widely applicable SSMs that can answer a variety of biological questions.
SSMs are now capable of accounting for sources of movement variability related to environmental co-
variates (Jonsen et al., 2003; Bestley et al., 2012; McClintock et al., 2012), behavior (Jonsen et al., 2005;
Flemming et al., 2010; Bestley et al., 2012; McClintock et al., 2012), bias or drift (Johnson et al., 2008;
McClintock et al., 2012) and can also model multiple tracks simultaneously (Jonsen et al., 2006; Eckert
et al., 2008; Bestley et al., 2012). The increasing popularity of SSMs is evident in the literature, and is no
doubt partially driven by the availability of R-packages for fitting SSMs like bsam (Jonsen et al., 2005;
Jonsen, 2015) and crawl (Johnson et al., 2008; Johnson, 2013).

Given the importance of animal movement and the flexibility of SSMs for estimating true locations
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while simultaneously relating them to various environmental (and other) covariates of interest, these mod-
els and their implementations still warrant further development. In fact, despite widespread application
in movement ecology, SSMs remain at times both difficult to understand (Tremblay et al., 2009) and to
implement (Patterson et al., 2008). Current limitations arise from underlying difficulties of likelihood
computation and maximization for non-Gaussian and non-linear models. Although Johnson et al. (2008)
utilize the computationally efficient Kalman filter (applicable only to linear Gaussian SSM formulations)
to evaluate their model likelihood, both Jonsen et al. (2005) and McClintock et al. (2012) rely on compu-
tationally expensive and comparatively slowMarkov Chain Monte Carlo techniques to estimate locations
and model parameters, while Pedersen et al. (2011) discretize the state-space and use a Hidden Markov
Model. Features which add outlier robustness to models, specifically heavy-tailed error distributions, in-
crease model complexity and computation time. For example, Johnson et al. (2008) are able to use the
fast Kalman filter for evaluating their continuous-time SSM because they model the measurement errors
with Gaussian distributions instead of the more robust t-distributions of Jonsen et al. (2005); while the
former model takes only minutes to fit, the latter can take hours for a standard Argos track (an average of
21 observations per day for five months).

Template Model Builder (TMB; developed by Kasper Kristensen and freely available at www.tmb-
project.org) is a recently developed R-package that is functionally similar to AD Model Builder (ADMB;
Fournier et al., 2012): it uses a combination of reverse mode Automatic Differentiation and the Laplace
approximation for high dimension integrals in order to perform parameter estimation. Such a combination
allows for the efficient fitting of complex (nonlinear, non-Gaussian, and hierarchical) models to large
multivariate datasets (Fournier et al., 2012).

Here we adapt the SSM formulated in Johnson et al. (2008) for fitting within the TMB framework.
We use two versions: the original model of Johnson et al. (2008), and a modified model assuming t-
distributed measurement errors as in Jonsen et al. (2005). Hereafter we interchangeably describe an SSM
with t-distributed measurement errors as non-Gaussian or robust. We fit these models to simulated data
as well as to real data collected from both a subadult and an adult ringed seal (Pusa hispida). Ecological
differences in movement and behavior in relation to ontogeny occur in ringed seals (Harwood et al., 2015).
Thus two age groups (i.e. adult and subadult) were chosen to illustrate model versatility with movement
data reflecting different behavioral patterns where subadults often have periods of strong directional per-
sistence while adults typically remain resident. Our aim is twofold. First, we demonstrate through simu-
lation and the calculation of mean squared errors that within the TMB framework, SSMs with t-distributed
errors can be fitted quickly, and second, we show the efficacy of using the Laplace approximation for
fitting SSMs to real Argos telemetry data, specifically as implemented in TMB. We make all code readily
available through the R-package argosTrack (www.github.com/calbertsen/argosTrack; also available in
the online Supplement) to both facilitate the implementation of SSMs in TMB and to provide a “toolbox”
that researchers can utilize to fit these SSMs to marine telemetry data.

99



PAPER III. FAST FITTING OF NON-GAUSSIAN STATE-SPACE…

III.2 Methods

III.2.1 Model Formulation

III.2.1 Velocity process:

We implement the continuous-time correlated random walk model described in Johnson et al. (2008). For
each coordinate c = 1, 2 (1: latitude, 2: longitude) the instantaneous velocity of the animal νc,i at time i
is described by the Ornstein-Uhlenbeck process:

νc,i − γc = e−βc∆i [νc,i−1 − γc] + ηc,i. (III.1)

In this process, γc describes the long term mean velocity (can be interpreted as drift), while βc > 0
determines how long a period with high or low velocities will last (i.e. the autocorrelation in the process).
Further,∆i denotes the time interval between νc,i−1 and νc,i, and ηc,i is a random error term which follows
aGaussian distribution withmean zero and varianceV (ηc,i) = σ2

c (1−e−2βc∆i)/(2βc), where σ2
c is a scale

parameter controlling the variability in velocity. With respect to animal movement, γc can be interpreted
as the directional preference. That is, if γc = 0, the animal has no directional preference, while a large
γc corresponds to fast movement in a specific direction as determined by the sign of γc. Likewise βc

describes how much the animal will stray from the path. If βc is large, the animal will stay close to the
path.

III.2.2 Location process:

By integrating over the velocity process one obtains the location process:

µc,i = µc,i−1 + νc,i−1

(
1− e−βc∆i

)
/βc + ζc,i. (III.2)

Here µc,i denotes the c coordinate of the location at time i and ζc,i follows a Gaussian distribution with
zero mean and variance

V (ζc,i) =
σ2

c

β2
c

(
∆i − 2

(
1− e−βc∆i

)
/βc +

(
1− e−2βc∆i

)
/(2βc)

)
.

The joint distribution of ηc,i and ζc,i is a bivariate Gaussian distribution with covariance

Cov (ηc,i, ζc,i) =
σ2

c

2β2
c

(
1− 2e−βc∆i + e−2βc∆i

)
.

These processes combine to form the unobserved states in our SSM.

III.2.3 Measurement equation:

As in Johnson et al. (2008), we consider the measurement equation
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yc,i = µc,i + ϵc,i. (III.3)

where yc,i denotes the c coordinate of the observed location of an animal and ϵc,i is a measurement error
term. We take the joint distribution of ϵ1,i and ϵ2,i to bemodelled as a bivariate t-distribution with da(i) > 3
degrees of freedom (to ensure the distribution has both a mean, variance, and skewness), mean vector of
zeros, and scale matrix Hi defined as Hi = diag

(
τ 2
1,a(i), τ

2
2,a(i)

)
where a(i) is a factor determining the

Argos location quality class of observation i, and τ 2
1,a(i) and τ 2

2,a(i) are scale parameters describing the
variance of the measurement error for the corresponding quality class. Hence the measurement variance,
through the scale and degrees of freedom parameters, for both coordinate directions is estimated for each
location classwithin themodel. Thismodel formulation, denoted TMB-t, will be contrastedwith themodel
denoted TMB-g, which instead takes the joint distribution of ϵ1,i and ϵ2,i to be bivariate Gaussian with
mean vector of zeros and covarianceHi. The former can be considered more robust in that t-distributions
are heavier tailed than Gaussian distributions which makes outlying observations (like those typical of
Argos data) more likely under a t-distribution such that they have less impact on subsequent location and
parameter estimation.

III.3 Estimation

In SSMs, maximum likelihood inference about parameters should be performed using the marginal distri-
bution of the observations. This requires integration over the unobserved states in the joint distribution of
the observed and unobserved (state) processes, which in our case correspond to the Argos observations and
the true yet unobserved locations (and velocities) of the tagged animal, respectively. In the Kalman filter,
the simplicity of the linear Gaussian SSM is exploited to reduce the integration to a recursive algorithm
which is fast but inflexible. Inference with MCMC methods is performed by sampling from the posterior
likelihood of the parameters and the unobserved states given the observed data, which makes MCMC
methods flexible but slow. In TMB the integration is performed by using the Laplace approximation which
also produces optimal state predictions and corresponding confidence intervals (Kass and Steffey, 1989).
The deterministic approximation is fast compared to simulation methods while flexible compared to the
Kalman filter. Similar to, for example, the Kalman smoother, the state predictions are smoothed with
the Laplace approximation in the sense that they depend on the whole data set. For both consistency,
simplicity, and easy comparability with the results of fitting similar models with the R-packages crawl
based on the Kalman filter and bsam using MCMC with a Gibbs sampler, we impose on our model the
restrictions β1 = β2 and γ1 = γ2 = 0. This implies that all simulated tracks experienced zero drift, and
that autocorrelation was similar across coordinate axes. Note that the crawl and TMB-g implementations
are not identical as the latter estimates additional variance parameters (associated with the Argos loca-
tions classes). The bsam model differs from the TMB-t implementation in three ways: the bsam model
is formulated in discrete time, bsam models a turning angle instead of the velocity, and the TMB-t imple-
mentation estimates all parameters in the measurement equation. In bsam the ratio of the scale parameters
and the degrees of freedom is fixed based on the results of Vincent et al. (2002), which reduced the number
of estimated parameters in the measurement equation to one.
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III.4 Simulation Study

We carried out an extensive simulation study to assess the gains in accuracy of the location estimates by fit-
ting the Johnson et al. (2008) movement model with t-distributed measurement errors. We simulated data
from our SSM as described by Equations III.1, III.2, and III.3. Specifically, the unobserved locations and
velocities were simulated from Equations III.1 and III.2 and measurement errors were bootstrapped from
the residuals of the TMB-t fit to mimic true heavy-tailed Argos measurement errors, without assuming a
specific distribution (see Appendix A for details).

To measure the effect of using a SSM with t-distributed measurement errors we examined results
of the following three TMB implementations: TMB-g - Gaussian measurement errors assumed; TMB-gr -
Gaussian measurement errors assumed but with a swim speed filter applied (Freitas, 2012); and TMB-t -
t-distributed measurement errors assumed. Further, the R-packages crawl (version 1.4-1; Johnson, 2013)
and bsam (version 0.43.1; Jonsen, 2015) were applied to the simulated data. Since bsam only produces po-
sition estimates at regularized time-steps, these were interpolated by assuming linear movement between
location estimates. This is the same way bsam handles observations at irregular time-steps (Jonsen et al.,
2005). For each implementation the resulting estimated locations were compared to the true simulated
locations by calculating the coordinate-wise root mean squared error (RMSE) along the track.

Using continuous time Gaussian measurement errors without pre-processing (the crawl and TMB-g
implementations) resulted in an average RMSE of 0.012 in latitude and 0.031 in longitude (Figure III.1
and Appendix A), which corresponds to approximately 1400 meters in the North-South direction and 900
meters in the East-West direction. The RMSE was generally lowered by estimating all parameters in
the model (TMB-g and TMB-t). When the data were pre-processed with a swim speed filter (TMB-gr)
the RMSE decreased by an average of 22.3% (min: -2.1%; max: 46.0%) in latitude and 23.3% (min:
-20.5%; max: 38.4%) in longitude. The negative decrease in RMSE indicates that in some cases the
RMSEwas higher for TMB-gr than for TMB-g. The lowest RMSEwas achieved by assuming t-distributed
measurement errors with the TMB-t implementation. Compared to TMB-g, TMB-t reduced the RMSE
by 42.1% on average (min: 26.5%; max: 64.6%) in latitude and 43.6% (min: 34.7%; max: 54.3%)
in longitude. TMB-t additionally reduced the RMSE compared to bsam by 10.4% (min: -9.7%; max:
24.7%) in latitude and 10.0% (min: 0.2%; max: 19.3%) in longitude.

III.5 Application

To further illustrate the utility of our approachwe considered two previously unpublishedmovement tracks
from a subadult and adult male ringed seal (Pusa hispida), each corresponding to a different life history
stage. The datasets of the subadult and adult seals included 3,586 and 2,698 observations over a period
of 168 and 219 days, respectively, of which 49.53% and 52.71% (respectively) were characterized by the
two worst Argos quality classes.

We modelled the ringed seal data with the four full data approaches above: crawl, bsam, TMB-g,
and TMB-t (see Appendix B for further details) to investigate the effect of using a continuous time model
as opposed to a discrete time model, the effect of estimating all parameters in the model, and the effect
of using t-distributed errors as opposed to Gaussian measurement errors. Hence pre-processing of data
(TMB-gr) is not considered in this section. The location estimates from using crawl and TMB-g were
similar (Figure III.2 and Appendix B), but crawl was 8x faster than TMB-g (Table III.1). Similar location
estimates were also obtained from bsam and TMB-t (Figure III.2), but TMB-t was 60x faster than bsam,
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Figure III.1: Boxplot of the RMSE for TMB-t, TMB-g, and TMB-gr in latitude (A) and longitude (B). States
were simulated parametrically and observations were bootstrapped using the residuals of the TMB-tmodel
that was fitted to the subadult seal (so as to mimic true Argos errors)
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Table III.1: Comparison of computation times in seconds across models applied to the subadult and adult
seal tracks. All methods were implemented on a Dell Latitude E6410 laptop with 4GB RAM and an Intel
Core i7 M640 processor at 2.8 Ghz. The operator system used was 64-bit Ubuntu 14.04 LTS.

Computation time Latent variables
Method Parameters subadult adult subadult adult

crawl 4 12.7 8.3 13680 10404
bsam 7 11109.8 11745.8 2698 3500
TMB-g 17 45.6 42.3 13680 10404
TMB-t 24 190.9 77.4 13680 10404

which reduced the estimation time from hours to three minutes.

Overall the robust implementations (TMB-t and bsam) and those with Gaussian measurement error
assumptions gave similar location estimates, but with substantial differences near outliers. These dif-
ferences are caused by the decreased sensitivity of the t-distribution to extreme observations compared
to using the Gaussian distribution. This also lead to the low RMSE for TMB-t (Figure III.1). For both
datasets, the crawl implementation was the fastest, while TMB-g took approximately 4 times as long. The
additional complexity of using t-distributed measurement errors in TMB-t increased the execution time
by 100% as compared to TMB-g, while bsam used a total of 3 hours.

III.6 Discussion

In this paper we propose and demonstrate the use of TMB for fitting non-Gaussian SSMs to animal move-
ment data, specifically that collected by the Argos satellite-based system. Our simulation results and
application to two behaviorally distinct movement tracksmake clear that the Laplace approximation as im-
plemented in TMB is highly suitable for the parameter and state estimation required by complex SSMs. To
illustrate how TMB can be used to fit non-Gaussian SSMs, we make available the R-package argosTrack
(Supplement).

Using TMBwewere able to improve location estimates compared to previous methods by estimating all
model parameters from the data and by utilizing heavy-tailed t-distributions within the same model. In the
simulation study, the location estimates were improved by estimating all measurement error parameters
(TMB-g compared to crawl; Figure III.2 and Fig. A2), and further improvements were made by using
t-distributed errors to account for outliers (TMB-t compared to TMB-g). Using the robust continuous time
model on the full data even outperformed that of pre-processing the data with a standard swim speed
filter (as proposed by Freitas et al. (2008)). The latter did indeed provide improvements over a full data
Gaussian approach. Finally, TMB-t improved state estimation compared to bsam, which may be caused
by estimating all parameters within the model and by using a continuous time formulation compared to
a discrete time model, as the latter discards information from the observations by interpolating between
state estimates at equidistant times.

When applied to Argos data collected on ringed seals, TMB-t did not substantialy decrease running
time compared to crawl or TMB-g, but it did reduce computation time from the hours of bsam to only
minutes. The fastest model we fitted during the application was crawl, which was a predictable result
because the Kalman filter is an optimal estimation method for linear Gaussian SSMs (in that there is
an analytical solution for these cases). Considering the simulation study together with the application,
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Figure III.2: Observed (grey, dashed) and estimated tracks from four models fit to Argos observations
collected by a tagged subadult (A) and adult (B) ringed seal (Pusa hispida). The four models included
TMB-t (red), TMB-g (black), crawl (blue), and bsam (orange).
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the results are promising for using the Laplace approximation to estimate continuous time SSMs with
t-distributed measurement errors for error-prone Argos tag data. The improved estimation achieved by
using t-distributed errors agrees with previous results (Jonsen et al., 2005).

The power of TMB results from its flexibility allowing for the estimation of non-Gaussian models and
additional parameters, all without substantially increasing computation time. For example, most SSM
implementations to date have used existing estimates of Argos error distributions based on the 426 obser-
vations of Vincent et al. (2002; e.g. Johnson et al., 2008) or have used the Vincent et al. (2002) results to
parametrize their error distributions (e.g. Jonsen et al., 2005). This is not necessary when fitting SSMs
with TMB, where parameters describing the measurement error t-distributions are instead estimated within
the SSM fitting procedure and using the entire animal track (which in our application included more than
2000 observations). Furthermore, TMB requires far fewer subjective choices (Bolker et al., 2013), which
reduces estimation error introduced by imposing incorrect conditions on a SSM or its estimation proce-
dure. For example, there are no priors, no pre-processing, no burn-in period, no time step, and no number
of iterations for simulated annealing. Additionally one does not have to specify initial distributions for the
velocity and location processes when using the Laplace approximation, unlike most filters and MCMC
methods. Finally, the computational efficiency of the TMB framework allows us to more easily validate
models through simulation or bootstrapping to, e.g., examine the validity of the standard errors of the
estimated locations.

We have shown here that TMB is highly suitable for fitting SSMs, particularly non-Gaussian versions, to
marine Argos telemetry data. However, we also note that the models we have fitted are readily extendable
to data collected via Global Positioning System, which produces more accurate location estimates than
those estimated by Argos, and additionally does not require location classes or associated error distribu-
tions. The results of this study are promising for improving the rapidity and robustness of future analyses
of more complex models including covariates or multiple tracks for error-prone marine telemetry data.

Acknowledgements

This research has been supported by a National Sciences and Engineering Research Council Canada
(NSERC) Discovery Grant to J. Mills Flemming, a Canadian Statistical Sciences Institute (CANSSI)
Collaborative Team Project involving J. Mills Flemming and A. Nielsen, and an NSERC grant (NETGP
375118-08) to J. Mills Flemming via the Ocean Tracking Network Canada. K. Whoriskey has been sup-
ported by a NSERC Canada Graduate Scholarship and a Killam Predoctoral scholarship. D. Yurkowski
has been supported by an Ontario Graduate Scholarship and theW. GarfieldWeston Foundation. Handling
was approved and conducted under a Fisheries and Oceans Animal Care Protocol (FWI-ACC-2010-006)
and DFO Licence to Fish for Scientific Purposes (S-10/11-1006-NU).

Supplemental Material

Appendices A–C and the Supplement are available online: http://dx.doi.org/10.1890/14-2101.1.sm

106



LITERATURE CITED

Literature Cited

Bestley, S., Jonsen, I. D., Hindell, M. A., Guinet, C., & Charrassin, J.-B. (2012). Integrative modelling of
animal movement: incorporating in situ habitat and behavioural information for a migratory marine
predator.Proceedings of the Royal Society B: Biological Sciences, 280(1750), 2262–2262. doi:10.
1098/rspb.2012.2262

Bolker, B. M., Gardner, B., Maunder, M., Berg, C. W., Brooks, M., Comita, L., … Zipkin, E. (2013).
Strategies for fitting nonlinear ecological models in r, AD model builder, and BUGS. Methods in
Ecology and Evolution, 4(6), 501–512. doi:10.1111/2041-210x.12044

Eckert, S. A., Moore, J. E., Dunn, D. C., van Buiten, R. S., Eckert, K. L., & Halpin, P. N. (2008). Model-
ing loggerhead turtle movement in the mediterranean: importance of body size and oceanography.
Ecological Applications, 18(2), 290–308. doi:10.1890/06-2107.1

Flemming, J. M., Jonsen, I. D., Myers, R. A., & Field, C. A. (2010). Hierarchical state-space estimation of
leatherback turtle navigation ability. PLoS ONE, 5(12), e14245. doi:10.1371/journal.pone.0014245

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., … Sibert, J. (2012).
AD model builder: using automatic differentiation for statistical inference of highly parameterized
complex nonlinear models. Optimization Methods and Software, 27(2), 233–249. doi:10.1080/
10556788.2011.597854

Freitas, C., Lydersen, C., Fedak, M. A., & Kovacs, K. M. (2008). A simple new algorithm to filter marine
mammal argos locations. Marine Mammal Science, 24(2), 315–325. doi:10.1111/j.1748-7692.
2007.00180.x

Freitas, C. (2012). Argosfilter: argos locations filter. R package version 0.63. Retrieved from https :
//CRAN.R-project.org/package=argosfilter

Harwood, L. A., Smith, T. G., Auld, J. C., Melling, H., & Yurkowski, D. J. (2015). Seasonal movements
and diving of ringed seals, Pusa hispida, in the western canadian arctic, 1999–2001 and 2010–11.
ARCTIC, 68(2), 193. doi:10.14430/arctic4479

Johnson, D. S. (2013).Crawl: fit continuous-time correlated random walk models to animal movement
data. R package version 1.4-1. Retrieved from https://CRAN.R-project.org/package=crawl

Johnson, D. S., London, J. M., Lea, M.-A., & Durban, J. W. (2008). Continuous–time correlated random
walk model for animal telemetry data. Ecology, 89(5), 1208–1215. doi:10.1890/07-1032.1

Jonsen, I. D. (2015). Bsam: bayesian state-space models for animal movement. with contributions from
S. Luque, A. Winship and M.W. Pedersen. R package version 0.43.1.

Jonsen, I. D., Basson, M., Bestley, S., Bravington, M. V., Patterson, T. A., Pedersen, M. W., … Wother-
spoon, S. J. (2012). State-space models for bio-loggers: a methodological road map. Deep Sea Re-
search Part II: Topical Studies in Oceanography, 88-89, 34–46. doi:10.1016/j.dsr2.2012.07.008

Jonsen, I. D., Flemming, J. M., &Myers, R. A. (2005). Robust state–space modeling of animal movement
data. Ecology, 86(11), 2874–2880. doi:10.1890/04-1852

Jonsen, I. D., Myers, R. A., & Flemming, J. M. (2003). Meta–analysis of animal movement using state–
space models. Ecology, 84(11), 3055–3063. doi:10.1890/02-0670

Jonsen, I. D., Myers, R. A., & James, M. C. (2006). Robust hierarchical state-space models reveal diel
variation in travel rates of migrating leatherback turtles. Journal of Animal Ecology, 75(5), 1046–
1057. doi:10.1111/j.1365-2656.2006.01129.x

Kass, R. E. & Steffey, D. (1989). Approximate bayesian inference in conditionally independent hierarchi-
cal models (parametric empirical bayes models). Journal of the American Statistical Association,
84(407), 717–726. doi:10.1080/01621459.1989.10478825

McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B. J., & Morales, J. M. (2012).
A general discrete-time modeling framework for animal movement using multistate random walks.
Ecological Monographs, 82(3), 335–349. doi:10.1890/11-0326.1

107



PAPER III. FAST FITTING OF NON-GAUSSIAN STATE-SPACE…

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., & Smouse, P. E. (2008). A
movement ecology paradigm for unifying organismal movement research. Proceedings of the Na-
tional Academy of Sciences, 105(49), 19052–19059. doi:10.1073/pnas.0800375105

Patterson, T., Thomas, L., Wilcox, C., Ovaskainen, O., & Matthiopoulos, J. (2008). State–space models
of individual animal movement. Trends in Ecology & Evolution, 23(2), 87–94. doi:10.1016/j.tree.
2007.10.009

Pedersen, M.W., Patterson, T. A., Thygesen, U. H., &Madsen, H. (2011). Estimating animal behavior and
residency frommovement data.Oikos, 120(9), 1281–1290. doi:10.1111/j.1600-0706.2011.19044.x

Sibert, J. R., Musyl, M. K., & Brill, R. W. (2003). Horizontal movements of bigeye tuna (thunnus obesus)
near hawaii determined by kalman filter analysis of archival tagging data.Fisheries Oceanography,
12(3), 141–151. doi:10.1046/j.1365-2419.2003.00228.x

Tremblay, Y., Robinson, P. W., & Costa, D. P. (2009). A parsimonious approach to modeling animal
movement data. PLoS ONE, 4(3), e4711. doi:10.1371/journal.pone.0004711

Vincent, C., Mcconnell, B. J., Ridoux, V., & Fedak, M. A. (2002). Assessment of argos location accu-
racy from satellite tags deployed on captive gray seals.Marine Mammal Science, 18(1), 156–166.
doi:10.1111/j.1748-7692.2002.tb01025.x

108



Paper IV

A Generalized First-Difference Correlated
Random Walk for Animal Movement Data

Albertsen, C. M.∗

National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark

∗ Corresponding author. Email: cmoe@aqua.dtu.dk

Advance draft

Full citation:

Albertsen, C. M. (2017). A generalized first-difference correlated random walk for animal movement
data. Advance draft. In Preparation



PAPER IV. A GENERALIZED FIRST-DIFFERENCE CORRE …

Abstract

Animal telemetry data are often analysed with discrete time movement models assuming rotation in the
movement. These models are defined with equidistant distant time steps. However, telemetry data from
marine animals are observed irregularly. To account for irregular data, a time-irregularised first-difference
correlated random walk model with drift is introduced. The model generalizes the commonly used first-
difference correlated random walk with regular time steps by allowing irregular time steps, including a
drift term, and by allowing different autocorrelation in the two coordinates. The model is applied to data
from a ringed seal collected through the Argos satellite system, and is compared to related movement
models through simulations. Accounting for irregular data in the movement model results in accurate pa-
rameter estimates and reconstruction of movement paths. Measured by distance, the introduced model can
provide more accurate movement paths than the regular time counterpart. Extracting accurate movement
paths from uncertain telemetry data is important for evaluating space use patterns for marine animals,
which in turn is crucial for management. Further, handling irregular data directly in the movement model
allows efficient simultaneous analysis of several animals.

Keywords:

animal telemetry, movement ecology, correlated random walk, irregular data

IV.1 Introduction

Understanding animal movement behaviour, space use patterns and response to the environment relies
on modelling animal telemetry data. So far, the collection of telemetry data has been hindered in marine
environments. Satellite systems require animals to surface, storage tags require recapture, and acoustic
networks require a dense array of receivers. Nonetheless, the scope and scales of movement studies are
continuously increasing with rapid technological advances in tracking devices (Hussey et al., 2015).

In spite of technological advances leading to more accurate measurements and larger data sets, data
from satellite tags have inherent measurement errors. Systems such as Fastloc GPS and Argos can only
record data when the animal is above water, with an accuracy that depends on the surface time and div-
ing behaviour (Costa et al., 2010). Typically, this results in data observed at irregular time steps with
considerable uncertainty, which makes state-space models a valuable framework for analysing the data.

State-space models naturally separate the movement process from measurement errors. True animal
locations are explicitly modelled separately from the observed measurements conditionally on the loca-
tions. Hence, the movement models developed can be combined with telemetry data from any source,
for example, GPS, Argos, light based, or acoustic tags. However, inference in general state-space mod-
els can be challenging. Maximum likelihood estimation in state-space models requires integration of the
joint distribution of locations and measurements over the locations to obtain the marginal distribution
of the observations. Recent software such as AD Model Builder (Fournier et al., 2012) and Template
Model Builder (TMB; Kristensen et al., 2016) utilizes the Laplace approximation to rapidly approximate
the marginal distribution of observations in state-space models. While care is needed to ensure the approx-
imation is appropriate, this framework is generally applicable. For instance, TMB has been used for both
discrete time (Auger-Méthé et al., 2016, 2017) and continuous time (Albertsen et al., 2015) movement
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models.

Although continuous time movement models can handle irregular data, discrete time models are often
thought of as more intuitive (McClintock et al., 2014). Further, continuous time models can be difficult to
construct or extend analytically, because they are often formulated through stochastic differential equa-
tions. Whereas continuous time models describe instantaneous change, discrete time models describe the
change between two observations. In animal movement models, the change between observations are
often modelled through a step length and an angle of movement (e.g., Morales et al., 2004; Jonsen et al.,
2005; Gurarie et al., 2009; Tracey et al., 2010; McClintock et al., 2012; Michelot et al., 2016), which is
considered a natural way to represent movement (Turchin, 1998). In discrete time models with regular
time steps, irregular data can be handled by modifying the observational model to interpolate between
states (Jonsen et al., 2005).

To facilitate the analysis of populations or meta-analysis of individuals, the model parameters for
different individuals must be on the same scale. If the interpretation of parameter values depends on the
chosen time steps between estimated locations (McClintock et al., 2014), the values must be corrected
before comparison is possible. Likewise, estimating population parameters based on individuals either
requires movement models that use the same time steps for all individuals (e.g. Jonsen, 2016), which can
be sub-optimal, or movement models that handle irregular data directly.

The first-difference correlated random walk (DCRW; Jonsen et al., 2005) models the animal move-
ment as a discrete time first order auto-regressive process on the difference between consecutive locations
through a rotation matrix. A continuous time version of the DCRWwithout rotation is the continuous time
correlated randomwalk (CTCRW; Johnson et al., 2008). The CTCRWmodels the velocity of an animal by
an Ornstein-Uhlenbeck process: the continuous time counterpart of the first order auto-regressive process.
Recently, an irregular time version of the DCRWwas introduced without rotation including a time-varying
parameter instead (Auger-Méthé et al., 2017).

In this paper, a generalization of the DCRW is introduced. The generalization of the DCRW is trifold:
the model allows irregular time steps, a drift vector is included, and different auto-correlations in the two
coordinates can be used. As a by-product, it is shown how parameters of the DCRW model depends
on the selected time steps, and how to transform them to a common scale. The generalized DCRW is
introduced as the discretization of a stochastic differential equation for the animal’s velocity and location.
Further, the close relation to a generalization of the CTCRW is shown. Through three simulation studies,
the generalized DCRW is shown to perform well compared to the CTCRW and DCRW. Finally, The
applicability and extendability of the model is illustrated through a real data set collected by the Argos
system.

IV.2 Materials and Methods

IV.2.1 Movement model

The generalization of theDCRWmovementmodel is constructed through a stochastic differential equation
(SDE) for the velocity. From this SDE, the location process is the integrated velocity process. To obtain
the time-irregular movement model, the SDE is solved analytically while the location process is a discrete
time approximation.
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IV.2.1 SDE

The bivariate SDE for the velocity, Vt, of an animal is

dVt = −
(
− log γ1 θ
−θ − log γ2

)
(Vt − µ)dt + SdBt

= −Θ(Vt − µ)dt + SdBt

(IV.1)

with initial condition V0 = v0 ∈ R2. In this model, γ1 and γ2 are autocorrelation parameters, µ is a vector
of mean velocity parameters, and θ is the mean turning angle of the movement process. The matrix S
is a lower triangular matrix with positive diagonal determining the covariance of the changes in velocity.
Animals moving persistently in one direction will have high autocorrelation in the velocity and a mean
turning angle close to zero, while animals foraging or in other ways displaying a tortuous movement will
have a lower autocorrelation in the velocity and a mean turning angle different from zero (modulo 2π)
(e.g. Jonsen et al., 2005; Whoriskey et al., 2017).

The solution to the SDE is a stochastic process with Gaussian increments (see e.g. Appendix IV.A).
The mean of an increment is

E(Vt | Vs) = exp(−Θ(t− s))Vs +
(
I − e−Θ(t−s)

)
µ, s < t

where µ = (µ1, µ2)
T , while the covariance is

vec(V ar (Vt | Vs)) = vec(C)− e−Θ(t−s) ⊗ e−Θ(t−s) vec(C), s < t

where vec(C) = (Θ⊕Θ)−1 vec(Σ),Σ = SST ,⊕ denotes the Kronecker sum,A⊕B = A⊗IB+IA⊗B,
and vec is an operator that stacks the columns of a matrix to a vector. Based on the velocity, the location
process, Xt, follows the SDE

dXt = Vtdt (IV.2)

IV.2.2 Discretizing the SDE

Considering the N predetermined time points {ti}i∈{1,...,N}, an Euler–Maruyama approximation to the
location process is obtained by

Xti = Xti−1
+ Vti−1

∆i

where ∆i = ti − ti−1 is the length of the time step. Inserting the expression for Vti−1
, the Generalized

first-Differenced Correlated Random Walk (GDCRW) is obtained:

Xti = Xti−1
+ ∆i exp(−Θ∆i−1)(Xti−1

−Xti−2
)/∆i−1 + ∆i (I − exp(−Θ∆i−1)) µ + ∆iϵti (IV.3)

The error terms, ϵti , follow a zero mean normal distribution with variance

V ar(ϵti) = C − exp(−Θ∆i)C exp(−ΘT ∆i)

where
vec(C) = (Θ⊕Θ)−1 vec(Σ),

and Σ = SST is a covariance matrix.

IV.2.3 Special cases

TheGDCRWmodel is closely related to four othermodels: The CTCRW, theDCRW, themodified DCRW
by Auger-Méthé et al. (2017), and a random walk.
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IV.2.3.1 Relation to the CTCRW When the turning-angle parameter θ = 0, and the increment covari-
ance S is diagonal, the velocity model, Vt is identical to the velocity model of the CTCRW; however, the
location models differ. While the location model of the CTCRW is an analytical solution to the two uni-
variate integrated velocity models, the GDCRW is a discretization of the more general bivariate velocity
model. Hence, when the length of the time steps approaches zero, the GDCRW approaches the CTCRW
when the velocity models are identical. When θ ̸= 0 or S is not diagonal, the GDCRW approaches a
generalization of the CTCRW when the length of the time steps approaches zero.

IV.2.3.2 Relation to the DCRW For regularly observed data, ∆t = ∆, with µ = 0 and γ1 = γ2,

exp(−Θ∆) =

(
cos(θ∆) − sin(θ∆)
sin(θ∆) cos(θ∆)

)
γ∆

Hence, the movement model simplifies to

Xi = Xi−1 +

(
cos(θ∆) − sin(θ∆)
sin(θ∆) cos(θ∆)

)
γ∆(Xi−1 −Xi−2) + ∆ϵi, (IV.4)

which is the movement model of Jonsen et al. (2005) when ∆ = 1. Therefore, the GDCRW generalizes
the DCRW in three ways: the restriction of regular time steps is relaxed, a drift vector is added, and
different auto-correlations in the two coordinates are allowed. Further, equation (IV.4) allows scaling the
DCRW parameters to a common time scale. That is, if parameters γ̃ and θ̃ are obtained from a DCRW
model fitted with time steps ∆̃, scale independent parameters are obtained by γ = γ̃1/∆̃ and θ = θ̃/∆̃.
Being able to scale the DCRW parameters to a common scale allows comparison between model fits in
meta or population studies even if different time scales are used.

IV.2.3.3 Relation to the modified DCRW Recently, Auger-Méthé et al. (2017) proposed a modified
version of the DCRW for Fastloc-GPS data. The modified DCRW allowed irregularly observed data
and included a time-varying autocorrelation parameter, γt. Ignoring the time-varying autocorrelation, the
modifiedDCRWcan be obtained as a special case of theGDCRW introduced here by letting γ1 = γ2 = γt,
µ = 0, θ = 0, and by letting Σ be a diagonal matrix. Note, however, that the two models differ slightly
in parameterisation. In the modified DCRW, γt is not scaled by the time differences and the variance of
ϵti is parameterised as a diagonal matrix diag(σ2

1, σ
2
2). The GDCRW can easily be extended to have a

time-varying autocorrelation parameter in the same way as Auger-Méthé et al. (2017).

IV.2.3.4 Relation to a random walk In the same manner as the three models above, the GDCRW
can be reduced to a random walk model. From equation (IV.3) it follows that when the autocorrelation
parameters γ1 and γ2 tend to zero, the model is reduced to a random walk. If µ ̸= 0, it will be a random
walk with drift.

IV.2.2 Measurement equation

Besides the movement process describing the latent states, {Xti}i∈{1,...,N}, a measurement equation is
needed to form a state-space model. For the DCRW, measurement errors are often included by linearly
interpolating between the latent states. For an observation Ysj

at time sj ,

Ysj
= (1− q)Xti + qXti+1

+ ηj
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such that ti ≤ sj < ti+1, q =
sj−ti
∆i+1

, and ηi is a zero mean bivariate random variable. However, when the
movement model allows irregular time steps, it is more natural to ensure that the latent states align with
the observations, such that the measurement equation simplifies to

Ysj
= Xsj

+ ηj

Then the observation at time sj does not depend on a latent state in the future. Note that the state-space
model can include additional latent states between observations. These latent states only contributes to
the likelihood function through the movement process. Below, ηj will either be modelled as a bivariate
normal distribution (Johnson et al., 2008) or a bivariate t-distribution (Albertsen et al., 2015).

IV.2.3 Simulation study: Comparing the GDCRW and the CTCRW

Since the location process is constructed as an Euler–Maruyama discrete time approximation to an under-
lying continuous time model, increasing the number of latent states between observations should improve
the approximation. This was investigated by simulating from the underlying continuous time model in
the special case that reduces to the CTCRW. On each simulated data set, the CTCRW was compared to
the GDCRW with latent states at the observations, and the GDCRWi with additional latent states every
i = 8, 4, 2, and 1 time unit, respectively.

To compare the GDCRW with the CTCRW, 200 data sets were simulated from equations (IV.1) and
(IV.2) with θ = 0 and diagonal S; that is, with the CTCRW as the true model. To obtain locations, 250
time steps were simulated from a mixture of an exponential and a normal distribution (see Appendix IV.B)
to ensure both short and long time steps between observations. Between the simulated time points, the
velocity and location processes were simulated using the Euler–Maruyama method with 200 steps. For
each of the 250 simulated locations, observations were simulated from a bivariate normal with covariance
0.12I . The processes were simulated with γ1 = γ2 = 0.9, µ = 0, and S11 = S22 = exp(−2) ≈ 0.135.
The models were fitted to the data by maximum likelihood through the Laplace approximation using the
R package TMB (Kristensen et al., 2016). For simplicity, the model was fitted with γ1 = γ2, θ = 0, µ = 0,
and S12 = S21 = 0.

IV.2.4 Simulation study: Comparing the GDCRW and the DCRW

Above it was established that the DCRW was a special case of the GDCRW. One of the ways the DCRW
was generalized was that the GDCRWallowed latent states at arbitrary time points. In contrast, the DCRW
only allowed equidistant time steps in discretising the underlying SDE. In this simulation study the effect
of the choice of discretization on parameter estimates was investigated.

Data sets were simulated from two behavioural scenarios using the same procedure as for the previ-
ous simulation study. For each scenario, 200 data sets were simulated from the continuous time model
determined by equations (IV.1) and (IV.2). The first scenario emulated tortuous movement simulated
with ϕ = π

3
≈ 1.05, µ = 0, and γ1 = γ2 = 0.6. The movement was simulated with diagonal S such

that S11 = S22 = exp(−2). Measurements were simulated from a normal distribution with covariance
Σo = 0.12I2. The second scenario mimicked a more persistent movement. Movement was simulated with
ϕ = 0 and γ = 0.7. Similar to the first scenario, the movement was simulated withS11 = S22 = exp(−2)
and the observations with Σo = 0.12I2.

For each data set, a total of 10 models were fitted consisting of the GDCRW and the DCRW with
N = 250, 500, 750, 1000, and 1250 latent locations. In the DCRW, the latent locations were included
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equidistantly. In the GDCRW, 250 latent locations were aligned with the observations. Remaining latent
locations were included recursively in the middle of the longest time step. The models were fitted to the
data by maximum likelihood through the Laplace approximation. For simplicity, the DCRWmodels were
fitted with S11 = S22, and S12 = S21 = 0. The GDCRW models were fitted with γ1 = γ2, µ = 0,
S11 = S22, and S12 = S21 = 0 to reduce to the same parameters as the DCRW models.

IV.2.5 Simulation study: Effect of measurement error on choice of time
steps

In the final simulation study, the GDCRW and DCRW is compared once more. While the previous
comparison focused on parameter estimates, this simulation study compares the ability to accurately
obtain location estimates for different ratios of process variability and measurement variability. Again,
200 data sets with 250 observations were simulated from two behavioural scenarios using the same
procedure as for the two previous simulation studies. The same movement parameters as in the
previous simulation study was used, and the GDCRW and DCRW with 250 latent locations were
fitted in the same manner as before; however, the observations were simulated with covariances
exp(−6)2I, exp(−5.5)2I, . . . , exp(1.5)2I, exp(2)2I , respectively. For each location for each track the
relative distance to the true locations were calculated for the GDCRW compared to the DCRW. The
DCRW locations were interpolated linearly to get values at the time of observations.

IV.2.6 Case study: Ringed seal

To illustrate its practical applicability, the GDCRW model was fitted to the subadult ringed seal Pusa
hispida data of Albertsen et al. (2015) in this case study. The data set was chosen to illustrate the
movement model when substantial measurement errors are present. The ringed seal data consists
of N = 3583 locations collected by the Argos satellite system, which is known to have substantial
non-Gaussian measurement errors. Three observations with location class Z were excluded. In the first
period of the track, the seal was moving north-west, followed by two periods with restricted space use
close to land. Consequently, Thygesen et al. (2017) found indications that a non-constant drift parameter
was needed. To account for this behaviour, the mean velocity parameters of the GDCRW were set to be
location dependent:

Xti =Xti−1
+ ∆ti exp

(
−
(
− log γ1 θ
−θ − log γ2

)
∆ti−1

)
(Xti−1

−Xti−2
)/∆ti−1

+∆ti

(
I − exp(−Θ∆ti−1

)
)
µ(Xti−1

) + ∆tiϵti

The bivariate mean velocity field µ(Xt) = (µ1(Xt), µ2(Xt))
T was modelled through a 7 × 7 grid of

random effects. Each grid point was related to two random effects: one for the mean latitudinal velocity,
µ1, and one for the mean longitudinal velocity, µ2. Between the grid points, the random effect values were
interpolated by a search tree approximation to local polynomial regression (Albertsen, 2017). In this case
study, the number of random effects to construct the grids were selected as a trade-off between compu-
tational cost and flexibility. Locations of the movement process were estimated at every observation and
every three hours from the first observation, giving a total of 4764 location estimates each with two latent
states. Following Albertsen et al. (2015), the measurements were modelled by a bivariate t-distribution
with scale matrices and degrees of freedom depending on the location class of the observations. The
model was fitted to the data by maximum likelihood through the Laplace approximation using TMB.
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Having a location dependent drift in the model, the animal movement may be related to available
resources or hydrographic variables. The model cannot be estimated using the DCRW, since the DCRW
does not include a drift parameter. Furthermore, the model cannot easily be estimated using CTCRW
without assuming constant movement between states, in which case the CTCRW is a special case of the
GDCRW (see subsection IV.2.3).

IV.3 Results

IV.3.1 Simulation study: Comparing the GDCRW and the CTCRW

In the first simulation study, the GDCRW was compared to the CTCRW, when the CTCRW was the true
data generating model. The CTCRW models both the velocity and location giving a total of 1000 latent
variables: 4 for each location. In contrast, the GDCRW only has 500 latent variables: 2 for each location.
The mean of the time step distribution used in the simulation study was approximately 1.99, giving an
average length of a simulated trajectory of 497.5 time units. Therefore, the GDCRW8 would include 63
additional location estimates on average, corresponding to a total of 313 latent variables. Likewise, the
GDCRW4, GDCRW2, and GDCRW1 would on average include 125, 249, and 498 additional locations,
respectively, corresponding to 750, 998, and 1496 latent variables.

Regardless of the different number of latent variables, all six estimation models provided γ estimates
close to the true value (Figure IV.1). For the true continuous time model, the CTCRW, the average of
the 200 estimates was 0.894, whereas it was 0.897 for the discrete time approximation, the GDCRW, with
latent states only at the time of the observations. When additional latent states were included every 8, 4, 2,
and 1 time unit, the average of the estimated γs were 0.901, 0.903, 0.9, and 0.897, respectively. Although
all models gave estimates close to the true value, the standard deviation of the estimates was higher for
the GDCRW than for the five other models. For the GDCRW the standard deviation of the 200 estimates
was 0.028, whereas it was 0.019 for the CTCRW, and 0.018, 0.017, 0.017, and 0.018 for the GDCRW8,
GDCRW4, GDCRW2, and GDCRW1, respectively.

Besides the ability to re-obtain the true parameters, the models were compared on the distance between
the estimated locations and the true simulated locations Figure IV.2. To compare the models, this distance
was calculated for each location for each track for the GDCRW, GDCRW8, GDCRW4, GDCRW2, and
GDCRW1, and divided by the distance obtained for the CTCRW. Finally, the median relative distance
was obtained. Whereas the models performed similarly in estimating γ, the CTCRW performed better
than the other models in obtaining precise location estimates; however, the GDCRW models improved
when additional latent states were included, as expected. For the GDCRW, 16% of the simulations had
a relative distance compared to the CTCRW that was less than one; that is, where at least half of the
estimated locations were closer to the true location than for the estimated locations from the CTCRW. For
the GDCRW8, 24% of the simulations had a relative distance less than one, while it was 31, 36, and 47%,
respectively, for the GDCRW4, GDCRW2, and GDCRW1. Further, the range of median relative distances
narrowed when the number of latent states increased. When no additional latent states were included,
the length of the range was 0.188 (0.958;1.146). Based on these 200 simulations, the range gradually
narrowed for the GDCRW8 (0.143; min: 0.958; max: 1.146), GDCRW4 (0.116; min: 0.953; max: 1.069),
GDCRW1 (0.099; min: 0.962; max: 1.061), and GDCRW1 (0.072; min: 0.964; max: 1.036).
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Figure IV.1: Density of γ estimates in the simulation study for the models: CTCRW (red line), GDCRW
(blue line), GDCRW8 (black line), GDCRW4 (purple line), GDCRW2 (orange line), and GDCRW1 (grey
line). Grey dashed line indicates the true parameter value.
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Figure IV.2: Density of track-wise median distance between estimated locations and true simulated lo-
cations in the simulation study for the models: GDCRW (blue line), GDCRW8 (black line), GDCRW4

(purple line), GDCRW2 (orange line), and GDCRW1 (grey line) relative to the CTCRW. A value of one
(grey dashed line) indicates the median distance is the same as for the CTCRW.
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IV.3.2 Simulation study: Comparing the GDCRW and the DCRW

In the second simulation study, the parameter estimates from the GDCRW and DCRW were compared in
two movement scenarios. In the tortuous movement scenario, the GDCRW provided γ estimates close
to the true value for all five number of latent locations with a slight tendency to overestimate the value
(Figure IV.3). The average γ estimates (standard deviation) were 0.622 (0.059), 0.643 (0.061), 0.625
(0.062), 0.614 (0.066), and 0.611 (0.067) for the GDCRW with N = 250, 500, 750, 1000, and 1250
latent locations, respectively. A difference was, however, seen in for the θ estimates. Their accuracy
increased with the number of latent locations. The average estimates were 0.729 (0.139), 0.956 (0.124),
0.999 (0.124), 1.028 (0.129), and 1.033 (0.134), respectively. Unlike for the GDCRW, the estimates
obtained directly from the DCRW were not close to the true values. For these models, the average γ
estimates were 0.56 (0.067), 0.654 (0.061), 0.734 (0.053), 0.787 (0.046), and 0.823 (0.041) with N =
250, 500, 750, 1000, and 1250 latent locations, respectively, while the average θ estimates were 1.841
(0.237), 1.059 (0.178), 0.705 (0.124), 0.528 (0.094), and 0.427 (0.113). Correcting the estimates obtained
from the DCRW by equation (IV.4), the accuracy of the estimates increased with the number of latent
locations. Then, the average γ estimates were 0.746 (0.046), 0.653 (0.059), 0.63 (0.064), 0.621 (0.066),
and 0.616 (0.069), respectively, while the average θ estimates were 0.921 (0.114), 1.057 (0.133), 1.055
(0.136), 1.054 (0.138), and 1.066 (0.241).

In the persistent movement scenario, the GDCRW and the DCRW corrected by equation (IV.4) pro-
vided estimates close to the true values for both parameters for all five number of latent locations (Fig-
ure IV.4). For the GDCRW, the average γ estimates were 0.897 (0.028), 0.897 (0.028), 0.899 (0.019),
0.897 (0.019), and 0.896 (0.019), respectively, and the average θ estimates were 0.002 (0.02), 0.002
(0.02), 0.002 (0.019), 0.002 (0.019), and 0.002 (0.019). Likewise, the average DCRW estimates cor-
rected by equation (IV.4) were 0.9 (0.019), 0.898 (0.019), 0.898 (0.019), 0.897 (0.019), and 0.897 (0.019),
respectively, for γ, and 0.002 (0.019), 0.002 (0.019), 0.002 (0.019), 0.002 (0.019), and 0.002 (0.019), re-
spectively, for θ. As for the tortuous movement scenario, the estimates obtained directly from the DCRW
were not close to the true values. For theDCRWmodels, the average γ estimates were 0.812 (0.037), 0.898
(0.022), 0.931 (0.015), 0.948 (0.011), and 0.958 (0.009) with N = 250, 500, 750, 1000, and 1250 latent
locations, respectively, while the average θ estimates were 0.006 (0.08), 0.003 (0.038), 0.002 (0.019),
0.001 (0.012), 0.001 (0.009), and 0.001 (0.007).

IV.3.3 Simulation study: Effect of measurement error on choice of time
steps

In the third simulation study, the GDCRW and DCRW were compared again. This simulation study
compared location estimates for different levels of measurement error. When the measurement standard
deviation was low, the GDCRWperformed notably better than the DCRW (Figure IV.5). In both scenarios,
all 200 simulations had a median relative distance less than 1; that is, at least half of the locations were
better estimated by theGDCRW than theDCRW.As themeasurement standard deviation increases relative
to themovement standard deviation, themedian relative distance tends to one, suggesting that theGDCRW
and the DCRW estimates similarly. When the measurement and movement standard deviation were equal,
the DCRW performed slightly better than the GDCRW.
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Figure IV.3: Violin plots of γ and θ estimates in the tortuous movement simulations for the GDCRW,
DCRW, and the DCRW corrected by equation (IV.4) with N = 250, 500, 750, 1000, 1250 latent states
and 250 observations. Grey dashed lines indicate true parameter values. In the violin plot, black lines
indicate the mean of estimates and grey lines indicate 10 and 90 % quantiles of estimates.
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Figure IV.4: Violin plots of γ and θ estimates in the persistent movement simulations for the GDCRW,
DCRW, and the DCRW corrected by equation (IV.4) with N = 250, 500, 750, 1000, 1250 latent states
and 250 observations. Grey dashed lines indicate true parameter values. In the violin plot, black lines
indicate the mean of estimates and grey lines indicate 10 and 90 % quantiles of estimates.
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Figure IV.5: Minimum (lower dotted black line), maximum (upper dotted black line), median (full black
line), and 95% range (grey area) of track-wise median distances between estimated locations and true
simulated locations for the GDCRW relative to the DCRW in the tortuous (panel A) and persistent (panel
B) simulated movement scenarios as a function of the ratio between observational standard deviation (σo)
and movement standard deviation (σs). Values below 1 (black dashed line) indicates that at least half of
the estimated location in the GDCRW were closer to the true value than for the DCRW.
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Figure IV.6: Mean longitudinal (A) and latitudinal (B) velocity field of the subadult ringed seal track with
land (outlined by grey lines), Argos satellite observations (dark grey dots), and fitted most probable track
given all observations (purple line). In the longitudinal field, red values indicate an eastward attraction,
while blue values indicate a westward attraction. In the latitudinal field, red values indicate a northward
attraction, while blue values indicate a southward attraction.
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Table IV.1: Estimated movement parameters in the ringed seal case study.

Parameter Estimate Standard Error

γlat 0.608 0.027
γlon 0.601 0.028
θ 0.027 0.019
Σlat,lon/

√
Σlat,latΣlon,lon -0.018 0.052

logΣlat,lat -9.189 0.114
logΣlon,lon -7.486 0.114

IV.3.4 Case study: Ringed seal

In the case study, the GDCRW was fitted to a real data set collected by the Argos system. The GDCRW
was modified to include location dependent drift and turning angle. The fitted model resulted in small
estimated longitudinal mean velocity field values (Figure IV.6). On the contrary, the latitudinal mean
velocity field was estimated to have a southward drift when the seal was south of the 57.5◦N parallel.
Despite the southward drift, the seal then entered a large area of northward drift between 57.5◦N and
63.5◦N. North of the 63.5◦N parallel, the latitudinal mean velocity field was estimated to have a southward
attraction, keeping the seal close to the 63.5◦N parallel. Further the model estimated an overall mean
turning angle, θ. This parameter was estimated to be close to zero (Table IV.1), whereas both the latitudinal
and longitudinal autocorrelation parameters were estimated to be close to 0.6.

IV.4 Discussion

The GDCRW introduced here generalizes the DCRW movement model of Jonsen et al. (2005) in three
ways. Firstly, whereas the DCRW handles irregular observations by linear interpolation in the observa-
tional model, the GDCRW allows modelling irregular observations directly in the movement process.
Through this construction, time-scale corrections of the DCRW parameters were found by consider-
ing a time regular GDCRW. Secondly, the GDCRW generalizes the DCRW by allowing different auto-
correlation parameters in the two coordinates. Hence, when the rotation parameter is zero, the GDCRW
resembles the integrated velocity model of the CTCRW of Johnson et al. (2008). Like the CTCRW and
DCRW, the GDCRW includes the random walk as a limiting case. When the auto-correlation parameter
approaches zero, the movement model approaches that of a random walk, which has been used in several
studies, in particular when the data includes only daily observations (e.g. Nielsen et al., 2006). Thirdly,
the GDCRW extends the DCRW by including a drift term.

Including a drift term in the model is useful for animals moving persistently between areas, such as
the ringed seal analysed in the case study. In the case study, the drift term was modelled by a location
dependent field. Having location or time dependent parameters in the SDE greatly complicates the cal-
culations to obtain an analytical solution and in turn a fully continuous time model. Therefore, location
dependent mean velocities could not easily be implemented in the CTCRW which has previously been
used to analyse the track (Albertsen et al., 2015; Thygesen et al., 2017). Nonetheless, using the discrete
time model, or a discrete time approximation, it is straightforward to extend the movement model with a
location dependent drift. Using the same methods, spatial covariates such as sea surface temperature or
depth could be included.
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While the mean turning angle was estimated to be close to zero using the entire track, this may not
be the case if, for instance, a time varying parameter or behavioural switching was included. Changes in
behavioural states, Sti ∈ {1, 2, . . . , n}, can be modelled by a Markov Chain such that

P (Sti = k | Sti−1
= j) = (exp(Q∆ti))jk

where Q is an n × n matrix such that Qjk > 0 for j ̸= k and Qjj = −∑{k:j ̸=k} Qjk. The movement
model is modified to have different parameters depending on the current behavioural state

Xti = Xti−1
+ ∆ti exp(−ΘSti

∆ti)(Xti−1
−Xti−2

)/∆ti−1
+ ∆ti

(
I − exp(−ΘSti

∆ti)
)
µSti

+ ∆tiϵti .

Thismodel generalizes the behavioural switchingmovementmodels of Jonsen et al. (2005) andWhoriskey
et al. (2017). It assumes that switching only occurs at the predetermined time points; however, as it
has been shown in both the case study and simulation studies, latent locations can be included either at
regular time points, or at the time of observations and any time between them. While the extension to
include behavioural switching is simple, maximum likelihood estimation is greatly complicated when
measurement error is present.

The GDCRW can be constructed as a discretization of a generalization of the CTCRW. The first simu-
lation study comparing the GDCRW and CTCRW suggests that using the analytical continuous time solu-
tion, when it can be found, generally provides better results than a discrete time approximation. Nonethe-
less, the discrete time approximation provided accurate parameter estimates, even when no additional
latent states were included to improve the approximation. While the GDCRW was outperformed by the
CTCRW in estimating true locations when the CTCRW was the true model, the first simulation study
illustrated that the performance of the GDCRW could be improved to closely resemble the CTCRW by
including additional latent states between observations.

The second simulation study compared the DCRW and the GDCRW in their ability to re-estimate
the movement parameters of the underlying continuous time model. In both the tortuous and persistent
movement scenarios, the GDCRW performed well; however, in the tortuous movement scenario, the
performance was notably improved by adding additional latent locations between observations. Further,
it became evident that the parameter estimates of the DCRW are highly dependent on the selected time
steps between latent locations. Nevertheless, the estimates could be corrected by equation (IV.4): the
GDCRW with regular time steps. This correction provided estimates close to the true values in all cases
except in the tortuous movement case with 250 and 500 latent locations. Clearly, the ability to have
time scale independent movement parameters is a key feature of the GDCRW, regardless of whether it is
used with regular or irregular time steps. Time scale independent movement parameters allow analysis
of several animals without using the same time steps, and further allow comparing results from previous
studies using the DCRW even if different time steps are used.

Besides accuracy of the estimates, the DCRW and GDCRW were compared on their ability to re-
construct the movement tracks. The third simulation study showed that modelling time-irregular data
through a time-irregular movement could increase the accuracy of predicted locations. This is consis-
tent with previous findings comparing the DCRW and CTCRW, which showed that the continuous time
model performed better if both movement models were combined with t-distributed measurement errors
(Albertsen et al., 2015). Overall, using the GDCRW with irregular time steps performed well in both
scenarios compared to the DCRW. For small measurement standard deviations, the irregular time steps
outperformed the regular time steps with interpolation. For medium measurement standard deviations,
the two approaches performed equally in the persistent movement scenario, whereas the DCRW slightly
outperformed the GDCRW in the tortuous movement case. For large measurement standard deviations,
the two approaches performed equally in both scenarios. Combined with the previous simulation study,
these results suggest that having latent locations at the time of observations generally performs well com-
pared to the DCRW with equidistant time steps in the movement; keeping in mind that both improves as
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approximations to the same underlying continuous timemovement model as the number of latent locations
increases.

Directly modelling irregular data eases interpretation and comparison of movement parameters be-
cause they are scaled by the time steps. From equation (IV.4), parameters of the DCRW and GDCRW
can be transformed to any time scale. However, the simulation study shows that fitting the DCRW with
a poorly chosen time step introduces bias. This poses a problem in population and meta studies. With
a discrete time model, all animals must be fitted with the same time steps to compare movement param-
eters. However, if the same time step is not optimal for all animals, bias can be introduced. Using an
irregular or continuous time model scales the parameters to a common time scale, even when the animals
are observed, or behave, at different time scales.
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IV.A Solving the SDE

To solve the SDE,
dVt = −Θ(Vt − µ)dt + SdBt,

consider the process
Yt = eΘt(Vt − µ)

Itô’s formula yields
dYt = ΘeΘtVtdt + eΘtdVt

= ΘeΘtVtdt + eΘt (−Θ(Vt − µ)dt + SdBt)

= eΘtSdBt

Hence,

eΘt(Vt − µ) = (V0 − µ) +

∫ t

0

eΘuSdBu

which implies

Vt − µ = e−Θt(V0 − µ) + e−Θt

∫ t

0

eΘsSdBs

= e−ΘtV0 +
(
I − e−Θt

)
µ +

∫ t

0

e−Θ(t−s)SdBs
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Since this is a sum of a deterministic term and an integral of a deterministic function with respect to a
Wiener process with Gaussian increments, the distribution is Gaussian. The mean of the increment is

E(Vt | V0) = E
(
e−ΘtV0 +

(
I − e−Θt

)
µ | V0

)
+ E

(∫ t

0

e−Θ(t−s)SdBs | V0

)

= e−ΘtV0 +
(
I − e−Θt

)
µ

Using Itô isometry, the variance is

V ar (Vt | V0) = V ar

(
e−ΘtV0 +

(
I − e−Θt

)
µ +

∫ t

0

e−Θ(t−s)SdBs | V0

)

= V ar

(∫ t

0

e−Θ(t−s)SdBs | V0

)

= V ar

(∫ t

0

e−Θ(t−s)SdBs

)

= E

((∫ t

0

e−Θ(t−s)SdBs

)2
)
− E

(∫ t

0

e−Θ(t−s)SdBs

)2

= E

((∫ t

0

e−Θ(t−s)SdBs

)2
)

=

∫ t

0

e−Θ(t−s)SST
(
e−Θ(t−s)

)T
ds

=

∫ t

0

e−Θ(t−s)Σ
(
e−Θ(t−s)

)T
ds

Now (Gentle, 2007),

vec(V ar (Vt | V0)) =

∫ t

0

e−Θ(t−s) ⊗ e−Θ(t−s) vec(Σ)ds

=

∫ t

0

e−Θ⊕Θ(t−s)ds vec(Σ)

= (Θ⊕Θ)−1
(
I − e−Θ⊕Θt

)
vec(Σ)

where ⊕ denotes the Kronecker sum, A⊕B = A⊗ IB + IA ⊗B.

Defining the matrix C such that vec(C) = (Θ⊕Θ)−1 vec(Σ),

vec(V ar (Vt | V0)) = (Θ⊕Θ)−1 vec(Σ)− (Θ⊕Θ)−1e−Θ⊕Θt vec(Σ)

= (Θ⊕Θ)−1 vec(Σ)− e−Θ⊕Θt(Θ⊕Θ)−1 vec(Σ)

= vec(C)− e−Θ⊕Θt vec(C)

= vec(C)− e−Θt ⊗ e−Θt vec(C)

Hence,

V ar(Vt | V0) = C − e−ΘtCe−ΘT t
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Figure IV.7: Probability density function used to simulate time steps.
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IV.B Simulation method details

To simulate from the process,

dVt = −Θ(Vt − µ)dt + SdBtdXt = Vtdt

time steps,∆ti = ti − ti−1, between observations where simulated from a mixture of an exponential
distribution and a normal distribution. To simulate from the mixture, a uniform random variable, U ∼
unif(0, 1), an exponentially distributed random variable, δ0 ∼ exp(1), and a Gaussian random variable,
δ1 ∼ N(10, 0.52), were simulated. Then the time step was

∆ti =

{
0.1 + δ0 U < 0.9

0.1 + max(δ1, 0.01) U ≥ 0.9

The resulting density function is seen in Figure IV.7.
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Figure IV.8: Simulated trajectories (blue crosses connected by black lines) and observations (red points)
from the SDE model in the two scenarios: persistent (A) and tortuous (B) movement.

Between two time points ti and ti+1, the processes were simulated using the Euler–Maruyama ap-
proximation,

Vs(j+1) = Vs(j) −Θ(Vn − µ)∆s(j+1) + Sηs(j+1)Xs(j+1) = Xs(j) + Vs(j+1)∆s(j+1)

with s(j) = ti + (n)/199 ·∆ti+1
, j = 0, 1, . . . 199. Simulated examples can be seen in Figure IV.8
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Abstract

State-space models with Markov-switching parameters are applicable in many areas including modelling
of animal movement, population dynamics, and stochastic volatility. A general filter and smoother is
introduced for quickly retrieving the latent regimes and states based on an observed time series. The filter
and smoother recursively calculates the likelihood of data and approximates the distribution of latent
states given observations through recursive use of the Laplace approximation. The proposed method is
illustrated in three examples: a linear Gaussian mode, a stochastic volatility model with t-distributed
measurements, and a non-linear population model with Poisson measurements. Further, the supplemental
material evaluates the methods through a simulation study. For each simulation, the filter and smoother
is compared to a particle filter, and maximum likelihood estimates are found. The proposed method
provides accurate maximum likelihood estimates, and state and regime estimates comparable to those of
the computationally demanding particle filter.

Keywords:

Laplace approximation, non-linear, non-Gaussian, maximum likelihood inference, stochastic volatil-
ity, population model

V.1 Introduction

State-space models provide a valuable framework for analysing time series data from a system, where the
process at interest can not be measured directly or exactly. In general, obtaining the likelihood function
analytically is intractable. Simulation based methods such as particle filters orMarkov ChainMonte Carlo
(MCMC) can be used, but is often time-consuming and computationally expensive. Lately, the Laplace
approximation has gained popularity through software such as AD Model Builder (Fournier et al., 2012),
INLA (Rue et al., 2009), and Template Model Builder (Kristensen et al., 2016). Like many versions
of MCMC, all three packages ignore the temporal structure of the state-space model to be applicable in
more general settings. In a state-space setting, the Laplace Gaussian Filter (Koyama et al., 2010) utilizes
the Laplace approximation to approximate the filtering distribution, while the predictive distribution and
smoothing distribution is calculated.

In many systems, it is natural to consider several regimes for the process, where the process exhibits
different behaviours, modelled by a finite-state Markov chain. In econometrics, models for economic ac-
tivity can consider periods of recession and expansion; in behavioural ecology, animal movement models
can consider periods of foraging, travelling or nesting; and in stochastic volatility models, the volatility of
stock returns can have periods of low or high volatility. When the current regime is not known, calculat-
ing the likelihood function is complicated even further, as we must sum over all possible regime histories.
In this situation, the Laplace approximation can not be used on the joint likelihood of observations and
states. As an alternative to simulation based methods, the Kim filter (Kim, 1994; Kim and Nelson, 1999)
combines the Kalman filter (Kalman, 1960) and the Hamilton filter (Hamilton, 1989) for inference in
Markov switching linear Gaussian state-space models.

In the following, a general filter and smoother is introduced for approximate maximum likelihood
inference in state-space models with regime switching (Figure V.1) based on successive Laplace approxi-
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. . . St−1 St St+1
. . .

. . . Xt−1 Xt Xt+1
. . .

. . . Yt−1 Yt Yt+1
. . .

Figure V.1: Dependency graph of the regime switching state-space model. St ∈ {1, . . . , n}, Xt ∈
Rd, Yt ∈ Y

mations and the Kim filter. The filter and smoother only require specifying the regime-switching probabil-
ities, the state transition densities conditional on the regime, and the measurement distribution conditional
on the regime and the states. The remaining calculations can be fully automated. The procedures are
illustrated by three examples.

V.2 The state-space model

Consider the general state-space model with Markov switching (Figure V.1) defined by the measurement
and transition equations:

Xt = f(Xt−1, θSt , ϵt)

Yt = g(Xt, θSt , νt).

Here, f and g are functions of the state process, θSt is a parameter vector, and ϵt and νt are independent
random variables. The parameter vector used depends on the current state of ann-state, first-orderMarkov
chain, St. The probability of a transition from state j to state k is referred to by P (St = k | St−1 = j).
The state process, Xt, is a real valued vector, while the observations, Yt, can take values in any space Y .

In the following sections, the aim for this model is twofold: to obtain estimates of the state process
given the observations at hand, and to calculate the marginal likelihood function of the observations.
Below, p will be used for densities; the distribution referred to will be evident from the context. Note
that for observations, the densities can be with respect to either the counting measure or the Lebesgue
measure, while it will be with respect to the Lebesgue measure for the states. For simplicity of pre-
sentation, we will suppress any dependence on parameters and, further, adopt the short hand notation
Xi:j = {Xi, Xi+1, . . . , Xj−1, Xj}.

In time series models, it is natural to factorize the likelihood in terms of one-step predictions,
p(Yt | Y0:t−1). That is,

L(θ; Y0:T ) = p(Y0:T )

= p(Y0)
T∏

t=1

p(Yt | Y0:t−1).
(V.1)
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In models with a dependency structure as Figure V.1, p(Yt | Y0:t−1) can be calculated by

p(Yt | Y0:t−1) =
n∑

j=1

n∑

k=1

p(Yt | Y0:t−1, St = j, St−1 = k)

× P (St = j | St−1 = k)

× P (St−1 = k | Y0:t−1),

(V.2)

where
p(Yt | Y0:t−1, St = j, St−1 = k) =

∫

R2d

p(Yt | Xt, St = j)

× p(Xt | Xt−1, St = j, St−1 = k)

× p(Xt−1 | Y0:t−1, St−1 = k)dXt−1:t,

(V.3)

and similarly for p(Y0).

V.3 Filtering

Equations (V.1)-(V.3) provide the basis for recursively calculating the likelihood function of the regime-
switching state-space model. Letting

gYt,St,St−1(Xt−1, Xt) = log p(Yt | Xt, St = j)

+ log p(Xt | Xt−1, St = j, St−1 = k)

log p(Xt−1 | Y0:(t−1), St−1 = k),

the density p(Yt | Y0:(t−1), St = j, St−1 = k) can be approximated by the Laplace approximation (See
e.g. Skaug and Fournier, 2006). Let (X̂kj

t−1|0:t, X̂kj
t|0:t) be the mode of gYt,St,St−1 , and HYt,St,St−1 be the

hessian of gYt,St,St−1 evaluated at the mode. Then,

log
(
p(Yt | Y0:(t−1), St = j, St−1 = k)

)
≈ gYt,St,St−1(X̂

kj
t−1|0:t, X̂

kj
t|0:t)−

1

2
log detHYt,St,St−1 +d log(2π).

Ignoring uncertainty in the parameters, the filtering distribution of the state at time t, for given regimes at
time t− 1 and t, can be approximated by

Xt | Y0:t, St = j, St−1 = k
approx∼ N

(
X̂kj

t|0:t, V̂
kj
t|0:t

)
,

where
V̂ kj

t|0:t = {HYt,St,St−1}−1
(d+1):2d,(d+1):2d;

that is, the marginals of the inverse hessian of gYt,St,St−1 corresponding to X̂kj
t|0:t.

Calculating

P (St = j, St−1 = k | Y0:t) = p(Yt | Y0:t−1, St = j, St−1 = k)

× P (St = j | St−1 = k)P (St−1 = k | Y0:t−1)

p(Yt | Y0:t−1)

(V.4)

with

p(Yt | Y0:t−1) =
n∑

j=1

n∑

k=1

p(Yt | Y0:t−1, St = j, St−1 = k)

× P (St = j | St−1 = k)

× P (St−1 = k | Y0:t−1)

(V.5)
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and

P (St = j | Y0:t) =
n∑

k=1

P (St = j, St−1 = k | Y0:t), (V.6)

the state estimates can be collapsed from n2 values, depending on the last two regimes, to n values,
depending only on the current regime. Since X̂kj

t|0:t represents the mean, E (Xt | Y0:t, St = j, St−1 = k),
of the approximate distribution of Xt | Y0:t, St = j, St−1 = k, the tower property,

E (Xt | Y0:t, St = j) = E (E (Xt | Y0:t, St = j, St−1 = k) | Y0:t, St = j) ,

can be used to calculate

X̂j
t|0:t =

n∑

k=1

X̂kj
t|0:tP (St = j, St−1 = k | Y0:t)

P (St = j | Y0:t)

and

V̂ j
t|0:t =

n∑

k=1

P (St = j, St−1 = k | Y0:t)
(
V̂ jk

t|0:t + (X̂j
t|0:t − X̂jk

t|0:t)(X̂
j
t|0:t − X̂jk

t|0:t)
T
)

P (St = j | Y0:t)
,

thus obtaining an approximation of the regime-wise filtering distributions

Xt | Y0:t, St = j
approx∼ N

(
X̂j

t|0:t, V̂
j
t|0:t

)
.

The tower property can be used oncemore to get an approximate regime-independent filtering distribution.

V.4 Smoothing

While the filter approximates the distributionsXt | Y0:t, St = j, the aim of the smoother is to approximate
the distribution of the states Xt given all available information, Y0:T :

Xt | Y0:T , St = j.

The density of Xt | Y0:T , St = j, St+1 = k can be calculated recursively, going backwards in time,
by the smoothing formula (e.g., Kitagawa, 1987):

p(Xt | Y0:T , St = j, St+1 = k) =

∫

Rd

p(Xt | Y0:t, St = j)p(Xt+1 | Y0:T , St+1 = k)

× p(Xt+1 | Xt, St+1 = k, St = j)

p(Xt+1 | Y0:t, St+1 = k, St = j)
dXt+1

(V.7)

where
p(Xt+1 | Y0:t, St+1 = k, St = j) =

∫

Rd

p(Xt+1 | Xt, St+1 = k, St = j)

× p(Xt | Y0:t, St = j)dXt.

(V.8)

However, using equations (V.7) and (V.8) to obtain the mode and hessian at the mode of
p(Xt | Y0:T , St = j, St+1 = k) requires two applications of the Laplace approximation for each iteration
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in an optimization procedure for finding the mode. Instead, by calculating the integral
∫

Rd

p(Xt | Y0:T , St+1 = k, St = j)dXt =

∫

Rd

∫

Rd

p(Xt | Y0:t, St = j)p(Xt+1 | Y0:T , St+1 = k)

× p(Xt+1 | Xt, St+1 = k, St = j)

p(Xt+1 | Y0:t, St+1 = k, St = j)
dXt+1dXt

=

∫

R2d

p(Xt | Y0:t, St = j)p(Xt+1 | Y0:T , St+1 = k)

× p(Xt+1 | Xt, St+1 = k, St = j)

p(Xt+1 | Y0:t, St+1 = k, St = j)
dXt:t+1

(V.9)
through the Laplace approximation, we obtain the mode, X̄

(jk)
t|0:T , and the inverse hessian at the mode,

V̄
(jk)
t|0:T , with only two applications of the Laplace approximation. From the mode and the inverse hessian,

the Gaussian approximation,

Xt | Y0:T , St+1 = k, St = j
approx∼ N

(
X̄

(jk)
t|0:T , V̄

(jk)
t|0:T

)
,

is constructed. Like the filter, the Laplace approximation works on the joint distribution,

Xt, Xt+1 | Y0:T , St+1 = k, St = j,

from which the marginals corresponding to

Xt | Y0:T , St+1 = k, St = j

are extracted.

Approximating the smoothing distribution iteratively through equations (V.8) and (V.9) only requires
three quantities: p(Xt | Y0:t, St = j), which is known from the filter; p(Xt+1 | Y0:T , St+1 = k); which
is known from the previous step of the smoother; and p(Xt+1 | Xt, St+1 = k, St = j), which is known
from the model. After each iteration the states must be collapsed from n2 to n values, as in the filter, to
obtain an approximation of

Xt | Y0:T , St = j.

To collapse the states, the smoothed regime probabilities are calculated as

P (St = j | Y0:T ) =
∑

k

P (St = j, St+1 = k | Y0:T ),

where

P (St = j, St+1 = k | Y0:T ) = P (St+1 = k | Y0:T )P (St = j | St+1 = k, Y0:T )

≈ P (St+1 = k | Y0:T )P (St = j | St+1 = k, Y0:t)

=
P (St+1 = k | Y0:T )P (St = j | Y0:t)P (St+1 = k | St = j)

P (St+1 = k | Y0:t)

From these, the states and their variances are collapsed as in the filter,

X̄
(j)
t|0:T =

∑
k P (St = j, St+1 = k | Y0:T )X̄

(jk)
t|0:T

P (St = j | Y0:T )
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and

V̄
(j)
t|0:T =

n∑

k=1

P (St = j, St+1 = k | Y0:T )
(
V̄

(jk)
t|0:T + (X̄

(j)
t|0:T − X̄

(jk)
t|0:T )(X̄

(j)
t|0:T − X̄

(jk)
t|0:T )T

)

P (St = j | Y0:T )
,

to obtain the approximate regime-wise smoothing distribution

Xt | Y0:T , St = j
approx∼ N(X̄

(j)
t|0:T , V̄

(j)
t|0:T ).

By collapsing the states once more, an approximate regime-independent smoothing distribution can be
obtained.

V.5 Automated maximum likelihood inference

Given the regime transition probabilities P (St = j | St−1 = k), the regime-wise state transition densi-
ties p(Xt | Xt−1, St = j), and the regime-wise measurement densities p(Yt | Xt, St = j), the filter and
smoother can be completely automated using algorithmic differentiation (See, e.g., Skaug and Fournier,
2006; or Neidinger, 2010, for a recent introductory review). Algorithmic (or automatic) differentiation
(AD) calculates derivatives of a computer implemented function using the chain rule by going through
the computational graph. For a given parameter vector, AD can be used to obtain the gradient and hessian
of g, and Newton’s method can be used to retrieve the mode and subsequently the Laplace approximated
integral value.

Implementing the entire filter to calculate the negative log-likelihood by equation (V.5),

ℓ(θ) = −
T∑

t=0

log (pθ (Yt | Y0:t)) ,

AD can be used on the likelihood implementation to calculate the score and observed information for a
given parameter vector. From the approximate negative log-likelihood, score, and observed hessian, the
maximum likelihood estimates can be found by a standard optimization procedure. The smoother, which
is computationally expensive compared to the filter, only needs to be evaluated once at the parameter
estimates.

V.6 Examples

To illustrate the proposed procedure, this section considers three simulated examples of regime switching
state-space models: a linear Gaussian model, a stochastic volatility model with t-distributed measure-
ments, and a non-linear population model with Poisson distributed measurements. All three examples
were simulated with two regimes, n = 2, and 1,000 time steps, T = 999.

The models were implemented in TMB using CppAD (Bell, 2005) for algorithmic differentiation.
Since TMB only builds the computational graph once, the number of iterations in the Newton optimizer in
the Laplace approximations was fixed. For the first time step, 100 iterations were used, while 10 iterations
were used for subsequent time steps. The optimization for the Laplace approximation was started at 0 for
the first time step, while the remaining time steps used the previous state estimate as the starting point.
Note, however, that this is not a requirement for the proposed procedure, but an implementation detail for
the specific tools used here.
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V.6.1 Linear Gaussian state-space model

The first example is a linear Gaussian state-space model, where the parameters depend on the current
regime:

P (St = j | St−1 = k) = pkj, t > 0,

Xt | Xt−1, St = j ∼ N(µj + αj(Xt−1 − µj), σ
2
j ), t > 0, and

Yt | Xt, St = j ∼ N(Xt, τ
2
j ), t ≥ 0.

That is, the state dynamics, Xt, follow an AR(1) process with regime dependent mean and autocorrela-
tion, while observations, Yt, given the current state follow a normal distribution with regime dependent
variance.

In the simulation,X0 was fixed at zero, while the filter was initialized withX0 | S0 = j ∼ N(0, 102).
Likewise, S0 was fixed to the first regime in the simulations, while the filter was initialized with the sta-
tionary distribution of the Markov chain given by the regime transition probabilities. The model was
simulated with regime transition probabilities such that p11 = p22 = 0.95, while the regime-wise pro-
cess means were µ1 = −1

2
and µ2 = −1

2
. Both the autocorrelations and variance parameters were equal

amongst the regimes: α1 = α2 = 0.8, and σ1 = σ2 = τ1 = τ2 = 0.1.

The simulated data and smoothed state and regime estimates are shown in Figure V.2. The filter
correctly identified 91% of the regimes. Of the remaining time steps, 4% were wrongly identified as
regime one, while 5% were wrongly identified as regime two. Using the smoother, the regime decoding
improved. The smoother correctly identified 96% of the regimes, while 2% were wrongly identified as
regime one, and 2% were wrongly identified as regime two.

Over the entire time series, both the filter and smoother provided accurate state estimates. On average,
the difference between the filtered states and the true states, X̂t|0:t −Xt, was 0.0034. For the smoother,
the average difference, X̄t|0:T −Xt, was 0.0001. The average distances correspond to 0.19 and 0.01% of
the range of true state values, respectively. Likewise, the uncertainty assessments were accurate for both
procedures. The true state value was contained in 95.7% of the point-wise confidence intervals provided
by the filter, while the corresponding coverage for the smoother was 96.2%.

V.6.2 Stochastic volatility model

The second example is a stochastic volatility model. Again, the state dynamics, Xt, follow an AR(1)
process with regime dependent parameters; however, while the state was used to model the mean of the
observations in the previous example, it is now used to model the scale. Scaled by the exponential of
the states and a scale parameter, the observations follow a Student’s t-distribution with regime dependent
degrees of freedom:

P (St = j | St−1 = k) = pkj, t > 0,

Xt | Xt−1, St = j ∼ N(µj + αj(Xt−1 − µj), σ
2
j ), t > 0, and

Ytτ
−1
j exp(−0.5 ·Xt) | Xt, St = j ∼ t (νj) , t ≥ 0.

Since the scale parameter τj and the state variance σ2
j can not both be estimated, the scale parameter

was fixed at τ1 = τ2 = exp(−5). As in the previous example, the state autocorrelations and variances
were the same in the two regimes; this time with α1 = α2 = 0.9 and σ1 = σ2 = 0.2. The regime-wise
means were µ1 = 0 and µ2 = 1, while the degrees of freedom were ν1 = 16 and ν2 = 4, respectively.
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Figure V.2: Simulated data with smoothed state and regime estimates in the linear Gaussian example. Up-
per panel: Simulated observations (points), true regimes (black: regime 1; red: regime 2), and smoothed
regime probability P (St = 1 | Y0:T ) (grey line, right axis). Lower panel: Simulated true state trajectory
(red line), smoothed state estimates (black line) and their confidence interval (grey region). Dashed purple
lines indicate µ1 and µ2. In both panels, the background is white in periods with P (St = 1 | Y0:T ) ≥ 0.5
and red in periods with P (St = 1 | Y0:T ) < 0.5.
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Hence, the first regime represents periods with nearly Gaussian observations with a small variance, while
the second regime represents periods of high volatility with heavy tailed observations and high variance.

Figure V.3 depicts the simulated data, smoothed state estimates and regime estimates. In this example,
the regimes were more difficult to decode. The simulated time series had several short regime periods
which were not correctly decoded. Consequently, the filter correctly identified 72% of the regimes, 14%
were wrongly identified as regime one, and 14% were wrongly identified as regime two. Again, the
regime decoding success was higher for the smoother, which correctly identified 80% of the regimes. Of
the remaining time points, 9 and 11% were wrongly identified as regime one and two, respectively.

On average, the filter and smoother once more provided state estimates close to the true values. The
average difference between the estimated states and the true states in the simulation was -0.0381 for the
filter and -0.0545 for the smoother. Compared to the range of the true state values, the average distances
correspond to 1.24 and 1.77%, respectively. Furthermore, the confidence intervals provided accurate
assessments of the uncertainty in state estimates for both the filter and smoother. For the filter, the true state
value was contained in 96.4% of the point-wise confidence intervals, while the true value was contained
by the confidence interval provided by the smoother for 96.7% of the time steps.

V.6.3 Non-linear population model

The final example is a non-linear population model with Poisson measurements. The population is ex-
posed to changes in the environment, which result in regime shifts in the population dynamics (Munch
and Kottas, 2009). The model is a discretised special case of the log-population model considered by
Pedersen and Berg (2017):

P (St = j | St−1 = k) = pkj

Xt | Xt−1, St = j ∼ N(Xt−1 +
Rj

Kj

− Rj

Kj

exp(Xt−1)

Kj

− 1

2
σ2

j , σ
2
j )

Yt | Xt, St = j ∼ Pois(τj · exp(Xt))

Here, Kj is the regime-wise equilibrium, or carrying capacity, in the absence of process noise, while
Rj

Kj

is the population growth rate. That is, the process will alternate between tending to each of the carrying
capacities, Kj , with a rate determined by

Rj

Kj
; emulating a population subject to, for instance, epizootics

that causes the population to decrease rapidly for a period before recovering. The −1
2
σ2

j term in the
transition density mean results from the transformation from a population model with multiplicative noise
to a log-population model with additive noise (Pedersen and Berg, 2017).

In the simulation, the regime transition probabilities were given by p1,1 = p2,2 = 0.98. The popula-
tion carrying capacities were K1 = exp(−1) and K2 = exp(1), while the population growth rates were
R1

K1
= R2

K2
= 0.04. Finally, the process noise parameters were σ1 = σ2 = 0.1. Like in the previous ex-

ample, τj is not identifiable, but determines the transformation from process scale to observation scale.
Here, τ1 and τ2 were fixed at 100.

Data simulated from the model along with smoothed state and regime estimates are shown in Fig-
ure V.4. In this example, the regime decoding success was higher than in the volatility example. The filter
decoded 84% of the regimes correctly, while it was 97% for the smoother. In the filter, 12 and 4% of the
states were erroneously identified as regime one and two, respectively. Likewise, 2 and 1% were wrongly
identified as regime one and two, respectively, in the smoother. There is, in particular, one period where
the regime is wrongly decoded. Near the beginning of the time series, the observed population decreases
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Figure V.3: Simulated data with smoothed state and regime estimates in the stochastic volatility exam-
ple. Upper panel: Simulated observations (points), true regimes (black: regime 1; red: regime 2), and
smoothed regime probability P (St = 1 | Y0:T ) (grey line, right axis). Lower panel: Simulated true
state trajectory (red line), smoothed state estimates (black line) and their confidence interval (grey re-
gion). Dashed purple lines indicate µ1 and µ2. In both panels, the background is white in periods with
P (St = 1 | Y0:T ) ≥ 0.5 and red in periods with P (St = 1 | Y0:T ) < 0.5.
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Figure V.4: Simulated data with smoothed state and regime estimates in the non-linear population exam-
ple. Upper panel: Simulated observations (points), true regimes (black: regime 1; red: regime 2), and
smoothed regime probability P (St = 1 | Y0:T ) (grey line, right axis). Lower panel: Simulated true state
trajectory (red line), smoothed state estimates (black line) and their confidence interval (grey region).
Dashed purple lines indicate log(K1) and log(K2). In both panels, the background is white in periods
with P (St = 1 | Y0:T ) ≥ 0.5 and red in periods with P (St = 1 | Y0:T ) < 0.5.
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although the true process is still in the high population regime. This period is decoded as regime one; that
is, as a population decline towards the lower carrying capacity.

Once more, the filter and smoother provided accurate state estimates. On average, the difference be-
tween the filtered states and the true states was -0.0117. Likewise, the average difference for the smoother
was -0.0106. These average distances correspond to 0.36 and 0.33% of the range of true state values, re-
spectively. Again, the state uncertainty assessments were accurate for both the filter and smoother. The
true location was contained in 95.2 and 94.8% of the point-wise confidence intervals provided by the filter
and smoother, respectively.

V.7 Conclusions

The approximate filter and smoother extends the Kim filter (Kim, 1994) to non-linear non-Gaussian
regime-switching state-space models. Through three simulated examples, it was shown that the proce-
dures provide accurate regime and state estimates. Further, simulation studies (Appendix V.A) show that
the filter could be used to attain maximum likelihood estimates close to the true value, although it can be
difficult in some cases. The simulation studies also compared the accuracy of the filter and smoother to
a particle filter. In all three examples, the approximate filter provided better regime and state estimates
than a particle filter with 100 particles, while it was comparable to particle filters with 1,000 and 5,000
particles. As expected, the smoother provided better regime and state estimates than all four filters.

An advantage of filters over methods ignoring the temporal structure is the ability to calculate resid-
uals during the recursion. In the approximate filter, quantile residuals may be calculated recursively
through P (Yt ≤ yt | Y0:t−1) (Früiiwirth-Schnatter, 1996). Thygesen et al. (2017) outlines the calculation
via the Laplace approximation for general mixed-effects models. A similar approach may be used for the
regime-wise calculations, P (Yt ≤ yt | Y0:t−1, St = j, St−1 = k), recognizing the simplifying structure of
the time series, which can then be summed as in Equation (V.5).

The quality of the approximate inference will depend on the quality of each Laplace approximation.
While the Laplace approximation is often a poor point-wise approximation, it is an accurate integral
approximation in many cases, in particular if the model is suitably parameterised. In cases where the
accuracy is questionable, the proposed filter and smoother can be altered to use more accurate integra-
tion methods such as Gaussian quadrature. While using, for instance, Gaussian quadrature to obtain the
marginal likelihood of observations is infeasible on the entire time series, the proposed filter reduces the
integral dimension. That is, instead of one high-dimensional integral, the proposed filter calculates sev-
eral low-dimensional integrals; therefore, making numerical integration possible. Further, the filter and
smoother can be used to initialize more computationally demanding methods, where the accuracy can be
increased, such as particle filters or MCMC.
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V.A Simulation studies

To evaluate the proposed filter and smoother, a simulation study was conducted. Data were simulated for
each example with 5,000 time points and n = 1, 2, 3 regimes. For each data set, the regime decoding
success and root mean squared error between estimated states and true states were calculated for the filter,
smoother, and bootstrap particle filters with 100, 1000, and 5000 particles, respectively. Further, the filter
was used to obtain maximum likelihood estimates.

In the linear Gaussian example, data were simulated with µ1 = −1
4
for n = 1; µ1 = −1

2
, µ2 = 1

2
for

n = 2; and µ3 = −3
4
, µ2 = 0, and µ3 = 3

4
for n = 3. The probabilities of staying in a regime were

p11 = p22 = p33 = 0.98, while the remaining transition probabilities were 0.02
n−1

. All other parameters
were defined as in the example.

In the stochastic volatility example, data were simulated with µ1 = 0 for n = 1; µ1 = 0, µ2 = 1
for n = 2; and µ1 = 0, µ2 = 3

4
, and µ3 = 3

2
for n = 3. The probabilities of staying in a regime were

p11 = p22 = p33 = 0.98, while the remaining transition probabilities were 0.02
n−1

. The degrees of freedom
were ν1 = 16 for n = 1; ν1 = 16 and ν2 = 4 for n = 2; ν1 = 16, ν2 = 10, and ν3 = 4 for n = 3. All
other parameters were defined as in the example.

In the non-linear population example, data were simulated with K1 = −1
2
for n = 1; K1 = −1

2
,

K2 = 1 for n = 2; and K1 = −1
2
, K2 = 1

4
, and K3 = 1 for n = 3. The probabilities of staying in a

regime were p11 = p22 = p33 = 0.99, while the remaining transition probabilities were 0.01
n−1

. All other
parameters were defined as in the example.

The results are shown below. Comparisons with particle filters are summarized in bean plots (Kamp-
stra, 2008), while the estimates are summarized in tables. Parameter estimates are compared to the true
values on the scale at which they were estimated; not the scale specified above.
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Figure V.5: Regime decoding success from the approximate filter, approximate smoother, a particle filter
with 100 particles (PF 100), a particle filter with 1,000 particles (PF 1000), and a particle filter with 5,000
particles (PF 5000) in the linear simulation study with two regimes (left panel) and three regimes (right
panel). In each bean, the grey area shows a kernel density estimate based on each value from the simulation
study, which are shown by short lines. The thick line spanning the grey area indicates the mean value.
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Figure V.6: Beanplot of the root mean squared error of state predictions from the approximate filter,
approximate smoother, a particle filter with 100 particles (PF 100), a particle filter with 1,000 particles
(PF 1000), and a particle filter with 5,000 particles (PF 5000) in the linear simulation study with one
regime (left panel), two regimes (middle panel), and three regimes (right panel). In each bean, the grey
area shows a kernel density estimate based on each value from the simulation study, which are shown by
short lines. The thick line spanning the grey area indicates the mean value.

147



PAPER V. AN APPROXIMATE FILTER AND SMOOTHER FOR…

Table V.1: Summary of parameter estimates from the linear Gaussian simulation study with one regime

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

log τ -2.303 -2.300 -2.308 -2.483 -2.355 -2.266 -2.166
logσ -2.303 -2.319 -2.311 -2.506 -2.355 -2.272 -2.120
µ1 -0.250 -0.251 -0.250 -0.293 -0.263 -0.237 -0.214
logitα 1.386 1.389 1.389 0.908 1.251 1.508 1.808

Table V.2: Summary of parameter estimates from the linear Gaussian simulation study with two regimes

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

log τ -2.303 -2.317 -2.321 -2.550 -2.359 -2.277 -2.155
logσ -2.303 -2.284 -2.289 -2.457 -2.346 -2.240 -2.049
p̃1 2.944 2.932 2.945 2.324 2.782 3.094 3.475
p̃2 -2.944 -2.895 -2.917 -3.811 -3.054 -2.758 -2.298
µ1 -0.500 -0.500 -0.504 -0.573 -0.524 -0.481 -0.427
log(µ2 − µ1) 0.000 -0.006 -0.003 -0.120 -0.030 0.028 0.128
logitα 1.386 1.289 1.294 0.942 1.214 1.376 1.581

Table V.3: Summary of parameter estimates from the linear Gaussian simulation study with three regimes

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

log τ -2.303 -2.326 -2.332 -2.656 -2.364 -2.287 -2.205
logσ -2.303 -2.296 -2.284 -2.480 -2.361 -2.229 -2.021
p̃1 3.638 3.590 3.343 -17.278 3.074 3.910 20.212
p̃2 0.000 -0.212 -3.491 -23.079 -1.409 0.384 19.538
p̃3 -3.638 -3.405 -3.608 -21.863 -3.726 -3.101 -1.355
p̃4 0.000 -0.100 -0.456 -18.975 -0.649 0.723 18.980
p̃5 3.638 3.550 4.111 2.598 3.295 3.975 22.945
p̃6 -3.638 -3.822 -6.095 -25.639 -4.439 -3.350 -2.204
µ1 -0.750 -0.756 -0.897 -3.068 -0.787 -0.731 -0.646
log(µ2 − µ1) -0.288 -0.306 -1.317 -22.493 -0.367 -0.243 0.981
log(µ3 − µ1) -0.288 -0.254 -0.147 -0.472 -0.306 -0.157 0.484
logitα 1.386 1.323 1.448 1.035 1.250 1.506 2.378
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Figure V.7: Regime decoding success from the approximate filter, approximate smoother, a particle filter
with 100 particles (PF 100), a particle filter with 1,000 particles (PF 1000), and a particle filter with 5,000
particles (PF 5000) in the stochastic volatility model simulation study with two regimes (left panel) and
three regimes (right panel). In each bean, the grey area shows a kernel density estimate based on each
value from the simulation study, which are shown by short lines. The thick line spanning the grey area
indicates the mean value.
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Figure V.8: Beanplot of the root mean squared error of state predictions from the approximate filter,
approximate smoother, a particle filter with 100 particles (PF 100), a particle filter with 1,000 particles
(PF 1000), and a particle filter with 5,000 particles (PF 5000) in the stochastic volatility simulation study
with one regime (left panel), two regimes (middle panel), and three regimes (right panel). In each bean,
the grey area shows a kernel density estimate based on each value from the simulation study, which are
shown by short lines. The thick line spanning the grey area indicates the mean value.
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Table V.4: Summary of parameter estimates from the stochastic volatility simulation study with one
regime

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

logσ -1.609 -0.850 -0.938 -2.205 -1.102 -0.601 -0.280
µ1 0.000 0.093 0.089 -0.086 0.038 0.142 0.291
logitα 2.197 1.105 0.952 -12.372 0.357 1.710 3.534
log ν 2.773 16.049 15.360 2.133 15.567 16.759 32.478

Table V.5: Summary of parameter estimates from the stochastic volatility simulation study with two
regimes

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

logσ -1.609 -0.554 -0.950 -9.125 -1.379 -0.253 -0.007
p̃1 3.892 4.115 4.309 2.404 3.664 4.765 9.372
p̃2 -3.892 -3.965 -4.017 -6.914 -4.406 -3.560 -2.648
µ1 0.000 0.090 0.099 -0.462 -0.041 0.199 0.898
log(µ2 − µ1) 0.000 0.108 -0.141 -13.579 -0.101 0.289 0.520
logitα 2.197 0.486 -0.459 -15.169 -1.218 1.873 3.589
log ν1 2.773 16.307 15.200 1.436 15.470 16.759 75.285
log ν2 1.386 7.827 9.056 0.782 1.438 15.883 39.102

Table V.6: Summary of parameter estimates from the stochastic volatility simulation study with three
regimes

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

logσ -1.609 -0.609 -1.082 -9.399 -1.592 -0.335 -0.106
p̃1 4.585 5.329 9.438 -1.928 4.450 16.418 21.047
p̃2 0.000 -1.262 -3.748 -20.157 -13.927 0.980 16.102
p̃3 -4.585 -4.340 -8.661 -21.367 -16.533 -3.517 -1.544
p̃4 0.000 -0.094 0.241 -19.308 -12.437 12.125 16.226
p̃5 4.585 4.334 5.903 -10.870 3.509 5.419 20.096
p̃6 -4.585 -3.966 -6.603 -25.785 -13.863 -2.962 12.970
µ1 0.000 0.079 0.031 -2.638 -0.142 0.277 0.603
log(µ2 − µ1) -0.288 0.012 -0.174 -13.671 -0.172 0.169 1.238
log(µ3 − µ1) -0.288 -0.263 -2.474 -16.210 -1.049 0.188 1.760
logitα 2.197 -0.067 -1.570 -15.879 -2.108 1.903 4.189
log ν1 2.773 16.305 14.455 0.510 15.211 16.792 29.533
log ν2 2.303 15.978 10.962 0.720 1.902 16.511 19.138
log ν3 1.386 9.646 8.616 -0.193 1.405 15.878 19.954
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Figure V.9: Regime decoding success from the approximate filter, approximate smoother, a particle filter
with 100 particles (PF 100), a particle filter with 1,000 particles (PF 1000), and a particle filter with 5,000
particles (PF 5000) in the non-linear population model simulation study with two regimes (left panel) and
three regimes (right panel). In each bean, the grey area shows a kernel density estimate based on each
value from the simulation study, which are shown by short lines. The thick line spanning the grey area
indicates the mean value.
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Figure V.10: Beanplot of the root mean squared error of state predictions from the approximate filter,
approximate smoother, a particle filter with 100 particles (PF 100), a particle filter with 1,000 particles (PF
1000), and a particle filter with 5,000 particles (PF 5000) in the non-linear population model simulation
study with one regime (left panel), two regimes (middle panel), and three regimes (right panel). In each
bean, the grey area shows a kernel density estimate based on each value from the simulation study, which
are shown by short lines. The thick line spanning the grey area indicates the mean value.
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Table V.7: Summary of parameter estimates from the non-linear population simulation study with one
regime

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

logσ -2.303 -2.297 -2.300 -2.469 -2.333 -2.263 -2.182
logK1 -0.500 -0.560 -0.562 -0.803 -0.629 -0.477 -0.351
logR1 -4.400 -3.739 -3.826 -13.666 -3.910 -3.575 -3.067

Table V.8: Summary of parameter estimates from the non-linear population simulation study with two
regime

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

logσ -2.303 -2.271 -2.231 -2.428 -2.305 -2.246 0.275
p̃1 3.892 5.577 6.288 -6.780 2.650 9.874 17.153
p̃2 -3.892 -1.891 3.288 -14.811 -3.862 4.558 120.884
logK1 -0.500 0.405 0.722 -1.431 0.104 0.687 15.555
log(K2 −K1) 0.405 -5.331 -7.746 -53.539 -11.761 -2.783 7.499
logR1 -4.400 -4.199 -5.609 -52.433 -5.382 -3.670 -0.531
logR2 -2.856 -1.424 -2.059 -48.814 -3.581 -0.364 17.508

Table V.9: Summary of parameter estimates from the non-linear population simulation study with three
regime

Parameter True Median Mean Min. 1st Qu. 3rd Qu. Max

logσ -2.303 -2.268 -1.971 -2.437 -2.324 -1.683 -0.045
p̃1 4.585 3.203 6.124 -16.846 2.738 7.330 34.317
p̃2 0.000 -3.030 -1.693 -61.093 -3.050 -2.593 81.194
p̃3 -4.585 -3.385 0.617 -97.207 -3.449 0.567 152.301
p̃4 0.000 -2.987 -4.344 -77.572 -4.420 -2.978 27.269
p̃5 4.585 3.223 2.605 -106.332 -0.527 3.549 86.073
p̃6 -4.585 -2.869 -5.657 -196.357 -5.504 -2.821 50.489
logK1 -0.500 0.499 0.598 -3.269 0.190 0.990 2.974
log(logK2 − logK1) -0.288 -1.819 -5.163 -347.639 -2.512 -0.108 7.268
log(logK3 − logK1) -0.288 -1.022 -0.988 -25.943 -1.644 0.305 9.824
logR1 -4.400 -3.283 -3.448 -27.301 -3.730 -1.654 -0.584
logR2 -3.636 -2.000 -3.277 -66.893 -3.824 1.138 2.915
logR3 -2.856 0.289 -0.972 -105.047 -2.166 2.681 9.275
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Software I

argosTrack: Fit Movement Models to Argos
Data for Marine Animals

The argosTrack R package1 was originally developed for the analysis in Paper III (Albertsen et al.,
2015); however, several movement models have been included since the beginning. The package uses
reference classes to allow a modular approach to modelling the data.

The package can be loaded as any other R package, and data can be imported. Below, the example
above uses a movement track included in the package.

1 library(argosTrack)
2 data(subadult_ringed_seal)
3
4 d <- subadult_ringed_seal

In the argosTrack package, data is contained in the Observation class.

1 obs <- Observation(lon = d$lon ,
2 lat = d$lat ,
3 dates = as.POSIXct(d$date),
4 locationclass = d$lc)
5
6 obs

## Observations:
## -------------
##
## Number of observations: 3586
## First date: 2010-10-20
## Last date: 2011-04-06
## Location classes:
## qual
## GPS 3 2 1 0 A B Z
## 0 92 209 392 263 854 1773 3

1available from https://github.com/calbertsen/argosTrack
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Likewise, a measurement model is specified by the Measurement class. A measurement model can
be specified as a normal distribution or a t-distribution. For simplicity, the normal distribution is used for
this example.

1 meas <- Measurement("n")
2
3 meas

##
##
## Measurement model
## -----------------
##
## Measurement distribution: n
## Use nautical observations: FALSE
## Variance parameters:
## GPS 3 2 1 0 A B
## Latitude 1 3.674437 108.4620 2214.5400 2113.2874 7211.267 69064.77
## Longitude 1 5.187231 60.7277 372.5607 442.5706 1620.030 61685.24
## Z
## Latitude 8886111
## Longitude 8886111

The final component in the model is the movement model. Currently, the CTCRW, DCRW, ran-
dom walk (RW), no movement (DIRAC), step-length/bearing model with half-normal steps, and the step-
length/bearing model with Weibull steps are implemented and exported. As experimental features, a con-
tinuous time step-length/bearing model, the GDCRW, a bivariate Ornstein-Uhlenbeck on locations, and
a bivariate Ornstein-Uhlenbeck on velocities are included but not exported. For simplicity, the random
walk is used in this example. The latent states will be at the same time as the observations.

1 mov <- RW(unique(obs$dates))
2
3 mov

##
##
## Movement model:
## -------------
##
## Model: Random Walk (RW)
## Movement parameters:
## numeric(0)
## Movement variance parameters:
## log(sigma_lat) log(sigma_lon)
## 0 0
## Number of latent variables: 6840
## Using nautical states: FALSE
## Using time unit: hours
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Figure SI.1: Estimated track

The three components are collected by the Animal class.

1 anim <- Animal(observation = obs ,
2 measurement = meas ,
3 movement = mov ,
4 name = "Random walk example")

Now, the track can be fitted through TMB (Kristensen et al., 2016) by the fitTrack function.

1 fitTrack(anim)

Afterwards, the result can be plottet.

1 plot(anim)

Further, trajectory information can be extracted by the getTrack function,

1 head(getTrack(anim))

## dates id obs.lat obs.lon obs.lc est.lat
## 1 2010-10-20 01:31:57 Random walk example 56.526 -79.261 B 56.58090
## 2 2010-10-20 02:13:06 Random walk example 56.583 -79.174 1 56.58361
## 3 2010-10-20 03:12:42 Random walk example 56.630 -79.178 A 56.61716
## 4 2010-10-20 03:54:43 Random walk example 56.638 -79.228 1 56.63749
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## 5 2010-10-20 06:03:39 Random walk example 56.616 -79.126 A 56.64588
## 6 2010-10-20 07:23:00 Random walk example 56.646 -79.094 B 56.66567
## est.lon sd.lat sd.lon
## 1 -79.17863 0.03004365 0.03413221
## 2 -79.17597 0.10863630 595.29038910
## 3 -79.20020 940.95550394 0.16959218
## 4 -79.22331 0.11822253 0.08135140
## 5 -79.14986 0.07037241 0.03503249
## 6 -79.11689 0.03848183 0.41115953

while new trajectories can be simulated by simTrack.

References

Albertsen, C. M., Whoriskey, K., Yurkowski, D., Nielsen, A., & Flemming, J. M. (2015). Fast fitting of
non-gaussian state-space models to animal movement data via template model builder. Ecology,
96(10), 2598–2604. doi:10.1890/14-2101.1

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: automatic differentiation
and laplace approximation. Journal of Statistical Software, 70(5). doi:10.18637/jss.v070.i05
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Software II

covafillr: Local Polynomial Regression of
State Dependent Covariates in State-Space
Models

The covafillr R package1 is intended for including state dependent covariates in state-space models
by interpolating with local polynomial regression. The package can be used with Rcpp, TMB, JAGS, and
ggplot2; however, only the R functions will be demonstrated here.

Given coordinates, x, and corresponding observations, y,

1 set.seed (8723)
2
3 n <- 500
4 m <- function(x) x * sin(2 * pi * x)
5 sigma <- function(x) (2 + cos(2 * pi * x)) / 10
6
7 x <- runif(n,0,1)
8 y <- m(x) + sigma(x) * rnorm(n)

the covafill reference class can be used to set up the local polynomial regression. In this case, the
polynomial degree is 5, while the bandwidth is suggested by default.

1 library(covafillr)
2 cf <- covafill(coord = x,
3 obs = y,
4 p = 5L)
5 cf

Besides the local polynomial regression, a search three approximation is also implemented,
covatree. It requires an additional parameter determining when the tree splitting is stopped, and it can
only be used for coordinates with a dimension no more than three. Otherwise, the covatree reference
class can be used in the same way as covafill. Estimates of the mean function can be obtained by the
predict member function.

1available from https://cran.r-project.org/package=covafillr or https://github.com/calbertsen/covafillr
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Figure SII.1: Simulated data (points) with the true mean function (blue line) and the local polynomial
estimate (red line) with 95% confidence interval (red area).

1 x0 <- seq(0,1,0.01)
2 pred <- cf$predict(x0,se.fit=TRUE)

The local polynomial fit can be added directly to a ggplot. This is done with stat_covafill.

1 library(ggplot2)
2 ggplot(aes(x=x,y=y),data=data.frame(x=x,y=y)) +
3 geom_point() +
4 stat_covafill()

A special case of local polynomial regression is kernel density estimation. The covafillr package
includes the kde function, which can be used for kernel density estimation in any dimension.

Given a matrix of coordinates,

1 Sigma <- matrix(c(1,0.9,0.9^2,
2 0.9,1,0.9,
3 0.9^2,0.9,1),3,3,byrow=TRUE)
4 CSigma <- t(chol(Sigma))
5 sim <- function() as.vector(CSigma %*% rnorm(3))
6 distfun <- function(x){U <- pnorm(x);
7 y <- c(qgamma(U[1],shape=5,scale=0.5),
8 qnorm(U[2],0,2),
9 qbeta(U[3],0.5,0.5))
10 return(y)
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Figure SII.2: covafillr used with ggplot2.
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11 }
12 X0 <- t(replicate (1000,sim()))
13 X <- t(apply(X0,1,distfun))

the kde function is called to estimate the density function on a regular grid.

1 z <- kde(X,
2 npred = 100,
3 from=apply(X,2,min)-0.5,
4 to=apply(X,2,max)+0.5)

For three-dimensional data, the result can be plotted with, for instance, the plot3D package.

1 library(plot3D)
2 addTrans <- Vectorize(function(col,alpha){
3 nc <- col2rgb(col,TRUE)/255
4 ncl <- as.list(nc)
5 names(ncl) <- rownames(nc)
6 ncl$alpha <- alpha
7 do.call("rgb",ncl)
8 },"col")
9 Y <- as.matrix(z$coord)
10 cv <- z$density
11 cv2 <- cv
12 cv2[cv2 < 0.01] <- NA
13 slice3D(unique(Y[,1]),
14 unique(Y[,2]),
15 unique(Y[,3]),
16 array(cv2 ,dim=c(100,100,100)),
17 xs=NA,zs=NA,ys=seq(-6,6,0.75),
18 phi=45,theta=65,NAcol=rgb(0,0,0,0),
19 ticktype= "detailed")

Examples on how to use the package from C++ or JAGS is available from the GitHub page.

162



x

0

2

4

6

8 y

−5

0

5

z

0.0

0.5

1.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure SII.3: 3D kernel density estimate.
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Software III

GrAD: Graph based reverse mode auto-
matic differentiation

GrAD is a lightweight header-only C++ library for automatic differentiation. The library represents the
computational graph as a tree, which keeps the structure of the objective function. Most C++ libraries
build a sequential stack or tape which only have references to the input parameters. In contrast, GrAD can
access both parents and children in the tree representation of the computational graph.

Below is a simple example of how to use the library. The ADparlist class registers active parameters
using the Independent member function. The AD class indicates that the variable should be differenti-
ated.

1 #include <GrAD/GrAD>
2 #include <iostream >
3 #include <iomanip >
4
5 using namespace GrAD;
6
7 template <class T>
8 T fn(T x,T y){
9 return exp(-pow(x,T(2.0))/y) + y;
10 }
11
12 int main(){
13
14 ADparlist <double >* grd = new ADparlist <double >();
15
16 AD<double > x(3.0);
17 AD<double > y(2.0);
18
19 grd ->Independent(x);
20 grd ->Independent(y);
21
22 AD<double > z = fn(x,y);
23 double fn0 = z.fn();
24 std::cout << std::setprecision (12) <<
25 "Function value: " <<
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26 fn0 <<
27 std::endl;
28 vector <double > gr0 = z.gr();
29 std::cout << std::setprecision (12) <<
30 "Gradient: " <<
31 gr0[0] << ", " << gr0[1] <<
32 std::endl;
33
34 return 0;
35 }

After compilation, the object can be called to output the gradient:

1 ./synopsis_files/grad/grad.so

## Function value: 2.01110899654
## Gradient: -0.0333269896147, 1.02499524221

The library provides a simple interface for automatic differentiation and can be used for derivatives of any
order by nesting the classes. That is, second order derivatives can obtained by using

AD<AD<double> > x;

For small examples, the performance is comparable to more developed libraries; however, for complex
calculations GrAD is still immature. Implementation details can be seen in the source code.
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Software IV

multiStockassessment: Connecting single
stock assessment models through corre-
lated survival

The multiStockassessment R package1 implements the model described in Paper II (Albertsen et al.,
2017). The package extends the stockassessment package2, to allow fitting several correlated stocks.

To use the package, the stocks must be fitted individually by the stockassessment package3. The
following code simulates and fits two independent stocks with the stockassessment package.

1 library(stockassessment)
2
3 data(nscodData)
4 data(nscodConf)
5 data(nscodParameters)
6 fit <- sam.fit(nscodData , nscodConf , nscodParameters ,
7 sim.condRE = FALSE)
8
9 set.seed(238)
10 datSim <- simulate(fit ,nsim=2)
11 fitSim <- do.call("c",
12 lapply(datSim ,
13 function(x)sam.fit(x,
14 defcon(x),
15 defpar(x,defcon(x)))))

The combined AIC of the two assessments are

1 do.call("sum",lapply(fitSim ,AIC))

## [1] 1253.106

1available from https://github.com/calbertsen/multi_SAM
2available from https://github.com/fishfollower/SAM
3This was not done in the manuscript introducing the model.
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In the multiStockassessment package, a correlation structure can be constructed with the
suggestCorStructure function. With nAgeClose = 0, independent assessments are fitted, with
nAgeClose = 1 theM1 model of Paper II (Albertsen et al., 2017) is fitted, and so on. Additional
options are available.

1 library(multiStockassessment)
2 cs <- suggestCorStructure(fitSim ,nAgeClose =0)
3 m0 <- multisam.fit(fitSim ,cs)

TheAIC of the combined (independent) assessments are identical to the results from the stockassessment
package

1 AIC(m0)

## [1] 1253.106

A model with correlations can be fitted by

1 cs <- suggestCorStructure(fitSim ,nAgeClose =4)
2 m4 <- multisam.fit(fitSim ,cs)

with the resulting AIC,

1 AIC(m4)

## [1] 1379.561

References

Albertsen, C. M., Nielsen, A., & Thygesen, U. H. (2017). Connecting single-stock assessment models
through correlated survival. ICES Journal ofMarine Science. In Press. doi:10.1093/icesjms/fsx114
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