
RADIC scalability analysis: Functional Model

Sandra A. Mendez1, C. Marcelo Pérez Ibarra1, Dolores I. Rexachs del Rosario2,
Leonardo Fialho2, Emilio Luque Fadón2, Nilda M. Pérez Otero1, Cecilia M. Lasserre1,

Héctor P. Liberatori1

1Universidad Nacional de Jujuy, Facultad de Ingeniería. Gorriti 237. San Salvador de Jujuy.
Argentina

2 University Autonoma of Barcelona. Bellaterra, Barcelona 08193, España.
{fdolores.rexachs, emilio.luqueg}@uab.es, lfialho@caos.uab.es,

{smendez, cmperezi, nilperez, classerre,
hliberatori}@fi.unju.edu.ar

Abstract. In parallel systems, a number of measures of performance are not
accurate or representative of their functioning. These measures allow to
quantify the benefit of parallelism. Very often, programs are designed and
tested for smaller problems on fewer processing elements. However, the real
problems these programs are intended to solve are much larger, and the
machines contain a great number of processing elements. Hence, it is necessary
to create a model that allows to extrapolate the application execution over a few
processing elements to larger machine configurations. These measures are more
complex if we consider faults. When we take measures we must understand the
interaction among system architecture, application architecture and fault
tolerant system. In this paper we present a model which analyzes the
combination parallel computer, parallel application and RADIC fault tolerance
architecture.

Keywords: Scalability, Performability, High Performance Computing, Cluster,
Overhead, RADIC.

1 Introduction

The demand for computational power has been leading the improvement of the High
Performance Computing (HPC) area, generally represented by the use of distributed
systems like clusters of computers running parallel applications. In this area, fault
tolerance plays an important role in order to provide high availability isolating the
application from the effects of the node faults.

Performance and availability form an undissociable binomial for some kind of
applications. Therefore, the fault tolerant solutions must take into consideration these
two constraints when it has been designed.

RADIC is a fault tolerant architecture for message passing systems. This
architecture has the following features: transparency, decentralization, flexibility and
scalability [1] and [2].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15777727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Sandra A. Mendez1, C. Marcelo Pérez Ibarra1, Dolores I. Rexachs del Rosario2,
Leonardo Fialho2, Emilio Luque Fadón2, Nilda M. Pérez Otero1, Cecilia M. Lasserre1, Héctor
P. Liberatori1

There are several measures of performance. Perhaps the simplest of these is the
wall-clock time taken to solve a given problem on a given parallel platform. However,
as we shall see, a single figure of merit of this nature cannot be extrapolated to other
problem instances or larger machine configurations. Other intuitive measures quantify
the benefit of parallelism, i.e., how much faster the parallel program runs with respect
to the serial program. However, this characterization suffers from other drawbacks, in
addition to those mentioned above [3]. For instance, what is the impact of using a
poorer serial algorithm that is more amenable to parallel processing? What is the
impact of using fault tolerance? What is the impact of increasing the problem size or
the number of processing elements?. For these reasons, more complex measures for
extrapolating performance to larger machine configurations or problems were often
necessary.

Very often, programs are designed and tested for smaller problems on fewer
processing elements. However, the real problems these programs are intended to solve
are much larger, and the machines contain a great number of processing elements.
Whereas code development is simplified by using scaled-down versions of the
machine and the problem, their performance and correctness (of programs) is much
more difficult to establish based on scaled-down systems. In this paper, we define a
functional model that allows to increase problem size and the computational system
capacity to analyze if RADIC can adapt to these new systems and keeps on with the
performances.

The rest of this paper is organized as follows. In Section 2 we describe some
metrics of parallel systems. In section 3, we briefly describe RADIC. In Section 4 we
describe some metrics of fault tolerance parallel system and our functional model of
RADIC. Finally, section 5 presents the experiments and conclusions about the
scalability of RADIC.

2 Metr ics of Parallel Systems

A sequential algorithm is usually evaluated in terms of its execution time, expressed
as a function of the size of its input. The execution time of a parallel algorithm
depends not only on input size but also on the number of processing elements used,
and their relative computation and interprocess communication speeds. Hence, a
parallel algorithm cannot be evaluated in isolation from a parallel architecture without
some loss in accuracy. A parallel system is the combination of an algorithm and the
parallel architecture on which it is implemented. In addition, a parallel system of high
availability is the combination of the parallel application, parallel computer and fault
tolerance.

It is important to study the performance of parallel programs with a view to
determining the best algorithm, evaluating hardware platforms, and examining the
benefits from parallelism. Several metrics have been used based on the desired
outcome of performance analysis.

These metrics could be applied to determinate the performability (performance and
availability) of a parallel system modifying both problem size and number of
processing elements.

RADIC scalability analysis: Functional Model 3

2.1 Execution Time

The serial runtime of a program is the time elapsed between the beginning and the end
of its execution on a sequential computer. The parallel runtime is the time that elapses
from the moment a parallel computation starts to the moment the last processing
element finishes execution. The serial runtime is denoted by TS and the parallel
runtime by TP.

2.2 Total Parallel Overhead

The overheads incurred by a parallel program are encapsulated into a single
expression referred to as the overhead function. We define overhead function or total
overhead of a parallel system as the total time collectively spent by all the processing
elements over and above that required by the fastest known sequential algorithm for
solving the same problem on a single processing element. We denote the overhead
function of a parallel system by the symbol To.

The total time spent in solving a problem summed over all processing elements is
pTp. TS units of this time are spent performing useful work, and the remainder is
overhead. Therefore, the overhead function (To) is given by

𝑇𝑇𝑜𝑜 = 𝑝𝑝𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑆𝑆 (1)

2.3 Speedup

When evaluating a parallel system, we are often interested in knowing how much
performance gain is achieved by parallelizing a given application over a sequential
implementation. Speedup is a measure that captures the relative benefit of solving a
problem in parallel. It is defined as the ratio of the time taken to solve a problem on a
single processing element to the time required to solve the same problem on a parallel
computer with p identical processing elements. We denote speedup by the symbol S.

𝑆𝑆 = 𝑇𝑇𝑆𝑆
𝑇𝑇𝑃𝑃

 (2)

2.4 Efficiency

Efficiency is a measure of the fraction of time for which a processing element is
usefully employed; it is defined as the ratio of speedup to the number of processing
elements. In an ideal parallel system, speedup is equal to p and efficiency is equal to
one. In practice, speedup is less than p and efficiency is between zero and one,
depending on the effectiveness with which the processing elements are utilized. We
denote efficiency by the symbol E. Mathematically, it is given by

𝐸𝐸 = 𝑆𝑆
𝑝𝑝
⟹ 𝐸𝐸 = 𝑇𝑇𝑆𝑆

𝑝𝑝𝑇𝑇𝑝𝑝
 (3)

4 Sandra A. Mendez1, C. Marcelo Pérez Ibarra1, Dolores I. Rexachs del Rosario2,
Leonardo Fialho2, Emilio Luque Fadón2, Nilda M. Pérez Otero1, Cecilia M. Lasserre1, Héctor
P. Liberatori1
2.5 Problem Size

The size or the magnitude of the problem is the number of basic computation steps in
the best sequential algorithm to solve the problem on a single processing element.
Because it is defined in terms of sequential time complexity, the problem size is a
function of the size of the input. The symbol we use to denote problem size is W.

The variation both W and number of processing elements (p) produces changes in
the compute-communication relationship.

2.6 Average Computational Capacity (ACC)

The ACC, defined by Koren and Krishna [4], is a function of how good the parallel
application uses the available processors in a system. Therefore, the ACC depends on
the probability Pi(t) that exactly i processors, from the N total processor of the parallel
computer, are operational at time t, and of the function C(i) that defines how good the
application adapts to the i available processors, as described in equation 3.

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝐴𝐴(𝑖𝑖) · 𝑃𝑃𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 (4)

2.7 Scalability of a Parallel Systems

We know that the total overhead function To is a function of both problem size and
the number of processing elements (equation 1). In many cases, To grows sublinearly
with respect to Ts. In such cases, we can see that efficiency increases if the problem
size is increased keeping the number of processing elements constant. For such
algorithms, it should be possible to keep the efficiency fixed by increasing both the
size of the problem and the number of processing elements simultaneously. This
ability to maintain efficiency at a fixed value by simultaneously increasing the
number of processing elements and the size of the problem is exhibited by many
parallel systems.

We call such systems scalable parallel systems. In other words, the scalability of a
parallel system is a measure of its capacity to increase speedup in proportion to the
number of processing elements. It reflects a parallel system's ability to utilize
increasing processing resources effectively [5] and [6].

Performance analysis in fault tolerant parallel systems is as important as in parallel
systems. In a particular way we’ll analyze the performance of RADIC fault tolerance
architecture. Hence, in the next section we explain RADIC architecture, and then we
start studying the metrics of parallel fault tolerant systems with RADIC in order to
evaluate their impact in the performance.

3 RADIC

RADIC (Redundant Array of Distributed Independent fault tolerance Controllers) was
presented in [1] and [2] as a flexible, decentralized, transparent and scalable
architecture that provides fault tolerance to message passing based parallel systems

RADIC scalability analysis: Functional Model 5

using rollback-recovery techniques. RADIC acts as a layer that isolates an application
from the possible nodes failures. RADIC increases system availability. RADIC, in its
basic protection level, does not demand any passive resources to perform its activities.
Thus, after a failure the controller recovers the faulty process in some existent node of
the cluster. Such level increases the availability of the system, however it may
degradate the overall system performance after the recovery.

RADIC [7], can incorporate a flexible dynamic redundancy feature, allowing to
mitigate or to avoid some recovery side-effects. This functionality allows restoring a
changed process per node distribution (from now, also called system configuration)
and it can avoid the configuration changes (while there are spare nodes the
computational capacity doesn’t change). RADIC allows dynamically inserting new
spare nodes during the application execution in order to replace the requested ones
(hot swap). The use of spare nodes avoids performance degradation, except during the
short period of the recovery process, which leads to an increment of system
performability.

Figures 1 (a, b) depict the basic elements that RADIC architecture uses for fault
tolerance.

(a)

(b)

Fig. 1. (a) Application process associated observer. (b) RADIC’s protector and observer
processes interaction.

Figure 2 shows how in normal operation protectors monitor computer’s nodes and
observers take checkpoints and message logs of the distributed application processes
(2a). Together, protectors and observers function as a distributed controller for fault
tolerance. When protectors and observers detect a failure (2b), both work to
reestablish the consistent state of the distributed parallel application and to reestablish
the structure of the RADIC controller (2 c and d)

Considering that RADIC adds overhead, we should now ask: Which is the impact
of using RADIC? How many overhead is introduced by RADIC? Which is the impact
of increasing the problem size or number of processing elements of an application that
is running over RADIC cluster?

6 Sandra A. Mendez1, C. Marcelo Pérez Ibarra1, Dolores I. Rexachs del Rosario2,
Leonardo Fialho2, Emilio Luque Fadón2, Nilda M. Pérez Otero1, Cecilia M. Lasserre1, Héctor
P. Liberatori1

Fig. 2. Phases in the fault recuperation process of node 3, using 2 spare nodes.

4 Scalability Metr ics of Fault Tolerant Parallel Systems

In order to carry out this study we need to redefine some terms. That is because many
alternatives exist to implement fault tolerance: information redundancy, time
redundancy, software redundancy and hardware redundancy. Each strategy has
different impact on cost and performance.

4.1 Execution Time with Fault Tolerance

Execution time (TETF) of an application running in a parallel computer which includes
fault tolerance is the time between the application launching and the finalization of
the application by the last processing element. This time includes the overhead due to
fault tolerance (TTFO) plus the parallel systems overhead itself (processing elements
communication and coordination).

TETF = TP + TTFO

4.2 Availability A(t)

The following function defines the availability of a parallel system with fault
tolerance:

𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑝𝑝without 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓

𝑇𝑇𝑝𝑝with faults
 (5) where 𝑇𝑇𝑝𝑝𝑤𝑤𝑖𝑖𝑡𝑡 ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓 = 𝑇𝑇𝑝𝑝𝑤𝑤𝑖𝑖𝑡𝑡 ℎ𝑜𝑜𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓 + 𝑇𝑇𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡

 (6)

RADIC scalability analysis: Functional Model 7

4.3 Total Parallel Overhead with Fault Tolerance

Parallel systems overhead (TPO) becomes more complex when fault tolerance is
added.

𝑇𝑇𝑂𝑂𝑇𝑇 = 𝑇𝑇𝑃𝑃𝑂𝑂 + TTFO
RADIC uses different kinds of redundancies.

• Time redundancy (distributed application takes their checkpoints in an
uncoordinated manner and receiver-based pessimistic messages log)

• Dynamic redundancy (spare nodes): the spare is chosen when an active node faults.

These redundancies are implemented using the following strategies:

• Distributed controller: The fully decentralized feature means that in any moment of
the fault-tolerance process, including recovery, the solution does not need any
central elements. Besides, RADIC necessarily needs to keep decentralize all
information about the spares. All nodes should work independently, exchanging
information as needed just with a few neighbor nodes.

• Distributed stable storage: The checkpoints and log messages are saved
decentralized in the neighbor nodes. Decentralization reduces the storage overhead
caused by central storage and distributes the redundant data saving activity among
the nodes

• Reduce synchronization overhead: The RADIC controller uses checkpoint/restart
and receiver-based pessimistic log rollback-recovery protocol to handle the faults
in order to satisfy the scalability requirement. This protocol allows a recovery
mechanism that does not demand synchronization between the in-recovering
process and the processes not affected by the fault.

• Reduce load imbalance (flexible dynamic redundancy): RADIC makes possible the
implementation of several strategies to face the load balance problem after process
recovery.

Thus, the overhead function for a fault tolerant parallel system (TO) is the parallel
systems overhead (TOP) plus the overhead due to the fault tolerant mechanism (TOFT)
(equation 5).

𝑇𝑇𝑂𝑂 = 𝑇𝑇𝑂𝑂𝑃𝑃 + 𝑇𝑇𝑂𝑂𝑂𝑂𝑇𝑇 (5)
From that equation we already knew TOP, so we must study TOFT. In the case we

implement fault tolerance with RADIC, that overhead depends on the four classic
phases that RADIC implements: Protection, Detection/Diagnosis, Recuperation and
Reconfiguration.

• Protection: in this phase Checkpoints (there is one for each process P and time
increases due to P, state size and bandwidth because the checkpoint must be sent to
another node) and pessimist messages log (it depends on the application behavior:
more or less messages, strong or weak coupled) affects overhead.

• Detection/Diagnosis: the HB/WD operation impacts the overhead. The number of
nodes N has influence but it is a totally distributed operation in detection. We can
consider that it only depends on the relationship with 1 neighbor (2 nodes

8 Sandra A. Mendez1, C. Marcelo Pérez Ibarra1, Dolores I. Rexachs del Rosario2,
Leonardo Fialho2, Emilio Luque Fadón2, Nilda M. Pérez Otero1, Cecilia M. Lasserre1, Héctor
P. Liberatori1

interaction), in diagnosis with 2 neighbors (3 nodes interaction), and it doesn’t
increase with N.

• Recuperation: it is a local process in which one node interacts with another.
• Reconfiguration: it is a completely distributed operation, the system is

reconfigured meanwhile a fault is discovered by other node controllers.

Due to all that has been mentioned above, we need to define a functional model in
order to evaluate the performability of RADIC architecture considering the different
elements and tasks that are involved in the fault tolerant mechanism.

4.4 Functional Model

TOFT is produced by RADIC components which implement fault tolerance.
If we consider RADIC as a parallel application which runs beside the application and
interacts with it, we’ll be able to analyze the operations performed, the required time
and the resulting overhead. Those parameters help us to define a functional model to
validate the performance of a parallel application running in a parallel computer with
RADIC fault tolerant architecture. Table 1 depicts the functional model of RADIC
taking into account the operations that impact on the overhead considering the
operations that influence on the overhead caused by fault tolerance.

Table 1. Functional Model of RADIC.

Application running without faults Application running with faults
• Detection: Watchdog and

heartbeat (interval and bandwidth,
application type)

• Protection: Checkpoint frequency
and size (problem size,
bandwidth, creation and sending
time, affected process while the
checkpoint is done)

• Protection: Message log
(application type, compute or
communication addressed,
bandwidth, message size)

• Recovery: Spare node search, spare node
connection to the protection chain, WD/HB
mechanisms re-establishment and failed process
recovery. Sending the checkpoint to the spare for
its recovery and “forced” checkpoint (made by
the observer after the re-execution in order to
have protection again)

• Recovery: If there aren’t spare nodes, the failed
process is recovered in a node that already
belongs to the cluster. Moreover, we must
consider the degradation caused by the loss of
computational power.
Reconfiguration: Update of Radictable and
Sparetable. Each observer must update its
Radictable when it finds out that a process was
changed to another node after a fault.

In a first approach this model leads us to make the following reflections:

1. RADIC tasks (protection, detection, recovering and reconfiguration) are defined in
function of some parameters defined by the user (checkpoint interval, heartbeat
interval) and application features (state size in memory, communications)

2. Besides, we must also consider the relation between computing and
communication. For example, when there is not a log, communication and

RADIC scalability analysis: Functional Model 9

computing are overlapped. Two things may happen if a log is added: a) the log
remains overlapped or b) the log overflows computing time.

3. Checkpoints always cause an overhead which can have more o less impact
according to the behavior more or less synchronized of the processes.

4. In asynchronic communications, the overhead that RADIC introduces depends on
the application computing/communication ratio. In synchronic communications
computing and communication don’t overlap. In this case communication time is at
least (in a regular case) the original communication times two. The same happens
with broadcast communication.

5 Scalability measurement, an evaluation using RADIC

Taking into account the functional model, performance metrics of distributed parallel
system and scalability concept, we designed an experiment over a RADIC cluster and
a parallel system (with similar features) without fault tolerance. This experiment
consists of obtaining runtimes of matrices multiplication programs. The used matrices
had 5000, 7500 and 10000 elements. The programs were running over a parallel
system with 4, 8 and 16 nodes, and over a RADIC cluster with 1 spare node. The
measures were taken without faults and introducing a fault at 25% runtime.

The application consists of the product of a Hilbert Matrix programming as a
master/worker with dynamic load balance.

The experiments were conducted on a multicore cluster DELL with 4 nodes, each
node has 2 Quadcore Intel Xeon E5430 of 2.66 Ghz processors, and 6 MB of cache
L2 shared by each two core and RAM memory of 12 GB by blade.
Finally the 3 sizes experiments were performed in workers with 4, 8 and 16 nodes
taking into account 4 scenarios: a. without RADIC (without faults), b. with RADIC
(with faults), c. with RADIC, without spare node and 1 fault (checkpoint interval: 60
seconds), d. with RADIC, without spare nodes and 1 fault (checkpoint interval: 60
seconds).

Table 2 depicts the obtained results in seconds.

Table 2. Experiment results.

Scenarios Matrices of 5000 Matrices of 7500 Matrices of 10000
4w 8w 16w 4w 8w 16w 4w 8w 16w

a 454,6 232,6 124,3 1410,3 711,8 367,5 3582,5 1808,5 950,3
b 472,2 241,3 134,8 1454,7 737,5 406,1 3702,9 1870,9 1001,2
c 584,9 272,6 148,2 1817,9 831,5 436,8 4624,6 2105,3 1069,8
d 479,8 248,1 142,0 1465,5 744,9 413,7 3710,9 1877,2 1009,9

During experimentation:

1. The master was always isolated in a node and workers shared 3 nodes. All workers
have the same distance to the master and they also share the same network. There
is no communication between the workers and the load remains balanced
(overlapped communications, even with messages log).

10 Sandra A. Mendez1, C. Marcelo Pérez Ibar ra1, Dolores I. Rexachs del Rosario2,
Leonardo Fialho2, Emilio Luque Fadón2, Nilda M. Pérez Otero1, Cecilia M. Lasserre1, Héctor
P. Liberatori1
2. The four executions of each experiment don´t present a significant variance. Thus,

we can assume that with more executions the numbers will remain the same.

This first analysis of the obtained results shows that time arises a lot when the
application runs over 16 workers, whatever the size of the application is. Perhaps that
was caused because the load of the application wasn’t balanced in the workers.
Because of that we decided to begin with the design of a new experimentation, based
on the proposed functional model. This time we’ll try to isolate time variations done
by the application and of those produced by RADIC.

6 References

1. Duarte, A., Rexachs, D., and E. Luque.: Increasing the cluster availability using
RADIC. Cluster Computing, 2006 IEEE International Conference on, pages 1–8.
(2006)

2. Duarte, A., Rexachs, D., and E. Luque.: Functional Tests of the RADIC Fault
Tolerance Architecture. Parallel, Distributed and Network-Based Processing, 2007.
PDP’07. 15th EUROMICRO International Conference on, pages 278–287. (2007)

3. Grama, A., Gupta, A., Karypis, G., and V. Kumar.: Introduction to Parallel
Computing, Second Edition. Addison Wesley. January 16. ISBN 0-201-64865-2.
(2003)

4. Koren , I., and M. Krishna.: Fault-Tolerant Systems. Morgan Kaufmann Publishers
is an imprint of Elsevier. San Francisco. United States. (2007)

5. Grama, A., Gupta, A., and V. Kumar.: Isoefficiency: measuring the scalability of
parallel algorithms and architectures. IEEE Parallel & Distributed Technology.
Vol. 1, No 3, pp. 12-21. (1993)

6. Sun, X. and D. T. Rover.: Scalability of parallel algorithm-machine combinations.
IEEE Transactions on Parallel and Distributed Systems. Vol. 5, no. 6, pp. 599-613.
(1994)

7. Santos, G., Duarte, A., Rexachs, D., and E. Luque.: Providing Nonstop Service for
Message-Passing Based Parallel Applications with RADIC. In: Proceedings of the
14th international Euro-Par conference on Parallel Processing. Springer-Verlag,
pp.58-67. (2008)

	Introduction
	Metrics of Parallel Systems
	Execution Time
	Total Parallel Overhead
	Speedup
	Efficiency
	Problem Size
	Average Computational Capacity (ACC)
	Scalability of a Parallel Systems

	RADIC
	Scalability Metrics of Fault Tolerant Parallel Systems
	Execution Time with Fault Tolerance
	Availability A(t)
	Total Parallel Overhead with Fault Tolerance
	Functional Model

	Scalability measurement, an evaluation using RADIC
	References

