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A flow-first route-next Heuristic for Liner
Shipping Network Design

Alexander Krogsgaard, David Pisinger, Jesper Thorsen

Abstract Having a well-designed liner shipping network is paramount to ensure
competitive freight rates, adequate capacity on trade-lanes, and reasonable trans-
portation times. The most successful algorithms for liner shipping network design
make use of a two-phase approach, where they first design the routes of the vessels,
and then flow the containers through the network in order to calculate how many
of the customers demands can be satisfied, and what the imposed operational costs
are. In this paper we reverse the approach by first flowing the containers through a
relaxed network, and then design routes to match this flow. This gives a better initial
solution than starting from scratch, and the relaxed network reflects the ideas behind
a physical internet of having a distributed multi-segment intermodal transport. Next,
the initial solution is improved by use of a variable neighborhood search method,
where six different operators are used to modify the network. Since each iteration
of the local search method involves solving a very complex multi-commodity flow
problem to route the containers through the network, the flow problem is solved
heuristically by use of a fast Lagrange heuristic. Although the Lagrange heuris-
tic for flowing containers is 2–5% from the optimal solution, the solution quality is
sufficiently good to guide the variable neighborhood search method in designing the
network. Computational results are reported, showing that the developed heuristic
is able to find improved solutions for the large-scale world instances from LINER-
LIB, and it is the first heuristic to report results for the biggest WorldLarge instance.
Keywords Network Design, Liner Shipping, Multi-commodity Flow, Local Search,
Lagrange heuristic

DTU Management Engineering, Technical University of Denmark, Produktionstorvet 424, DK-
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1 Introduction

The liner shipping industry is a vital part of the global economy, facilitating much
international trade by transporting large amounts of cargo around the world at low
cost. During the last three decades the volume of containerized cargo has grown
more than 8% per year (Unctad, 2015).

Even though the environmental impact of container transport per ton-km is very
low compared to other transport modes, the industry still contributes significantly
to the global CO2 emissions due to the large volumes transported. In 2012, the
international shipping industry was estimated to account for 2.2% of the global CO2
emissions, of which approximately a quarter was caused by container vessels (IMO,
2014). In 2015, there were around 5,100 container vessels in operation worldwide
according to Unctad (2016).

In this paper we present a heuristic for solving the Liner Shipping Network De-
sign Problem (LSNDP) from scratch — without an already existing network as a
starting point. The objective is to maximize the profit composed of revenue minus
operational costs. A liner shipping network consists of a number of rotations, which
is a scheduled roundtrip between a set of ports. Rotations are preferably operated
weekly, even though examples of biweekly rotations can also be found. A rotation
is operated by a number of vessels to achieve the desired frequency.

In larger networks with many ports, it is in practice impossible to connect all
ports with direct connections. Some containers will thus have to be transshipped
to get from origin to destination, meaning that the container is switched from one
rotation to another at an intermediate port. A transshipment is associated with an
extra cost for handling the container.

The capacity of a vessel can be measured by the number of containers, it can
carry, which can be calculated in TEU or FFE. One TEU is a 20-foot container
equivalent, while one FFE is a 40-foot container equivalent, hence two TEU equals
one FFE. Container vessels exist in many different sizes, from less than 500 FFE for
the smallest feeder vessels up to almost 10,000 FFE for the largest vessels. Due to
economies of scale, the cost of transporting a container is lowest on large vessels,
but smaller vessels can enter more ports and canals.

To be able to operate a shipping network, it must be decided how to flow the con-
tainers — which containers should go on which vessels, where will transshipments
occur etc. The containers share the capacity of the vessels, but have unique origins
and destinations, and it is thus necessary to solve a multicommodity flow problem
(MCF). Apart from being a prerequisite for operating the network, the MCF also de-
termines a significant part of the cost and all of the revenue, in that it can be decided
to reject cargo. The MCF thus has to be solved when evaluating the network, and the
quality of the solution to the MCF can easily make the difference between a prof-
itable and an unprofitable network. Because of this, the MCF is a vital subproblem
to the LSNDP.
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1.1 Previous work

For a detailed review of the research conducted within liner shipping optimization
problems, the survey papers Ronen (1983), Ronen (1993), Christiansen et al. (2004),
Christiansen et al. (2013), Meng et al. (2014), Brouer et al. (2016, 2017), and Lee
and Song (2017) can be recommended.

Agarwal and Ergun (2008) present three different methods for designing liner
ship networks with up to 100 vessels and 20 ports. Heuristic, column generation
and Benders decomposition methods are applied with the most encouraging results
obtained by column generation and Benders decomposition. Apart from the rather
small instance size compared to real world networks, the main drawback of the
presented model is that transshipment costs are not taken into account. As trans-
shipments are a vital part of the liner shipping business, this simplification is unfor-
tunate.

Transshipment costs are included in the work by Alvarez (2009). As ports are
represented by a single node, however, the model cannot detect transshipments oc-
curring within the same rotation if a rotation visits the same port multiple times,
which reduces the accuracy of the cost calculation. In addition to this, it is assumed
that the cost of transshipping a container is equal to the cost of loading and unload-
ing a container, which might often not be the case. It is, for example, easier for an
operator to switch transshipment port than to change the origin or destination of
cargo, making transshipment costs more competition prone than load and unload
costs.

In contrast to Agarwal and Ergun, Alvarez imposes no frequency restriction on
the rotations, but allows any integer number of vessels to be assigned to each ro-
tation. This means that a rotation can be, for example, 20 days long, and will be
operated every 20 days if one vessels is assigned, every 10 days if two vessels are
assigned etc. As described by Brouer et al. (2014a), business rules of operators
make this assumption quite unrealistic, as a rotation must meet a basic requirement
of either weekly or biweekly frequency, which also fixes rotation lengths at whole
weeks. If this requirement is not met, the schedule will be unpredictable for shippers
with changing days of service and low frequency, and thus commercially unattrac-
tive. The frequency requirement is very important for the generation of rotations,
as it prevents a solution with many rotations operating infrequently, but together
providing a high number of direct connections between ports and thus saving trans-
shipment costs.

Alvarez uses a two-stage approach for solving the problem. In each iteration, the
multicommodity flow problem (MCF) is solved to determine the cost of the current
network. Based on the resulting flow, the network is optimized using a tabu search
algorithm. The MCF is solved to optimality, which is reported to be time-consuming
for an instance of only seven ports.

Brouer et al. (2014a) presents a base integer programming model for the LSNDP.
This model includes the requirement of at least biweekly frequency and also models
transshipment costs more accurately than Alvarez by keeping this cost separate from
the load and unload costs. The rotations are restricted to having at most one port
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called twice, while all other ports can be called only once, which is a restriction not
included by Alvarez. Although allowing one port to be visited twice, resulting in a
so-called butterfly rotation, is better than prohibiting multiple calls at the same port
altogether, it is still a restriction not found in real world rotations.

Brouer et al. (2014a) solves the problem in two stages like Alvarez. In each it-
eration, the MCF is solved and new rotations are generated based on the resulting
flow. The rotations are collected in a candidate list from which the most promising
are selected to make up the network. This is controlled by a tabu search algorithm.
Brouer et al. (2014a) also provides data on instances through LINER-LIB, which
is publicly available. This data includes distances between ports, demand matrices
and vessel information for seven different instances, which can be used for bench-
marking results. Brouer et al. (2014a) is able to solve six of seven instances, while
the largest instance remains unsolved. For the instances solved, running times vary
from five minutes for the smallest instance to four hours for the largest.

In Brouer et al. (2014b) the two-stage framework is developed further. Since
it is so time-consuming to solve the MCF problem, larger moves are made in each
iteration. These moves are identified by solving a smaller mathematical model, using
a number of estimates for predicting the consequences of inserting or omitting a
port. The resulting mathheuristic reports improved solution quality compared to
Brouer et al. (2014a).

Recently, Karsten et al. (2016) included time constraints in the LSNDP. This ex-
tension provides a more customer-oriented and commercial approach to the LSNDP
in the realization that demand is not independent of transit times. If the offered prod-
uct is too slow, shippers will choose another operator. Karsten et al. (2016) includes
a preset time limit for each OD pair such that the demand goes to zero if the tran-
sit time limit is exceeded. Although it can be argued that such a hard time limit
is too simplistic, it is nevertheless an improvement over the LSNDP without time
constraints, where any transit time is acceptable.

1.2 Solution approach and contribution

As previously discussed, the most successful algorithms for liner shipping network
design make use of a two-phase approach, where they first design the routes of
the vessels, and then solve a MCF to flow the containers through the network and
calculate operational costs.

In this paper we reverse the approach by first flowing the containers through a
relaxed network, and then design rotations to match this flow. To capture the hub
structure, which is vital in a liner shipping network, the rotations will be generated
based on an initial flow, where cargo is flown through a complete network with all
connections between ports available. The connections are priced such that they are
expensive at low loads and cheap at high loads, in order to make the cargo gather at
fewer connections. Sun and Zheng (2016) used a similar approach for finding hub
locations in liner shipping. The initial flow can be seen as an accomplishment of the
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physical internet where point-to-point transport has been replaced by multi-segment
intermodal transport (Montreuil, 2011).

After having constructed an initial network, an improvement algorithm based on
variable neighborhood search is used. Six different operators are used to modify
the network. In order to quickly evaluate moves, a subgraph containing only the
rotation being modified is introduced, enabling a fast solution to the MCF for this
single rotation.

Since each iteration of the local search method involves solving a very complex
multi-commodity flow problem to route the containers through the network, the
flow problem is solved heuristically by use of a fast Lagrange heuristic. Although
the Lagrange heuristic for the MCF is 2–5% from the optimal solution, the solution
quality is sufficiently good to guide the variable neighborhood search method in
designing the network. To obtain a usable flow, a repair-flow algorithm is devised to
supplement the Lagrange heuristic. The general idea of the repair-flow algorithm is
to gradually turn a flow, where the capacity constraints on the main edges is violated,
into a valid flow through a heuristic method.

As opposed to previous algorithms both the MCF and the route construction is
solved by fast heuristics. This makes it possible to search considerably more candi-
date networks within a given time frame, hence leading to a much more diversified
search. Apart from more iterations, a shorter solution time to the MCF will also
allow a more comprehensive graph structure, which can both represent transship-
ments accurately and allow complex rotations without restrictions on the number of
times a port is visited. It will thus be possible to generate more realistic rotations,
bringing the solutions closer to those seen in real life.

1.3 Test instances

We will test the developed algorithms on the LINER-LIB instances presented by
Brouer et al. (2014a). An overview of the instances is given in Table 1.

Total weekly Total vessel
Instance Instance type Ports Demands Vessels demand (FFE) capacity (FFE)
Baltic Single-hub 12 22 6 4904 3400
WestAfrica (WAF) Single-hub 20 37 42 8541 28700
Mediterranean Multi-hub 40 365 20 7545 14800
Pacific Trade lane 45 722 100 44180 151800
AsiaEurope Trade lane 114 4000 176 76944 425900
WorldSmall Multi-hub 47 1764 263 136387 611800
WorldLarge Multi-hub 202 9615 501 138914 1071100

Table 1 The seven different instances included in LINER-LIB

In general, the small instances Baltic, WestAfrica, Mediterranean and Pacific will
be used for tuning the algorithms, while the larger instances AsiaEurope, WorldS-
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mall and WorldLarge will be used for the final test of the algorithm. In some cases
we will, however, also use WorldSmall for tuning in order to ensure a proper func-
tionality for large instances.

All instances exist in a base, high and low capacity variant. The base variant will
be used in this paper. All experiments have been run on a Intel Core i7-3770 CPU,
3.40GHz processor with 16GB RAM.

1.4 Outline

Section 2 describes the graph representation and defines the problem formally. Sec-
tion 3 presents the solution method for flowing containers through a network. The
algorithm is based on solving a MCF through a Lagrange heuristic. Next, Section 4
explains how a flow-first approach is used to construct an initial backbone flow, that
is used for generating the initial rotations. Section 5 describes how the rotations are
optimized by using a variable neighborhood search method. A subgraph to each ro-
tation is used to evaluate the effect of inserting and removing ports. This is followed
by Section 6 where the developed algorithms are tested on instances from LINER-
LIB, and compared to previous results. Section 7 concludes the paper and discuss
perspectives on future work.

2 Problem definition

The objective of the LSNDP is to design a liner shipping network that maximizes
profit. Brouer et al. (2014a) presents a mathematical model for the problem, which is
based on three-index decision variables recording both the preceding and next port
of each commodity. This is necessary to allow accurate representation of transship-
ments when each port is represented by a single node only. The formulation limits
each rotation to a single butterfly port, i.e. a port included twice, while all other
ports can be included only once. To allow more flexible generation of rotations with
multiple duplicate ports, the graph representation used here contains several nodes
for each port. Each port is represented by at least two nodes — one centroid node
for departing commodities and one for arriving commodities. For every call at the
port, two more nodes are added, one representing the arrival and one representing
the departure. By using this representation, transshipments can be handled correctly
without extra indices on the decision variables, but this requires an alteration of the
mathematical model presented by Brouer et al. (2014a). The sets, parameters and
decision variables of this altered model are defined in Table 2.

The rotations can be described by a directed graph G = (N,A) with N being the
set of nodes and A the set of arcs. A port in the LSNDP network is represented by
two different types of nodes:
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Sets
V Set of available vessel classes
R Set of feasible rotations
N Set of all nodes of the graph
Nr

arr Set of arrival nodes for rotation r ∈ R
Nr

dep Set of departure nodes for rotation r ∈ R
A Set of all available arcs of the graph
Ar Arcs representing rotation r ∈ R
K Commodities to be transported between a pair of ports
Parameters
dk Demand for commodity k ∈ K
rk Rate for commodity k ∈ K
Ok Origin node of commodity k ∈ K
Dk Destination node of commodity k ∈ K
uv Capacity of vessel class v ∈V
zv Available number of vessels for vessel class v ∈V
vr Vessel class used in rotation r ∈ R
nr Number of vessels required for operating rotation r ∈ R
cr Fixed cost of operating rotation r ∈ R
ci j Variable cost of shipping one FFE on arc (i, j) ∈ A
Decision variables
xk

i j The number of commodity k ∈ K to be transported on arc (i, j) ∈ A
yr (binary) 1 iff rotation r ∈ R is used in the solution

Table 2 Notation used in the LSNDP model

• Centroids: For each port p ∈ P we have a source node (origin) and a sink node
(destination) to handle the demands. The sources only have outgoing arcs, while
the sinks only have ingoing arcs. The set of source nodes is Sα and the set of sink
nodes is Sβ .

• Port calls: For each vessel calling a port we introduce an arrival and departure
node. Port call nodes are defined for each call q in the port call list Qr for each
rotation r ∈ R. The set of arrival nodes for rotation r is Nr

arr while the set of
departure nodes is Nr

dep.

The set of arcs A = As∪At ∪Al ∪Au∪Ad ∪Ao consists of the following subsets:

As (sail arcs) These arcs represent a rotation sailing from a departure node of
one port to an arrival node of another port. The set of these arcs is defined as
As = {(i, j) : i ∈ Nr

dep, j ∈ Nr
arr,r ∈ R}, where i and j are consecutive nodes, cor-

responding to consecutive calls in the port call list Qr for the rotation r ∈ R. The
cost associated with these arcs is zero. This is due to the assumption that vessels
are deployed to support the rotation regardless of how many containers are trans-
ported. The capacity of these arcs is equal to that of the vessel class used in the
given rotation, denoted uvr .

At (transshipment arcs) These arcs are used to represent the transshipment between
two rotations in a port. They are connected from the arrival node of one rotation to
the departure node of another rotation. The set of transshipment arcs is defined as
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At = {(i, j) : i ∈ Nrp
arr, j ∈ Nzp

dep, p ∈ P,r,z ∈ R,r 6= z}. The cost of a transshipment
arc corresponds to the transshipment cost at the given port denoted cp

t .
Al ,Au (load/unload arcs) These arcs are used from and to the centroids. Sources

are connected to departure nodes, while arrival nodes are connected with sinks,
within the same ports. Load arcs are defined as the set Al = {(α p, i) : i∈N p

dep, p∈
P}, while unloading arcs are defined as the set Au = {(i,β p) : i ∈ N p

arr, p ∈ P}.
Here α p and β p are the source and sink nodes, respectively, while N p

arr and N p
dep

are the arrival and departure nodes, respectively, for port p ∈ P. The cost for
loading or unloading is given for each port as input data, and is denoted cp

m.
Ad (dwell arcs) These arcs connect the arrival and departure node for a port call q.

The set of dwell arcs is defined as Ad = {(i, j) : i ∈ Nq
arr, j ∈ Nq

dep,q ∈Qr,r ∈ R},
where Nq

dep and Nq
arr refer to the departure and arrival node for port call q. The

cost of these arcs is zero, as a container that stays aboard the ship is assumed not
to need handling. The capacity is equivalent to that of the vessel class used in the
given rotation.

Ao (omission arcs) Since we cannot be sure that all containers can be shipped
through the network, omission arcs connect all sources with all sinks with in-
finite capacity. Omission arcs are defined as the set Ao = {(i, j) : i ∈ Sα , j ∈ Sβ},
where Sα and Sβ are the previously mentioned sets for sources and sinks. The
cost of these arcs is equal to the revenue of the demand plus a penalty for each
rejected container, representing a goodwill cost. The rejection penalty was set to
1000 USD after consultation with the shipping company.

Having defined the graph (N,A) we can formulate the LSNDP as follows:

max ∑
k∈K

rkdk−∑
r∈R

cryr− ∑
(i, j)∈A

∑
k∈K

ci jxk
i j (1)

s.t. ∑
k∈K

xk
i j ≤ uvr yr (i, j) ∈ Ar,r ∈ R (2)

∑
r∈R:vr=v

yrnr ≤ zv v ∈V (3)

∑
j∈N

xk
i j− ∑

j∈N
xk

ji = 0 i ∈ N \{Ok,Dk},k ∈ K (4)

∑
j∈N

xk
i j− ∑

j∈N
xk

ji = dk i = Ok,k ∈ K (5)

∑
j∈N

xk
i j− ∑

j∈N
xk

ji =−dk i = Dk,k ∈ K (6)

xk
i j ∈ Z+∪{0} (i, j) ∈ A,k ∈ K (7)

yr ∈ {0,1} r ∈ R (8)

The objective (1) is to maximize profit, which is revenue minus costs. The first
term ∑k∈K rkdk describing the revenue, is a constant and the problem can thus also
be viewed as cost minimization. The next term ∑r∈R cryr is the network cost, while
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the last term ∑(i, j)∈A ∑k∈K ci jxk
i j is the cost of flowing the containers through the

network.
The network cost is made up of the fixed costs of operating the network. This

includes the capital and leasing cost of the vessels used in the network, the cost of
crewing the vessels, the fuel cost, the cost of calling ports and the cost of passing
the Suez and Panama canals. The flow cost is the variable cost by flowing containers
through the network, which includes the cost of loading, unloading and transship-
ping containers at ports. As it might not be possible or profitable to transport all
containers, demand can be rejected. This is associated with a revenue loss, offset-
ting the revenue obtained for that cargo, as well as a goodwill cost.

Constraint (2) ensures that the capacity of the arcs is respected. If a rotation is not
used in the solution, the arcs that represent this rotation can of course not be used
for flowing commodities. Constraint (3) ensures that at most the available number
of vessels for each vessel class is used in the solution. Constraints (4), (5) and (6)
ensure flow conservation for the commodities. Constraint (4) ensures that all nodes,
beside the centroid nodes, have equal amount of commodity k entering and leaving.
As can be seen from constraints (5) and (6) all commodities must be flown through
the graph, which is possible since we have introduced omission arcs Ao. The domain
of the variables is defined in constraints (7) and (8).

The considered model is a simplification of real-life LSNDP: First of all, all con-
tainers are assumed to be of the same type, hence we do not take reefer containers
or high-cube containers into account. Moreover, no time constraints are present.
Brouer et al. (2015) describes how these constraints can be modeled and present an
algorithm for solving the resulting problem.

In addition to transit time, other complex and special constraints have been left
out, for example cabotage and embargo rules that prevent certain cargo from being
transported on certain vessels. The capacity at ports is unknown and assumed to be
practically unlimited. For all ports, the handling costs per container is assumed to
be constant regardless of the number of containers handled at the port.

3 Flowing containers

Once a set of rotations r ∈ R have been selected, computing the optimal cargo flow
can be solved as a standard multi-commodity flow problem (MCF):
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max ∑
k∈K

rkdk− ∑
(i, j)∈A

∑
k∈K

ci jxk
i j (9)

s.t. ∑
k∈K

xk
i j ≤ ui j (i, j) ∈ A (10)

∑
j∈N

xk
i j− ∑

j∈N
xk

ji = 0 i ∈ N \{Ok,Dk},k ∈ K (11)

∑
j∈N

xk
i j− ∑

j∈N
xk

ji = dk i = Ok,k ∈ K (12)

∑
j∈N

xk
i j− ∑

j∈N
xk

ji =−dk i = Dk,k ∈ K (13)

xk
i j ∈ Z+∪{0} (i, j) ∈ A,k ∈ K (14)

Although efficient algorithms exist for MCF, large instances tend to be time-
consuming to solve. Brouer et al. (2015) makes use of a delta evaluation method
to solve the MCF by warm-starting the search from the previous solution. Here,
we use instead an even faster Lagrange heuristic (Ahuja et al., 1993). Relaxing the
capacity constraints (10) using multipliers λi j ≥ 0 leads to the following objective

max ∑
k∈K

rkdk− ∑
(i, j)∈A

∑
k∈K

(ci j +λi j)xk
i j +Λ (15)

subject to constraints (11) to (14). The constant Λ is given by Λ =∑(i, j)∈A ∑k∈K λi jui j.
This problem can be decomposed in a number of shortest-path problems for each
commodity k ∈ K, and hence solved efficiently. We use a label correcting algorithm
similar to Bellman-Ford for solving the shortest-path problems.

Lagrange multipliers are updated according to the scheme

λ
n+1
i j := λ

n
i j +

{
δ if overflow on (i, j)

−µδ otherwise

To further allow fine tuning of the Lagrange multipliers, the step size is adjusted with
respect to the number of iterations. In every fifth iteration, the step size is reduced
by σ , which is a percentage of the current step size. Additional details can be found
in Thorsen and Krogsgaard (2016).

3.1 Repair flow algorithm

For the problem at hand, it is not easy to find the convergence values for the La-
grange multipliers, as an equilibrium is almost never reached. This is due to the fact
that the OD matrix contains pairs with a demand of more than 1000 containers per
week. When solving the shortest-path problems for each commodity, all containers
on the OD pair will follow the same path, and hence edges will either have flow 0
or the full demand (possibly violating the capacity).
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In order to get a feasible flow, a repair algorithm is introduced, as outlined in
Algorithm 1.

Algorithm 1 Find Repair Flow
1: set InvalidFlow := false
2: for all sail arcs s do
3: if overflow on s is bigger than zero then
4: set InvalidFlow := true
5: save overflow route for s
6: for all overflow routes o do
7: run modified Bellman-Ford for o, disregarding arcs exceeding capacity
8: if InvalidFlow then
9: call Find Repair Flow

The general idea of the repair flow algorithm is to gradually turn an invalid flow,
where the capacity constraints are violated, into a valid flow through a heuristic
method. This is done by first finding all arcs where the load exceeds the capacity.
For these arcs, the route which generates the lowest profit per container is identi-
fied. Some or all containers using this route must be moved to an alternative route
to remove or reduce the overflow of the arc. The alternative route is computed with
an altered version of the Bellman Ford-algorithm, where the capacity of the arcs is
taken into consideration. Only arcs with spare capacity are allowed in the shortest
path. The profit per container is used to decide which containers to reroute. This is
done to prevent containers with high profit from ending up on an omission route,
as this significantly decreases the objective value. When the profit per container is
calculated, the Lagrange multipliers are included as a cost, which means that con-
tainers passing several capacity restricted arcs with high Lagrange multipliers are
more likely to be rerouted than containers passing only one capacity restricted arc.
The algorithm thus finds better solutions with better tuned Lagrange multipliers. The
running time of the Repair Flow algorithm is dependent on the amount of overflow
in the network. In a network with low overflow, it is of course less time consuming
to reroute the necessary amount of containers than in a network with high overflow.
To keep running times down, the Repair Flow algorithm is run only if the average,
relative overflow in the network is sufficiently small.

The computation of a container flow has a time complexity of O(A ·N ·As ·K2).
The Bellman-Ford algorithm runs in time O(A ·N). Each sail arc As is investigated
to find a commodity that can be moved to an alternative route if the load exceeds
the capacity of the arc. To decide which commodity to move, the profit for all com-
modities using the arc must be calculated — in worst case, all commodities K will
be using the same sail arc, resulting in K calculations. The algorithm is then iterated
until a valid flow is obtained, which in the worst case results in K iterations, since
only one commodity is rerouted per iteration.

In the sequel we will use the terminology O(F) to denote the time complexity of
computing the container flow.
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Heuristic Exact method (CPLEX) Difference
Number Time Time Pct from Speed up
of nodes Objective (s) Objective (s) optimality factor

Mediterranean 684 3,723,903 1.4 3,652,740 3.7 1.9% 2.61
Pacific 816 23,757,270 1.8 22,678,697 52.0 4.8% 28,23
WorldSmall 1086 108,606,072 4.4 102,900,432 970.7 5.5% 223.04

Table 3 Results and comparisons between heuristic and exact method. The number of nodes is
the number of nodes contained in the graph used for the heuristic search and the number of nodes
as input data to CPLEX. The Mediterranean instance has 40 ports and 365 demands, the Pacific
instance 45 ports and 722 demands and the WorldSmall instance 47 ports and 1764 demands. Pct
from optimality is the gap from heuristic to optimal solution value. Speed up factor is the running
time for the exact method divided by the running time for the heuristic method.

3.2 Solution times for flowing the containers

Table 3 compares the results of the Lagrange heuristic with an exact solver for the
MCF. As seen, the larger instances are significantly faster to solve by the Lagrange
heuristic than using CPLEX, but the solution quality has a gap of 2–5% for the larger
instances. However, as the solution to the MCF is only used as a guideline for the
search procedure, the gap is not considered to be a big problem. It is more impor-
tant that the algorithm is consistent, i.e. that the gap is not fluctuating significantly
from iteration to iteration, as an improving move might otherwise be evaluated as a
deterioration and vice versa.

4 Generating initial rotations

It is important to generate a good initial solution to limit the succeeding local search.
Many algorithms for LSNDP use the existing network as start solution, but this can
lead to a biased solution, that does not fully exploit the solution space. If a network
is designed from scratch, only the OD matrix can be used as a starting point, and
it is necessary to find a method to generate rotations that takes transshipments into
account. The OD pairs in themselves do not provide any information on ideal trans-
shipment ports, so this information must be inferred in another way, for example
by looking at the location of transshipment ports in the current shipping networks
and use this as a guideline for generating rotations. This is done by Meng and Wang
(2011), who divide the ports into hub and feeder ports. Transshipments are only al-
lowed at hubs. For the Asia-North Europe corridor, six hub ports are defined, while
all other ports are defined as feeder ports and associated with exactly one hub port.
The obvious weakness of this method, however, is that it is likely to result in a
network with a high degree of similarity to the current network and rule out solu-
tions with a completely different structure. Although the current network structure
is probably of high quality, it cannot be known if a different structure is even better
when this option is not considered due to the method used to generate rotations.
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Both Meng and Wang (2011) and Balakrishnan and Karsten (2017) suggest a
method for generating a network from a list of candidate rotations. This does not
solve the base problem, however, which is to construct the rotations — and a good
network can of course only be constructed from a list of candidate rotations if the
list contains rotations of high quality. Reinhardt and Pisinger (2012) use a branch-
and-cut method to generate rotations for smaller instances of up to 10 ports, which
can be solved to optimality. For a larger instance with 15 ports, however, the running
time reaches the maximum limit of 5 1

2 hours without finding the optimal solution.
This method can thus not be expected to work for a worldwide instance, where many
more ports are required to get a realistic network. Plum et al. (2014) introduces the
first model which allows multiple butterfly calls in a rotation. The model is solved
using CPLEX, but optimal solutions are not found within the time limit for the
smallest LINER-LIB instances Baltic and WestAfrica.

Brouer et al. (2014b) views the construction procedure as a variant of the multi-
ple quadratic knapsack problem, with each rotation being a knapsack and the port
calls items of the knapsack. The revenue of an OD-pair is only obtained if both
ports of the pair are selected in the same knapsack. Transshipments are handled
by dividing the ports into feeder and hub ports, such that demands originating or
ending at a feeder port are split at a hub port. This only solves the problem of
transshipments partially, however, as transshipments frequently occur in OD-pairs
between two hub ports. The problem is solved heuristically, which yields relatively
poor results compared to Brouer et al. (2014a) when only the construction heuristic
is considered. After running the construction heuristic, the rotations are improved
using other methods, leading to significantly better results.

4.1 Constructing a backbone flow

The previously implemented methods for generating the initial rotations thus suffer
from long computational times, result in solutions of poor quality or require a list of
candidate rotations. As there is room for improvement, a completely different ap-
proach from Pisinger (2016) is chosen to generate the initial rotations. The idea is to
reverse the usual work order of first generating rotations and then flowing contain-
ers, such that containers are flown first and the rotations are then generated based
on this backbone flow. As there are no rotations to flow the containers through, an
artificial network must be used instead. This network is represented by a complete,
directed graph, consisting of a set of nodes P, with one node for each port in the
instance, and a set of arcs A connecting every node. The underlying assumption of
this graph is that there is a rotation connecting all ports to each other with direct ser-
vices. This network will of course never be used in practice, as it is far too expensive
to run, so the arcs must be priced in a way such that the containers are grouped on a
few of the arcs.

For this purpose, a non-linear multi-commodity flow problem is solved, where
the objective in problem (9) to (14) is replaced with
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max ∑
(i, j)∈A

f (∑
k∈K

xk
i j) (16)

The nonlinear concave function f (x) reflects economy of scale for flowing more
containers: There is a large cost associated with opening an arc (i.e. deploying a
vessel), while the cost per container decreases as the flow is increased. This pricing
implicitly aims at aggregating the flow on fewer arcs. Sun and Zheng (2016) is also
using a concave function to optimize the container flow.

For every edge (i, j) between ports i and j, the function f can be calculated by
first calculating the cost av of sailing the leg for each vessel class v∈V having capac-
ity uv. Next, the points (uv,av) are plotted, and a curve fitting is used to approximate
the points with a square-root function f (u) of the capacity.

The non-linear multi-commodity flow problem is solved by repeatedly going
through the following steps: Randomly choose an OD-pair with some un-routed
demand, find a cheapest path (with respect to the current pricing of edges), flow a
single container, and update the edge costs. Edge weights wi j in the shortest path
problem can be found as wi j = f (xi j + 1)− f (xi j) where xi j is the current flow on
edge (i, j).

As the arc costs depend on previously flown containers, the result of the flow will
be very dependent on the order in which containers are flown. Generally, the first
containers are more decisive for the arcs used heavily in the final solution than the
last containers flown. It is thus necessary to run several iterations of the problem,
with a random order of the containers, to achieve a reasonable average picture of
the backbone flow. Running 10 iterations for the demand matrix of the WorldSmall
instance gives the average arc loads shown in Figure 1.

Fig. 1 Typical backbone flow for the WorldSmall instance
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The figure clearly shows that only a fraction of the possible arcs is used in the
solution. The number of open arcs, however, is not at a minimum, as there are many
cycles in the network — it is not a tree. This can be explained by the pricing struc-
ture, as it is always connected with some cost to use an arc, even if it is already in
use. In some cases, it will thus be cheaper to open a new arc, especially if a long
detour can be avoided, as the cost depends on the length of the arc. It should be
noted that only arcs with a load of more than 10 are included in the figure. There is
a substantial number of arcs that are used but only by very few containers.

To generate good rotations based on this flow, the objective must be to cover
as many of the heavily used arcs as possible. In order to formulate the problem
mathematically, we use the notation defined in Table 4.

Sets
P Set of ports in the model
A Set of arcs of the graph, connecting the ports
R Set of rotations
V Set of vessel classes
Parameters
li j Computed load for arc (i, j) ∈ A
di j Distance in nautical miles covered on arc (i, j) ∈ A
p j Port stay at port j ∈ P. All port stays are fixed at 24 hours
tr Maximum duration in weeks for rotation r ∈ R
vr Vessel class used for rotation r ∈ R
smin,v The minimum sailing speed in knots for vessel class v ∈V
smax,v The maximum sailing speed in knots for vessel class v ∈V
θ v

i j (binary) 1 iff vessel class v ∈V is compatible with arc (i, j) ∈ A (wrt. draft, canal, port)
Decision variables
xr

i j (binary) 1 iff arc (i, j) ∈ A is serviced by rotation r ∈ R
sr The sailing speed in knots used for rotation r ∈ R

Table 4 Notation used in model for the backbone flow

We define the set of feasible rotations R as the set of routes r ⊆ P satisfying:

r is a connected closed loop (17)
sr ≥ smin,vr (18)
sr ≤ smax,vr (19)

∑
(i, j)∈A

di jxr
i j/sr + ∑

(i, j)∈A
p jxr

i j ≤ tr (20)

Constraints (18) and (19) ensure that the speed is set in accordance with the capa-
bilities of the vessel used on the rotation. Constraint (20) ensures that the duration
of the rotation is kept below a preset limit to avoid extremely long rotations.

This leads to the following mathematical model for constructing the rotations:
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max ∑
(i, j)∈A

∑
r∈R

li jxr
i j (21)

s.t. ∑
r∈R

xr
i j ≤ 1 (i, j) ∈ A (22)

∑
j∈P

xr
i j−∑

j∈P
xr

ji = 0 i ∈ P,r ∈ R (23)

xr
i j ≤Θ

vr
i j (i, j) ∈ A,r ∈ R (24)

xr
i j ∈ {0,1} (i, j) ∈ A,r ∈ R (25)

sr ∈ R+∪{0} r ∈ R (26)

Since r ∈ R, constraints (17) to (20) are implicitly assumed to hold. The objective
(21) maximizes the total load covered by rotations. Constraint (22) ensures that each
arc can only be used once, preventing duplicate rotations. Constraint (23) ensures
flow conservation, Constraint (24) ensures that the vessel is capable of traversing
the arc, i.e. that the draft limit at both ports and any canals passed is respected.
Constraint (25) and (26) define the domain of the variables.

For every rotation r ∈ R the heuristic will choose the speed of the vessel such
that it satisfies the minimum and maximum speed restrictions, and results in lowest
possible operating cost. Since we have weekly operations at all ports, we need to
deploy k vessels if a rotation takes k weeks. Hence the speed is a function of the
number of vessels deployed. By enumerating all numbers k of vessels such that the
resulting speed satisfies (18)–(19) the minimum operational costs on a rotation are
easily found.

4.2 Greedy heuristic for generating rotations

A simple approach is chosen for generating rotations, as this allows quick generation
of numerous candidate solutions. The idea is to add one arc at a time to a rotation
until all rotations have reached their maximum duration, which can be done in two
principal ways:

• Parallel generation of rotations: In every iteration, a random rotation is chosen,
and the best arc for this given rotation is added. In every iteration, the unserved
arc with the highest demand is added to the best possible rotation.

• Serial generation of rotations: Rotations are generated one at a time, and in every
iteration, the best, unserved arc for the rotation currently being constructed is
added.

The advantage of the parallel generation of rotations is that good arcs can be dis-
tributed fairly among the rotations, such that not all the good arcs are used in the
rotations generated first. However, if we generate the rotations sequentially accord-
ing to vessels size, the arcs with heavy load will be assigned to rotations with large
vessels (exactly as expected), but restrictions on port draft will also ensure that not
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all good arcs are assigned to the rotations generated first. We therefore choose a
sequential generation of rotations.

For each rotation, the unserved arc with the largest flow is selected as the first
arc in the rotation, and a return arc is added to close the rotation. While the rotation
is at or below the desired duration, a new arc is added to the rotation to expand it,
and this arc replaces the return arc. The new arc is the unserved arc with the largest
demand that either starts at the same port as the return arc, which is to be replaced,
or ends at the same port as the return arc. A new return arc is added to close the
rotation. The selection process continues until it is not possible to add a new arc
without exceeding the maximum duration of the rotation. After this, the creation of
the next rotation starts.

To obtain a number of different start solutions to select from, the algorithm is re-
peated a number of times with random settings on the maximum rotation length for
every rotation. The length is selected in a predefined interval depending on the size
of the vessel, such that larger vessels, typically travelling between continents, get
longer rotations than smaller vessels doing feeder service. To allow some variation,
wide intervals are selected for most vessel classes as shown in Table 5.

Vessel class Rotation length
7500 FFE (Super Panamax) [10,10] weeks
4200 FFE (Post Panamax) [7,14] weeks
2400 FFE (Panamax) [6,12] weeks
1200 FFE (Panamax) [4,10] weeks
800 FFE (Feeder) [2,8] weeks
450 FFE (Feeder) [2,5] weeks

Table 5 Allowed duration of rotations based on vessel class in the rotation generation procedure

For the largest vessel class either 0 or 10 vessels are available in all base in-
stances, and as these vessels must be used on intercontinental routes with high vol-
ume, it does not make sense to split the vessels on two different rotations. One
rotation of 10 weeks must thus be constructed (if the vessel is available in the given
instance). For the other vessel classes, intervals that have shown to generate reason-
able results have been selected. For every rotation generated, a duration is selected
in the interval at random, and the rotation is constructed. This is repeated until all
available resources have been exhausted.

4.3 Results for generation of initial rotations

To evaluate the effectiveness of the algorithm, tests are conducted on the WorldS-
mall case. The flow is computed five times with each flow being an average over ten
iterations, where the containers are flown in random order. For each of the five flows,
20 different sets of rotations are created. This yields the solution values shown in
Table 6.



18 Alexander Krogsgaard, David Pisinger, Jesper Thorsen

Best Median Worst Running
solution value solution value solution value time (sec)

Flow-1 6.56 -2.83 -18.06 76.19
Flow-2 11.04 -4.29 -15.14 79.32
Flow-3 11.91 3.94 -14.04 78.77
Flow-4 0.92 -12.63 -26.84 80.05
Flow-5 17.22 -2.39 -18.66 81.57

Table 6 Resulting objective values (in M$) for 20 different sets of initial rotations for each of five
different backbone flows.

As can be seen from the table, the results vary considerably between the five
different flows. In general, Flow-4 gives the poorest results with the best solution
being just barely profitable, while the best solution overall is found with Flow-5.
Flow-3, however, has the best solution value for the median and worst solutions,
even though the solution value for the best solution is significantly lower than for
Flow-5. The best known solution to the WorldSmall case has an objective value
of 58 M$ per week, so even though all flows generate a profitable solution, the
solutions are still far from optimal. There is also a big variation between best and
worst solutions for each flow, and the random selection of rotation duration thus has
a significant impact on the objective value.

The running time is very stable at around 80 seconds, which is encouraging:
Such short computational time allows generation of a high number of different start
solutions within a reasonable time limit.

5 Network optimization

With the initial rotations generated, the network must be optimized to get a high
quality solution.

We have chosen to use Variable Neighborhood Search (VNS), described by
Hansen and Mladenovic (2014). The general idea is to apply different neighborhood
structures throughout the search to exploit the benefits from neighborhood changes.
When a local optimum is encountered, it is escaped by doing a random move, a
shake, from the best known solution and do hill climbing from here until a new
local optimum is reached. If this solution is better than the previously best known,
the search is continued from here with a new shake, otherwise the search returns to
the previously best known solution and searches from here again after a new shake.
The pseudocode of the metaheuristic is given in Algorithm 2.

As can be seen from the pseudocode, the local search procedure terminates
after all neighborhoods have been tested without yielding an improving solution, as
a local optimum with respect to all neighborhoods must then have been encountered.
The shake procedure is applied less frequently than in a standard VNS framework.
A lower degree of randomness is preferable here, because the evaluations are rel-
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Algorithm 2 Improvement Algorithm
1: Initialization: Find an initial solution x
2: while stopping criterion not met do
3: generate a new solution x′ from x (shake)
4: while any neighborhood in N is unused (local search) do
5: choose at random an unused neighborhood and search from x′

6: if an improved solution x′′ is found then
7: Set x′ := x′′ and set all neighborhoods unused
8: if x′ is better than x (move or not) then
9: Set x := x′

10: return x

atively expensive. It is thus desirable to search directly for a local optimum with
respect to all neighborhoods before randomly altering the solution.

Although the local search only accepts moves that have an expected improve-
ment, some moves may turn out to be degrading when calculating the real objective
function. These moves are nevertheless kept on to progress the search. This can,
however, lead to cycling in the local search, as it might both be expected to be an
improvement to first insert a port and to remove it afterwards. To break such cycles,
only 20 loops are allowed in the local search part, after which the algorithm
must continue to move or not.

If a cycle is encountered or a local optimum has been reached, the shake pro-
cedure is applied to progress the search from another point in the solution space.
The procedure must change the solution sufficiently to escape the local optimum,
but should, on the other hand, not destroy good characteristics of the solution. Pre-
liminary studies show that there is a high risk of changing the solution too much
to be able to return to a good solution, and a relatively modest shake procedure is
thus implemented. This procedure modifies a number of rotations by either insert-
ing or removing a port randomly, without considering the effect on objective value.
To avoid inserting an obviously irrelevant port, a distance requirement is enforced
such that only ports relatively close to the rotation can be inserted. The number of
modified rotations is 10% of the total number of rotations and a least one.

In each iteration of local search, a neighborhood is randomly selected and
one or more rotations are altered through that neighborhood. Six different neighbor-
hoods are applied:

• Insert port
• Service omission
• Service unserved port
• Remove port
• Simple remove port
• Create feeder rotation

In order to select the best move, delta evaluation is used to avoid time consuming
evaluations of the multicommodity flow for the entire graph. Instead, a small graph
(rotation graph) is constructed, covering only the rotation currently being altered.
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As this graph is much faster to evaluate, more moves can be tested before one is
selected for implementation.

In the following, the rotation graph and the six neighborhoods are described in
more detail. Additional implementation details can be found in Thorsen and Krogs-
gaard (2016).

5.1 Rotation graph

The rotation subgraph covers only a single rotation r. It has the same structure as the
main graph, which was described in Section 2, with some important alterations. A
special demand matrix is constructed for the rotation graph, containing only demand
using rotation r in the main graph. As transshipments are very common, origin and
destination for some of this cargo will be at ports not serviced by r. When only r
is included in the rotation graph, however, it is only possible to route this cargo on
omission arcs, as either origin or destination or both will be without a connection to
r.

As this is not desirable, feeder arcs A f are introduced to the rotation graph struc-
ture. Where the arc set of the main graph is A = As ∪At ∪Al ∪Au ∪Ad ∪Ao (sail,
transshipment, load, unload, dwell and omission arcs), the arc set of the rotation
graph is A = As ∪ Al ∪ Au ∪ Ad ∪ Ao ∪ A f . The set of feeder arcs can be subdi-
vided further into three subsets A f = A f ,t ∪A f ,l ∪A f ,u, which are defined as fol-
lows: A f ,t = {(i, j) | i ∈ N p1

arr, j ∈ N p2
dep, p1, p2 ∈ P, p1 6= p2}, A f ,l = {(α p1 , i) | i ∈

N p2
dep, p1, p2 ∈ P, p1 6= p2} and A f ,u = {(i,β p2) | i ∈ N p1

arr, p1, p2 ∈ P, p1 6= p2}. The
feeder arcs can thus represent either:

• Cargo transshipping from r to another rotation at port p1 and back to r at port p2,
represented by set A f ,t . Although uncommon, such routes do occur.

• Cargo transshipping from another rotation to r at port p2, represented by set A f ,l .
These arcs lead the cargo directly from its source node α p1 to the transshipment
port p2.

• Cargo transshipping from r to another rotation at port p1, represented by set A f ,u.
These arcs lead the cargo directly from the transshipment port p1 to the sink node
β p2 of the cargo.

Figure 2 shows how a main graph with three rotations is transformed into a rota-
tion graph for the rotation r marked in red. For ease of explanation, transshipment,
load and unload arcs have been left out of the illustration. Only a very limited num-
ber of feeder arcs are necessary to replace the rotations indicated in grey.

The feeder arcs are generated from the commodity routes used in the main graph.
Any commodity route using rotation r can cause several feeder arcs to be created.
Only one feeder arc can exist between two given nodes, so if any of the feeder arcs
already exist, they are not created again. The feeder arcs are capacitated to keep as
much structure from the multicommodity flow of the main graph as possible. For
any feeder arc, the capacity is calculated as follows:
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Fig. 2 Conversion from main graph to rotation graph. Main graph (left) and transformed rotation
graph (right).

ui j = ∑
k∈K

x̃k
i j + ũi j

where x̃k
i j is the number of commodity k using arcs corresponding to feeder arc (i, j)

in the main graph and ũi j is the spare capacity of the most restricting of the arcs
of the main graph corresponding to feeder arc (i, j). It depends on the local search
neighborhood if omission cargo is included.

The feeder arcs are associated with a cost to provide an incentive for using ro-
tation r as much as possible, i.e. to prefer short feeder arcs over long feeder arcs
if a choice is available. The cost also ensures that there is an incentive for replac-
ing heavily loaded feeder arcs with an extension of rotation r. costs are calculated
according to the following equation:

ci j =
cvr

b + cvr
TC + cvr

c + cvr
i + cvr

j

uvr

+ chi + ch j

where vr is the vessel class used in rotation r, cvr
b is the bunker cost for sailing at

design speed, cvr
TC is the capital cost for the vessel, cvr

c is the cost for the canals
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passed on the arc, cvr
i is the cost for calling at port i, cvr

j is the cost for calling at port
j and uvr is the capacity of the vessel. chi and ch j are the handling costs per container
at ports i and j, respectively, and it depends on the type of feeder arc if load/unload
or transshipment costs are used. If the feeder arc connects from a centroid to a
transshipment point, the load cost is used at port i while the transshipment cost is
used at port j.

5.2 Insert port

The insert port-neighborhood tries to insert a port into a rotation r. The method
makes use of the rotation graph, which is constructed for r. In addition to the demand
serviced by r, omission demand is added to the graph as well. This demand must
meet two requirements to be included in the graph:

• Either its origin or its destination must be at a port serviced by r.
• The origin or destination port not serviced by r must be part of the rotation graph

by connection with a feeder arc.

New feeder arcs are not created to allow omission demand to be included. As the ex-
isting feeder arcs all represent other rotations, the method will thus never be able to
include omission demand at a port not served by any rotation at all. This is handled
by the service omission-neighborhood described below.

The neighborhood works by testing insertion of a port connected to the rotation
by a feeder arc by replacing the feeder arc with an extension of rotation r. The feeder
arc must, however, fulfill the following requirements to be taken into consideration:

• Its capacity must be fully utilized. If there is spare capacity on the feeder arc, it
is very unlikely that it is profitable to add further capacity by extending r.

• The load on the arc, i.e. the number of containers transshipping to or from r, must
be at least 5% of the capacity of the vessel used in r. If the load is less, it is very
unlikely that will be profitable to replace it with an extension of r.

If these two requirements are met, it is tested if the feeder arc can be profitably
replaced by an extension of rotation r, such that the port served by the feeder arc
becomes part of r. For a feeder arc leading from port p to port j in rotation r, the
rotation is extended by inserting p before j in r. For a feeder arc leading to port p
from port i in rotation r, the rotation is extended by inserting p after i in r.

The time complexity of this neighborhood is O(A f ·F), where O(F) is the time
required for evaluating the flow. The neighborhood investigates all feeder arcs A f in
the graph to find a profitable insertion. Each insertion possibility is evaluated with
the algorithm described in Section 3.
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5.3 Service omission

The service omission-neighborhood seeks to improve service at ports having a large
amount of cargo that cannot be routed through the network and thus flows on omis-
sion arcs, contributing negatively to the objective value. The general idea is to first
identify the port at which service is to be improved and then test insertion of the
port in the rotation graph of every rotation. The port pomission is identified by cal-
culating the total omission demand, including both origin and destination cargo, for
every port in the graph and randomly select one of the five ports having the largest
omission demand. For every rotation, the port in the rotation having the shortest
distance to pomission, pr

closest , is found, and pomission is inserted into the rotation in an
out-and-back fashion.

The time complexity of the neighborhood is O(P3 · R · F), where O(F) is the
time required for evaluating the flow. The neighborhood first investigates all ports
P to identify the one where service is to be improved. This involves the calculation
of omission demand for each port, which requires going through potentially 2(P−
1) different commodities — one to and from each other port in the dataset. The
complexity of finding the omission port is thus O(P2). All rotations must then be
tested for insertion of the omission port with the shortest possible extension of the
rotation, which in the worst case requires running through all ports in all rotations,
O(R ·P), to find the optimal insertion point.

5.4 Service unserved port

The service unserved port-neighborhood seeks to introduce service to unserved
ports. This is not captured by the insert port-neighborhood, as it tests insertion of
ports into a rotation only if the port is connected with a feeder arc. As feeder arcs
represent existing rotations and an unserved port obviously has no rotations calling
at it, an unserved port will not be inserted by the insert port-neighborhood. It can,
however, be inserted by the service omission-neighborhood, but as this neighbor-
hood considers only the five ports generating most omission demand, smaller ports
are not likely to be captured by it.

The service unserved port-neighborhood selects a port between all ports cur-
rently not serviced in the solution. The probability of selecting a port is equal to
its proportion of the demand of all unserved ports, such that an unserved port with
high demand is more likely to be selected than an unserved port with low demand.
Apart from the selection of ports, the neighborhood works exactly like the service
omission-neighborhood described above and can thus be expected to predict im-
proving moves just as accurately — although probably with a lower average im-
provement, as the ports included in this neighborhood have less omission demand
than the ones included in the service omission-neighborhood.

As the only difference from the neighborhood described in Section 5.3 is the
criteria for selecting the insertion port, which does not affect the complexity, the
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time complexity is exactly the same O(P3 ·R ·F), where O(F) is the time required
for evaluating the flow.

5.5 Remove port

The remove port-neighborhood tries to remove a port call from rotation r. The call
must either be one of more calls at the same port by r or have a relatively low
exchange of cargo to be taken into consideration. If it is one of more calls, it will
often be possible to profitably remove it, as the cargo can be serviced by the other
calls of r at the same port. If the exchange of cargo is low, the costs of calling at
the port can be higher than the revenue of the serviced containers. A low exchange
of cargo is defined as 30% of the vessels capacity, while the exchange of cargo
is defined as loaded plus unloaded plus transshipped containers. A vessel with a
capacity of 1200 FFE must thus exchange at most 360 FFE at a port call if it is to
be a candidate for removal (provided that the call is the only one for the rotation at
that port).

A port call q between two port calls i and j is simply removed by replacing arcs
(i,q) and (q, j) with a new arc (i, j).

The time complexity of this neighborhood is O(Ndep ·F), where O(F) is the time
required for evaluating the flow. The neighborhood investigates all port calls, equal
to a departure node Ndep in the graph, to find a profitable port call to remove. Each
removal possibility is evaluated with the algorithm described in Section 3.

5.6 Simple remove port

In view of the rather inadequate results provided by the remove port-neighborhood,
a simple remove port-neighborhood is applied as a supplement. This neighborhood
seeks to remove all port calls loading and unloading less than x% of the vessels
capacity, i.e. to remove port calls serving relatively few containers. This limit is set
at 5%, such that a port call is removed if the combined number of containers loading
and unloading is less than 5% of the vessels capacity. There must, however, be more
than one rotation calling at the port for a call to be removed as it will otherwise be
impossible to serve ports with demand lower than 5% of the capacity of the smallest
vessel.

The time complexity is O(Ndep), as the neighborhood investigates all port calls,
equal to a departure node Ndep in the graph, to find calls which can be profitable
to remove. Moves are not evaluated before being carried out, hence the stated com-
plexity.
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5.7 Create feeder rotation

Especially for the world and trade lane instances, it is vital for the quality of the net-
work to have a well-functioning feeder network. The feeder rotations must connect
two types of feeder ports to a nearby transshipment port: Ports with low demand,
where it is not economical to call with large vessels. Ports with low draft, where it
is not possible to call with large vessels.

It is difficult to discover good feeder rotations with the previously described
neighborhoods, as they rely heavily on the demand matrix. A special neighborhood
is thus used for creating feeder rotations between a feeder port and a hub port. A
feeder port is defined as a port allowing only the two smallest vessel classes to en-
ter, while a hub port is defined as a port allowing at least a medium-sized vessel of
2400 FFE to enter. Of all feeder ports, the one with the highest amount of omission
demand is selected. This port must be connected to a hub port, which is selected ran-
domly between all hub ports being within double distance of the nearest hub port.
It is thus not always the nearest hub port, which is selected, as this port might not
necessarily be the best fit with the network. When a feeder port and a hub port have
been selected, a new rotation is constructed between the two.

The time complexity is O(P2), since the neighborhood investigates all ports P
to find one lacking feeder service. All ports are then investigated again to find a
suitable hub port to connect to. As moves are not evaluated before being carried out,
we get the stated complexity.

6 Computational results

The algorithm has been implemented in Java and tested on the base version of
the seven instances from LINER-LIB. A detailed parameter tuning can be found
in Thorsen and Krogsgaard (2016). The parameter tuning also documents that all
six neighborhoods used in the VNS algorithm in Section 5 contribute to the solution
process, and that the applied estimate functions actually give a fair prediction of the
real objective function. In the computational experiments, the backbone flow de-
scribed in Section 4.1 is constructed using a slightly simplified scheme as described
in Thorsen and Krogsgaard (2016).

For every instance, 5, 10 or 20 replications have been run. The maximal running
time per replication has been set to 10% of the maximal running time used by Brouer
et al. (2014a).

In Table 7, best, median and average objective values are reported for the seven
instances. A profitable best solution is obtained for all instances except the Mediter-
ranean instance. For average and median objective values, the Baltic and Pacific
instances are also negative. Generally, the median and average objective values are
close to each other, indicating that the objective values follow a non-skewed distri-
bution around the average.
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Best objective Median objective Avg. objective Running
Instance value (M$) value (M$) value (M$) Replications time (sec)
Baltic 0.09 -0.14 -0.15 10 30
WestAfrica 5.62 5.19 5.15 10 90
Mediterranean -2.02 -2.74 -2.84 20 120
Pacific 1.83 -1.41 -1.26 20 360
AsiaEurope 25.99 20.27 20.57 10 1440
WorldSmall 50.72 43.42 43.46 20 1080
WorldLarge 25.41 13.80 15.73 5 3600

Table 7 Objective value statistics for the algorithm. The running time is per replication. Objective
values are reported in M$ per week

The following tables summarize the most important properties of the best solu-
tion obtained for all seven instances. The first is Table 8 showing statistics on the
performance of the heuristic.

Improving Last improving Avg. time per
Instance Iterations iterations iteration iteration (sec)
Baltic 85 6 50 0.4
WestAfrica 44 15 16 2.0
Mediterranean 51 16 48 2.4
Pacific 71 30 63 5.1
AsiaEurope 105 44 89 13.7
WorldSmall 109 28 108 9.9
WorldLarge 105 48 90 34.3

Table 8 Algorithmic performance for the best solutions

Due to the different running times applied, the number of achieved iterations is of
the same order of magnitude for all instances. The average time per iteration is vastly
different, though, with almost a factor 100 of difference between the smallest and
the biggest instance. Smaller instances generally have fewer improving iterations
than the bigger instances, which is probably a result of a simpler search landscape.
The progress of the search can best be described by mapping the current and best
found objective values with the running time. Two examples of this are shown in
Figure 3 for the Baltic instance and in Figure 4 for the WorldSmall instance.

The search progress is very different for the two instances. For the Baltic in-
stance, the search proceeds rapidly to an objective value very close to the best found.
The search then tends to cycle until a random move breaks the cycle. Cycling does
not occur for the WorldSmall instance as it is much bigger and thus has more poten-
tial moves, leading to less risk of two following moves cancelling each other.

The MCF is only solved heuristically with the algorithm applied in this paper.
The objective value of the best solution can thus be improved by finding an optimal
solution to the MCF. This is shown in Table 9 along with a comparison with the
results obtained by Brouer et al. (2014a,b).
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Fig. 3 Development of objective value in the Baltic instance

Fig. 4 Development of objective value in the WorldSmall instance

Since Brouer et al. (2014a,b) are minimizing expenses, where we are maximizing
profit we also convert our solutions to the minimization form in Table 10. If zB is
the objective function by Brouer, and zH is the objective function of the present
heuristic, then the objectives have the relation zH = −7 · ZB/180, since Brouer is
reporting expenses per 180 days, while we are reporting weekly profits.

As can be seen from the table, the algorithm perform differently for the smaller
instances. Brouer et al. (2014a) finds the best solution for Baltic and Mediterranean,
while Brouer et al. (2014b) finds the best solution for Pacific and AsiaEurope, and
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Objective, Objective, Objective, Objective,
Instance heuristic MCF optimal MCF Brouer et al. (2014a) Brouer et al. (2014b)
Baltic 0.09 0.09 0.33 0.24
WestAfrica 5.62 5.62 5.57 5.44
Mediterranean -2.02 -1.95 -0.47 -1.25
Pacific 1.83 2.14 2.10 2.71
AsiaEurope 25.99 28.36 25.59 31.77
WorldSmall 50.72 58.14 44.83 54.44
WorldLarge 25.41 — — —

Table 9 Comparison of objective values (max weekly profit) for the best solutions (in M$). The
best overall solution is indicated in bold. The optimal MCF has been computed with CPLEX. The
WorldLarge instance is too large for CPLEX to solve with the available computer.

Objective, Objective, Objective, Objective,
Instance heuristic MCF optimal MCF Brouer et al. (2014a) Brouer et al. (2014b)
Baltic -2.31 -2.31 -8.37 -6.16
WestAfrica -144.51 -144.51 -143.11 -140
Mediterranean 51.94 50.14 12.21 32.2
Pacific -47.06 -55.03 -54.09 -69.8
AsiaEurope -668.31 -729.26 -657.97 -817
WorldSmall -1304.23 -1495.03 -1152.76 -1440
WorldLarge -653.40 — — —

Table 10 Comparison of objective values (min operational costs per 180 days) for the best solu-
tions (in M$). The best overall solution is indicated in bold. The optimal MCF has been computed
with CPLEX. The WorldLarge instance is too large for CPLEX to solve with the available com-
puter.

the here presented algorithm finds the best solution for WestAfrica. For the world
instances, however, the here presented algorithm outperforms both previous algo-
rithms, and it is the first algorithm to report results on WorldLarge.

The number of replications is of the same order of magnitude — Brouer et al.
(2014a) reports results for 10 replications for all instances. As the running time of
the algorithm is set to only 10% of the running time used by Brouer et al. (2014a,b),
the total time required for finding the solutions shown here is much shorter. Even
when including the time for computing the initial flow, which is not included in the
running time shown above, and the time for solving the final MCF through CPLEX,
it is still possible to do at least eight times more replications in the same timeframe
as applied by Brouer et al. (2014a,b).

Brouer et al. (2014a,b) do not solve the WorldLarge instance due to its size and
we have not been able to find any other literature presenting a solution to this in-
stance. The heuristic approach applied here is thus capable of solving a larger prob-
lem instance than other methods previously applied. As there are no other solutions
to WorldLarge to compare with, it is hard to tell if the presented solution is good,
although it can be concluded that it is profitable. Compared to the WorldSmall in-
stance, however, it can be expected that WorldLarge will result in less profit as the
demands are spread across four times as many ports, while the total demand is ap-
proximately the same and the average revenue per container is only 5% higher. The
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obtained best solution to WorldLarge, which has a profit approximately half that of
the best solution to WorldSmall, is probably of reasonably good quality.

The algorithm performs poorest for the Mediterranean instance. This can possi-
bly be explained by the weekly frequency requirement enforced here, as the best
solution found by Brouer et al. (2014a) contains a rotation with biweekly frequency.
The Mediterranean instance contains many ports with low demand and high port
call costs, hence biweekly operation is advantageous.

Deployed Avg. rot. length Avg. port Avg. rot. Average LF
Instance capacity Rotations (1000 nm) calls per rot. speed (kn) (ACM/RCM)
Baltic 100% 2 4.55 7.00 13.54 73%
WestAfrica 97% 9 7.15 4.22 10.77 64%
Mediterranean 100% 5 5.31 9.00 11.63 75%
Pacific 100% 14 12.36 7.71 12.16 80%
AsiaEurope 93% 30 9.48 6.53 12.17 70%
WorldSmall 100% 36 13.39 5.69 12.51 76%
WorldLarge 77% 72 9.12 5.19 12.24 71%

Table 11 Properties describing the rotations of the best solutions. The deployed capacity is cal-
culated as available vessel capacity divided by deployed vessel capacity, both measured in FFE.
The average load factor is calculated as Available Container Miles (ACM) divided by Revenue
Container Miles (RCM), i.e. the number of FFE miles of capacity offered divided by the number
of FFE miles actually travelled by the containers.

The best solutions found by our algorithm are studied in more details in Table 11,
which describe the rotations. Generally, the capacity deployment is very high with
deployment of all available vessel capacity for four instances and almost all avail-
able vessel capacity for the WestAfrica instance. Only the AsiaEurope and World-
Large instances have some spare capacity. The high degree of vessel deployment
is caused by the low speeds of around 12–13 knots used in the rotations, as a low
speed is, all other things being equal, requiring more vessels than a high speed. With
a minimum speed of 10 knots for the feeder vessels and 12 knots for all other ves-
sels, the slow steaming concept is taken to extremes here, which can be explained
by the way the optimal speed is calculated. Only the direct operating costs are in-
cluded in the calculation, such that the speed becomes a trade-off between bunker
fuel costs and fixed, daily vessel operating costs (crew, capital etc.), and of these two
costs, the bunker fuel cost is apparently dominant. The extra revenue, which can be
obtained by increasing the speed of a rotation and e.g. add an extra port call, is not
considered.

The number of rotations is, not surprisingly, closely related to the size of the
instance. The average rotation length is highest for the WorldSmall instance and
significantly larger than for the WorldLarge instance, which can be explained by
more of the short feeder rotations for WorldLarge due to a higher number of ports
in the instance. The average length is shortest for the Baltic instance due to the
small geographical area covered. The average number of port calls per rotation is
seemingly not correlated to either instance size or type.
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The average load factor is around 75% for all instances except WestAfrica, which
has a somewhat lower average load factor of 64%. It is not possible to achieve a
100% load factor due to demand imbalances, where more cargo flows from Asia to
Europe and America. than the other way around, leading to half-empty vessels on
the backhaul to Asia. This phenomenon also affects the feeder instances, as more
cargo flows from the hub port to the feeder ports than back to the hub port. With this
in mind, the utilization of the networks is at an acceptable level.

Rejected Cargo delivered Cargo delivered Avg. no.
Instance cargo within time limit on direct service transshipments
Baltic 8% 100% 100% 0.00
WestAfrica 9% 67% 71% 0.29
Mediterranean 17% 60% 55% 0.43
Pacific 12% 43% 61% 0.42
AsiaEurope 15% 32% 30% 0.91
WorldSmall 17% 27% 36% 0.76
WorldLarge 18% 21% 18% 1.14

Table 12 Statistics on the cargo flow of the best solutions. Rejected cargo is cargo flown on omis-
sion arcs, while the rest is shipped through the network. The realized transit times for the shipped
cargo have been compared with the time limits specified in LINER-LIB to obtain an overall per-
centage of cargo delivered timely. A transshipment is assumed to take four days, covering the
expected waiting time with weekly services and time for unloading and loading. All statistics are
based on the heuristic solution to the MCF.

Another way to describe the best solutions is to investigate the obtained cargo
flow. This is studied in Table 12. The amount of rejected cargo is lowest for the
single-hub instances and highest for the WorldLarge instance. The high rejection
rate for WorldLarge is not caused by lack of vessel resources, as spare capacity is
available, but rather a suboptimal composition of the vessel fleet. 18.0% of the total
demand originates or ends at a port that can only be serviced by the smallest feeder
vessels, but these vessels make up merely 1.6% of the total capacity of the fleet. All
of these vessels have been deployed in the solution. Even if the shallow ports are
connected to the nearest possible transshipment port at the highest possible speed,
it seems unlikely that it is possible to service all demand with such a small feeder
fleet. For most other instances, all vessel resources have been exhausted, and it is
thus impossible to service all demand with the selected sailing speeds.

Travel time is not considered in the solution of the multicommodity flow prob-
lem, and it is thus interesting to see if the resulting solution is attractive from a travel
time point-of-view. The results are generally very poor on this parameter, with up
to 79% of the cargo delivered too late with respect to the time limit. For several of
the instances, more cargo is delivered on a direct service than within the time limit,
indicating that the sailing speeds are simply too low to meet the travel time require-
ments. It is even possible to find examples where a direct, non-stop service is too
slow, for example in the solution to the WorldSmall instance.

Transshipments are not penalized in the objective value except for the direct cost
associated with it. As transshipments are undesirable for the shippers due to risk
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of damage and delay, they should generally be limited. According to Maersk Line
(Plum, 2015) about half of the cargo is delivered on direct services. In our solutions
it is only 20-40% of the cargo in the large problems that is delivered on a direct
service. This might, though, also be related to the scarcity of vessel resources caused
by low sailing speeds, as a high number of direct connections generally requires
many port calls per rotation, which in turn increases the rotation time and number
of deployed vessels.

Fig. 5 Best found rotations and flow for the WorldSmall instance

Finally, it is interesting to compare the backbone flow described in Section 4.1
with the final flow. For WorldSmall the backbone flow was shown in Figure 1 while
the final flow is shown in Figure 5. It is clear that the real flow in Figure 5 has a
much more diverse structure than the backbone flow in Figure 1 with many more
active arcs and typically more moderate loads on all arcs. The backbone flow has
only a few active arcs, and there is typically either an extremely high load or a
relatively low load on the active arcs. The backbone flow is thus not that good an
approximation of a realistic flow since too few arcs are active. On the positive side,
though, the arcs that are found to be attractive in the backbone flow are generally
also used considerably in the real flow. If time constraints were taken into account
when constructing the backbone flow, one would probably get a more diverse flow
closer to reality.
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7 Conclusion

The goal of this paper has been to develop a new approach for solving the Liner
Shipping Network Design Problem (LSNDP) by applying heuristic methods. This
includes the solution of the multicommodity flow problem, which is quite time con-
suming to solve to optimality for larger problems. The developed Lagrange heuristic
is up to two orders of magnitude faster than an exact algorithm, finding solutions 2–
5% from optimum. The memory usage is also lower, allowing the algorithm to solve
larger instances that could not be solved previously. Although the solutions are not
optimal, they are sufficiently good to guide the local search in the right direction.

A start solution is generated by solving a relaxed problem in which vessel ca-
pacities are “linearized” and route constraints are removed. The resulting backbone
flow shows which arcs are attractive, and which ports are well suited for hubs. It is
reasonably fast to compute the backbone flow and thus possible to generate many
candidate solutions as a starting point. The objective values of the obtained networks
are far from optimal, but the backbone flow contains valuable structural information
that can be used to guide the following flow. The backbone flow can also be seen as
a physical internet transportation network consisting of distributed multi-segment
flows (Montreuil, 2011).

The initial network is optimized using a VNS-inspired heuristic using six differ-
ent neighborhoods. Of these six neighborhoods, four make use of a rotation sub-
graph to quickly be able to delta evaluate moves before they are implemented. The
subgraph includes only the rotation currently being modified, which means that the
delta evaluation of a move in the subgraph cannot be expected to be fully coher-
ent with the actual effect of implementing the move in the main graph. However,
Thorsen and Krogsgaard (2016) showed that moves, which are expected to improve
the solution, most often actually do improve the solution. On average, the improve-
ment is larger than expected. In Thorsen and Krogsgaard (2016) it has furthermore
been confirmed that all six neighborhoods in combination contribute positively to
the objective value.

Computational results of the overall algorithm demonstrate that it provides
promising results. A comparison with the results obtained by Brouer et al. (2014a)
shows better solutions in four out of six instances. Furthermore, the results have
been obtained over a significantly shorter running time, as the time per replication
has been set to only a tenth of that used by Brouer et al. (2014a). For the seventh
and largest instance, WorldLarge, no previous results have been published, and the
solution presented here is thus pioneering. There is potential for improving the solu-
tions, especially on parameters that have been excluded from the problem definition.
With an improved solution to several of the instances, a novel solution to the largest
instance and shorter running times, the heuristic approach adopted in this paper has
great potential with regards to solving large-scale real-life LSNDP.
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7.1 Future work

The most important extension of the algorithm is to include time constraints on the
delivered cargo. This will mean that the backbone flow constructed in Section 4.1
should take time into account, hopefully avoiding that all flow is aggregated on very
few arcs. This will form a better basis for constructing rotations. In the VNS algo-
rithm described in Section 5 it will be necessary to use a more intelligent choice
of sailing speeds, selecting higher average speed. In order to flow the containers
in each iteration, it will be necessary to solve a time-constrained multi-commodity
flow problem. Karsten et al. (2015) showed that although the problem theoretically
becomes much harder to solve, many partial solutions can be excluded due to the
time constraints, and hence the overall running times are not much larger than with-
out time constraints.

The local search heuristic has room for improvement in several areas. First of
all, it is unfortunate that two of the six neighborhoods are based solely on rules of
thumb instead of a solid delta evaluation, as this can easily lead to degrading moves.
These moves are then reversed by other neighborhoods, which in some cases causes
cycling in the local search procedure. It might thus be a good idea to use a tabu
list in the local search, such that immediate reversal of moves is prevented. Another
solution is to reverse moves which turn out to degrade the objective value, but it
will probably require a tabu list to do this too, as a reversed move will otherwise be
suggested over and over again by the algorithm.

When inspecting the results, the least successful parts seem to be related to trans-
shipment of cargo. For instances with a very fragmented demand matrix, like in
WorldLarge, it is difficult for the algorithm to detect and properly service hub ports
if they do not have a great amount of demand themselves — or perhaps no demand
at all. An interesting extension of the algorithm could thus be a new neighborhood,
where demands are split at relevant hub ports to get a more focused search towards
a hub-and-spoke structure. It should be possible to do this dynamically through the
rotations graphs without hardcoding a transshipment port for each demand pair.

Instead of having time-constraints on the delivered cargo, one could instead use
transit time-dependent revenues or demands to reflect that there are customers for
almost any product as long as the price is low enough — and, correspondingly,
more customers and higher revenue to be gained from an attractive product with
short transit times.
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