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Abstract. In parallel systems, a number of measures of performance are not 
accurate or representative of their functioning. These measures allow to 
quantify the benefit of parallelism. Very often, programs are designed and 
tested for smaller problems on fewer processing elements. However, the real 
problems these programs are intended to solve are much larger, and the 
machines contain a great number of processing elements. Hence, it is necessary 
to create a model that allows to extrapolate the application execution over a few 
processing elements to larger machine configurations. These measures are more 
complex if we consider faults. When we take measures we must understand the 
interaction among system architecture, application architecture and fault 
tolerant system. In this paper we present a model which analyzes the 
combination parallel computer, parallel application and RADIC fault tolerance 
architecture.  

Keywords: Scalability, Performability, High Performance Computing, Cluster, 
Overhead, RADIC. 

1 Introduction 

The demand for computational power has been leading the improvement of the High 
Performance Computing (HPC) area, generally represented by the use of distributed 
systems like clusters of computers running parallel applications. In this area, fault 
tolerance plays an important role in order to provide high availability isolating the 
application from the effects of the node faults. 

Performance and availability form an undissociable binomial for some kind of 
applications. Therefore, the fault tolerant solutions must take into consideration these 
two constraints when it has been designed. 

RADIC is a fault tolerant architecture for message passing systems. This 
architecture has the following features: transparency, decentralization, flexibility and 
scalability [1] and [2]. 
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There are several measures of performance. Perhaps the simplest of these is the 
wall-clock time taken to solve a given problem on a given parallel platform. However, 
as we shall see, a single figure of merit of this nature cannot be extrapolated to other 
problem instances or larger machine configurations. Other intuitive measures quantify 
the benefit of parallelism, i.e., how much faster the parallel program runs with respect 
to the serial program. However, this characterization suffers from other drawbacks, in 
addition to those mentioned above [3]. For instance, what is the impact of using a 
poorer serial algorithm that is more amenable to parallel processing? What is the 
impact of using fault tolerance? What is the impact of increasing the problem size or 
the number of processing elements?. For these reasons, more complex measures for 
extrapolating performance to larger machine configurations or problems were often 
necessary. 

Very often, programs are designed and tested for smaller problems on fewer 
processing elements. However, the real problems these programs are intended to solve 
are much larger, and the machines contain a great number of processing elements. 
Whereas code development is simplified by using scaled-down versions of the 
machine and the problem, their performance and correctness (of programs) is much 
more difficult to establish based on scaled-down systems. In this paper, we define a 
functional model that allows to increase problem size and the computational system 
capacity to analyze if RADIC can adapt to these new systems and keeps on with the 
performances. 

The rest of this paper is organized as follows. In Section 2 we describe some 
metrics of parallel systems. In section 3, we briefly describe RADIC. In Section 4 we 
describe some metrics of fault tolerance parallel system and our functional model of 
RADIC. Finally, section 5 presents the experiments and conclusions about the 
scalability of RADIC. 

2 Metr ics of Parallel Systems 

A sequential algorithm is usually evaluated in terms of its execution time, expressed 
as a function of the size of its input. The execution time of a parallel algorithm 
depends not only on input size but also on the number of processing elements used, 
and their relative computation and interprocess communication speeds. Hence, a 
parallel algorithm cannot be evaluated in isolation from a parallel architecture without 
some loss in accuracy. A parallel system is the combination of an algorithm and the 
parallel architecture on which it is implemented. In addition, a parallel system of high 
availability is the combination of the parallel application, parallel computer and fault 
tolerance. 

It is important to study the performance of parallel programs with a view to 
determining the best algorithm, evaluating hardware platforms, and examining the 
benefits from parallelism. Several metrics have been used based on the desired 
outcome of performance analysis. 

These metrics could be applied to determinate the performability (performance and 
availability) of a parallel system modifying both problem size and number of 
processing elements. 
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2.1 Execution Time 

The serial runtime of a program is the time elapsed between the beginning and the end 
of its execution on a sequential computer. The parallel runtime is the time that elapses 
from the moment a parallel computation starts to the moment the last processing 
element finishes execution. The serial runtime is denoted by TS and the parallel 
runtime by TP. 

2.2 Total Parallel Overhead 

The overheads incurred by a parallel program are encapsulated into a single 
expression referred to as the overhead function. We define overhead function or total 
overhead of a parallel system as the total time collectively spent by all the processing 
elements over and above that required by the fastest known sequential algorithm for 
solving the same problem on a single processing element. We denote the overhead 
function of a parallel system by the symbol To. 

The total time spent in solving a problem summed over all processing elements is 
pTp. TS units of this time are spent performing useful work, and the remainder is 
overhead. Therefore, the overhead function (To) is given by 

𝑇𝑇𝑜𝑜 = 𝑝𝑝𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑆𝑆  (1) 

2.3 Speedup 

When evaluating a parallel system, we are often interested in knowing how much 
performance gain is achieved by parallelizing a given application over a sequential 
implementation. Speedup is a measure that captures the relative benefit of solving a 
problem in parallel. It is defined as the ratio of the time taken to solve a problem on a 
single processing element to the time required to solve the same problem on a parallel 
computer with p identical processing elements. We denote speedup by the symbol S. 

𝑆𝑆 = 𝑇𝑇𝑆𝑆
𝑇𝑇𝑃𝑃

  (2) 

2.4 Efficiency 

Efficiency is a measure of the fraction of time for which a processing element is 
usefully employed; it is defined as the ratio of speedup to the number of processing 
elements. In an ideal parallel system, speedup is equal to p and efficiency is equal to 
one. In practice, speedup is less than p and efficiency is between zero and one, 
depending on the effectiveness with which the processing elements are utilized. We 
denote efficiency by the symbol E. Mathematically, it is given by 

𝐸𝐸 = 𝑆𝑆
𝑝𝑝
⟹ 𝐸𝐸 = 𝑇𝑇𝑆𝑆

𝑝𝑝𝑇𝑇𝑝𝑝
  (3) 
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2.5 Problem Size 

The size or the magnitude of the problem is the number of basic computation steps in 
the best sequential algorithm to solve the problem on a single processing element. 
Because it is defined in terms of sequential time complexity, the problem size is a 
function of the size of the input. The symbol we use to denote problem size is W. 

The variation both W and number of processing elements (p) produces changes in 
the compute-communication relationship. 

2.6 Average Computational Capacity (ACC) 

The ACC, defined by Koren and Krishna [4], is a function of how good the parallel 
application uses the available processors in a system. Therefore, the ACC depends on 
the probability Pi(t) that exactly i processors, from the N total processor of the parallel 
computer, are operational at time t, and of the function C(i) that defines how good the 
application adapts to the i available processors, as described in equation 3. 

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝐴𝐴(𝑖𝑖) · 𝑃𝑃𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1  (4) 

2.7 Scalability of a Parallel Systems 

We know that the total overhead function To is a function of both problem size and 
the number of processing elements (equation 1). In many cases, To grows sublinearly 
with respect to Ts. In such cases, we can see that efficiency increases if the problem 
size is increased keeping the number of processing elements constant. For such 
algorithms, it should be possible to keep the efficiency fixed by increasing both the 
size of the problem and the number of processing elements simultaneously. This 
ability to maintain efficiency at a fixed value by simultaneously increasing the 
number of processing elements and the size of the problem is exhibited by many 
parallel systems.  

We call such systems scalable parallel systems. In other words, the scalability of a 
parallel system is a measure of its capacity to increase speedup in proportion to the 
number of processing elements. It reflects a parallel system's ability to utilize 
increasing processing resources effectively [5] and [6]. 

Performance analysis in fault tolerant parallel systems is as important as in parallel 
systems. In a particular way we’ll analyze the performance of RADIC fault tolerance 
architecture. Hence, in the next section we explain RADIC architecture, and then we 
start studying the metrics of parallel fault tolerant systems with RADIC in order to 
evaluate their impact in the performance. 

3 RADIC 

RADIC (Redundant Array of Distributed Independent fault tolerance Controllers) was 
presented in [1] and [2] as a flexible, decentralized, transparent and scalable 
architecture that provides fault tolerance to message passing based parallel systems 
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using rollback-recovery techniques. RADIC acts as a layer that isolates an application 
from the possible nodes failures. RADIC increases system availability. RADIC, in its 
basic protection level, does not demand any passive resources to perform its activities. 
Thus, after a failure the controller recovers the faulty process in some existent node of 
the cluster. Such level increases the availability of the system, however it may 
degradate the overall system performance after the recovery. 

RADIC [7], can incorporate a flexible dynamic redundancy feature, allowing to 
mitigate or to avoid some recovery side-effects. This functionality allows restoring a 
changed process per node distribution (from now, also called system configuration) 
and it can avoid the configuration changes (while there are spare nodes the 
computational capacity doesn’t change). RADIC allows dynamically inserting new 
spare nodes during the application execution in order to replace the requested ones 
(hot swap). The use of spare nodes avoids performance degradation, except during the 
short period of the recovery process, which leads to an increment of system 
performability. 

Figures 1 (a, b) depict the basic elements that RADIC architecture uses for fault 
tolerance. 

 
(a)  

(b) 

Fig. 1. (a) Application process associated observer. (b) RADIC’s protector and observer 
processes interaction. 

Figure 2 shows how in normal operation protectors monitor computer’s nodes and 
observers take checkpoints and message logs of the distributed application processes 
(2a). Together, protectors and observers function as a distributed controller for fault 
tolerance. When protectors and observers detect a failure (2b), both work to 
reestablish the consistent state of the distributed parallel application and to reestablish 
the structure of the RADIC controller (2 c and d) 

Considering that RADIC adds overhead, we should now ask: Which is the impact 
of using RADIC? How many overhead is introduced by RADIC? Which is the impact 
of increasing the problem size or number of processing elements of an application that 
is running over RADIC cluster? 
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Fig. 2. Phases in the fault recuperation process of node 3, using 2 spare nodes.  

4 Scalability Metr ics of Fault Tolerant Parallel Systems 

In order to carry out this study we need to redefine some terms. That is because many 
alternatives exist to implement fault tolerance: information redundancy, time 
redundancy, software redundancy and hardware redundancy. Each strategy has 
different impact on cost and performance. 

4.1 Execution Time with Fault Tolerance 

Execution time (TETF) of an application running in a parallel computer which includes 
fault tolerance is the time between the application launching and the finalization of 
the application by the last processing element. This time includes the overhead due to 
fault tolerance (TTFO ) plus the parallel systems overhead itself (processing elements 
communication and coordination). 

TETF = TP + TTFO  

4.2 Availability A(t) 

The following function defines the availability of a parallel system with fault 
tolerance: 

𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑝𝑝without 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓

𝑇𝑇𝑝𝑝with  faults
 (5)  where 𝑇𝑇𝑝𝑝𝑤𝑤𝑖𝑖𝑡𝑡 ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓 = 𝑇𝑇𝑝𝑝𝑤𝑤𝑖𝑖𝑡𝑡 ℎ𝑜𝑜𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓 + 𝑇𝑇𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡

 (6) 
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4.3 Total Parallel Overhead with Fault Tolerance 

Parallel systems overhead (TPO) becomes more complex when fault tolerance is 
added. 

𝑇𝑇𝑂𝑂𝑇𝑇 = 𝑇𝑇𝑃𝑃𝑂𝑂 + TTFO  
RADIC uses different kinds of redundancies. 

• Time redundancy (distributed application takes their checkpoints in an 
uncoordinated manner and receiver-based pessimistic messages log ) 

• Dynamic redundancy (spare nodes): the spare is chosen when an active node faults. 

These redundancies are implemented using the following strategies: 

• Distributed controller: The fully decentralized feature means that in any moment of 
the fault-tolerance process, including recovery, the solution does not need any 
central elements. Besides, RADIC necessarily needs to keep decentralize all 
information about the spares. All nodes should work independently, exchanging 
information as needed just with a few neighbor nodes. 

• Distributed stable storage: The checkpoints and log messages are saved 
decentralized in the neighbor nodes. Decentralization reduces the storage overhead 
caused by central storage and distributes the redundant data saving activity among 
the nodes 

• Reduce synchronization overhead: The RADIC controller uses checkpoint/restart 
and receiver-based pessimistic log rollback-recovery protocol to handle the faults 
in order to satisfy the scalability requirement. This protocol allows a recovery 
mechanism that does not demand synchronization between the in-recovering 
process and the processes not affected by the fault. 

• Reduce load imbalance (flexible dynamic redundancy): RADIC makes possible the 
implementation of several strategies to face the load balance problem after process 
recovery. 

Thus, the overhead function for a fault tolerant parallel system (TO) is the parallel 
systems overhead (TOP) plus the overhead due to the fault tolerant mechanism (TOFT) 
(equation 5). 

𝑇𝑇𝑂𝑂 = 𝑇𝑇𝑂𝑂𝑃𝑃 + 𝑇𝑇𝑂𝑂𝑂𝑂𝑇𝑇   (5) 
From that equation we already knew TOP, so we must study TOFT. In the case we 

implement fault tolerance with RADIC, that overhead depends on the four classic 
phases that RADIC implements: Protection, Detection/Diagnosis, Recuperation and 
Reconfiguration. 

• Protection: in this phase Checkpoints (there is one for each process P and time 
increases due to P, state size and bandwidth because the checkpoint must be sent to 
another node) and pessimist messages log (it depends on the application behavior: 
more or less messages, strong or weak coupled) affects overhead. 

• Detection/Diagnosis: the HB/WD operation impacts the overhead. The number of 
nodes N has influence but it is a totally distributed operation in detection. We can 
consider that it only depends on the relationship with 1 neighbor (2 nodes 
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interaction), in diagnosis with 2 neighbors (3 nodes interaction), and it doesn’t 
increase with N. 

• Recuperation: it is a local process in which one node interacts with another. 
• Reconfiguration: it is a completely distributed operation, the system is 

reconfigured meanwhile a fault is discovered by other node controllers. 

Due to all that has been mentioned above, we need to define a functional model in 
order to evaluate the performability of RADIC architecture considering the different 
elements and tasks that are involved in the fault tolerant mechanism. 

4.4 Functional Model 

TOFT is produced by RADIC components which implement fault tolerance. 
If we consider RADIC as a parallel application which runs beside the application and 
interacts with it, we’ll be able to analyze the operations performed, the required time 
and the resulting overhead. Those parameters help us to define a functional model to 
validate the performance of a parallel application running in a parallel computer with 
RADIC fault tolerant architecture. Table 1 depicts the functional model of RADIC 
taking into account the operations that impact on the overhead considering the 
operations that influence on the overhead caused by fault tolerance. 

Table 1. Functional Model of RADIC. 

Application running without faults Application running with faults 
• Detection: Watchdog and 

heartbeat (interval and bandwidth, 
application type) 

• Protection: Checkpoint frequency 
and size (problem size, 
bandwidth, creation and sending 
time, affected process while the 
checkpoint is done)  

• Protection: Message log 
(application type, compute or 
communication addressed, 
bandwidth, message size) 

• Recovery: Spare node search, spare node 
connection to the protection chain, WD/HB 
mechanisms re-establishment and failed process 
recovery. Sending the checkpoint to the spare for 
its recovery and “forced” checkpoint (made by 
the observer after the re-execution in order to 
have protection again) 

• Recovery: If there aren’t spare nodes, the failed 
process is recovered in a node that already 
belongs to the cluster. Moreover, we must 
consider the degradation caused by the loss of 
computational power. 
Reconfiguration: Update of Radictable and 
Sparetable. Each observer must update its 
Radictable when it finds out that a process was 
changed to another node after a fault. 

In a first approach this model leads us to make the following reflections: 

1. RADIC tasks (protection, detection, recovering and reconfiguration) are defined in 
function of some parameters defined by the user (checkpoint interval, heartbeat 
interval) and application features (state size in memory, communications) 

2. Besides, we must also consider the relation between computing and 
communication. For example, when there is not a log, communication and 
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computing are overlapped. Two things may happen if a log is added: a) the log 
remains overlapped or b) the log overflows computing time.  

3. Checkpoints always cause an overhead which can have more o less impact 
according to the behavior more or less synchronized of the processes. 

4. In asynchronic communications, the overhead that RADIC introduces depends on 
the application computing/communication ratio. In synchronic communications 
computing and communication don’t overlap. In this case communication time is at 
least (in a regular case) the original communication times two. The same happens 
with broadcast communication. 

5 Scalability measurement, an evaluation using RADIC  

Taking into account the functional model, performance metrics of distributed parallel 
system and scalability concept, we designed an experiment over a RADIC cluster and 
a parallel system (with similar features) without fault tolerance. This experiment 
consists of obtaining runtimes of matrices multiplication programs. The used matrices 
had 5000, 7500 and 10000 elements. The programs were running over a parallel 
system with 4, 8 and 16 nodes, and over a RADIC cluster with 1 spare node. The 
measures were taken without faults and introducing a fault at 25% runtime. 

The application consists of the product of a Hilbert Matrix programming as a 
master/worker with dynamic load balance. 

The experiments were conducted on a multicore cluster DELL with 4 nodes, each 
node has 2 Quadcore Intel Xeon E5430 of 2.66 Ghz processors, and 6 MB of cache 
L2 shared by each two core and RAM memory of 12 GB by blade. 
Finally the 3 sizes experiments were performed in workers with 4, 8 and 16 nodes 
taking into account 4 scenarios: a. without RADIC (without faults), b. with RADIC 
(with faults), c. with RADIC, without spare node and 1 fault (checkpoint interval: 60 
seconds), d. with RADIC, without spare nodes and 1 fault (checkpoint interval: 60 
seconds). 

Table 2 depicts the obtained results in seconds. 

Table 2. Experiment results. 

Scenarios Matrices of 5000 Matrices of 7500 Matrices of 10000 
4w 8w 16w 4w 8w 16w 4w 8w 16w 

a 454,6 232,6 124,3 1410,3 711,8 367,5 3582,5 1808,5 950,3 
b 472,2 241,3 134,8 1454,7 737,5 406,1 3702,9 1870,9 1001,2 
c 584,9 272,6 148,2 1817,9 831,5 436,8 4624,6 2105,3 1069,8 
d 479,8 248,1 142,0 1465,5 744,9 413,7 3710,9 1877,2 1009,9 

During experimentation: 

1. The master was always isolated in a node and workers shared 3 nodes. All workers 
have the same distance to the master and they also share the same network. There 
is no communication between the workers and the load remains balanced 
(overlapped communications, even with messages log). 
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2. The four executions of each experiment don´t present a significant variance. Thus, 

we can assume that with more executions the numbers will remain the same. 

This first analysis of the obtained results shows that time arises a lot when the 
application runs over 16 workers, whatever the size of the application is. Perhaps that 
was caused because the load of the application wasn’t balanced in the workers. 
Because of that we decided to begin with the design of a new experimentation, based 
on the proposed functional model. This time we’ll try to isolate time variations done 
by the application and of those produced by RADIC. 
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