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Summary
With increasing number of more sophisticated tools to acquire data, we are faced
with the important question of what matters in the sea of information at hand. This
challenge is becoming more prevalent across virtually all scientific disciplines. Im-
provements over state of the art methods for analysing such data carry the potential
to revolutionize tasks such as medical diagnostics where often decisions need to be
based on only a few high-dimensional observations. This explosion in data dimension-
ality has sparked the development of novel statistical methods. In contrast, classical
statistics build upon the assumption that we have more samples than variables, and
the main asymptotic results, such as the central limit theorem, reflect that. As the
assumption of having many samples does not hold for modern datasets, we need new
tools and methods to find the signal within the dataset which is predictive of the
relevant response variable. The focus in this thesis is on sparse methods where sparse
implies that the method selects only a few variables.

Different types of data call for different methods. In this thesis the sparse meth-
ods we study concern settings where the response variable is ordinal. Such ordinal
labeling is common in many fields, for example, medical doctors often summarize
their observations into a single class of disease severity, which is known as a medical
rating score. Automation offers the potential to improve both the reliability and ob-
jectivity of such tasks.

To demonstrate the effectiveness of the sparse methods developed in this thesis, they
were applied to both challenging and diverse real-world problems: Predicting the
severity of motion disorders from Parkinson’s patients, generating short summaries
of content from hundreds of online user reviews and detecting foreign objects from
Multispectral X-ray scans. It may be noted, that to achieve these results, novel
optimization approaches and open-source software were implemented.
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Resumé
Med et øget antal af sofistikerede værktøjer til indsampling af data, rejses det vigtige
spørgsmål om, hvilken information der har betydning i dette hav af data. Disse værk-
tøjer bliver mere udbredt i alle videnskabelige discipliner. Forbedringer af de nyeste
metoder til analyse af sådanne data har potentialet til at revolutionere opgaver som
medicinsk diagnostik, hvor beslutninger ofte skal baseres på kun få højdimensionelle
observationer. Denne eksplosion i datadimensionalitet har motiveret udviklingen af
  nye statistiske metoder. I modsætning hertil bygger klassisk statistik på antagelsen
om, at vi har flere målinger end variabler, og det afspejles i de vigtigste asymptotiske
resultater, som f.eks. Central Limit Theorem. Da antagelsen om at have mange
målinger ikke holder til moderne datasæt, har vi brug for nye værktøjer og metoder
til at finde signalet i datasættet, som kan forudsige den relevante responsvariabel.
Fokus i denne afhandling er på sparse metoder, hvor sparse betyder, at metoden kun
vælger få variabler.

Forskellige typer af data har brug for forskellige metoder. I denne afhandling sætter
vi fokus på situationen hvor responsvariablen er ordinal. Ordinale labels er generalt
brugt i mange fagområder, for eksempel opsummerer læger ofte deres observationer
i et enkelt tal, der beskriver sygdomsgraden, som er kendt som en klinisk vurdering.
Automatisering giver mulighed for at forbedre både pålideligheden og objektiviteten
af   sådanne opgaver.

For at demonstrere effektiviteten af   de sparse metoder, der blev udviklet i denne
afhandling, blev de anvendt til både udfordrende og forskellige virkelige problemer:
1) Forudsigelse af sværhedsgraden af   bevægelsesforstyrrelser fra Parkinsons patienter.
2) Genererer korte resuméer af indhold fra hundredvis af onlinebruger anmeldelser.
3) Detektion af fremmedlegemer i multispectrale røntgenscanninger. Det kan nævnes,
at for at opnå disse resultater blev nye optimeringsmetoder og open source software
implementeret.
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Preface
This PhD thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical Univeristy of Denmark (DTU) in fulfillment of the
requirements for acquiring a Doctor of Philosophy degree (PhD) in applied mathe-
matics with emphasis on Statistical Learning and Image Analysis.

The project is a cross-institutional collaboration between DTU Compute and Re-
gion Hovedstadens psykiatriske hospital. The Lundbeck Foundation and DTU funded
the project.

The work conducted is a step towards improving and extending the tools available
for classifying high dimensional data, where the number of variables vastly outnum-
bers the number of samples, as is often the case in medical studies, where the sample
size is small, but the number of measurements per participant is high. The exten-
sions are regarding enhanced optimization methods, the inclusion of unlabelled data
and ordinal labels. The work involves applications concerning numerous data sets
including multispectral X-ray images, online user reviews, and motion tracking data.

The thesis contains a general introduction to the project, an overview of sparse
discriminant analysis and examples of applications. Finally, the appendix includes
eight publications, which are either published or under submission.

The project was supervised by Associate Professor Rasmus R. Paulsen and co-
supervised by Associate Professor Line Clemmensen, Professor Anders Fink-Jensen,
and Associate Professor Anne Katrine Pagsberg. The research has been conducted
at DTU in the Section of Image Analysis and Computer Graphics. I did external
research at deCODE genetics in Iceland.

Kongens Lyngby, April 25, 2018

Gudmundur Einarsson
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CHAPTER 1
Introduction

Current advances in statistics and statistical learning center on problems where we
have more features (p) than observations (n), these are known as p ≫ n problems.
Classical statistics cannot handle more variables than samples, most of the estimation
procedures require more samples than variables to work [Don+00]. As the amount of
sensors, monitoring devices, and ways of tracking us is rapidly increasing there is a
growing incentive to find a good solution to these problems.

When I attended the Machine Learning Summer School back in 2015 Emmanuel
Candés described his interpretation of Big-Data. He saw Big-Data as a paradigm for
statistical analysis. In the past we followed a stringent recipe for doing statistics:

1. Formulate a hypothesis

2. Collect data

3. Reject the hypothesis or not

Candés highlighted another approach, which is more common today: Collect data
first, ask questions later. That is,

1. Collect data

2. Generate the hypotheses

3. Minimise the number of false discoveries

With this approach we aim to identify variables which genuinely predict the response.
Finding these variables is relevant for many applications, such as genome wide asso-
ciation studies. In such studies the aim is to determine the combination of single nu-
cleotide polymorphisms which predict a hereditary disease. Detecting these features
can aid the development of novel, preventative and more effective medical treatments.
Another clear example of a relevant application concerns motion disorders. The key
question is whether we can identify from a motion-tracking time-series which types
of motion best predict or correlate with a given score for severity of the disease?

I asked the online statistics community for a description of Big-Data1. Given
the diverse responses we can conclude that there is no consensus on the matter.
Ultimately I agree with Candés’ description, which opens the door to an emerging
type of research holding great potential in their applications.

1https://stats.stackexchange.com/questions/173060/what-exactly-is-big-data
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Inspired by these new approaches, we develop sparse methods to solve p ≫ n
classification problems, which we apply to real world applications. In the context of
this thesis sparse relates to the paradigm mentioned by Candés. That is, we aim to
select a sparse set of variables. This allows us to generate multiple hypotheses where
the parameters corresponding to some variables are non-zero and most parameters
are zero.

1.1 Motivation
The main motivation of this thesis is to characterise motion disorders based on multi-
sensor input. We explore the use of range sensors for diagnostics of patients with either
a Parkinson’s Disease (PD) diagnosis or patients suffering from severe schizophrenia.
In both cases the number of patients is limited and the amount of measured data
is large (i.e. many variables). Motion disorders have various causes, they can be
side-effects of drugs, or symptoms of a disease, which highlights the challenge of
determining from motion data the underlying reason for the symptoms. Patients
are commonly assessed and diagnosed with clinical rating scales. This is a manual
inspection performed by a clinician, which introduces both score variation across
clinicians and a potential operator bias. The score is usually an integer ranging
from zero, (the subject is not affected), to four or five, (where the subject is severely
affected). The highest score can mean that the subject is incapable of finishing the
task under inspection.

PD is an example of a challenging case with no diagnostically conclusive test
available. The current way of diagnosis sometimes results in misdiagnoses or does
not detect the disease since many of the symptoms such as depression, dementia,
tiredness, smell problems, blood pressure problems etc. are common to other condi-
tions [Dun+14]. With a conclusive diagnosis the disease has often progressed to an
advanced stage of motor symptoms and neurophysiological damage (See Fig. 1.1). It
is thus of great importance to develop tools that aid an unbiased diagnosis for PD in
an earlier stage of the condition as a preventative measure.

Managing to diagnose patients earlier is thus ambitious, especially if we only apply
standard diagnostics tools once. It would be easier, more accurate, and less prone to
bias, to make a computerised diagnostic test a part of the regular screening process.
Using acquired data from such a test would allow us to model individual abnormalities
more accurately, and make personalised and accurate objective predictions of disease
status and progression, by comparing to earlier screenings. Another way to detect a
condition would be to have access to a proxy variable, which the patient can decide
to be analysed. The proxy variable can be data from a personal health monitor,
movement data from a GPS tracker, mobile phone data, or data acquired by playing
a video game.

In the presented work, we employ the Microsoft Kinect sensor [Sho+11] in a
game-like environment to collect movement data on individuals suffering from motion-
disorders, in particular, patients with PD and patients with severe Schizophrenia.
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Figure 1.1: Diagram showing the progression of PD. The diagram covers the pre-
motor symptom period, and indicates that diagnosis usually happens
some time after the onset of motor symptoms. Taken from [KL15a].

These devices generate tracking data 30 times per second; so we can quickly obtain
many variables on a single subject.

Compared to more traditional classification problems the main difference in this
setting is the ordinal label (the clinical score by the doctor). Having ordinal labels
means that there is some natural order or relationship in the response. The meth-
ods developed in this thesis are tailored for ordinal, p ≫ n data. We highlight the
generality of the methods by applying them to other problem domains, such as the
summarisation of online reviews (See Chapter 7) and foreign object detection in Mul-
tispectral X-ray images.

A considerable amount of the work in this thesis is not entirely reflected in the
results. Significant effort went into making the classification methods faster by using
novel algorithms for optimisation. We further contribute back to the community
which made all of this work possible by developing the tools in an open-source manner.

1.2 Objectives
The main objectives, forming the basis of the included contributions are:

1. Acquire and analyse motion data from patients (PD and Schizophrenia) and
controls.

2. Develop and evaluate classification methods that can handle ordinal clinical
labels.
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3. Evaluate the generalisability of the methods by applying and evaluating them
to data from other domains.

These objectives were accomplished in collaborations with researchers at DTU, Dan-
ish Meat Research Institute (DMRI), Region Hovedstaden and the University of Al-
abama.

1.3 Outline & Reading Guide
The rest of the thesis is split into three parts. This first one covers the relevant
methodology, algorithms, background and related technical work. The first part also
summarises the technical part of contributions A, B, C and D.

Part two is about the applications and contains three chapters, the first on motion
tracking data, the second on foreign object detection in multispectral X-ray images
and the third on natural language processing. There is substantial related work in
these chapters, but we refer the reader to the papers for a full treatment of it.

Finally, part three contains all the contributions. The first two parts are sum-
maries of the papers and tie the contributions together. We recommend the reader
first to read the material presented in the thesis before digging into the manuscripts
in the appendix. It is best to start by finishing part one and two, and then seek
answers to the questions that arise in the relevant papers in part three.



Part I
Methods





CHAPTER 2
Background & Related Work

In this chapter, we summarise the background that leads to the development of SDA.
We do not need to go far back in time to the infancy of linear classifiers; it started
with the influential work of the statistician and biologist Sir Ronald Fisher.

2.1 Historical Perspective
It is helpful to look at the historical developments of linear classification to put the
development of the current state of SDA into perspective. The earliest example
of LDA is the one developed by Sir Ronald Fisher in 1936 [Fis36]. The method
is sometimes referred to as simply Fisher’s linear discriminant. Fisher’s paper is
also recognised for introducing the Iris dataset, which is one of the most famous
classification datasets available for study and often used to introduce the concept of
classification to students.

Fisher presents the method for classifying between two classes. He does not make
any particular distributional assumptions, and describes a formula, (or rather arith-
metical procedure), for calculating the discriminant vector β. We are given two classes
of observations, with means µ1 and µ2 and covariances Σ1 and Σ2. Fisher proposes
to maximise the entity:

S(β) := (β(µ1 − µ2))2

βT (Σ1 + Σ2)β
=: σ2

between
σ2

within
. (2.1)

Fisher’s original notation does not portray the numerator as the variation between
classes, instead only as a linear combination of the difference between the means. He
describes a method to solve for β, which is mostly maximum likelihood estimation.
One important thing to note regarding Fisher’s approach is that he starts off by
stating that he is looking for a linear function, not a discriminant vector. Using
linear functions is essential concerning how functional analysis is used as a tool for
Statistical and Machine Learning theory. Fisher approached the problem from a
general perspective, but he missed the opportunity to generalise the method to more
classes.

Fisher supervised Calyampudi Radhakrishna Rao (C. R. Rao) in his PhD. In
1948 his paper The utilisation of multiple measurements in problems of biological
classification was published [Rao48; Rao47]. He had generalised Fisher’s work in the
section The Problem of Three and More Groups of his work. Rao starts off with a
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general theory for multi-class classification and finally draws up multi-class LDA in
the section Application to multivariate normal populations with common dispersion
matrices. Not only did Rao generalise Fisher’s work to handle multiple classes, but
he also formalised the assumptions needed to arrive at this generalisation. So now
the generalised quantity corresponding to S, (for K classes), in Eq. 2.1 becomes:

S(β) := βT Σbβ

βT Σwβ
, (2.2)

where Σb and Σw are defined as:

Σb := 1
K

K∑
i=1

(µi − µ)(µi − µ)T , Σw := 1
N

K∑
i=1

Ni∑
j=1

(xi,j − µi)(xi,j − µi)T . (2.3)

Here class i includes Ni elements, where xi,j refers to measurement j from class i and
µi is the mean of class i. Σb is referred to as the mean scatter matrix. Maximising
S now amounts to find the β vectors that make the numerator as large as possible,
and the denominator as small as possible. If we write out the numerator in Eq. 2.2
explicitly, we get:

βT Σbβ = βT

(
1
K

K∑
i=1

(µi − µ)(µi − µ)T

)
β = 1

K

K∑
i=1

(βT µi − βT µ)2. (2.4)

Using this formulation clarifies further what is meant by scattering, i.e., we seek a
vector β, such that the projected means βT µi are as far away from the projected
general mean βT µ as possible. Of course we need the denominator, otherwise, for a
given solution we could always increase it in magnitude to get a better one.

We have only discussed the first discriminant vector, but we are only limited by
the rank of Σb, which is K − 1. Commonly the full LDA problem is presented as
follows, for finding the k-th discriminant vector:

βk := arg min
βk

βT
k Σbβk

βT
k Σwβk

(2.5)

subject to βT
k Σwβk = 1, and βT

k Σwβl = 0, ∀l < k. (2.6)

Equation 2.2 requires a norm-constraint, similar to the one above for a unique solu-
tion.

2.2 Dimensionality Reduction & Inference
Note that minimising S with respect to β has not yielded any classification boundaries
directly, only vectors β for projecting the data to a lower dimensional representation.
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The projected data satisfies the property that the means are as scattered as possible,
and the internal variation for each group is as small as possible, (assuming dispersion
matrices are all the same and Gaussian data). The method proposed by Rao is in some
sense a supervised version of Principal Component Analysis (PCA) [Pea01; FHT01].
Using the Gaussian assumption further, we can additionally demonstrate that the
region of equal probability between two multivariate Gaussian densities, with the
same dispersion matrix, is, in fact, a hyperplane, which makes the separation linear,
or the L in LDA. The classification is commonly carried out by assigning a new point
to the class which has the closest mean calculated using the Mahalanobis distance
[Mah36] imposed by the common dispersion matrix.

The quotient in Eq. 2.2 is a Rayleigh quotient and can be solved as a generalised
eigenvalue problem. The rank of Σb is maximum K − 1, which is an upper bound on
the number of different discriminant vectors β we can find, and an upper bound on
the dimensionality of the lower dimensional embedding. We can see that the problem
in Eq. 2.2 is a generalised eigenvalue problem by calculating the gradient of S with
respect to β:

∇βS : = 2Σbβ(βT Σwβ) − 2(βT Σbβ)Σwβ

(βT Σwβ)2
(2.7)

=
2Σbβ − 2 βT Σbβ

βT Σwβ
Σwβ

βT Σwβ
(2.8)

= 2Σbβ − 2S(β)Σwβ

βT Σwβ
(2.9)

Now if we solve for ∇βS = 0 we get:

Σbβ = S(β)Σwβ, (2.10)

which is better recognisable generalised eigenproblem. The vectors β that we now seek
are eigenvectors of the matrix Σ−1

w Σb, assuming of course that Σw is positive definite.
In the case that we have fewer observations than variables, p ≫ n problems, the matrix
Σw is singular, and this method essentially breaks down. Some generalisations exist
to deal with this particular case, one is indeed zero-variance discriminant analysis
[AH16], where we begin by assuming that the solution lies in the null space of Σw,
along with other assumptions.

2.3 Other Approaches for LDA
There are different ways to approach discriminant analysis with linear boundaries,
here we describe a couple of alternative approaches and how they provide different
generalisations. Note that when we refer to LDA in the text, we mean the version
made by Rao. Generally in this section X refers to the n×p data matrix with n
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samples and p variables, Y is an n×K indicator/dummy/one-hot-encoding matrix
defined in Eq. 2.11. Other entities are defined as they appear, but otherwise, we refer
the reader to the terminology.

2.3.1 Canonical Correlation Analysis
The same year that Fisher published his work on the Iris dataset, Harold Hotelling’s
theoretical work Relations Between Two Sets of Variates was published [Hot36].
Hotelling presents Canonical Correlation Analysis (CCA) in the paper; he begins
with an interesting, motivating example:

Concepts of correlation and regression may be applied not only to ordinary
one-dimensional variates but also to variates of two or more dimensions.
Marksmen side by side firing simultaneous shots at targets, so that the
deviations are in part due to independent individual errors and in part
common causes such as wind , provide a familiar introduction to the
theory of correlation; but only the correlation of the horizontal component
is ordinarily discussed, whereas the complex consisting of horizontal and
vertical deviations may be even more interesting.

— Harold Hotelling

CCA is the problem of finding linear functions (vectors) that maximise the correlation
between two data matrices. The data projected by these functions are called canon-
ical variables. The formulation is so general that it contains most of the common
parametric statistical tests [Kna78]. One special case of CCA is in fact LDA. If one
of the matrices is a data matrix X, and the other one is an indicator matrix of class
belongings Y, where:

Yij =

{
1, sample i in class j

0, otherwise,
(2.11)

then the first linear function corresponding to the data matrix is in fact the same
as the one corresponding to the first discriminant vector β for LDA, up to a small
difference in constraints. The following minimisation problem provides a solution to
CCA:

(Θ, B) := arg min
Θ,B

||YΘ − XB||22 (2.12)

subject to BT XT XB = I, and ΘT YT YΘ = I. (2.13)

We will mostly use the formulation in Eq. 2.12 to contrast the other related problems.
Recent work related to CCA, Canonical Information Analysis, where correlation

is replaced with mutual information, can be found in [VN15; Yin04]. Replacing
correlation with mutual information makes the optimisation harder, but the authors
provide compelling empirical evidence for the usage.
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2.3.2 Optimal Scoring
Trevor Hastie, Robert Tibshirani, and Andreas Buja present Optimal Scoring in their
1994 paper Flexible Discriminant Analysis by Optimal Scoring [HTB94]. They present
the method as an alternative to CCA. Regarding the matrices X and Y presented in
the last section, and the K × 1 scoring vector θ, we can define the optimal scoring
problem as:

(θk, βk) := arg min
θk,βk

||Yθk − Xβk||22 (2.14)

subject to θT
k YT Yθk = 1, and θT

k YT Yθl = 0, ∀l < k. (2.15)

The major difference from the previous approaches is the usage of the 2-norm || • ||2.
The problem has been cast as a regression problem, where we regress X onto a
transformed version of the dummy matrix Y. We refer to the transformed values Yθ
as scores. Hastie, Tibshirani, and Buja summarize the benefits of LDA nicely in their
paper:

1. All relevant distance information is contained in the K−1 dimensional subspace
spanned by the class centroids.

2. The decision boundaries are linear.

3. One can plot the data in a reduced space, giving a graphical representation of
the group separation.

4. One does not need to use all the discriminant vector to represent the data in
the lower dimensional embedding, in the case of little data with many classes,
fewer dimensions can yield more stable and accurate classification.

They further describe how this formulation lends itself nicely to generalisation. Cast-
ing the problem into a regression framework allows us to adapt the tools in the
regression toolbox for classification. The article further describes how they can ad-
just the classification as non-parametric regression, the primary point of the article is
how to deal with the problem of underfitting, i.e., augmenting the data to another
representation.

The authors published an accompanying paper in 1995, Penalized Discriminant
Analysis [HBT95], there the authors show how they can deal with overfitting using
l2 regularization, or essentially a Tikhonov regulariser [Tik43]. In both cases, the
authors approach the problem of Optimal Scoring. The authors prove in the appendix,
the equivalence of penalised discriminant analysis and penalised optimal scoring. For
the sake of completeness, let’s prove that the classical LDA can be derived from
Optimal Scoring. We will provide a proof which is a bit more modern concerning
notation.

Theorem 1. The first discriminant vector β of the Optimal Scoring problem defined
in Eq. 2.14 is an optimal solution to the LDA problem defined in Eq. 2.5, with a norm
constraint on the scatter matrix.
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Proof. Note that we can represent the first θ in terms of β as the classical least
squares solution:

θ = (YT Y)−1YT Xβ (2.16)

Now let’s derive the the LDA solution from the Optimal Scoring one. We add the
norm-constraint to the cost function with a Lagrange multiplier.

arg min
θ,β

||Yθ − Xβ||22 = arg min
θ,β

⟨Yθ − Xβ, Yθ − Xβ⟩, s.t. ||Yθ||22 = 1 (2.17)

= arg min
θ,β,λ

⟨Yθ − Xβ, Yθ − Xβ⟩ + λ(⟨Yθ, Yθ⟩ − 1). (2.18)

Using the bilinearity of the inner product we now get:

= arg min
θ,β,λ

θT YT Yθ − 2θT YT Xβ + βT XT Xβ + λ(θT YT Yθ − 1). (2.19)

Now when substitute Eq. 2.16 for θ some of the matrices above simplify as follows:

θT YT Yθ = βT XT Y((YT Y)−1)T YT Y(YT Y)−1YT Xβ (2.20)
= βT XT Y(YT Y)−1YT Xβ (2.21)
= βT Σbβ (2.22)

In a similar fashion we get:

−2θT YT Xβ = −2βT Σbβ (2.23)
βT XT Xβ = βT (Σb + Σw)β (2.24)

Now we can substitute these results in the minimisation problem, which simplifies to:

arg min
β,λ

βT Σwβ + λ(βT Σbβ − 1). (2.25)

We recognise this as the Lagrange version of Eq. 2.5, where we minimise the inverse
instead and the constraint is on the scatter matrix.

One can in a similar manner show the equivalence of LDA and CCA. There is only
a minor deviation between the three approaches regarding solutions, the differences
are more concerning algorithms we can use to solve these problems, and how we can
extend them and adapt to other situations. We have to remember that when Fisher’s
work was published in 1936, all the calculations were done by hand, that might create
some bias regarding techniques to use. In the following section, we will inspect in
more detail the subtle differences between Optimal Scoring, LDA and CCA.
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2.3.3 Deviations of Linear Classifiers
The three methods, LDA, CCA and Optimal Scoring provide solutions which span
the row-space (orthogonal complement to the nullspace) of Σb. The only way the
problems differ is precisely how the constraints are formulated. Optimal Scoring
differs from LDA as demonstrated in the theorem above, i.e., the constraint is on the
scatter matrix instead of the common covariance matrix. These constraints are also
for preserving orthogonality. CCA is similarly related, where the constraint is with
respect to the matrix Σb + Σw.

These are not major differences, but some of them lend themselves better to gener-
alisations. Of all the formulations, Optimal Scoring lends itself best to generalisation,
because it is so similar to traditional regression. The method was constructed pre-
cisely with that in mind. A good summary of eigenproblems in pattern recognition
can be found in [DCR05].

2.3.4 Classification by Regression
One might ask himself/herself now, why? Why go through all this hassle instead of do-
ing just regular multiple regression? Hastie, Tibshirani, and Buja discuss this matter
in the flexible discriminant analysis article [HTB94]. They compare LDA via optimal
scoring to softmax regression. This is essentially like Optimal Scoring, without the
constraints containing Y. The optimisation can be implemented as backpropagation
for neural network architecture, with no hidden layers, and softmax activation on the
output [Bri90]. Ignoring the constraint with Y causes bad decision boundaries when
the centers of the classes are colinear, and the softmax solution does not take the
covariance of the data into account.

2.3.4.1 Partial Least Squares

One regression approach, which is very similar to CCA, is Partial Least Squares (PLS)
[Wol+84]. These methods look surprisingly similar, but there is a subtle difference
between them. PLS can essentially be formulated as maximising covariance, instead of
correlation. To contrast Eq. 2.12 we present the corresponding minimisation problem
for PLS.

(Θ, B) := arg min
Θ,B

||YΘ − XB||22 (2.26)

subject to BT B = I, and ΘT Θ = I. (2.27)

In Eq. 2.26, the only difference from 2.12 are the constraints. This means that if we
are doing classification, the covariance of the individual classes is not modelled, or
assumed to be spherical. There do also exist sparse approaches for PLS [CK10].
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2.3.4.2 Visualising the Difference

The effects described above are best explained with recreations of the figures from the
original paper [HTB94], see Fig. 2.1 and Fig. 2.2, we use PLS instead of softmax, it
has the same effect. From a modelling point of view, the parameters in the regression
models are estimated based on a conditional likelihood, conditioned on the label,
while in LDA, we estimate the parameters based on the joint likelihood.

2.4 Altering Assumptions
If we focus on the original formulation of LDA in Eq. 2.5, there are a few key points in
where this method can break down, and the assumptions can be invalid. The major
ones are:

1. There are more variables than observation, so Σw is Positive Semi-Definite
(PSD). It is singular, thus we cannot invert the matrix for a solution.

2. The classes do not share a common covariance matrix.

3. The classes are not normally distributed.
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Figure 2.1: PLS uses the wrong metric. This data is sampled from bivariate Gaus-
sians with the same covariance. Recreated from [HTB94].
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Figure 2.2: PLS cannot handle colinearity of centroids. Recreated from [HTB94].

There are numerous other issues, that can come up, e.g., missing data, label errors,
etc. The focus of this thesis is mostly on how to deal with the first item, but let’s
investigate briefly what dropping the other two assumptions can lead to.

Rao derived LDA from a generic multiclass-classification point of view [Rao48].
Rao, as we mentioned before, derived LDA as a special case from his original assump-
tions. Friedman [Fri89] starts by deriving a general loss-based framework, which is
a more modern approach to that of Rao. Friedman starts off with a generic loss
function, where he only makes the assumption, that an item can only belong to one
class:

L(k, k̂), 1 ≤ k, k̂ ≤ K, (2.28)

k os the true label, and k̂ is the predicted one. One can now model the probability
of assigning a measurement to class k using a class conditional density fk(Xi). We
can interpret this as, given this data, what is the probability it belongs to class k?
Friedman presents a general risk-minimisation problem as:

R(k̂|Xi) :=
∑K

k=1 L(k, k̂)fk(Xi)πk∑K
k=1 fk(Xi)πk

, (2.29)

where πk is the prior for observing a member from class k. We of course identify
the risk function as a generalisation of the Bayes-rule, where the minimisation leads
precisely to the Bayes-rule. The loss that leads to LDA is then the 0-1 loss defined
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as:

L(k, k̂) = 1 − δ(k, k̂), (2.30)

where δ is the Kronecker-delta. The 0-1 loss simplifies Eq. 2.29 to the classification
rule:

fk̂(Xi)πk̂ := max
1≤k≤K

fk(Xi)πk. (2.31)

Now the only part left is to choose a class-conditional density, so we can plug in for
fk the multivariate normal density function:

fk(Xi) := 1√
(2π)pdet(Σk)

exp
(

−1
2

(Xi − µk)T Σ−1
k (Xi − µk)

)
, (2.32)

where µk is the p × 1 vector representing the mean of class k, where p is the number
of variables. Plugging this into Eq. 2.31 and using the negative log-likelihood instead
gives us the decision rule:

dk(Xi) := (Xi − µk)T Σ−1
k (Xi − µk) + ln(det(Σk)) − 2ln(πk). (2.33)

So this amounts to minimising the Mahalanobis distance. Note that if we assume
that the Σk are the same for each class, then this formulation implicitly defines the
discriminant vectors. On the other hand, if we do not impose such a strict condition
as the classes sharing a covariance matrix, we end up with Quadratic Discriminant
Analysis (QDA). QDA derives its name from the fact that the decision boundaries
are quadratic, instead of linear, (See Fig. 2.3 for an example of how these boundaries
look). If we look at the level curves of quadratic form, like the one in Eq. 2.33,
for p = 2, then we get conic-sections. Dropping the condition that the covariance
matrices are identical may sound minuscule, but it has an entirely significant effect.
The quadratic boundaries are more flexible, but they are also harder to interpret or
understand. Using the linear discriminant functions makes it easier to understand
which variables contribute the most to the discrimination.

Another potential issue with QDA is sample size. It is a critical factor for choosing
between QDA and LDA [WK77]. If p is moderately large and we have multiple classes,
then we have quite a large number of parameters to estimate. The sample size is one
of the key points that Friedman addresses [Fri89]. Friedman proposes several models
for the covariance matrices, making the total loss in degrees of freedom less severe as
if all the matrices are estimated fully.

The issue of non-normality for LDA and QDA has of course been addressed before
[LSR73]. The choice of normal distribution essentially boils down to tractability,
simplicity, the fact that the normal distribution is often represented in nature, the
central limit theorem and computational advantages.

From a modelling or application point of view, I would personally say that before
I would consider trying to use another distribution than the normal, there would have
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Figure 2.3: Example of QDA decision boundary. Data sampled from Gaussians
with different covariance structure..

to be substantial evidence for the fact that the underlying physical process, generat-
ing the data, is not Gaussian. Non-normality could easily be the case for extreme
situations, like extreme precipitation, or temperatures, where one often models these
phenomena using an extreme value distribution, such as, e.g., the Gumbel distribu-
tion. Another flaw of the normal distribution is its inability to model outliers, and its
tendency to be sensitive to them. One could therefore instead consider the student-t
distribution or even the Cauchy distribution. In any case, the choice of distribution
should be a well-grounded decision.

One thing to consider in the choice of distribution is of course, who is the audience
of the results. If the primary objective is to create a robust classifier, which can be
put into production, then the modelling choice should be most strongly supported by
empirical evidence, such as test-error, which is a measure on how well the method
generalizes to data, which was completely excluded from training. If we do not have
enough data for this, then our primary concern should be to get more data, such that
we have substantial empirical evidence for good performance. If however, we need
to interpret the results, we might want to choose a simple model, which makes this
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interpretation easier. The model selection of course also depends on the scientific
question that we are trying to answer.

2.4.1 Validating Assumptions
Tests to validate that the covariance, representing the different classes are equal are
commonly used. A classical test in that regard is Box’s M-test [Box49]. That test
is susceptible to non-normality, and if the covariances are unequal, but it cannot
cover the p ≫ n case. Modern approaches to test for equality of covariance matrices
exist, where one is presented in work by Ishii et al. [IYA16]. There the focus is
on the eigenvalues and principal components, i.e., the tests are on low dimensional
representations.

2.4.2 Sparse Discriminant Analysis
SDA was first presented in the paper by Clemmensen et al. [Cle+11] in 2011. The
method is approached via Optimal Scoring, or rather a sparse version called Sparse
Optimal Scoring (SOS):

(θk, βk) := arg min
θk,βk

||Yθk − Xβk||22 + γβT
k Ωβk + λ||βk||1 (2.34)

subject to θT
k YT Yθk = 1, and θT

k YT Yθl = 0, ∀l < k. (2.35)

γ and λ are regularisation parameters, commonly found via cross-validation. These
parameters control the influence of the regularisers.

The only difference from Eq. 2.14 is the regularisation terms in the objective
function, where Ω is a p×p elastic net coefficient matrix and || • ||1, is the l1-norm.
Generally the p-norm || • ||p-norm is defined as:

||β||p :=

(
n∑

i=1
|βi|p

) 1
p

(2.36)

see the level curves for different values of p in Fig. 2.4.
Hastie, Tibshirani and Buja had already introduced the penalised version of Op-

timal Scoring in [HBT95]. The word penalised is traditionally used by the statistics
community to refer to regularisation, (more so before 2000). So the major new addi-
tion here is the inclusion of the l1-norm. The l1-norm is also what makes the problem
significantly harder to solve than before, i.e., the l1-norm is not differentiable at zero,
making basic gradient-based approaches fail and no closed form solution, except for
some special cases. The optimisation becomes, in general, more challenging.

2.4.2.1 The Lasso & the Elastic Net

SOS is sparse classification cast into a regression framework. This, of course, means
that we have access to the tools available for regression to approach this problem. As
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Figure 2.4: Level curves for different choices of p in the Lp-norm, where ||β||p = 1.
Taken from [HTW15].

mentioned earlier, the problem becomes significantly harder to solve when we add the
l1-norm, so there must be some benefits from using it. The advantage stems from the
shape of the unit ball imposed by the l1-norm; it is a diamond. Of all the Lp-norms,
p = 1 is the smallest p where we still have a well-defined norm, and the level curves
of the norm define convex sets.

The problem defined in Eq. 2.34 is in Lagrange form. We can also write the
regularization term as the constraint:

||βk|| ≤ t, (2.37)

where there is a one to one correspondence between t and λ in Eq. 2.34, dependent on
the data. The optimal solution will be at the intersection of the level curves defined
by the l1-norm and the sum of squares term. This idea is presented in Fig. 2.5.
The level curves defined by the sum of squares term are an ellipsoid, so they are most
likely to intersect with the diamond in one of the corners, or higher dimensional edges.
The corners and edges are places where some of the parameters are zero, imposing
a sparse solution. Having solutions at these corners means that we can perform
feature selection in the optimisation procedure. Sparsity is a great property
to have for the method. At the time that Lasso paper was published, the amount
of available data was increasing with computing power, so there was, and still is, a
strong incentive to perform excellent and efficient variable selection.

The Lasso is the central theme of the work presented by Tibshirani, who coins
the term Lasso [Tib96]. He remarks that the case where XT X = I had already
been solved by Donaho et al couple of years earlier, in their work on wavelet basis
functions [DJ94; DJ95]. Tibshirani further reflects on how the Lasso regulariser can
be interpreted in a Bayesian setting as a prior, and he shows that it is equivalent
to putting a double exponential prior on the parameters. Tibshirani did provide an
algorithm to find a solution, but there are no guarantees on the runtime, and worst
case it needs to try all combinations of parameters, which is not very efficient.

In theory, we can find the best solution by trying all combinations of variables,
which are total 2p, we refer to this problem as the best subset problem. That is not an
effective strategy and explodes fast with the number of variables. Finding the best
subset of variables essentially amounts to having the “zero-norm” as a regulariser.
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Using the l1-norm is in some sense the best convex relaxation to the best-subset
problem, allowing us to use techniques from convex optimisation to solve it [BV04].

The most significant advancements for the Lasso came in 2004 when Efron et al
presented the least angle regression algorithm to solve the Lasso [Efr+04], they call
the algorithm LARS. They prove that the algorithm provides the correct solution and
provide estimates for the degrees of freedom in the models among other statistics for
model comparison.

θ := arg min
β

||y − Xβ||22 + γβT Ωβ + λ||β||1 (2.38)

The next logical step was, of course, to add the Tikhonov regularizer, which Zou
and Hastie did in 2005 [ZH05], see Eq. 2.38. The commonly use an identity matrix
for the regularizer, and then the regularizer is often referred to as the Ridge Penalty,
[HK70], since we are adding a ridge to the diagonal of the covariance matrix. They
show that the method outperforms the Lasso, specifically in the p ≫ n case. They
also show how the elastic net encourages a grouping effect, where correlated variables
are either selected or omitted together in groups.

2.4.3 Bayesian View on Regularisation
Independent of whether we approach the world from a Bayesian or Frequentist view, it
is always nice and healthy to put on the Bayesian goggles to get a better understanding
of regularisers.

Bayesian statisticians impose their beliefs and ideas about models and their pa-
rameters in the form of priors. The prior is a distribution of the parameters. Using
priors sometimes helps when models are not identifiable, or we want to derive some
more detailed information about the parameters. When a model is not identifiable,
the Frequentist can resort to regularisers.

In a Bayesian setting, we sometimes have to provide point estimates of parameters,
whereas traditionally Bayesian statisticians inspect properties of posterior distribu-
tions. These estimates are commonly Maximum A Posteriori (MAP) estimates. In a
Bayesian regression model with normal errors, the conjugate prior for the regression
parameters is the normal distribution. If we impose a normal prior on the regression
parameters, the MAP estimate becomes equivalent to the maximum likelihood ridge
regression solution [HK70]. So there is a natural correspondence between the two
approaches. Now it is curious to see if there is a logical relation for the Lasso and the
elastic net.

Park and Casella presented the Bayesian Lasso in 2008 [PC08]. They use the same
prior as presented by Tibshirani in the original Lasso paper, Independent and Iden-
tically Distributed (i. i. d. ) Laplace, (also called double exponential). They derive
tractable full conditional distributions, allowing them to sample from the posterior
in a Gibbs sampler. They run into similar issues with variable selection as with the
Bayesian elastic net.
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Figure 2.5: Feature selection effect of the Lasso. We can see on the left that the
l1-sphere, which looks like a diamond, intersects the level curves of the
cost-function along the coordinates axis, meaning the value of the β1
parameter is zero. This is a special property of the l1-norm, whereas
the sphere of the l2-ball, seen on the right, does not portray a preference
for an intersection along the coordinate axes, thus not imposing sparsity.
Taken from [HTW15].

Li and Lin presented the Bayesian Elastic net in 2010 [L+10]. Li and Lin present
the elastic net prior as:

π(β) ∝ exp
{

−λ||β||1 − γ||β||22
}

. (2.39)

They state that this is a compromise between Gaussian and Laplacian priors. Then
they show how the conditional posterior of β is similar to the elastic net:

f(β|σ2, y) ∝ exp
{

−1
2σ2 (y − Xβ)T (y − Xβ) − λ||β||1 − γ||β||22

}
. (2.40)

They further describe how this provides a hierarchical model, and how to derive a
posterior distribution for a prior, which is conditional on σ2, i.e., a little different from
Eq. 2.39. This distribution is not a closed for of any other traditional distribution,
but rather a mix of a multivariate normal and a truncated gamma distribution. The
distribution is derived based on a noninformative prior for σ2.

They mention how the regularisation parameters can be chosen via empirical
Bayes [Cas01] and how the variable selection does not come as naturally as from
the traditional approach. They view the variable selection as a hypothesis testing
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problem and remove variables ad hoc by checking if zero is contained in a credible
interval for the parameters, (this is similar for the Bayesian Lasso). They provide
guiding heuristics for making this selection, but the user essentially has a parameter,
the width of the interval, to select. The Bayesian community continuously seeks
approaches to do a variable selection, where the most notable recent advances are the
spike and slab prior [I+05; Lat+16], and penalising complexity priors [Sim+17].

It is interesting to see that the elastic net regulariser is not a well known prior, it
is a combination of well-known distributions. It is simpler to look at the terms indi-
vidually like Tibshirani did in the Lasso paper, but it is still possible to do something
with the priors, although they do not have well defined closed form.

2.4.4 Sparse Discriminant Analysis Algorithm
The original algorithm used by Clemmensen et al. is a modification of least angle
regression [Cle+11]. The algorithm is block-coordinate descent algorithm (See Alg. 1),
where the algorithm alternates between updating θ and β until convergence, or the
maximum number of iterations is achieved.

There is no proof of convergence, but Witten and Tibshirani show that the critical
points of SDA are the same as the ones in the Sparse Fisher Discriminant Analysis
[WT11]. Witten and Tibshirani use minorisation approach to solve their formulation.

One of the significant criticisms of SDA is the lack of convergence results. One
thing to note about the SOS problem formulated in Eq. 2.34, is, of course, the fact
that it is non-convex. For a given β vector we can find θ in polynomial time with
the formula:

θNew := (YT Y)−1YT Xβ√
βT XT Y(YT Y)−1YT Xβ

, (2.41)

This is essentially the same θ as the one we find in Eq. 2.16, except we scale it to
ensure unit length.

Now, for a given θ we mostly have an elastic net problem, so we can employ
any algorithm that solves the elastic net to solve it. This block coordinate descent
generic approach to the problem is depicted in Alg. 1. We will explore in Chapter 3
how we can apply alternative methods to the optimisation and prove convergence to
stationary points.

2.5 Over- & Underfitting
The idea of regularisation is parsimony or simplicity. We prefer a simpler model,
with fewer effective parameters, to a complex one. This ideology is ancient and
essentially derives from a problem-solving principle called Occam’s razor. One form
of the principle that I am particularly fond of is by Thomas Aquinas, from his Summa
Theologica:
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Algorithm 1 Block Coordinate Descent for SDA Eq. 2.34
Start with initial iterate θ0.
for t = 0, 1, 2 . . . until converged do

Update βt as the solution of Eq. 2.38 with θ = θt defining y := Yθt.
Update θt+1 by

w = (YT Y)−1YT Xβ, θt+1 = w√
wT YT Yw

end for

It is superfluous to suppose that what can be accounted for by a few
principles has been produced by many.

The razor part in the name refers to shaving away unnecessary assumptions.
When we create statistical models, classifiers, or algorithms that learn from data

and make predictions, we should choose the simplest model that does the job. This
choice may sound a bit arbitrary but think of the simple problem of predicting weight
from height in humans. A natural hypothesis we might have about weight and height
is that weight increases with height. To validate this hypothesis statistically, we
project the real world measurements to the simple model of a line and make a test of
whether the slope is positive or not.

This simple model might have been sufficient to provide an answer to our hypothe-
sis, but if we want to predict weight from the height, then this simple model is maybe
not enough, therefore we need tools to control the complexity sensibly.

We can see in Fig. 2.6 the effect of making a model too complicated. In Fig. 2.6
we draw 20 sample from the simple model:

y ∼ x + sin(x) + ε, ε ∼ N (0, 0.5). (2.42)

We add more and more columns to the data matrix X, where we are increasing the
polynomial basis we fit to the data. We can also just add random noise to the columns,
and get a better fit, but then we can’t visually demonstrate the effect of overfitting.
We find the best polynomial parameters via Ordinary Least Squares (OLS), to do
that we use the standard formula:

y ∼ Xβ + ε, β̂OLS = (XT X)−1XT y. (2.43)

Note the matrix we invert to get the OLS solution. This matrix is of size p×p, where p
is the number of variables/columns in X. This matrix is only invertible if the rank of
X is p or greater. By construction, the matrix is positive semi-definite, if p is not high
enough, so the smallest eigenvalue is zero. The matrix A := XT X is a self-adjoint
operator, this means that if we plug A into the polynomial f(x) = x + c, which in
matrix terms would be f(A) = A + cI, we can calculate the transformed eigenvalues
by applying this same function. This result derives from the spectral theorem for
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self-adjoint operators. Add the ridge means that we are essentially shifting all the
eigenvalues up by a constant c, and can, therefore, invert this matrix and get a
solution. The ridge solution, in correspondence to the OLS solution in Eq. 2.43 is
presented below:

β̂Ridge = (XT X + γI)−1XT y. (2.44)

We can see the effect of tuning the parameter γ in Eq. 2.44 in Fig. 2.7. We start off
with a polynomial of degree 14, and regularise it until we have γ = 1. The effective
number of parameters pEff in the last example is 9.15, we can calculate it as the trace
of the hat matrix:

pEff := trace
(
XT (XT X + γI)−1XT

)
(2.45)

2.5.1 Bias-Variance Tradeoff
One of the theoretical grounds for using regularisation, stems from the bias-variance
tradeoff [Dom00; FHT01]. One of the properties that the OLS solution has, is that
it is the Best Linear Unbiased Estimator (BLUE). This is results from the Gauss-
Markov theorem [Pla50], where the assumptions are that the errors from the model
satisfy the following properties:

1. Errors have expectation zero.

2. Errors are uncorrelated.

3. Errors are homoscedastic.

Now, if the OLS solution is BLUE, and the assumptions are met, why should we
consider anything else? This boils down to the bias-variance tradeoff. So when we
train a model with data, we are indirectly trying to optimise the generalisation error,
but this error can be decomposed into three components:

E
[
(y − f̂(x))2

]
= Bias

[
f̂(x)

]
+ Var

[
f̂(x)

]
+ σ2. (2.46)

In the OLS case, the first component is zero, but the variance might actually be very
big, the magnitude of the variance is related to the inverse of the smallest eigenvalue
of A := XT X. So we might want to trade some of that variance for bias, to get better
generalisation. Choosing the best bias amounts to selecting the best regularisation
parameter, since that parameter controls the bias. This can be achieved via cross-
validation.
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Figure 2.6: Example of overfitting. We have 20 data points (one is outside the
plotting region) and fit polynomials of various degrees. The underlying
model is y = sin(x)+x, with Gaussian noise, the third degree polynomial
should provide the most reasonable fit.

2.5.1.1 Other Generalisation Criterions

The notion of indirectly optimising a generalisation criterion is not restricted to pre-
dictions. Candés et al. presented the knockoff filter in 2015, where they prove that
they can provide bounds on the False Discovery Rate (FDR) in variable selection
for the knockoff filter [B+15; WBC17; BCS18]. The basic idea behind the knockoff
filter is that we create a rotated version of our variables, then we add these knockoff
variables to our data set and perform variable selection. If the knockoff variable is
selected before the actual variable, in the selection process, then that is substantial
evidence for the original to be a false discovery.

I was fortunate enough to attend the Machine Learning Summer School (MLSS)
in Kyoto Japan. Candés gave a presentation about the knockoff filter, and he also
described Big-Data as a new paradigm of doing research. Traditionally in statistics,
one performs the following steps:

1. Find hypothesis.
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Figure 2.7: Example of ridge regularisation. We have 20 data points (one is outside
the plotting region) and a polynomial of degree 14, we try various penalty
parameters for the ridge penalty, showing how we can effectively provide
a simpler model. The underlying model is y = sin(x)+x, with Gaussian
noise.

2. Design an experiment to reject or validate the hypothesis.

3. Run the analysis and report findings.

Candés suggests an alternative:

1. Receive an abundance of data.

2. Generate correct hypotheses, and include as few false discoveries as possible.

This approach limits p-hacking/fishing, which is a severe problem in academia. We
need tools to control the FDR to do proper research. There are some fantastic
applications for this work, one, in particular, is for doing a multivariate Genome
Wide Association Study (GWAS). Barber, Foygel, and Candés have shown promise
for such applications [BC16].

The following quote is from Fisher, which reflects strong views on the traditional
paradigm for statistical analysis:
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To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able
to say what the experiment died of.

2.5.2 Curses & Blessings
In the year 2000 Donoho gave a speech called High-dimensional data analysis: The
curses and blessings of dimensionality [Don+00]. The talk was held exactly 100 years
after Hilbert gave the talk on Mathematical Problems at the International Congress of
Mathematicians in Paris. The points Donoho makes in this talk regarding the main
trends in how statistics and data analysis are changing.

The statistics of the 20th century were built on the assumption that the number of
samples exceeded the number of observations, p < n, and further asymptotic results
were derived in the limit when n → ∞. Most of the results based on these assumptions
fail in the case p ≫ n. Donoho emphasises that the p ≫ n case may instead be the
typical case and draws examples from genomics and speech analysis.

2.5.2.1 The Curses

Donoho refers to Bellman as having coined the term curse of dimensionality [Bel15].
Donoho mentions three classic cases:

1. If we must approximately optimise a function of p variables and the only infor-
mation we have is that it is Lipschitz continuous, then we need approximately
(1/ϵ)p evaluations on a grid, to find variables that give us error less than ϵ.

2. If we want to approximate a function of p variables, only knowing it is Lipschitz.
Then we need (1/ϵ)p evaluations on a grid to obtain uniform approximation error
less than ϵ.

3. If we want to integrate a Lipschitz function numerically, we need (1/ϵ)p evalu-
ations on a grid to achieve error less than ϵ.

These results are apparent but quite commonly used as general assumptions. Only
knowing that the function we are dealing with is Lipschitz, is very generic, and
demonstrates the difficulty in relaxing the conditions or assumptions we commonly
use. For statistical purposes, Donoho presents the estimation problem:

y = f(x1, x2, ..., xp) + ε. (2.47)

If we only assume that f is Lipschitz, and that the errors are i. i. d. Gaussian,
how many observations do we need to estimate f? If F is the class of all functions
which are Lipschitz on [0, 1]p, then we have from the asymptotic theory of statistical
estimation [IH13]:

sup
f∈F

E(f̂ − f(x))2 ≥ C · N−2/(2+p), n → ∞, (2.48)
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where C is a constant. So for a given error, we allow in our estimated function f̂ ,
we can get bounds on the number of observations needed, which unfortunately scales
exponentially with the number of variables.

2.5.2.2 The Blessings

The first blessing Donoho mentions is the concentration of measure phenomenon.
Assume that we have a Lipschitz function f on a p-dimensional sphere. If we have P
as a uniform measure on the sphere and X is a P -distributed random variable, then:

P{|f(x) − Ef(x)| > t} ≤ C1 exp(−C2t2). (2.49)

The C constants are independent of f and the dimension p. This means that the
Lipshitz functions are nearly constant, and the tails of this distribution behave like
the tails of a Gaussian random variable.

The second blessing relates to the existence of asymptotic results, where we let
the number of predictors go to infinity. These results have, e.g., been used to derive
the extreme value distributions.

The third blessing is concerning why the data is high dimensional. We can have
spatial or temporal relationships. The underlying phenomena that we are sampling
may be of much lower dimension and are realised in high dimension, because of the
way the signals are sampled.

2.6 Other Methods Inspired by the Lasso
There is a plethora of other methods inspired by the Lasso regulariser, or methods
that directly incorporate the Lasso. The book Statistical Learning with Sparsity,
the Lasso and Generalisations from 2015 gives the most recent extensive overview
[HTW15].

The most notable similar methods to SDA are the sparse analogs derived from
CCA [PTB09; WTH09] and Fisher’s discriminant analysis [TJ07]. Another impor-
tant related method is sparse PCA [JTU03; WTH09]. We can consider LDA as a
supervised version of PCA, similarly sparse PCA is the unsupervised analog of SDA.
LDA provides us with the discriminant vectors, that we can use to project the data
to a lower dimensional representation, where this representation contains all the in-
formation necessary for discriminant analysis, under the Gaussian assumptions for
the data. The discriminant vectors are also ranked according to the amount of dis-
crimination they provide, similar to the loadings of PCA are ranked for the amount
of variation they explain.

Many of these methods are implemented in the Matlab toolbox associated with
contribution D. The toolbox includes implementations of elastic net, forward selection,
least angle regression, lasso, SDA and sparse-PCA. Contribution D also includes an
extended related work section on the currently related available tools.
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2.7 What is Statistical Learning?
Why do we need a new name for the field? Why can’t we call it Machine Learning, or
Statistics? One of the significant differences from traditional statistics is a stronger
focus on making prediction models and classifiers. Another critical deviation is the
importance of being able to compute the solutions efficiently, and the development of
algorithms to do so.

Compared to machine learning, statistical learning usually has a statistical method
as a starting point, whereas that is not needed for machine learning in general. This
method usually needs to be generalised to a specific problem or case, e.g., like ridge
regression, to handle more predictors than observations. The way these classical
methods are generalised does not necessarily have theoretical underpinnings in the
same way as traditional statistics. An excellent example of that is the elastic net.
We can cast the elastic net into the Bayesian framework, to try to understand better
the kind of distributional assumptions that can lead to a model like that, but we
end up with a prior distribution which is a combination of two known closed form
distributions. It is easier to understand these methods from the perspective of the
bias-variance tradeoff.

More conservative practitioners of statistics have heavily criticised the develop-
ment of statistical learning methods and modern machine learning. The epitome of
such discussions is the paper Statistical modelling: The two cultures by Leo Breiman
[Bre+01]. Leo describes the two cultures as the data modelling culture and the algo-
rithm modelling culture. One of the main arguments against the data modelling cul-
ture is the way they handle model validation. Model validation is commonly achieved
with the goodness of fit tests and residual examination. The algorithm culture, on
the other hand, does validation by measuring predictive accuracy.

The discussion following the paper shows how these different opinions are reflected.
Brad Efron comments that the 20th century may be described as 100 years of unbi-
asedness.

In the case where we have an abundance of data, i.e., a lot of observations, I
agree with Breiman. Algorithmic methods, which are mainly very good and fast
function approximations, are perfect for this task, such as Deep Learning, Random
Forest and Xgboost, [Goo+16; Fri01; Bre01]. On the other hand, when we have fewer
observations, expert knowledge as priors, which can be imposed into the modelling
frameworks, are the best option.
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CHAPTER 3
Optimisation

3.1 General Theory
Optimisation is a versatile tool; the dictionary definition is the action of making
the best or most efficient use of a situation or resource. The dictionary definition
is very related to the mathematical definition. From a mathematical point of view,
optimisation concerns with problems of finding the best element, from a set, that
satisfies our criterion.

In most cases, this is translated to the problem of minimising or maximising a
function over some domain, where the domain might be specified with constraints. In
general, a mathematical optimisation problem can be defined as:

arg min
x∈Rn

f(x) (3.1)

subject to gi(x) ≤ bi, ∀i ∈ {1, 2, ..., m}, (3.2)

where f and gi are all functions f : Rn → R. This general formulation incorporates
all optimisation problems1. For a new problem, usually, the difficult part is casting
it into the correct optimisation problem to solve.

3.1.1 Linear Programming
Throughout the 20th century, people worked on developing techniques for solving
these types of problems under certain assumptions on the function f and the con-
straints gi. The most common of these is probably linear programming. Linear pro-
gramming makes rigid assumptions, meaning that the function f and the constraints
gi are linear. This means:

f(αx1 + βx2) = αf(x1) + βf(x2) (3.3)

Under these assumptions, Eq. 3.1 translates to:

arg min
x∈Rn

wT x (3.4)

subject to Ax ≤ b, and x ≥ 0 (3.5)

1We could of course also have the domain as Cn, but for the practical purposes presented here,
we are concerned with reals.
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The most commonly used algorithm to solve the problem in Eq. 3.4 is the simplex
method by Dantzig [D+55]. The idea is that if the best solution is not in the region
defined by the constraints, then it must lie on the corner points of a surface determined
by the constraints, which is a polytope.

The algorithm works well, but there exist examples showing that the worst-case
time-complexity is exponential. There exist interior point methods [Wri97] which
work in polynomial time, but in practice, the simplex method is the fastest.

Generalisations of linear programming include integer programming and mixed
integer programming. There we restrict the solution vector, or part of the solution
vector to contain integers. This restriction does not simplify the problem; it further
complicates it somewhat. Common algorithms to solve these are the branch and
bound based methods. The bounds are calculated as linear relaxations, allowing us
to reduce the size of the search space.

3.1.2 Quadratic Programming
Another class of problems is the quadratic programming problems. They are similar
to Eq. 3.4, except we get an additional quadratic term:

arg min
x∈Rn

1
2

xT Qx + wT x (3.6)

subject to Ax ≤ b, and x ≥ 0, (3.7)

where Q is real symmetric. Quadratics programs can also be solved with interior
point methods.

Researchers struggled to generalise optimisation or to categorise it in different
ways. Mostly the problems were either linear or nonlinear, where, unfortunately, no
general polynomial time approach exists. Later in the 20th century, a generalisation
of linear programming appeared, it was convex optimisation.

3.2 Convex Optimisation
Convex optimisation is about solving problems similar to that of a linear program.
Instead of imposing the rigid assumptions that the functions are linear, we relax the
condition, requiring that the functions are convex:

f(αx1 + βx2) ≤ αf(x1) + βf(x2), α + β = 1, α, β ≥ 0, ∀x1, x2 ∈ Rn. (3.8)

We can see that linear programming is a special case.
It was not until 1983 that a formal argument was presented [NYD83] for show-

ing that convex optimisation problems were easier to solve than general nonlinear
optimisation problems. Further in 1993 Rockafeller said in his review paper [Roc93]:

In fact, the great watershed in optimisation isn’t between linearity and
nonlinearity, but convexity and non-convexity.
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These developments lead to the creation of the field of convex optimisation. Often
we can also relax certain problems to be convex, allowing us to find an approximate
solution efficiently. Stephen Boyd, who wrote the book Convex Optimization [BV04]
has the following to say:

The challenge, and art, in using convex optimisation is in recognising
and formulating the problem. Once this formulation is done, solving the
problem is, like least-squares or linear programming, (almost) technology.

So the hardest part of the problem is representing it properly as a convex optimisation
problem. Convex optimisation includes multiple specialised algorithms, way too many
to cover in this thesis. We will focus on approaches which are related to the algorithms
developed in contribution A.

Remember that the main problem that we are solving is in Eq. 2.34. For a given
score vector θ we have a convex function which we are minimising. This is easy to
see since a linear combination of convex functions is also convex. The algorithms we
are focusing on correspond to the update β part in Algorithm 1. We will consider a
couple of algorithms for this purpose.

3.3 Proximal Methods
For extended work on proximal methods, we refer the reader to [P+14]. The work
presented here is a summary of the work presented in contribution A, that work is
very influenced by the ISTA and FISTA methods by Beck and Teboulle [BT09].

The word proximal relates to the word proximity. Proximal gradient-based meth-
ods are based on the proximal operator, which revolves around balancing the objec-
tives of minimising a function and remaining in the proximity of a given point. So for
a given function f : Rp → R, we can define the proximal operator proxf : Rp → Rp

as:

prox
f

(y) = arg min
x∈Rp

{
f(x) + 1

2
∥x − y∥2

}
, (3.9)

The proximal operator is handy for minimising functions which are partly differ-
entiable. We can then minimise the non-smooth part while retaining close to the
gradient of the smooth portion. Using the proximal operator allows us to take an
optimisation problem, and solve the easy part independently, and cast it into a new
optimisation problem, where the primary focus is on the non-differentiable function.
Now let’s assume that we have a problem that we can represent as:

min
x∈Rp

f(x) + g(x) (3.10)

where f is smooth everywhere, and g is potentially not differentiable. For a proximal
gradient-based approach we take a step in the direction of −∇f and evaluate the
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proximal operator of g. If we have iterate xt, then the next iterate is produced as
follows:

xt+1 = prox
αtg

(xt − αt∇f(xt)) (3.11)

= arg min
x∈Rp

{
αtg(x) + 1

2
∥x − (xt − αt∇f(xt))∥2

}
, (3.12)

where αt controls the step length, or the learning rate. Now if we consider the problem
in Eq. 2.34, with a fixed θt, we can split it up into the two functions f and g, where

f(β) = ||Yθt − Xβ||22 + γβT Ωβ (3.13)
g(β) = λ||β||1 (3.14)

g is differentiable everywhere, except at zero. Now we can represent f a little more
conveniently as:

f(β) = 1
2

βT Aβ + dT β, (3.15)

where A = 2(XT X + γΩ) and d = −2XT Yθt+1. Now the gradient of f is:

∇f(β) = Aβ + d. (3.16)

The proximal operator of g, i.e. of the scaled l1-norm is a solved optimisation problem,
so we have:

prox
λ||•||1

(y) = sign(y) max{|y| − λe, 0} =: Sλ(y); (3.17)

where Sλ is commonly referred to as the soft-thresholding operator. The sign and max
functions above are defined element-wise and e is a vector of all ones.

Now we can create a sequence of iterates for β as

βt+1 = sign(pt) max{|pt| − λαte, 0}, (3.18)
where pt = βt − αt∇f(βt) = βt − αt(Aβt + d). (3.19)

The rate of convergence is O(1/t). We refer the reader to contribution A for a more
extended treatment and guidelines for selection of the step-size parameter.

3.3.1 Acceleration
We can extend the results presented in Eq. 3.18 with acceleration, which was pioneered
by the work of Nesterov [Nes83; Nes05; Nes13]. Detailed arguments for why such
acceleration works can be found in [AO14; BLS15; FB15; LRP16; OC15; SBC14;
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Tse08]. The main idea is to use two consecutive iterates to extrapolate the next
solution. The new sequence of iterates now becomes:

yt+1 = xt + ωt(xt − xt−1) (3.20)
xt+1 = prox

αg
(yt+1 − α∇f(yt+1). (3.21)

ωt ∈ [0, 1) is the extrapolation parameter, where we set it as t/(t + 3). With accelera-
tion we have rate of convergence in function value as O(1/t2). Empirical evidence in
contribution A also suggests that this is the fastest approach for solving SDA. Further
convergence results and more extended work can be found in contribution A.

3.4 Alternating Direction Method of Multipliers
Alternating Direction Method of Multipliers (ADMM) solves problems of the form:

min
x∈Rp,y∈Rm

{f(x) + g(y) : Ax + By = c} , (3.22)

via an approximate dual gradient accent [Boy+11]. We can use the same decompo-
sition as for the proximal gradient based method, so g represents the Lasso term in
SDA. Then we can use an equality constraint for x and y. The problem then becomes
in ADMM form:

min
x,y∈Rp

{
1
2

xT Ax − xT d + λ∥y∥1 : x − y = 0
}

. (3.23)

To generate the iterates, we perform dual gradient ascent steps, for that we need the
augmented Lagrangian:

Lµ(X, y, z) = 1
2

xT Ax − xT d + λ∥y∥1 + zT (x − y) + µ

2
||x − y||22 (3.24)

µ > 0 is a penalty parameter controlling the emphasis on enforcing the feasibility
of the primal iterates x and y, i.e. enforcing that the constraint is satisified. We
minimise the augmented Lagrangian by alternating between minimising with regards
to x and y. We then use the approximate gradient to update the dual variable z by
a dual ascent step.

To update x, given (xt, yt, zt), we need to solve the following optimization prob-
lem:

xt+1 = arg min
x∈Rp

Lµ(x, yt, zt) = arg min
x∈Rp

1
2

xT (µI + A)x − xT (d + µyt − zt). (3.25)

We can minimise this by solving for when the gradient is zero, which gives us the
following equation

(µI + A)xt+1 = d + µyt − zt. (3.26)
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Since the matrix on the left hand side stays fixed throughout the iterations, we can
exploit that to reduce computation. We refer the reader to the paper (contribution
A) for more details on reducing the amount of computation needed.

Next we need to update y. Then we need to solve the following optimisation
problem:

yt+1 = arg min
y∈Rp

Lµ(xt+1, y, zt) = arg min
y

λ∥y∥1 + µ

2
∥y − xt+1 − zt/µ∥2. (3.27)

This is precisely the proximal operator of the scaled l1-norm applied to the vector
xt+1 + zt/µ. So we can use the soft-thresholding operator to update y:

yt+1 = Sλ(xt+1 + zt/µ). (3.28)

Finally, the dual variable is updated using the approximate dual ascent step:

zt+1 = zt + µ(xt+1 − yt+1). (3.29)

3.5 Summary
In this chapter, we have presented the essential step needed for deriving the algo-
rithms developed in contribution A. Much more extended results can be found in
that manuscript, including run-time analysis, empirical comparisons, and proofs of
convergence.

These algorithms are implemented in the R-package accSDA, along with other
variants, such as sparse zero-variance discriminant analysis [AH16].



CHAPTER 4
Ordinal Labels and Unlabeled Data

In this chapter we summarise the methods and algorithms from contributions B, D
and F. These advances regard the cases when the labels have an inherent ordinal
relation, compared to a nominal one, or if some of the data is unlabeled.

4.1 Ordinal Labels for p ≫ n Problems
Ordinal labels are all around us; we may not be entirely aware of it. Every time some
grading is involved, the label is ordinal. Most notorious of such modern cases are
probably online user reviews. In this section, we shall inspect further what ordinal
labels are, and how we can tackle them in the p ≫ n setting. We rely heavily on
other people’s opinion and online reviews for making decisions [GY08]. In chapter 7
we will inspect how ordinal approaches to sparse classification can help us manage
the increasing amount of information contained in user reviews.

4.1.1 What are ordinal labels?
Ordinal labels are used as a way to rank observations, subjectively, or according to
a predefined protocol. We assign these ranks because the direct response that we
would wish to observe is just not available. The ordinal label thus becomes a proxy
for a phenomenon we would like to measure. We can compare observations based on
ordinal labels, e.g., is one observation better than the other? But we cannot quantify
the extent of this difference. The ordinal labels have the discreteness property from
regular nominal labels, and the ordinal property from numeric responses, making
them fall between the two groups.

A classical example of ordinal labels are grades. We can think of grades as a proxy
for estimating the amount of effort a student has put into a subject. Of course, other
factors play a part here, e.g., general level of intelligence, but let’s assume that the
latent variable we are trying to estimate, is, in fact, the number of hours the student
has put in. There is no way of knowing that the relationship is linear, it might just
as well be exponential, meaning that for each increase in grade we need exponentially
more effort. This is commonly reflected in grades, where the distribution is approxi-
mately Gaussian, sometimes the grades are intentionally distributed on a bell curve.
This type of data is depicted in Fig. 4.1.

Imagine that if we have data on the students, and we want to predict their effort
from this data, but the only available response is the grades, which is a proxy for the
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Figure 4.1: This plot shows synthetic grades (Noise was added to the grade for
the visualisation) plotted against effort in hours per week. This data
shows example of nonlinear relationship between the ordinal label proxy
variable, and the true signal that we are after. Note that variation also
increases with higher grades..

same signal. The effort can have various problems, e.g. there is a nonlinear relation-
ship between the grades and effort, and there might be overdispersion, meaning that
the variation in effort increases with higher grades.

This means that if we approach this by doing traditional regression on the labels,
we cannot conclude which variables are truly most affecting the effort. The assump-
tions for standard linear regression are essentially broken. This means that we need
to resort to other approaches, specifically for ordinal labels, a good summary can be
found in [AK97].

4.1.2 From a Classification Point of View
Another common approach to ordinal labels is to ignore the ordinality aspect and
use a simple classifier. For motivating the effort of doing something else, other than
ignoring the ordinality, we want the ordinal classifier to have some properties, which
make it superior. Ideally:
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1. The ordinal classifier should be simple, i.e., need fewer parameters.

2. It should also be easier to interpret, specifically in alignment with the target
problem.

3. It should a have a lower off-by-one error, meaning that if we classify wrong,
it is more likely to be the label one above or one below. The classifier should
capture the ordinal aspect of the data.

There is a generic method to achieve these goals. Let us inspect it further.

4.1.2.1 The data replication method

The data replication is a general tool, to adapt any simple classifier to ordinal labels
[CC07; CCC05]. The trick is hidden in the name. We create replicas of the data into
the dataset. These replicas are created with additional binary variables, which code
which class they belong to, we do not naively create replicas, there is more to it.

The motivation for the data replication methods is that the classification boundary,
should be identical between classes (See Fig. 4.2). Identical boundaries between
classes can be extended to non-linear boundaries, but here we are concerned with
linear boundaries. To achieve these same boundaries means that for each boundary
we define a binary classification problem, choosing the number of adjacent classes to
use on each side. We do this for all the boundaries, and then solve all of the binary
classification problems together, to find the jointly best separating hyperplane. First,
we describe the data replication method, and then we demonstrate how it can be
adapted to a sparse setting. The approach is somewhat notationally cumbersome, so
we refer the reader to table 4.1.2.1 for lookup. Our way of creating the replicated
data matrix is more constructive than that of Cardoso et al.

Table 4.1: Notation used for developing the data replication method.
Symbol Description Symbol Description

βk Discriminant vector k Ω̂ Ordinal regularisation matrix
θk Scoring vector k ei 1 × (K − 1) i-th unit vector
Y Label indicator matrix Ek,i nk rows of ei

X Feature matrix bi Bias i, where i ∈ {1, ..., K − 1}
K Number of classes s Width of classif. problem
n Number of samples XOrd Replicated data matrix
p Number of variables YOrd Replicated label vector
Ω Regularization matrix XOrd,i Data matrix for boundary i
|| · ||1 1-norm YOrd,i Labels for boundary i
λi Regularisation parameters x(k) nk × p class k data matrix
nk Samples in class k 1k nk × 1 vector with only ones
βOrd Ordinal discr. vector 2k nk × 1 vector with only twos
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Figure 4.2: Visualization showing the idea behind the data replication method. We
seek linear boundaries between classes, where the separating hyperplane
is always the same up to the bias. We achieve this by creating a binary
classification problem for each hyperplane, (see on the right). We can
control the number of adjacent classes we wish to include on each side
for the binary problems. Fewer means that we need to replicate less
data. This visualisation is taken from [CC07].

For each of the K − 1 classification boundaries, we define a binary classification
problem. If the boundary is the one between classes i and i+1, then the binary labels
correspond to labels i and lower, and i+1 and higher. The maximum number of classes
we use on each side of the boundary is called s, which is an integer specified by the user.
So for the boundary between classes i and i+1 we label classes i−s+1, i−s+2, ..., i
as belonging to class 1 and the classes i+1, i+2, ..., i+s labeled as belonging to class
2. Then we append the vector ei, which is of length K − 1, to the samples, where
ei is a vector of all zeroes, except it takes the value 1 in position i. All these new
samples are added to the new data matrix. Class k has nk samples and we define xk

as the nk × p data matrix, only containing samples from class k. We also define the
nk × (K − 1) matrix Ek,i, which is a matrix of all zeroes, except the i-th column is a
vector of all ones.

XOrd,i :=



x(i−s+1) E(i−s+1),i

...
...

x(i) Ei,i

x(i+1) Ei+1,i

...
...

x(i+s) Ei+s,i


(4.1)
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YOrd,i :=



11−s+1
...

1i

2i+1
...

2i+s


(4.2)

The data matrix XOrd,i, corresponding only to the data needed for the boundary
between class i and i + 1 can be seen in Eq. 4.1 and the corresponding label vector
in Equation 4.2.

XOrd :=


XOrd,1
XOrd,2

...
XOrd,K−1

YOrd :=


YOrd,1
YOrd,2

...
YOrd,K−1

 (4.3)

The final data matrix is constructed from the matrices corresponding to the binary
classification problems as shown in Eq. 4.3.

4.1.3 Adapting the Data Replication Method to SDA
Now we would wish to plug the matrix XOrd and the labels YOrd into the SOS problem
in Eq. 2.34. We call the new discriminant vector that comes from this problem βOrd:

βOrd :=



β1
β2
...

βp

b1
b2
...

bK−1


, (4.4)

which is composed of a traditional discriminant vector, corresponding to the first
p elements, and then K − 1 biases, denoted bi, for i ∈ {1, 2, ..., K − 1}. We want
to regularise the first p parameters like in nominal SDA, but the parameters corre-
sponding to the biases, should not be regularised. In Equation 2.34 we use instead
a (p + K − 1) × (p + K − 1) regularisation matrix Ω̂, where the top left-most block
corresponds to the p×p Ω regularisation matrix for the original variables and the rest
is zero, such that there is no regularisation for the extra parameters corresponding to
the biases:

Ω̂ :=
[
Ω 0
0 0

]
(4.5)
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In a similar manner for the l1-norm term, we only calculate the l1-norm of the first p
parameters in βOrd, not regularising the parameters corresponding to biases. These
details are masked from the user in the implementation, thus the user can optionally
specify a p × p Ω regularisation matrix. This makes the usage almost identical to
that of nominal SDA. The main difference from the usage of nominal SDA is that the
user cannot specify the number of discriminant vectors in the output, ordinal SDA
only generates one.

After doing the data transformation, and redefining the Ω regularisation matrix,
the only change we need to do in the algorithms from contribution A, is to only do
the soft-thresholding update for the first p parameters in βOrd. This amounts to only
using the first p parameters of βOrd to calculate the l1-norm in Equation 2.34.

arg min
θ∈R2, βOrd∈Rp+K−1

∥YOrdθ − XOrdβOrd∥2
2

+λ2βT
OrdΩ̂βOrd + λ1

∑p
i=1 |βi|

s.t. 1
n

θT YT
OrdYOrdθ = 1. (4.6)

The original SOS problem 2.34 is reformulated with regards to the new notation
and change in the problem in Eq. 4.6. Note that we no longer need the orthogonality
constraint, since we only have one discriminant vector.

4.1.4 Predictions
The biases in the ordinal discriminant vector are ordered, so they define intervals on
the real line. For doing predictions on an unseen sample x, assuming it is a 1 × p
row vector, we first normalise it appropriately, and call the normalised sample xn.
Afterwards we calculate the scalar value x̃ = xn · β̂p, where β̂p is the p × 1 vector
corresponding to the first p values from the ordinal discriminant vector. Then we
find the lowest bias bi, such that x̃ < bi, that means that we predict that the new
observation belongs in class i.

4.1.5 Synthetic Data
Figure 4.3 shows how the classifier performs on a synthetic two-dimensional dataset
with 15 classes. The data is generated along a sine curve, where most of the variation
for each class is along the vertical axis. The method correctly learns to classify the
data, and one can visually examine that the decision boundaries are parallel to each
other.

In Fig. 4.4 we use the traditional SDA method, but only request a single dis-
criminant vector. The discriminant vector does not align properly with the class
boundaries and fails. When we add the second discriminant vector, as can be seen in
Fig.4.5, the SDA method succeeds.
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Figure 4.3: Synthetic data to show the discriminative potential of the ordinal clas-
sifier and how the decision boundaries are parallel.

4.2 Semi-Supervised Learning
Semi-supervised learning is the concept of learning with both labeled and unlabeled
data. This scenario commonly occurs, there are two main practical reasons:

1. It is expensive to create labels, e.g., having Medical doctors evaluate patients
or Radiologists labelling images.

2. Model has been deployed and running for some time, and we want to retrain
with new data, but omit a lengthy labelling process.

The latter case commonly includes a phenomena called concept drift [Tsy04]. Concept
drift means, that with time, the mean of the distribution representing the different
classes shifts. Concept drift commonly occurs with spam e-mail, where the people
generating the spam make it based on new trends, and to pass through the current
spam-filters [WIP13].

There are ways to take a classifier and make it semi-supervised generically. One
such classical approach is the Yarowsky algorithm [Yar95; Abn04]. Other approaches
are based on the Expectation-Maximization (EM)-algorithm [Nig+00]. The EM ap-
proach consists of training the algorithm on labeled data, then predicting on the
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Figure 4.4: Synthetic data, here we see how the SDA method fails if we only use a
single discriminant vector.

unlabeled data. The assigned labels are used as soft or hard labels to retrain the
classifier and make predictions again. This procedure is continued until convergence.
An implementation of this approach can be found in the R-package RSSL [KL15b;
Kri16]. The approach described above is a kind of self-learning approach, let the al-
gorithm teach itself how to use the unlabeled data, this approach has been reinvented
on numerous occasions.

Usually, the incorporation of unlabeled data is based on some assumptions. Com-
mon assumptions are that low-density regions separate the classes, a manifold assump-
tion, assuming that labels have the same label as the closest neighbours or merely a
clustering assumption, where the classes are assumed to form clusters. Under certain
assumptions on the data and models, we can prove to what extent unlabeled data
helps [BLP08; SNZ09].

We have to be careful. Sometimes the labels do not align with underlying cluster
structure, see Fig. 4.6. From a Bayesian perspective, we can often view our model as
a posterior distribution over the parameters

P (θ|x) ∝ P (θ)P (x|θ) (4.7)

where the first factor on the right-hand side is the prior distribution. Usually, we can
think of the unsupervised part of the model as a prior. Now to find the parameters for
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Figure 4.5: Synthetic data, here we see how the SDA method succeeds with two
discriminant vectors.

solving the problem, we need to balance the two objectives, adhere to the prior, or the
labeled data. In the peculiar case presented in Fig. 4.6, the unlabeled data will drive
the decision boundary to separate the two clusters, and hinder performance. Too
much unlabeled data is bad in that case, and we are most likely better off without
it. There are ways to incorporate unlabeled data, which ensures that the decision
boundary does not get worse than when we only have the labeled data [KL15b; KL14].

4.2.1 Semi-supervised regulariser for SDA
The following summarises the technicalities in contribution B. A natural way to in-
corporate prior information, into a frequentist model, is through regularisation. We
demonstrate how we can integrate a local consistency based assumption into a regu-
lariser for SDA.

We propose a regularisation term, similar to one that had prior been proposed
for LDA, [CHH07]. The main contribution of Cai et al. [CHH07] is the construction
of a Tikhonov regularisation term which borrows ideas from spectral dimensionality
reduction and spectral clustering [BN01; HN03; N+01], where they construct a k-
nearest neighbor graph on labeled and unlabeled data in feature space. Assuming
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Figure 4.6: Classical counter example to show why we need to be careful with the
assumptions in semi-supervised learning. The true labels do not align
with the underlying clustering of the data.

that neighbors are more likely to have the same label is a type of manifold assumption
initially introduced by Zhu et al. [Z+03] in their label propagation method.

We enforce a local consistency assumption [Zho+03], where unlabeled data that
is close in the original feature space should be close after being projected by the dis-
criminant vector. Local consistency is also a manifold assumption, where we seek to
project manifolds embedded in the feature-space to a lower-dimensional representa-
tion [BN04; SNB05].

We refer to a graph as G, A is the adjacency matrix, D is the degree matrix and
L = D − A is the graph Laplacian.

We need to construct the matrix Ω from the second term in Eq. 2.34 using unla-
beled data. We begin by assuming that we have a dataset D, which can be split into
a labeled part, D1, and unlabeled part, D2, where we have n1 labeled samples and
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n2 unlabeled samples and n = n1 + n2.

D1 = {(ck1 , x1), (ck2 , x2), . . . , (c
kn1

, xn1)} (4.8)
D2 = {xn1+1, xn1+2, . . . , xn1+n2} (4.9)

Now we ignore the labels in D1 and construct a graph on all the data points. We want
points that are near each other in the feature space to remain close after the projection,
so we construct the graph based on the proximity of data points. We explore two
ways to build the graph, what we need for the method from this construction is the
graph Laplacian.

First, we consider the weighted undirected graph defined by a Gaussian kernel,
where the edge weight between observations xi and xj in the adjacency matrix A is:

Aij = exp(−γ||xi − xj ||22).

For a suitable choice of γ, the closest points get a weight close to 1 and then it decays
exponentially the further we go away. Now we can construct the semi-supervised
regularisation term as: ∑

ij

(xiβ − xjβ)Aij = 2βT XT LXβ.

This has been simplified on the right hand side using matrix notation, where L is
the graph Laplacian and X is the data matrix containing both labeled and unlabeled
feature vectors. So our semi-supervised regularisation matrix Ω can be defined as
2XT LX.

The second graph we consider for the data is a k-nearest neighbour graph. The
only difference compared to the approach with the Gaussian kernel, is how we con-
struct the adjacency matrix A, which we initialise as the n × n zero matrix. For a
given data point xi we find its k nearest neighbours xi1 , . . . , xik

and assign the value
1 to Aij and Aji if xj is one of the k neighbours. We assign the value 1 to Aij and
Aji to make sure that the graph is undirected.

Although the way we define the regularisation terms only lies in the adjacency
matrix, the main differences are in the way we compute them. For the k-nearest
neighbour graph we might want to consider using approximate k-nearest neighbour
if 2p is greater or on the scale of n, where p is the number of features. For the
adjacency matrix created with the Gaussian kernel, we can vectorise the calculations
and do them on a GPU. Usually, we would want to inspect our data to make an
educated guess of reasonable values for the parameters γ and k, so we only need
to calculate the regularisation matrix once. We could also cross-validate over these
parameters, but since we already have one parameter per regulariser to cross-validate
over, we would end up with three parameters to cross-validate, which we want to
avoid. Another difference is the memory footprint in the intermediate computations
of Ω. For the Laplacian of a k-nearest neighbour graph and a low k we can use a
sparse matrix, but for the Gaussian kernel, the graph Laplacian matrix is dense.



48 4 Ordinal Labels and Unlabeled Data

The presence of outliers causes significant differences in the behaviour of these
two regularisation approaches. If the distribution of pairwise distances of data points
has a heavy right tail, then the Gaussian kernel could potentially give low weight to
edges connected to outliers while the outliers would still always be equally connected
to other data points compared to other points if we use a k-nearest neighbor graph.
If the number of variables in our data is high, then using the Gaussian kernel we
risk creating many connections between clusters, thus not being able to distinguish
clearly between them. This can quickly become an issue for us since we are focusing
on data where the number of features is usually higher or on the scale of the number
of observations.

Calculating distances in high dimensions is a significant issue in general. When we
have enough variables, the observations are almost equally far from each other. But
we are not limited to distance metrics for defining the graph. We could, for example,
generate pairs of connection, by asking people to label the couple as being similar or
not. This data can be used to construct the adjacency matrix and might be more
robust than distance calculations in high dimensions.

One thing to try with this approach is to re-evaluate the Laplacian, to get a more
robust estimate of the distances, based on the non-zero variables in the discriminant
vectors. Re-evaluating the Laplacian could make the distance estimation more robust,
but it involves a significant computational burden. It is maybe possible to represent
the distance calculations in a clever data-structure, to make this fast.

We refer the reader to contribution B for further examples.



Part II
Applications





CHAPTER 5
Motion Tracking Time Series

Motion tracking has been a topic of research for four decades, Moeslund and Granum
provide a comprehensive survey of the literature, until 2001 [MG01]. One of the most
impactful recent advances in human motion tracking is the arrival of the Microsoft
Kinect sensor and the associated software framework [Sho+11]. The Kinect sensor
was the first consumer available electronic device, able to do robust real-time human
motion tracking. The motion tracking is predicted on depth images, using a random-
forest model [Bre01]. The original Kinect sensor, that we use in this project, uses an
infrared projector and infrared camera to generate depth images, using a technique
called Light Coding. With the rapid advances in machine learning specifically deep
learning, new venues for human pose tracking have become available. One of the
most impressive recent deep learning approaches, that only uses color images, can be
found in the work DensePose by Güler et al. [GNK18], although it is not obvious how
to compare scales between recordings.

We are concerned with the tracking data provided by the Microsoft Kinect sensor.
The initial goal was to create a game-like environment to assist with the diagnosis
and monitoring changes in movement disorders of young individuals with psychiatric
problems. Movement disorders are common side effects of psychiatric drugs, and
assessing the movement problems in these patients can be very difficult. Another
motivation for doing computerised evaluation is that it does not have a physician’s
bias.

The rest of this chapter is a summary of the results presented in contributions
F, G and H. The first section describes the Motor-Game, then we summarise the
results from the mixed effect model analysis from contributions G and H. Finally,
we summarise the content from contribution F where sparse ordinal classification is
applied to the movement data.

The development of the ordinal classifier presented in chapter 4 was motivated by
the problem of ordinal scoring, that was provided by the physicians before inspecting
the individuals that played the motor-game. The results of that application are the
central part of contribution F.

5.1 The Motor-Game
A comprehensive description of the Motor-Game can be found in contribution G, we
summarise the main parts here.
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5.1.1 The Game
The Motor-Game was developed with two core-design requirements in mind:

1. The participant should perform the same or similar movements repeatedly as
fast and precisely as they can.

2. The game should contain tasks that challenge the hand-eye coordination of the
participants, and difficulty of the game tasks should gradually increase during
the game.

Another implicit constraint was that the game needed to be somewhat simple, and
intuitive to use. The motions should also be rather simple, to prevent mistakes in
the tracking. The game requires the participant to stand, facing the sensor (and
television screen), and move their arms.

Through most of the game, the participant/player is presented with an upper
body of a stickman figure, (made of bubbles), on a television screen that mirrors the
movements of the participant (See Fig. 5.1). To begin with, the participant is asked to
place themselves at a distance between 2 and 3 meters for optimal recording conditions.
The participant is then asked to stretch out their arms, where measurements are
obtained for proper calibration of the position. After this procedure, a message
appears on the screen stating that the participant should try to finish the upcoming
tasks as fast and precisely as possible. The following tasks were split up into three
levels.

Before each level a welcome screen appears, describing the next set of tasks. The
participant needs to perform similar movements of the hands repeatedly, but the
design of random appearance of the button makes it hard to learn and predict the
location of these buttons. A score is displayed on the top of the screen where the
participant is awarded a higher score if they finish a task fast. In order to avoid
interruptions during the recording, a training session is performed before the recording
in order for the participant to get familiar with the game.

For analysis, we used data from the first level in the game. In the first level, the
participant needs to finish 22 tasks. The first 11 tasks consist of moving the right
hand, such that the stickman figure’s hand overlays a button that appears on the
screen. The hand needs to present on the button for half a second before the button
disappears, and the task is completed. The next task starts immediately after the last.
The latter 11 tasks are performed with the left hand. There is considerate variation in
the amount of movement required, some buttons appear close to the previous button,
while others need larger movements to catch them.

5.1.2 The Data
The Kinect provides measurements from every single joint in the tracking skeleton,
x, y, z coordinates, on-screen coordinates and the corresponding quaternions, 30 times
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Figure 5.1: Top: Screen-shot from the motor-game, showing what the player sees.
Bottom: Me playing the Motor-Game, photo acquired by Morten Han-
nemose.
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per second. This data, along with game-state data is logged during game-play. The
game-state data provides information on which task is being solved.

The data is saved to a CSV file. For contributions G and H, we had a hypothesis,
that an increase in clinical scores measured by the doctors, would result in more
extended gameplay. If we could validate this hypothesis, then there is evidence for
the presence of a signal in the data, relevant for classifying individuals according to
how the doctors have measured them.

Thus for contributions G and H we only extract the time variables from the game.
For contribution F, we use the position of the wrist. Contributions G and H contain
extensive summaries of the cohorts and the clinical scores measured. The cohort used
for contributions F and G consists of 33 healthy controls and 30 medicated patients
with PD. All of the individuals played the Motor-Game, provided demographic data,
and were tested on various movement-related rating scales.

One of the most significant challenges was the imbalance in the number of par-
ticipants affected by movement disorders. More than half of the participants were
not affected. We can see a summary of the four clinical scores that were the focus
of contribution F in Fig. 5.2. Some of the controls had a positive score in item four
on the Simpson Angus Scale (SAS) rating scale. The controls were not measured on
the other scale, the Movement Disorder Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS), so they were assumed to have a score of zero.

5.2 Linear Mixed Effect Models
For contributions G and H we use linear mixed effect models for the analysis. From the
Motor-Game we obtain 22 response measurements for each individual, corresponding
to the time it takes to finish the 22 tasks in level one. We want to see how we
can predict these scores based on the clinical measurements, and correct for the
demographic variables. So we run the same model multiple times, where we only
change the clinical variable. The results of this analysis are summarised in tables at
the end of the two contributions.

We shall write out the model explicitly. The first two variables are the response
and the clinical variable; the rest are variables used for correcting against specific
demographic or clinical variables.

1. Response is the natural logarithm of time in seconds it takes to finish a sin-
gle task in level 1 of the Motorgame. So for a single individual we have 22
observations a total of 22 ∗ 63 = 1386 observations from the cohort. The log
transformation is used since the distribution of playing times is skewed to the
right. We can see a distribution of the original variable and the transformed
variable in Fig. 5.3.

2. Clinical Score is the only variable that we change between models. This variable
is either one of the SAS variables or some other variables related to status of
disease and physical activity.
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Figure 5.2: The clinical scores which were the focus of contribution F. These are the
ones most relevant for the movement data, with the highest prevalence
of the conditions. The bottom right is a score from the SAS scale, while
the others are from the MDS-UPDRS scale.

3. Gender, denoted as G in the model and included as a fixed effect.

4. Height in cm.

5. Weight in kg.

6. Task, factor variable with 22 levels, corresponding to the 22 tasks in the first
level of the Motorgame. The tasks are different, so we correct for the general
mean it takes to finish the tasks.

7. Age in years.

8. Symbol Coding Tasks, used as a proxy for general cognition.

9. Participant number, this factor variable is used as a random effect due to differ-
ences in variation of the response between participants.
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The model also includes a general mean term and the error is assumed to be i.i.d.
normal.

log(yij) = µ + Tj + CxiC + GxiG + HxiH + AxiA + WxiW + SxiS + εi + εij (5.1)

The terms in the model are, y the response, and on the right-hand side we have
in the following order: µ as a general mean, Tj mean for each of the 22 tasks, C
parameter for the clinical score, where xiC is the value for that measurement on
individual i. We use i to index the individuals and j for the subtasks. The following
terms correspond to the first letter in the enumeration of demographic and clinical
variables above. The last two terms are εi, the random effect for individuals and the
general error term.

We are mostly interested in the variable corresponding to the clinical score. A
significant parameter for a clinical score variable confirms our hypothesis that there
is a correlation between the time it takes for the Parkinson patients to finish the tasks
in the Motor game and the clinical score.

Generally speaking, the clinical variables that were discovered to affect the playing
time significantly had to do with rigidity and speed of movement. Two of the most
significant effects were Hand Movement Right hand, from the MDS-UPDRS rating
scale and finger tapping right hand from the same scale. The fact that these variables
were significant validates our hypothesis that the performance in the game correlates
somewhat with these clinical measurements.

Another variable that interestingly was always very significant was an item from
the UKU rating scale, where the participant is asked to decipher as many symbols as
possible in one minute. The symbols correspond to numbers, and the participant is
given a correspondence between the numbers and symbols. This variable is a proxy
for cognitive capacity, showing that the cognitive capabilities of the players have a
significant effect on performance.

5.3 Ordinal Classification
For the ordinal classification, which is the primary theme of contribution F, we use
the data from the Motor-Game to predict the four clinical scores in Fig. 5.2.

We use the tracked position of the participants wrists. For the first 11 tasks, we
use the avatar screen coordinate vertical position for the right wrist. The choice of this
coordinate is because the avatar has been scaled according to an initial estimate of the
player’s arm length, making on-screen positions comparable between players. For the
following 11 tasks, we use the corresponding coordinates for the left wrist. For each
of the 22 tasks, we use measurements for the first second of play. The participants
have not reacted in the first five measurements, so we exclude those measurements.
The first second of the game is enough for the person to respond and start moving.
We can see the contrast between a fast and slow reacting participant in Fig. 5.4. This
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Figure 5.3: Distribution of response variable in linear mixed effect model on the
Parkinson’s cohort. The distribution remains skewed after the transfor-
mation, but outliers are not nearly as severe.

yields, in the end, a total of p = 20 × 22 = 440 variables per participant. We denote
miS

as the mean of the first three measurements for task i and miE
as the average

for the last three measures for task i.

x̃ji := xji − miS

|miS
− miE

|
(5.2)

We further scale the j-th measurement xji from task i as depicted in Eq. 5.2. Due to
variation in the end and starting position, this scaling ensures that the data is more
robust to reactions of the participants. So now the data corresponds to a finer detailed
measurement, namely comparing reactions, instead of total playing time. The results
were presented as balanced leave one out cross-validation accuracy. The confusion
matrices reported in the paper indicate that the method captures an ordinal aspect
of the data, i.e., if we predict/classify wrong, then we are more likely to predict a
wrong label, close to the true one with respect to order.
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Figure 5.4: Data used for the experiment, vertical position of two subjects’ hands
over the first second of the 22 tasks. Top we have a participant that
generally reacts fast, bottoom we have a more slow moving individual.
.
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5.4 Summary
In the publications presented in contributions F, G and H, we have inspected how
we can analyse movement time-series data. We have both done it from a mixed
effect modelling point of view, as well as with a method developed during this PhD,
specifically to analyse this type of data.

The results indicate the potential of doing analysis of this kind of data, how we
can take the data from the Motor-game and summarise it down to a single number,
that should reflect performance, and be comparable between plays. The mixed-effect
model analysis also demonstrates how we can inspect the effect of the different scores,
and correct for the appropriate demographic variables.

In a society where the average age is getting higher, and rate of birth is going down,
we will soon have a stronger need for tools to monitor the health of individuals and
prioritise the usage of health care facilities. These tools need to be able to perform
objectively, and be cheap such that subjects could afford to have them in their homes.
The work presented here is a step towards finding a solution to this problem.
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CHAPTER 6
Multispectral X-ray Imaging

This chapter summarises the results from papers A and E. We recommend reading
this chapter before the papers.

6.1 X-ray scanning
Multispectral X-ray scanning is a relatively new imaging modality, which is creeping
into the manufacturing space, in particular, luggage scanning and food inspection.
A traditional X-ray machine projects X-ray through a material, where a detector
measures the attenuation for an X-ray of one or two different wavelengths. For each
pixel in the resulting image, we thus have a signal describing how much energy was
lost while the X-ray beam traveled to the detector. This relationship can be described
through the Beer-Lambert Law (BLL)

I = I0e−µρd. (6.1)

I0 in Equation 6.1 corresponds to the initial X-ray intensity, µ and ρ together form
the linear absorption coefficient, where µ corresponds to mass absorption, and ρ
corresponds to density, and finally d corresponds to the distance traveled by the
beam. The parameters depend on the material composition of the scanned object.

The multispectral X-ray scanner provides measurements for multiple different
energies of the X-rays, thus providing numerous measurements in each pixel or atten-
uation over a spectrum. In our case, we have 128 values per pixel. We use a multix
scanner from the Danish Meat Research Institute to create the data. These have been
shown to be useful for detecting explosives, and are more robust than dual-energy
scanners, [Reb+11; Bra+12; Gor+13]

6.2 Looking for Foreign Objects
For the project presented in paper E [Ein+17], we used the scanner at DMRI to
create a dataset by scanning minced meat and spring rolls, with different sets of
foreign objects overlaid.

The significant challenges in foreign object detection correspond to biomaterials,
such as insects or wood chips. Recent advances in grating-based imaging techniques
[Pfe+06; Pfe+07], (that measure the attenuation, scattering and refraction of X-
ray beams), have shown great promise in detecting organic foreign objects [Ein+16].



62 6 Multispectral X-ray Imaging

Although grating based methods are promising, they still have not been scaled to be
used in a production line.

For our data, we could create a robust classifier from a very limited dataset.
We further use the fact that SDA can handle more variables than features, so each
observation in the training data consists of 5 pixels. The center one, for which the
label comes from, and the four surrounding pixels, top, right, bottom, left. This
is related to the third blessing of dimensionality (See sec. 2.5.2.2), we are in fact
averaging the predictions over a small patch, giving us more robust predictions. The
results indicate that we can with high accuracy detect scans with foreign objects. We
could not demonstrate that biomaterial, such as insects, were identified, but those
were not included in the training data since we could not accurately annotate them.
Promising new reasearch/applications for Multispectral X-ray data have emerged, in
particular for getting more accurate estimates of material content, such as fat in meat.
One thing that was particularly important for making the classifier robust to different
materials was scaling each pixel by the 95th% quantile of the 128 measurements it
contained. This preprocessing also makes the algorithm robust between scanners.

One of the main reasons for using a sparse classifier is to identify which channel-
s/wavelengths are essential for the particular classification task. Reducing the number
of used channels would mean storing fewer data points, making a faster inference and
in the end it would be easier to use.

6.3 Incorporating a Prior
In paper A we expand on these results and demonstrate how we can impose a struc-
tured regulariser as the elastic net coefficient matrix, this is achieved via a Matérn-
covariance matrix [Mat13]. The Matérn covariance can be specified by the following
equation:

Cν(d) = σ2 21−v

Γ(ν)

(√
2ν

d

ρ

)ν

Kν

(√
2ν

d

ρ

)
(6.2)

The Matérn covariance structure 6.2 is governed by the distance d between measure-
ments. In 6.2, Γ refers to the gamma function and Kν is the modified Bessel function
of the second kind.

We align the measurements in a spatial grid as if we would voxelise the image.
This alignment induces a natural metric for calculating the distance d needed for the
Matérn covariance. In paper A we also demonstrate the run-time benefit of using
a low-rank approximation (using Singular Value Decomposition (SVD)) to the reg-
ularisation matrix. Using a low-rank regularisation matrix affects accuracy. Other
low-rank approximations should be considered since they might preserve more rele-
vant structure.

To summarise, SDA is a viable method to use on multispectral X-ray data. There
are several possibilities for extending and continuing with this work, in particular, I
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see the task of predicting fat content in meat to be interesting. Some visualisations
of the classification can be seen in Fig. 6.4

Figure 6.1: Example of raw multispectral X-ray data. The scanned item is a bag of
spring rolls. The images correspond to channels (from left to right) 2,
20, 50 and 100. Note that since this is raw data, we have line scanning
artefacts corresponding to the intersection of detector modules.
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Figure 6.2: Example of preprocessed multispectral X-ray data, scanning artefacts
removed. The scanned item is a box of minced meat with several foreign
objects overlaid. The images correspond to channels (from left to right)
2, 20, 50 and 100.

Figure 6.3: Example of preprocessed multispectral X-ray data, scanning artefacts
removed and pixels have been scaled to the 95th % quantile. This scaling
corresponds to the profiles in Fig. 6.5, which creates peaks at different
channels for different materials. The scanned item is a box of minced
meat with several foreign objects overlaid. The images correspond to
channels (from left to right) 2, 20, 50 and 100.
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Figure 6.4: Example classification from SDA on scans not used for training. The
white intensity represents the foreign object class.
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Figure 6.5: Profiles of different materials, averaged over several pixels from Fig. 6.3.
These profiles represents the means of the classes for the different items,
showing that they have highlights occuring at different wavelengths..



CHAPTER 7
Natural Language Processing

In this chapter, we demonstrate how SDA can be used to extract information from
online user reviews, as described in contribution D. We use data from the SNAP
dataset [LK14], which is a collection of large network datasets, we further focus on
the Amazon reviews data. To extract information from the reviews, we create a
sparse ordinal classifier and try to predict the rating based on the words used in the
review. The focus is not on building an excellent classifier, but rather interpret the
words found, represented as non-zero values in the discriminant vector. These words
can give us a quick overview of the product, and we represent them as word clouds,
see, e.g., Fig. 7.1 for positive words and Fig. 7.2 for negative words.

There is an abundance of user review data available online, and it is more and
more commonly affecting our consumer behaviour. Active scientific research on user
reviews concerning social networks, online behaviour, and recommender systems can,
e.g., be found in work by [LK14; ML13] and [CDL15]. Online user reviews can
have great economic impact, for example in the tourism sector, consumers often rely
heavily on previous reviews in travel planning and decision making [GY08]. It is vital
for product owners to monitor the state of the reviews, but that can be tedious when
they need to go through many reviews or if the same owner is watching multiple
products.

7.1 Review Data
There is a multitude of Amazon products available in the SNAP dataset [LK14]. To
narrow the focus we selected the Apps for Android category to work with using the
5-core dense subset. 5-core means that every product has been reviewed at least five
times, by reviewers that have made at least five reviews. If we consider the reviewers
and products as nodes in an undirected graph, and reviews as edges connecting users
and reviewers, the k-core are the maximal connected subgraph where all vertices have
a degree at least k. From this category, we consider the ten products with the highest
number of reviews for further analysis.

For each product we train an ordinal SDA model where the number of reviews
is balanced, such that each class contains only 100 samples. The ratings are usually
unbalanced, where the 2-star reviews are most uncommon. For the test set, we sample
50 samples for each class.
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7.2 Preparing Text Documents for SDA
We cannot add text documents directly to the ordinal SDA classifier. We need to
represent the text sensibly. One way to do that is to create a Document Term Matrix
(DTM). A term in the DTM is an n-gram. A 1-gram is words, while a bi-gram is
all variations of two adjacent words present in the data. After finding the unique
n-grams in the reviews, our vocabulary, then we can count how often each n-gram
appears in a review. Each n-gram represents a variable, and the number of times it
appears in the review is what we measure. This process easily creates an enormous
amount of words, so we need to prune the vocabulary sensibly. One way to do that
is to request the word or n-gram to appear in a minimum number of documents.

For each of the ten datasets, corresponding to the ten highest rated products, we
prepare the data with the following steps, using both the test and train data. This
procedure yields approximately an order of magnitude more variables than the 500
training samples we have.

(1) We use the tm package in R to do the following transformations [FH17; MHF08;
R C15]:

(a) Make all the letters lower case.
(b) Remove punctuation.
(c) Remove English stop-words.

(2) We use the stemmer from the SnowballC package for the English language
[Bou14]. The stemmer remove different endings from words, making sweater
and sweaters added to the same n-gram.

(3) We generate 1 to 5 grams and prune the vocabulary such that a term needs to
appear in at least 3 documents using the text2vec package [SW17].

Here we separate the test and train data again. We scale each column in the
training data by the value of the 75% quantile. We use the same values to scale the
test data. We do not centre the data, the only normalisation is scaling to normalise
the contributions from different variables. This normalisation makes it possible to
interpret the discriminant vector we find with ordinal SDA. The non-zero parameters
with a certain sign correspond to terms that increase the score, while the opposite
sign corresponds to a negative score. The magnitude of the absolute value of the
parameter corresponds to how strongly the value contributes to the prediction. We
can visualise the solutions as the word clouds seen in Figures 7.2 and 7.1 using the
word-cloud package [Fel14]. The larger the word, corresponds to larger weight in the
discriminant vector. We can see that the method picks up words that either positively
or negative describe the product. We refer the reader to contribution D for discussion
on performance.
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Figure 7.1: Positive word-clouds from the online reviews. Top row represents the
most rated android games, middle row is 4-6 and last is 7-9. The size
of the font is determined by the magnitude in the discriminant vector.
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Figure 7.2: Negative word-clouds from the online reviews. Top row represents the
most rated android games, middle row is 4-6 and last is 7-9. The size
of the font is determined by the magnitude in the discriminant vector.



CHAPTER 8
Conclusion

In this thesis we have presented novel approaches for classification of high dimensional
data with applications to computer-aided diagnosis, information retrieval from online
user reviews and foreign object detection in multispectral X-ray images. The ordinal
type of the response variable was the key component to create a method tailored to
these applications.

The tools developed over the course of the thesis are generic and open-source. The
tools were mostly developed for the R programming language with some contributions
for Matlab. The R package accSDA, which contains methods from this thesis, is
available on the Comprehensive R Archive Network (CRAN)1.

My PhD project was a collaboration with medical partners at Region Hovedstaden
and partially with industry experts from DMRI. My contributions focus on theory
behind the methods and tools developed. The following three points summarise the
developments of the thesis mentioned in the introduction.

1. The data from the Motor-Game was acquired, and analysis of the data is pre-
sented in contributions G and H. We discovered that certain clinical measure-
ments could significantly predict the performance. We also discovered that the
performance on the cognitive test was a strong predictor, and accounting for
repetition was also significant. These discoveries mean that for longitudinal
studies of similar nature, we certainly need to account for learning effects.

2. We created a classifier to predict the severity of symptoms, summarised in con-
tribution F. This classifier was built specifically to account for the ordinality of
the response. Another improvement to the classifier is the underlying optimi-
sation, presented in contribution A, which also includes proof of convergences,
not available before.

3. We have applied the developed methods to other domains in contributions D
and E.

8.1 Outlook
There are multiple directions to continue the research presented in this thesis. In
particular, the diagnosis and monitoring of movement disorders is an application

1https://cran.r-project.org/web/packages/accSDA/index.html
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venue which has to go into a longitudinal phase soon. Longitudinal studies hold
the potential to reveal what kind of motion degradation we expect over time. The
increasing age of the population driven by increased longevity highlights a growing
incentive to care more efficiently for the needs of the elderly such as prioritising
objectively and in a fair manner who needs care.

Another direction in which to continue this research concerns non-objective infor-
mation retrieval from online reviews. Ideally the user cares about the signal in all of
the noise present online. Future developments of the world-cloud visualisation could
include a smart user interface, to navigate to the reviews that most actively reflect on
the keywords selected. Marketing research could elucidate what kind of summaries
are best for consumers.

Lastly, one of the directions taken in this thesis was to study multispectral X-
ray images. There are multiple low-hanging fruits for applying data-driven methods
within that domain.

Future developments of the methods and algorithms presented in this thesis have
multiple different ways to go forward. A C++ backend can be developed for the
accSDA package to speed up the computation, and possibly make it scale to much
more massive datasets. One example of such high-dimensional data are brain-scans
that have been co-registered to the same atlas. In this case we could use SDA to
quantify regions in the brain that differ between controls and patients; there are also
interesting modelling problems for this domain, that can be incorporated as regularis-
ers. Another high-dimensional application concerns genome wide association studies.
In that regard we could do joint analysis of predictors, instead of the traditional uni-
variate analysis. Algorithmic advances also include research on how the optimisation
can be parallelised.

To summarise, the tools and methods presented in this thesis relate to Candés’
description of Big-Data mentioned in the introduction. The work is an effort to solve
some of the problems introduced by Donoho; we can now address p ≫ n problems
with ordinal labels adequately.
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Abstract

Linear discriminant analysis (LDA) is a classical method for dimensionality reduction, where
discriminant vectors are sought to project data to a lower dimensional space for optimal separa-
bility of classes. Several recent papers have outlined strategies for exploiting sparsity for using
LDA with high- dimensional data. However, many lack scalable methods for solution of the
underlying optimization problems. We propose three new numerical optimization schemes for
solving the sparse optimal scoring formulation of LDA based on block coordinate descent, the
proximal gradient method, and the alternating direction method of multipliers. We show that
the per-iteration cost of these methods scales linearly in the dimension of the data provided
restricted regularization terms are employed, and cubically in the dimension of the data in the
worst case. Furthermore, we establish that if our block coordinate descent framework generates
convergent subsequences of iterates, then these subsequences converge to the stationary points
of the sparse optimal scoring problem. Finally, we demonstrate the effectiveness of our new
methods with empirical results for classification of Gaussian data and data sets drawn from
benchmarking repositories.

1 Introduction

Sparse discriminant techniques have become popular in the last decade due to their ability to
provide increased interpretation as well as predictive performance for high-dimensional problems
where few observations are present. These approaches typically build upon successes from sparse
linear regression, in particular the LASSO and its variants (see Hastie et al. [2013, Section 3.4.2]
and Hastie et al. [2015]), by augmenting existing schemes for linear discriminant analysis (LDA)
with sparsity-inducing regularization terms, such as the `1-norm and elastic net.

Thus far, little focus has been put on the optimization strategies of these sparse discriminant
methods, nor their computational cost. We propose three novel optimization strategies to obtain
discriminant directions in the high-dimensional setting where the number of observations n is
much smaller than the ambient dimension p or when features are highly correlated, and prove
their convergence. The methods are proposed for multi-class sparse discriminant analysis using
the sparse optimal scoring formulation with elastic net penalty proposed in [Clemmensen et al.,
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2011]; adding both the `1- and `2-norm penalties gives sparse solutions which, in particular, are
competitive when high correlations exist in feature space due to the grouping behaviour of the
`2-norm. The first two strategies are proximal gradient methods based on modification of the (fast)
iterative shrinkage algorithm [Beck and Teboulle, 2009] for linear inverse problems. The third
method uses a variant of the alternating direction method of multipliers similar to that proposed
in [Ames and Hong, 2016]. We will see that these heuristics allow efficient classification of high-
dimensional data, which was previously impractical using the current state of the art for sparse
discriminant analysis. For example, if a diagonal or low-rank Tikhonov regularization term is used
and the number of observations is very small relative to p, then the per-iteration cost of each of our
algorithms is O(p); that is, the per-iteration cost of our approach scales linearly with the number
of features of our data. Finally, we provide implementations of our algorithms in the form of an R

package1 and Matlab code2.

1.1 Existing approaches for sparse LDA

We begin with a brief overview of existing sparse discriminant analysis techniques. Methods such
as [Fan and Fan, 2008, Tibshirani et al., 2003, Witten and Tibshirani, 2011] assume independence
between the features in the given data. This can lead to poor performance in terms of feature
selection as well as predictions, in particular when high correlations exist. Thresholding methods
such as [Shao et al., 2011], although proven to be asymptotically optimal, ignore the existing multi-
linear correlations when thresholding low correlation estimates. Thresholding, furthermore, does
not guarantee an invertible correlation matrix, and often pseudo-inverses must be utilized.

For two-class problems, the results of [Mai and Zou, 2013] established an equivalence between the
three methods described in [Clemmensen et al., 2011, Mai et al., 2012, Wu et al., 2008]. These three
approaches are formulated as constrained versions of the Fisher’s discriminant problem, the optimal
scoring problem, and a least squares formulation of linear discriminant analysis, respectively. For
scaled regularization parameters, [Mai and Zou, 2013] showed that they all behave asymptotically
as Bayes rules. Another two-class sparse linear discriminant method is the linear programming
discriminant method proposed in [Cai and Liu, 2011], which finds an `1-norm penalized estimate
of the product between covariance matrix and difference in means.

The sparse optimal scoring (SOS) problem was originally formulated in [Clemmensen et al.,
2011] as a multi-class problem seeking at most K − 1 sparse discriminating directions, whereas
[Mai and Zou, 2013] was formulated for binary problems. Mai and Zou later proposed a multi-class
sparse discriminant analysis (MSDA) based on the Bayes rule formulation of linear discriminant
analysis in [Mai and Zou, 2015]. It imposes only the `1-norm penalty, whereas the SOS imposes an
elastic net penalty (`1- plus `2-norm). Adding the `2-norm can give better predictive performance,
in particular when very high correlations exist in data. MSDA, furthermore, finds all discriminative
directions at once, whereas SOS finds them sequentially via deflation. A sequential solution can be
an advantage if the number of classes is high, and a solution involving only a few directions (the
most discriminating ones) is needed. On the other hand, if K is small, finding all directions at
once, may be advantageous, in order to not propagate errors in a sequential manner.

Finally, the zero-variance sparse discriminant analysis approach of [Ames and Hong, 2016]
reformulates the sparse discriminant analysis problem as an `1-penalized nonconvex optimization
problem in order to sequentially identify discriminative directions in the null-space of the pooled
within-class scatter matrix. Most relevant for our discussion here is the use of proximal methods

1Available from https://github.com/gumeo/accSDA
2Available from http://bpames.people.ua.edu/software.html
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to approximately solve the nonconvex optimization problems in [Ames and Hong, 2016]; we will
adopt a similar approach for solving the SOS problem.

2 Proximal Methods for Sparse Discriminant Analysis

In this section, we describe a block coordinate descent approach for (approximately) solving the
sparse optimal scoring problem for linear discriminant analysis. Proposed in [Hastie et al., 1994], the
optimal scoring problem recasts linear discriminant analysis as a generalization of linear regression
where both the response variable, corresponding to an optimal labeling or scoring of the classes,
and linear model parameters, which yield the discriminant vector, are sought. Specifically, suppose
that we have n× p data matrix X, where the rows of X correspond to observations in Rp sampled
from one of K classes; we assume that the data has been centered so that the sample mean is the
zero vector 0 ∈ Rp. Optimal scoring generates a sequence of discriminant vectors and conjugate
scoring vectors as follows. Suppose that we have identified the first k − 1 discriminant vectors
β1, . . . ,βk−1 ∈ Rp and scoring vectors θ1, . . . ,θk−1 ∈ RK . To calculate the kth discriminant
vector βk and scoring vector θk, we solve the optimal scoring criterion problem

(θk,βk) = arg min
θ∈RK ,β∈Rp

‖Y θ −Xβ‖2

s.t. 1
nθ

TY TY θ = 1, θTY TY θ` = 0 ∀` < k,
(1)

where Y denotes the n × K indicator matrix for class membership, defined by yij = 1 if the ith
observation belongs to the jth class, and yij = 0 otherwise, and ‖ · ‖ : Rn → R denotes the vector
`2-norm on Rn defined by ‖y‖ =

√
y21 + y22 + · · ·+ y2n for all y ∈ Rn. We direct the reader to

[Hastie et al., 1994] for further details regarding the derivation of (1).

A variant of the optimal scoring problem which employs regularization via the elastic net penalty
function is proposed in [Clemmensen et al., 2011] As before, suppose that we have identified the
first k− 1 discriminant vectors β1, . . . ,βk−1 and scoring vectors θ1, . . . ,θk−1. To calculate the kth
sparse discriminant vector βk and scoring vector θk, we solve the optimal scoring criterion problem

(θk,βk) = arg min
θ∈RK ,β∈Rp

‖Y θ −Xβ‖2 + γβTΩβ + λ‖β‖1

s.t. 1
nθ

TY TY θ = 1, θTY TY θ` = 0 ∀` < k,
(2)

where Y ∈ Rn×K is again the indicator matrix for class membership, λ and γ are nonnegative
tuning parameters, and ‖ · ‖1 : Rp → R denotes the vector `1-norm on Rp defined by ‖x‖1 =
|x1| + |x2| + · · · + |xp| for all x ∈ Rp. The optimization problem (2) is nonconvex, due to the
presence of nonconvex spherical constraints. As such, we do not expect to find a globally optimal
solution of (2) using iterative methods. In [Clemmensen et al., 2011], a block coordinate descent
method to iteratively approximate solutions of (2) is proposed. Specifically, suppose that we have
an estimate (θt,βt) of (θk,βk). To update θt, we fix β = βt and solve the optimization problem

θt+1 = arg min
θ∈RK

‖Y θ −Xβt‖2

s.t. 1
nθ

TY TY θ = 1, θTY TY θ` = 0 ∀` < k.
(3)

The subproblem (3) is nonconvex in θ, however, it is known that (3) admits an analytic solution
and can be solved exactly in polynomial time (see Clemmensen et al. [2011, Section 2.2] for more
details). Indeed, we have the following lemma.
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Algorithm 1 Block Coordinate Descent for SDA (2)

Start with initial iterate θ0.
for t = 0, 1, 2 . . . until converged do

Update βt as the solution of (5) with θ = θt using the solution returned by one of Algorithm 2,
Algorithm 3, or Algorithm 4.

Update θt+1 by

w = (I −QkQ
T
kD)D−1Y TXβt, θt+1 =

w√
wTDw

end for

Lemma 2.1 The problem (3) has optimal solution

θt+1 = s(I −QkQ
T
kD)D−1Y TXβt, (4)

where D = 1
nY

TY , Qk is the K × k matrix with columns consisting of the k − 1 scoring vectors
θ1, . . . ,θk−1 and the all-ones vector e ∈ Rk, and s is a proportionality constant ensuring that
(θt+1)TDθt+1 = 1.

For completeness, we provide a proof of Lemma 2.1 in Appendix A. After we have updated
θt+1, we obtain βt+1 by solving the unconstrained optimization problem

βt+1 = arg min
β∈Rp

‖Y θt+1 −Xβ‖2 + γβTΩβ + λ‖β‖1. (5)

That is, we update βt+1 by solving the generalized elastic net problem (5). It is suggested in
[Clemmensen et al., 2011] that (2) can be solved using the algorithm proposed in [Zou and Hastie,
2005]. Unfortunately, this approach carries a per-iteration computational cost on the order of
O(mnp+m3), wherem is the desired number of nonzero coefficients, which is prohibitively expensive
if both p and m are large; for example, if m = cp for some constant c ∈ (0, 1), then the per-iteration
cost scales cubically with p.

Our primary contribution is a collection of algorithms for solving the elastic net problem (5).
Specifically, we propose three new algorithms, each based on the evaluation of proximal operators.
We will see that these algorithms require significantly fewer computational resources than the elastic
net algorithm if we exploit structure in the regularization parameter Ω.

2.1 Proximal Gradient Algorithms for the Generalized Elastic Net Problem

Given a convex function f : Rp → R, the proximal operator proxf : Rp → Rp of f is defined by

prox
f

(y) = arg min
x∈Rp

{
f(x) +

1

2
‖x− y‖2

}
,

which yields a point that balances the competing objectives of being near y while simultaneously
minimizing f . The use of proximal operators is a classical technique in optimization, particularly
as surrogates for gradient descent steps for minimization of nonsmooth functions. For example,
consider the optimization problem

min
x∈Rp

f(x) + g(x), (6)

4



where f : Rp → R is differentiable and g : Rp → R is potentially nonsmooth. That is, (6)
minimizes an objective that can be decomposed as the sum of a differentiable function f and
nonsmooth function g. To solve (6), the proximal gradient method performs iterations consisting of
a step in the direction of the negative gradient −∇f of the smooth part f followed by evaluation
of the proximal operator of g: given iterate xt, we obtain the updated iterate xt+1 by

xt+1 = prox
αtg

(xt − αt∇f(xt)) = arg min
x∈Rp

{
αtg(x) +

1

2
‖x− (xt − αt∇f(xt))‖2

}
,

where αt is a step length parameter. If both f and g are differentiable and the step size αt is small,
then this approach reduces to the classical gradient descent iteration: xt+1 ≈ xt − αt∇f(xt) −
αt∇g(xt). We direct the reader to the recent survey article [Parikh and Boyd, 2014] for more
details regarding the proximal gradient method and proximal operators in general. Expanding the
residual norm term ‖Y θ −Xβ‖2 in the objective of (5) and dropping the constant term shows
that (5) is equivalent to minimizing

f(β) =
1

2
βTAβ + dTβ + λ‖β‖1, (7)

where A = 2(XTX + γΩ) and d = −2XTY θt+1. We can decompose f as f(β) = f1(β) +
f2(β), where f1(β) = 1

2β
TAβ + dTβ and f2(β) = λ‖β‖1. Note that f is strongly convex if the

penalty matrix Ω is positive definite; in this case (7) has unique minimizer. Note further that f1
is differentiable with

∇f1(β) = Aβ + d.

Moreover, the proximal operator of the `1-norm term f2(β) = λ‖β‖1 is given by

prox
λ‖·‖1

(y) = sign(y) max{|y| − λe,0} =: Sλ(y);

see [Parikh and Boyd, 2014, Section 6.5.2]. The proximal operator Sλ = proxλ‖·‖1 is often called
the soft thresholding operator (with respect to the threshold λ) and sign : Rp → Rp and max :
Rp ×Rp → Rp are the element-wise sign and maximum mappings defined by

[sign(y)]i = sign(yi) =


+1, if yi > 0

0, if yi = 0
−1, if yi < 0

and [max(x,y)]i = max(xi, yi). Using this decomposition, we can apply the proximal gradient
method to generate a sequence of iterates {βt} by

βt+1 = sign(pt) max{|pt| − λαte,0}, (8)

where
pt = βt − αt∇f(βt) = βt − αt(Aβt + d); (9)

here, e and 0 denote the all-ones and all-zeros vectors in Rp. Our proximal gradient algorithm is
summarized in Algorithm 2. It is important to note that this update scheme is virtually identical
to that of the iterative soft thresholding algorithm (ISTA) for linear inverse problems (see Beck and
Teboulle [2009]). Here, our problem and update formula differs only from that typically associated
with ISTA in the presence of the Tikhonov regression term βTΩβ in our model. As an immediate
consequence, we see that the sequence of function values {f(βt)} generated by Algorithm 2, with
an appropriate choice of step lengths {αt}, converges sublinearly to the optimal function value of
(7) at a rate no worse than O(1/t) (compare to Beck and Teboulle [2009, Theorem 3.1]).
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Algorithm 2 Proximal gradient method for solving the elastic net subproblem (5)

Start with initial iterate β0 and sequence of step lengths {αt}∞t=0.
for t = 0, 1, 2 . . . until converged do

Update gradient term by (9):

pt = βt − αt(Aβt + d).

Update iterate using proximal gradient step (8):

βt+1 = sign(pt) max{|pt| − λαte,0}

end for

Theorem 2.1 Let {βt} be generated by Algorithm 2 with initial iterate β0 and constant step size
αt = α ∈ (0, 2/‖A‖), where ‖A‖ = λmax(A) denotes the spectral norm of A equal to the largest
magnitude eigenvalue of A. Suppose that β∗ is a minimizer of f . Then

f(βt)− f(β∗) ≤ α‖A‖‖β0 − β∗‖2

2t
(10)

for any t ≥ 1.

As an immediate consequence of Theorem 2.1, the sequence of iterates generated by Algorithm 2
converges to the unique minimizer of (5) if the penalty parameter Ω is chosen to be positive definite.
If we choose Ω to be positive semidefinite, then any limit point of the sequence of iterates generated
by Algorithm 2 is a minimizer of (5); we will see that using such a matrix may have attractive
computational advantages despite this loss of uniqueness.

It is reasonably easy to see that the quadratic term of f is differentiable and has Lipschitz
continuous gradient with constant L = ‖A‖; this is the significance of the ‖A‖ term in (10). In
order to ensure convergence in our proximal gradient method, we need to estimate ‖A‖ to choose
a sufficiently small step size α. Computing this Lipschitz constant may be prohibitively expensive
for large p; one can typically calculate ‖A‖ to arbitrary precision using variants of the Power
Method (see Golub and Van Loan [2013, Sections 7.3.1, 8.2]) at a cost of O(p2 log p) floating point
operations. Instead, we could use an upper bound L̃ ≥ L to compute our constant step size
α = 1/L̃ ≤ 1/L. For example, when Ω is a diagonal matrix, we estimate ‖A‖ by

‖A‖ = 2‖γΩ +XTX‖ ≤ 2γ‖diag(Diag(Ω))‖∞ + 2‖X‖F2

≤ 2γ‖diag(Diag(Ω))‖∞ + 2‖X‖1‖X‖∞ ≈
1

α
,

where diag(M) ∈ Rp is the vector of diagonal entries of the matrixM ∈ Rp×p and Diag(m) ∈ Rp×p

is the diagonal matrix with ith diagonal entry equal to mi for the vector m ∈ Rp. Here, we used
the triangle inequality and the identity ‖XTX‖ ≤ ‖X‖2F ≤ ‖X‖1‖X‖∞, where

‖X‖2F =

√√√√ n∑
i=1

p∑
j=1

x2ij , ‖X‖1 = max
1≤j≤p

n∑
i=1

|xij |, and ‖X‖∞ = max
1≤i≤n

p∑
j=1

|xij |.

Each of these norms and, thus, these estimates can be computed using only O(np) floating point
operations.
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Algorithm 3 Accelerated proximal gradient method for solving (5)

Start with initial iterate β0, step length α, and sequence of extrapolation parameters {ωt}∞t=0.
for t = 0, 1, 2 . . . until converged do

Update momentum term by (11):

yt+1 = xt + ωt(x
t − xt−1).

Update gradient term by (9):

pt = yt − α(Ayt + d).

Update iterate using proximal gradient step (8):

βt+1 = sign(pt) max{|pt| − λαe,0}.

end for

ADD SUBSECTION RE: BACKTRACKING
The similarity of our method to iterative soft thresholding and, more generally, our use of

proximal gradient steps to mimic the classical gradient method for minimization of our nonsmooth
objective, suggests that we may be able to use momentum terms to accelerate convergence of our
iterates. In particular, we modify the fast iterative soft thresholding algorithm (FISTA) described
in [Beck and Teboulle, 2009, Section 4] to solve our subproblem. This approach extends a variety
of accelerated gradient descent methods, most notably those of Nesterov [Nesterov, 1983, 2005,
2013], to minimization of composite convex functions; for further details regarding the acceleration
process and motivation for why such acceleration is possible, we direct the reader to the references
[Allen-Zhu and Orecchia, 2014, Bubeck et al., 2015, Flammarion and Bach, 2015, Lessard et al.,
2016, O’Donoghue and Candes, 2015, Su et al., 2014, Tseng, 2008].

We accelerate convergence of our iterates by taking a proximal gradient step from an extrapo-
lation of the last two iterates. Applied to (6), the accelerated proximal gradient method features
updates of the form

yt+1 = xt + ωt(x
t − xt−1) (11)

xt+1 = prox
αg

(yt+1 − α∇f(yt+1)), (12)

where ωt ∈ [0, 1) is an extrapolation parameter; a standard choice of this parameter is t/(t + 3).
Applying this modification to our original proximal gradient algorithm yields Algorithm 3, which
generates a sequence of iterates converging (in function value) to the optimal solution of (5) at rate
O(1/t2) (compare to Beck and Teboulle [2009, Theorem 4.4]).

Theorem 2.2 Let {βt} be generated by Algorithm 3 with initial iterate β0 and constant step size
αt = α ∈ (0, 2/‖A‖). Then there exists constant C such that

f(βt)− f(β∗) ≤ Cα‖A‖‖β0 − β∗‖2

t2
(13)

for any t ≥ 1 and minimizer β∗ of f .

We conclude by proposing a third algorithm for minimization of (7) based on the alternating
direction method of multipliers (ADMM) for minimizing separable functions under linear coupling
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constraints. The ADMM solves problems of the form

min
x∈Rp,y∈Rm

{f(x) + g(y) : Ax+By = c} , (14)

via an approximate dual gradient ascent, where f : Rp → R, g : Rm → R, A ∈ Rr×p,B ∈ Rr×m,
and c ∈ Rr; we direct the reader to the recent survey [Boyd et al., 2011] for more details regarding
the ADMM.

Recall that the minimization of the composite function f defined in (7) can be written as the
unconstrained optimization problem

min
β∈Rp

f(β) = min
β∈Rp

1

2
βTAβ + dTβ + λ‖β‖1. (15)

We can rewrite (15) in an equivalent form appropriate for the ADMM by splitting the decision
variable β ∈ Rp as two new variables x,y ∈ Rp with an accompanying linear coupling constraint
x = y. Under this change of variables, we can express (15) as

min
x,y∈Rp

{
1

2
xTAx− xTd+ λ‖y‖1 : x− y = 0

}
. (16)

The ADMM generates a sequence of iterates using approximate dual gradient ascent steps as follows.
The augmented Lagrangian of (16) is defined by

Lµ(x,y, z) =
1

2
xTAx− xTd+ λ‖y‖1 + zT (x− y) +

µ

2
‖x− y‖2

for all x,y, z ∈ Rp; here, µ > 0 is a penalty parameter controlling the emphasis on enforcing
feasibility of the primal iterates x and y. To approximate the gradient of the dual functional of
(16), we alternately minimize the augmented Lagrangian with respect to x and y. We then update
the dual variable z by a dual ascent step using this approximate gradient.

Suppose that we have the iterates (xt,yt, zt) after t steps of our algorithm. To update x, we
take

xt+1 = arg min
x∈Rp

Lµ(x,yt, zt) = arg min
x∈Rp

1

2
xT (µI +A)x− xT (d+ µyt − zt).

Applying the first order necessary and sufficient conditions for optimality, we see that xt+1 must
satisfy

(µI +A)xt+1 = d+ µyt − zt. (17)

Thus, xt+1 is obtained as the solution of a linear system. Note that the coefficient matrix µI +A
is independent of t; we take the Cholesky decomposition of µI +A = BBT during a preprocessing
step and obtain xt+1 by solving the two triangular systems given by

BBTxt+1 = d+ µyT − zT .

When the generalized elastic net matrix Ω is diagonal, or µI+2γΩ is otherwise easy to invert, we can
invoke the Sherman-Morrison-Woodbury formula (see Golub and Van Loan [2013, Section 2.1.4]) to
more efficiently solve this linear system; more details will be provided in Section 2.2. In particular,
we see that

(µI + 2γΩ + 2XTX)−1 = M−1 − 2M−1XT (I + 2XM−1XT )−1XM−1,

8



Algorithm 4 Alternating direction method of multipliers for solving (5)

Start with initial iterates x0 = y0 and step length µ.
for t = 0, 1, 2 . . . until converged do

Update x by (17):
(µI +A)xt+1 = d+ µyt − zt..

Update y using soft thresholding (18):

yt+1 = sign(xt+1 + zt/µ) max{|xt+1 + zt/µ| − λe,0}

Update z using approximate dual ascent (19):

zt+1 = zt + µ(xt+1 − yt+1)

end for

where M := µI + 2γΩ; computing this inverse only requires computing the inverse of M and the
inverse of the n× n matrix I + 2XM−1XT .

Next y is updated by

yt+1 = arg min
y∈Rp

Lµ(xt+1,y, zt) = arg min
y

λ‖y‖1 +
µ

2
‖y − xt+1 − zt/µ‖2

That is, yt+1 is updated as the value of the soft thresholding operator of the `1-norm at zt/µ+ xt+1:

yt+1 = Sλ(xt+1 + zt/µ) = sign(xt+1 + zt/µ) max{|xt+1 + zt/µ| − λe,0}. (18)

Finally, the dual variable z is updated using the approximate dual ascent step

zt+1 = zt + µ(xt+1 − yt+1). (19)

This approach is summarized in Algorithm 4. It is well-known that the ADMM generates a sequence
of iterates which converge linearly to an optimal solution of (14) under certain strong convexity
assumptions on f and g and rank assumptions onA andB, all of which are satisfied by our problem
(16) when Ω is positive definite (see, for example, Deng and Yin [2012]). As such, the sequence of
iterates {xt,yt, zt} generated by Algorithm 4 converges to a minimizer of f(β); that is, xt−yt → 0
and f(xt), f(yt) converge linearly to the minimum value of f .

2.2 Computational Requirements

To motivate the use of our proposed proximal methods for the minimization of (5), we briefly sketch
the per-iteration computational costs of each of our methods. We will see that for certain choices of
regularization parameters, the number of floating point operations needed for each iteration scales
linearly with the size of the data.

The most expensive step of both the proximal gradient method (Algorithm 2) and the acceler-
ated proximal gradient method (Algorithm 3) is the evaluation of the gradient ∇f1. Given a vector
β ∈ Rp, the gradient at β is given by

∇f1(β) = Aβ = 2
(
XTX + γΩ

)
β = 2XTXβ + 2γΩβ.

The productXTXβ can be computed using O(np) floating point operations by computing y = Xβ
and then XTy. On the other hand, the product Ωβ requires O(p2) flops for unstructured Ω.
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However, if we use a structured regularization parameter Ω we can significantly decrease this
computational cost. Consider the following examples:

• Suppose that Ω is a diagonal matrix: Ω = Diag(u) for some vector u ∈ Rp
+. Then the

product Ωβ can be computed using O(p) flops:

(Ωβ)i = uiβi.

Moreover, we can estimate the Lipschitz constant ‖A‖ for use in choosing the step size α by

‖A‖ ≤ 2γ‖Ω‖+ 2‖X‖2F = 2γ‖u‖∞ + 2‖X‖2F ,

which requires O(np) flops, primarily to compute the norm ‖X‖2F .

• If the use of diagonal Ω is inappropriate, we could store Ω in factored form Ω = RRT where
R ∈ Rp×r, and r is the rank of Ω. In this case, we have

Ωβ = R(RTβ),

which can be computed at a cost of O(rp) flops. Thus, if we use a low-rank parameter Ω,
say r ≤ O(n), we can compute the gradient using O(np) flops. Similarly, we can estimate the
step size α using

‖A‖ ≤ 2‖R‖2F + 2‖X‖2F
(computed at a cost of O(rp+ np) flops).

In either case, using a diagonal Ω or low-rank factored Ω, each iteration of the proximal gradient
method or the accelerated proximal gradient method requires O(np) flops. Similar improvements
can be made if Ω is tridiagonal, banded, sparse, or otherwise nicely structured.

Similarly, the use of structured Ω can lead to significant improvements in computational effi-
ciency in our ADMM algorithm. The main computational bottleneck of this method is the solution
of the linear system in the update of x:

(µI +A)xt+1 = d+ µyt − zt.

Without taking advantage of the structure ofA, we can solve this system using a Cholesky factoriza-
tion preprocessing step (at a cost of O(p3) flops) and substitution to solve the resulting triangular
systems (at a cost of O(p2) flops per-iteration). However, we can use the Sherman-Morrison-
Woodbury matrix inversion lemma to solve this system more efficiently using the structure of A.
Indeed, fix t and let b = d+ µyt − zt. Then we update x by

x = (µI +A)−1b.

If M = µI + 2γΩ then we have

(µI +A)−1 =
(
µI + 2γΩ + 2XTX

)−1
=
(
M + 2XTX

)−1
= M−1 + 2M−1XT

(
I + 2XM−1XT

)−1
XTM−1. (20)

The matrix I+2XM−1XT is n×n, so we may solve any linear system with this coefficient matrix
using O(n3) flops; a further O(n2p) flops are needed to compute the coefficient matrix if given
M−1. Thus, the main computational burden of this update step is the inversion of the matrix M .
As before, we want to choose Ω so that we can exploit its structure. Consider the following cases.
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Diagonal Rank r Full rank

Proximal Gradient ∇f1 O(np) O(rp+ np) O(p2)
‖A‖ O(np) O(rp+ np) O(p2 log p)

ADMM (µI +A)x = b O(n3 + n2p) O(n3 + n2p+ r2p) O(p3)

Table 1: Upper bounds on floating point operation counts for most time consuming steps of
each algorithm. For our (accelerated) proximal gradient method, these are the matrix-vector
multiplication to compute the gradient ∇f1 and the estimation of the Lipschitz constant using
‖A‖ ≤ 2

(
‖Ω‖+ ‖X‖2F

)
to define the step length; for ADMM, this is the solution of the linear

system in the update of x.

• If Ω = Diag(u) is diagonal, then M is also diagonal with

[M−1]ii =
1

µ+ 2γui
.

Thus, we require O(p) flops to compute M−1v for any vector v ∈ Rp.

• On the other hand, if Ω = RRT , where R ∈ Rp×r, then we may use the Sherman-Morrison-
Woodbury identity to compute M−1:

M−1 =
1

µ
I − 2

µ2
R

(
I +

2

µ
RTR

)−1
RT .

Therefore, we can solve any linear system with coefficient matrix M at a cost of O(r2p) flops
(for the formation and solution of the system with coefficient matrix I + 2

µR
TR).

In either case, we never actually compute the matrices M−1 and (µI +A)−1 explicitly. Instead,
we update x as the solution of a sequence of linear systems and matrix-vector multiplications, at
a total cost of O(n2p) flops (in the diagonal case) or O((r2 + n2)p) flops (in the factored case).
Thus, if the number of observations n is much smaller than the number of features p, then the
per-iteration computation scales roughly linearly with p. Table 2.2 summarizes these estimates of
per-iteration computational costs for each proposed algorithm. Further, we should note that these
bounds on per-iteration cost assume that the iterates β and x are dense; the soft-thresholding
step of the proximal gradient algorithm typically induces β containing many zeros, suggesting that
further improvements can be made by using sparse arithmetic.

2.3 Convergence of our block coordinate descent method

In this section, we investigate the convergence properties of our block coordinate descent method
(Algorithm 1). Our two main results, Theorem 2.3 and Theorem 2.4, are specializations of stan-
dard results for alternating minimization algorithms; we include these results and their proofs for
completeness.

We first note that the Lagrangian L : RK ×Rp ×R×Rk−1 → R of (2) is given by

L(θ,β, ψ,v) = ‖Y θ −Xβ‖2 + γβTΩb+ λ‖β‖1 + ψ(θTY TY θ − n) + vTUθ, (21)

where UT = (Y TY θ1,Y
TY θ2, . . . ,Y

TY θk−1). Our first technical lemma establishes when this
Lagrangian function is convex in (θ,β).

11



Lemma 2.2 The Lagrangian function L(·, ·, ψ,v) defined by (21) is convex in (β,θ) for all v ∈
Rk−1 and ψ ≥ 0.

Proof: Fix ψ ≥ 0 and v ∈ Rk−1. The functions γβTΩβ and ψ(θTY TY θ − n) are convex
quadratic functions in β and θ respectively. Similarly, λ‖β‖1 is a norm on Rp for all λ > 0 and
vTUθ is linear in θ and, therefore, both are convex in (θ,β). It remains to show that ‖Y θ−Xβ‖2
is convex; indeed, in this case L(·, ·, ψ,v) is the sum of several convex functions and, hence, convex.
To show that this is indeed the case, note that for any (θ,β), we have

0 ≤ ‖Y θ −Xβ‖2 = (Y θ −Xβ)T (Y θ −Xβ)

= θTY TY θ − θTY TXβ − βTXTY + βTXTXβ

=

[
θ
β

]T [
Y TY −Y TX

−XTY XTX

] [
θ
β

]
.

This establishes that ‖Y θ −Xβ‖2 is a convex quadratic function because the coefficient matrix[
Y TY −Y TX

−XTY XTX

]
is positive semidefinite.

We now provide our first convergence result, specifically, that Algorithm 1 generates a conver-
gent sequence of function values.

Theorem 2.3 Suppose that the sequence of iterates {(θt,βt)}∞t=0 is generated by Algorithm 1.
Then the corresponding sequence of objective function values {F (θt,βt)}∞t=0 defined by

F (θ,β) := ‖Y θ −Xβ‖2 + γβTΩβ + λ‖β‖1

is convergent.

Proof: Suppose that, after t iterations, we have iterates (θt,βt) with objective function value
F (θt,βt). Recall that we obtain βt+1 as the solution of (5). Moreover, note that βt is also feasible
for (5). This immediately implies that

F (θt,βt) ≥ F (θt,βt+1).

On the other hand, θt+1 is the solution of (3) with β = βt+1. Therefore, we have

F (θt,βt) ≥ F (θt,βt+1) ≥ F (θt+1,βt+1).

It follows that the sequence of function values {F (θt,βt)}∞t=1 is monotonically nonincreasing. More-
over, the objective function F (θ,β) is nonnegative. Therefore, {F (θt,βt)}∞t=1 is convergent as a
monotonic bounded sequence.

We also have the following theorem, which establishes that every convergent subsequence of
{(θt,βt)}∞t=1 converges to a stationary point of (2).

12



Theorem 2.4 Let {(θt,βt)}∞t=1 be the sequence of points generated by Algorithm 1. Suppose that
{(θtj ,βtj )}∞j=1 is a convergent subsequence of {(θt,βt)}∞t=1 with limit (θ∗,β∗). Then (θ∗,β∗) is a

stationary point of (2): (θ∗,β∗) is feasible for (2) and there exists ψ∗ ≥ 0 and v∗ ∈ Rk−1 such
that

0 ∈ ∂L(θ∗,β∗, ψ∗,v∗),

where ∂L(θ,β, ψ,v) denotes the subdifferential of the Lagrangian function L with respect to the
primal variables (θ,β).

To prove Theorem 2.4, we first establish the following lemma, which establishes that the limit
point (θ∗,β∗) minimizes F with respect to each primal variable with the other fixed; that is, θ∗

minimizes F (·,β∗) and β∗ minimizes F (θ∗, ·).

Lemma 2.3 Let {(θt,βt)}∞t=1 be the sequence of points generated by Algorithm 1. Suppose that
{(θtj ,βtj )}∞j=1 is a convergent subsequence of {(θt,βt)}∞t=1 with limit (θ∗,β∗). Then

F (θ,β∗) ≥ F (θ∗,β∗) for all feasible θ ∈ RK (22)

F (θ∗,β) ≥ F (θ∗,β∗) for all feasible β ∈ Rp. (23)

Proof: We first establish (23). Consider (θtj ,βtj ). By our update step for β, we note that

βtj = arg min
β∈Rp

F (θtj ,β).

Thus, for all j = 1, 2, . . . , we have F (θtj ,β) ≥ F (θtj ,βtj ) for all β ∈ Rp. Taking the limit as
j →∞ and using the continuity of F establishes (23).

Next, note that, for every j = 1, 2, . . . ,, we have

θtj+1 = arg min
θ∈Rp

{
F (θ,βtj ) : θTY TY θ = n, θTY TY θ` = 0 ∀` < k

}
.

This implies that

F (θ,βtj ) ≥ F (θtj+1,βtj ) ≥ F (θtj+1,βtj+1) ≥ F (θtj+1 ,βtj+1)

by the monotonicity of the sequence of function values and the fact that tj < tj + 1 ≤ tj+1. Taking
the limit as j → ∞ implies that F (θ,β∗) ≥ F (θ∗,β∗) and F (θ∗) ≥ F (θ∗,β∗) for any feasible β
and θ. This completes the proof.

We are now ready to prove Theorem 2.4.
Proof: (of Theorem 2.4). Taking the (sub)derivatives of L with respect to (θ,β) shows that
(gθ, gβ) ∈ ∂L(θ,β, ψ,v) if and only if

gθ = 2(1 + ψ)Y TY θ − 2Y TXβ +UTv (24)

gβ ∈ 2(XTX + γΩ)β − 2XTY θ + λ∂‖β‖1 (25)

for all v ∈ Rk−1 and ψ ≥ 0; note that the assumption ψ ≥ 0 ensures that L(·, ·, ψ,v) is convex and,
hence, subdifferentiable. Equation (23) implies that β∗ = arg minβ∈Rp F (θ∗,β). Thus, by the first
order necessary conditions for unconstrained convex optimization, we must have

0 ∈ ∂
(

1

2
(β∗)TAβ∗ + dTβ∗ + λ‖β∗‖1

)
= 2(XTX + γΩ)β∗ − 2XTY θ∗ + λ∂‖β∗‖1; (26)
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here ∂‖β‖1 denotes the subdifferential of the `1-norm at the point β.
On the other hand, (22) implies

θ∗ = arg min
θ∈RK

{
‖Y θ −Xβ∗‖2 : θTY TY θ = n, θTY TY θ` ∀ ` < k − 1

}
. (27)

Moreover, the problem (27) satisfies the linear independence constraint qualification. Indeed, the
set of active constraint gradients {2Y TY θ, 2Y TY θ1, . . . , 2Y

TY θk−1} is linearly independent for
any feasible θ ∈ RK by the Y TY -conjugacy of {θ,θ1, . . . ,θk−1}. Therefore, there exist Lagrange
multipliers ψ∗, v∗ such that

0 = 2(1 + ψ∗)Y TY θ∗ − 2Y TXβ∗ +UTv∗ (28)

by the first-order necessary conditions for constrained optimization (see Nocedal and Wright [2006,
Theorem 12.1]). Moreover, an identical argument to that found in Appendix 4.1 shows that the
Lagrange multiplier ψ∗ must be nonnegative for the solution θ∗ of the linear system given by (28)
to minimize (27). Combining (26) and (28) establishes that 0 ∈ ∂L(θ∗,β∗, ψ∗,v∗) as required.

3 Numerical Simulations

We next compare the performance of our proposed approaches with standard methods for penalized
discriminant analysis in several numerical experiments. In particular, we compare the implemen-
tations of the block coordinate descent method Algorithm 1 where each discriminant direction β
is updated using the proximal gradient method given by Algorithm 2 (SDAP), the accelerated
proximal method given by Algorithm 3 (SDAAP), and the alternating direction method of multi-
pliers given by Algorithm 4 (SDAD), with the Sparse Zero Variance Discriminant Analysis (SZVD)
method proposed in Ames and Hong [2016], and the algorithm for solving the sparse optimal scoring
problem proposed in Clemmensen et al. [2011]. All simulations were conducted using R version 3.2.3
and our heuristics are implemented in R as the package accSDA3. The runs on the benchmarking
data sets were performed on a laptop with an i7-4800MQ processor clocked at 2.70GHz. The runs
on the synthetic data sets were performed on a cluster where each node had an Intel Xeon E5-2660
v2 CPU clocked at 2.20GHz.

3.1 Classification of Spectral and Time Series Data

We first apply each of these methods to learn classification rules for the following data sets:
the Penicillium (Pen) data set from [Clemmensen et al., 2007] of multi-spectral images of three
Penicillium species that are almost visual indistinguishable (p = 3542,K = 3, n = 36, training
sample size = 24, testing sample size = 12); Electrocardiogram measurements (ECG) of a 67-
year old male taken on two dates, five days apart, before and after corrective cardiac surgery
(p = 136,K = 2, n = 884, training size = 23, testing size = 861); food spectrogram observations
of either Arabica or Robusta variants of instant coffee (p = 286,K = 2, n = 56, training size = 28,
testing size = 28); food spectrogram observations of extra virgin olive oil originating from one of
four countries (p = 570,K = 4, n = 60, training size = 30, testing size = 30). The final three data
sets were obtained from the UC Riverside time series classification repository [Keogh et al., 2006].
We use each heuristic to obtain q = K − 1 sparse discriminant vectors and then perform nearest-
centroid classification after projection onto the subspace spanned by these discriminant directions.
The results of our experiments are summarized in Table 2.

3Available https://github.com/gumeo/accSDA
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Time Series Measures SDAP SDAAP SDAD SZVD SDA

Pen numErr 0 0 0 0 0
p = 3542 fracErr 0 0 0 0 0
K = 3 feats 633 667 60 1454 109
ntrain = 24 fracFeats 0.18 0.19 0.02 0.41 0.03
ntest = 12 time 2502.11 134.99 337.37 6855.60 1248.12

ECG numErr 23 86 21 20 42
p = 136 fracErr 0.03 0.10 0.02 0.02 0.05
K = 2 feats 18 16 25 21 16
ntrain = 23 fracFeats 0.13 0.12 0.18 0.15 0.12
ntest = 861 time 61.28 15.77 21.20 4.90 1.45

Coffee numErr 0 0 0 0 0
p = 286 fracErr 0 0 0 0 0
K = 2 feats 16 36 43 69 4
ntrain = 28 fracFeats 0.06 0.13 0.15 0.24 0.01
ntest = 28 time 210.91 25.98 43.21 36.91 6.40

OliveOil numErr 4 4 2 2 3
p = 570 fracErr 0.13 0.13 0.07 0.07 0.10
K = 4 feats 56 53 139 215 60
ntrain = 30 fracFeats 0.10 0.09 0.24 0.38 0.11
ntest = 30 time 1308.03 271.20 393.49 1445.25 459.40

Table 2: Comparison of classification performance of benchmarking data. Each block reports
the number of classification errors on out-of-sample testing observations (numErr), fraction of
classification errors (fracErr), number of nonzero features used for classification (feats), fraction of
nonzero features (fracFeat), and time (in seconds) needed to train the discriminant vectors (time).

The sparse discriminant analysis heuristics SDAP, SDAAP, SDAD, and SDA require training
of the regularization parameters γ, Ω, and λ. In all experiments, we set γ = 10−3 and Ω to be the
p × p identity matrix Ω = I. We train the remaining parameter λ using N -fold cross validation.
Specifically, we choose λ from a set of potential λ of the form λ̄/2c for c = 9, 8, 7, . . . ,−1,−2,−3
and λ̄ chosen so that the problem has nontrivial solution for all considered λ; we note that (7) has
optimal solution given by β∗ = A−1d if we set λ = 0 and choose

λ̄ =
(β∗)Td− 1

2(β∗)TAβ∗

‖β∗‖1
so that there exists at least one solution β∗ with value strictly less than zero. We pick as our
regularization parameter the value of λ with fewest average number of misclassification errors over
training-validation splits amongst all λ which yield discriminant vectors containing at most 15%
nonzero entries. We set the number of folds N = 5, 5, 7, 15 for Pen, ECG, Coffee, and Olive oil data
sets respectively. We terminate each proximal algorithm in the inner loop after 1000 iterations or
a 10−5 suboptimal solution is obtained; the outer block coordinate descent loop is stopped after a
maximum number of 250 iterations or a 10−3 suboptimal solution has been found. The augmented
Lagrangian parameter µ = 2.5 was used in all experiments in the ADMM method (SDAD).

We train any regularization parameters in SZVD using a similar procedure. In particular, we set

the maximum value of the regularization parameter γ to be β̂
T
Bβ̂/‖β̂‖1, where β̂ is the optimal
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solution of the unpenalized SZVD problem and B is the sample between-class covariance matrix
corresponding to the given data, and choose γ from an exponentially spaced grid using N -fold
cross-validation; this approach is consistent with that in [Ames and Hong, 2016]. The number of
folds N for each data set was identical to that in the SDA cross validation scheme described above.
We select the value of γ which minimizes misclassification error amongst all sets of discriminant
vectors with at most 35% nonzero entries; this acceptable sparsity threshold is chosen to be higher
than that in the SDA experiments, due to the tendency of SZVD to misconverge to the trivial all-
zero solution for large values of γ. We stop SZVD after a maximum of 1000 iterations or solution
satisfying the stopping tolerance of 10−5 is obtained. We use the augmented Lagrangian penalty
parameter β = 2.5 in SZVD in all experiments.

3.2 Gaussian data

We also performed similar simulations investigating efficacy of our heuristics for classification of
Gaussian data. In each experiment, we generate data consisting of p-dimensional vectors from one
of K multivariate Normal distributions. Specifically, we obtain training observations corresponding
to the ith class by sampling 25 observations from the multivariate Normal distribution with mean
µi ∈ Rp with entries indexed by 100(i− 1), . . . 100i equal to 0.7 and all remaining entries equal to
0, and covariance matrix Σ ∈ Rp×p constructed as follows.

• Type 1 data: in the first set of simulations, all features are correlated with Σij = r for all
i 6= j and Σii = 1 for all i. We conduct the experiment for all K ∈ {2, 4}, r ∈ {0, 0.1, 0.5, 0.9}.

• Type 2 data: in the second set of simulations, Σ is a block diagonal matrix with 100 × 100
blocks. For each pair of indices (i, j) in the same block we set Σij = r|i−j|, and set Σij = 0
otherwise. As before, we repeat the experiment for each K ∈ {2, 4}, r ∈ {0, 0.1, 0.5, 0.9}.

For each experiment, we sample 250 testing observations from each class in the same manner as
the training data.

For each (K, r) pair we generate 20 data sets and use nearest centroid classification following
projection onto the span of the discriminant directions to test the five LDA heuristics SDA, SDAP,
SDAAP, SDAD, and SZVD. All input parameters are defined as in Section 3.1. We train any
regularization parameters in the same fashion as in Section 3.1 using N -fold cross validation; we
set a maximum fraction of nonzero features to 0.3 in the cross validation scheme. Tables 3 and 4
summarize the results of these experiments.

3.3 Multispectral X-ray images and Ω of varying rank

To demonstrate empirically the run-time gain in having a non-full rank Ω in the elastic net penalty,
we choose to do pixelwise classification on multipsectral X-ray images, like presented in [Einarsson
et al., 2017]. The multispectral X-ray images are scans of food items, where each pixel contains 128
measurements (channels) corresponding to attenuation of X-rays emitted at different wavelengths
(See Fig. 1). The measurements in each pixel thus give us a profile for the material positioned at
that pixel’s location (See Fig. 2).

We start by preprocessing the scans similar to [Einarsson et al., 2017] in order to remove
scanning artifacts and normalize the intensities between scans. We scale the measurements in each
pixel by the 95% quantile of the corresponding 128 measurements instead of the maximum. This
scaling approach is more robust.

We create our training data by manually selecting rectangular patches from six scans. We
have three classes, namely background, minced meat and foreign objects. We further subsample the
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Dataset Measures SDAP SDAAP SDAD SZVD SDA

p = 500 numErr 9.50 (11.52) 9.00 (11.63) 6.75 ( 5.95) 1.55 ( 2.14) 113.75 (13.04)
r = 0 fracErr 0.02 ( 0.02) 0.02 ( 0.02) 0.01 ( 0.01) 0.00 ( 0.00) 0.23 ( 0.03)
K = 2 feats 81.90 (36.86) 88.55 (36.04) 91.45 (30.93) 135.15 (25.09) 8.00 ( 0.00)

fracFeats 0.16 ( 0.07) 0.18 ( 0.07) 0.18 ( 0.06) 0.27 ( 0.05) 0.02 ( 0.00)
time 31.57 ( 2.46) 24.87 ( 1.43) 131.32 ( 2.18) 59.62 (12.12) 22.76 ( 1.28)

p = 500 numErr 6.85 ( 7.68) 7.35 ( 9.83) 7.95 ( 5.69) 0.75 ( 0.85) 117.50 (16.38)
r = 0.1 fracErr 0.01 ( 0.02) 0.01 ( 0.02) 0.02 ( 0.01) 0.00 ( 0.00) 0.24 ( 0.03)
K = 2 feats 83.60 (33.42) 89.85 (36.61) 77.25 (27.37) 139.85 (16.73) 8.00 ( 0.00)

fracFeats 0.17 ( 0.07) 0.18 ( 0.07) 0.15 ( 0.05) 0.28 ( 0.03) 0.02 ( 0.00)
time 49.73 ( 7.95) 27.46 ( 2.10) 132.95 ( 0.95) 60.76 (13.60) 23.18 ( 1.09)

p = 500 numErr 1.90 ( 2.90) 1.90 ( 3.21) 0.45 ( 0.83) 0.00 ( 0.00) 94.10 (25.14)
r = 0.5 fracErr 0.00 ( 0.01) 0.00 ( 0.01) 0.00 ( 0.00) 0.00 ( 0.00) 0.19 ( 0.05)
K = 2 feats 75.25 (29.70) 85.95 (36.60) 71.65 (15.16) 143.40 (14.25) 8.00 ( 0.00)

fracFeats 0.15 ( 0.06) 0.17 ( 0.07) 0.14 ( 0.03) 0.29 ( 0.03) 0.02 ( 0.00)
time 214.63 (27.34) 37.01 ( 3.90) 130.33 ( 1.80) 56.28 ( 8.51) 22.86 ( 1.43)

p = 500 numErr 4.80 (20.30) 4.80 (21.00) 0.00 (0.00) 0.00 ( 0.00) 19.65 (20.88)
r = 0.9 fracErr 0.01 ( 0.04) 0.01 ( 0.04) 0.00 (0.00) 0.00 ( 0.00) 0.04 ( 0.04)
K = 2 feats 51.70 (25.75) 75.65 (35.88) 94.00 (9.28) 164.65 (12.91) 8.00 ( 0.00)

fracFeats 0.10 ( 0.05) 0.15 ( 0.07) 0.19 (0.02) 0.33 ( 0.03) 0.02 ( 0.00)
time 194.13 (25.24) 28.80 ( 3.11) 135.31 (1.58) 60.82 (17.93) 23.96 ( 2.30)

p = 500 numErr 32.60 (14.55) 25.70 (16.15) 9.15 ( 6.11) 11.95 ( 7.06) 191.45 (24.85)
r = 0 fracErr 0.03 ( 0.01) 0.03 ( 0.02) 0.01 ( 0.01) 0.01 ( 0.01) 0.19 ( 0.02)
K = 4 feats 252.80 (68.10) 279.05 (66.02) 522.95 (14.24) 426.50 (42.82) 69.05 ( 0.22)

fracFeats 0.44 ( 0.08) 0.48 ( 0.08) 0.74 ( 0.01) 0.67 ( 0.05) 0.14 ( 0.00)
time 33.29 ( 2.46) 65.23 ( 3.02) 424.30 ( 4.71) 476.76 (90.16) 805.62 (37.15)

p = 500 numErr 44.35 (17.85) 33.80 (11.99) 5.30 ( 2.94) 28.55 (29.26) 245.05 (23.44)
r = 0.1 fracErr 0.04 ( 0.02) 0.03 ( 0.01) 0.01 ( 0.00) 0.03 ( 0.03) 0.25 ( 0.02)
K = 4 feats 262.80 (60.28) 296.20 (54.55) 540.55 (18.04) 381.80 (85.53) 69.00 ( 0.00)

fracFeats 0.45 ( 0.07) 0.49 ( 0.06) 0.74 ( 0.02) 0.60 ( 0.09) 0.14 ( 0.00)
time 87.99 (13.43) 71.69 ( 4.08) 430.38 ( 7.55) 467.19 (86.11) 787.50 (58.68)

p = 500 numErr 7.25 ( 5.95) 3.85 ( 3.07) 0.00 ( 0.00) 3.75 ( 7.30) 153.50 (28.41)
r = 0.5 fracErr 0.01 ( 0.01) 0.00 ( 0.00) 0.00 ( 0.00) 0.00 ( 0.01) 0.15 ( 0.03)
K = 4 feats 263.65 (21.94) 309.00 (21.22) 597.80 (23.67) 361.85 ( 68.06) 69.00 ( 0.00)

fracFeats 0.45 ( 0.03) 0.51 ( 0.03) 0.76 ( 0.02) 0.58 ( 0.06) 0.13 ( 0.00)
time 352.05 (29.60) 90.43 ( 8.89) 444.74 (10.22) 541.43 (144.59) 804.96 (52.84)

p = 500 numErr 3.40 ( 6.06) 3.40 ( 7.38) 0.00 ( 0.00) 25.00 ( 77.45) 4.70 ( 5.39)
r = 0.9 fracErr 0.00 ( 0.01) 0.00 ( 0.01) 0.00 ( 0.00) 0.02 ( 0.08) 0.00 ( 0.01)
K = 4 feats 223.70 (127.38) 193.40 (33.13) 796.20 (52.95) 355.25 (135.89) 69.00 ( 0.00)

fracFeats 0.37 ( 0.17) 0.35 ( 0.05) 0.79 ( 0.01) 0.57 ( 0.14) 0.13 ( 0.00)
time 343.42 ( 21.42) 72.44 ( 6.31) 510.91 (11.66) 446.70 (158.79) 785.33 (32.50)

Table 3: Results for Type 1 synthetic data. All results are listed in the format “mean (standard
deviation)”. In all experiments ntrain = 25K and ntest = 250K.

observations to have balanced number of observations, where the class foreign objects was under
represented. In the end we have 521 observations per class, where each observation corresponds to
a single pixel. This data was used to generate Fig. 2. For training we use 100 samples per class,
and the rest is allocated to a final test set.
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Dataset Measures SDAP SDAAP SDAD SZVD SDA

p = 500 numErr 9.50 (11.52) 9.00 (11.63) 6.75 ( 5.95) 1.55 ( 2.14) 113.75 (13.04)
r = 0 fracErr 0.02 ( 0.02) 0.02 ( 0.02) 0.01 ( 0.01) 0.00 ( 0.00) 0.23 ( 0.03)
K = 2 feats 81.90 (36.86) 88.55 (36.04) 91.45 (30.93) 135.15 (25.09) 8.00 ( 0.00)

fracFeats 0.16 ( 0.07) 0.18 ( 0.07) 0.18 ( 0.06) 0.27 ( 0.05) 0.02 ( 0.00)
time 28.84 ( 2.26) 25.38 ( 1.41) 132.87 ( 1.27) 62.44 (12.85) 23.16 ( 1.12)

p = 500 numErr 8.95 (10.77) 7.40 ( 8.64) 8.20 ( 5.86) 3.15 ( 5.56) 111.05 (15.26)
r = 0.1 fracErr 0.02 ( 0.02) 0.01 ( 0.02) 0.02 ( 0.01) 0.01 ( 0.01) 0.22 ( 0.03)
K = 2 feats 93.95 (48.19) 94.75 (34.30) 86.45 (23.69) 132.80 (28.13) 8.00 ( 0.00)

fracFeats 0.19 ( 0.10) 0.19 ( 0.07) 0.17 ( 0.05) 0.27 ( 0.06) 0.02 ( 0.00)
time 28.36 ( 2.37) 24.67 ( 1.42) 133.24 ( 1.13) 60.39 (10.04) 23.02 ( 0.99)

p = 500 numErr 25.50 (13.74) 19.95 ( 9.98) 22.55 ( 8.11) 12.80 ( 7.88) 116.55 (18.14)
r = 0.5 fracErr 0.05 ( 0.03) 0.04 ( 0.02) 0.05 ( 0.02) 0.03 ( 0.02) 0.23 ( 0.04)
K = 2 feats 72.25 (36.20) 81.85 (27.66) 75.25 (18.45) 136.45 (35.10) 8.00 ( 0.00)

fracFeats 0.14 ( 0.07) 0.16 ( 0.06) 0.15 ( 0.04) 0.27 ( 0.07) 0.02 ( 0.00)
time 31.44 ( 2.76) 26.17 ( 1.70) 128.89 ( 1.97) 72.51 (17.74) 24.74 ( 1.15)

p = 500 numErr 99.50 (12.53) 99.15 (11.48) 110.25 (11.64) 116.15 (16.75) 133.75 (16.25)
r = 0.9 fracErr 0.20 ( 0.03) 0.20 ( 0.02) 0.22 ( 0.02) 0.23 ( 0.03) 0.27 ( 0.03)
K = 2 feats 59.65 (34.47) 66.85 (31.87) 92.10 (22.81) 132.90 (22.27) 8.00 ( 0.00)

fracFeats 0.12 ( 0.07) 0.13 ( 0.06) 0.18 ( 0.05) 0.27 ( 0.04) 0.02 ( 0.00)
time 51.49 ( 7.20) 32.63 ( 2.43) 116.43 ( 4.31) 120.82 (20.72) 30.57 ( 2.10)

p = 500 numErr 32.60 (14.55) 25.70 (16.15) 9.15 ( 6.11) 11.95 ( 7.06) 191.45 (24.85)
r = 0 fracErr 0.03 ( 0.01) 0.03 ( 0.02) 0.01 ( 0.01) 0.01 ( 0.01) 0.19 ( 0.02)
K = 4 feats 252.80 (68.10) 279.05 (66.02) 522.95 (14.24) 426.50 (42.82) 69.05 ( 0.22)

fracFeats 0.44 ( 0.08) 0.48 ( 0.08) 0.74 ( 0.01) 0.67 ( 0.05) 0.14 ( 0.00)
time 36.22 ( 3.18) 65.45 ( 3.14) 427.83 ( 7.06) 443.24 (77.38) 705.49 (67.77)

p = 500 numErr 43.00 (19.26) 28.45 (15.98) 10.75 ( 4.72) 18.58 ( 9.36) 196.65 (25.32)
r = 0.1 fracErr 0.04 ( 0.02) 0.03 ( 0.02) 0.01 ( 0.00) 0.02 ( 0.01) 0.20 ( 0.03)
K = 4 feats 253.35 (74.60) 299.60 (83.63) 537.20 (24.01) 419.53 (45.13) 69.00 ( 0.00)

fracFeats 0.44 ( 0.08) 0.50 ( 0.08) 0.74 ( 0.01) 0.66 ( 0.05) 0.14 ( 0.00)
time 36.90 ( 2.38) 67.01 ( 2.33) 430.11 ( 7.51) 475.23 (83.24) 742.81 (46.20)

p = 500 numErr 89.80 (20.86) 84.70 (22.96) 62.55 (10.24) 125.90 ( 93.66) 230.80 (25.47)
r = 0.5 fracErr 0.09 ( 0.02) 0.08 ( 0.02) 0.06 ( 0.01) 0.13 ( 0.09) 0.23 ( 0.03)
K = 4 feats 259.95 (52.78) 281.00 (47.87) 560.85 (20.69) 383.35 ( 68.22) 69.05 ( 0.22)

fracFeats 0.46 ( 0.07) 0.48 ( 0.07) 0.76 ( 0.02) 0.60 ( 0.09) 0.14 ( 0.00)
time 41.62 ( 4.27) 72.10 ( 2.82) 415.59 ( 5.75) 483.74 (121.77) 854.26 (51.16)

p = 500 numErr 368.10 (37.14) 366.20 (29.92) 453.15 (32.76) 502.65 ( 29.87) 391.85 ( 18.91)
r = 0.9 fracErr 0.37 ( 0.04) 0.37 ( 0.03) 0.45 ( 0.03) 0.50 ( 0.03) 0.39 ( 0.02)
K = 4 feats 189.25 (82.78) 269.55 (96.00) 867.25 (46.11) 416.20 ( 55.93) 69.25 ( 0.44)

fracFeats 0.33 ( 0.12) 0.44 ( 0.13) 0.92 ( 0.02) 0.63 ( 0.06) 0.13 ( 0.00)
time 103.07 ( 6.48) 100.21 ( 7.28) 400.24 (11.51) 1034.96 (148.44) 1096.82 (118.89)

Table 4: Results for Type 2 synthetic data. All results are listed in the format “mean (standard
deviation)”. In all experiments ntrain = 25K and ntest = 250K.

This process yields 128 variables per observation, but in order to get more spatially consisted
classification, we also include data from the pixels located above, to the right, below and to the
left of the observed pixel. Thus we have p = 5 · 128 = 640 variables per observation. The
measurements corresponding to our observation are thus indexed according to spatial and spectral
position, i.e. observation xi has measurements xijk, where j ∈ {0, 1, 2, 3, 4} indicates which pixel
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Figure 1: Grayscale images of different channels from a minced meat sample generated with a
multispectral X-ray scanner after all preprocessing. From left to right are channels 2, 20, 50 and
100. The contrast decreases the higher we go in the channels and the variation in the measurements
increases. Some foreign objects can be seen as small black dots.

the measurement belongs to (center, above, right, bottom, left), and k ∈ {1, 2, ..., 128} indicates
which channel. We can impose priors according to these relationships of the measurements in the
Ω regularization matrix. We assume that the errors should vary smoothly spatially and thus impose
a Matérn covariance structure on Ω−1 [Matérn, 2013].

Cν(d) = σ2
21−v

Γ(ν)

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
(29)

The Matérn covariance structure 29 is governed by the distance d between measurements. In
29, Γ refers to the gamma function and Kν is the modified Bessel function of the second kind. For
this example we assume that all parameters are 1, except that ν is 0.5. We further assume that the
distance between measurements xijk and xij′k′ from observation i is the Euclidean distance between
the points (xj , yj , zk) and (xj′ , yj′ , zk′), where xj , yj , xj′ , yj′ ∈ {−1, 0, 1} and zk, zk′ ∈ {1, 2, ..., 128}.
The distance is thus the same as in the image grid (center, top, bottom, left, right pixel location),
and z-dimension corresponds to the channel.

For demonstrating the effect that lower rank has on runtime we factorize Ω via Singular Value
Decomposition, and select the first r singular vectors and singular values for constructing a low-
rank approximation to Ω. We use a stopping tolerance of 10−5 and a maximum of 1000 iterations
for the inner loop using the accelerated proximal algorithm, and a stopping tolerance of 10−4 and
maximum 1000 iterations for the outer block-coordinate loop. The regularization parameter for
the l1-norm is selected as 10−3, and 10−1 for the Tikhonov regularizer. We do this 10 times for
each r and present the average runtime in Fig. 3 and the average accuracy in Fig. 4. There is a
clear linear trend for the increase in runtime. We also estimate the accuracy for a diagonal Ω with
the same regularization parameters and get an accuracy of 0.923, which is approximately the same
that an Ω of rank 300 achieves. We supplied the same parameters to the function sda from the
package sparseLDA and it took 486 seconds to run and achieved an accuracy of 0.923.
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Figure 2: Profiles of materials seen in Fig. 1 over the 128 channels. The profile for each type of
material, displayed here, is averaged over 500 pixels.
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Figure 3: Average running time over 10 runs when the rank of the elastic net coefficient matrix Ω
is varied using Accelerated Proximal Gradient.
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Figure 4: Average test accuracy over 10 runs when the rank of the elastic net coefficient matrix Ω
is varied using Accelerated Proximal Gradient.

3.4 Commentary

Our proximal methods for sparse discriminant analysis provide an improvement over the existing
SDA approach in terms of classification error in almost all experiments, while we see a significant
improvement in terms of computational resources used by the accelerated proximal gradient method
(SDAAP) and ADMM (SDAD) over SDA. This improvement in run-time is most significant when
applied to the Penicillium data set. This is not a coincidence. The per-iteration complexity of these
methods is on the order of O(p) floating point operations per-iteration, compared to O(p3) of the
classical SDA method. We see this improvement is most significant when p is large, as it is for the
Penicillium data set, where the per-iteration cost of O(p3) flops is prohibitive. This improvement is
not observed as acutely when p is small; in fact, SDA exhibits the shortest run-times for both the
ECG and Coffee data sets, where p is the smallest. It is important to note that the slow convergence
of the proximal gradient method (SDAP) without acceleration yields significantly longer run-times
despite the improved per-iteration cost. We should also note that our use of cross validation causes
significant variation in the performance of our heuristics for the ECG data set. This is because the
trained discriminant vectors are sensitive to the split in the validation process, as the training set
can become unbalanced.

4 Conclusion

We have proposed new algorithms for solving the sparse optimal scoring problem for high-dimensional
linear discriminant analysis. These methods, based on block coordinate descent and proximal op-
erator evaluations, provide significant improvement over existing approaches for solving the SOS
problem, in terms of efficiency and scalability, in the case that specially structured Tikhonov regu-
larization is employed in the SOS formulation; for example, the computational resources required
for each iteration scales linearly with the dimension of the data if either a diagonal or low-rank
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matrix is used. Moreover, we establish that any convergent subsequence of iterates generated by
one of our algorithms converges to a stationary point. Finally, numerical simulation establishes
that our approach provides an improvement over existing methods for sparse discriminant analysis
in terms of both quality of solution and run-time.

These results present several exciting avenues for future research. Although we focus primarily
on the solution of the optimal scoring problem under regularization in the form of a generalized
elastic net penalty, our approach should translate immediately to formulations with any nonsmooth
convex penalty function. That is, the framework provided by Algorithm 1 can be applied to solve
the SOS problem (2) obtained by applying an arbitrary convex penalty to the objective of the
optimal scoring problem (1). The resulting optimization problem can be approximately solved by
alternately minimizing with respect to the score vector θ using the formula (4) and with respect
to the discriminant vector β by solving a modified version of (5). The proximal methods outlined
in this paper can be applied to minimize with respect to β if the regularization function is convex,
however it is unlikely that the computational resources necessary for this minimization will scale as
favorably as with the generalized elastic net penalty. On the other hand, the convergence analysis
presented in Section 2.3 extends immediately to this more general regularization framework. Of
particular interest is the modification of this approach to provide means of learning discriminant
vectors for data containing ordinal labels, data containing corrupted or missing observations, and
semi-supervised settings.

Finally, although the results found in Section 2.3 provide compelling evidence that any conver-
gent subsequent of iterates generated by our block coordinate descent approach must converge to
a stationary point, it is still unclear what conditions ensure that the sequence of iterates is conver-
gent, or at what rate these subsequences converge; further study is required to better understand
the convergence properties of these algorithms. Similarly, despite the empirical evidence provided
in Section 3, it is unknown what conditions ensure that data is classifiable or when data can have
its dimension reduced using sparse optimal scoring and, more generally, linear discriminant analy-
sis. Extensive consistency analysis is needed to determine theoretical classification error rates for
distinguishing random variables drawn from distinct distributions.
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Appendix A. Proof of Lemma 2.1

To begin, we note that (3) has trivial solution θ = e for every β = βt ∈ Rp. Indeed, Y e = e by
the structure of the indicator matrix Y and XTe = 0 because our data has been centered to have
sample mean equal to 0. This implies that (3) has the hidden constraint θTY TY e = 0. Therefore,
we may reformulate (3) as

min
θ∈Rk

{
‖Y θ −Xβ‖2 : θTY TY θ = n, θTY TY e = 0, θTY TY θ` = 0 ` < k − 1

}
. (30)
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We wish to show that (30) has optimal solution θ̂ given by

θ̂ =
w√

wTDw
, (31)

where w = (I −QkQ
T
kD)D−1Y TXβ.

To do so, note that (30) satisfies the linear independence constraint qualification because the
set of constraint gradients {2Y TY θ, 2Y TY e, 2Y TY θ1, . . . , 2Y

TY θk−1} is linearly independent.
Moreover, the optimal value of (30) is bounded below by 0. Therefore, (30) has global minimizer,
θ̂, which must satisfy the Karush-Kuhn-Tucker conditions, i.e., there exists v ∈ Rk, ψ ∈ R such
that

2Y TY θ̂ − 2Y TXβ + 2
ψ

n
Y TY θ̂ + 2Y TY Qkv = 0. (32)

We consider the following two cases.

First, suppose that Y TXβ /∈ range
(
Y TY Qk

)
. Rearranging (32) yields

θ̂ =
n

n+ ψ

(
Y TY

)−1 (
Y TXβ − Y TY Qkv

)
. (33)

We choose the dual variables ψ and v so that θ̂ is feasible for (30). It is easy to see that the
conjugacy constraints are equivalent to QT

kY
TY θ̂ = 0, which holds if and only if

0 = QT
k (Y TXβ − Y TY Qkv) = QT

kY
TXβ −QT

kY
TY Qkv = QT

kY
Tβ − nv,

where the last equality follows from the fact that eTY TY e = θTi Y
TY θi = n for all i = 1, 2, . . . , k−

1. It follows immediately that

v =
1

n
QT
kY

TXβ. (34)

Substituting (34) into (33) yields

θ̂ =
n

n+ ψ

(
(Y TY )−1Y TXβ − 1

n
QkQ

T
kY

TXβ

)
=

1

n+ ψ

(
D−1Y TXβ −QkQ

T
kY

TXβ
)

=
1

n+ ψ

(
I −QkQ

T
kD
)
D−1Y TXβ, (35)

where we choose ψ ∈ R so that θ̂
T
Dθ̂ = 1:

ψ = ±
√
βTXTY D−1

(
I −QkQ

T
kD
)T
D
(
I −QkQ

T
kD
)
D−1Y TXβ − n. (36)

To complete the argument, note that

‖Y θ̂ −Xβ‖2 = n∓ 2sβTXTY (D−1 −QkQk)Y
TXβ + βTXTXβ,

where s = 1/

√
βTXTY D−1

(
I −QkQ

T
kD
)T
D
(
I −QkQ

T
kD
)
D−1Y TXβ. Note further that the

matrix Y QkQ
T
kY

T has decomposition

Y QkQ
T
kY

T = Y eeTY T + Y θ1θ
T
1 Y + · · ·Y θk−1θTk−1Y .
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The conjugacy of the columns of Qk implies that Y QkQ
T
kY

T has eigenvectors Y θ1, . . .Y θk−1, and
Y e, each with eigenvalue n. Therefore, the matrix Y (D−1 − QkQk)Y

T is positive semidefinite
and thus ‖Y θ −Xβ‖2 is minimized by θ̂ with ψ = +s.

Second, suppose that Y TXβ ∈ range
(
Y TY Qk

)
. This implies that there exists some v ∈ Rk

such that
Y TXβ = Y TY Qkv.

Substituting into the objective of (30), we see that

‖Y θ −Xβ‖2 = θTY TY β − 2θTY TXβ + βTXTXβ

= n− 2θTY TY Qkv + βTXTXβ

= n+ βTXTXβ

for every feasible solution θ of (30). This implies that every feasible solution of (30) is also optimal
in this case. In particular, θ̂ given by (35) is feasible for (30) and, therefore, optimal.
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Abstract

We present a semi-supervised extension of sparse discriminant analysis by addi-

tion of a graph based regularization term. We show empirically how addition of

unlabeled data can improve accuracy by a significant margin and produce more

consistent classifiers. We also demonstrate how the regularizer can help in the

presence of concept drift, where the distribution of data conditioned on labels

changes continuously.

Keywords: Semi-Supervised, Sparse, Classification, Statistical Learning

1. Introduction

Sparse or penalized discriminant analysis (SDA/PDA) Clemmensen et al.

(2011); Witten & Tibshirani (2011) is a popular tool to perform supervised

classification, notably in the case of more features than observations, i.e., p� n

problems. Using an l1-norm regularizer in the model formulation ensures that5

variable selection is performed in the model optimization process which gives

leverage for the user to interpret the non-zero parameters. Incorporation of an

l1-norm regularizer is influenced by the Lasso Tibshirani (1996); Chen et al.

(2001).

Our contribution consists of emperically examining the benefits of using10

jointly a sparse and semi-supervised regularizer in linear discriminant analysis
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(LDA), where we approach the problem via sparse optimal scoring Hastie et al.

(1994); Clemmensen et al. (2011). We apply the semi-supervised approach to

an ECG time-series data set Chen et al. (2015) and we demonstrate how the

method works on an artificial example of concept drift Tsymbal (2004) and15

examine how adding unlabeled samples can improve classification accuracy.

Implementations of various SDA approaches exist as software packages for

several programming languages Clemmensen & contributions by Max Kuhn

(2016); Sjöstrand et al. (2012), e.g. the sparseLDA package for R. However, none

of these packages include methods to directly incorporate unlabeled data, i.e.,20

a semi-supervised approach. There exist generic semi-supervised approaches like

the Yarowsky algorithm Yarowsky (1995) and various Expectation-Maximization

(EM) based approaches that combine a supervised and unsupervised model

through a generative mixture model Nigam et al. (2000). These methods itera-

tively train a classifier on labeled data, and then the methods assign hard or soft25

labels to unlabeled data; this procedure is continued until convergence, where

the new labels are used as input for the next classifier to be trained. Such a

solution is implemented as the R-package RSSL, Krijthe & Loog (2015); Krijthe

(2016).

The disadvantage of many of the generic approaches is that the classifier30

potentially needs to be trained many times to reach convergence, which might

make the classifier scale poorly w.r.t. the dimensions of the training set. These

methods cannot be scaled via parallelization, i.e., the training set for a new

iteration is dependent on the prediction from the last. This is similar to the

variable selection problem which is classically solved with stepwise regression,35

where in turn we need to train models multiple times. But as stated above, vari-

able selection and model fitting can be performed simultaneously by applying

an l1-norm regularizer. We can use a similar idea with the unlabeled part of our

training set. That is, we can encode the information of the unlabeled training

data into a regularizer and regularize w.r.t. the patterns in the unlabeled data40

during training of the classifier. One approach for constructing such a regular-

ization term for LDA is proposed in Cai et al. (2007). The main contribution

2



of Cai et al Cai et al. (2007) is the construction of a Tikhonov regularization

term which borrows ideas from spectral dimensionality reduction and spectral

clustering Belkin & Niyogi (2001); He & Niyogi (2003); Ng et al. (2001), where45

they construct a k-nearest neighbour graph on labeled and unlabeled data in

feature space. This is a type of manifold assumption initially introduced by Zhu

et al Zhu et al. (2003) in their label propagation method.

LDA is not only a classifier, but also a supervised dimensionality reduction

method, where the data is projected into a lower-dimensional space with the50

discriminant vectors found with the method. We enforce a local consistency

assumption Zhou et al. (2003), where unlabeled data that is close in the original

feature space should be close in the lower-dimensional space as well. This is

also a manifold assumption, where we seek to project manifolds embedded in

the feature-space to a lower-dimensional representation Belkin & Niyogi (2004);55

Sindhwani et al. (2005).

1.1. Contributions

Our contributions can be summarized as follows:

• We combine sparse and unsupervised regularizers for the optimal scoring

formulation of LDA.60

• We show emperically that addition of unlabeled samples can increase clas-

sification accuracy.

• We demonstrate that an unsupervised regularizer can achieve near perfect

classification accuracy in an artifical example of concept drift in presence

of redundant variables.65

2. Why semi-supervised learning?

There are several reasons for why one might consider using a semi-supervised

learning approach. In a practical setting the main reason is probably the cost

ratio of acquiring an observation versus obtaining a label for it. The usage of

3



unlabeled data requires assumptions, and in order to safely use unlabeled data,70

these assumptions need to be verified. A compelling example illustrating why

checking assumptions is important is a binary classification problem where the

data forms two obvious clusters, but the distribution of data conditioned on

the labels is bimodal. That is, the labels do not coincide with the underlying

mixtures present in the data distribution Krijthe & Loog (2014); Ben-David75

et al. (2008). Using a supervised approach with few data points in that case

could give adequate results, while using many unlabeled samples could drive

the classifier towards generating a classification boundary that separates the

two clusters and heavily underperforms the supervised approach. This could

very well happen in a real scenario, where there is a hidden latent variable80

which creates the presence of mixtures in the data distribution, which do not

coincide with the target labels.

This phenomena has been studied further where bounds for improvement

of a semi-supervised learner have been created based on the assumptions that

are made Singh et al. (2009). In our case this relates to a proper selection of85

the parameters used for constructing the graph for the semi-supervised regular-

izer. These are the parameters that control the number of edges in the graph

constructed with the observations as nodes, e.g. k in a k-nearest neighbour

graph. If these parameters are too large then we have conflicting goals in our

minimization problem. The optimal scoring part of SDA aims at separating90

different classes, while a semi-supervised regularizer based on a fully connected

graph aims at projecting everything as close as possible. On the other end of the

spectrum, with too low value of the graph parameter, we have a sparse graph

that has almost no connections.. A sparse graph can be helpful if the number of

variables is high and we do not have enough observations to find the true cluster95

structure in the data. But if there is a true cluster structure that coincides with

the labeled data that we have, then we should try to find the appropriate graph

parameter accordingly.

Another reason for using a semi-supervised approach is concept-drift Tsym-

bal (2004). The distribution of the data conditioned on the labels can change100
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with time. One particular example is a spam mail classifier. E-mail spam is

not static, it changes with time, but it forms natural clusters according to the

topic of the spam Wang et al. (2013). Instead of putting effort into labeling

new spam and training a classifier, one can use a semi-supervised approach to

try to generalize with respect to the new types of spam or reduce the number of105

samples needed to be labeled. If one would have used sparse discriminant anal-

ysis for the original problem, and then later semi-supervised sparse discriminant

analysis for creating a new classifier, one can compare the discriminant vectors

obtained from both models to identify if any new variables have become more

important for this classification task. This can also aid in prioritizing which110

new samples we should produce labels for.

3. Semi-supervised regularizers

In this section we will explain notation, the sparse optimal scoring problem,

and how we can add semi-supervised regularizers to the problem formulation.

3.1. Notation115

For a given n × p data matrix X, n is the number of observations and p is

the number of features. The n × K matrix Y is an indicator matrix of class

membership, where K is the number of classes in the data set. If observation

i belongs to class j, then element Yij in Y is 1 and the other values in the

same row are 0. We use θ ∈ RK×1 to denote the scoring vector, which is120

used to transform the categorical representation of the classes into a numerical

representation. The desired discriminant vector, used to project data from the

original feature space to a lower-dimensional representation, is deonoted by

β ∈ Rp. The regularization parameters in the classifier are denoted as λ1 and

λ2, where λ1 is associated with the l1-norm regularizer and λ2 with the semi-125

supervised regularizer. The semi-supervised regularizer consists of a Tikhonov

regularization matrix Ω ∈ Rp×p and we refer to λ2β
TΩβ as the semi-supervised

regularizer. We refer to λ1‖β‖1 as a sparse regularizer or l1-norm regularizer.
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Observation i belonging to class j is represented as the pair (cj ,xi). For a graph

G, A is the adjacency matrix, D is the degree matrix and L := D −A is the130

graph Laplacian.

3.2. Sparse Optimal Scoring

The sparse optimal scoring problem is formulated as follows:

arg min
θk∈RK ,βk∈Rp

‖Y θk −Xβk‖22︸ ︷︷ ︸
Optimal Scoring

+λ2β
T
k Ωβk + λ1‖βk‖1

︸ ︷︷ ︸
Sparse OS

s.t. 1
nθ

T
k Y

TY θk = 1,

θTk Y
TY θ` = 0 ∀` < k,

(1)

In Equation 1 the constraints apply to both the optimal scoring and the

sparse optimal scoring formulation. The constraints are spherical which makes

the problem non-convex. When we solve this problem we seek the discriminant135

vectors βi, which we can then use to project the data from feature space to

a lower-dimensional representation. The traditional approach is to solve this

minimization problem with a block-update algorithm, where one first solves for

θ, then β and iterate until convergance. That way we can find the first (θ1,β1)

pair, then we continue in a similar manner to find the successive pairs until we140

have found the maximum number of pairs, K − 1, or the desired number of

pairs.

Clemmensen et al Clemmensen & contributions by Max Kuhn (2016) show

that for a given β one can find θ in polynomial time. For a given θ the problem

formulation is an elastic net problem and can be solved with the LARS-EN145

algoritm Zou & Hastie (2005). We however approach the optimization from the

point of proximal gradient methods and alternating direction method of multi-

pliers, using the soft thresholding operator to deal with the sparse regularizer

in the same manner as anonymous Atkins et al. (2017).
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3.3. Adding unlabeled data150

We need to construct Ω from the second term in Equation 1 using unlabeled

data. We begin by assuming that we have a data set D, which can be split into

a labeled part, D1, and unlabeled part, D2, where we have n1 labeled samples

and n2 unlabeled samples and n := n1 + n2.

D1 = {(ck1
,x1), (ck2

,x2), . . . , (c
kn
,xn1

)}

D2 = {xn1+1,xn1+2, . . . ,xn1+n2
}

(2)

Now we ignore the labels in D1 and construct a graph on all the data points.155

As we stated in section 1, we want points that are near each other in the feature

space to remain close after the projection, so we construct the graph based on

proximity of data ponts. We explore two ways to construct the graph, what we

need in the end is the graph Laplacian.

First we consider the weighted undirected graph defined by a Gaussian ker-

nel, where the edge weight between xi and xj in the adjacency matrix A is

Aij := exp(−γ||xi − xj ||22). For a suitable choice of γ, the closest points get a

weight close to 1 and then it decays exponentially the further we go away. Now

we can construct the semi-supervised regularization term as:∑
ij

(xiβ − xjβ)Aij = 2βTXTLXβ.

This has been simplified on the right hand side using matrix notation, where L160

is the graph Laplacian and X is the data matrix containing both labeled and

unlabeled feature vectors. So our semi-supervised regularization matrix Ω can

be defined as 2XTLX.

The second graph we consider for the data is a k-nearest neighbour graph.

The only difference compared to the approach with the Gaussian kernel, is how165

we construct the adjacency matrix A, which we initilize as the n×n zero matrix.

For a given data point xi we find its k nearest neighbours xi1 , . . . ,xik and assign

the value 1 to Aij and Aji if xj is one of the k neighbours. We assign the value

1 to Aij and Aji to make sure that the graph is undirected.
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Although the way we define the regularization terms only lies in the ad-170

jacency matrix, the main differences are in the way we compute them. For

the k-nearest neighbour graph we might want to consider using approximate k-

nearest neighbour if 2p is greater or on the scale of n, where p is the number

of features. For the adjacency matrix created with the Gaussian kernel we can

vectorize the calculations and do them on a GPU. Normally we would want175

to inspect our data to make an educated guess of good values for the parame-

ters γ and k, so we only need to calculate the regularization matrix once. We

could also cross-validate over these parameters, but since we already have one

parameter per regularizer to cross-validate over, we would end up with three

parameters to cross-validate, which we want to avoid. Another difference is the180

memory footprint in the intermediate computations of Ω. For the Laplacian of

a k-nearest neighbour graph and a low k we can use a sparse matrix, but for

the Gaussian kernel the graph Laplacian matrix is dense.

The presence of outliers causes significant differences in the behavior of these

two regularization approaches. If the distribution of pairwise distances of data185

points has a heavy right tail, then the Gaussian kernel could potentially give a

low weight to edges connected to outliers while the outliers would still always

be equally connected to other data points compared to other points if we use a

k-nearest neighbour graph. If the number of variables in our data is high, then

using the Gaussian kernel we risk creating many connections between clusters,190

thus not being able to distinguish clearly between them. Since we are focusing

on data where the number of features is usually higher or on the scale of the

number of variables, we will use a k-nearest neighbour graph for the following

experiments. An implementation of a graph defined with a Gaussian kernel is

also supplied in the semiSDA-package.195
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4. Experiments and results

4.1. ECG time-series data

The ECG data was donwloaded from the UCR time-series classification

archive Chen et al. (2015). The Electrocardigram measurements (ECG) are

from a 67 year old male taken prior to and after corrective cardiac surgery, so200

we have a binary classification task. Each observation has 136 features.

The data set consists of 884 observations. For the experiment on this data

set we initially randomly sample 150 observations from each class and use as a

test set to evaluate the performance. The rest of the data we sample at random

to generate balanced training sets with 2,3,4,...,9 observations per class. For205

each training set we then sample a set without labels were we try 100, 150

and 200 observations per class. After we obtain the data, we normalize it by

centering to zero and scale the features to have unit variance. We construct the

regularization term using a k-nearest neighbour graph with k = 1, so a sparse

graph. We compare the results to a classifier with a ridge regularization term210

to inspect the gain of adding unlabeled data, the regularization parameters for

the classifier with the ridge regularizer were found with cross-validation. The

l1 regularization parameters were choosen such that the resulting discriminant

vector would have 25-45% non-zero values and it was kept fixed through the

experiments. Each configuration of number of labeled and unlabeled samples215

was run 500 times and a new data set is randomly sampled for each run from

the observations that were not in the initial test set. The average accuracy of

the classifiers is summarized in Figure 1.

The regularization parameter for the semi-supervised regularizer was chosen

as the smallest non-zero eigenvalue of the graph Laplacian scaled by 1
2 , which220

was at least greater than 10−10. Currently we do not have any theoretical

justification on why that might be a good choice. Since k is only equal to

1, we likely have multiple components in the corresponding graph and thus

multiplicity of higher than one for eigenvalue zero. A choice of a much higher

regularizer parameter increases the likelihood of obtaining a trivial solution.225
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Figure 1: Average accuracy of classifiers over 500 runs. The experiment was conducted with

four different regularizers summarized in the legend above the graph. Extra{} denotes the

number of unlabeled samples used for constructing the semi-supervised regularizer. There is

a consistent gain of 3-5% accuracy using 200 unlabeled samples for the regularizer (red line).

We also tried higher values of k, but that did not improve the results as much.

Low signal to noise ratio in a high dimensional space increases the likelihood

that edges in the graph are between samples in different classes, thus making

the regularizer preserve locality between all samples and favoring the trivial

solution. Having more unlabeled data can certainly help in that regard, if it is230

the case, that the process by which the data from the two classes is generated,

is truly different.

We performed spectral clustering on the data and visualized the eigenvector

corresponding to the smallest non-zero eigenvalue with 400 observations. We

performed this repeatedly, where we sampled equal amount of data from each235

class, with varying k to construct the graph. We did not observe that consistent

clusters were formed in nearly all cases.
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4.2. Artificial concept drift example

The data set used for this example is shown in Figure 2. We imagine that

an initial data set is sampled and labeled. Then a continuous process starts

where the mean of the classes shift along the first variable, and crosses the

optimal separation boundary. The means of the classes come from a multivariate

normal distribution with the covariance matrix specified in Equation 3 and

means (−2,−1) and (2, 1).

Σ =

 0.02 −0.01

−0.01 0.02

 (3)

We explore adding redundant variables to the data set, where each new redun-

dant variable is sampled from a univariate normal distribution with mean zero240

and variance 0.02. With a fixed number of observations, 100 for the training set

and 2020 for the unlabeled data, we want to find the maximum k for increasing

number of redundant variables which yields a classifier that has at least 95% ac-

curacy. We also perform cross-validation with a validation set sampled from the

same distribution as the training set such that we find a classifier with around245

2
2+nR

proportion of non-zero coefficients in the discriminant vector, where nR is

the number of redundant variables. We show how the optimal k falls with the

number of added redundant variables. The results can be seen in Figure 3.

This shows that although there is a clear cluster structure in the data, ad-

ditional noisy variables essentially make it harder to construct a good k-nearest250

neighbour graph, because it becomes more and more likely that the neighbours

do not belong to the same class. The accuracy of the classifiers for the experi-

ment where we find the optimal k for the number of classes is depicted in Figure

4. We can see that the performance starts to drop when we have 13 redundant

variables. If we use the ridge regularizer, the accuracy is 62.3%, so even when255

we have 18 redundant variables, we still see improvement in accuracy.
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Figure 2: First two dimensions of the concept drift data set. The more transparent points

correspond to unlabeled points, while the points with a solid fill correspond to training data.

After the initial data set is sampled there is continuous drift along the first variable, where

the second variable is more important for class separation.

5. Discussion

There are many ways to utilize unlabeled data, but the most critical part of

pursuing such an endeavor is to safely check the assumptions that one makes.

As we saw in the artificial concept drift example, the choice of k for the k-260

nearest neighbour graph is heavily influenced by the number of variables. The

best choice of k is both dependent on the noise and the number of variables. For

the case of concept drift it is possible to extend the method to include multiple

prototypes per class, similar to Clemmensen et. al Clemmensen et al. (2011).

Another idea to make the construction of the graph more robust is to run265

sparse discriminant analysis on the labeled data with a ridge regularizer and
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Figure 3: The optimal value of k falling with the number of extra redundant variables.

only use the variables corresponding to non-zero coefficients in the discriminant

vector to estimate the distance between observations. This however only works

under the assumption that the sub-space spanned by these variables contains

the features that represent the variation that we are after. Our simple artificial270

concept drift data set only had drift within the same variable, but the mean of

the data can potentially change w.r.t. other variables, which we would like our

model to select. This could very well happen in the case of spam e-mail, where

people that generate spam would start to use words that are not present in

the old data, and the data used to train the classifier consist of word frequency275

within e-mail.

Another thing to remember is that we can use any method to construct

the graph for the semi-supervised regularizer, we are not constrained to use

the raw original observations. Thus if the user has any particular assumptions

about some variables, he can define a different distance metric, or he can also280

potentially extract new features for constructing the graph.

One thing to note is that we used the smallest non-zero eigenvalue of the

graph Laplacian, scaled by 1
2 , as the regularization parameter for the semi-

supervised regularizer in all examples. Empirically we have discovered that it

works well, but as stated before, we do not have any theoretical justification for285
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Figure 4: Accuracy of the classifiers corresponding to the optimal k for the artificial concept

drift example, see Figure 3.

it. If it is truly the case that this is the best regularization parameter, then we

can skip any cross-validation and simply find the smallest non-zero eigenvalue

of the graph Laplacian using the Power method.

The optimization methods we use do not require Ω to be full rank, which

can be exploited to make the optmization faster.290

6. Conclusion

We have demonstrated empirically that a semi-supervised regularizer can

improve accuracy in classification tasks of high-dimensional data where few

labels are available. We have also demonstrated that the method works jointly

with a sparse regularizer, meaning that semi-supervised learning and sparse295

methods can go hand in hand. Using a semi-supervised regularizer we get more

consistent accuracy when we repeatedly run the method, meaning that we can

better rely on the resulting classifier. Finally we have demonstrated that the

method can aid in the presence of concept drift.
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Abstract

Applications in biotechnology such as gene expression analysis and image processing
have led to a tremendous development of statistical methods with emphasis on reliable
solutions to severely underdetermined systems. Furthermore, interpretations of such solu-
tions are of importance, meaning that the surplus of inputs have been reduced to a concise
model. At the core of this development are methods which augments the standard lin-
ear models for regression, classification and decomposition such that sparse solutions are
obtained. This toolbox aims at making public carefully implemented and well-tested
variants of the most popular such methods for the MATLAB programming environment.
These methods consist of easy-to-read yet efficient implementations of various coefficient-
path following algorithms and implementations of sparse principal component analysis
and sparse discriminant analysis which are not available in MATLAB. The toolbox builds
on code made public in 2005 and which has since been used in several studies.

Keywords: Least Angle Regression, LASSO, elastic net, sparse principal component analysis,
sparse discriminant analysis, MATLAB.

1. Introduction

The introduction of the Least Angle Regression (LAR) method for regularized/sparse regres-
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sion (Efron, Hastie, Johnstone, and Tibshirani 2004) marked the starting point of a series of
important contributions to the statistical computing community with the following common
properties:

• Solutions are obtained sequentially along a path of gradually changing amounts of reg-
ularization. This paper focuses on methods where the method coefficients are piecewise
linear functions of the regularization parameter, and where algorithms proceed by find-
ing the next piecewise linear breakpoint,

• For sufficient amounts of l1 regularization, solutions are sparse, i.e., some of the coeffi-
cients of the model are exactly zero, leading to more compact models which are easier
to interpret,

• Methods are efficient, meaning they perform on a par with competing statistical meth-
ods when performance is measured on a test data set.

Examples of contributions are (Zou and Hastie 2005), (Zou, Hastie, and Tibshirani 2006),
(Rosset and Zhu 2007), (Hastie, Rosset, Tibshirani, and Zhu 2004), (Park and Hastie 2007),
(Friedman, Hastie, and Tibshirani 2010), of which the first three are detailed in this paper.
The methods cover regression (the LASSO and the Elastic Net with ridge regression as a
special case), classification (sparse discriminant analysis (SDA) with penalized linear discrim-
inant analysis as a special case), and unsupervised modeling (sparse principal component
analysis (SPCA)). The goal of this paper is to provide reference MATLAB (The MathWorks
Inc. 2010) implementations of these basic regularization-path oriented methods.

Currently there are no built-in implementations of least angle regression, SPCA or SDA in
MATLAB. MATLAB includes an implementation of the LASSO and elastic net in the Statistics
and Machine Learning Toolbox, but both are based on coordinate descent optimization instead
of coordinate path tracking which is at the heart of the least angle regression method. The
R package glmnet (Friedman et al. 2010) provides methods to work with generalized linear
models via penalized maximum likelihood. The glmnet (Qian, Hastie, Friedman, Tibshirani,
and Simon 2013) package is also available in MATLAB. This includes the LASSO and the
elastic net, but both in R and MATLAB the optimization is done via coordinate descent. An
implementation of least angle regression is available in the R package lars (Hastie and Efron
2013). There exist several isolated implementations of least angle regression online. There is
one such implementation on the MATLAB Central File Exchange (Kim 2009).

There exist various problem formulations of SPCA. There exist several stand-alone imple-
mentations online. One such implementation, containing 8 problem formulations, is provided
alongside (Richtárik, Takáč, and Ahipaşaoğlu 2012). An isolated MATLAB implementation
can be found on the MATLAB Central File Exchange (Alsahaf 2015).

For SDA there also exist various problem formulations. Some of these options are implemented
in R, (Mai, Yang, and Zou 2015b,a; Witten 2015; Witten and Tibshirani 2011). Note that the
same implementation as in the SpaSM toolbox is also available in the R package sparseLDA
(Clemmensen and contributions by Max Kuhn 2015).

Currently the SpaSM toolbox is the only comprehensive toolbox for MATLAB that provides
a variety of sparse methods based on least angle regression. We also present previously un-
published developments of the algorithm for sparse principal component analysis, and provide
some evidence that performance is only slightly lowered (in terms of variance explained), while
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the computational complexity is significantly lowered. The implementation strikes a balance
between performance and readability, making this toolbox a good starting point for learning
the details of the methods. For this reason, the code is written as pure MATLAB scripts which
closely follows the algorithms provided here. All methods have been fully described and val-
idated in their respective publications; despite this we provide terse but relatively complete
derivations of each algorithm such that the paper can be read and the algorithms understood
without having all references at hand.

The rest of the paper is structured as follows. Section 3 gives a short overview of the methods
and files presented in the toolbox. Section 4 gives a concise derivation of the methods and
pseudo code for the algorithms is provided. Section 5 is a short tutorial on how to apply
the functions from the toolbox, interpret the command line output and a description of the
input/output to the functions. The examples are shown on simulated data sets and all the
examples can be found in the toolbox, with the appropriate seeds to generate the simulated
data sets. Section 6 shows methods from the toolbox used on two real world data sets, one
regarding Diabetes data and the second on shape data from human silhouettes.

2. Related work

Here we summarize some of the recent advances in sparse methods that are not included in
the package. We point the reader to relevant software available and how it can be accessed
from MATLAB.

Sparse regression. The Dantzig selector by Candes and Tao (2007) is similar to the LASSO
in a sense that it performance regression and model selection. The main difference from the
LASSO is in the way the optimization problem is formulated. The l1 norm of the regression
coefficients is minimized under constrains on the residuals. This can be formulated as a linear
program. The main results also include bounds on the errors of the regression coefficients
that are nonasymptotic. An implementation of the Dantzig selector can be found in the R
package flare (Li, Zhao, Wang, Yuan, and Liu 2014) in the function slim.

Zou (2006) derive the necessary conditions for the lasso variable selection to be consistent. He
then proposes a new version of the LASSO called the adaptive LASSO. The modification of
the traditional LASSO consists of adding weights to the regression coefficients in the penalty
term, corresponding to the inverse of the OLS solution. An additional parameter γ is also
added as the exponent of the weights for further tuning. It is proved that this method is
consistent in variable selection and has the oracle-property, meaning that it performs as well
as if the true underlying model was given in advance. This approach only works in the p < n
case, but one can use the ridge solution instead of the OLS solution to provide weights for
the penalty term in the case of collinearity or the p > n case. The drawback is that cross-
validation must be performed over two paramter in the p < n case, and three parameters in
the p > n case. This method is implemented in the R package parcor (Kraemer, Schaefer,
and Boulesteix 2009) in the function adalasso.

Scaled sparse linear regression by Sun and Zhang (2012) gives a general approach to regression
and penalization, with special focus on the LASSO. The idea is to estimate the parameters in
the model and the noise level. By estimating the noise level, the penalization parameter can be
adjusted in successive iterations of the algorithm. The parameter controlling the penalization
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thus becomes data dependent. Oracle inequalities are proved for prediction, estimation of
noise level and regression coefficients. An implementation can be found in the R package
scalreg (Sun 2013), the method can be used with the function scalreg.

For generalized linear models one can apply an l1-norm regularizer via the R packages glmnet
(Friedman et al. 2010) and penalized (Goeman 2010). The main difference between the
packages is the optimization of the likelihood functions. The glmnet package uses cyclical
coordinate descent, while the penalized package uses a combination of gradient ascent and
the Newton-Raphson algorithm. The glmnet package is also available for MATLAB (Qian
et al. 2013).

A couple of R packages are available for general non-convex penalty functions. The plus
package (Zhang 2010) has two main components for its MC+ algorithm, namely a minimax
concave penalty and penalized linear unbiased selection, which provides unbiased estimates
of parameters and variable selection. The ncvreg package (Breheny and Huang 2011) also
handles nonconvex penalty function but the optimization is done with coordinate descent.

Sparse graphical models. Sparse graphical models concern the estimation of edge weights
in a graph where the nodes correspond to variables. Variables are connected in the graph if
they are conditionally dependent. To achieve this one estimates a sparse inverse covariance
matrix of a multivariate normal distribution from data. If an entry in the inverse covariance
matrix is non-zero, then the corresponding variables are conditionally dependent. One of the
variables could be a response variable, and thus these models can be used to model conditional
dependence of the response to the predictors, like in traditional linear models.

In Meinshausen and Bühlmann (2006), the authors present a method to estimate the sparse
inverse covariance matrix via neighbourhood selection with the LASSO. They build the co-
variance matrix by using the LASSO on each variable separately. They show promising
computational results. They also show that they get consistent estimation of the edges in the
graph by controlling the probability of falsely joining some distinct connectivity components
of the graph. An implementation is available in the R package spaceExt (He 2011) in the
function glasso.miss.

Friedman, Hastie, and Tibshirani (2008) estimate the sparse inverse covariance matrix by
starting with a blockwise coordinate descent approach and then solve the exact problem with
a LASSO penalty using coordinate descent, instead of solving for each variable independently
like Meinshausen and Bühlmann (2006). The method is implemented in the R package glasso
(Friedman, Hastie, and Tibshirani 2014) via the function glasso.

Cai, Liu, and Luo (2011) propose a method (CLIME) where they use constrained l1 mini-
mization to estimate the sparse covariance matrix. They also show some generic results on
the rate of convergence for different types of tails of population distributions. The problem
can be solved with linear programming. An implementation is available in the R package
fastclime (Pang, Qi, Liu, and Vanderbei 2016) via the function fastclime.selector.

Sparse quadratic discriminant analysis. Le and Hastie (2014) present a class of rules
spanning from QDA and naive Bayes through a path of sparse graphical models. The authors
use a group LASSO penalty, which imposes sparsity on the same elements in all the K within
class precision matrices, where K is the number of classes. The authors claim that the
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estimates of interactions from their method are easier to interpret than other classifiers that
regularize QDA. The authors do not provide software.

Other implementations in MATLAB. Liu, Ji, Ye et al. (2009) present a MATLAB pack-
age called SLEP (Sparse Learning with Efficient Projections). They provide some MATLAB
implementations for efficient computation of lasso variants using optimization based on effi-
cient Euclidean projections.

2.1. Calling R code from MATLAB

For comparisons, or to complement the methods in this toolbox, the R software packages
referenced in the previous section can be run from within the MATLAB environment. There
are a few ways to achieve this.

The most straightforward approach is to write a separate R script and run it in batch mode
with a system command in MATLAB. One way to achieve this from MATLAB would be:

system('R CMD BATCH rScript output');

The output from the R script (rScript) is written in the file output. The user then needs to
load the results into MATLAB.

More generic approaches are also available, like the MATLAB R-link package available on
the MATLAB file exchange (Henson 2013). This solution only works on Windows operating
system and allows one to copy data back and forth from MATLAB and R.

3. In the toolbox

The toolbox consists of a series of MATLAB (The MathWorks Inc. 2010) scripts and functions
to build and apply various statistical models for both supervised and unsupervised analyses.
Below are listings of each method, file, subfunction and utility.

3.1. Methods

Forward Selection A variant of stepwise regression in which variables are included one-
by-one based on their correlation with the current residual vector. Provides a baseline
algorithm for other sparse methods for regression in this toolbox.

Least Angle Regression Provides a more gentle version of the classical approach of forward
selection regression. The algorithm is the basis for all other methods in the toolbox.
The method is also an interesting statistical method in its own right.

LASSO This method adds l1 (1-norm) regularization to ordinary least squares regression,
yielding solutions which are sparse in terms of the regression coefficients. This may lead
to efficient suppression of noise and aids in interpretation.

Elastic Net Combining the algorithmic ideas of Least Angle Regression, the computational
benefits of ridge regression and the tendency towards sparse solutions of the LASSO,
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this versatile method is applicable for many data sets, also when the number of predictor
variables far exceed the number of observations. The corresponding LARS-EN algorithm
is used in the implementation of the following two algorithms.

Sparse Principal Component Analysis Principal component analysis is a powerful tool
for compacting a data set and for recovering latent structures in data, but solutions are
difficult to interpret as they involve all the original predictor variables. Sparse principal
component analysis approximates the behavior of regular principal component analysis
but models each component as a linear combination of a subset of the original variables.

Sparse Linear Discriminant Analysis Linear discriminant analysis is a standard tool for
classification of observations into one of two or more groups. Further, the data can be
visualized along the obtained discriminative directions. As with principal component
analysis, these directions are combinations of all predictor variables. Sparse discriminant
analysis reduces this to a subset of variables which may improve performance as well
interpretability.

3.2. Files

forwardselection.m A baseline algorithm for variable selection. Based on the algorithm in
lar.m.

lar.m An implementation of the LARS algorithm for Least Angle Regression described by
Efron et al. (2004).

lasso.m The LASSO method of Tibshirani (1996), implemented using a combination of the
algorithms of Efron et al. (2004) and Rosset and Zhu (2007).

elasticnet.m The Elastic Net algorithm of Zou and Hastie (2005), with elements from Rosset
and Zhu (2007).

spca.m The sparse principal component algorithm based on the work by Zou et al. (2006),
with modification described below.

slda.m The sparse discriminant analysis of Clemmensen, Hastie, Witten, and Ersbøll (2011).

3.3. Sub-functions and utilities

larsen.m The actual implementation of the Elastic Net algorithm. The functions lasso.m,
elasticnet.m, spca.m and slda.m depend on this function; however it is not intended
for direct use.

cholinsert.m Update of the Cholesky factorization of X>X + δI. Used in lar.m and
larsen.m.

choldelete.m Downdate of the above Cholesky factorization. Used in larsen.m.
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center.m Convenience function for centering (removing the mean observation) a data matrix
or response vector.

normalize.m Convenience function for centering and normalizing a data matrix or response
matrix such that variables have unit Euclidean length.

4. Methods and algorithms

This section presents the principles behind each method in the toolbox, and outlines their
algorithms. The basic building block is the LARS-EN algorithm (Zou and Hastie 2005)
which encompasses regression via ordinary least squares, ridge regression, the LASSO and
the Elastic Net. These are based on the linear model y = Xβ + ε where y (n × 1) is the
observed response variable, X (n × p) is the data matrix where the ith column represents
the ith predictor variable, β (p × 1) is the set of model coefficients which determines the
load on each predictor variable, and ε are the residual errors. Unless stated otherwise, y
is assumed centered and X is assumed centered and normalized such that each variable has
zero mean and unit Euclidean length. A sparse method for regression estimates a coefficient
vector β with many zero elements, giving an estimate ŷ of y which is a linear combination of
a subset of available variables in X. Sparse solutions may be preferred to full counterparts if
the latent linear model can be assumed to be sparse, or when interpretation of the results is
important. The set A denotes the indices in β corresponding to non-zero elements; we refer
to this as the active set. The set I is called the inactive set and denotes the complement of
A. We use these sets also to denote submatrices such as the (n× |A|) matrix XA, consisting
of the columns (variables) of X corresponding to the indices in A. All algorithms proceed in
iterations and we indicate iteration number by a parenthesized superscript number, e.g., β̂(k)

for the regression coefficients calculated in the kth iteration. It is further convenient to define
an operator min+(·) which finds the smallest strictly positive value of the (vector-valued)
input.

The methods for regression described below proceed in an iterative manner, adding or sub-
tracting variables in the model in each step. The methods start with the trivial constant
model, then move towards the full representation which corresponds to ordinary least squares
regression or ridge regression, depending on the type of regularization. To put the presenta-
tion of these algorithms into perspective, we begin with a quick review of one of the simplest
algorithms of this kind.

In forward selection, a variant of stepwise regression, variables are added one-by-one until
some goodness-of-fit criterion is fulfilled. The next variable to include in this scheme can
be chosen based on a number of criteria. The methods in this toolbox generally pick the
variable that has the highest absolute correlation with the current residual vector. To fix the
terminology and to give a simple baseline algorithm we state a forward selection algorithm in
Algorithm 1.

In this algorithm, we move to the least squares solution using all currently active variables
in each step. This approach is known as a greedy method. The following sections cover less
greedy variations on the forward selection scheme which result in algorithms with generally
better performance and which are able to handle more difficult data sets.
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Algorithm 1 Forward Selection

1: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
2: Initialize the coefficient vector β(0) = 0
3: for k ∈ {0 . . . p− 1} do
4: Find variable maximally correlated with the current residual i = arg maxi∈I x

>
i (y −

Xβ(k))
5: Move i from I to A.
6: Update the active set coefficients β

(k+1)
A = (X>AXA)−1X>Ay

7: end for
8: Output the series of coefficients B = [β(0) . . . β(p)].

4.1. Least Angle Regression

Least Angle Regression (LAR) is a regression method that provides a more gentle version of
forward selection. Conceptually, LAR modifies Algorithm 1 on only one account. Instead of
choosing a step size which yields the (partial) least squares solution in each step, we shorten
the step length such that we stop when any inactive variable becomes equally important as
the active variables in terms of correlation with the residual vector. That variable is then
included in the active set and a new direction is calculated. Recall that all active variables
are uncorrelated with the residual vector at the least squares solution, the step length will
therefore always be as short or shorter at the point where we find the next active variable to
include than that of the least squares solution.

The algorithm starts with the empty set of active variables. The correlation between each
variable and the response is measured, and the variable with the highest correlation becomes
the first variable included into the model. The first direction is then towards the least squares
solution using this single active variable. Walking along this direction, the angles between
the variables and the residual vector are measured. Along this walk, the angles will change;
in particular, the correlation between the residual vector and the active variable will shrink
linearly towards 0. At some stage before this point, another variable will obtain the same
correlation with respect to the residual vector as the active variable. The walk stops and the
new variable is added to the active set. The new direction of the walk is towards the least
squares solution of the two active variables, and so on. After p steps, the full least squares
solution will be reached.

The LAR algorithm is efficient since there is a closed form solution for the step length at each
stage. Denoting the model estimate of y at iteration k by ŷ(k) and the least squares solution

including the newly added active variable ŷ
(k+1)
OLS , the walk from ŷ(k) towards ŷ

(k+1)
OLS can be

formulated (1 − γ)ŷ(k) + γŷ
(k+1)
OLS where 0 ≤ γ ≤ 1. Estimating ŷ(k+1), the position where

the next active variable is to be added, then amounts to estimating γ. We seek the smallest
positive γ where correlations become equal, that is

x>i∈I(y − (1− γ)ŷ(k) − γŷ(k+1)
OLS ) = x>j∈A(y − (1− γ)ŷ(k) − γŷ(k+1)

OLS ). (1)

Solving this expression for γ, we get

γi∈I =
(xi − xj)

>(y − ŷ(k))

(xi − xj)>(ŷ
(k+1)
OLS − ŷ(k))

=
(xi − xj)

>ε

(xi − xj)>d
, (2)
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where d = ŷ
(k+1)
OLS − ŷ(k) is the direction of the walk, and j ∈ A. Now, d is the orthogonal

projection of ε onto the plane spanned by the variables in A, therefore we have x>j ε =

x>j d ≡ c, representing the angle at the current breakpoint ŷ(k). Furthermore, the sign of the
correlation between variables is irrelevant. Therefore, we have

γ = min
i∈I

{
x>i ε− c
x>i d− c

,
x>i ε + c

x>i d + c

}
, 0 < γ ≤ 1, (3)

where the two terms are for correlations/angles of equal and opposite sign respectively. The
coefficients at this next step are given by

β(k+1) = (1− γ)β(k) + γβ
(k+1)
OLS . (4)

Given these key pieces of the LAR algorithm, we state the entire procedure in Algorithm 2.

Algorithm 2 Least Angle Regression

1: Initialize the coefficient vector β(0) = 0 and the fitted vector ŷ(0) = 0,
2: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
3: for k = 0 to p− 2 do
4: Update the residual ε = y − ŷ(k)

5: Find the maximal correlation c = maxi∈I |x>i ε|
6: Move variable corresponding to c from I to A.

7: Calculate the least squares solution β
(k+1)
OLS = (X>AXA)−1X>Ay

8: Calculate the current direction d = XAβ
(k+1)
OLS − ŷ(k)

9: Calculate the step length γ = min+
i∈I

{
x>i ε−c
x>i d−c ,

x>i ε+c

x>i d+c

}
, 0 < γ ≤ 1

10: Update regression coefficients β(k+1) = (1− γ)β(k) + γβ
(k+1)
OLS

11: Update the fitted vector ŷ(k+1) = ŷ(k) + γd
12: end for
13: Let β(p) be the full least squares solution β(p) = (X>X)−1X>y
14: Output the series of coefficients B = [β(0) . . . β(p)]

Each step of Algorithm 2 adds a covariate to the model until the full least squares solution
is reached. It is natural to parameterize this process by the size s(β) of the coefficients at
each step as well as in between steps of the algorithm. The algorithm returns the following
parametrization,

s(β) = ‖β‖1 =

p∑
i=1

|βi|. (5)

Picking a suitable model for a particular analysis thus means selecting a suitable value of
s(β) ∈ (0, ‖βOLS‖1). Cross-validation or an independent validation data set are obvious
choices for this purpose, however, the algorithm provides information which substitute or
complement this process.

Degrees of freedom Efron et al. (2004) showed that the number of degrees of freedom at
each step of the LAR algorithm is well approximated by the number of non-zero elements
of β. The algorithm therefore returns the following sequence,

df
(k)
LAR = |A| = k, k = 0 . . . p. (6)
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Mallow’s Cp Given the above measure of the number of degrees of freedom, we can calculate
a number of model selection criteria. Mallow’s Cp measure is defined as (Zou, Hastie,
and Tibshirani 2007)

C(k)
p =

1

σ2
ε

‖y −Xβ(k)‖2 − n+ 2df (k). (7)

Akaike’s Information Criterion Akaike’s information criterion is similar to Mallow’s Cp
and is defined as

AIC(k) = ‖y −Xβ(k)‖2 + 2σ2
εdf

(k). (8)

Bayesian Information Criterion The Bayesian information criterion tends to choose a
more sparse model than both AIC and Cp and is defined as

BIC(k) = ‖y −Xβ(k)‖2 + log(n)σ2
εdf

(k). (9)

The latter three criteria can be used to pick a suitable model, typically indicated by the
smallest value of each criterion. Alternatively, one can choose the sparsest model for which
more complex models lead to scant improvements in the relevant model selection criterion.
The measure σ2

ε represents the residual variance of a low-bias model which is here defined as

σ2
ε =

1

n
‖y −X†y‖2, (10)

where X† is the Moore-Penrose pseudo-inverse of X, equivalent to a ridge regression solution
arg min ‖y−Xβ‖2 +λ‖β‖2 in the limit λ→ 0. Note that in cases where p > n, this measure of
the residual variance will be zero which in effect turns the information criteria defined above
into a measure of training error only. We therefore recommend using these criteria for model
selection only in cases where n is well above p.

The key computational burden of Algorithm 2 lies in Step 7 where the OLS solution involving
the variables in A is calculated. Two techniques are used to alleviate this. For problems
where n is at least ten times larger than p, we calculate the full Gram matrix X>X once and

use the submatrix X>AXA to find β
(k+1)
OLS , thus avoiding an O(|A|2n) matrix multiplication.

When p > 1000, this method is not preferred since the memory footprint of the resulting p×p
Gram matrix may pose a problem. In cases where 10n < p, or when a pre-computed Gram
matrix is impractical, we maintain a matrix R of the Cholesky factorization of the current
Gram (sub)matrix X>AXA such that R>R = X>AXA. As variables join the active set, R can
be updated with low computational cost. The conditions chosen for selecting between the
two methods are not exact, but we have gathered evidence through simulation studies that
they work well on most standard computers.

In practice one frequently has a notion of the sparsity of the desired solution when running
Algorithm 2. To avoid unnecessary computations, the algorithm can be stopped prematurely,
either when the active set reaches a certain size, or when the l1 norm of the coefficients in
β(k) exceeds a preset threshold. Optionally, the algorithm stores and returns the solution
fulfilling the specified sparsity criterion only in order to save computer resources. This direct
controlling of sparsity is a clear advantage over the coordinate descent method, where the
number of non-zero parameters in the model cannot be specified directly.
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4.2. The LASSO

The LASSO (Tibshirani 1996) represents the most basic augmentation of the ordinary least
squares solution which implements coefficient shrinkage and selection. The sum of squared
residuals loss function L(β̂(λ)) is combined with a penalty function J(β̂(λ)) based on the l1
norm as,

β̂(λ) = arg min
β
L(β̂(λ)) + λJ(β̂(λ)) = arg min

β
‖y −Xβ‖2 + λ‖β‖1. (11)

The l1 penalty will promote sparse solutions. This means that as λ is increased, elements of
β̂(λ) will become exactly zero. Due to the non-differentiability of the penalty function, there
are no closed-form solutions to Equation (11). A number of algorithms have been proposed
(e.g., Fu (1998); Osborne, Presnell, and Turlach (2000); Friedman et al. (2010)) including the
quadratic programming approach on an expanded space of variables outlined in the original
LASSO paper of Tibshirani (1996). The algorithm presented here is due to Rosset and Zhu
(2007) who derived a sufficient condition for piecewise linear coefficient paths on which they
based several LASSO-type methods. The LASSO algorithm described here is a special case
of their work. Efron et al. (2004) arrived at an equivalent algorithm by showing that a small
modification to the Least Angle Algorithm yields LASSO solutions.

The goal of this section is to derive an expression for how the solutions of Equation (11)
change with λ. The solution set β̂(λ) will hit a non-differentiability point when coefficients
either go from non-zero to zero (join I), or the other way around (join A). Assume first that
we are in a region of values of λ where variables are neither joining nor leaving A. The normal
equations to Equation (11) around λ and around a nearby point λ+ ε are then

−2X>A(y −XAβ̂A(λ)) + λ · sign(β̂A(λ)) = 0 (12)

−2X>A(y −XAβ̂A(λ+ ε)) + (λ+ ε) · sign(β̂A(λ+ ε)) = 0. (13)

We now write Equation (13) as a first order Taylor expansion around β̂(λ). The general form
of a multivariate Taylor expansion of f(x) around a is

f(x) =
∞∑
k=0

∇(k)f(a)

k!
(x− a)k = f(a) +∇f(a)(x− a) +

1

2
∇2f(a)(x− a)2 + . . . . (14)

We have,

f(β̂(λ)) = −2X>A(y −XAβ̂A(λ)) + (λ+ ε) · sign(β̂A(λ)) (15)

∇f(β̂(λ)) = 2X>AXA (16)

∇(k)f(β̂(λ)) = 0 for k = 2 . . .∞. (17)

The complete expansion of Equation (13) becomes

−2X>A(y −XAβ̂A(λ)) + (λ+ ε) · sign(β̂A(λ)) + 2X>AXA

(
β̂A(λ+ ε)− β̂A(λ)

)
= 0. (18)

Using Equation (12), we can rearrange this expression to

β̂A(λ+ ε)− β̂A(λ)

ε
= −(2X>AXA)−1sign(β̂A(λ)), (19)
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which approaches ∇β̂(λ) as ε → 0 (using ∇β̂I(λ) = 0). This is a constant function which
means that the coefficient paths between events (changes to A and I) are piecewise linear,
similarly to Least Angle Regression.

Now that an expression for the change in β̂(λ) between events has been established, we focus
on finding the values of λ for which changes to A and I take place. It is beneficial here to
consider Equation (11) on an expanded set of β-values, chosen such that βj = β+

j +β−j where

β+
j ≥ 0 and β−j ≥ 0, ∀j,

arg min
β+,β−

‖y −X(β+ − β−)‖2 + λ‖(β+ + β−)‖1 = L(β̂(λ)) + λ‖(β+ + β−)‖1 (20)

such that β+
j ≥ 0, β−j ≥ 0,∀j.

This formulation of the LASSO is differentiable, at the price of having to deal with twice as
many variables. The Lagrange primal function is

L(β̂(λ)) + λ‖(β+ + β−)‖1 −
p∑
j=1

λ+
j β

+
j −

p∑
j=1

λ−j β
−
j , λ+

j ≥ 0, λ−j ≥ 0, ∀j,

where we have introduced the Lagrange multipliers λ+
j and λ−j . The Karush-Kuhn-Tucker

conditions are

(∇L(β))j + λ− λ+
j = 0 (21)

−(∇L(β))j + λ− λ−j = 0 (22)

λ+
j β

+
j = 0 (23)

λ−j β
−
j = 0. (24)

From these conditions, a number of useful properties arise. First, we note that setting λ = 0
indeed gives us (using Equation (21) and Equation (22)) ∇L(β) = 0 as expected. For positive
values of λ we have,

β+
j > 0+⇒ +λ+

j = 0⇒ ∇L(β) = −λ⇒ λ−j > 0⇒ β−j = 0 (25)

β−j > 0+⇒ +λ−j = 0⇒ ∇L(β) = λ⇒ λ+
j > 0⇒ β+

j = 0. (26)

Elements in A have either β+
j > 0 or β−j > 0, but cannot both be non-zero. That is,

|(∇L(β))j | = λ, j ∈ A (27)

|(∇L(β))j | ≤ λ, j ∈ I.

for j ∈ A, |(∇L(β))j | = λ while for elements j ∈ I, |(∇L(β))j | ≤ λ. We are seeking the value
of γ > 0 for which a variable in I joins A or vice versa. We have arrived at the following
conditions,

j ∈ A → I : β̂
(k)
j + γ∇β̂(k)

j = 0, j ∈ A (28)

j ∈ I → A : |(∇L(β̂(k) + γ∇β̂(k)))i| = |(∇L(β̂(k) + γ∇β̂(k)))j |, j ∈ A, i ∈ I. (29)

The first of these expressions defines the distances {γ} at which active variables hit zero and
join I. The second expression defines the distances at which inactive variables violate the
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second condition in Equation (27) and thus must join A. Note that any element in A can be
chosen to calculate the RHS of Equation (29), they all equal λ. The smallest value γmin of
the distances {γ} is where the next event will happen. The coefficients can now be updated
by

β̂(k+1) = β̂(k) + γmin∇β̂(k). (30)

We have arrived at Algorithm 3 for the LASSO.

Algorithm 3 LASSO (Rosset and Zhu 2007)

1: Initialize β(0) = 0, A = arg maxj |x>j y|, ∇β̂
(0)
A = −sign(x>Ay), ∇β̂(0)

I = 0, k = 0
2: while I 6= ∅ do
3: γj = min+

j∈A −β
(k)
j /∇β̂(k)

j

4: γi = min+
i∈I {

(xi+xj)>(y−Xβ̂(k))

(xi+xj)>(X∇β̂(k))
,

(xi−xj)>(y−Xβ̂(k))

(xi−xj)>(X∇β̂(k))
} where j is any index in A

5: γ = min{γj , γi}
6: if γ = γj then
7: Move j from A to I
8: else
9: Move i from I to A

10: end if
11: β̂(k+1) = β̂(k) + γ∇β̂(k)

12: ∇β̂(k+1)
A = −(2X>AXA)−1 · sign(β̂

(k+1)
A )

13: k = k + 1
14: end while
15: Output the series of coefficients B = [β(0) . . . β(k)]

One of the benefits with this particular algorithm is that the coefficient path can be parame-
terized either in terms of ‖β̂(k)‖1, the size of the penalty at iteration k, or the regularization
parameter λ. The latter is seldom explicitly specified in path-following algorithms but here,
the first identity in Equation (27) provides a way of directly calculating λ as a function of β̂,

λ = 2|x>j∈A(y −Xβ̂)|. (31)

Any element in A will do for this calculation. To minimize the risk of numerical problems,
we calculate this value for all elements in A and pick the median.

If asked for, the algorithm returns the same information as Algorithm 2. The LASSO solution
path can be parameterized either in terms of s(β) (cf., Equation (5)), or in terms of λ which
also can be interpreted as a function of β, cf., Equation (31). Zou et al. (2007) show that an
unbiased estimate of the degrees of freedom of a particular LASSO solution is given by |A|,
the number of non-zero components of β. Given this estimate, the various model selection
criteria can be calculated as outlined in Section 4.1.

We use the same Gram matrix or Cholesky updating scheme as described in Section 4.1. As
variables leave the active set, the Cholesky factorization R>R = X>AXA is downdated by
removing the contribution to R which is due to the dropped variable.

4.3. The elastic net
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Ridge regression (Hoerl and Kennard 1970) represents an effective way of shrinking the OLS
coefficients towards zero. The l1 penalty of the LASSO is replaced with an l2 penalty,

β̂(δ) = arg min
β
‖y −Xβ‖2 + δ‖β‖2, (32)

which leads to the closed form solution

β̂(δ) = (X>X + δI)−1X>y. (33)

Although similar in formulation, ridge regression and the LASSO have important differences.
The l2 penalty of ridge regression leads to a shrinkage of the regression coefficients, much like
the l1 penalty of the LASSO, but coefficients are not forced to exactly zero for finite values
of δ. However, a benefit of ridge regression is that a unique solution is available, also when
the data matrix X is rank deficient, e.g., when there are more predictors than observations
(p > n). This is seen in Equation (33); the addition of a sufficiently large constant value along
the diagonal of the Gram matrix X>X ensures full rank (Petersen and Pedersen 2008). The
LASSO algorithm (Algorithm 3) is terminated when the active set size |A| becomes larger
than p since the matrix X>AXA in Step 12 is no longer invertible.

Elastic net regression (Zou and Hastie 2005) combines the virtues of ridge regression and the
LASSO by considering solutions penalized by both an l2 and an l1 term,

β̂(λ, δ) = arg min
β
‖y −Xβ‖2 + δ‖β‖2 + λ‖β‖1, (34)

thus bridging the gap between the LASSO (δ = 0) and ridge regression (λ = 0). The l2
penalty ensures a unique solution also when p > n and the l1 penalty offers variable selection
via a sparse vector of coefficients β̂. Moreover, the l2 leads to a grouping effect (Zou and
Hastie 2005), a term that alludes to the characteristic that highly correlated predictors tend
to have similar regression coefficients for nonzero δ. Note however that this does in general
not mean that highly correlated variables are included into the active set in groups along the
regularization path.

We can use the LASSO algorithm to obtain the full regularization path of elastic net solutions.
To see this, we first note that ridge regression solutions can be obtained by solving an ordinary
least squares problem with an augmented set of observations,

X̃ =

[
X√
δIp

]
, ỹ =

[
y
0

]
. (35)

Expanding the equation β̂ = (X̃>X̃)−1X̃>ỹ gives the ridge solution in Equation (33). For a
fixed value of δ, Algorithm 3 offers solutions for all relevant values of λ. Selecting suitable
values for the regularization parameters typically involves selecting the best value of λ for a
discrete set of values of δ. Thus, the algorithm must be run for each value of δ.

If p>n, the augmented data matrix in Equation (35) has size (n+p)×p, implying a system of
equations that may be prohibitively large. Remarkably, it turns out that we can do without
explicitly forming these augmented matrices, mainly due to the fact that any multiplications
with ỹ effectively voids the contribution of the additional rows in X̃ since the corresponding
rows of ỹ are zero. Other computations are dot products between vectors with additional
elements in I and vectors with additional elements in A. Since these never coincide (I = Ac),



Journal of Statistical Software 15

these additional elements do not contribute to the result. The partial OLS solution calculated
in Step 12 must however take into account the additional rows X. When this equation is solved
using a pre-computed Gram matrix, we simply supply the augmented Gram matrix X>X+δI.
When the Cholesky approach is used, it is straightforward to take an additional parameter
δ into account such that the Cholesky factorization of X>X + δI is obtained. Except for
these alterations to Step 12, the algorithm is run as usual. The LASSO and the Elastic Net
therefore use the same underlying function (larsen.m) which take the additional parameter
δ used in Step 12. For LASSO solutions δ is simply set to zero.

Zou and Hastie (2005) argue and provide some evidence that the double shrinkage introduced
by the l1 and l2 has an unfortunate effect on prediction accuracy. They propose to compensate
for this by multiplying the solutions B by a factor (1+δ), and refer to the unadjusted solutions
as the Näıve Elastic Net. In some cases, the näıve solution is preferred, which consequently
are obtained either by calling larsen.m directly or by dividing the Elastic Net solutions by
(1 + δ).

The Elastic Net algorithm outputs the same model selection criteria as the LAR and LASSO
algorithms. Computationally, the difference lies in the estimation of the number of degrees
of freedom and the residual variance σ2

ε . For non-zero δ, the corresponding ridge regression
solution is used as a low-bias model in the estimation of the latter. Zou (2005) shows that
an unbiased estimate of the number of degrees of freedom of Elastic Net solutions can be
obtained by

tr
(
XA(X>AXA + δI)−1X>A

)
, (36)

which we solve efficiently using a singular value decomposition of XA.

4.4. Sparse principal component analysis

Principal component analysis (PCA) is a linear transformation S = XL of a mean-zero
data matrix X where the loading vectors (columns) of L provide an orthonormal basis which
successively maximizes the variance of the projected data in S, where the principal components
(columns) of S are uncorrelated, see e.g., Hastie, Tibshirani, and Friedman (2009). PCA is
optimal in the sense that no linear transformation can produce a more compact representation
of data given K <p basis vectors. The successive maximization of variance means that the
few first principal components are usually sufficient to accurately describe the data. However,
each principal component is a linear combination of all variables in X and is therefore difficult
to interpret and assign a meaningful label. To alleviate this, sparse PCA (SPCA) aims
at upholding some or all of the properties of PCA — successive maximization of variance,
independence of the loading vectors and uncorrelated principal components — while enforcing
sparsity of the loading vectors such that each principal component is a linear combination of
only a few of the original variables.

The algorithm for computing sparse loading vectors used in this toolbox is detailed in Zou
et al. (2006), and uses the Elastic Net in a regression-like framework for PCA. In the spirit
of this paper, we start by formulating regular PCA as the solution to a regression problem,
and then add suitable constraints to obtain sparse solutions.

Viewing PCA from a compression standpoint, the objective is to find the rank-K subspace
projection AA> such that A>A = I (A is p×K) which reconstructs a data point x as well
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as possible. This amounts to the following criterion,

arg min
A
‖X−XAA>‖2F , such that A>A = I. (37)

The solution is readily available via a singular value decomposition; let X = UDV>, and set
A = V.

Zou et al. (2006) show that this criterion can be relaxed into the following l2-penalized for-
mulation,

arg min
A,B
‖X−XAB>‖2F + δ‖B‖2F , such that A>A = I, (38)

where B is p×K and ‖B‖2F =
∑K

k=1 ‖βk‖22. After normalization such that each column of B
has unit length, the optimal solution is A = B = V, the loading matrix of PCA, irrespective
of the choice of δ. The role of the ridge penalty on B is to provide unique solutions also when
p > n, in which case δ must be non-zero. Since the loading vectors in B are orthogonal, we
can estimate them sequentially by

arg min
αk,βk

‖X−Xβkα
>
k ‖2F + δ‖βk‖22, subject to A>kAk = I, (39)

where Ak denotes the matrix [α1 . . . αk]. Aiming at an algorithm for computing a sparse ma-
trix of loadings, we will now state an alternating algorithm for optimizing the above criterion
for αk and βk. For this purpose, we have the following result.

Lemma 4.1 Assume α>k αk = 1 and fix αk, X and Y. Then, the problems

arg min
βk
‖Y −Xβkα

>
k ‖2F (40)

arg min
βk
‖Yαk −Xβk‖22 (41)

(42)

have the same minimizer β̂k = (X>X)−1X>Yαk.

This result (with Y = X and adding the l2 penalty) shows that for fixed αk, the optimal βk
is given by β̂k = (X>X + δI)−1X>Xαk. If we instead fix βk, the optimal αk is given by the
following result.

Lemma 4.2 Let A(k−1) with A>(k−1)A(k−1) = I be the (p× k− 1) matrix containing the first
k − 1 columns of A. The ”fix βk, solve for αk”-problem can then be formulated as,

α̂k = arg min
αk

‖X−Xβkα
>
k ‖2F subject to α>k αk = 1, α>kA(k−1) = 0. (43)

Let s =
(
I−A(k−1)A

>
(k−1)

)
X>Xβk. Then, α̂k = s/

√
s>s.

Appendix B.1 and B.2 contain proofs of the above results. If applied alternately until conver-
gence for each principal component, we end up with the full PCA solution. This convergence
is assured since penalization (39) is convex and each alternating step lead to a lower function
value.



Journal of Statistical Software 17

Turning to the problem of estimating sparse principal components (a sparse loading matrix),
an l1 penalty is added to the formulation in Equation (39).

{α̂k, β̂k} = arg min
αk,βk

‖X−Xβkα
>
k ‖2F + δ‖βk‖22 + λ‖βk‖1, subject to A>kAk = I. (44)

Using the alternating approach defined above to optimize this criterion, we see that α̂k is esti-
mated as before, while β̂k is turned from a ridge regression problem into an elastic net problem.
As before the response vector is Xαk. We arrive at Algorithm 4 for computing sparse princi-
pal components. This algorithm also handles the case where the l2 regularization parameter
δ is set to infinity. The elastic net estimation of βk then turns into a soft-thresholding rule as
described in Zou et al. (2006). This leads to a computational advantage, which is why this
option is popular for very high-dimensional data arising from e.g., image or gene expression
data. It is our experience that this option also provides better solutions (in terms of explained
variance for a fixed level of sparsity) in such cases.

Algorithm 4 SPCA (Zou et al. 2006)

1: Let K < p be the number of sparse principal loading vectors to estimate
2: Let A be the (p×K) matrix consisting of the K first ordinary principal loading vectors
3: for k = 1, . . . ,K do
4: while sparse loading vector βk has not converged do
5: if δ =∞ then
6: βk =

(
|X>Xαk| − λ

)
+

sign(X>Xαk) (Soft thresholding)
7: else
8: Solve the elastic net problem βk = arg minβ ‖Xαk −Xβ‖2 + δ‖β‖2 + λ‖β‖1
9: end if

10: βk = βk/
√
β>k βk (Normalize to unit length)

11: αk = (I−A(k−1)A
>
(k−1))X

>Xβk (Update kth column of projection matrix A)

12: αk = αk/
√
α>k αk (Normalize to unit length)

13: end while
14: end for
15: Output the coefficients B = [β1 . . . βK ]

Note that this algorithm is no longer convex, and may converge to local minima.

Since this is the first account of this sequential SPCA algorithm we give preliminary results of
its performance and discuss advantages in relation to the previously proposed simultaneous
approach (Zou et al. 2006).

A clear advantage of sequential estimation of components comes from running the algorithm
once to estimate k components, and once to estimate k + l components. The sequential
approach will yield the exact same first k components in both cases whereas the simultaneous
algorithm gives different results for all components.

Both algorithms are initialized with a matrix A equal to the loading matrix of regular PCA.
The corresponding scores are ordered from high to low variance. The simultaneous approach
often stray far from this initial solution and yields an arbitrary ordering in terms of variance
of its components. In Sjöstrand, Stegmann, and Larsen (2006) we discuss several ways of
establishing a sensible ordering of oblique components. The sequential algorithm is more
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likely to produce components of decreasing variance, and we have therefore chosen to return
the components as-is, in order of computation.

The sequential approach transforms one large non-convex optimization problem into several
small. Convergence rates for each such problem are typically orders of magnitude higher than
that of the simultaneous approach. To verify this, we conducted an experiment on a synthetic
data set of 600 observations, created from 200 observations each of three sparse components
with added Gaussian noise. The total number of variables in the data set ranged from 10 to
1500 with increments of 10, and we ran the sequential and simultaneous algorithms once for
each choice of p. We extracted three sparse principal components and compared computation
times and total adjusted variance. Figure 1 shows the results. The simultaneous algorithm
was forced to give up after 1000 iterations, which occurred in a large proportion of runs. This
is visible in the figure as a marked line of maximal computation times. Computation times for
the sequential algorithm were lower by a factor 15–100 and with no premature terminations.
The sequential algorithm is more restrictive than its sequential counterpart since previous
components are fixed when estimating the next component. In our experience, one pays a
small price in terms of variance for this restriction; this is shown in the right plot in Figure 1.
We have not yet encountered a case were this reduction is significant.
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Figure 1: The left figure shows computation time for a data set with 600 observations and
increasing dimensionality; 25 non-zero loadings were extracted. The sequential SPCA algo-
rithm is faster by a factor 15–100. The right figure shows total adjusted variance for three
components for the same data set. The sequential algorithm pays a small penalty for the one
component at a time approach.

4.5. Sparse linear discriminant analysis

Linear Discriminant Analysis (LDA) estimates orthogonal directions βk in which observations
xi belonging to one of K classes are most separated. Separation is measured as the between-
class variance σ2

b in relation to the within-class variance σ2
w of the projected data Xβk. Class-

belongings are dummy-encoded in a (n × K) matrix Y where element (i, j) is 1 if the ith
observation belongs to the jth class, else 0. Further, the matrix Dπ = 1

nY
>Y is a diagonal
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matrix of class prior probabilities based on their frequency in Y. Given these definitions,
the matrix of class centroids is given by M = 1

nD
−1
π Y>X, the total covariance matrix is

Σ = 1
nX
>X, the between-class covariance matrix is Σb = M>DπM = 1

nX
>Y(Y>Y)−1Y>X,

and the within-class covariance matrix is Σw = Σ − Σb = 1
nX
>(I −Y(Y>Y)−1Y>)X. The

cost function to optimize for the kth direction is,

arg max
βk

β>k Σbβk subject to β>k Σwβk = 1, β>k Σwβl = 0,∀l < k. (45)

Standard differentiation leads to a an eigenvalue problem with respect to the matrix Σ−1
w Σb

which yields the full set of solutions B = {βk}. Classification of a new observation x is
performed by finding the closest centroid in the derived space defined by B.

LDA relies on the assumptions that (1) the data is normally distributed and (2) all classes
have equal covariances. Although these assumptions are seldom met exactly, LDA often has
as good or better performance compared to more flexible alternatives. This is in part due to
the robustness of a method with few parameters to estimate. As with ordinary least squares
in regression, there are situations where the inverse of the Gram matrix X>X — which turns
up in the estimation of regression coefficients as well as the estimation of Σ−1

w — has high
variance or is computationally infeasible. Similarly to ridge regression (cf., Section 4.3) the
covariance matrix (or equivalently, the Gram matrix) may be replaced by a regularized variant
Σ + δΩ. If Ω is a positive definite matrix, then there exists a large-enough positive value of
δ such that Σ + δΩ is positive definite (Petersen and Pedersen 2008). Application of this
approach to LDA leads to penalized (linear) discriminant analysis (PDA) (Hastie, Buja, and
Tibshirani 1995); the estimate of Σw is simply replaced by Σw +δΩ, otherwise the calculation
and application proceeds as before. In the remainder of this section, we will use Ω = I which
shrinks the solutions towards those obtained by assuming a spherical common covariance
matrix.

An alternative route to the solutions B of LDA/PDA is via optimal scoring (Hastie, Tibshi-
rani, and Buja 1994). The PDA optimal scoring criterion is

arg min
Θ,B
‖YΘ−XB‖2F + δ‖B‖2F subject to Θ>DπΘ = I. (46)

The matrix Θ is a scoring matrix, orthogonal in Dπ, which assigns a multiple to each column
(class) in Y. This transformation of the dummy encodings circumvents problematic situations
which otherwise make a regression approach to classification difficult (Hastie et al. 2009). As
shown in detail in Hastie et al. (1995) and more succinctly in Hastie et al. (1994), the optimal
B are equivalent, up to a diagonal scaling matrix, to those obtained by PDA using the
penalized within-class covariance matrix Σw + δ

nI. Differentiation, first with respect to B
and then with respect to Θ gives the standard solution; first compute a multivariate ridge
regression of X on Y yielding regression coefficients B̃ = (X>X + δI)−1X>Y. Θ is then
obtained by an eigenanalysis of the matrix ŶY, where Ŷ = XB̃. The final directions B are
finally obtained by B = B̃Θ.

Similarly to the treatment of the PCA penalization (39), we can estimate the directions βk
sequentially since they are orthogonal. The estimation of the kth direction involves solving

arg min
θk,βk

‖Yθk −Xβk‖22 + δ‖βk‖22 subject to Θ>kDπΘk = I, (47)



20 SpaSM: Sparse Statistical Modeling

where Θk contains the k first columns of Θ. We will now describe an alternating algorithm
which replaces the eigenanalysis-based recipe in the previous paragraph. This algorithm
then naturally extends to sparse discriminant analysis, where the ridge regression estimate
is replaced by an elastic net estimate. In line with Section 4.4, we first state the following
Lemma.

Lemma 4.3 Let Θ(k−1) with Θ>(k−1)DπΘ(k−1) = I be the (p × k − 1) matrix containing the
first k − 1 columns of Θ. The ”fix βk, solve for θk”-problem can then be formulated as,

θ̂k = arg min
θk
‖Yθk −Xβk‖22 subject to θ>k Dπθk = 1, θ>k DπΘ(k−1) = 0. (48)

Let s =
(
I−Θ(k−1)Θ

>
(k−1)Dπ

)
D−1
π Y>Xβk. Then, α̂k = s/

√
s>Dπs.

Proof Appendix B.2 gives a proof for Lemma 4.2; the proof for this lemma is equivalent,
except the trivial addition of Dπ. The solution to this Lemma is also given — sans proof —
in Clemmensen et al. (2011).

The ”fix θk, solve for βk” problem is solved by the ridge regression estimate βk = (X>X +
δI)−1X>Yθk.

We initialize Θ to the size (K × K) identity matrix. The directions are then obtained se-
quentially by alternating the estimation of βk and θk until convergence. Convergence to a
global optimum for each direction is guaranteed by the convexity of the cost function and its
constraints and since each alteration is sure to lower the cost.

With this algorithm in place, it is now straight-forward to extend it to include an l1 penalty
which promotes directions βk which are sparse. This means that the space B in which the
classification is carried out, consists of a subset of the available variables. As with all sparse
methods, the possible benefits are ease of interpretation and (non-linear) suppression of noise.
The l1, l2-regularized criterion is,

{θ̂k, β̂k} = arg min
θk,βk

‖Yθk −Xβk‖22 + δ‖βk‖22 + δk‖βk‖1 subject to Θ>kDπΘk = I, (49)

which turns the ridge regression estimation of βk from penalization (47) into an Elastic Net
estimate. The resulting algorithm for sparse discriminant analysis is stated in Algorithm 5.

The normalization in Step 7 helps to avoid multiplicative drift towards the trivial solution
where θk = 0 and βk = 0. To avoid additive drift we also require

∑
i(Dπθk)i = 0, i.e.,

that θk is zero-mean in Dπ. In previous treatments of optimal scoring (see e.g., Clem-
mensen et al. (2011)), the columns of Θ are explicitly forced to be orthogonal to a vector
of ones. However, it turns out that Step 6 implicitly guarantees this since Dπθk = Y>Xβk −
DπΘ(k−1)Θ

>
(k−1)DπD

−1
π Y>Xβk. The first term is clearly mean-zero since X is centered. The

second term is mean-zero if DπΘ(k−1)Θ
>
(k−1)DπD

−1
π is mean zero. DπΘ(k−1)Θ

>
(k−1)Dπ is the

outer product of two mean-zero matrices and results in a mean-zero matrix. Multiplying this
with the diagonal matrix D−1

π does not change this property.

To allow for a more flexible model of the density of each class one may model each class a
mixture of Gaussian distributions. Clemmensen et al. (2011) describe an extension of the
described algorithm which implements this.
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Algorithm 5 SLDA (Clemmensen et al. 2011)

1: Let Q be the number of classes and K < Q the number of discriminative directions
2: Initialize Y an n×Q matrix of indicator variables with Yi∈classjj = 1, Dπ = 1

nY
>Y, and

Θ = I(Q×K)

3: for k = 1, . . . ,K do
4: while sparse discriminative direction βk has not converged do
5: Solve the elastic net problem βk = arg minβ ‖Yθk −Xβ‖2 + δ‖β‖2 + δ‖β‖1
6: θk = (I−Θ(k−1)Θ

>
(k−1)Dπ)D−1

π Y>Xβk (Update kth column of Θ)

7: θk = θk/
√
θ>k Dπθk (Normalize to unit length)

8: end while
9: end for

10: Output the coefficients B = [β1 . . . βK ]

5. Using the SpaSM toolbox

This section gives a brief overview of usage of the SpaSM toolbox. The examples covered can
all be found in the source code. Issuing the command help nameOfFunction yields a detailed
overview of the input and output to the functions, where nameOfFunction is a function in
the toolbox, e.g., forwardselection.

After the code has been downloaded1 one can add the path to the SpaSM directory in MATLAB
to access the functions and scripts. The examples contain random generated data sets, the
code for generating the data sets is also included in the examples.

A streamlined version of the examples is contained in the file demo.m. This includes the code
to generate the data sets with appropriate seeds and all figures.

5.1. Forward selection usage example

The example is contained in the file example_forwardselection.m. First a simulated data
set is generated and preprocessed. This data set is referred to as simulated data 1. The code
for generating the data set and the appropriate seed for the random number generator are
inside the file.

The data set is described as follows. A set of six correlated mean zero predictors are generated
from a multivariate random distribution. The covariance matrix has 1 on the diagonal and
0.6 on the off-diagonal entries. The response is generated as a linear combination of the first
three predictors and i.i.d. Gaussian noise with standard deviation 2. The predictors are
then centered and scaled to unit euclidian length and the response is centered. The forward
selection algorithm is then run with the following command:

>> [beta info] = forwardselection(X, y, 0, true, true);

Step Added Active set size

1 2 1

2 3 2

3 1 3

4 6 4

1Link to code http://www.imm.dtu.dk/projects/spasm/



22 SpaSM: Sparse Statistical Modeling

5 4 5

6 5 6

The inputs are the predictors variables X, the response variable y, a scalar STOP (which
triggers early stopping if non-zero), a boolean variable STOREPATH (which stores the values
of the coefficients in the model estimated in each iteration) and a boolean variable VERBOSE

(which if false suppresses output to the command line).

The output to the command line shows what happened in each iteration, i.e., which variable
was added and the size of the active set. The beta in the output is a matrix containing the
coefficients in the model. Column i contains the parameters found in iteration i.

>> beta

beta =

0 0 0 9.4249 10.4411 10.2215 10.4525

0 26.5885 16.2983 12.4341 13.3253 12.5398 12.5018

0 0 15.2383 12.0823 13.2119 13.0880 13.4359

0 0 0 0 0 2.6190 2.9017

0 0 0 0 0 0 -1.2487

0 0 0 0 -3.5534 -4.6301 -4.3471

The info variable in the output is a struct containing values for information criteria (see
Section 4.1), degrees of freedom, steps and relative size of coefficients compared to a low bias
model.

>> info

info =

steps: 6

df: [0 1 2 3 4 5 6]

Cp: [241.363 51.658 19.405 8.533 9.012 10.182 12.000]

AIC: [1258.8e+03 559.269 440.327 400.236 402.003 406.317 413.022]

BIC: [1258.8e+03 568.876 459.542 429.057 440.431 454.353 470.664]

s: [0 0.592 0.703 0.756 0.903 0.960 1.000]

Now we can find the best fitted model according to AIC:

% Find best fitting model

[bestAIC bestIdx] = min(info.AIC);

best_s = info.s(bestIdx);

This is a model containing variables 1,2 and 3. All information criteria select the right model.
Figure 2 shows how the values of the coefficients in the models change over the iterations.

5.2. Least Angle Regression usage example

We continue to use simulated data set 1 as for the forward selection algorithm. The example
is contained in example_lar.m. We call the LAR algorithm with the following command:
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Figure 2: Value of parameters in models changing through the iterations of the forward
selection algorithm on simulated data set 1. The x-axis shows the relative size of the parameter
vector β compared to a low bias model. The dotted red vertical line indicates the model
selected by AIC.

>> [beta info] = lar(X, y, 0, true, true);

Step Added Active set size

1 2 1

2 3 2

3 1 3

4 4 4

5 6 5

6 5 6

The input/output to the function and the output to the command line is virtually the same
as for the forward selection algorithm. The beta matrix in the output is:

>> beta

beta =

0 0 0 8.2840 8.8654 9.6638 10.4525

0 1.0599 4.5161 11.4756 11.8199 12.2437 12.5018

0 0 3.4562 11.0381 11.5741 12.4654 13.4359

0 0 0 0 0.6168 1.7956 2.9017

0 0 0 0 0 0 -1.2487

0 0 0 0 0 -2.7259 -4.3471

Note that the model in the fourth column has the same parameters non-zero as in the forward
selection algorithm. The values of the parameters are not the same and that is due to the
fact that a new variable is added to the active set when it becomes equally important as an
inactive variable.

The info struct holds the same information as for the forward selection algorithm. The
output is:
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>> info

info =

steps: 6

df: [0 1 2 3 4 5 6]

Cp: [241.3628 228.3831 145.5324 10.5697 10.7091 10.6094 12.0000]

AIC: [1.2588e+03 1.2110e+03 905.4487 407.7472 408.2615 407.8936 413.0218]

BIC: [1.2588e+03 1.2206e+03 924.6628 436.5685 446.6898 455.9289 470.6643]

s: [0 0.0236 0.1776 0.6861 0.7324 0.8665 1.0000]

The first and last values of the information criteria are the same as for the forward selection
but note that the intermediate values are quite different due to the different step sizes. Figure
3 shows a similar evolution of the parameters through the iterations as can be seen in Figure
2 for the forward selection algorithm. Note that the magnitude of the parameters of the
selected model is relatively smaller than the one from forward selection.
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Figure 3: Value of parameters in models changing through the iterations of the LAR algorithm
on simulated data set 1. The x-axis shows the relative size of the parameter vector β compared
to a low bias model. The dotted red vertical line indicates the model selected by AIC.

5.3. The LASSO usage example

Again we use simulated data set 1 to try out the LASSO algorithm. The example is contained
in the file example_lasso.m. The command and command line output are the following:

>> [beta info] = lasso(X, y, 0, true, true);

Step Added Dropped Active set size

1 2 1

2 3 2

3 1 3

4 4 4

5 6 5

6 5 6
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The only noticeable difference is the extra column named dropped. In this example no variable
is dropped from the active set, but that happens when a parameter value crosses zero. The
input to the lasso function is the same as for lar. The values of beta and info are the
same, since non of the active variables become zero throughout the iterations as can be seen
in Figure 3.

5.4. The elasticnet usage example

The elastic net can handle data set with more variables than observations, given that the
regularization parameter for the L2 norm of the parameters is strictly positive. Here we
create another simulated data set. We refer to this data set as simulated data set 2.

The data set is created as follows. We generate 30 observations of 40 variables. The predictors
are sampled from a multivariate normal distribution with a similar covariance matrix as the
simulated data set 1. The response is again a linear combination of the first three variables
and i.i.d. Gaussian noise with standard deviation 0.5.

The example is contained in example_elasticnet.m. The algorithm is called as follows:

delta = 1e-3;

[beta info] = elasticnet(X, y, delta, 0, true, true);

Step Added Dropped Active set size

1 1 1

2 3 2

3 2 3

4 26 4

5 9 5

6 31 6

...

Here delta is the regularization parameter for the L2 norm. The additional output to the
command line is omitted here. The values of the coefficients in the models through the
iterations can be seen in Figure 4.

5.5. Sparse principal component analysis usage example

To demonstrate the usage of SPCA we generate another simulated data set with 1500 ob-
servations and 500 variables. This data set is referred to as simulated data set 3. First we
generate 3 principal components and add i.i.d. Gaussian noise to them to generate 500 noisy
versions of each. The three components can be seen without noise in Figure 5 on the left, and
all the data with the noise is on the right. Note that each components has at least half the
values as zero or close to zero. Code to generate simulated data set 3 with the appropriate
seed can be found in the corresponding file example_spca.m. The data is stored in a matrix
X.

To run the method we need to supply a few parameters. The parameters and call to the
function in MATLAB are the following:

K = 3;

delta = inf;
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Figure 4: Value of parameters in models changing through the iterations of the elastic net
algorithm on simulated data set 2. The x-axis shows the relative size of the parameter vector
β compared to a low bias model.

stop = -[250 125 100];

maxiter = 3000;

convCriterion = 1e-9;

verbose = true;

[SL SD] = spca(X, [], K, delta, stop, maxiter, convCriterion, verbose);

The second argument can be the Gram matrix, otherwise the empty matrix is supplied. When
the stop variable is negative, the absolute value is the number of desired non-zero values in
each component. This is an advantage to other algorithms, where sparsity cannot directly be
specified. The results compared to traditional PCA can be seen in Figure 6.

5.6. Sparse linear discriminant analysis usage example

To demonstrate the usage of SLDA we create yet another simulated data set, referred to as
simulated data set 4. The training part of the data set consists of three classes with 100
observations from each class with 150 variables, the test part of the data set is identically
sampled and of the same size. The data is generated from a multivariate normal distribution.
The mean for the first class has the first ten variables as 0.6 and the rest as zero. The mean
for the second class has variables 11-20 as 0.6 and the rest as zero and the third mean has
variables 21-30 as 0.6 and the rest as zero. The classes have the same covariance matrix where
there is 1 on the diagonal and 0.6 on the off diagonal entries. The example is contained in
the file example_slda.m. We can now run the algorithm with the following command:

[B theta] = slda(X, Y, delta, stop, Q, maxiter, tol, true);

Estimating direction 1

Iteration: 10, convergence criterion: 0.025816

Iteration: 20, convergence criterion: 2.7872e-06

Iteration: 22, convergence criterion: 5.1135e-07

Estimating direction 2

Iteration: 3, convergence criterion: 6.019e-30
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Figure 5: The left figure shows the three generated components, each consisting of 500 values.
The right figure shows 5 noisy versions of each of the three components from simulated data
set 3.
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Figure 6: The left figure shows the results obtained by SPCA on simulated data set 3. The
right figure shows the results from PCA.

The parameters for the function call are similar to the ones for SPCA. The parameter Q is
the number of desired discriminative directions, in this case 2. The output consists of B, the
regression parameters, and theta, the optimal scores.

We can now project the data onto the columns spanned by B and perform LDA. The training
error is is 3.0% and test error is 5.3%. When we compare this to doing LDA on the raw data
we get a training error of 1.0% and test error of 12.0%.
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6. Example studies

The following examples elaborate on the differences of some of the algorithms presented in
the SpaSM toolbox on real data sets. The first example demonstrates the difference of the
LAR and LASSO algorithms, where the path of one of the coefficients crosses zero through
the iterations. The second example demonstrates the difference of using PCA and SPCA
on a shape data set consisting of male and female silhouettes. SPCA provides more local
deviations from the mean which are easier to interpret.

6.1. Regression on Diabetic data

To demonstrate the difference of the LASSO and the LAR algorithm we decided to use the
Diabetes data set2, see Efron et al. (2004). This data set is well known in the literature and
it has one variable in it which changes sign through the iterations of LAR. This is what we
need to demonstrate the difference between the two methods. The example is contained in
the file example_LarLasso.m.

The data set includes 10 predictors, 1 response and 442 observations. They are measurements
on diabetic patients and the response is a quantitative measure of disease progression 1 year
after the baseline.

The coefficient paths for the two methods can be seen in Figure 7. The plots are identical
except for the fact that in the LASSO algorithm a variable is removed from the active set
when it becomes zero.

6.2. PCA and SPCA on Silhouette data

This shape data set consists of silhouettes of 20 male and 19 female adults and was first
presented in Thodberg and Olafsdottir (2003). Each silhouette consists of 65 points in 2D
giving a total of 130 variables for each observation. The data has been aligned with Pro-
crustes analysis prior to using the SpaSM toolbox. The example is contained in the file
example_spca_silDat.m.

Running PCA shows that the first three components explain 82.9% of the variation in the
data. Three components from SPCA with 40 non-zero variables each explain 65.27% of the
variation in the data. The results can be seen in Figure 8.

The components obtained by PCA yield variation all over the silhouette. SPCA extracts the
variables that explain most of the variation with the restriction that some of them need to
be zero. These sparse components yield more local deformations on the silhouette, which are
easier to interpret and visually compare.

7. Collaboration and verification

We use tools and principles from software engineering in the development of this toolbox.
A server-based repository (Apache Subversion (SVN) (Apache Software Foundation 2011))
allows toolbox authors to download (Update in SVN terms) the latest toolbox snapshot, apply
changes and then upload (Commit) to the server when finished. Simultaneous editing of files

2http://web.stanford.edu/~hastie/Papers/LARS/diabetes.data
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is also possible where overlapping changes are merged in an intuitive way when committing
changes back to the repository.

In software engineering continuous integration refers to the practice of committing small
changes often to the repository, rather than scarce large updates. This keeps the effort
required to merge changes from different authors to a minimum. To further improve the
quality and effectiveness of the development, we employ unit testing. In parallel with the
development of each toolbox entity, we develop several test scripts, each testing the one part
(unit) of the code. As an example, one test file asserts (using the MATLAB assert command)
that the elastic net with λ = δ = 0 equals the ordinary least squares solution. Although we
currently have no automated procedure, we aim to run all such unit test files each time changes
are uploaded to the repository. In this way, we get a strong indication to whether the new
code is working as expected, and that uploaded changes did not break code that was working
in an earlier version of the toolbox. Tables 1 and 2 list all relevant unit tests.

Other means of verification we have used are code walkthrough, a line-by-line inspection of
finished code, and deployment of beta releases of the toolbox.

A. Sparse regression with orthogonal predictors

Several methods have simple closed-form solutions in cases where the predictor variables are
orthogonal and have Euclidean length 1. Often, the estimation can be split into p separate
problems, one for each βi. We will quickly review how this works for the LASSO, the treatment
is similar for the Elastic Net and LAR. We use this property for testing purposes, cf., Table 1.

‖y −Xβ‖2 + λ‖β‖1 ⇐⇒ ‖y − xiβi‖2 + λ|βi|,∀i. (50)

Optimizing the expression for a single β̂i. involves taking first derivatives and setting to zero,

−2x>i (y − xiβi) + λ · sign(βi) = 0, i ∈ A. (51)

Using x>i y = βOLSi and x>i xi = 1 we have,

−2βOLSi + 2βi + λ · sign(βi) = 0, i ∈ A. (52)

For sufficiently large values of λ, βi will shrink to exactly zero. For any other value of λ, βi
will agree in sign with βOLSi . Therefore, we have,

βi = sign(βOLSi )

(
|βOLSi | − λ

2

)+

, ∀i, (53)

where (·)+ denotes the hinge function max(·, 0).

B. Proofs

B.1. Proof of Lemma 4.1
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Unit Test Acceptance criterion

LAR Make sure the full LAR model
is equal to the ordinary least
squares model

Results are equal

LAR Make sure LAR and LASSO
are equal in cases where no
variables are dropped in the
LASSO

Results are equal

LAR Profile code on n >> p and
p >> n data sets.

Code has no apparent bottlenecks

LASSO Make sure the full LASSO
model is equal to the ordinary
least squares model

Results are equal

LASSO Run with a data set with or-
thogonal predictor variables.
Compare to soft thresholding.
Cf., Appendix A

Results are equal

LASSO Profile code on n >> p and
p >> n data sets.

Code has no apparent bottlenecks

Elastic net Make sure the full Elastic Net
model is equal to the cor-
responding Ridge Regression
model.

Results are equal

Elastic net Run with a data set with or-
thogonal predictor variables.
Compare to soft thresholding.

Results are equal

Elastic net Compare results with running
LASSO with an Elastic Net-
style augmented data matrix

Results are equal

Elastic net Profile code on n >> p and
p >> n data sets.

Code has no apparent bottlenecks

SPCA Compare the full SCPA model
with that of a regular PCA.
Try different values of δ.

Results are equal regardless of the value of δ

SPCA Profile code on n >> p and
p >> n data sets.

Code has no apparent bottlenecks

SLDA Assert that the resulting op-
timal scores Z = Yθ are or-
thogonal

Z>Z/n = I

SLDA Compare the results of SLDA
with no l1 constraint to ridge
regression on the matrix Yθ

Results are equal

Table 1: Toolbox unit tests (part 1).
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Unit Test Acceptance criterion

SLDA Compare the results of SLDA with no l1
constraint to penalized discriminant anal-
ysis (LDA using the within-class covari-
ance matrix ΣW + δ

nI

Results are equal

SLDA Profile code on n >> p and p >> n data
sets.

Code has no apparent bottlenecks

cholinsert Compare updates of the Cholesky factor-
ization to a direct Cholesky factorization
of the corresponding matrices

Results are equal

choldelete Compare downdates of the Cholesky fac-
torization to a direct Cholesky factoriza-
tion of the corresponding matrices

Results are equal

Table 2: Toolbox unit tests (part 2).

Using tr(AB) = tr(BA), tr(A + B) = tr(A) + tr(B) and α>k αk = 1 we have,

‖X−Xβkα
>
k ‖2F = (54)

tr
(
X>X + αkβ

>
k X

>Xβkα
>
k − 2X>Xβkα

>
k

)
= (55)

tr(X>X) + tr(Xβkα
>
k αkβ

>
k X

>)− 2α>kX
>Xβk = (56)

tr(X>X) + tr(Xβkβ
>
k X

>)− 2α>kX
>Xβk = (57)

tr(X>X) + β>k X
>Xβk − 2α>kX

>Xβk, (58)

which clearly has the same minimizing βk as

‖Xαk −Xβk‖22 = (59)

α>kX
>Xαk + β>k X

>Xβk − 2α>kX
>Xβk. (60)

Differentiation of any of the expressions gives β̂k = (X>X)−1X>(Xαk). This proof is also
detailed in a slightly different context by Zou et al. (2006).

B.2. Proof of Lemma 4.2

Incorporating the constraints into the cost function in Equation (43) using Lagrange multi-
pliers λ (length k − 1 vector) and γ (scalar) the problem becomes

arg min
αk

tr
[
αkβ

>
k X

>Xβkα
>
k − 2αkβ

>
k X

>X + X>X
]

+ α>kA(k−1)λ+ γ(α>k αk − 1).

Differentiating and setting to zero, and solving for αk leads to

α̂k =
1

β>k X
>Xβk + γ

[
X>Xβk −

1

2
A(k−1)λ

]
, (61)

or equivalently,

α̂k =
1

β

[
X>Xβk −A(k−1)α

]
. (62)
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The orthogonality constraints give

A>(k−1)α̂k = 0⇔ 1

β

[
A>(k−1)X

>Xβk − α
]

= 0⇔ (63)

α = A>(k−1)X
>Xβk.

Inserting this expression for α into Equation (62) and simplifying gives

α̂k =
1

β

(
I−A(k−1)A

>
(k−1)

)
X>Xβk ≡

1

β
s. (64)

Finally, the constraint α>k αk = 1 gives β =
√
s>s such that α̂k = s/

√
s>s. In practice, we

first calculate s and then normalize this vector to unit length.
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Figure 7: Coefficient paths for different LAR and LASSO on the Diabetes data set. The red
dotted line shows the model selected by AIC, which in this case is the same model for both.
Note that variable 7 is the only one that changes sign. In the LASSO algorithm it is removed
from the active set when this happens and then it re-enters in the next iteration.
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Figure 8: PCA and SPCA on the silhouette data set. The top row shows deviations in the
directions of the first three components from PCA and the second row shows them for the
components obtained by SPCA. The red curve represents the mean shape, the green one
represents -2 standard deviations from the mean and the blue +2 standard deviations from
the mean.
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Sparse Interpretations of Online Reviews
The following manuscript is included as a technical report. The content will be
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Abstract

We present a novel approach for doing clas-
sification of data with ordinal labels in the
p � n setting. We construct the classifier
based on sparse discriminant analysis using
the data replication method, where we ap-
proach the underlying optimization problem
with proximal gradient and alternating di-
rection method of multipliers. We demon-
strate performance on a challenging user re-
view dataset and compare to a state of the art
nominal classifier. Finally we demonstrate
how the classifier allows us to interpret the
data in a compact and meaningful way.

1 INTRODUCTION

There is a noticible lack of classification methods that
can handle data with ordinal labels in the p � n
case, where p is the number of features and n is the
number of samples. In this paper, we demonstrate
how we extend sparse discriminant analysis (SDA) by
Clemmensen et al. [2011] using the data replication
method by Cardoso and Costa [2007]. To solve the op-
timal scoring problem formulated in Clemmensen et al.
[2011] we rely on the alternating directions method
of multipliers (ADMM) and the accelerated proximal
gradient (APG) algorithms proposed by Atkins et al.
[2017].

Supervised machine learning is traditionally split
coarsely into regression and classification tasks, where
the values/labels that we want to predict from our data
are respectively continuous and discrete. In between,

Preliminary work.

you find data with ordinal labels instead of nominal
ones. Ordinal labels have the ordinal property in com-
mon with regression problems, and are discrete, simi-
lar to classification problems. These problems do not
fall naturally in either of the two categories, and can
be approached from both directions, more commonly
from a regression point of view. Ananth and Klein-
baum [1997] give a good overview of commonly em-
ployed regression based approaches, e.g. the full con-
tinuation ratio model and a continuation ratio model
with proportional odds structure. In these approaches,
the ordinal property of the labels is commonly ignored
and the labels are treated as nominal ones. The ex-
ploitation of the ordinal property should give rise to
simpler and potentially more interpretable classifiers.
The main problem is to incorporate the ordinal prop-
erty into nominal classification algorithms. An alter-
native approach is to transform an ordinal classifica-
tion problem into multiple binary classification prob-
lems via the data replication method introduced by
Cardoso and Costa [2007]. These binary classification
problems are solved together to find a common hyper-
plane that separates each pair of classes corresponding
to adjacent ordinal labels. The only difference between
the hyperplanes corresponding to different classifica-
tion boundaries are biases, which are also provided in
the solution.

In the past years, multiple methods have appeared
which can handle feature selection and classification
problems of the type p� n, most notably Sparse Dis-
criminant Analysis (SDA) by Clemmensen et al. [2011]
and Sparse Partial Least Squares for Classification by
Chung and Keles [2010]. Other algorithms commonly
used to solve such problems, where the focus is not
neccesarily classification, are elastic net by Zou and
Hastie [2005] and sparse principal component analy-
sis by d’Aspremont et al. [2005]. Using an l1-norm
regularizer in the model formulation ensures that vari-
able selection is performed in the model optimization
process which gives leverage for the user to interpret
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the non-zero parameters in the model. Incorporation
of an l1-norm regularizer is influenced by the Lasso
[Tibshirani, 1996, Chen et al., 2001], which uses the
l1-norm to relax the vector cardinality function in the
best feature subset problem for linear regression.

Ordinal labels appear in a multitude of applications,
e.g., surveys, medical rating scales and most notably
in relation to online user reviews. Users write reviews
for products they have purchased and give the prod-
uct a star rating, or simply a value from one to five.
The number of stars can be interpreted as ordinal la-
bels. Active research on user reviews in relation to so-
cial networks, online behaviour and recommender sys-
tems can e.g. be found in work by Leskovec and Krevl
[2014], McAuley and Leskovec [2013] and Cheng et al.
[2015]. Online products commonly have many user re-
views and, e.g., in the case of tourism consumers rely
heavily on these reviews for making decisions for future
travel planning and selection of hotels and restaurants
during travel [Gretzel and Yoo, 2008]. It is important
for product owners to monitor the state of the reviews,
but that can be tedious when they need to go through
many reviews or if the same owner is monitoring mul-
tiple products.

In this paper, we employ ordinal SDA on user review
data as a case study for building an ordinal classifier.
We demonstrate how we can interpret the results from
the classifier in a meaningful way and use it to discover
trends that might promote the product owner to take
actions, or to aid future buyers to make decisions based
on the reviews for a given product. We use review data
from the SNAP datasets by Leskovec and Krevl [2014].
We additionally demonstrate performance on the wine
dataset from Cortez et al. [2009].

1.1 Contributions

The main contributions of this paper consists of inte-
grating the data replication method by Cardoso and
Costa [2007] with SDA. The additional parameters in-
troduced by the data replication methods are left out
from the regularization part of SDA, thus making the
additional parameters independent of the effect of reg-
ularizers. The algorithm has been implemented and is
available in the R-package (left intentionally blank for
anonymity)1 [R Core Team, 2017]. The package in-
cludes code to train a classifier and make predictions
on unseen data.

We demonstrate how this method can be used in a
novel way with a standard natural language processing
(NLP) pipeline to create simple visualizations of online
user reviews.

1Address to package, left blank for anonymity

2 METHOD

We begin by describing SDA and then the particu-
larities of integrating the data replication method to
obtain ordinal SDA. The notation used throughout the
paper is summarized in Table 1. Finally, we summa-
rize the NLP pipeline we use to preprocess the user
review data.

Table 1: Notation

SYMBOL DESCRIPTION

βk Discriminant vector k
θk Scoring vector k
Y Label indicator matrix
X Feature matrix
K Number of classes
n Number of samples
p Number of variables
Ω Tikhonov regularization matrix
|| · ||1 1-norm
λi Regularization parameters
nk Number of samples in class k
βOrd Ordinal discriminant vector

Ω̂ Ordinal regularization matrix
ei 1× (K − 1) i-th unit vector
Ek,i nk rows of ei

bi Bias i, where i ∈ {1, ...,K − 1}
s Width of binary classif. problem
XOrd Replicated data matrix
YOrd Replicated label vector
XOrd,i Data matrix for boundary i
YOrd,i Labels for boundary i
x(k) nk × p class k data matrix
1k nk × 1 vector with only ones
2k nk × 1 vector with only twos

2.1 Sparse Discriminant Analysis

Clemmensen et al. [2011] presented the sparse opti-
mal scoring problem (SOS), which is the formulation
we employ to solve ordinal SDA. SDA works in some
sense like a supervised version of Principal Component
Analysis (PCA), where we seek to find discriminant
vectors to project the data to a lower dimensional rep-
resentation, where we balance the objectives of mini-
mizing variation within classes, maximizing variation
between classes and feature selection. New samples
are then traditionally classified according to the near-
est centroid after projection:

arg min
θk∈RK ,βk∈Rp

‖Y θk −Xβk‖22︸ ︷︷ ︸
Optimal Scoring

+λ2β
T
k Ωβk + λ1‖βk‖1

︸ ︷︷ ︸
Sparse Optimal Scoring
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s.t. 1
nθ

T
k Y

TY θk = 1,

θTk Y
TY θ` = 0 ∀` < k,

(1)

In Equation 1, the constraints apply to both the op-
timal scoring and the sparse optimal scoring formula-
tion. The constraints are spherical which makes the
problem non-convex, but for a given value of θk, solv-
ing for βk is a convex problem. When we solve this
problem we seek the discriminant vectors βi, which
we can then use to project the data from feature space
to a lower-dimensional representation. The traditional
approach is to solve this minimization problem with a
block-update algorithm, where one first solves for θ,
then β and iterate until convergance. That way we
can find the first (θ1,β1) pair, then we continue in
a similar manner to find the successive pairs until we
have found the maximum number of pairs, K − 1, or
the desired number of pairs. In the ordinal case, we
cast our problem as a binary classification problem,
which only yields a single discriminant vector βOrd,
simplifying the interpretation of the solution. βOrd is
a vector of length p+K − 1, so the first p parameters
correspond to the original variables, that we can inter-
pret. The extra K − 1 parameters are the additional
biases introduced by the data replication method.

Clemmensen et al. [2011] show that for a given β one
can find θ in polynomial time. For a given θ the
problem formulation is an elastic net problem and can
be solved with the LARS-EN algorithm by Zou and
Hastie [2005]. We however approach the optimization
from the point of proximal gradient methods and alter-
nating direction method of multipliers, using the soft
thresholding operator to deal with the sparse regular-
izer in the same manner as Atkins et al. [2017].

2.2 Using Ordinal Labels via Data
Replication

A natural assumption for an ordinal classifier of K
classes, is to have K− 1 non-intersecting classification
boundaries, where boundary i separates classes 1 to i
from classes i+1 to K. In our case, that means finding
a hyperplane and a set of biases. We employ the data
replication method of [Cardoso and Costa, 2007]. We
demonstrate how to build the new data matrix, with
the replicated samples.

For each of the K − 1 classification boundaries we de-
fine a binary classification problem. If the boundary
is the one between classes i and i+ 1, then the binary
labels correspond to labels i and lower, and i+ 1 and
higher. The maximum number of classes we use on
each side of the boundary is called s, which is an inte-
ger specified by the user. So for the boundary between
classes i and i+1 we label classes i−s+1, i−s+2, ..., i
as belonging to class 1 and the classes i+1, i+2, ..., i+s

labeled as belonging to class 2. Then we append the
vector ei, which is of length K − 1, to the samples,
where ei is a vector of all zeroes, excepts it takes the
value 1 in position i. All these new samples are added
to the new data matrix. Class k has nk samples and
we define xk as the nk×p data matrix, only containing
samples from class k. We also define the nk × (K − 1)
matrix Ek,i, which is a matrix of all zeroes, except the
i-th column is a vector of all ones.

XOrd,i :=



x(i−s+1) E(i−s+1),i

...
...

x(i) Ei,i

x(i+1) Ei+1,i

...
...

x(i+s) Ei+s,i


(2)

YOrd,i :=



11−s+1

...
1i

2i+1

...
2i+s


(3)

The data matrix XOrd,i, corresponding only to the
data needed for the boundary between class i and i+1
can be seen in Equation 2 and the corresponding label
vector in Equation 3.

XOrd :=


XOrd,1

XOrd,2

...
XOrd,K−1

YOrd :=


YOrd,1

YOrd,2

...
YOrd,K−1

 (4)

The final data matrix is constructed from the matrices
corresponding to the binary classification problems as
shown in Equation 4.

Now we would wish to plug the matrix XOrd and the
labels YOrd into the SOS problem in Equation 1. We
call the new discriminant vector that comes from this
problem βOrd:

βOrd :=



β1
β2
...
βp
b1
b2
...

bK−1


, (5)

which is composed of a traditional discriminant vector,
corresponding to the first p elements, and then K − 1
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biases, denoted bi, for i ∈ {1, 2, ...,K−1}. We want to
regularize the first p parameters like in nominal SDA,
but the parameters corresponding to the biases, should
not be regularized. In Equation 1 we use instead a
(p + K − 1) × (p + K − 1) regularization matrix Ω̂,
where the top left-most block corresponds to the p× p
Ω regularization matrix for the original variables and
the rest is zero, such that there is no regularization for
the extra parameters corresponding to the biases:

Ω̂ :=

[
Ω 0
0 0

]
(6)

In a similar manner for the l1-norm term, we only cal-
culate the l1-norm of the first p parameters in βOrd,
not regularizing the parameters corresponding to bi-
ases. These details are masked from the user in the
implementation, thus the user can optionally specify a
p × p Ω regularization matrix. This makes the usage
almost identical to that of nominal SDA. The main
difference from the usage of nominal SDA is that the
user can not specify the number of dicriminant vectors
in the output, ordinal SDA only generates one.

After doing the data transformation, and redefining
the Ω regularization matrix, the only change we need
to do in the algorithms proposed by Atkins et al.
[2017], is to only do the soft-thresholding update for
the first p parameters in βOrd. This amounts to only
using the first p parameters of βOrd to calculate the
l1-norm in Equation 1.

arg min
θ∈R2,βOrd∈Rp+K−1

‖Y Ordθ −XOrdβOrd‖22

+λ2β
T
OrdΩ̂βOrd + λ1

∑p
i=1 |βi|

s.t.
1

n
θTY T

OrdY Ordθ = 1. (7)

The original SOS problem 1 is reformulated w.r.t. the
new notation and change in problem in Equation 7.
Note that we no longer need the orthogonality con-
straint, since we only have one discriminant vector.

2.3 Predictions

The biases in the ordinal discriminant vector are or-
dered, so they define intervals on the real line. For
doing predictions on an unseen sample x, assuming it
is a 1 × p row vector, we first normalize it appropri-
ately, and call the normalized sample xn. Afterwards
we calculate the scalar value x̃ = xn · β̂p, where β̂p

is the p × 1 vector corresponding to the first p values
from the ordinal discriminant vector. Then we find
the lowest bias bi, such that x̃ < bi, that means that
we predict that the new observation belongs in class i.

2.4 Normalization and Preprocessing of NLP
data

There is a multitude of Amazon products available in
the SNAP dataset [Leskovec and Krevl, 2014]. To nar-
row our focus we selected the Apps for Android cate-
gory to work with using the 5-core dense subset. This
means that every product has been reviewed at least
5 times, by reviewers that have made at least 5 re-
views. If we consider the reviewers and products as
nodes in an undirected graph, and reviews as edges
connecting users and reviews, the k-core is the max-
imal connected subgraph where all vertices have de-
gree at least k. From this category we consider the 10
products with the highest number of reviews for fur-
ther analysis. For each product we train an ordinal
SDA model where the number of reviews is balanced,
such that each class contains 100 samples. The distri-
bution of rating scores can be seen in Figure 2.4 for
the most rated app. This distribution is very typical,
where there are very few 2-star reviews. We alleviate
this potential issue by sampling indicies with replace-
ment for the training set. We sample 100 samples per
class with replacement for the training set, giving a
total of 500 samples for each case. For the test set
we remove the training indicies from the set and sam-
ple 50 samples with replacement for the each class, so
there are no samples that appear both in the training
and test set.

For each of the ten datasets, corresponding to the ten
highest rated products, we prepare the data with the
following steps, using both the test and train data:

(1) We use the tm package by Feinerer and Hornik
[2017] in R to do the following transformations
[Meyer et al., 2008]:

(a) Make all the letters lower case.

(b) Remove punctuation.

(c) Create a plain text document.

(d) Remove English stopwords.

(2) We use the stemmer from the SnowballC package
for the English language [Bouchet-Valat, 2014].

(3) We generate 1 to 5 grams and prune the vocabu-
lary such that a term needs to appear in at least 3
documents using the text2vec package [Selivanov
and Wang, 2017].

The process depicted above yields a high number of n-
grams for each product, summarized in Table 2. The
datasets all have 500 samples, 100 per class and the
number of variables ranges from 2118 to 4505 vari-
ables. At this point we have a document term matrix
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Figure 1: Distribution of Stars from the 5-Core SNAP
Dataset on the Most Rated Android App. There is
a Noticeable Lack of 2-Star Reviews in Most of the
Products, and a Very High Bias for 5-Stars.

(DTM) with number of variables approximately an or-
der of magnitude higher than the number of samples.

Here we separate the test and train data again. We
scale each column in the training data by the value of
the 75% quantile. We use the same values to scale the
test data. We do not center the data, the only normal-
ization is scaling to normalize the contributions from
different variables. This makes it possible to interpret
the discriminant vector we find with ordinal SDA. The
non-zero parameters with a certain sign correspond to
terms that increase the score, while the opposite sign
corresponds to a negative score. The magnitude of the
absolute value of the parameter corresponds to how
strongly the value contributes to the prediction. We
can visualize the solutions as the wordclouds seen in
Figures 4 and 5 using the wordcloud package [Fellows,
2014].

3 EXPERIMENTS

3.1 Amazon Rating/Review Data

For the product review and rating data we perform the
preprocessing and normalization steps from the last
section. We do 10-fold cross-validation on the training
data to find the best best regularization parameters
for the elastic net penalty in Equation 1. Our Ω regu-
larization matrix is a diagonal p× p matrix. We allow
the γ1 and γ2 parameters to be from the following sets:

λ1 ∈ {1, 2, 3, 4, 5, 6}, λ2 ∈ {0.01, 0.1, 1, 2} (8)

After the cross-validation we select the parameter pair
that has the highest average accuracy.

We also use sparse partial least squares classification
(splsda) by Chun and Keleş [2010] from the R-package
splss [Chung et al., 2013] for comparison. We use the
same preprocessing and normalization and do 10-fold
cross-validation, where the parameters η and K come
from the sets:

η ∈ {0.01, 0.03, ..., 0.09}, K ∈ {1, 2, ..., 5}. (9)

This is a nominal classification method, so we do not
expect to get the same type of interpretation from the
solution, and more parameters are needed, in case K
is greater than 1.

3.2 Wine Data

For the Wine data from Cortez et al. [2009], we have
two datasets of wines, namely red wine with 1599
observations and white wine with 4898 observations,
both contain the same eleven measured features, we
refer the reader to the original work for a further de-
scription of the features. We approach the problem
similar to Alquier and Biau [2013]. We randomly sam-
ple half of the indicies from each class to use as a train-
ing set, do 10-fold cross-validation on the training set
and then train the classifier on the whole training set
with the best found parameters, and finally we calcu-
late the accuracy and accuracy off-by-one on the other
half. We repeat this process 20 times and report the
average accuracy and off-by-one accuracy.

Here we use the Accelerated Proximal Gradient algo-
rithm. We allow the regularization parameters to be
from the set:

λ1, λ2 ∈ {0.0001, 0.001, 0.01, 0.1} (10)

We use a diagonal matrix as Ω. We also report the
average number of parameters used in the final model.
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4 RESULTS

4.1 Review Data

For the proposed method the cross-validation parame-
ters were 0.01 in all cases for the ridge penalty, and 1.0
for the l1-norm penalty, except it was 2.0 for datasets
one and nine. The accuarcy on the test data and the
sparsity of the classifiers is summarized in Figure 4.1.
The accuracy ranges from 0.268 to 0.384. We also
calculate the off-by-one accuracy, where we allow the
prediction to be one less or greater than the true label.
The off-by-one accuracy ranges from 0.708 to 0.84.

The η parameter in the SPLS cross-validation took all
different values and the K parameter was selected as
three for dataset-one, four for dataset-five and five in
the rest of the cases. The results are summarize in
Figure 4.1. The minimum accuracy on a test set was
0.224 and the maximum was 0.388. The off-by-one
accuracy is from 0.652 to 0.796.

The proposed method has a higher accuracy in four
of the ten test datasets. The proposed method has
a higher off-by-one accuracy in eight out of the ten
test datasets. The proposed solution also provides a
single interpretable discriminant vector, which was in
all cases more sparse then the ones provided by SPLS.
Some of the words that have the strongest effect are
visualized in Figures 4 and 5. It can be clearly seen
that words belonging to the negative wordcloud have
a negative overall flavour. E.g. indicating software
bugs or updates. The words in the positive wordcloud
indicate a more positive spirit.

Table 2: Number of Variables for Each of the Product
Datasets and the Number of Variables Used in The
Final Model.

PRODUCT P P NON-ZERO

1 2118 641
2 2609 1356
3 3611 1233
4 4505 1283
5 2670 1054
6 2379 902
7 2885 966
8 3697 1361
9 3074 549
10 2927 849

4.2 Wine Data

The results on the red and white wine datasets are
reported in table 3.
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Figure 2: Results from the Proposed Method. Accu-
racy, Accuracy Where We Allow the Classification to
be off by One, and the Proportion of Non-Zero Param-
eters in the Used Model.

For the red wine the λ2 regularization parameter was
selected 17 out of 20 runs as 0.0001, λ1 was selected as
0.001 16 out of 20 runs. There were on average eight
to nine non-zero parameters in the final classifier.

For the white wine dataset, λ1 and λ2 were selected as
0.0001 in all cases. The final classifier contained ten
non-zero parameters in all cases.

In both the red and white wine datasets, the off-by-
one accuracy is more than two times higher than the
accuracy.

4.3 Discussion

The method we present correctly identifies terms as-
sociated with positive or negative scores and it does
so in a setting, where the number of terms is an or-
der of magnitude higher than the number of samples.
Presenting the results as wordclouds gives the human
observer a way to very quickly get an overview of what
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terms mostly associate with positive or negative re-
views.

The wordcloud presentation can be greatly expanded
upon in an interactive online setting. The results could
also be visualized as graphs, where thickness of edges
could represent how often the terms appear together.
An additional feature would also be to allow the user
to navigate to the reviews that include the selected
feature, ranked by how often the term appears in the
review, or ranked by rating.

There are definitely parts of the NLP pipeline that
could be improved. For the wine dataset we do not
challenge the method in terms of having more fea-
tures than samples. Another option for the wine data
would be to include all the interaction and second or-
der terms.

Figure 4: Negative Words Associated With an App in
One of the Review Datasets. Larger Words Represent
a Stronger Effect.

5 CONCLUSION

We present a novel way to approach ordinal classifica-
tion in the p� n setting. Our method is implemented
and available online in the form of an R-package. We
test the method on a dataset of online reviews, where
we achieve accuracy similar to that of a state of the
art nominal approach. Our off-by-one accuracy is bet-
ter in eight out of ten cases, showing that our wrong
predictions are more likely to be predicted as a class
closer to the correct class.

We also demonstrate how the results from the classifier
can be presented in such a way that a layman can
easily understand and interpret the results. This form
of presentation gives possibilities for customers to get a
quick overview over user review data, and for product
owners to monitor the feedback from users.
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Figure 5: Positive Words Associated With an App in
One of the Review Datasets. Larger Words Represent
a Stronger Effect.

References

P. Alquier and G. Biau. Sparse single-index model.
Journal of Machine Learning Research, 14(Jan):
243–280, 2013.

C. V. Ananth and D. G. Kleinbaum. Regression mod-
els for ordinal responses: a review of methods and
applications. International journal of epidemiology,
26(6):1323–1333, 1997.

S. Atkins, G. Einarsson, B. Ames, and L. Clem-
mensen. Proximal methods for sparse optimal
scoring and discriminant analysis. arXiv preprint
arXiv:1705.07194, 2017.

M. Bouchet-Valat. SnowballC: Snow-
ball stemmers based on the C lib-
stemmer UTF-8 library, 2014. URL
https://CRAN.R-project.org/package=SnowballC.
R package version 0.5.1.

J. S. Cardoso and J. F. Costa. Learning to classify
ordinal data: The data replication method. Journal
of Machine Learning Research, 8(Jul):1393–1429,
2007.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic

Table 3: Wine Data Results.

MEASURE RED WHITE

Accuracy Mean 0.433 0.430
Accuracy SD 0.036 0.007
Accuracy off-by-1 Mean 0.929 0.886
Accuracy off-by-1 SD 0.014 0.005
Sparsity Mean 0.786 0.909
Sparsity SD 0.111 0

decomposition by basis pursuit. SIAM review, 43(1):
129–159, 2001.

J. Cheng, C. Danescu-Niculescu-Mizil, and
J. Leskovec. Antisocial behavior in online dis-
cussion communities. In ICWSM, pages 61–70,
2015.
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Abstract. Non-invasive food inspection and quality assurance are be-
coming viable techniques in food production due to the introduction of
fast and accessible multispectral X-ray scanners. However, the novel de-
vices produce massive amount of data and there is a need for fast and
accurate algorithms for processing it. We apply a sparse classifier for
foreign object detection and segmentation in multispectral X-ray. Using
sparse methods makes it possible to potentially use fewer variables than
traditional methods and thereby reduce acquisition time, data volume
and classification speed. We report our results on two datasets with for-
eign objects, one set with spring rolls and one with minced meat. Our
results indicate that it is possible to limit the amount of data stored
to 50% of the original size without affecting classification accuracy of
materials used for training. The method has attractive computational
properties, which allows for fast classification of items in new images.

Keywords: X-Ray, Multispectral, Sparse Classification, Foreign Object
Detection

1 Introduction

One of the many purposes of X-ray scanning is to provide quality control and as-
surance in food production industry. The usage of X-rays provides non-destructive
means of examining food items and the data can be used to verify that the con-
tent is free of anomalies or foreign objects. The usage of multispectral X-ray
scanning has been used successfully in detecting explosives [12], and compares
well to an X-ray dual-energy sandwich detector [8]. Foreign objects found in
food items consist mostly of insects, wood chips, stone pebbles, sand/dust and
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plastic. These objects might be present in the raw materials, or accidentally
introduced during the manufacturing process [6], where organic materials pose
the main challenge for detection. Grating-based imaging techniques [10, 9], that
measure the attenuation, scattering and refraction of X-ray beams, have shown
great promise in detecting organic foreign objects [6]. Although grating based
methods are promising, they still have not been scaled to be used in a produc-
tion line. Multispectral X-ray scanners exist with a conveyor belt setup, where
a single acquisition takes around 5 seconds on the setup we used. Certain for-
eign objects can be detected in multispectral X-ray images of food items using
a sparse classifier, which gives the potential for storing fewer data and making
classification and acquisition faster.

According to the Beer-Lambert Law (BLL), the intensity of an X-ray beam
decreases as it passes through matter with exponential decay depending on the
distance traveled and the medium.

I = I0e
−µρd (1)

I0 in Equation 1 corresponds to the initial X-ray intensity, µ and ρ together form
the linear absorption coefficient, where µ corresponds to mass absorption and ρ
corresponds to density, and finally d corresponds to the distance traveled by the
beam. For a given simple material, this equation allows us to do inference on ei-
ther the thickness or type of material we have, in case either of them is known. In
our case, we are interested in food items. Food items are particularly challenging
since their shape and material composition can greatly vary. There is considerate
specimen to specimen variation along with potentially inhomogeneous materials
which makes inference about the material composition difficult.

Instead of trying to model the signal according to the BLL, we apply a
data-driven approach, where we train a classifier to recognize whether foreign
objects are present by training it on multispectral X-ray image samples of a given
food product and foreign objects in the food. The dimensionality of the data is
high and poses problems for data storage and processing speed. We thus seek a
sparse classifier in order to examine whether decreasing the data dimensionality
will still result in reasonable accuracy and a low false discovery rate. We choose
sparse linear discriminant analysis (SDA) [4] for this task, since it perfectly
fits the requirements. This classification method performs variable selection and
dimensonality reduction in the optimization process, which allows us to identify
which spectra in the images are relvant for the given classification task. This
is achieved via an elastic net regularizer [14]. The elastic net regularizer also
allows for the construction of a Tikhonov regularization matrix, that can be
further tailored to the specific classification task. Knowing which spectra are
relevant for the classification task, allows for compressing the data, to only store
the relevant spectra, and it could also give some domain knowledge on which
spectra are most different between certain materials. A similar method that
could also be considered for this task is sparse partial least squares, [3].

To generate the data for the classifier, we first preprocess it. The main part is
normalizing each pixel w.r.t. the maximum intensity, which gives better constrast
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between different materials. These steps are further explained in the next section.
Note that maximum 6 scans (images) were used for generating labels for training,
a process that takes around 10 seconds per image. So the process of generating
data for training and training the classifier is fast. This process can further be
automated for a given target application.

We will examine to what extent we can detect foreign objects in two types
of food materials and report which objects we detect.

The paper’s outline consists of a description of the data and acquisition
process, where we explain the scanner setup, the properties of the data we obtain
and the preprocessing. Next, we describe how the data sets are prepared for the
classifier and a description of the classifier. Finally, we present results to evaluate
the performance and some discussion.

2 Data and Acquisition

The scanner used for data acquisition is a MULTIX multispectral X-ray scanner
with three daisy chained detection modules, providing line scans of 3 × 128 =
384 pixels, where the pixel side length is 800µm. The energy of the photons is
measured over 128 energy bins, (also referred to as channels), where the energy
for our experiments is set to 90 kV. This spectrometric scanner is made from
a combination of a semiconductor crystal and advanced electronics, capable of
measuring the energy of every incident X-ray photon. The material signature is
acquired in real-time and stored in raw format [2][12]. This scanning technology
has been compared to a dual energy sandwich detector, (where two detector
modules are used with a single shot exposure), showing better detection for
explosive materials and a lower false discovery rate (FDR) [8]. We aim to examine
which part of the spectra is best suited for foreign object detection in food and
to what extent can we detect foreign objects in organic food items using a sparse
classifier.

The MULTIX scanner provides images in a binary format, where pixel in-
tensities are encoded as 16-bit unsigned integers. To make sure that there are
no scaling differences between samples, we scale the intensities by looking at an
average measurement for a patch of air in the image and find the peak value over
all the channels. We scale all values by the inverse of the value at the peak, such
that the maximum attenuation corresponds to one, this ensures that no scaling
differences are between different images. The different attenuation profiles in an
image of spring rolls can be seen in Fig 1. Foreign objects that are not “inside” a
food item give a very different attenuation profile from the ones that are inside
the food items. The attenuation profile of the food items naturally varies a lot
by the thickness of the item, thus making it more difficult to work with products
where the thickness varies much.

After this initial scaling, we remove line artifacts. These artifacts appear
as strides in the image where two different detector modules are attached (See
Fig. 3). To achieve this we start by creating an average air profile. We use
a patch of pixels from a corner of the image where there are no overlapping
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Fig. 1. Intensity profiles for different materials in an image of spring rolls with foreign
objects. The green line above the blue one corresponds to foreign objects that are
not superimposed on food items, while the bottom most purple line corresponds to
foreign objects that are superimposed on top of food items. The data is scaled such
that the peak for air/no item is at 1. The profiles are further normalized (not depicted
here) such that the maximum value of every pixel is 1. This is a crude normalization for
depth/thickness and gives us data that better represents differences between materials.

detector modules and we are certain that it contains no items. The mean over
the samples gives us an average air profile, similar to the red one seen in Fig. 1,
i.e. 128 values that should represent no items, we call that vector µAir ∈ R128×1.
For each column in the scanning direction of the image, we now look at the
mean of the first 50 pixels. This gives us another profile which is specific to
that particular column, i.e. a local mean profile, which we call µlocal ∈ R128×1.
Now we need to find the scaling difference between µAir and µlocal, that is the
vector s ∈ R128×1 which is the solution to the following equation, where on the
left-hand side we have elementwise multiplication.

sµAir = µAir (2)

The solution to Equation 2 is simply found via elementwise division of the mean
vectors. Now for each pixel in this particular column, we multiply the 128 values
with the scaling vector s elementwise. This process is depicted in Fig. 2, where
the strides have been removed in the middle image.

Finally, we do a crude normalization for depth. For every pixel in the image,
we find the maximum cmax of the 128 channels and multiply each of the 128
values by 1/cmax, such that all values in each pixel lie between 0 and 1 and
the maximum is 1. This should give us data that better represents differences
between materials, rather than thickness since different materials have their
maximum intensities at different channels, (see Fig 1, where this scaling has
not been done and the maximum intensity appears in different channels). All
the preprocessing steps are depicted in Fig. 2.

We test our approach on two datasets, one with spring rolls and another with
minced meat. The spring rolls dataset is challenging in a sense that the thickness
varies considerably and the spring rolls can also overlap. The minced meat data
varies much by thickness since it contains strings/filaments of meat that overlap.
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The objects in Table 1 were used for the imaging, where they were superim-
posed on top of the food material.

Fig. 2. An illustration of the preprocessing steps for the images. Left most image shows
channel 10 in the raw data (minced meat). The image in the middle shows channel 10 in
image after the removal of the strides/line artifacts. The rightmost image shows channel
10 when each pixel has been scaled by the maximum value in each of its channels. The
final normalization step gives more contrast between different materials although the
contrast between meat and no item is less in this particular channel. The intensities
are scaled linearly from black (lowest) to white (highest) in the shown images.

2.1 Spring Rolls

The spring rolls data set consists of scans of 8 different bags of spring rolls.
Each bag was scanned 20 times, then refrozen and scanned again a day later
20 times each. The foreign objects were superimposed on the bags. The foreign
objects were also scanned individually 10 times and each bag was also scanned
2 times without any foreign objects. Fig. 3 shows four of the image channels
in a grayscale. Most of the contrast between the different materials seems to be
present in the first channels, which can also be seen in Fig. 1. The different scans
provide variation in position and rotation of the food items and the different bags
provide shape differences for the dataset. The spring rolls were contained in a
plastic bag.

2.2 Minced Meat

A single plastic box containing 1kg of minced meat was used for all the scans.
First, 5 scans were produced with no items, then the meat was scanned 5 times
without any foreign objects. Finally, the meat was scanned with 3 sets of foreign
objects, 10 times for each set. The types of foreign objects in each of the three
sets is described in Table 1 and a sample image from the data can be seen in
Fig. 3.

3 Method

For a given scanned food item, we would like to classify which parts of the image
contain food and which contain foreign objects. To achieve this we first need to
construct a dataset for training a classifier.
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Table 1. Foreign objects used for the scans of minced meat. The items used for the
spring rolls are the same excluding the last seven items. Set 3 consists of the same
items as used in [6]. PTFE is an acronym for Polytetrafluoroethylene, more commonly
referred to as Teflon.

Material Number of pieces Size range Dataset

Quartz balls 5 1-4mm Set 1 for minced meat
Aluminium balls 6 2-7mm Set 1 for minced meat
Soft bone 5 5mm long Set 1 for minced meat
Bone phantoms 5 2-6mm Set 1 for minced meat
Polycarbonate balls 6 3.2-8mm Set 2 for minced meat
Ceramic balls 6 2-8mm Set 2 for minced meat
Glass balls 6 1-5mm Set 2 for minced meat
PTFE balls 6 1.6-5mm Set 2 for minced meat
Wood 4 2-8mm Set 3 for minced meat
Stone pebbles 4 2-8mm Set 3 for minced meat
Soft plastic 4 2-8mm Set 3 for minced meat
Hard plastic 4 2-8mm Set 3 for minced meat
Metal 4 2-8mm Set 3 for minced meat
Rubber 4 2-8mm Set 3 for minced meat
Glass 4 2-8mm Set 3 for minced meat

Fig. 3. Raw grayscale images of different channels from a spring roll sample (top row)
and minced meat (bottom row) generated with the MULTIX scanner. From left to
right are channels 2, 20, 50 and 100. The contrast decreases the higher we go in the
channels and the variation in the measurements increases. The foreign objects can be
seen as small black dots in the images and are most visible in the second image, better
visible in Fig. 4. Strides have been removed in the meat data to show the difference
compared to the strides that are present in the spring rolls images shown here. The
intensities are scaled linearly from black (lowest) to white (highest). In this image, the
line artifacts have not been removed and the individual pixels have not been scaled by
the maximum value.
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For the spring rolls dataset, we manually select four regions from five scans. In
each scan, we select a region containing no items, one containing spring rolls and
finally two regions with the most visually distinct foreign objects. This selection
process is depicted in Fig. 4. To encode the neighborhood information, we treat a
single observation of a given pixel as the 5×128 values from itself and the pixels
directly above, below and on the left and right. So each observation contains
128 × 5 = 640 variables. This should give us more robustness for detection of
different materials.

Fig. 4. Selection of data used for training the classifier. Three classes are selected, the
enclosed region of the green box represents the no item or air class, the blue region
represents the food item and the red boxes represent the foreign objects. For this
illustration, the red boxes are a little bit larger than in practice.

After selecting the regions from five scans we can generate a matrix where
rows represent observations and the p = 640 variables are represented as columns.
Each image yields around 30 pixels of foreign objects, the other classes (spring
rolls and air) are randomly subsampled, such that we have equal number of obser-
vations in each class, so we end up with a matrix X of dimension n×p = n×640,
where the value of n is around 500 to 600 pixels. The labels are represented in an
indicator matrix Y, which has an equal number of rows as X, but the number of
columns is equal to the number of classes K, in this case, three. If observation i
belongs to class j, then Yij is 1 and the other values in the same row are zero.
We employ a similar methodology to setup the minced meat dataset. After the
data is set up we normalize it by subtracting the mean and scaling the variables
such that they have unit variance. The same procedure is done for the minced
meat data, so we have two different data sets.
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The R programming language [11] was used for all the processing of the
image data and classification. The package imager [1] was used for manually
extracting regions from the images. The imager package is an R interface to the
Cimg C++ library [13].

3.1 Sparse Linear Discriminant Analysis

We apply SDA, [4], to solve the present classification problem. SDA is a statistical
learning method [7], which falls under the category of supervised classifiers and
is a sparse version of the more basic method linear discriminant analysis (LDA).
The method can handle many classes and it can also handle the case when we
have more variables than observation, p� n problems, with regularization. The
underlying problem can be formulated in different ways, but we approach it by
sparse optimal scoring.

(θk,βk) = arg min
θ∈RK ,β∈Rp

‖Yθ −Xβ‖2 + λ1β
TΩβ + λ2‖β‖1

s.t. 1nθ
TYTYθ = 1, θTYTYθl = 0 ∀l < k,

(3)

In the sparse optimal scoring formulation, (Equation 3), the X data matrix and
Y indicator matrix are the same as the ones described in the last section. We
seek the discriminant vectors βi, i ∈ {1, 2, ...,K − 1}, which we use to project
the data into a lower dimensional space. Classification is performed in this lower
dimensional space by classifying an observation as belonging to the class corre-
sponding to the nearest centroid, where the labeled data is used to estimate the
centroids. θ serves the purpose of avoiding the masking problem, i.e. such that
class centroids are not colinear in the lower dimensional representation, it is not
needed for classification of new observations, only in training. The second and
third terms in the minimization problem form an elastic net penalty [14], which
serves as a regularizer and allows us to solve the problem in the case of more
variables than observations. The scaling parameters λ1 and λ2 are selected via
cross-validation. In our case, the Ω in the first part of the elastic net penalty is
a diagonal p× p matrix, which penalizes the magnitude of the coefficients in the
βi vectors.

The SDA method, (without the elastic net penalty), is a linear map to a lower
dimensional representation like principal component analysis (PCA), but in SDA
we project the data to a lower dimensional space such that we maximize the
variance between classes and minimize the variation within classes for optimal
linear separation. There are also sparse versions of PCA [5], which SDA is more
similar to. The centroids in the lower dimensional space can be thought of as
means of different multivariate normal distributions which all have the same
covariance structure, therefore we get linear decision boundaries, like in classical
LDA [7]. Other classifiers can also be used on the projected data, an example
of such projected data is depicted in Fig. 5, it is the training data used for the
minced meat dataset.
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Fig. 5. Visualization of the training data used for the classification of the minced meat
data after projection with the discriminant vectors. The classes are almost perfectly
separated along the first discriminant direction, while the foreign objects and meat are
rather close. The second discriminant vector further separates the meat and foreign
objects.

4 Results

The classification results from the classifier trained on the spring rolls data are
summarized in Table 2, where we show the number of detected pixels in images
not contained in the training or validation set. The SDA method was trained only
on 6 images from dataset 1 and the training data images are not included in the
table. The final training set was balanced and consisted of 519 measurements
with 640 variables. The training error is 0% with 48% sparsity, i.e. only 48%
of the values in the discriminant vectors are non-zero. This means that almost
half the variables are irrelevant for this particular classification task. Values
corresponding to the same channels in the pixels were non-zero very consistently
in the 640 variables corresponding to a pixel and its four neighbors. 10-fold
cross-validation was used to tune the sparsity parameter and should be noted
that sparsity of 5% only yielded 5% error on the training data, meaning that
very few variables are more critical than others.

One thing to note about the results in Table 2 is that consistently fewer
foreign object pixels were detected in the scans which only contained foreign
objects. That is because the training set only consisted of foreign objects super-
imposed on the spring rolls. A very low number of false positives were detected in
the data set which consisted of only spring rolls and no foreign objects (average
4.21 pixels). In most of the images, only 0,1,2 or 3 pixels were detected except
for a single outlier were 42 pixels were detected, which inflates the standard
deviation.

The classification results for the classifier which was trained on the minced
meat dataset are summarized in Table 3, where we show the number of pixels de-
tected in images which were not part of the training or validation set. The main
difference from the spring rolls dataset is that no false positives were discovered
in the scans that contained no foreign objects. Otherwise, there is consistent
variation between datasets in the number of foreign object pixels discovered.
Another difference is that in the cross-validation process the sparsity regulariza-
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Table 2. Results for the spring rolls dataset where we present the number of pixels
detected as foreign objects on average in 4 different datasets. Dataset 1 consists of 8
bags of spring rolls with foreign objects superimposed. Dataset 2 consists of the same
8 bags, where the spring rolls have been refrozen and scanned a day later. The other
datasets are scans with only the spring rolls or only the foreign objects.

Spring Rolls Dataset 1 Dataset 2 Only FOs no FOs

Average number of detected pixels 155.87 158.00 112.60 4.21
Standard deviation of detected pixels 16.18 38.01 40.73 11.31
Number of images predicted on 136 149 10 14

tion parameter that was chosen yields 17% sparsity. This means that we could
certainly get away with storing fewer data for this approach.

Table 3. Results for the minced meat dataset where we present the number of pixels
detected as foreign objects on average in 5 different datasets. The first dataset is 5
scans of nothing, i.e. empty scans. Datasets 1,2 and 3 consist of 10 scans each, two
which were used for training. The difference of the foreign objects in each dataset can
be found in Table 1. The last dataset is meat without any foreign objects.

Minced Meat Nothing Dataset 1 Dataset 2 Dataset 3 no FOs

Average number of detected pixels 0.00 117.62 190.12 211.50 0.00
Standard deviation of detected pixels 0.00 11.49 9.06 8.90 0.00
Number of images predicted on 5 8 8 8 5

Some example results are presented in Fig. 6. The foreign objects detected
were mostly metals, and also some stone pebbles, quartz, and glass. The smallest
objects detected are 2-3 millimeters in diameter.

5 Discussion

We achieve good detection on the type of foreign objects we can detect. The
items used for training are the ones that are represented in the detection, we
do not manage to generalize to all the scanned foreign objects. This is mainly
because of low signal to noise ratio, especially for the objects that have low ab-
sorption. The undetected items are also not represented in the training set, if
they would be included we would potentially get more false positives, because
they are not as distinct as the metals, stone pebbles, and quartz, thus moving
the decision boundary closer to the food item. One approach to try to get a
more general detector would be to train with as many different types of foreign
objects as possible, that are detectable, and find the discriminant vectors from
SDA or use a semi-supervised approach. Then the new data can be projected
similar to Fig. 5 and the air and food item classes can be described there with
normal distributions or other ways to encapsulate the two classes. Then every-
thing outside those classes would be classified as foreign objects. Each type of
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Fig. 6. Example results from the classifier on both datasets. The white color indicates
foreign objects. The top row shows the spring rolls and the bottom row shows from left
to right an example from dataset 1,2 and 3. The foreign objects detected were stone
pebbles, metals, quartz, and glass. These were the foreign objects used for training.

foreign object could also be modeled on its own, then we could encapsulate what
is known, and everything outside the known classes would belong to an unknown
class.

One way to augment the current measurements would be to have some way
to estimate the thickness of the materials that are being scanned. That would
be a good additional variable for a data-driven approach, or it could be used for
normalization. This is already being done in some commercial products using a
laser to map the height of the food product.

We can say that for the data sets used we can get away with storing half of
the data or less. But this is both application and material dependent. Different
applications could yield different foreign objects and different materials have
different intensity profiles, meaning that some variables/channels are redundant
in some cases and useful in others. This would have to be dealt with for each
specific application.

6 Conclusion

We have demonstrated that we can achieve robust detection of certain foreign
objects in the data sets used in this work. This was done in a completely data-
driven manner by applying a sparse classifier to the normalized data. There is
great potential for using an approach similar to the one we present, which could
help with storing fewer data and processing the results faster.
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6. Einarsdóttir, H., Emerson, M.J., Clemmensen, L.H., Scherer, K., Willer, K., Bech,
M., Larsen, R., Ersbøll, B.K., Pfeiffer, F.: Novelty detection of foreign objects in
food using multi-modal x-ray imaging. Food Control 67, 39–47 (2016)

7. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning, vol. 1.
Springer series in statistics Springer, Berlin (2001)

8. Gorecki, A., Brambilla, A., Moulin, V., Gaborieau, E., Radisson, P., Verger, L.:
Comparing performances of a cdte x-ray spectroscopic detector and an x-ray dual-
energy sandwich detector. Journal of Instrumentation 8(11), P11011 (2013)

9. Pfeiffer, F., Bunk, O., David, C., Bech, M., Le Duc, G., Bravin, A., Cloetens,
P.: High-resolution brain tumor visualization using three-dimensional x-ray phase
contrast tomography. Physics in medicine and biology 52(23), 6923 (2007)

10. Pfeiffer, F., Weitkamp, T., Bunk, O., David, C.: Phase retrieval and differential
phase-contrast imaging with low-brilliance x-ray sources. Nature physics 2(4), 258–
261 (2006)

11. R Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria (2015), https://www.

R-project.org/
12. Rebuffel, V., Rinkel, J., Tabary, J., Verger, L.: New perspectives of x-ray techniques

for explosive detection based on cdte/cdznte spectrometric detectors. In: Interna-
tional Symposium on Digital Industrial Radiology and Computed Tomography–
We. vol. 2, pp. 1–8 (2011)
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Abstract. We present a framework for assessing which types of sim-
ple movement tasks are most discriminative between healthy controls
and Parkinsons patients. We collected movement data in a game-like
environment, where we used the Microsoft Kinect sensor for tracking
the users joints. We recruited 63 individuals for the study, of whom 30
had been diagnosed with Parkinsons disease. A physician evaluated all
participants on movement-related rating scales, e.g., elbow rigidity. The
participants also completed the game task, moving their arms through a
specific pattern. We present an innovative approach for data acquisition
in a game-like environment, and we propose a novel method, sparse or-
dinal regression, for predicting the severity of motion disorders from the
data.

Keywords: Game-aided diagnosis, Kinect, Parkinson’s disease, sparse,
ordinal, classification

1 Introduction

Parkinson’s disease (PD) is a long-term neurodegenerative disease, where the
significant symptoms are tremor, rigidity, slowness of movements and difficulty
walking. Currently, there are 7 million individuals affected on a global scale
where the disease has a severe socioeconomic effect and reduces the quality of
life. The condition has a significant financial impact on health care systems and
society [21][17].

PD is now known to be caused by an interplay of environment and several
genetic factors [14], but there is no known cure, but mainly treatment to im-
prove symptoms. Treatment consists mainly of medication, surgery and physical
therapy. Recent studies have also shown relief of symptoms via an improved
diet and rehabilitation [5][2]. There is no diagnostically conclusive test available
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yet. The current diagnosis is clinical, questionaires and movement tests, and
may be missed or misdiagnosed since the symptoms are common to other dis-
eases/disorders. At the time of PD diagnosis, the disease has often progressed
to an advanced stage with motor symptoms and neurophysiological damage.

It is of great importance to develop tools that can aid an unbiased diagnosis
for PD in earlier stages of the disease. Some symptoms commonly appear before
the motor-symptoms, such as depression, feeling tired and weak, reduced abil-
ity to smell, problems with blood pressure, heart rate, sleep disturbances and
digestion [10].

Increasing the detection rate for early cases is very ambitious, especially if
we do not resort to novel diagnosis tools. It would be easier, more accurate,
and less prone to bias, to make a computerized diagnostic test a part of the
regular screening processes. Using data from such a tool would allow us to model
individual abnormalities more accurately, and make personalized and accurate
predictions of disease status and progression, by comparing to earlier screenings.
Another way to achieve this would be to have access to a proxy variable, that
the patient can choose to send for analysis, such as data from a personal health
monitor, movement data from a GPS tracker, mobile phone data, or data from
a video game.

1.1 Goals

Our ambition is to predict the clinical ratings made by the physician of the
underlying movement disorders from the motion tracking data, and to identify
what part of the movement sequences are best suited for this task. This problem
has several difficulties, of which the major ones are: 1) There are few observations
compared to the number of variables. 2) The labels we want to predict are
ordinal. 3) The classes are imbalanced.

1.2 Related work

In recent years the Kinect sensor has been widely used for retraining and physical
therapy. Galna et al. presented such an application for PD patients[13]. A review
of the usage of the Kinect sensor for medical purposes is presented in [18], of
which most of the work is development and testing of physical therapy systems
for various diseases and medical conditions. Of the studies covered in [18], three
describe assessment of conditions, related to facioscapulohumeral muscular dys-
trophy (FSHD) [16], stroke [1] and balance in the elderly [11]. The capabilities
of the Kinect are limited, as reported in [12]; thus we do not expect to be able to
detect or predict the presence of low amplitude tremors or movement disorders
related to smaller movements.

We want to predict the score from the clinically collected movement data
and identify the movement sequences related to PD. Due to the high number
of variables, we propose to use a novel method, sparse ordinal regression. This
method builds upon sparse discriminant analysis (SDA) [8] by adapting the data
replication method to the sparse setting [6] to handle ordinal labels. We further
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extend the novel optimization approaches presented in [4] for sparse ordinal re-
gression. The data replication method works on the principle of transforming
an ordinal classification problem into multiple binary classification problems.
These binary classification problems are solved together to find a common hy-
perplane that separates each pair of classes corresponding to adjacent ordinal
labels. The difference between the hyperplanes corresponding to different classi-
fication boundaries are biases.

In the past years, multiple methods have appeared which can handle feature
selection and classification problems of the type p � n, most notably Sparse
Discriminant Analysis (SDA) by [8] and Sparse Partial Least Squares for Classi-
fication by [7]. Other algorithms commonly used to solve such problems, where
the focus is not necessarily classification, are elastic net by [23] and sparse prin-
cipal component analysis by [9]. Using an l1-norm regularizer in the model for-
mulation ensures that variable selection is performed in the model optimization
process which gives leverage for the user to interpret the non-zero parameters
in the model. Incorporation of an l1-norm regularizer is influenced by the Lasso
[20], which uses the l1-norm to relax the vector cardinality function in the best
feature subset problem for linear regression.

Ordinal labels appear in a multitude of applications, e.g., surveys, medical
rating scales and concerning online user reviews. We believe that the methodol-
ogy can be applied to a variety of other problems in the future.

1.3 Contributions

The main contributions of this paper consist of a novel game-like framework,
the Motor-game, for assessing arm-movement in individuals with movement-
related disorders in the arms. We further propose a novel method for performing
classification from this data, sparse ordinal regression, allowing us to summarize
a whole run into a single score.

2 Methods & Data

We begin by describing the particularities of adapting the data replication method
to the sparse setting to obtain ordinal SDA. We then describe the data.

2.1 The Motor-Game

We have developed a game-like environment, which we call the Motor-game,
where we use the Microsoft Kinect sensor [22] and the associated software frame-
work to do motion tracking of the players (See Fig. 2.1) [3].

The motor-game is designed to capture a range of motions from the hands
and arms. There are three levels in the Motor-game, where here we focus on
data from the first level. The first level has 22 tasks. In the first 11 tasks, a
button appears on the right side of the screen, and the player needs to react,
catch the button and keep the hand stable there for one second. The following
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Fig. 1. Left : Screenshot from the motorgame. The player sees his pose reflected as a
stick figure and needs to make the stick figure’s hands hover over the buttons as fast
as possible. Right : View from behind a player playing the motor-game.

11 tasks are similar but for the left hand. For each player, the buttons appear in
the same location, meaning that their hands have comparable positions between
playthroughs. The distances between appearances of the buttons vary, forcing the
player to perform large and smaller motions. Using the tracking software from the
Kinect, we obtain 30 measurements per second of several joints, wrists, elbows,
shoulders and neck, in the upper body. One of the main reason to make this data
collection process in a game-like environment is to keep the players motivated
to perform as well as they can, and to make the process more enjoyable, similar
to games that have been made for physiotherapy in PD patients [13].

2.2 Sparse Ordinal Regression

In [8], Clemmensen et al. presented the sparse optimal scoring problem (SOS),
which is the formulation we employ to solve sparse ordinal regression. SDA works
in some sense like a supervised version of Principal Component Analysis (PCA),
where we seek to find discriminant vectors to project the data to a lower dimen-
sional representation, where we balance the objectives of minimizing variation
within classes, maximizing variation between classes and feature selection. New
samples are then traditionally classified according to the nearest centroid after
projection. We reformulate the SOS criterion presented in [8] for ordinal labels.

arg min
θ∈R2,βOrd∈Rp+K−1

‖Y Ordθ −XOrdβOrd‖22 + λ2β
T
OrdΩ̂βOrd + λ1

p∑
i=1

|βi|

s.t.
1

n
θTY T

OrdY Ordθ = 1. (1)

When we solve the problem in Eq. 1 we seek a sparse discriminant vector
βOrd, which we can then use to project the data from feature space to a one-
dimensional representation. In the ordinal case, we cast our problem as a binary
classification problem, which only yields a single discriminant vector βOrd, sim-
plifying the interpretation of the solution. βOrd is a vector of length p+K − 1,
(where p is the number of variables and K the number of classes). The first p
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parameters correspond to the original variables that we can interpret. The extra
K − 1 parameters are the additional biases introduced by the data replication
method, allowing us to classify the projected points, based on where they end
up concerning the biases.

[8] show that for a given βOrd one can find θ in polynomial time. For a
given θ the problem formulation is an elastic net problem, and the problem
can be solved with the LARS-EN algorithm by [23]. We, however, approach the
optimization from the point of proximal gradient (PG) methods and alternating
direction method of multipliers (ADMM), using the soft thresholding operator
to deal with the sparse regularizer in the same manner as [4].

2.3 Using Ordinal Labels via Data Replication

A natural assumption for an ordinal classifier of K classes, is to have K−1 non-
intersecting classification boundaries, where boundary i separates classes 1 to i
from classes i+ 1 to K. In our case, that means finding a hyperplane and a set
of biases to shift the hyperplane between classes. We extend the data replication
method of [6] to the sparse setting, by adapting the optimization, such that it
does not regularize these new bias parameters.

We construct a new data matrix XOrd and labels Y Ord according to the data
replication method. We then define a new (p+K−1)×(p+K−1) regularization
matrix Ω̂.

Ω̂ :=

[
Ω 0
0 0

]
, βT

Ord :=
[
β1 β2 . . . βp b1 b2 . . . bK−1

]
, (2)

where Ω is a p×p positive semi-definite regularization matrix for the param-
eters corresponding to the p original variables. The final adjustments relates to
the l1-norm in Eq. 1. In the soft-thresholding step of the ADMM and PG algo-
rithms used to find βOrd, we only apply soft-thresholding to the first p elements.

The resulting βOrd vector is show in Eq. 2. The first part is composed of a
traditional discriminant vector, corresponding to the first p elements, and then
K − 1 biases, denoted bi, for i ∈ {1, 2, ...,K − 1}. The proofs of convergence to
stationary points, of the algorithms in [4], extend naturally to our approach.

2.4 Data and Experiments

We conducted a study, where we collected data from 63 individuals, of whom
33 were healthy controls and 30 PD patients. Detailed description of the cohort
can be found in [3]. Each participant played the Motor-game two times; the
first one is a trial run to get familiar with the game. Motion tracking data was
collected during the playthroughs. A physician then evaluated the participants
on various rating scales, of which we are concerned with the results from the
Simpson-Angus-Scale (SAS) [19], in particular, item 4, which involves elbow
rigidity. Furthermore, the PD patients were evaluated on the Movement Disorder
Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [15]. On MDS-
UPDRS we are most focused on items 3.3b rigidity of right hand, 3.4a finger
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tapping in the right hand and 3.5a hand movement for the right hand. We picked
out these items since they were a priori thought to have the most substantial
correspondence with the data from the Motor-game. Items from the rating scales
reflecting motor symptoms in hands and arms were included. Exclusion was made
if there were too few participants affected. See Fig. 2.4 for prevalence and severity
of the observed motion conditions in the data. A more detailed description of
the dataset and the Motor-game can be found in [3].

Fig. 2. Prevalence of labels in the dataset for the conditions we focus on. The first three
plots from the left correspond to MDS-UPDRS items 3.3b rigidity right arm, 3.4a finger
tapping right hand and 3.5a hand movement right. The final item corresponds to elbow
rigidity on the SAS scale.

For analyzing the movements of the participants, we used the tracked position
of their wrists. For the first 11 tasks, we used the avatar screen coordinate vertical
position for the right wrist. The choice of this coordinate is because the avatar has
been scaled according to an initial estimate of the player’s arm length, making
on-screen positions comparable between players. For the following 11 tasks, we
used the corresponding coordinates for the left wrist. For each of the 22 tasks,
we used measurements for the first second of play. The participants had not
reacted in the first five measurements, so we excluded those measurements. The
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first second of the game is enough for the person to respond and start moving.
We can see the contrast between a fast and slow reacting participant in Fig. 2.4.
This yields, in the end, a total of p = 20 × 22 = 440 variables per participant.
We denote miS as the mean of the first three measurements for task i and miE

as the average for the last three measures for task i.

x̃ji :=
xji −miS

|miS −miE |
(3)

We further scale the j-th measurement xji from task i as depicted in Eq. 3. Due
to variation in the end and starting position, this scaling ensures that the data
is more robust to reactions of the participants.

Fig. 3. Data used for the experiment, vertical position of two subjects’ hands over the
first second of the 22 tasks. On the left we have a participant that generally reacts fast,
on the right we have a more slow reacting individual.

We normalize the data before applying sparse ordinal regression by subtract-
ing the mean for each variable and scaling the standard deviation to one. We
report the balanced accuracy for leave one cross-validation, where we allow the
regularization parameters λ1 and λ2 from Eq. 1 to be in the set {0.1, 0.01, 0.001}.
We perform this experiment for the four labels shown in Fig. 2.4. Note that the
three variables for MDS-UPDRS were only measured for the Parkinson patients;
thus the controls were assumed to have a score of zero.

3 Results

The leave one out cross-validation balanced-accuracy and the best cross-validation
parameters are depicted in Tab. 3. The corresponding confusion matrices are
shown in Tab. 3. We can see that the predictions are somewhat accurate, al-
though the LOO-CV most likely overestimates the real accuracy. Note that the
best forecasts for class zero are in MDS-UPDRS 3.4a and SAS-4. We assume
that the controls have a score of zero in the MDS-UPDRS variables since they
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were not measured, this may not be entirely correct, a few individuals in the
control group had a score of one for SAS-4.

Table 1. Balanced accuracy from leave one out cross-validation on the four responses.

Variable Description Balanced Accuracy λ1 λ2

SAS-4 Elbow rigidity 0.481 0.01 0.01
UPDRS-3.3b Rigidity right arm 0.477 0.1 0.001
UPDRS-3.4a Finger tapping right 0.463 0.1 0.001
UPDRS-3.5a Hand movement right 0.388 0.001 0.001

Table 2. Confusion matricies for predictions (with best performing regularization pa-
rameters) from the item left out in the leave one out cross-validation. Most of the
predictions are concentrated around the correct label, but most of them have difficul-
ties with the higher labels.

SAS-4 True

0 1 2 3

P
re

d
ic

te
d 0 23 1 4 1

1 11 9 3 1
2 1 4 1 0
3 2 0 0 2

3.3b True

0 1 2 3

P
re

d
ic

te
d 0 22 2 4 1

1 13 9 3 0
2 4 1 0 0
3 1 1 0 2

3.4a True

0 1 2 3

P
re

d
ic

te
d 0 26 2 4 2

1 13 6 1 4
2 1 0 3 0
3 0 0 0 0

3.5a True

0 1 2 3

P
re

d
ic

te
d 0 20 3 6 1

1 11 4 3 0
2 8 2 1 1
3 1 0 1 1

4 Conclusions

We have presented a novel approach for assessing the severity of upper body
motor symptoms in PD. The game-like environment has been proven to work
both in the clinic, or in the patient’s home. Longitudinal studies are needed
to establish further the potential of this approach, where the data needs to
be examined with change point detection methods. Monitoring the movement
in correspondence with the presence of pre-movement related symptoms has
potential to create novel tools for early detection of PD.
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Abstract

BACKGROUND: Current clinical assessments of motor symptoms in Parkinson’s Disease, as well 

as motor symptoms induced by antipsychotic medication in psychiatric patients, are often limited to

clinical examination and rating scales with inherent observer bias.

OBJECTIVE: To develop and test a computer application using the Microsoft Kinect sensor to 

assess performance related bradykinesia and rigidity associated with Parkinson’s Disease.

METHODS: The application (Motorgame) was tested in a group of patients with Parkinson’s 

Disease (PD) and healthy controls in order to investigate its applicability. Participants were 

neurologically evaluated, assessed by the Movement Disorder Society Unified Parkinson's Disease 

Rating Scale and standardized clinical side effect rating scales, i.e. UKU Side Effect Rating Scale 

and the Simpson-Angus Scale. In addition, tests of information processing (Symbol Coding Task) 

and motor speed (Token Motor Task) together with a questionnaire about their views on the Kinect 

game, were applied.

RESULTS: Thirty patients with PD and 33 healthy controls were assessed. In the patient group, we

found a statistically significant (p<0.05) association between prolonged time of performance in the 

Motorgame and upper body rigidity and bradykinesia (MDS-UPDRS) with the strongest effects in 

finger tapping right hand, hand movements right hand, and rotation of right hand (p<0.001). In the 

entire group prolonged time of motor performance was significantly associated with higher SAS 

item scores on rigidity and higher hypokinesia scores (UKU) (p<0.05). A significant association 

between shortened motor performance and higher scores on information processing was found. No 

significant association was found between motor performance time and Token Motor Task, duration

of PD, or hours of daily physical activity. The application was well accepted and preferred by 76% 

in the healthy control group and 53% in the patient group compared to traditional clinical 

examinations.
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CONCLUSIONS: The Kinect application was able to detect common motor symptoms in PD in a 

statistically significant and clinically meaningful way, making it applicable for further testing in 

larger samples of patients with rigidity and bradykinesia.

Keywords: Parkinson’s disease, parkinsonism, hypokinesia, technology, movement disorders, 

computer-assisted diagnosis.
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Introduction

Parkinson’s disease (PD) is a progressive, degenerative movement disorder (Poewe, 2017). The 

neuropathology of PD is characterized by loss of dopamine neurons in the substantia nigra resulting

in dysfunction of the nigrostriatal pathway, which cause perturbation of control and regulation of 

intentional motor movement.  Bradykinesia, rigidity and rest tremor are the core motor symptoms 

(Postuma, 2015). Parkinsonian bradykinesia is the very core symptom and correlates with loss of 

dopaminergic deficiency (Benamer HT, 2003); it involves difficulties in planning, initiating and 

executing movements and difficulties in performing various tasks (Moustafa, 2016). As the disease 

progresses, postural instability often develops as a fourth cardinal symptom (Prescott, 2014). The 

standard qualitative assessment for evaluating PD bradykinesia as well as other PD symptoms is the

Unified Parkinson’s Disease Rating Scale (UPDRS) (Goetz, 2008).

When blocking the nigrostriatal pathway by D2-receptor antagonists, e.g.antipsychotics, symptoms 

similar to the ones observed in idiopathic PD can occur. Antipsychotic-induced parkinsonism is 

characterized by bradykinesia, rigidity and (variable) tremor, which reverse upon antipsychotic 

discontinuation (Hausner, 1983) (López-Sendón J, 2013). In clinical practice, antipsychotic-induced

motoric side effects are usually assessed by clinical evaluation. However, a number of rating scales 

for the evaluation of motor side effects exist, including the Abnormal Involuntary Movement Scale 

(AIMS) (Guy, 1976), Simpson-Angus Scale (SAS) (Simpson, 1970) and the Barnes Akathisia 

Rating Scale (BARS) (Barnes, 1989). Another commonly used rating scale is the UKU Side Effect 

Rating Scale, where UKU is an acronym for the Danish name “Udvalg for Kliniske Undersøgelser”

(Task force for clinical investigations). (Lingjaerde, 1987). 

Although all the mentioned rating scales have undergone thoroughly scientific validation, the fact 

that the rating scales are observer-based inherently requires adequate training of clinicians in their 

use and makes these scales vulnerable to inter-observer variability (Wolff, 1999) (Lohr, 1992) 

(Dean, 2004). Hence, objective methods to detect and quantify movement disorders are needed. 
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Besides overcoming the issue of inter-observer variability, objective technology-based tools may 

well be used for home monitoring of symptoms. 

Computerized analysis of human movements has been investigated for more than three decades 

(Moeslund, 2001). Until recently, human motion capture (the process of registering motion) has 

required an extensive setup, typically involving several cameras, structured light projectors, and 

special markers attached to the different relevant body parts, who is tracked. With introduction of 

the Microsoft Kinect in 2010, a low-cost and accessible human position and motion tracking 

technology has become available. 

We have developed a simple game-like application using the Microsoft Kinect, where the user is 

asked to push buttons on a computer screen in a specific sequence, while the application tracks the 

movement of the major joints in the upper body. The objectives for this work is to assess the 

validity of application and to study to which degree it can complement the traditional observer-

based rating scales.
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Methods

Participants and in- and exclusion criteria 

This study included patients (age > 18 years) with idiopathic PD (ICD-10 G20.9) (World Health 

Organization, 1993) (Postuma, 2015) and a maximal score of 2.5 on the Hoehn & Yahr scale (i.e. 

postural stable) (Hoehn MM, 1967). Exclusion criteria were dementia, current psychosis or in 

current antipsychotic treatment. The patient group was matched 1:1 to healthy controls on age and 

gender. Exclusion criteria in the healthy controls were: Parkinson’s Disease, dementia, current 

psychosis or antipsychotic treatment (lifetime).

Recruitment

Patients were recruited from the Department of Neurology, Bispebjerg University Hospital, 

Denmark, and from private practicing neurologists in the Capitol Region of Denmark. Healthy 

controls were recruited through local contacts, tennis clubs and senior centres in the Capitol Region.

The technical work was initiated in January 2013 and the first demonstration model was ready for 

data collection in June 2013. Data collection was initiated in February 2014 and proceded until 

August 2016. 

Data and Acquisition

The data for this study comes from the Microsoft Kinect v1 sensor (Zhang, 2012), which we refer to

as the Kinect or Kinect sensor. The Kinect contains an RGB (Red Green Blue device-dependent 

color model) camera, an infrared camera and an infrared projector. The infrared camera and 

projector makes it possible to estimate the depth of each pixel acquired by the RGB camera. Thus, 

the video stream that comes from the Kinect at 30 frames per seconds includes the standard video 

from the RGB camera and for each pixel we get a D-value, which is an estimate of the distance 

from the Kinect to the point seen by the camera. This type of data is referred to as RGB-D video. 
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One of the main innovations of the Kinect is the skeletal tracking algorithm (Shotton, 2013). The 

skeletal tracking algorithm is based on the Random Forest prediction algorithm (Breiman, 2001). 

When using the Kinect sensor, the data provided by the algorithm consists of a multivariate time-

series of measurements, where positional measurements for hands, wrists, elbows, shoulders, neck 

and head are provided as 3D world coordinates. We only used coordinates from the upper body in 

this study.

We implemented a game-like environment in order to record series of movements of the 

participants. We refer to this environment as the Motorgame. The design requirements for this game

consisted of the following: 

.1 The participant should perform the same or similar movements repeatedly as fast and 

precisely as they can.

.2 The game should contain tasks that challenge the hand-eye coordination of the participants, 

and difficulty of the game tasks should gradually increase during the game. 

Description of the Motorgame

The Motorgame was made so that the participant observed the upper body of a stickman figure on a 

television screen that mirrored the movements of the participant (See  Figure 1). First, the participant 

was asked to place themselves at a distance between 2 and 3 meters for optimal recording 

conditions. The participant was then asked to stretch out their arms. This was done for calibrating 

the arm length of the stickman figure. After this procedure, a message appeared on the screen 

stating that the participant should try to finish the upcoming tasks as fast and precisely as possible. 

Then the following tasks were split up into three levels (See Figure 2, Figure 3 and Table 1). Before 

each level a welcome screen appeared, indicating that the participant had to perform a different task 

at the next level. The participant needed to perform similar movements of the hands repeatedly, but 

the design of random appearance of the button made it hard to learn this task. A score was displayed

on the top of the screen where the participant was awarded a higher score if they finished the task 
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fast. In order to avoid interruptions during the recording, a training session was performed before 

the recording in order for the participant to get familiar with the game. 

Description of Data

When a participant played the entire Motorgame, the following data was recorded in a comma 

separated text file. Each entry in the file corresponds to one frame from the RGB-D video, where 

the frames were recorded 30 times per second. The RGB-D video data was stored in a separate file. 

The screen coordinates were the 2D coordinates of the joints as seen on the screen when playing the

game. 

8



Assessments

All participants were assessed with standard neurological examination. Only patients with PD were 

assessed with the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-

UPDRS) (Goetz CG, 2008). All participants were assessed by the UKU Side Effect Rating Scale 

(Lingjaerde, 1987) (UKU; assessing antipsychotic-induced side effects, including hypokinesia) and 

the Simpson-Angus Scale (Simpson, 1970) (SAS; assessing antipsychotic-induced parkinsonism). 

In addition, two subtests from the Brief Assessment of Cognition in Schizophrenia (BACS) (Keefe 

RS, 2004) assessing attention and information processing speed (Symbol Coding Task) and motor 

speed (Token Motor Task) were conducted. All participants were assessed by the Motorgame. 

Finally, participants filled out a questionnaire developed by the authors for the present study (5-

point Likert scale about comprehensibility of the instructions, personal evaluation, preferred choice 

of test) assessing their opinion about the Motorgame compared to the clinical assessment with the 

rating scales and the two BACS tests. 

Ethical considerations

The study was approved by The Committees on Health Research Ethics for the Capital Region of 

Denmark and the Danish Health Authority. The Danish Data Protection Agency journal number 

2007-58-0015 approved the data collection and data storing. 
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Data from the Motorgame

Data from the Motorgame were multivariate time-series of varying length, hence a single play of 

the Motorgame generated a lot of data. For the reason of testing the value of the measurement with 

respect to bradykinesia, the only variable we have extracted for this analysis was the time it took to 

finish each of the tasks in level 1 of the Motorgame. For a given participant we obtained 22 

variables. These measurements can be seen as 22 repeated measurements for a given participant, but

due to the differences in the tasks, e.g. how far the participant had to move their hand, these were 

inherently different. This was accounted for in the statistical model by assigning a fixed effect to 

each task.

As data were did not fit a Gaussian distribution, natural logarithm transformation was used. Due to 

the log transformation, parameters can approximately be seen as percentwise increase/decrease in 

time it took to finish the tasks. For example, a parameter estimate of 0.06 for male participants 

indicated that it took 6% longer time to finish the tasks compared to females. This approximation is 

good for low values of parameters due to the Taylor-expansion of the natural logarithm having the 

coefficient one for the linear term. 

Statistical Methods

To analyze the data we used a linear mixed effect model (McLean, 1991)  implemented in the 

package lmer (Kuznetsova, 2015) for the R-programming language (Team, 2000) that provided p-

values for the fixed effects in the model. The first two variables were the response and the clinical 

variable, the rest were variables used for correcting against certain demographic or clinical 

variables.

 Response is the natural logarithm of time in seconds it took to finish a single task in level 1 

of the Motorgame. For a single participant we had 22 observations resulting in 22*63=1386 

observations from the whole cohort.
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 Clinical Score is the only variable that we change between models. This variable was either 

one of the MDS-UPDRS variables, SAS variables or some other variables related to status 

of disease and physical activity.

 Task, a factor variable with 22 levels, corresponding to the 22 tasks in the first level of the 

Motorgame. 

 Symbol Coding Tasks, used as a proxy for attention and information processing speed.

The model also included a general mean term and the error was assumed to be independent and 

identically distributed from a normal distribution.

The terms in the model were, y the response, and on the right hand-side we had in the following 

order: μ as a general mean, Tj mean for each of the 22 tasks, C parameter for the clinical score, 

where xijC was the value for that measurements on participant i in task j. H was the height, W the 

weight and S the result of the Symbol Coding Task. The last two terms were εi, the random effect 

for participants and then the general error term. 

Results

Demographic and disease specific characteristics are shown in Table 2). Thirty patients with PD and

33 healthy controls were assessed. All patients and healthy controls completed both sessions of the 

Motorgame. There were significantly more males in the patient group than in the healthy control 

group (60.0% vs. 30.3%, p=0.018). All 30 patients (100%) were right handed. All, but one, (97%) in

the healthy control group were right handed. 

Results of the clinical assessments showed significant differences between the two study groups 

(Table 3). A significantly higher proportion of the healthy controls managed to complete the Token 

Motor Task without modifications (pushing or tipping the tokens) than in the patient group 

(p=0.001). Likewise, the patient group had significantly lower mean scores on the Token Motor 

Task (indicating reduced motor speed in the fingers) versus healthy controls (25.5+18.1 vs. 
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39.9+13.4, p=0.003). Furthermore, patients had significantly higher mean SAS total scores 

(indicator of rigidity; p<0.001) and hypokinesia UKU scores (indicator of bradykinesia; p<0.001) 

compared to the group of healthy controls. No significant difference in mean scores (SD) in the 

Symbol Coding Task (information processing speed) was found between the two study groups 

(37.53 (13.62) in the patient group versus 41.42 (10.15) in the healthy control group; p=0.201).

Mixed model analysis - MDS-UPDRS

The results from the mixed model analysis of the effect of motor MDS-UPDRS items on the time of

motor performance in the Motorgame are seen in Table 4. Since MDS-UPDRS was only assessed in

patients with PD all controls have been assigned value zero for the measured variables in this 

analysis. From the results, it can be seen that all items in the MDS-UPDRS corresponding to 

bradykinesia and rigidity in the upper body, except from finger tapping left hand and hand 

movements left, had a significant (p<0.05) effect on the time of motor performance in the 

Motorgame. The strongest effects were from finger tapping right hand, hand movements right hand,

and rotation of right hand (items of bradykinesia; p<0.001). A negative moderating effect of 

Symbol Coding Task scores was found in all MDS-UPDRS items (p<0.001), ie. a higher 

information processing score corresponded to a shortened time of motor performance. No 

moderating effects of age or weight were found. Significant (p<0.05) moderating effects of male 

gender (negative ie. shorter performance time) and height (positive ie. longer performance time) 

were found in the MDS-UPDRS items of finger tapping right hand, hand movements right hand, 

and rotation of right hand, but not in the remaining MDS-UPDRS items

Mixed model analysis - Clinical assessments

As seen in Table 5, SAS items corresponding to bradykinesia and rigidity, as well as the 

hypokinesia UKU score, had a significant (p<0.05) positive effect on the time of motor performance
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in the Motorgame. Furthermore, a negative, moderating effect of Symbol Coding Task scores was 

found in all items (p<0.001). No significant effects of Token Motor Task (motor speed), duration of 

PD and hours of weekly physical activity were found. No moderating effects of age, height or 

weight were found.

Acceptance of the Motorgame

The application was well accepted and preferred above the clinical rating scales and the BACS 

subtests by 76% in the healthy control group and 53% in the patient group.

Discussion 

Initially developed as an entertainment device, e.g., used for dancing games, the Kinect sensor is 

now in widespread research use, including neuro-rehabilitation (Chang, 2011), assessment of post-

stroke movement impairment (Olesh, 2014), and classification of movements during active video 

gaming (Rosenberg, 2016). 

In our study of 30 patients with PD and 33 healthy controls, we found a highly significant 

association between prolonged time of motor performance in the Motorgame and higher scores of 

MDS-UPDRS items related to right hand movements (bradykinesia). This side difference might be 

explained by the fact that, even though the majority of the patients (87%) in our study were bilateral

affected by motor symptoms, everyone in the patient group were right handed and displayed general

higher right sided symptom severity scores (data not shown). This is in line with previous studies 

showing that the side of PD symptoms dominance correlates with handedness (Shi J, 2014) (van der

Hoorn A, 2012).

Bradykinesia has been shown to correlate strongly with a broad cluster of PD motor symptoms 

(Nieuwboer A, 1998). Furthermore, 18 F-DOPA PET scans in PD patients with predominantly 
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hypokinesia and rigidity motor symptoms correlate significantly with dopaminergic depletion in 

striatum (Pikstra AR, 2016). In our study, we found a statistical significant association between 

prolonged motor performance and upper-body rigidity (MDS-UPDRS).  

The same associations between time of motor performance and bradykinesia and rigidity were 

found in relation to the clinical rating scales of DIP: ie. prolonged time of motor performance in the 

Motorgame was related to higher rigidity SAS scores and UKU hypokinesia. Surprisingly, we did 

not find a significant association between time of motor performance in the Motorgame (assessing 

gross motor skills) and motor speed (Token Motor Task; assessing fine motor skills). A possible 

explanation might be that the Motorgame is a more complex motor test demanding a fairly high 

level of eye-hand coordination and cognitive skills. This was confirmed by the finding of a 

significant moderating effect of the Symbol Coding Task on the time of performance of the 

Motorgame (ie. shortened time of performance was associated with higher/better scores of 

information processing). 

Furthermore, we did not find an association between time of motor performance in the Motorgame 

the duration of PD (patients). An explanation could be that the included group of patients in this 

study were all well-medicated, which was additionally reflected by their median (IQR) Hoehn and 

Yahr score of 2 (2-2) and mean (±SD) duration of illness of 45.7 months + 34.0 months.  

We found that males had a significantly shorter time of performance in the majority of the 

estimates. In studies of healthy individuals, it has been shown that male gender influenced the speed

of motor performance (Jiménez-Jiménez FJ1, 2011). Whether this difference is further moderated 

by the PD cannot be analyzed in our study due to the small sample size.

In line with a study of adaptive training/rehabilitation in patients with PD (Summa S, 2015), we 

found a high level of participant acceptance of the Motorgame showing that the Motorgame was the

preferred choice of test by the majority of the healthy control group (76%) as well as in the patient 

group (53%).

14



In overall, our results are in line with previous studies of the Kinect sensor used as a supplementary 

assessment for patients with PD. Galna and colleges studied the accuracy of the Kinect in 9 PD 

patients and 10 healthy controls comparing it to the Vicon three-dimensional motion analysis 

system (Galna, 2014). They showed high accuracy of the Kinect sensor when measuring time and 

gross spatial characteristic movements relevant to PD and highly appropriate for distinguishing non-

PD subjects from PD patients treated with deep brain stimulation.  Likewise, the Kinect sensor has 

shown high validity regarding gait parameters when validated against a multiple-camera 3D motion 

capture system (Arango Paredes JD, 2015). 

Strengths and limitations 

The study has several strengths. Firstly, the instrument is low-cost, easy accessible, portable and 

easy to administer and does not require expert clinical knowledge to use. Secondly, applicability to 

the clinical setting was tested and proven on several levels. In terms of practicality, the Kinect-

based instrument was easy to set up in hospitals, in private houses, in tennis clubs and senior 

centers. The test bears potential to be carried out even in intensive care wards and in small 

examination rooms. Thirdly, the study showed that all PD participants and healthy controls 

completed the Motorgame. Previous studies have shown that videogames for patients with PD 

should not be made too difficult, in terms of their pace or cognitive complexity (dos Santos Mendes 

FA1, 2012). Fourthly, by including healthy controls, we were able to match data according to age, 

but unfortunately not to gender, two variables relevant to motor performance (Jiménez-Jiménez FJ, 

2011). 

The study has some limitations. Firstly, our Motorgame only covers upper extremities and neck. 

Secondly, the version of the Kinect device used in the present study does not have the accuracy to 

detect tremors, at least not based on the motion trajectories computed by the internal Kinect 

algorithms. Potentially, tremor related measurements could be extracted from the raw Kinect depth-
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image information. However, due to the small the sample size in this study experimental data 

exploration of this kind was not possible. For this reason, we also excluded the tremor related 

clinical measurements from the analysis. Newer devices with higher accuracy is currently being 

developed which potentially might enable tremor detection. Thirdly, the sample size in this study is 

small, thereby enhancing the risk of producing type II errors. Further, we have limited ourselves to 

do the analysis on a simple meta-variable (the playing time), since the system is able to gather very 

large amounts of data from the movement patterns of the tested participants. The reason is the 

potential problem of overfitting the sparse set of available movement related features such as speed,

acceleration and deceleration and even the use of more automated feature extraction techniques. 

These aspects should be taken into considerations in future studies.

In conclusion, we have presented an accessible and easy to use system, i.e.  the Motorgame with 

data in accordance with currently used clinical motor scores. The Motorgame offers a feasible and 

accessible objective complement to the traditional observer-based rating scales of motor 

disturbance. However, further development is needed to improve the tracking of tremor and motor 

symptoms in lower extremities. The concept of using a contact-less and gamified measurements 

device was well accepted by the users and the present data suggest the relevance of using portable 

and accessible systems like this on a much larger scaler and in different patient groups. 
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Figures and Tables
Figure 1 A participant playing the Motorgame.

 A
Kinect sensor is placed on the top of the television and tracks the participant's movements. The 
participant’s pose is mirrored as a stickman figure on the screen.
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Figure 2 Level 1 in the Motorgame from the participant's perspective. 

Th

e participant is moving its right hand upwards to reach the blue button visible on screen.
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Figure 3 Level 2 in the Motorgame from the participant perspective.

Now the participant has to touch two buttons simultaneously.
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Table 1. Elements of the different levels in the Motorgame

Level No of tasks 
(right/left 
handside)

Completion of task No of buttons, 
the participant 
must push at 
the same time

Button moving 
during test 
between single 
tasks

1
22

(11/11)

Must hold the hand
still on the button for

at least 1 second
1 y

2
21 

(21/21)

Must hold the hand
still on the button for

at least 1 second
2 y

3
12 

(6/6)

Must follow the
bottom as it moves to
the top or the bottom

of the screen

1 y
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Table 2. Demographic and disease specific characteristics

Patients with 

Parkinson’s 

Disease (n=30)

Healthy 

controls 

(n=33)

P value

Males, n (%) 18 (60.0) 10 (30.3) 0.018a

Age in years, mean (SD) 70.1 (6.7) 69.7 (6.1) 0.787b

Family history of Parkinson’s Disease, n (%) 8 (26.7) 2 (6.1) 0.025a

Hoehn and Yahr score, median (IQR) 2 (2-2) - -
Mean duration of Parkinson’s Disease in months,

mean (SD)

45.7 (34.0) - -

L-dopa equivalent dose (Tomlinson CL, 2010) 

mg, mean (SD)

868.4 (1902.2) - -

Physical activity hours/week, mean (SD) 6.6 (5.5) 7.7 (4.6) 0.388b

Computer games hours/week, mean (SD) 0.17 (0.91) 0 (0.0) 0.306b

a chi2 test; b unpaired t-test; “-“ not applicable; SD Standard Deviation; IQR Interquartile Range
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Table 3. Clinical assessments

Patients with 

Parkinson’s 

Disease (n=30)

Healthy 

controls (n=33)

P value

BACS Token Motor Task (completers), n (%) 17 (56.67) 31 (93.94) 0.001a

BACS Token Motor Task score, mean (SD) 25.53 (18.13) 39.89 (13.44) 0.003b

BACS Symbol Coding Task, mean (SD) 37.53 (13.62) 41.42 (10.15) 0.201b

SAS total score, mean (SD) 0.87 (0.70) 0.13 (0.19) <0.001b

Hypokinesia (item 2.3 UKU), mean (SD) 1.17 (0.65) 0.09 (0.29) <0.001b

a  chi2 test; b ANOVA test; SD Standard Deviation
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Table 4 The effect of motor items in the MDS-UPDS on the time of motor performance in the Motorgame. 

MDS-UPDRS item Gender Age Height Weight 

3.3a Rigidity Neck
0.0401

*
 (0.0191)

-0.105 (0.0524) -0.000552 (0.00307) 0.00517 (0.00349) -0.00132 (0.00174)

3.3b Rigidity Right Arm
0.0447

*
 (0.0185)

-0.0994 (0.051) 0.000343 (0.00306) 0.00542 (0.00343) -0.00136 (0.00171)

3.3c Rigidity Left Arm 0.0372 (0.019) -0.0916 (0.0516) 0.000325 (0.00313) 0.00525 (0.00351) -0.00133 (0.00175)

3.3d Rigidity Right Leg
0.0351

*
 (0.0156)

-0.0946 (0.0511) -0.000163 (0.00306) 0.00543 (0.00346) -0.00174 (0.00171)

3.3e Rigidity Left Leg
0.0364

*
 (0.0165)

-0.0876 (0.0509) -0.000624 (0.00306) 0.00515 (0.00348) -0.00159 (0.00171)

3.4a Finger Tapping Right Hand
0.0528

**
 (0.0149) -0.135

**
 (0.0502)

0.000949 (0.00291)
0.00799

*
 (0.00328)

-0.00203 (0.0016)

3.4b Finger Tapping Left Hand 0.0308 (0.0161) -0.103 (0.0527) -0.000768 (0.00309) 0.00581 (0.00349) -0.00114 (0.00177)

3.5a Hand Movements Right
0.0583

**
 (0.0162) -0.116

*
 (0.0486)

0.00106 (0.0029)
0.00757

*
 (0.00325)

-0.00163 (0.0016)

3.5b Hand Movements Left 0.024 (0.0167) -0.0872 (0.0523) -0.000534 (0.00314) 0.00546 (0.00357) -0.00123 (0.00181)

3.6a Pronation-Supination 
Movements of Hands Right

0.06
**

 (0.0163) -0.12
*
 (0.0486)

0.00066 (0.00287)
0.00804

*
 (0.00326)

-0.002 (0.00159)

3.6b Pronation-Supination 
Movements of Hands Left

0.0302
*
 (0.0148)

-0.0841 (0.0511) -0.000763 (0.00308) 0.00535 (0.00349) -0.00129 (0.00174)

3.12 Postural Stability 0.0201 (0.0229) -0.0839 (0.053) -0.000243 (0.00321) 0.00642 (0.00359) -0.00183 (0.00178)

3.13 Posture 0.0438 (0.0218) -0.0969 (0.0519) -0.00101 (0.00308) 0.00592 (0.00348) -0.00145 (0.00174)

3.14 Global Spontaneity of 
Movement (Body Bradykinesia)

0.0419
*
 (0.0183) -0.111

*
 (0.0525)

-0.000369 (0.00305) 0.00515 (0.00347) -0.000732 (0.00178)

Since MDS-UPDRS was only assessed in patients with Parkinson’s Disease all controls have been assigned value zero for 
the measured variables in this analysis. Results are logtransformed (natural logaritme). Each parameter estimate is 
presented with the standard deviation in parenthesis (SD). 
* p<0.05; ** p<0.001.
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Table 5 The effect of clinical assessment scores (Simpson Angus Scale, UKU and Token Motor task) and disease related 
characteristics on the time of motor performance in the Motorgame. 

Clinical assessment
Score

Gender Age Height Weight 

SAS-1 Gait
0.0613

*
 (0.025) -0.1028

*
 (0.051)

-0.00004 
(0.003)

0.0050 (0.003) -0.0008 (0.002)

SAS-2 Arm drop
0.0717

*
 (0.024)

-0.0938 (0.049) -0.0009 (0.003) 0.0040 (0.003) -0.0009 (0.002)

SAS-3 Shoulder shaking
0.0766

*
 (0.023) -0.1016

*
 (0.049)

-0.0001 (0.003) 0.0041 (0.0033) -0.0008 (0.002)

SAS-4 Elbow rigidity
0.0441

*
(0.017) -0.1044

*
 (0.051)

0.0002 (0.003) 0.0053 (0.003) -0.0012 (0.002)

SAS-5 Wrist rigidity
0.0742

*
 (0.026) -0.1020

*
 (0.050)

-0.0004 (0.003) 0.0052 (0.003) -0.0014 (0.002)

SAS-6 Leg pendulousness
0.0369

*
(0.013)

-0.0955 (0.050) -0.0006 (0.003) 0.0051 (0.003) -0.0013 (0.002)

SAS-7 Head dropping
0.0431

*
 (0.019) -0.1071

*
 (0.052)

-0.0007 (0.003) 0.0051 (0.003) -0.0012 (0.002)

SAS-8 Glabella tap
0.0323

*
 (0.011)

-0.0813 (0.051) 0.0005 (0.003) 0.0046 (0.004) -0.0010 (0.002)

SAS-9 Tremor 0.0162 (0.018) -0.0824 (0.053) -0.0010 (0.003) 0.0059 (0.004) -0.0019 (0.002)

SAS-10 Salivation 0.0987 (0.056) -0.0929 (0.052) -0.0002 (0.003) 0.0061 (0.004) -0.0014 (0.002)

2.3 Hypokinesia (UKU)
0.0665

*
 (0.022) -0.1128

*
 (0.050)

-0.0008 (0.003) 0.0047 (0.003) -0.0002 (0.002)

Token Motor Task -0.0012 (0.001) -0.0852 (0.054) -0.0005 (0.003) 0.0061 (0.004) -0.0017 (0.002)

Duration of Parkinson 0.0009 (0.000) -0.1010 (0.053) -0.0000 (0.003) 0.0072 (0.003) -0.0018 (0.002)

Physical activity 0.0001 (0.003) -0.0791 (0.054) -0.0006 (0.003) 0.0062 (0.004) -0.0019 (0.002)

Results are logtransformed (natural logaritme). Each parameter estimate is presented with the standard deviation in 
parenthesis. Duration of Parkinson’s Disease (PD) is in months. Physical activity is average number of hours per week.
* p<0.05; ** p<0.001.
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Abstract 

Background: Children and adolescents are more vulnerable to antipsychotic induced 

movement disorders compared to adults. In research, the assessment is often limited to 

the use of observer based rating scales, showing different degrees of inter-observer 

variability when tested. 

Objectives: To validate the Motorgame data against the items of rigidity measured by 

the Simpson Angus Scale.

Methods: A computer application using the Microsoft Kinect sensor (Motorgame), 

especially targeting motion patterns associated with parkinsonism, was tested in a group 

of adolescents with psychosis and healthy controls matched on age and gender. All 

participants were assessed by neurological examination and clinical side effect rating 

scales: Udvalg for Kliniske Undersøgelser (UKU) Side Effect Rating Scale, Barnes 

Akathisia Rating Scale (BARS), Simpson-Angus Scale (SAS) and Abnormal 

Involuntary Movement Scale (AIMS), and tests of information processing (Symbol 

Coding Task) and motor speed (Token Motor Task) from the BACS (Brief Assessment 

of Cognition in Schizophrenia) test battery. 

Results: 21 adolescents with psychosis and in medical treatment with antipsychotics 

versus 69 healthy controls were studied. Male proportion was 38.1% in the patient group

versus 36.2% in the control group (p=0.877). Mean age was 16.02+1.37 years in patients

and 16.04+1.52 years in controls (p=0.960). A positive significant effect (p=0.009) of 

arm dropping in the SAS (item 2) and a negative significant (p<0.001) effect of glabella 

tap in the SAS (item 8) was found. Furthermore, at consistent and clear retest effect was 

detected (p<0.001). In contrast to our previous study of Motorgame in patients with 

Parkinson’s disease and healthy controls, we did not find any effect of gender or 

information processing (Symbol Coding Task). No effects of age, height or weight was 

found. Based on the questionnaire (n=8) the Motorgame was reported to be easy and fun 

to use and was preferred above clinical rating scales.   
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Conclusion: A significant association between prolonged time of performance in the 

Motorgame and bradykinesia/rigidity in the shoulders was found. Future studies in larger

scale, including patients with higher severity in clinical scale scores are required.

Keywords: Movement disorders, Extrapyramidal symptoms, Antipsychotics, Psychosis,

Schizophrenia, Children, Adolescents, Kinect. 
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Introduction

Schizophrenia is a severe mental illness, characterized by extensive cognitive, emotional

and behavioural impairments. Usually it becomes manifest in early adulthood, but it can 

also be present in childhood and the adolescent years. Early onset psychosis (EOP, onset

before age of 18 years) is a serious variant of schizophrenia that often has worse 

outcomes compared to adult onset psychosis.1 Compared to adults, children and 

adolescents are more prone to develop antipsychotic-induced extrapyramidal symptoms 

(EPSs) i.e. akathisia, dystonia, parkinsonism and dyskinesia.2 A meta-analysis3 (2012) of

41 controlled short term studies, including 4015 children and adolescents, of efficacy 

and safety of second generation antipsychotics (SGAs) showed that all SGAs, except for 

quetiapine, significantly increased the risk of EPS compared with placebo: ziprasidone 

OR, 20.56 (3.53-68.94); olanzapine OR, 6.36 (2.43-13.84); aripiprazole OR, 3.79 (2.17-

6.17); risperidone OR, 3.71 (2.18-6.02); and quetiapine OR, 2.54 (0.88-6.07). EPSs are 

distressing movement disorders with the potential to interfere with patient’s adherence to

medicine and their quality of life. In a naturalistic study4, EPSs have been associated 

with poorer outcome in youth with schizophrenia spectrum disorders. Furthermore, 

absence of EPS has been associated with improved compliance in adult patients with 

schizophrenia.5 Therefore, focus on minimizing adverse effects is important.

Traditional assessment of drug-induced movement disorders 

In research, clinical rating scales are commonly used in the assessment of antipsychotic-

induced movement disorders. Rating scales offer a structured and standardized method 

and the most used ones have been solidly validated. But due to the fact that rating scales 

are observer-based, studies have shown that even trained raters may underestimate the 

prevalence of motor abnormalities.6 Many researchers have studied more quantitative 

methods to assess antipsychotic induced movement disorders in adult patients7-12, but 

none have, to our knowledge, been implemented broadly in the daily clinic. Nor have 

studies of quantitative assessment of antipsychotic-induced movement disorders, to our 

5



knowledge, been conducted in children and adolescents with psychosis/schizophrenia.  

  

Kinect-based quantification of movement patterns 

The Microsoft Kinect application (2010) was originally developed for motion 

recognition in gaming applications. The Microsoft Kinect combines a regular colour 

camera with a depth sensor and software based on advanced, marker-free pattern 

recognition.13 The sensor maps the scene and the software recognizes and continuously 

monitors joint movements three-dimensionally. Additionally, the Microsoft Kinect has 

the advantages of being assessable, portable and low-cost. The validity of the Kinect 

sensor has been shown in a number of studies of motion recognition i.e. neck angle14, 

spatiotemporal aspects of gait15 and postural control.16 In the clinical setting, Microsoft 

Kinect has been studied in areas such as neuro-rehabilitation17, assessment of post-stroke

movement impairment18 and in surgical navigation as an objective method to assess, 

evaluate and train surgical skills.19 In children, the Microsoft Kinect sensor has been 

studied as a tool to classify movements during active video gaming20 in 43 healthy 

children, showing excellent reliability between two raters and the Kinect Tool for jumps 

(r=0.84, p<0.01), and moderate reliability for sidesteps (r=0.69, p<0.01). Furthermore, 

the Kinect software has been studied in the evaluation of upper extremity movement 

characteristics in 12 healthy, typically-developing adolescents with no injury or 

impairment of upper extremity function.21 Significant variability in upper extremity 

kinematics was found, indicating an increased sensitivity of the scores found by the 

Kinect motion analysis. Additionally, the researchers reported that the Kinect sensor 

system was easy to use for both therapist and participants. 

Studies of Microsoft Kinect in patients with Parkinson’s Disease have also been 

conducted, mainly focusing on gait assessment.22-27 However, movement symptoms, 

including the typical movement items in the upper extremity from the Unified 

Parkinson’s Disease Rating Scale, were studied by Galna and collegues in a study of 9 

patients with Parkinson’s Disease and 10 healthy controls. They concluded that the 
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Microsoft Kinect sensor was able to accurately measure gross spatial characteristics and 

timing of clinically relevant movements.28 

As published previously (reference) we studied a group of adult patients (n=30) with 

Parkinson’s Disease and a group of healthy controls (n=33) matched on age and gender, 

developing a classification model, especially targeting motion patterns associated with 

parkinsonism. We found a significant (p < 0.05) association between a prolonged time of

performance in the Motorgame and higher Simpson Angus Scale rigidity scores. We 

also found a significant (p < 0.05) association between decreased time of performance in

the Motorgame and higher (better) scores in information processing (Symbol Coding 

Task). Finally, we found a significant gender difference indicating that the female 

participants on average had to use approximately 10% longer time to complete each task 

of the Motorgame.

In this pilot study, we want to investigate the Motorgame in a study population of 

adolescents with psychosis compared to healthy controls matched on age, gender and 

parental education, and validate the Motorgame data against the items of rigidity 

measured by the Simpson Angus Scale (measuring antipsychotic drug-induced 

parkinsonism).

Methods

Design, participants and in- and exclusion criteria 

The patient group was in ongoing or about to initiate antipsychotic treatment, aged 12-17

years, in- or out patients, meeting the ICD-1029 criteria for schizophrenia-spectrum 

disorder, delusional disorder, or affective-spectrum psychotic disorder. The control 

group consisted of physically and mentally healthy children and adolescents who 

completed screening with K-SADS-PL30 (both participants and parents), standard 

somatic history and clinical examination. 
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Recruitment

Patients were recruited partly from the Mental Health Centre for Child and Adolescent 

Psychiatry in the Capitol Region and partly through to the Tolerability and Efficacy of 

Antipsychotics (TEA) trial.31 Healthy controls were all recruited from the TEA trial in 

which recruitment was done through a random data extraction from the Danish 

Centralized Civil Register (government-owned registry of all residents in Denmark, 

located in Copenhagen (http://sundhedsdatastyrelsen.dk/da/forskerservice). The study 

was submitted to The Committees on Health Research Ethics for the Capital Region of 

Denmark and the Danish Health Authority, which stated that the study did not require 

mandatory notification. The Danish Data Protection Agency (DDPA) journal number 

2007-58-0015 has approved data collecting and data storing. Approval for exchange of 

information with the TEA trial has been given from the DDPA journal number 2013-

331-0479.  A surrogate written informed consent was obtained from the holders of 

custody, since all participants were below the age of 18 years when engaging in the 

trials.

Setting and instrument

This pilot study tests the Kinect-based instrument in a hospital in- and outpatient 

environment. The Kinect application is connected to a computer with the Game-like 

software developed by the Technical University of Denmark (DTU) installed. The 

participant is placed at a distance of approximately two meters in front of the computer 

(Figure 1). A stickman figure that mirrors the participant’s movements is visible on the 

screen. The Motorgame consisted of three levels: The participant had to place his/her 

hand ‘on’ (level 1) a stationary spot shown on the screen (11 times with the right hand 

and then 11 times with the left hand), on two spots simultaneously (level 2) and on a 

spot and then follow it, when it moved slowly in a semi-circle either upwards or 

downwards with both hands taking turns (level 3). The Motorgame was run twice: first 

session as a ‘practice run’ with instructions given and second session with no 
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instructions. As a motivational factor points were given and shown on screen: the 

amount of points would correlate with the accuracy and speed of the movements. The 

data presented in this paper are exclusively from the second session of level 1.

Procedures and outcomes

Demographic and clinical data

Information on gender, age, height, weight, handedness, former/current mental/physical 

illness, parental educational level, duration of illness and current status of 

pharmacological treatment was obtained through an interview. From medical records, 

information was collected according to clinical verified diagnosis of psychosis, 

schizophrenia and other psychiatric diagnoses. 

Assessments

All participants were assessed with clinical somatic and neurological examinations. 

Assessment with the clinical side effect rating scales included the Abnormal Involuntary 

Movement Scale (AIMS)32 (assessing dyskinesia), the Simpson Angus Scale (SAS)33 

(assessing drug-induced parkinsonism), the Barnes Akathisia Rating Scale (BARS) 34 

(assessing akathisia) and the The Udvalg for Kliniske Undersøgelser (UKU) Side Effect 

Rating Scale35 (assessing antipsychotic-induced side effects in several domains, 

including movement disorders). Additional examination of information processing speed

(Symbol Coding Task) and motor speed (Token Motor Task) i.e. two subtests from Brief

Assessment of Cognition in Schizophrenia (BACS)36 was done. Finally, two sessions of 

the Motorgame were tested. Then a subgroup of the participants (the patients recruited 

directly from the Mental Health Centre for Child and Adolescent Psychiatry in the 

Capitol Region) filled in a questionnaire on their opinion of the Motorgame compared to

the examination from the rating scales and the two subtests from BACS.

All healthy controls were reassessed at follow-up after 12 weeks as well as the 

antipsychotic-naïve patients recruited directly from the Mental Health Centre for Child 
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and Adolescent Psychiatry. At 12 weeks of follow up, it was assumed that the majority 

of the patients would be in stable antipsychotic medical treatment and if adverse effects 

had occurred, these would most likely have presented within that time frame, since 90% 

of the adverse effects occurs within the first 12 weeks of treatment 37 (in adult studies). 

Reassessment of the healthy control group functioned as a control for changes in 

movement patterns over time in the antipsychotic naïve group. The patients in ongoing 

antipsychotic treatment recruited from the TEA trial were assessed at follow ups 

(predefined in the TEA trial protocol ie. week 2, 4, 12 and/or 52 after randomization to 

aripiprazole or quetiapine-ER).

Investigational plan

An interdisciplinary team consisting of specialists and residents in Psychiatry, Child and 

Adolescent Psychiatry and Neurology at Copenhagen University Hospitals and the 

Technical University of Denmark (DTU Compute) has worked in collaboration around 

this study since January 2013. Data collection was carried out from February 2014 to 

July 2016.

Data analysis

The Data

The Kinect application tracks the 3D joint positions in the upper body (the hands, wrists,

elbows, shoulders, neck and head) with recordings 30 times per second. One Kinect 

Game session takes about 5 minutes and around 9000 3D observations are made for each

joint. These data are time-series of varying length, which we have taken into account. 

Hypotheses

1) Higher scores in rigidity (Simpson Angus Scale) are associated with 

a prolonged time of performance in the Kinect Motorgame. 
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2) Higher scores in information processing (Symbol Coding Task) are associated 

with decreased time of performance in the Kinect Motorgame. 

3) Retest effect will be present in both patient and healthy control group.

Statistics

Descriptive analyses and simple group comparisons were analyzed using Pearson Chi-

Square tests and independent t-test (SPSS version 22+23). Two-sided tests with 

alpha=0.05 were used. 

For the statistical analysis of data from the Motorgame, we used a linear mixed-effect 

model38;39   implemented in the package lmer38 for the R-programming language.40 This 

model contains both fixed effects and random effects. 

The model used: 

The terms in the model are: y the response, μ as a general mean,  mean for each of the 22

tasks, C parameter for the clinical score, where  is the value for that measurements on 

individual i in task j. The following terms correspond to the first letter in the 

enumeration of demographic and clinical variables above. The last two terms are , the 

random effect for individuals and the general error term. 

Results

Descriptive data

Twenty-one children and adolescents with psychosis and in medical treatment with 

antipsychotics versus 70 healthy controls were studied (Table 1). Male proportion was 

38.1% in the patient group versus 36.2% in the group of healthy controls (p=0.877). 

Mean age (+SD) was 16.02+1.37 years in patients and 16.04+1.52 years in healthy 

controls (p=0.960). Parental education level was significantly higher in the healthy 
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control group 7.35+0.76 compared to the patient group (6.25+1.33; p=0.002). The 

patients had been diagnosed within the schizophrenia spectrum (57.1%), affective 

psychosis (14.4%) and other psychosis (28.5%). Median duration of untreated psychosis 

(IQR) was 110 days (24-301,5 days). Thirteen of the 21 patients had already initiated on 

antipsychotics medication at first assessment with a median duration (IQR) of 4 weeks 

(0-56,5 weeks). Type of antipsychotic drug and median doses are seen in Table 1.  Eight 

patients initiated the antipsychotics treatment on the same day as the first assessment. 

Clinical rating scale scores

Clinical rating scale scores are shown in Table 2. Overall, the patient clinical rating scale

scores of EPS were higher than the clinical rating scale scores in the healthy controls, 

but only at a significant level comparing the Simpson Angus Scales scores of the 

antipsychotics medicated patients (n=9) with the healthy controls (n=50)(p=0.048). In 

general, the severity displayed in the clinical rating scales of EPS were predominantly 

mild and in a few cases moderate. No participants had any dyskinesia. In contrast, clear 

differences were seen in the two tests from Brief Assessment of Cognition in 

Schizophrenia. Unmedicated patients (n=8) were significantly motoric slower in the 

Token Motor Task (45.4+18.5 point; p<0.001)) and showed slower information 

processing in the Symbol Coding Task (55.1+17.3 points; p=0.016) compared to the 

healthy controls (n=69; 67.9+15.1 points and 66.4+11.6 points, respectively). These 

differences remained significant after initiation of antipsychotic medication. Changes 

over time (from first to second assessment) are shown in Table 3. No significant 

between group differences were found. Even though not significant, the Motor Token 

Task appeared to have a retest effect in both the healthy control group and in the patient 

group. However, the patients initiating antipsychotic medication after the first 

assessment (n=6) seemed to have a poorer performance in the Symbol Coding Task 

(change of -3,5 points) at their second assessment, compared to the patients medicated at
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both assessment points (n=3; change of 0 points; p=0.817) and the group of healthy 

controls (n=50; change of 3 points; p=0.444). 

Mixed model analysis of the Motorgame data

All participants completed the Motorgame. The results from the mixed-effect model are 

shown in Table 4. Arm dropping (item 2 in the Simpson Angus scale) had a significant 

positive effect on the time of performance in the Motorgame (estimate 0.069; p=0.009) 

ie. prolonged time of motor performance was associated with higher scores of 

armdropping. Surprisingly, glabella tap (item 8 in the Simpson Angus scale) had a 

significant negative effect on the time of performance in the Motorgame (estimate 

-0.012; p<0.001) ie. shortened time of motor performance was associated with higher 

scores of glabella tap. A consistent and clear learning effect was seen in the Kinect 

Motor data (estimate -0.029 to -0.024; p<0.001). We did not find any moderating effect 

of gender, age, height, weight or the Symbol Coding Task. Data from the questionnaire 

(n=8) (Figure 2) showed that 88% found it easy or very easy to understand how to use 

the Motorgame. Seventyfive procent found the Motorgame fun or very fun to use. The 

Motorgame was the preferred test by 38%., but exceeded by the BACS tests (Token 

Motor Task and Symbol Coding Task) which was preferred by 63%.   

Conclusion and Discussion

An increasing use of antipsychotics in both psychosis and non-psychotic diseases in 

children and adolescents is being reported in many countries.41-44 Children and 

adolescents are more likely to experience EPS caused by antipsychotics compared to 

adults.45 

Scientific evaluation of antipsychotic side effects are primarily made by the use of 

clinical rating scales. The fact that they are observer-based make them prone to inter-

observer variability, and even well-trained raters may underestimate the incidence. 46 

Antipsychotic induced-bradykinesia (one out of 3 cardinal symptoms – tremor, rigidity, 
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bradykinesia - of drug-induced parkinsonism), especially in its early phases, is difficult 

to detect due to the overlap with negative symptoms and comorbid depression.47 

Consequently, early and objective detection of motor side effect in order to optimize 

antipsychotic treatment and increase treatment response and adherence is of pivotal 

importance, especially in the young population. The present study addresses a significant

need for an objective method to assess movement disorders in young patients with 

schizophrenia or other psychotic diseases in antipsychotic treatment. 

With the design of the present pilot study, we wanted to identify differences in 

movement patterns between young patients with psychosis and healthy controls and 

validate the Motorgame data against data from the established clinical Simpson Angus 

Scale, measuring antipsychotic drug-induced parkinsonism. Since our study population 

was very young and antipsychotic dosing as a consequence was relatively low, we did 

not expect a presentation of high scores in the clinical measurements (Simpson Angus 

scale). However, we did find a significant group difference (p=0.048) between 

antipsychotic medicated and healthy controls in the mean SAS total score. In line with 

previous findings from a study of reliability, sensitivity and validity of Brief Assessment

of Cognition in Schizophrenia comparing 150 adult patients with schizophrenia and 50 

healthy controls48, we found that the outcome of motor speed (Token Motor Task) and 

information processing (Symbol Coding Task) were significantly worse in both 

unmedicated (p<0.001; p=0.016, respectively) and antipsychotic medicated patients 

((p<0.001; p=0.003, respectively) compared to the group of healthy controls in our 

study.

In the linear mixed model analysis, we found a positive significant effect (p=0.009) of 

arm dropping (item 2) in the SAS. This corresponds with our previous findings from the 

study of the Motorgame in adult patients with Parkinson’s disease and healthy controls. 

In that study 8 items in the SAS (gait, arm dropping, shoulder shaking, elbow rigidity, 

wrist rigidity, leg pendulousness, head dropping and glabellar tap) had a significant 

effect on time to complete each task of the Motorgame. A possible reason could be that 

14



the severity of the rigidity/bradykinesia, and by that the signal to the Kinect sensor, was 

much stronger in the patients with Parkinson’s Disease. In contrast to the study in 

patients with Parkinson’s Disease, we found a negative significant (p<0.001) effect of 

glabella tap (item 8) in the SAS. The glabellar reflex is one out of many behavioural 

motor responses found in neonates, which is subsequently inhibited before the age of 5 

years.49 An abnormal glabellar reflex is primarily seen in diffuse cerebral hemisphere 

degenerative and vascular diseases.50 In a study of parkinsonian disorders (Parkinson 

disease, supranuclear palsy, multiple system atrophy) the glabellar tap showed a modest 

sensitivity, but a lack of specificity. 51 Glabellar tap is in general considered to be non-

specific, non-diagnostic and a poor measure of Parkinson motor severity. 52 In studies of 

antipsychotic naïve or antipsychotic free (1-6 months) patients with schizophrenia, an 

abnormal glabella tap was found in 40-77%.53;54 Other researchers have found that the 

glabella tap item is not correlated to the other items of parkinsonism in the Simpson 

Angus scale.55 In our study, all participants with an abnormal glabella tap were found in 

the patient group, except from one healthy control with a score of 1 (mild). The finding 

that the glabella tap score had a negative effect on the time of performance in each task 

(ie. having a score>0 makes the participant perform faster) could indicate that an 

abnormal glabella tap is more likely to be associated with a dysfunction in the 

dopaminergic system rather than an antipsychotic-induced motor disorder.

Not surprisingly, especially in the light of the age and the expected familiarity with 

interactive gaming of the participants in this age group, a consistent and clear retest 

effect was found (p<0.001). 

In contrast to our previous study of patients with Parkinson’s disease and healthy 

controls, we did not find any effect of gender or information processing (Symbol Coding

Task). Especially the lack of effect of information processing is somewhat surprising, 

since the difference in outcome of the Symbol Coding Task between healthy controls 

and unmedicated/medicated patients was highly significant. Furthermore, Fervaha and 

colleagues showed that the severity of drug-induced parkinsonism (Simpson Angus 
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scale) was reliably linked with poorer scores on tests of cognition56 in 325 non-

medicated adult patients with schizophrenia. It remains unclear whether a higher severity

level of EPS would have been associated with a poorer outcome of the Symbol Coding 

Task and as a consequence have had a significant effect on the Kinect performance time.

The Motorgame was reported easy and fun to use and was preferred above clinical rating

scales. This is in line with previous studies in children and adolescents using the 

Microsoft Kinect: In a pilot project of physical rehabilitation in young adults with motor 

disabilities, a Kinect-based instrument showed enhanced motivation among the 

participants.17 In a study of young patients with hemiplegic cerebral palsy, Rammer et al.

21 concluded that Kinect has the potential for improving functional assessment. 

In a cross-over study of traditional exercise (a stationary cycle) and Kinect as an exercise

intervention in 30 young subjects with Cystic Fibrosis57, participants preferred Xbox 

Kinect for its interactivity. 

Strengths and limitations 

With the inclusion of healthy controls in this pilot study we were able to match data 

according to age and gender (but not educational level). Test-retest effects were tested, 

which are also relevant measures regarding motor abilities in this young and developing 

age group. The equipment used in this study is low-cost, easy accessible, portable and 

easy to administer and does not require expert knowledge to use. The similarities of the 

Kinect-based test to an ordinary computer game and the reduced time of physical contact

with the physician are factors that are expected to increase the patient’s willingness to 

participate. 

The pilot study has obvious limitations. Firstly, the Motorgame covered only a part of 

the clinical examination (drug-induced parkinsonism) of EPSs, thus, it remains unclear 

whether the Kinect sensor can measure tremor and dyskinesia. Secondly, the developed 

Motorgame covered only upper extremity movements, which means that drug-induced 

parkinsonism involving the head and lower extremities were not assessed. However, this
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is a limitation within the actual version of the software in the Kinect-based instrument, 

which a newer version might solve. Thirdly, even though the Kinect-based instrument 

was easy to administer there is a potential risk for technical problems that would require 

IT support. Fourthly, the number of patients in our study was very small. A larger 

population size would have added more power to the study and have reduced the risk of 

type II errors. 

Clinical significance

This pilot study is a methodological development study. We found that a prolonged time

of performance in the Motorgame was significantly associated with bradykinesia/rigidity

in the shoulders. The results need to be redefined and implemented in future studies in 

order to increase our knowledge, particularly about what characterizes the movements of

patients with higher clinical scale scores. Further development and studies of alternative 

sensors is needed to improve tracking of tremor (possibly by including newer versions of

the software) and testing in a larger population is planned for the future.  
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Table 1. Descriptive data

Antipsychotic 
naïve patients
n=8

Antipsychotic 
medicated 
patients
n=13

Total group of 
patients
n=21

Healthy 
controls
n=69

P value, 
patients versus 
controls

Age in years (range 13.58-19.08), mean+SD 15.54+1.13 16.31+1.46 16.02+1.37 16.04+1.52 0.960a

Male, n (%) 4 (50.0) 4 (30.8) 8 (38.1) 25 (36.2)  0.877b

Parental education, mean+SD 5.71+1.38 6.54+1.27 6.25+1.33 7.35+0.76 0.002a  

Psychosis diagnoses, n (%)
F20.0
F21.9
F23.9
F25.1
F28.9
F29.9
F32.3
F33.3

9 (69.2)
0 (0.0)
1 (7.7)
1 (7.7)
0 (0.0)
0 (0.0)
1 (7.7)
1 (7.7)

3 (37.5)
2 (25.0)
0 (0.0)
0 (0.0)

1 (12.5) 
2 (25.0)
0 (0.0)
0 (0.0)

12 (57.1)
2 (9.5)
1 (4.8)
1 (4.8)
1 (4.8)
2 (9.5)
1 (4.8)
1 (4.8)

Psychiatric comorbid diagnosis, n (%) 4 (50.0) 7 (53.8) 11 (52.4)

Duration of untreated psychosis, median weeks (IQR) 180.0 (48.0-624.0) 55.0 (22.0-220.0) 110.0 (24.0-301.5)

Antipsychotic compound
Aripiprazole, n (%)
Aripiprazole, median dose, mg (IQR)
Quetiapine, n (%)
Quetiapine, median dose, mg (IQR)
Quetiapine-ER, n (%)
Quetiapine-ER, median dose, mg (IQR)
Serenase, n (%)
Serenase, median dose, mg (IQR)

5 (62.5) c

5.0 (3.75-10.0)
2 (25.0) c

212.5 (25.0-212.5)
0 (0.0) c

-
0 (0.0) c

-

6 (46.2)
15.0 (15.0-20.0)

3 (23.1)
200.0 (20.0-200.0)

5 (38.5)
600.0 (150.0-600.0)

1 (7.7)
2 (2.0-2.0)

11 (52.4)
15.0 (5.0-15.0)

5 (23.8)
200.0 (22.5-400.0)

5 (23.8)
600.0 (150.0-600.0)

1 (4.8)
2 (2.0-2.0)

Duration of antipsychotic treatment at first assessment, median
weeks (IQR)

0 (0-0) 56.0 (8.0-60.0) 4 (0.0-56.5)

aIndependent t-test; bPearson Chi-Square test; cAntipsychotic compounds at second assessment, where the antipsychotic naïve patients have been introduced to antipsychotic treatment; 
SD Standard Deviation. IQR Interquartile Range.



Table 2. Clinical rating scale scores

Antipsychotic 
naïve patients

Antipsychotic 
medicated 
patients

Healthy 
controls

P valuea P valueb P valuec

First Kinect 
assessment, 
unmedicated, 
n=8

Second Kinect
assessment, 
medicated, 
n=6

First Kinect 
assessment, 
medicated, n=13

Second Kinect
assessment, 
medicated, 
n=3

First Kinect 
assessment, 
n=69

Second Kinect
assessment, 
n=50

Item 2.3 UKU 
(bradykinesia), 
mean+SD

0.13+0.35 0.33+0.52 0.08+0.28 0.0+0.0 0.0+0.0 0.0+0.0 0.169 0.732 0.351

Mean SAS total 
score, mean+SD

0.09+0.14 0.23+0.22 0.16+0.16 0.13+0.15 0.07+0.14 0.09+0.14 0.048 0.281 0.664

BARS global 
score, mean+SD

0.63+0.74 1.17+1.60 1.00+1.00 0.67+1.16 0.03+0.17 0.02+0.14 0.071 0.373 0.058

Tardive 
dyskinesia, n (%)

0 0 0 0 0 0 - - -

Token Motor 
Task, mean+SD

45.4+18.5 49.0+14.5 47.7+18.5 56.0+14.1 67.9+15.1 75.3+13.7d <0.001 0.789 <0.001

Symbol Coding 
Task, mean+SD

55.1+17.3 52.2+17.5 53.0+15.0 64.0+7.1 66.4+11.6 72.7+11.1d 0.003 0.774 0.016

a) Antipsychotic medicated patients versus healthy controls (comparison between second Kinect assessments)
b) Unmedicated patients versus medicated patients (comparison between first Kinect assessments)   
c) Unmedicated patients versus healthy controls (comparison between first Kinect assessments)   
d) Only 20 healthy participants were assessed regarding Token Motor Task and Symbol Coding Task at second Kinect assessment

SD: Standard Deviation



Table 3. Changes over time in clinical rating scale scores.

Antipsychotic naïve
patients,
n=6

Antipsychotic 
medicated patients,
n=3

Healthy controls
n=50

P valuea P valueb P valuec

Change Item 2.3 UKU (bradykinesia), 
mean+SD

0.167+0.753 -0.333+0.577 0.00+0.0 0.423 0.351 0.611

Change mean SAS total score, mean+SD 0.183+0.214 -0.033+0.321 0.012+0.117 0.830 0.259 0.108
Change BARS global score, mean+SD 0.667+1.633 -0.067+0.577 -0.020+0.247 0.191 0.224 0.351
Change Token Motor Task, mean+SD 3.17+20.81 8.00+5.66 5.25+17.76 0.833 0.768 0.810
Change Symbol Coding Task, mean+SD -3.5+18.89 0.00+9.90 3.00+7.41 0.598 0.817 0.444

a) Antipsychotic medicated patients versus healthy controls 
b) Unmedicated patients versus medicated patients    
c) Unmedicated patients versus healthy controls 

SD: Standard Deviation



Table 4. The effect of Simson Angus Scale items on time of motor performance in the Kinect Motorgame 

Model SAS item Gender Age Height Weight Symbol
Coding Task

Repetition

Item 1: Gait 
Parameter Value+SD

0.05277080+
0.03826630

0.02517919+
0.01769783

-0.0011167+
0.0047764

0.00158057+
0.00113420

-0.0009950+
0.0007301

-0.0005627+
0.0005026

-0.0290173+
0.0061134

P-value 0.16839253 0.15846265 0.8157226 0.16709873 0.1764375 0.2660262 0.0000022
Item 2: Arm dropping 
Parameter Value+SD

0.06866780+
0.02615608

0.02687732+
0.01723641

-0.0004335+
0.0046672

0.00132017+
0.00110111

-0.0007718+
0.0006909

-0.0007256+
0.0004849

-0.0249566+
0.0061977

P-value 0.00872368 0.12254856 0.9262124 0.23382922 0.2671490 0.1382197 0.0000579
Item 3: Shoulder shaking
Parameter Value+SD

0.01663420+
0.01462769

0.02880679+
0.01749701

-0.0009367+
0.0047066

0.00149523+
0.00111239

-0.0007459+
0.0006974

-0.0007027+
0.0004898

-0.0281046+
0.0060867

P-value 0.25585447 0.10323483 0.8427187 0.18242055 0.2878951 0.1550418 0.0000040
Item 4: Elbow rigidity 
Parameter Value+SD

-0.0014836+
0.0149801

0.02647410+
0.01756722

-0.0012066+
0.0047322

0.00141862+
0.00111685

-0.0007562+
0.0007020

-0.0006655+
0.0004928

-0.0281010+
0.0061481

P-value 0.9211359 0.13540278 0.7993616 0.20745887 0.2844993 0.1804201 0.0000050
Item 5: Wrist rigidity 
Parameter Value+SD

0.0345330+
0.0359208

0.02871345+
0.01751852

-0.0009966+
0.0047037

0.00145294+
0.00111053

-0.0007439+
0.0006971

-0.0006953+
0.0004894

-0.0276838+
0.0061063

P-value 0.3369884 0.10476747 0.8327089 0.19426334 0.2890113 0.1591245 0.0000060
Item 6: Leg pendulousness 
Parameter Value+SD

0.0208511+
0.0279615

0.02684927+
0.01745283

-0.0008884+
0.0047338

0.00140072+
0.00111449

-0.0007158+
0.0007014

-0.0006740+
0.0004905

-0.0282418+
0.0060883

P-value 0.4560965 0.12758829 0.8515689 0.21222070 0.3104183 0.1730877 0.0000036
Item 7: Head dropping 
Parameter Value+SD

-0.0147955+
0.0209356

0.02519654+
0.01765388

-0.0014617+
0.0047567

0.00141268+
0.00111975

-0.0007746+
0.0007038

-0.0006582+
0.0004932

-0.0283486+
0.0060917

P-value 0.4801523 0.15705802 0.7593671 0.21053140 0.2743055 0.1856086 0.0000034
Item 8: Glabella tap 
Parameter Value+SD

-0.0197242+
0.0056440

0.03293384+
0.01845385

-0.0010851+
0.0049660

0.00159485+
0.00117384

-0.0006150+
0.0007379

-0.0009878+
0.0005246

-0.0270163+
0.0060964

P-value 0.0004981 0.07802573 0.8275991 0.17806689 0.4071433 0.0632222 0.0000097
Item 9: Tremor 
Parameter Value+SD

-0.0144065+
0.0084000

0.02617530+
0.01763989

-0.0011869+
0.0047681

0.00134928+
0.00112691

-0.0007515+
0.0007073

-0.0006964+
0.0004961

-0.0252157+
0.0063363

P-value 0.0870404 0.14150097 0.8040263 0.23449690 0.2911272 0.1640864 0.0000707
Item 10: Salivation 
Parameter Value+SD

-0.0138284+
0.0212794

0.02633352+
0.01744330

-0.0012347+
0.0047136

0.00141821+
0.00111326

-0.0007724+
0.0006997

-0.0006952+
0.0004918

-0.0285929+
0.0061225

P-value 0.5159027 0.13475688 0.7939995 0.20612804 0.2728021 0.1610969 0.0000031



Figure 1: Kinect assessment
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Figure 2: Results from the questionnaire about the participants opinion about the Kinect Motorgame
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