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Summary (English)

The goal of this thesis is to develop statistical image analysis tools to char-
acterise the micro-structure of complex materials used in energy technologies,
with a strong focus on fibre composites. These quantification tools are based on
measuring geometrical parameters defining structures from 2D and 3D images,
especially acquired through X-ray computed tomography (CT).

Fibre composites are extensively used in transportation and energy technologies
such as wind turbines. It is of high importance to characterise composites
accurately and to understand their behaviour under load to ensure efficiency
and longevity of these technologies.

Imaging with X-ray CT has been the foundation of the thesis. This technique
enables analysis in 3D and at the micro-scale, where individual fibres are distin-
guishable. By combining ultra-fast X-ray CT and in-situ loading environments,
it is possible to image composites with high spatial and temporal resolution to
capture the small and sudden micro-structural changes caused by loading.

This thesis demonstrates that statistical image analysis combined with X-ray CT
opens up numerous possibilities for understanding the behaviour of fibre com-
posites under real life conditions. Besides enabling characterisation of mate-
rial properties, estimating individual fibre centre lines and diameters allows the
quantification of small micro-structural changes with a high degree of accuracy,
as it is possible to follow how each individual fibre changes across data-sets ac-
quired under progressive loading conditions. Finally, the thesis demonstrates
the precision to which fibre geometry can be characterised through X-ray CT
and the developed data analysis tools.
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Summary (Danish)

Målet med dette projekt er at udvikle statistiske billedanalyseteknikker, som
kan anvendes til at karakterisere mikrostrukturer i komplekse materialer, med
særlig fokus på fiberkompositter som ofte anvendes i energisektoren. Disse kvan-
tificeringsværktøjer anvender geometriske parametre til at beskriver strukturer
i 2D, 3D og 4D, baseret på røntgentomografidata.

Fiberkompositter anvendes i vid udstrækning i transport- og energiteknologier
eksempelvis til vindenergi. Karakterisering af fiberkompositter er essentielt til
at forstå deres opførsel under belastning og for at sikre effektivitet og levetid af
materialerne.

Imaging med røntgentomografi er grundlaget for denne afhandling. Røntgen-
tomografi tillader analyse på mikroskala i 3D i en opløsning, hvor individuelle
fibre kan adskilles. Desuden gør ultrahurtig røntgen-CT det muligt at afbillede
i høj tidslig og rumlig opløsning, og herved kan mikrostrukturelle ændringer
observeres i materialer, der belastes in-situ.

Denne afhandling demonstrerer, at statistisk billedanalyse kombineret med røntgen-
CT åbner adskillige muligheder of at forstå opførslen af fiberkompositter under
realistiske forhold. I tillæg til karakterisering af materialeegenskaber tillader
målingen af individuelle fibercentre og –diametre karakterisering af mikrostruk-
turelle ændringer med høj præcision, da det er muligt at følge ændringer i fibre
mellem datasæt optaget under øget belastning. Endeligt demonstrerer afhand-
lingen højpræcisionsmålinger af fibergeometri, som kan opnås gennem karakte-
risering med brug af røntgen-CT og de udviklede analyseværktøjer.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science (DTU Compute) of the Technical University of Denmark in ful-
filment of the requirements for acquiring a Doctor of Philosophy (PhD) degree
in Applied Mathematics and Computer Science, with emphasis on Statistical
Image Analysis.

A third of the funding originated from DTU Compute Graduate School and
two-thirds were funded by the alliance for imaging and modelling of energy
applications (CINEMA), a research project granted by Innovation Fund Den-
mark with the purpose of investigating the micro-structure of materials used
in energy technologies. The thesis work was supervised by Associate Professor
Anders Bjorholm Dahl and co-supervised by Professor Knut Conradsen. Assis-
tant Professor Vedrana Andersen Dahl also contributed in high degree to the
development of the methodology.

The research presented in this thesis includes methods for extraction and quan-
tification of structures from images, mainly 3D and acquired through X-ray
micro-tomography. The work was carried out in close collaboration with part-
ners from the CINEMA alliance. The advanced statistical image analysis tools
developed here can provide insight that will aid the understanding of the re-
lationship between the micro-structure of a material and its macroscopic be-
haviour under real life conditions.

The thesis consists of an introduction, a description of the theoretical back-
ground, a discussion on the major scientific contributions and five original
manuscripts prepared during the course of the project.
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Chapter 1

Introduction

1.1 Scope of the Project

The focus of this thesis is on developing statistical image analysis pipelines pri-
marily to characterise fibre geometry at the micro-scale from X-ray computed
tomography (CT) images. The main tasks are geometry extraction and charac-
terisation, illustrated in Figure 1.1.

Applications I: 

Statistical characterisation of real structures 

Fibre orientations Fibre diameters

Figure 1.1: Statistical image analysis for fibre geometry characterisation.



2 Introduction

The work presented in this thesis is part of the alliance for imaging and modelling
of energy applications (CINEMA), a research project granted by Innovation
Fund Denmark [DSF-Grant No. 1305-00032B]. The CINEMA project is a five
year multi-disciplinary project comprising various industrial and academic part-
ners with different scientific backgrounds including material scientists, mechani-
cal and software engineers, chemists, physicists, mathematicians and data scien-
tists. The academic partners are the departments of Physics, Energy, Compute
and Wind Energy from Danmarks Teknniske Universitet (DTU); the Chemistry
department and Niels Bohr Institute (NBI) from Københavns Universitet (KU);
Manchester X-ray Imaging Facility; Northwestern University and the MAX IV
Laboratory. The industrial partners are Haldor Topsøe, Amminex Emissions
Technology, LM Wind Power, Xnovo Technology and Rockwool.

CINEMA’s aims are to develop methods for characterising the three-dimensional
(3D) micro-structure of complex materials employed in energy technologies un-
der realistic conditions and in real time. This will enable improved under-
standing of their macroscopic behaviour, as the performance of such materials
is strongly related to their multi-scale structure right down to the micro- and
nano-scales.

The two major topics under investigation are flow and damage. Flow proper-
ties, relevant for porous materials, are of high importance in determining the
performance of, for example, catalysts or fuel cells. Damage induced structural
changes, such as crack or fracture nucleation and propagation, are relevant in
determining the lifetime of, for instance, wind turbine blades or fuel cells.

The ambition of CINEMA is to cover the complete pipeline from experimental
design to characterisation of the micro-structure. The pipeline involves a set of
stages where different abilities are required and that is why a lot of the work
presented in this thesis has been developed in close collaboration with CINEMA
partners. The stages in this pipeline are experimental design, image acquisition,
image reconstruction, image segmentation and structural modelling. It should
be noted that modelling can refer to either finite element modelling (FEM) for
simulation or statistical modelling for quantification.

This thesis covers the stages of image segmentation and statistical modelling
necessary for the extraction of 3D structures from the tomographic reconstruc-
tions, and the posterior quantification of the extracted structures. Out of the
broad range of complex materials used in energy technologies, this thesis focuses
on unidirectional (UD) fibre composites, and briefly touches upon solid oxide
fuel cells (SOFCs) and ammonia slip catalysts (ASCs).
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1.2 X-ray Imaging of a Material’s Micro-structure

X-ray imaging, discovered more than a century ago (Röntgen, 1898), enables
inspection of a sample’s interior in a non-destructive manner thanks to the pen-
etration ability of X-rays. While X-ray imaging is mostly known from medical
radiography, it is now widely used for both commercial and research purposes.
Examples include security screening, in-line defect and quality control in the
manufacturing industry or engineering of new materials and products.

Absorption X-ray imaging, which will be explained in more detail in Chapter 2,
is the most common modality obtained with X-rays. As it is based on the at-
tenuation properties of the sample, it is appropriate for differentiating materials
that are significantly different in density. As aforementioned, the thesis work
has mainly focused on characterising the structure of fibre composites at the
micro-scale. The first step in analysing the X-ray scans is to separate fibres
from the other material phases in the composite, referred to as background.

To segment individual fibres these need to be somewhat resolved in the scan.
Thus, an adequate spatial resolution and a good enough contrast between fi-
bres and background is necessary. The contrast between fibres and background
is mostly determined by the difference in density between the two. The fibre
phase can be represented by natural or human-made fibres. Examples of nat-
ural fibres include hemp, banana, cotton, wood and minerals. With regards to
human-made fibres, these can be semi- or fully synthetic including Kevlar R©,
carbon, glass, metal and plastic fibres. We considered glass and carbon, which
have densities of 2.6 g/cm3 and 1.8 g/cm3 respectively. As to the background,
it is usually comprised of a polymer and possibly manufacturing defects such as
air bubbles or gases from the resin curing process. The polymer is commonly
epoxy, which has a density of 1.2 g/cm3; three orders in magnitude larger than
the density of air. The difference in density and chemical composition between
carbon fibres and epoxy is such that these can be challenging to segment, espe-
cially when the quality of the scan is low. Concerning the spatial resolution of
the scan, the composites must be imaged at the micro-scale so that individual fi-
bres can be resolved, as we have been looking into fibres with average diameters
ranging from 7 µm to 17 µm. Thus, X-ray micro-CT, which refers to 3D ab-
sorption X-ray imaging at the micro-scale, is an adequate imaging modality for
investigating composites (Pyrz, 1999) at a resolution that allows segmentation
of individual fibres (Requena et al., 2009).

In recent years, advances in the resolution that can be obtained using X-rays
have enabled inspection of materials down to the micro- and nano-scale even
in laboratory set-ups. In the past, such resolutions could only be obtained at
large scale facilities such as synchrotrons (Stock, 1999), which are difficult to
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access because of the cost or waiting time and the short allocated beamtime.
The possibility of using laboratory set-ups for inspecting the 3D micro-structure
of materials in a non-destructive manner means that the number of applications
is growing and, consequently, also the amount of data that is being acquired.
Moreover, advances in time-resolved X-ray imaging mean that in-situ studies
to examine small and sudden changes in the structure under certain loading
conditions have become possible, and add to the ever growing amount of data
acquired. Although X-ray CT is transforming from a qualitative diagnostic tool
to a quantitative one (Maire and Withers, 2014), a lot of this data is still being
inspected visually because the current image analysis software - ImageJ (Schnei-
der et al., 2012) and the WEKA tool (Hall et al., 2009), Thermo ScientificTM

Amira-Avizo or VGStudio Max (Volume Graphics GmbH) - cannot provide a
solution to every problem. The ever increasing volumes of data mean that it is
not feasible to inspect this data manually, due to time constraints. Moreover,
manual analysis introduces human errors which can create statistical biases,
and is anyway often qualitative in its nature, as it is not practically possible, for
example, to count the amount of particles or fibres even if examining a small
volume. Therefore, there is a need for image analysis methods and pipelines
that can provide quantitative information in a reasonable amount of time and
in a statistically meaningful way, and that are appropriate for the problem under
study, hence the need for tailored and/or flexible solutions.

1.3 Materials for Energy Technologies

Denmark wants all energy consumption to be based on renewable sources by
2050 (Government, 2013). To achieve this, it is important to develop renewable
energy technologies to ensure both efficiency and an extended lifetime. As was
mentioned above, characterising the 3D micro-structure of complex materials
used in energy technologies, and its changes under certain real life conditions
(e.g. changes in temperature, tension or compression stresses), can be essential
for understanding the properties of these materials.

A big contribution of this thesis is a pipeline that can measure fibre geometry
from tomograms of UD composites by segmenting individual fibres. The pipeline
has been applied to investigate glass and carbon fibres, but could also be applica-
ble to other synthetic or natural fibre-based materials. A large amount of studies
on fibre composites rely on artificially generated fibre arrangements (Budian-
sky and Fleck, 1993; Fleck and Shu, 1995; Kyriakides and Arseculeratne, 1995;
Jensen and Christoffersen, 1997), but in real composites there is a significant de-
gree of randomness. The individual fibre segmentation pipeline combined with
X-ray imaging opens up the possibility of studying real fibre arrangements. This
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can provide information to optimise manufacturing processes and ultimately ac-
celerate the development of cost-efficient components based on fibre composites.

An essential part of reducing the cost is in providing precise numerical and an-
alytical models that can predict the macroscopic properties and behaviour of
fibre composites based on their micro-structure. Existing models can be now
tested over real fibre architectures with the aim of validating the predictions
of these models. A higher confidence in these models can reduce the need of
over-engineering components and performing expensive destructive mechanical
testing. Additionally, the fibre extraction pipeline can be employed to follow
and investigate the changes in fibrous materials under progressive loading con-
ditions. Besides contributing to the understanding of damage mechanisms and
their evolution from localised structural damage to catastrophic failure, valu-
able insight can be obtained on the precursors to the very complex damage
mechanisms that affect fibre composites under real life working conditions.

Several case studies have been carried out in collaboration with CINEMA part-
ners. Together with DTU Wind Energy we are working on characterising indi-
vidual fibre orientations and diameters. Together with material scientists based
at Manchester X-ray Imaging Facility we are observing, measuring and mod-
elling the changes in fibre orientations and curvature caused by static loading
in compression. We are also starting to look into the relationship between fibre
geometry and fibre fracture nucleation and propagation under static loading in
tension.

Last but not least, it should be noted that the dictionary-based probabilistic seg-
mentation framework that will be presented in Chapter 3 has also been applied
to segment material phases in phantom data of solid oxide fuel cells (SOFCs)
and individual particles in ammonia slip catalysts (ASCs). This segmentation
methodology combined with mathematical modelling and statistical analysis
could potentially be applied to characterise other materials as well.

1.3.1 Characterisation of Fibre Composites

An improved understanding of fibre composites will enable the development
of longer and stronger turbine blades, which will in turn allow for more cost-
effective wind turbines and ultimately energy. In theory, the power output of a
wind turbine is proportional to the blade length squared (Burton et al., 2001).
The load carrying parts of long wind turbine blades are mainly made of UD
fibre reinforced polymers where most of the fibres are aligned with the primary
loading direction. Together with DTU Wind Energy we have investigated the
micro-structure of these fibre composites. Understanding the micro-structure
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is important because it is highly related to the macroscopic behaviour of these
materials.

The key properties the fibre composite should have when designing long blades
are high fatigue resistance, low weight, high stiffness and high compression
strength (Brøndsted et al., 2005). Fatigue resistance is crucial when designing
long lasting blades because the blades should withstand repeated loads during
a long period of time. As it is a key factor limiting the design of long blades,
a great deal of attention is being paid to fatigue damage evolution (Jespersen
et al., 2016; Jespersen and Mikkelsen, 2017). The interactive segmentation tool
in Paper C is able to segment fibre fractures with just a little bit of manual
input, reducing the amount of time required for counting and determining the
location of fibre fractures.

Our main collaboration with DTU Wind Energy has focused on characterising
individual fibre orientations employing the fibre geometry extraction pipeline.
It is in quantifying the stiffness and compression strength properties where fi-
bre orientations are most relevant. While carbon fibres are both stiffer and
lighter than glass fibres, they are much more expensive. The stiffness of the
considered composites in the fibre direction is related to the fibre material and
also to the alignment of the fibres inside the composite (Krenchel, 1964). As
to strength, carbon fibres have a significantly higher tensile strength but only a
slightly higher compression strength than glass fibres. In compression, the ma-
trix phase of the composite plays an important supporting role by keeping the
fibres straight while they carry the load. For this reason, the matrix material
strongly determines the compression strength together with fibre misalignment,
which influences the matrix ability of keeping the fibres straight because it intro-
duces shear stresses at the angled fibre segments (Budiansky and Fleck, 1993).
Hybrid materials that combine both glass and carbon fibres are being investi-
gated to achieve a solution that provides a good compromise between stiffness
and strength compared to price.

The production process of the fibre bundles and the manufacturing technique
chosen for building up the composite have a high impact on the composite’s
performance. On the one hand, the fibre production process determines the
distribution of fibre diameters inside a bundle. On the other hand, the manu-
facturing technique of the composite establishes the bundle arrangements and
determines the alignment of individual fibres inside the bundles.

Various analytical and numerical models have been proposed to relate the prop-
erties of the material to its micro-structure. For example, the formula by
Krenchel (Krenchel, 1964) relates fibre misalignment to stiffness whereas Budi-
ansky’s (Budiansky and Fleck, 1993) relates fibre misalignment to compression
strength. These models are simplifications of much more complex relationships.
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Although Krenchel’s formula can provide quite accurate stiffness predictions,
Budiansky’s obviates a very important factor. That is the spatial distribution
of the fibre orientations, which could notably influence the compression strength
of the composite (Liu et al., 2004).

The pipeline for fibre geometry extraction has been combined with mathematical
modelling and statistical analysis techniques to study the spatial distribution of
individual fibre orientations and diameters at the micro-scale. Material property
estimates can be obtained from these and compared to specifications provided
by the manufacturer or to properties measured through, for example, mechan-
ical testing. Additionally, the extracted fibre geometry can be imported into
the FEM software ABAQUS which, besides predicting material properties, can
perform simulations on how loading conditions would affect the experimentally
measured image-based geometry.

To sum up, the access to individual fibres will enable a better understanding of
how the arrangement in space of fibre orientations and diameters may influence
the behaviour of the material, opening up the opportunity for incorporating spa-
tial distributions in models that relate micro-structure with physical properties.
In other words, understanding better how fibre orientations and diameters will
influence the material’s properties can accelerate the development and validation
of numerical and analytical models that describe the composites behaviour.

1.3.2 Understanding Damage in Fibre Composites under
Load

Damage mechanisms in composites are very complex. Following the changes
in the micro-structure of fibre composites under progressive loading conditions
will reveal the precursors to damage. Together with the School of Materials of
the University of Manchester we are investigating the formation of kink-bands,
the most common type of damage found in fibre reinforced polymers under axial
compression (Dow and Gruntfest, 1960) - compression in the direction parallel to
the primary fibre direction. Structural damage caused by static tensile loading
is also of great interest for the composite researchers at Manchester.

Investigating the geometry of the final kink-band damage provides little clues
on what gives rise to its formation. Therefore, it is of interest to study the
fibre bending at the micro-scale, named fibre micro-buckling or kinking, which
happens before the fibres break and form the kink band (Moran et al., 1995;
Guynn et al., 1992). An experiment that combines time-lapse X-ray CT with
in-situ loading in compression was designed by our collaborators to image a
composite while loading it in axial compression until failure (Wang et al., 2017).
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The hope was to capture the onset and progression of fibre micro-buckling in the
steps leading up to kink-band formation, as well as the precursors to fibre micro-
buckling. Although many researchers believe that initial fibre misalignment and
waviness play a big role (Soutis, 1997; Wisnom and Atkinson, 2000), together
with the constraints imposed by the matrix with regards to lateral movement of
fibres (Pimenta et al., 2009), the initiation mechanism for fibre micro-buckling
is still a subject of debate. The methodology developed for this collaboration is
able to extract 3D fibre geometry at successive loading steps with fibre to fibre
correspondence. Following the changes that each individual fibre undergoes as a
consequence of loading enables the characterisation of small 3D micro-structural
changes in the fibre architecture.

Predicting fibre failure under static tensile loading is also fundamental. Al-
though different models have been developed towards this aim (analytical, sta-
tistical, numerical, etc), this is still a challenge. Combining physical-based ob-
servations (e.g. in-situ tensile experiments and X-ray CT) with statistical image
analysis based on the image-measured geometry, can lead to insights into the
relationship between fibre fractures and the as-manufactured fibre geometry.
More specifically, the ultimate goal here is to understand how spatial location,
alignment and diameters of individual fibres influence fracture nucleation and
propagation. While it is expected that fibre orientations will not have a large
influence on the tensile behaviour, the local arrangement of the fibres (e.g. fibre
packed regions and fibres belonging to resin rich regions) could be crucial. In
addition, the spatial distribution of fibre breaks and their progressive accumula-
tion can provide a means to appreciate the influence of the stress concentration
around a broken fibre and on how the load is redistributed in the surrounding
unbroken fibres.

1.4 Thesis Objectives

The main thesis objectives are driven by the requirements of the partners inside
the CINEMA alliance. These include:

• Demonstrating that X-ray tomography combined with advanced statistical
image analysis can be employed to gain understanding about materials
used in energy technologies.

• Developing analytical tools to extract parameters defining geometrical
structures. This involves two- and three-dimensional image segmentation,
feature detection and tracking, mainly applied to measure fibre geometry,
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but also briefly touching upon other energy materials such as solid oxide
fuel cells (SOFCs) and ammonia slip catalysts (ASCs).

• Measuring, quantifying and modelling in a statistically meaningful man-
ner the geometry of fibre arrangements at the micro-scale, as well as the
changes that the geometry undergoes under real life conditions.

• Validating quantitatively the accuracy of using X-ray tomography and our
individual fibre segmentation pipeline for characterising the geometry of
fibre composites.

• Providing a software toolbox which material scientists and mechanical
engineers can apply to analyse their own data-sets.

1.5 Thesis Overview

The thesis is divided into three main parts: I. Methodology, II. Analysis Pipelines
and Applications, and III. Publications.

Part I addresses the methodology that has been used in this thesis. Chapter 2
provides some background on the imaging modalities employed for acquiring the
data analysed in this thesis work. Chapter 3 covers the dictionary-based prob-
abilistic segmentation framework, which yields probability maps containing the
likelihood of each pixel belonging to a set of pre-defined classes. Further process-
ing is required to extract geometry in the form of coordinates and boundaries.
Chapter 4 deals with geometry extraction, which can be performed directly
over the acquired intensity image or from its probabilistic segmentation. Fi-
nally, Chapter 5 describes the statistical methodology applied for inspecting the
parameters we use for characterising fibre geometry and its changes, together
with the statistical models applied for validating the accuracy of the developed
data quantification pipelines.

Part II serves as a link between the methodology presented in Part I and the
contributions included in Part III. Chapter 6 explains the different blocks of
the basic pipeline developed for fibre geometry extraction and the extensions
and improvements it has gone through during the course of the thesis work.
Chapter 7 discusses some of the applications of the pipeline, i.e. characterising
fibre geometry through fibre orientations and diameters, and characterising the
changes in individual fibre orientations under loading of the sample. Chapter 8
covers the topic of validation, where different data quantification pipelines are
compared to assess the accuracy in measuring the real physical data.



10 Introduction

Part III contains the main articles that have come out from the work of these
three years.



Part I

Methodology





Introduction to Methodology

To harvest as much information as possible when investigating a material’s
micro-structure through imaging, it is essential to develop image analysis pipelines
that are able to go all the way from data acquisition to data quantification and
statistical modelling. These pipelines are comprised of several building blocks,
which are based on the methodology that will be explained in this part of the
thesis.
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Chapter 2

Imaging Modalities

This chapter describes the imaging modalities that have been employed to cap-
ture the data analysed in this thesis. As the main focus has been on X-ray CT,
an explanation on the basics of absorption X-ray imaging is provided; together
with a description of synchrotron facilities. The chapter continues by explaining
the basics of CT and discussing the main quality deteriorating mechanisms in
X-ray imaging. A brief explanation on scanning electron microscopy (SEM) and
optical microscopy (OM) is also included, as some of the thesis work has also
touched upon data acquired with these two-dimensional (2D) modalities.

2.1 X-ray Imaging

Absorption X-ray imaging is the most common modality for X-ray systems. A
typical set-up consists of a source, a sample and a detector. In a laboratory set-
up, the source will be an X-ray tube (or gun), whereas in a large scale facility
the source will be synchrotron light. The source generates an X-ray beam with
a certain intensity and energy profile (spectrum), and the detector measures the
remaining X-ray signal after the beam has been attenuated by the sample and
potential filters that lie in between source and detector.
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Synchrotron radiation will be explained later in Section 2.1.1, so the focus here
is on describing how X-ray tubes used in laboratory set-ups generate X-ray
radiation. X-ray tubes consist of a filament-type cathode and a metallic target
called anode (Karunakaran and Jayas, 2014) and are subjected to an accelerating
voltage (kV) and a current (mA). When the filament is heated, electrons are
generated by the cathode. These electrons are accelerated in vacuum and, when
they strike the anode (typically made of Tungsten), X-ray photons are emitted.
While the current determines the amount of electrons that hit the anode, and
thus the number of photons emitted by the tube, the voltage determines the
speed at which the electrons hit the anode, which will affect both the energy
and the number of photons produced by the tube. The amount of photons is
linear with respect to the amount of electrons that strike the anode whereas it
is cubic with respect to their speed. Another important characteristic of the
tube is the focal spot of the anode, an area defined by the size and shape of the
electron beam when it hits the anode (Curry et al., 1990). The smaller the area
of the focal spot, the finer the details that can be observed in the X-ray image.

As aforementioned, an X-ray beam is characterised by its energy and intensity
I. The energy range is shaped by the target anode material and the voltage of
the tube whereas the intensity, regulated by the number of photons emitted by
the tube, is determined by the voltage and the current. When the X-ray beam
passes through the sample, its intensity is reduced because of the interaction of
the photons with matter. This loss is known as attenuation, which is caused
by all phenomena removing photons from the X-ray beam path (absorption,
scattering, etc.). Higher energy photons travel across the sample more easily
than lower energy photons and that is why it is said that they have greater
penetration power. The amount of radiation that passes through a material is
given by the Beer-Lambert law,

Iout = Iine
−(µl) (2.1)

where µ [m−1] is the linear attenuation coefficient and l [m] is the thickness of
the material. The linear attenuation coefficient of a material µ depends on the
energy of the X-rays and on the material’s atomic number Z and density d.

2.1.1 Synchrotron Light

Synchrotron radiation is produced at large scale facilities which are able to
provide a high flux and highly collimated beam that, compared to laboratory
sources, is extremely coherent both in time and space (Huang, 2013). This
allows for obtaining high quality images with good contrast, high signal-to-
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noise ratio and fine spatial resolution, in much shorter time spans than what
can be obtained in laboratory set-ups. Synchrotron facilities are highly superior
to laboratory set-ups not only in terms of the source, but also for other reasons.
These include the access to a broader range of imaging modalities and a greater
deal of flexibility when designing experimental set-ups, for instance, with regards
to the sample and its environment. It should be mentioned that I was fortunate
enough to spend three months of my PhD studies at ID19, the micro-tomography
beamline of the European Synchrotron Research Facility (ESRF).

A synchrotron source consists of a linear accelerator (Linac), a booster and a
storage ring. Electrons are produced by an electron gun and accelerated by the
Linac until they almost reach the speed of light. Once the electrons have entered
the booster, they circulate inside this circumference until they have acquired a
high enough energy to be inserted in the storage ring. The storage ring, which is
actually a polygon, is made of straight sections and bending sections where the
electrons run in almost perfect vacuum. Straight sections host focusing magnets
to ensure that electrons remain close to their orbital path. On the other hand,
bending sections host large dipole electromagnets, called bending magnets, that
are used to create the turns in the trajectory of the electrons. When electrons
turn, they lose energy and emit photons.

Immediately after most of the bending magnets there are beamlines. A few of
the beamlines use the photons emitted by the bending magnets. However, in
third generation synchrotrons, most beamlines use the X-ray radiation produced
by insertion devices (wigglers or undulators), placed just before the bending
magnets. In this case, bending magnets just serve the purpose of isolating the
X-rays from the electrons. Beamlines that use radiation from bending magnets
have a broad and fixed X-ray spectrum, while those that use radiation from
insertion devices can either have a broad spectrum or discrete harmonics. The
gap and the current of the insertion devices can be tuned to influence the energy
spectrum and intensity. The beam resulting from insertion devices is more
collimated and consequently more brilliant than the one produced with bending
magnets.

Beamlines consist of an optics cabin, an experimental cabin and a control cabin.
It is at the experimental cabin of the beamline where the sample, its environment
and the detector are placed. In the optics cabin, the X-ray beam can be shaped
further with filters and monochromators until the required energy spectrum is
obtained. As to the control cabin, it is a place where researchers customise the
necessary software to control the different devices in the optics and experimental
cabins before and while running the data acquisition process.
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2.1.2 Computed Tomography

When a sample is scanned from a specific direction, the information captured by
the detector is in the form of X-ray projections, which provide the attenuation
across the sample. In this work there is a need for a 3D X-ray image of the
sample from which the 3D micro-structure of the material under study can be
observed, measured and analysed.

Computed Tomography is the procedure which involves imaging a sample from
different directions so as to obtain 3D information, and is not only applied to
X-ray imaging but can also be applied to other imaging modalities. For this pur-
pose, either the source and detector or the sample is rotated while a number of
projections from different angles are taken (Michael, 2001). From these projec-
tions, the 3D attenuation can be inferred by solving a multi-dimensional inverse
problem named tomographic reconstruction. The most common tomographic
reconstruction technique is an analytical method called filtered back projection
(FBP) (Herman, 2009) and it is based on the Radon inverse formula (Radon,
1917). FBP applies a convolution filter to overcome the blurring produced by
the conventional back-projection algorithm (Dudgeon and Mersereau, 1984). A
downside of FBP is that it would provide the exact solution if infinite projections
with infinite resolution were to be available. For more realistic settings, where
the data is discrete and noisy or fewer angles are available, iterative reconstruc-
tion algorithms (Beister et al., 2012) might be necessary. To our knowledge, all
the data in this thesis was reconstructed by means of FBP.

2.1.3 Noise and Artefacts

The primary determinants of image quality are noise, artefacts and variations
in spatial resolution. This section will cover the first two, noise and artefacts,
because these are the ones that challenge the task of image segmentation, the
core methodology of this thesis.

The term artefacts refers to undesirable image features that would occur again if
the scan is retaken under identical conditions. In contrast, noise always appears
at random and would therefore be different even if the scan is repeated under
identical conditions. A sample comprising several uniform phases ought to have
a high enough relative contrast between its different material phases if wanting
to separate them one from another. High noise levels can reduce the relative
contrast between phases, making them indiscernible from one another. Artefacts
will also affect the relative contrast between material phases, but normally just
locally whereas noise will usually affect globally.
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There are several random processes in X-ray imaging that can lead to quantum
noise. These include i) the number of photons that leave the source; ii) the
number of photons that travel through the object unaffected, without being
scattered or absorbed; iii) the number of photons that are captured by the
detector; iv) the number of light photons generated per captured X-ray photon
and v) the response of the imaging sensor when receiving light photons. Overall,
the noise is approximately Poisson distributed.

The most typical artefacts are covered in (Boas and Fleischmann, 2012). Some
of these are already present in the projections, for example, streak artefacts.
These can be caused by multiple mechanisms including Poisson noise or beam
hardening, where low energy photons are absorbed quicker by the material than
those with higher energy. Streak artefacts can be reduced using iterative re-
construction techniques. Other common artefacts appear when performing the
reconstruction from the projection data. If the sample has moved during the
scan there will be motion artefacts in the form of blurring and, if the centre
of rotation is not measured precisely, edge artefacts can also be present. The
type of artefacts that were encountered more often during this work were ring
artefacts. Ring artefacts occur when a feature is not properly corrected by the
flat field or if there are dead pixels in the detector.

Flat-field correction is the standard procedure at synchrotrons and laboratory
sources to obtain the beam intensity Iin, which is necessary to calculate the
attenuation µl from the detected intensity Iout, as was shown in Equation 2.1.
It is performed by taking an image with the beam on but without a sample
(flat-field image). For the same experiment, the scan time can be much longer
at laboratory sources than at synchrotrons. Thus, flat-field images are taken
several times during an experiment in order to correct for temperature variations
that cause changes in the intensity of the beam. At synchrotrons, flat field
images might just be taken before and after scanning.

Besides correcting for non-uniformities in the incident X-ray beam, flat-field
images will also correct for non-uniformities in the detector system. During
the flat-field correction process, dark field images are also acquired. These are
images with the beam off and are usually taken at the end of the scanning to
capture fixed-noise patterns or systematic errors.

During the course of this project, collaborators have acquired most of the data
and performed the reconstruction, noise and artefact reduction techniques them-
selves. The synchrotron data-set used in Paper D was acquired by myself at
beamline ID19 of ESRF and there I did run the reconstruction and ring artefact
correction myself. I did the correction post-reconstruction using polar coor-
dinates to remove circular objects around a centre of rotation. For all other
data-sets used in this thesis, we were aware that some artefact or noise re-
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duction had been applied before, for example, beam hardening correction, and
further removal of artefacts or noise has not been necessary. This is mainly due
to applying analysis methods that are robust to noise and, if an artefact were
to occlude a randomly picked fibre occasionally, it would not affect the resulting
statistics.

2.2 Optical Microscopy

The optical microscope (OM), often referred to as light microscope, has its
roots in the 17th century. The latest microscopes are digital and use visible
light, a set of lenses and a digital camera to capture a 2D image of the surface
of a sample. The maximum resolution that can be obtained is limited by the
minimum wavelength of visible light (λ = 0.4 µm), and is of approximately
200 nm.

2.3 Scanning Electron Microscopy

A detailed overview of the origins and development of scanning electron mi-
croscopy (SEM) until it was first marketed by the Cambridge Instrument Com-
pany is given by (McMullan, 1995). A scanning electron microscope is an elec-
tron microscope that scans a sample’s surface with a focused beam of electrons
and provides information about the composition and topography of the scanned
surface. The magnification provided by SEM can be tuned over a range of
around six orders of magnitude up to resolutions that lie under 1 nm. The
sample preparation process is quite tedious, requiring grinding and polishing of
the surface to be scanned until it becomes perfectly smooth. This often causes
fractures in weak materials, such as in the glass phase of glass fibre composites.



Chapter 3

Dictionary-based
Probabilistic Segmentation

Image segmentation or pixel classification is the process of assigning a label to
each individual pixel in an intensity image. There can be as many labelling
options for each pixel as classes into which we choose to separate the image in.
For every class, the resulting segmentation will be a binary image that has 1’s
in the pixels belonging to that class and 0’s elsewhere. In contrast, probabilistic
image segmentation does not decide whether a pixel belongs to one class or
another, it produces a probability map for each class instead. In other words,
an image containing for each pixel a value in the range [0, 1], accounting for the
probability that the given pixel has of belonging to a certain class.

This chapter starts in Section 3.1 by motivating the choice of the dictionary
learning segmentation framework. Then, it continues by presenting in Sec-
tion 3.2 the basic segmentation algorithm together with a discussion on tweak-
ing its parameters. This algorithm is supervised, meaning that it requires a
learning (or training) step, where the relationship between a raw image and
a corresponding pixel-wise labelling is learnt and encoded in a dictionary. It
should also be mentioned that this algorithm lies in the category defined above
of probabilistic image segmentation algorithms. The chapter ends by describ-
ing in Section 3.3 the main variants to the basic algorithm, which has been in
constant development during the course of this thesis work.
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3.1 Motivation and Background

A dictionary of image patches is a compact manner of representing the infor-
mation contained in an image using small patches that capture local differences
at the patch scale. The dictionary needs to contain enough elements so that it
can model all the different patterns present in an image, and the image needs to
be somewhat regular to be described adequately by a compact dictionary that
actually condenses all the information contained in the image. Sparse image
coding (Elad, 2010; Olshausen and Field, 1997), applied to various image gen-
eration problems; and textons (Julesz, 1981; Leung and Malik, 2001; Shotton
et al., 2008), for texture modelling, are both based on dictionaries. Dictionary
learning has proven to be successful for texture segmentation as well (Mairal
et al., 2008; Malik et al., 2001). There are various mathematical approaches
for learning the dictionary and a good overview is given in (Etter et al., 2011).
Dahl and Larsen (Dahl and Larsen, 2011) obtain state-of-the-art performance
for texture segmentation using a simple weighted k-means approach to learn a
dictionary of image patches.

Learning dictionaries of discriminative image patches (Dahl and Larsen, 2011)
showed successful results for supervised image segmentation even when images
were contaminated by noise. Actually, this segmentation approach provides
successful results even if the pixel labelling used in the training phase of the
supervised algorithm is of low quality. When the method was first presented,
it was demonstrated on two data-sets. The first case involved classification of
individual pixels in artificially created textured images into the different texture
patterns. The second case dealt with segmentation and classification of cells
from histopathological coloured tissues in different cell types. A year after it
was also applied to tracking neural progenitor cells in phase contrast microscopy
images for mitosis detection (Vestergaard et al., 2012a).

As was mentioned in Chapter 1, much of the work in this thesis has been on
developing methods to aid characterisation of fibres, specifically those in UD
composite materials. Inside a certain UD bundle, there is a high fibre volume
fraction (FVF) and fibres are well aligned with the primary bundle direction.
The cross-sections of UD fibre composites visualised at the micro-scale through
X-ray imaging display closely packed circles corresponding to fibres in a darker
background of epoxy resin, as shown in Figure 3.1. It seemed adequate to try
out the dictionary learning algorithm to separate the individual fibres from the
epoxy resin matrix for several reasons. The dictionary learning methodology i)
showed promising results for segmenting cells, quite similar in structure to the
fibre cross-sections, ii) is robust to noise and iii) the required labelling of the
training images needn’t be a perfect ground truth, nor performed by an expert
from the application side.
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On the one hand, Figure 3.2 exemplifies that the dictionary learning method is
robust to noise. Even though the image to be segmented is noisy (Figure 3.2a),
its probabilistic segmentation (Figure 3.2c) is adequate and contains much less
noise. That is to say, the probabilistic segmentation provided by the dictionary
has improved the separability of both classes significantly, as can be inferred
from the probability density function (PDF) of its pixel values as well. The
PDF in Figure 3.2d shows much better defined valleys than the PDF of the
original intensity image, shown in Figure 3.2b. On the other hand, Figure 3.1
shows the segmentation resulting from thresholding the probabilistic segmenta-
tion obtained through dictionary learning (Figure 3.1d). It illustrates that the
dictionary method can provide good segmentations even if the quality of the
pixel labelling employed in the training step is low (Figure 3.1b).

Initially, the idea was to segment the fibre cross-sectional images into two classes,
corresponding to the two material phases, namely fibres (made of glass or car-
bon) and matrix (made of epoxy resin). As illustrated in Figure 3.1, a segmenta-
tion that separates the image in two phases does not separate individual fibres
one from another, due to the high density of fibres. Similarly, cells were not
separated individually in (Dahl and Larsen, 2011). This two class fibre-matrix
segmentation could be useful for characterising the composite quantitatively
through, for example, the 2D fibre area fraction or the 3D fibre volume fraction
(FVF) which quantify the amount of fibre material inside the composite sam-
ple. However, it would be more interesting for material scientists and mechanical
engineers to measure the geometry of the individual fibres. If individual fibres
are separated from each other, a larger range of properties can be quantified
including number of fibres, individual fibre orientations, diameter distributions
or contact points. Additionally, the geometry defining the individual fibres can
be imported into a FEM software for simulating how real life stress conditions
would affect that specific fibre geometry and material architecture.
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(a) Training data: intensity image. (b) Training data: label image.

(c) Image to segment into two classes,
defined by the two material phases.

(d) Segmentation of 3.1c.

Figure 3.1: Example to show that 1) good segmentations can be achieved using
low quality labellings for training the dictionaries and 2) individual
fibres cannot be separated by segmenting the two material phases.
In (a-b) the training data for learning the dictionaries, where (b)
is a low quality labelling obtained by thresholding (a). In (c)
the intensity image that will be segmented into the two material
phases (carbon fibre and epoxy matrix). In (d) the segmentation
resulting from thresholding the probabilistic segmentation granted
by the dictionaries trained with (a) and (b).
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(a) Image to segment into two classes,
defined by the two material phases.
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(b) Probability density function of 3.2a.

(c) Probabilistic segmentation of 3.2a
using dictionary learning.
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(d) Probability density function of 3.2c.

Figure 3.2: Histograms of the intensity image and its probabilistic segmenta-
tion obtained through dictionary learning. Both histograms show
two peaks and a valley. The valley is deeper and the peaks are fur-
ther away in (d), meaning that noise has been significantly reduced
and thus the separability of the two classes improved.
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The individual fibre segmentation problem was solved by incorporating a third
class to separate the pixels inside a fibre but close to the fibre centre from
those closer to the fibre boundary, where the fibre is either in contact with
other fibres or with the epoxy phase. This approach is illustrated in Figure 3.3,
where the segmentation in Figure 3.3c has been decided by choosing for each
pixel the class that gave the highest probability response. Note that a few fibre
centres are missing in this segmented image, even though the fibre centres are
visible in the probability map in Figure 3.3f. There are other ways of processing
the probability maps which would result in finding the centre regions that are
missing here, and these will be discussed later.

The first application of the fibre extraction pipeline was to measure individual
fibre orientations. For this purpose, fibre diameters are not necessary. 2D centre
coordinates estimated from the centre class probability map or segmentation
are enough to form individual fibre ‘trajectories’. Fibre trajectories are 3D fibre
centre lines connecting the 2D centre coordinates that belong to the same fibre,
with one centre coordinate per fibre and per cross-sectional slice. As the centre
class is enough, we decided to merge the other two classes into a background
class, as shown in Figure 3.4. Now that there are only two classes, thresholding
the probability map for the centre class with a th = 0.5 would grant the same
segmentation as choosing the class that has the highest probability at a certain
pixel, as was done for Figure 3.3. Instead, if we lower the threshold down to
th = 0.4 and apply it to the probability map for the centre class, the centres
which were not visible before, are now present in Figure 3.4b.

It should be noted that the segmentation algorithm has been in constant devel-
opment throughout the thesis work. The principal has actually remained the
same, and it is the implementation that has been changing towards becoming
more efficient and more general. Currently, the segmentation algorithm can
process an image almost in real time and can be applied to semi-supervised
settings, lowering the amount of manual input required for the learning part of
the method.
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(a) Training data: intensity im-
age.

(b) Training data: label image.

(c) Segmentation overlaid onto
classified intensity image.

(d) Probability map for fibre
class.

(e) Probability map for matrix
class.

(f) Probability map for centre
class.

Figure 3.3: Probabilistic segmentation into three classes. In (a-b) the training
data for learning the dictionaries, where (b) is the labelling of (a).
In (d-f) the probabilistic segmentation given by the probability
maps for each of the three classes and in (c) the segmentation ob-
tained by choosing for each pixel the class label that has a highest
probability in that pixel.
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(a) Training data: intensity image and
labelling overlaid.

(b) Segmentation overlaid onto classi-
fied intensity image.

(c) Probability map for centre class. (d) Probability map for background
class.

Figure 3.4: Probabilistic segmentation into centre and background classes. In
(a) the training data for learning the dictionaries and in (b) the
segmentation obtained by thresholding (c), the probability map for
the centre class. In (d) the probability map for the background
class.
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3.2 The Basic Algorithm

The dictionary learning algorithm is able to segment an unseen image once it
has learnt a dictionary of image patches. That is why there are two main steps
in the algorithm, namely training and classification.

In short, the training process is when dictionaries are computed from the input
training data. The input is comprised of an image, similar to those that will
be classified, and a labelling, that associates every pixel in the image with one
out of several pre-defined classes. The dictionary ought to have discriminative
power so that the variety of local differences occurring at the patch scale can
be fully represented with the dictionary elements-also called dictionary atoms.
Actually, the dictionary of image patches is a set of dictionaries: an intensity
dictionary and one label dictionary per class. Each atom inside the dictionary
of intensities will have a corresponding atom in each dictionary of labels.

The classification process can compute probabilistic segmentations of images
that look alike to the one used in the training. Every possible patch in the
image to be segmented is matched with an intensity atom. Its corresponding
label atoms are the probabilistic segmentation for that patch. The output from
the classification process is a probability map for each class. A probability map
encodes the likelihood of belonging to a certain class for each individual pixel in
the image. Below each of the steps inside the training and classification process
are detailed further.

3.2.1 The Training Process

The training process is illustrated in Figure 3.5 and includes the following steps:

First Set the required parameters. The number of classes c in which the image
is going to be segmented, the size (in width) of an image patch M , the
number of random patches Φ selected out of all overlapping patches ex-
tracted from the training data-set, the number of dictionary elements n
and the number of iterations niter. Details on tuning these parameters are
discussed in page 32.

Second Obtain the input data-set for the training process. The training data-set
should be an intensity image that has been fully annotated to associate
pixels with a set of pre-defined classes using one label per class. Inside the
label image, every pixel should take a value in the range l ∈ {1, ..., c} where
c is the number of classes. This is equivalent to having one label image
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per class (as in Figure 3.5) where pixels ∈ {1, 0} depending on whether
they belong to class l or not.

Third Extract all overlapping image patches from the intensity and label images.
Image patches of area M ×M pixels are extracted from the intensity and
label images. Patches are extracted starting on the top-left corner of the
image and moving one pixel down every time until the bottom of the image
has been reached. Then, the next patch will be one pixel to the right of
the top-left corner.

Fourth Select a sub-set Φ of these image patches at random. The sub-set of
corresponding image and label patches vj = (vIj ,vLj) where j = 1, ...,Φ
should be large enough to capture the variety of patches in the training
set and always significantly larger than the number of dictionary atoms n.

Fifth Compute the intensity dictionary dI ∈ Rn×M2

. Intensity patches vI are
grouped using k-means clustering (MacQueen, 1967) where the resulting
cluster centres will be the intensity atoms. This clustering algorithm is
iterative with iterations t = 0, ..., niter. In the first iteration, the n cluster
centres d0I are randomly selected out of the Φ patches. Then, in each
iteration t, patches are assigned to clusters by proximity in euclidean space,

κt(j) = argmin
i
||dtIi − vIj ||22 for j = 1, ...,Φ, (3.1)

where κt indexes the clusters to which the intensity and corresponding
label patches v = (vI ,vL) are assigned to in iteration t. The size of the
matrices vI and vL is Φ×M2 and Φ×M2 × c. The ni patches assigned
to each cluster i are averaged to compute the i-th cluster centre for the
next iteration,

dt+1
Ii =

1

ni

∑

p∈Si

vIp, (3.2)

where Si is a vector of length ni containing the set of indices j for the
patches in cluster i, those for which κt(j) = i.

Sixth Compute the label dictionaries dL|l ∈ Rn×M2

, where each element i is
calculated as

dLi|l =
1

ni

∑

p∈Si

vLp|l for l ∈ {1, ..., c}. (3.3)



The Basic Algorithm 31

Step 1: 

- Extract all image patches

- Randomly select a subset

Step 2:

- Cluster similar intensity patches 

- Calculate the centre for each cluster, that is, 

the intensity dictionary elements.

Step 3:

Establish dictionaries   

Label dictionary elements are the average of the 

corresponding label patches in the similarity cluster

Intensity image

Label images

Training set

 Intensity dictionary

Label dictionaries

Similar patches

...

...

...

...

...

... M

Figure 3.5: Illustration of the training process. First, patches of M pixels in
size are extracted from each of the training images and a random
sub-set Φ is selected. The n intensity atoms are found by cluster-
ing the intensity patches using k-means (MacQueen, 1967). The
label atoms are the average of the label patches associated to the
intensity patches in each cluster. Please note that Φ > n and large
enough to capture the variety of patches in the training set.

3.2.2 The Classification Process

To find the probabilistic segmentation of an unseen image UI ∈ Rx×y the clas-
sification procedure illustrated in Figure 3.6 is carried out. Initially the c prob-
ability maps are empty, that is, every pixel is set to zero. Then, the first patch,
located in the top-left corner, is extracted and matched to the closest inten-
sity atom in Euclidean distance. The intensity atom has c corresponding label
atoms which are added onto the probability maps for each class l at the same
position from which the intensity patch was extracted. For this first patch, the
top-left corner. The same procedure is carried out for all the patches travelling
through UI as explained in the training procedure for extracting overlapping
image patches. Once the bottom-right corner has been reached, the probability
maps are complete. The last step is to normalise the probability maps so that
the value of each pixel across the c classes sums to one.

The dictionary learning method is robust to noise because the probabilistic
segmentation for each pixel is calculated by averaging the label atoms assigned
to all overlapping patches containing that pixel. Additionally, each label atom
was also formed in the training step by averaging the label patches assigned to
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Test image

Probabilistic segmentation

Look up

Assign

Assign

Intensity dictionary

Label dictionaries

Figure 3.6: Illustration of the classification process. First, overlapping image
patches are in turn assigned to the closest intensity atom in eu-
clidean distance. Then, the c label atoms that correspond to the
assigned intensity atom are added to the probability maps for their
class l in the same position where the intensity patch had come
from. And finally, the probabilistic maps are normalised so that
the sum of the c probability maps yields an image with ones in
every pixel.

the same similarity cluster.

3.2.3 Tuning the Parameters

The resulting probabilistic segmentation is most sensitive to the number of dic-
tionary atoms n and the patch size M . It is also important to set a reasonable
value for the number of randomly selected patches Φ for the clustering step
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in the training process, but results are not sensitive to a fine tuning of Φ. The
number of iterations in the clustering process niter does not require a fine tuning
either.

The sub-set of patches to be clustered Φ should be large enough to capture the
variety of patches present in the training image and always significantly larger
than the number of dictionary atoms n. In our experience, a good value for
structures that do not vary much in size and shape, such as the fibres here, is
Φ ≈ 10n. If sizes and shapes vary a little more, it is recommended to increase Φ
to, for example, Φ ≈ 20n. The higher Φ the more certain we can be of capturing
all the possible variations in the data. However, there is a limit to how high one
should go when setting Φ because the higher the longer the clustering step will
take.

With regards to tuning the number of iterations in the clustering step niter. The
problem of separating Φ patches in n clusters where each patch belongs to the
cluster with the nearest centre is a computationally difficult problem (NP-hard).
Heuristic algorithms are usually employed to quickly find a local optima, but
there is no guarantee of finding the global optimal solution. In the considered
k-means (MacQueen, 1967) iterative clustering approach we found that after
niter = 10 results did not change significantly.

The number of dictionary atoms n and patch size M have both proven to be
important. In Paper A we compared the performance of the dictionary-based
fibre centre extraction while varying both n and M . The performance mea-
sures we used were true positive rate (TPR) and false positive rate (FPR) and
the reference centre coordinates were computed by comparing to a manually
annotated reference image, as explained in Paper A. Table 6.1 summarises the
performance information for the different combinations of parameters. The gain
from n = 250 to n = 1000 is not worth the extra computational time required
for finding the closest intensity atom out of a larger set because this has to be
done every time a patch ought to be classified.

The computational time also grows with the patch size M due to the nearest
neighbour searches taking place in a higher dimensionality space. With regards
to performance, the ideal patch size should be in the scale of the texture that
ought to be captured. For obtaining a probabilistic segmentation into fibre
centre regions and background, patches should have a similar size to fibres so
that patches covering centre regions can contain both fibre phase and matrix
phase. If the patch size is too small for covering both phases, it would not be
possible to distinguish pixels inside a fibre and close to the centre from those
inside a fibre and close to the boundary. This is because pixels around fibre
centres and pixels around fibre edges cannot be discerned by their intensity,
they have the same, it is the distance of the pixel to the transition between fibre
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Table 3.1: Performance of the dictionary-based centre extraction with different
combinations of patch sizes M and number of dictionary atoms n.

Dictionary parameters Performance measures
M [pixels] n [atoms] TPR2D FPR2D

3 50 0.8563 0.1674
3 250 0.9082 0.1678
3 1000 0.9350 0.1721
5 50 0.9468 0.0399
5 250 0.9762 0.0248
5 1000 0.9799 0.0208
7 50 0.9866 0.0104
7 250 0.9873 0.0117
7 1000 0.9910 0.0144
9 50 0.9484 0.0171
9 250 0.9930 0.0100
9 1000 0.9953 0.0097

and matrix phases that is relevant. In contrast, if the patch size is excessively
big, too much smoothing will occur because the probabilistic segmentation for
a pixel will be an average of many patches, the number of overlapping patches
covering a pixel is M2.

Figure 3.7 exemplifies what happens when patches are too small, of an adequate
size or too big. Fibre centre regions are more enhanced and valleys in between
fibre centres are deeper as the patch size reaches the optimal value (see Fig-
ure 3.7b). For lower values it just learns the intensity difference between the
phases (fibres and matrix). However, because some of the pixels in the fibre
class were annotated as belonging to the background class, the probabilities for
the centre class are not too high (see colorbar in Figure 3.7a). When patch sizes
are too big, probability maps are blurred (see Figures 3.7c and 3.7d) and it is
not possible to separate individual fibres any longer. To sum up, larger patches
are more discriminant than smaller patches but, if the patch size is too large, the
notion of neighbourhood and distances is lost. Additionally, large patch sizes
increase the computational time. Thus, the patch size M should be as small as
possible to keep the computational cost low and large enough so that it is still
discriminant.
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(a) Probability
map M = 3.

(b) Probability
map M = 9.

(c) Probability
map M = 15.

(d) Probability
map M = 21.

(e) Segmentation
th = 0.38.

(f) Segmentation
th = 0.38.

(g) Segmentation
th = 0.32.

(h) Segmentation
th = 0.27.

(i) Segmentation
th = 0.32.

(j) Segmentation
th = 0.32.

(k) Segmentation
th = 0.26.

(l) Segmentation
th = 0.21.

Figure 3.7: Comparison of fibre centre segmentations provided by the dictio-
nary learning method for different patch sizes M . (a-d) show the
probability maps for the centre class, (e-h) and (i-l) show thresh-
olded versions of the probability maps for a high and a low thresh-
old value respectively. (a,e,i) illustrate that small patch sizes do
not separate the fibre centre regions from the rest of the fibre
phase and thus thresholded segmentations show either fragmented
or connected centres. (b,f,j) show that an adequate patch size
provides high probabilities for the centre class with well-defined
valleys in between fibre centres and thus (j) shows a segmenta-
tion where all fibre centres are captured without any connections
amongst fibres. (c,g,k) and more so (d,h,l) show that, when the
patch size is too high, centres from different fibres connect due to
the probability maps becoming more blurred and the valleys in
between fibres not being deep enough.
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3.3 Enumeration of Variants

As mentioned above, the algorithm has been in constant development so this
section focuses on describing the main variants of the method, which are listed
below. Some of these variants were developed with the purpose of improving the
accuracy of the segmentation (1, 6 and 7), another was developed to improve
the computational time of the algorithm (2) and some others were necessary
for developing the interactive tool presented in Section 6.2 and Paper C, which
allows faster training requiring minimal user interaction (3, 4 and 5).

1. Calculation of cluster centres: From simple to weighted averaging.

2. Implementation of cluster search: Towards a faster matching between
patches and clusters.

3. Description of the relationship between image and dictionary:
From operational to graph-based.

4. Implementation of image-dictionary mapping: From sums and av-
erages to a linear operator.

5. Amount of input required for training: From full to partial labelling.

6. Features for clustering: From intensity patches to more elaborate im-
age features.

7. Dimensionality: From 2D to 3D.

3.3.1 Calculation of Cluster Centres

In the basic algorithm described in Section 3.2 intensity atoms were the clus-
ter centres resulting from applying k-means (MacQueen, 1967) to the intensity
patches. A variant of this approach called weighted k-means clustering (Mac-
Queen, 1967) was implemented with the purpose of improving the discriminative
power of the dictionary. The weights are optimised to separate dictionary atoms
in the label space, and cluster centres are computed at each iteration as

dt+1
Ii =

1∑
p∈Si

wpi

∑

p∈Si

wpivIp, (3.4)
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with wpi = 1 − 1√
2M
||dtLi − vLp||2 and Si is a vector indexing the ni patches

assigned to cluster i. Intensity patches that have similar label patches will have
more influence on the cluster centre than those with dissimilar label patches.

In this approach label atoms also need to be updated at each iteration, and
not only at the end, because they are influencing the weights in every iteration.
Label atoms are estimated by simply averaging the label patches, for cluster i
at iteration t+ 1,

dt+1
Li |l =

1

ni

∑

p∈Si

vLp|l for l ∈ {1, ..., c}. (3.5)

It could be said that the clustering in the basic algorithm is unsupervised
whereas the variant introduced here is a supervised way of forming clusters.
Our latest implementation uses the unsupervised scheme so that the mapping
between image and dictionary space (see Sections 3.3.3 and 3.3.4) can be calcu-
lated prior to computing the dictionary of labels. This is necessary for running
the graphical user interface (GUI) where the user can label the training image
interactively until the segmentation results are satisfactory. For more details
see Section 6.2 and Paper C.

3.3.2 Implementation of Cluster Search

In the process of assigning intensity patches to clusters, the exact solution would
be to assign each intensity patch to the closest cluster centre, as was shown in
Equation 3.1. This matching step would be very slow if the exact solution should
be found. For this reason we either use the fast library for approximate nearest
neighbours (flann) (Muja and Lowe, 2009) or build our own single search tree.
For our application, experience has shown that it is not so important to get a
match that is very close. Thus, the single search tree is employed in the latest
implementations so as to get a simple and fast matching that is independent
from external libraries.

3.3.3 Description of the Relationship between Image and
Dictionary

The relationship between the image space and the dictionary space has been
described in an operational manner but can also be described by a graph. Each
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patch in the image space, whether it is the intensity image, the label image
or any of the probability maps, has one match in the dictionary. If we look
at the pixel level, each intensity pixel is related to M2 intensity atoms, one
per overlapping patch covering the pixel. In the label space, the probabilistic
segmentation of a pixel is calculated summing up the M2 label atoms matched
to the overlapping patches covering the pixel. However, each overlapping patch
contains the pixel in a different location and it is only that location of the label
atom which contributes to the probabilistic segmentation of the pixel.

Thus, the relationship between image and dictionary spaces can be expressed
with a graph as shown in Figure 3.8. Each pixel in the image is connected to
M2 dictionary atoms, one per overlapping patch containing the pixel. For each
dictionary atom, the connection is to a different location and is determined by
the location of the pixel in the overlapping image patch.

As will be explained in the next section, the graph relationship can be saved in
a matrix format so that pixels values in one space can be mapped into the other
space very fast using Matlab R©. This enables fast propagation of updates from
the labelling of the training image to the dictionary and back to the resulting
segmentation. This feature is core in the implementation of the graphical user
interface (GUI) developed for training the dictionary with minimal (manual)
user input. For more details the reader is referred to Section 6.2 and Paper C.

3.3.4 Implementation of Image-dictionary Mapping

The operational description of the relationship between image and dictionary
spaces was implemented with summations and averages. As these are linear
operations, it is possible to find a linear mapping that expresses pixels in one
space as a linear combination of pixels in the other space. No matter if these
are label or intensity pixels.

If the image U ∈ Rx×y and the dictionary d ∈ Rn×M2

are vectorised, the
matrices T1 ∈ RnM2×xy and T2 ∈ Rxy×nM2

can be computed from the adjacency
matrix A that represents the finite graph in Figure 3.8. The adjacency matrix
is a square matrix of size defined by the number of vertices, which in this case is
xy + nM2. Its elements apt ∈ {0, 1} take values depending on the connections
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Image space dictionary space

T1

T2

Figure 3.8: Graph description of the relationship between image and dictio-
nary spaces. Each image pixel is connected to the M2 dictionary
atoms that have been matched to theM2 overlapping patches cov-
ering that pixel. The link is to a specific pixel of the dictionary
atom. The location of this pixel is determined by the position that
the image pixel has inside the overlapping image patch.
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between vertices,

apt =





0 if p = t

0 if p and t not connected
1 if p and t connected

for p ∈ {1, ..., xy + nM2} and t ∈ {1, ..., xy + nM2}

(3.6)

with the connections from each node p in the image space to nodes t in the
dictionary described by the graph in Figure 3.8 and explained in Section 3.8.

The adjacency matrix can also be expressed in terms of four building blocks,

A =

[
0xy×xy T
T ′ 0nM2×nM2

]
(3.7)

where the biadjacency matrix T is a logical matrix of size is xy × nM2. The
top-left and bottom-right blocks are zeros because the graph is bipartite, that is,
vertices can be divided into two sets such that there is no connections between
vertices in the same set. In our case, the set of vertices representing pixels in the
image space and the set of vertices representing pixels in the dictionary space.
Additionally A is symmetric because the graph is undirected, i.e. connections
between pixels are bidirectional.

T1 and T2 are row-wise normalised versions of T ′ and T respectively. This nor-
malisation is performed so that pixels in one space are calculated by averaging,
instead of summing, the pixel contributions from the other space. Note that
these matrices will be sparse because a pixel in one space is not connected to
very many pixels in the other space. For example, a pixel in the image space
is connected to only M2 pixels out of the nM2 pixels in the dictionary space.
If connections are sparse in one direction they are also in the other because the
graph is undirected.

Transformations between spaces by matrix multiplication can be performed ef-
ficiently because the algorithm is implemented in Matlab R©, which has been
especially optimised for being fast at performing matrix multiplications. Actu-
ally, Matlab R©has even optimised storing of sparse matrices in memory, so this
computation is feasible even if the image is very large and the dictionary has
many large dictionary atoms.
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3.3.5 Amount of Input Required for Training

The training step has changed from being fully supervised to semi-supervised
so as to reduce the amount of manual input required for creating the training
data-set. In this context, semi-supervised means that not all pixels need to be
labelled. Previously, the intensity image used in the training phase had to be
fully annotated.

This is achieved by giving the unlabelled pixels an equal probability of belonging
to each class l ∈ {1, ..., c}. In each of the c label images used as input to the
training step, labelled pixels take values 1 or 0 depending on whether they
belong to that class or not whereas unlabelled pixels will be given a value of 1

c .

Image and dictionary spaces are related as shown in the graph presented in Sec-
tion 3.3.3. Thus, the labelling can be efficiently transferred to the dictionary and
back to the probability maps by the linear mapping presented in Section 3.3.4,
which Matlab R©can perform efficiently using sparse matrix multiplications. To
allow propagation of labels from the labelled pixels to the unlabelled the pro-
cess needs to be done at least two times. The partial labelling, where unlabelled
pixels take the value 1

c , is propagated to the probability maps, which are then
thresholded and serve as the new labelling of the training image. These ought to
be propagated at least once more to the dictionary and back to the probabilities
to ensure that the unlabelled pixels have taken a side. More details are given
in Paper C.

3.3.6 Features for Clustering

In addition to the M2 intensity features per pixel, captured by the image patch
which is centred over the pixel, more elaborate image features can be included.
This can be of interest when the amount of variety in the image is large.

Even though the amount of variety in the image might be captured adequately
by a dictionary of image patches if the number of atoms is sufficiently large,
introducing more features can still be beneficial. The advantage lies in the
possibility of having a reduced dictionary that at the same time captures all
the patterns present in the image. Figure 3.9 shows an example tomogram
were scale-invariant features (SIFT) (Lowe, 2004) were employed to capture the
variety in sizes and shapes of particles in this ammonia slip catalyst (ASC).
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(a) Cross-sectional slice. (b) Small volume.

Figure 3.9: X-ray tomogram of an ammonia slip catalyst.

3.3.7 Dimensionality

Until now, this chapter has covered probabilistic segmentation of 2D images.
However, the thesis work deals mostly with 3D images acquired with X-ray CT,
which ought to be processed slice by slice when using the dictionary of image
patches.

The slicing and posterior processing is usually performed in one or several of
the three orthogonal directions of the scan. When structures have a preferred
direction, like the fibres considered in this thesis, good segmentation results are
achieved when processing slices in the direction orthogonal to the structure. In
acquiring X-ray tomograms of UD composites, the depth direction is normally
well aligned with the nominal fibre direction. Consequently, slicing in this di-
rection will provide cuts that are almost orthogonal to the fibres. To obtain
a probabilistic segmentation that is volumetric, the probabilistic segmentations
for each slice are simply re-stacked.

On the contrary, for more isotropic structures like the particles inside the consid-
ered ammonia slip catalyst (ASC) displayed in Figure 3.9, the volume might be
processed in three orthogonal directions. The combined probabilistic segmenta-
tion obtained by averaging the three volumetric probabilistic segmentations has
enabled more accurate particle centre detections than the individual segmenta-
tions in just one direction.

It seemed obvious to extend the dimensionality of our intensity features to ex-
ploit the contiguity of our 3D structures. Vestergaard et al. (Vestergaard et al.,
2012b) previously used 3D intensity atoms to profit from the contiguity in time
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of 2D images when classifying radar data. Therefore, we decided to replace
image patches with image cubes, illustrated in Figure 3.10. The hope was to
obtain a more discriminative dictionary by exploiting the contiguity of the data
in the third spatial dimension.

In the investigation carried out in Paper A, we did not observe a big improve-
ment in the quality of fibre segmentations when comparing the performance of
patches to cubes for different values of M and n, nor in segmenting a phan-
tom solid oxide fuel cell (SOFC) data-set in three material phases (see Paper A
for the performance measures). Meanwhile, the amount of required memory
increased significantly and the computational time increased from an average
of 3.2 seconds for the 2D dictionary to an average of 100.3 seconds for the 3D
dictionary, when analysing fibres. As to the processing time for the solid oxide
fuel cell (SOFC) phantoms, the computational time also increased in two orders
of magnitude.

Figure 3.10: Volumetric segmentation with intensity cubes.
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Chapter 4

Extraction of Geometrical
Parameters Defining

Structures

In the context of this work, geometry extraction refers to the process of defining
structures and their changes through coordinates and boundaries. Geometry
extraction in itself is often a task that requires several analysis blocks. These
may involve:

1. Detection of 2D or 3D geometrical features from intensity images, which
can be raw intensity images or their probabilistic segmentations.

2. Tracking of 2D features in space to obtain 3D structures.

3. Matching structures across data-sets to follow structural changes under
external loading conditions or simply to compare geometries.

In 2D images of fibre cross-sections, each individual fibre is defined by a centre
coordinate and a diameter. In 3D images, each fibre is defined with a diameter
(assumed to be constant along the length of the fibre) and a 3D trajectory-
the fibre centre line that connects the centre coordinates across cross-sectional
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images. For the ammonia slip catalyst (ASC) in Figure 3.9, individual particles
are defined through 3D centre coordinates and particle boundaries. Section 4.1
describes the methods for centre coordinate detection employed in this work
while Section 4.2 describes fibre diameter determination.

Paper B explains the basic fibre tracking algorithm to form fibre trajectories
from 2D centre coordinates and the improvements to this algorithm are detailed
in Section 6.2.

In Paper E the evolution of fibre geometry is imaged under progressive loading
conditions. The reader is referred to Paper E for details on fibre matching
across loading steps. Besides quantifying structural changes, matching fibres
can be necessary for comparing geometries extracted from different data-sets.
In Paper D fibres were matched across data-sets with the purpose of validating
imaging pipelines for measuring fibre geometry. A summary of this paper is
contained in Chapter 8.

4.1 Centre Point Estimation

The task of detecting centre points in 2D images of fibre cross-sections or 3D
images of particles can be solved with a variety of methods. However, not all
methods provide a solution for every imaging modality or image quality. This
is shown in Figure 4.1, where three different methods have been applied to find
centre coordinates of fibres in cross-sectional slices of tomograms. The methods
under comparison in Figure4.1 are amongst those detailed in later this section.

Centre points can be detected directly from raw intensity images or alterna-
tively from centre class probability maps. The raw intensity images might have
been obtained with X-ray CT, optical microscopy (OM) or scanning electron
microscopy (SEM) whereas the probability maps are always obtained through
dictionary-based probabilistic segmentation. The methods for centre point de-
tection that will be presented in the following are mostly demonstrated over 2D
images but are expandable to 3D.

4.1.1 Thresholding-based Methods

Image thresholding designates the task of binarising an image U ∈ Rx×y with a
chosen threshold value th ∈ R. In choosing the threshold value, inspecting the
histogram of intensities and manually choosing a value is quite common. For
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: Comparison of centre detection methods over different data-sets of
fibres. In (a-c) connected component analysis of the thresholded
probabilistic segmentation obtained by dictionary learning, in (d-
f) the circular Hough transform and in (g-i) a simple blob detector.
In (j-l) the histograms for each of the three images. Even though
the pixel size in (c,f,i) is the finest and the histogram shows a
separation between material phases, there is a slight blur.
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cases where there histogram displays a clear valley between two peaks, a popular
method for automatically setting the threshold value is Otsu’s method (Otsu,
1979).

Connected Component Analysis

When the dictionary-based probabilistic segmentation is applied to an X-ray
tomogram, the probability map for the centre class can be binarised to obtain
connected regions, each of them corresponding to individual particles or fibres.
The centroids for each of these connected regions will give the centre coordinates
for each particle or fibre cross-section as illustrated in Figures 4.2 and 4.3.
The coordinates of the centroid or geometric centre for each connected region
xc ∈ Rdim are calculated by averaging the coordinates of the connected pixels,
where dim is the dimensionality of the euclidean space. Thereby, dim = 2 for
fibre cross-sections and dim = 3 for particles.

xc =
1

nc

nc∑

i=1

xi (4.1)

where nc is the number of pixels inside a connected component and xi ∈ Ndim

are the coordinates for the i’th pixel of the connected component.

Figure 4.2: Pipeline for particle centroid detection. The dictionary is trained
with the interactive interface presented in Paper C and using both
intensity patches and SIFT features. The probability map is com-
puted in three orthogonal directions and combined by averaging.
The particle centres are found as the centroids of the connected
components after thresholding the probability map.

This connected component approach is not directly applicable over a raw in-
tensity image because, even if thresholding provides a good segmentation of the
two material phases, it will not give disconnected components when individual
elements (particles or fibres) are touching.
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(a) Intensity image. (b) Centre class probability map.

(c) Centroids over thresholded probabil-
ity map.

(d) Centroids over intensity image.

Figure 4.3: Centre point detection by connected component analysis of the
thresholded dictionary-based probabilistic segmentation. The in-
tensity image in (a) was acquired with X-ray tomography and the
probability map in (b) was obtained through dictionary learning.
The centre points in (c-d) were calculated by connected component
analysis of the thresholded probability map.

There are methods that can be applied before the connected component analysis
to separate individual elements. The distance field presented in the following is
able to disconnect elements from high quality binarisations. These high quality
segmentations of two material phases can be obtained from imaging modalities
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where the contrast between material phases is excellent, such as SEM.

Distance Field

The distance field (Danielsson, 1980) can be applied to binarised images, where
pixels take values ∈ {0, 1} depending on whether they are background or fore-
ground. The output will be an image of the same size as the input containing
the distances from each pixel to the closest background pixel. Thus, foreground
pixels will be assigned distances greater than zero and background pixels will
be zero.

For our purpose, the euclidean distance measure is well-suited. In fibre cross-
sectional images, pixels that designate fibres will take values in the range [1, r],
where r is the fibre radius in pixels. The lower limit of the range will be at the
fibre-matrix boundaries and the upper limit at the fibre centres. The process of
computing the distance field is clarified in Figure 4.4. From the distance field,
centre coordinates are computed in the same way as from the probabilistic seg-
mentation, i.e. by thresholding and connected component analysis. A threshold
value slightly lower than r will disconnect the fibre phase and provide connected
components from which fibre centroids can be computed.

It can be said that the distance field serves the purpose of enhancing the cen-
tral region of the fibres, as did the dictionary-based probabilistic segmentation.
However, the distance field cannot be applied over all imaging modalities and
qualities, as it relies on a high quality binarisation of the image. This is demon-
strated in Figure 4.4. The distance field applied to the tomographic slice will
not yield correct centre points because the centre region is missing for four of
the fibres (see Figure 4.4h). Of course further processing of the distance field
could reduce this problem but the purpose here was to illustrate that, even if
the contrast between material phases is high, a slight noise level in the image
can already deteriorate the resulting distance field.

4.1.2 Blob Detection

Blob detection in grey-scale images is the process of finding a region in the image
that differs in brightness compared to its surroundings. Hence, blob detection
can be applied to extract centre coordinates from raw intensity images, as in
Figure 4.1, or from the centre class probability map obtained through dictionary
learning. Finding centre coordinates from probability maps using blob detection,
instead of thresholding and connected component analysis, can be of interest in
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Figure 4.4: Signed distance field for fibre cross-sections imaged by two dif-
ferent modalities. In the top row scanning electron microscopy
(SEM) and in the bottom row X-ray computed tomography (CT).
In (a,e) the intensity images, in (b,f) their histograms showing the
threshold value that is used for obtaining the binarised images in
(c,g). In (d,h) the distance fields which are calculated from the
binarisation of the intensities.

some cases. For instance, centre regions might not stand out in comparison
to the global probabilities, so they cannot be detected with a global threshold
(same for all the image), but might still stand out locally.

The most common procedure for performing blob detection is convolving the
image with a function, often based on a Gaussian kernel. Depending on the
derivative order of the function, the variety of methods that can perform blob
detection may be classified in two big groups. The first group is based on spatial
derivatives and the second group is based on local extrema.

We used one of the most simple and common blob detectors, the Laplacian of
the Gaussian (LoG), based on local extrema. First, a representation of the input
image f(x, y) at scale t should be obtained by convolving the image with the
Gaussian kernel g(x, y, t) of scale t = σ2 in the directions x and y,

g(x, y, t) =
1

2πt
e−

x2+y2

2t . (4.2)
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The linear scale-space representation L(x, y; t) = g(x, y, t) ∗ f(x, y) of the im-
age (Lindeberg, 1994) ensures that there is no aliasing artefacts when going
from a finer scale to the coarser scale t where blobs will be detected. Then,
blobs are detected from L(x, y; t) ∈ R2 by applying the Laplacian operator
∇2L = Lxx + Lyy, which will provide the strongest responses for dark blobs of
radius r =

√
2t. To capture light blobs the sign of the Laplacian operator should

be inverted. It is up to the user to set a minimum response for considering a
local optima as a blob detection. Local optima responses that fall underneath
this minimum are discarded.

Blob detection relies on well-defined local optima. For this reason, it can be
useful for finding fibre centre coordinates in images of a certain quality. How-
ever, results degrade when the image is considerably contaminated by noise or
artefacts. These can lead to false centre detections or affect the precision of
true fibre centre detections. Additionally, if the contrast between phases is not
sufficient or the image is blurred, fibre centres will be missed as illustrated in
Figure 4.1.

Modified Blob Detection

When the contrast between material phases is low, the response to the Laplacian
operator will be weaker. In this case, the user will most likely need to lower
the minimum response that determines when a local optima is considered as a
detection. If this minimum response value is global (the same value applies to all
the regions), lowering it might cause false detections. Due to this approach only
accounting for relative intensities, the task of detecting fibre centre coordinates
could suffer from false detections in background regions where there is noise
or artefacts. This can be solved by having a local minimum response which is
dependant on, for example, the intensities of the input image f(x, y).

Multi-scale Blob Detection

For finding centre coordinates of individual fibres, blob detection can be per-
formed at one only scale because the fibre diameters are known and do not vary
in size very much. In contrast, for detecting blob structures of unknown sizes or
blob structures that may vary in size, a multi-scale approach is necessary. In this
case, the scale-normalised Laplacian operator is applied ∇2

normL = t(Lxx+Lyy),
where the scale-space representation of the image has now been computed for a
range of scales L(x, y, t) ∈ R3. The blob locations (x̂, ŷ) and scales t̂ are found
as the local optima of ∇2

normL.
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4.1.3 Circular Hough Transform

The circular Hough Transform is a two stage algorithm Atherton and Kerbyson
(1999); Yuen et al. (1990). First an edge image is computed and then circles are
matched to the edge image through a voting scheme. The algorithm we used in
Paper D has three parameters including an edge parameter, determining when a
pixel is considered an edge pixel, a sensitivity parameter, deciding when a circle
is detected, and a parameter determining a circle diameter range.

As the circular Hough transform relies on well defined edges, its accuracy de-
creases with image blurring (see Figure 4.3) and image resolution (see Paper D).

For high-resolution modalities with well-defined edges such as SEM and OM
the circular Hough transform provides precise centre coordinates, as well as
diameters. This is illustrated in Figure4.5.

(a) Optical microscopy (OM) (b) Scanning electron microscopy (SEM)

Figure 4.5: Circular Hough transform (Atherton and Kerbyson, 1999) applied
to OM and SEM to determine fibre centres and diameters.

4.2 Diameter Estimation

The methods chosen for fibre diameter determination are dependant on the
method used for centre coordinate detection. The circular Hough transform
gives the diameters for the circles at the same time as their centre coordinates.
Through blob detection, fibre diameters can be calculated using the multi-scale
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blob detection approach presented in Section 4.1.2 and, from the distance field,
diameters can be calculated by interpolating the pixel values of each connected
component.

While fibre diameters are practically given by the methods covered in the previ-
ous paragraph, diameters still need to be computed after detecting centre points
from the probability maps by thresholding and connected component analysis.
Since the UD fibres under consideration are densely packed, we can assume that
fibres are always in contact with some other fibre. Thus, diameters can simply
be computed as the distance to the nearest centre point for a 2D tomographic
slice.

As was mentioned in the introductory part of this chapter, it can be assumed
that diameters do not vary along the length of a fibre. Therefore, a fibre diameter
per 3D fibre trajectory is computed from the diameters estimated from the 2D
tomographic slices. While the assumption of touching fibres might not always
hold for every 2D image, especially at the edges of fibre bundles, it is likely that
fibres will be in contact at some point when considering a 3D image.

If a finite element model (FEM) is going to be created from the geometry,
the minimum diameter should be selected because structures are not allowed
to overlap in the FEM software ABAQUS. Instead, in Paper D we chose to
average the diameters across the length of the fibre to prevent biases coming
from unprecise centre coordinate detections.



Chapter 5
Statistical Characterisation

of Structure Geometry

5.1 Exploratory Data Analysis

This section describes different approaches for inspecting data in a statistically
meaningful manner.

5.1.1 Summary Statistics

Summary statistics (Mann, 2007) describe data in a simple form through a set
of informative measures that can be calculated fast. Amongst others, these
measures include mean, median, mode and standard deviation for univariate
distributions plus correlations in the case of multivariate distributions.

5.1.2 Empirical Probability Density Functions

The probability density function (PDF) of a random variable is a function rep-
resenting the likelihood of the variable falling within a certain interval. An
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empirical PDF is when this probability has been measured from data.

Empirical densities can be obtained by interpolation from the normalised his-
togram, meaning the histogram of relative frequencies. A histogram represents
the frequency of variable occurrences by counting how many times the variable
lies within a specific range of values or interval. Intervals are consecutive, fixed
to be equal in size and cover the whole variable range. Besides providing the dis-
tribution of the measured data, histogram inspection allows to discover variable
occurrences that have an abnormal behaviour (outliers). Figure 5.1 exemplifies
a histogram of relative frequencies with outlier values (circled in red).

Figure 5.1: Normalised histogram of fibre diameters measured from a high
resolution X-ray tomogram.

To obtain a smooth continuous probability curve, as opposed to what the his-
togram provides, a parametric curve can be fitted to the data, e.g. a normal
distribution. With a parameteric model a probability distribution is fitted to
the data, for which a fixed set of parameters is estimated. For instance, nor-
mal distributions have the same bell shape which varies in position and width
according to two parameters, namely mean and standard deviation.

Fitting a parametric function assumes a certain probability distribution for
the data, so the fit will only be precise when the assumption is correct. For
other cases, non-parametric methods can be employed to estimate the contin-
uous probability density function. A common method is kernel density esti-
mation (Hill, 1985) which adapts to the data using linear combinations of e.g.
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Gaussian basis functions rather than selecting a specific PDF and fitting its
parameters to the data.

5.1.3 Spatial Distributions

In analysing structures that are distributed in space the location of variable
occurrences is also important. When characterising the data through summary
statistics or empirical PDFs, this spatial information is obviated.

Plotting the value of variables in the actual spatial location can provide infor-
mation about trends or interdependencies in space amongst individual elements.
Figure 5.2 shows the spatial distribution of individual fibre diameters in a cross-
section where there is a trend, diameters are smaller in the top-left region of the
image. In Paper E we were able to extract valuable insights into the relationship
between fibre misalignment and fibre clustering in space, as well as with regards
to the collective behaviour of fibres under load (see Figure 7.6) by inspecting
spatial distributions.

Figure 5.2: Cross-sectional slice with colour-coded diameters.
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5.2 General Linear Models

The spatial variation of diameters in UD fibre composites can be modelled with
the linear and quadratic models presented below. To decide which general linear
model (GLM) fits best to the measured data an analysis of variance (ANOVA)
can be carried out.

In this thesis work a two- and three-way ANOVA has been used as well to deter-
mine whether the measured diameters are independent from the scanning tech-
nique and/or image analysis method used in this two-step data quantification
pipeline. The ultimate aim of this investigation is to ensure that measurements
capture the physical diameters and thus the real variation in space.

5.2.1 Linear and Quadratic Dependence

The relationship between a dependent variable d and two independent variables
x and y can be modelled by a function f , i.e. d̂ = f(x, y). When the dependency
is linear, the function f will be a plane defined by the parameters a, b and c as

f(x, y) = ax+ by + c. (5.1)

When the dependency is quadratic, the function f will be a curved surface
defined by

f(x, y) = ax+ by + cx2 + dy2 + exy + f. (5.2)

The parameters of these models can be found by performing a multiple linear
regression (Freedman, 2009) where the best fit is usually calculated by minimis-
ing the residuals εi in the least-squares sense, i.e. min

∑
∀i ε

2
i . The regression

model for the linear dependency is

di = axi + byi + c + εi for i ∈ {1, ..., N}, (5.3)

where N is the number of occurrences of variable d.

5.2.2 Analysis of Variance

An ANOVA is useful in determining which GLM fits best to the data under
study. The model that explains the largest amount of variance in the data is
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usually selected, however simpler models are preferable (Blumer et al., 1987) if
the variance explained by the more complex models is not significantly higher.

Besides deciding whether a linear or a quadratic dependence model is better,
it is possible to investigate whether the parameters of the linear or quadratic
model are dependant on the methods used for measuring the data.

Before setting up a spatial model with parameters that vary depending on the
specific data quantification pipeline, the significant sources of variance will be
tested.

Test for the Sources of Variance

We have a data quantification pipeline to measure fibre diameters. This data
quantification pipeline (method) is comprised of two steps:

1. Scanning technique, which refers to a specific imaging modality and reso-
lution (mode).

2. Image analysis method, which refers to the method for diameter quantifi-
cation (algorithm).

We set up a two-way ANOVA to find out whether different methods provide
different average fibre diameters,

dνk = µ+ θν + γk + ενk, (5.4)

where ν = {1, ..., Q} and k ∈ {1, ...,K}, with Q the number of methods and K
the number of fibres.

We set up a three-way ANOVA to find out whether the measurements are de-
pendant on the choice of mode and/or algorithm,

dijk = µ+ αi + βj + γk + (αβ)ij + εijk, (5.5)

where i ∈ {1, ..., N} and j ∈ {1, ...,M} and k ∈ {1, ...,K}, with N the number
of algorithms, M the number of modes and K the number of fibres.

For instance, the ANOVA table for the model in Equation 5.5 will provide the
amount of variation explained by the fibre term, the mode term, the algorithm
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term and the interaction term between mode and algorithm. Additionally, the
residual variation which cannot be explained by the model will also be provided.
For each source of variation included in the model, a p-value will be given by
the the ANOVA table. From this value we determine the significant sources of
variation.

Spatial Regression

When setting up spatial regression models, we start with the most complex
model. That is, the quadratic dependence model with its parameters varying
according to all the significant sources of variation,

dνk = γ(ν) + δ(ν)xj + ρ(ν)xj + η(ν)x2k + κ(ν)y2k + γ(i)xkyk + ενk, (5.6)

where ν ∈ {1, ..., Q} and k ∈ {1, ...,K}, with Q the number of methods.

We can then reduce the complexity of the model by eliminating the dependency
of the parameters δ, ρ, η, κ and γ with the method,

dνk = γ(ν) + δxk + ρxk + ηx2k + κy2k + γxkyk + ενk, (5.7)

where ν ∈ {1, ..., Q} and k ∈ {1, ...,K}, with Q the method and K the number
of fibres. This model assumes that all methods capture the same spatial varia-
tion in fibre diameters and that the quantification pipeline simply introduces a
systematic bias in the mean fibre diameter.

We can reduce the complexity even more and test a model where the intercept
γ does not vary with the method,

dνk = γ + δxk + ρxk + ηx2k + κy2k + γxkyk + ενk (5.8)

where ν ∈ {1, ..., Q} and k ∈ {1, ...,K}, with Q the method and K the number
of fibres.

To choose a model, the residual variation obtained for the different models is
compared. As mentioned above, if the residual variation between two models is
very similar, the simplest model should be selected. If all the parameters of the
quadratic terms (η, κ and γ) turn out to be not significant, linear dependency
models should be investigated in the same manner, from complex to simple.
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Chapter 6

Fibre Extraction Pipeline

The following chapter explains how the methodology presented in Chapters 3
and 4 is combined to form an analysis pipeline. This pipeline can accurately
extract the geometry of individual fibres from tomographic data of unidirectional
(UD) fibre composites imaged at the micro-scale.

As was detailed in the Introduction (Chapter 1), measuring fibre geometry from
3D images acquired through X-ray CT enables investigation of real fibre ar-
rangements. Besides enabling characterisation of real geometries, it provides
the possibility of studying the very complex damage mechanisms that affect UD
fibre composites. During the course of this thesis work we have applied the
pipeline for the investigations discussed in Chapter 7.

Paper A demonstrates the applicability of the dictionary-based segmentation
framework for detecting individual fibres in 2D slices of fibre cross-sections. Pa-
per B goes one step further and introduces the complete pipeline for determining
the 3D fibre centre lines (called fibre ’trajectories’), by adding a fibre tracking
step.

The pipeline has been in constant development throughout the thesis work. The
main changes include: i) an increase in processing speed, ii) a reduction in the
amount of manual input required for learning the dictionary, iii) a graphical
user interface (GUI) for interactive dictionary training, iv) an increase in track-
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ing accuracy and v) the possibility of determining fibre diameters. The basic
pipeline is presented in Section 6.1 and the improvements and extensions are
covered afterwards in Section 6.2.

6.1 Basic Pipeline

6.1.1 Detection of Fibre Cross-sections

In Paper A we presented the dictionary-based probabilistic segmentation frame-
work as a method for supervised volumetric segmentation. We demonstrated
volumetric segmentation first using the basic algorithm covered in Section 3.2,
which works with 2D image patches. In this case the tomographic volume needs
to be sliced beforehand to obtain 2D images of fibre cross-sections that are then
segmented individually and combined at the end to obtain a volumetric segmen-
tation. In addition, the paper presents an extension to the basic methodology,
which uses 3D image cubes and processes the whole volume at the same time
(see Section 3.3.7). In the clustering process for building the dictionary, please
refer to Equation 3.1 for the matching between intensity patches and cluster
centres, as there was a typo in the corresponding equation in Paper A.

As was shown in Figure 3.7, the dictionary framework smooths the boundaries
between classes, more so the larger the patch size. This smoothing especially
affects the segmentation of small features, such as the fibre centre regions we
wish to segment here. To overcome the excessive smoothing that comes from
the averaging (performed both in the training and classification steps of the al-
gorithm), a weighting scheme was incorporated to enhance the fibre centre class
in the probabilistic segmentation. This approach enabled a more fair compar-
ison of the dictionary performance across varying patch sizes M , and was not
employed in future papers/implementations where the optimal patch size had
already been set.

Paper A compares the performance of a simple blob detector over the inten-
sity image (explained in Section 4.1.2) to both the dictionary of image patches
and image cubes, where centre coordinates are obtained from the probabilis-
tic segmentation by thresholding and connected component analysis (see Sec-
tion 4.1.1). The performance of the three fibre detection methods is evaluated
by comparison to a manually annotated reference and is reported in Table 6.1.
The table compares the true positive rate (TPR) and false positive rate (FPR)
for the three methods. Both dictionary methods outperform the blob detection
method, and the 3D dictionary method slightly enhances the results compared
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to the 2D method. For more details the reader is referred to Paper A.

Table 6.1: Performance in detection of fibre centres (Paper A).

Method
Performance Measure Blob detector 2D dictionary 3D dictionary

TPR 0.8339 0.9953 0.9980
FPR 0.0737 0.0097 0.0087

Figure 6.1 shows the detected fibres over a small part of the cross-sectional
area used for evaluating the performance. The red circles mark a couple of the
fibres that are missed using blob detection while the green circle shows that two
fibres are detected as one by the 2D dictionary. This happens when the valley
between two neighbouring fibre centres is not deep enough in the probability
map for the centre class. In other words, fibres are not detected individually if
the boundary of the central fibre region is not well defined in the probability map
for the centre class. In some cases, a slight increase of the threshold value will
disconnect the two fibres. In other cases, increasing the threshold to disconnect
two fibre centres will mean that other fibres will be missed, even if their fibre
centres are well-defined. It can happen that centres are well-defined locally but
the probability values are low relative to the probabilities at other centres, and
thus compared to the global threshold value. The solution will be discussed in
Section 6.2.

(a) Reference (b) Blob detection (c) 2D dictionary (d) 3D dictionary

Figure 6.1: Manual reference and circles around the detected fibre centres for
the three methods under comparison in Paper A.

To sum up, the main contributions of Paper A are:

• Application of the dictionary-based probabilistic segmentation framework
to segment complex image structures. Specifically the basic version of
the algorithm (Section 3.2) with the weighted clustering explained in Sec-
tion 3.3.1.

• Extension of the segmentation methodology in (Dahl and Larsen, 2011)
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from a dictionary of image patches to a dictionary of image cubes (see
Section 3.3.7).

• Demonstration of the accuracy in segmenting individual fibre centres from
tomograms with the dictionary framework when these UD fibres are densely
packed inside the composite.

• Evaluation of the computational time and accuracy of the two dictionary
methods for different patch/cube sizes and number of dictionary elements
(see Paper A for details).

• Comparison of the two dictionary methods against the simple blob detec-
tion method in Section 4.1.2.

It should be noted that we have also compared our centre detection methodol-
ogy to the circular Hough transform 4.1.3. A visual comparison is included in
Figure 4.1, where fibre centres have been detected from three tomograms dif-
fering in quality with the dictionary framework, blob detection and the Hough
transform. Additionally, a quantitative comparison to Hough transform across
micro-CT resolutions is included in Paper D, and summarised in Section 8.2.

6.1.2 Detection of Fibres Trajectories

In Paper B we decided to use the dictionary of 2D image patches (same ver-
sion as in Paper A) for its high accuracy and the low computational time and
memory requirements compared to the 3D version based on image cubes. As
mentioned above, when working with 2D patches the volume is sliced and slices
are segmented individually.

When segmenting particles inside ammonia slip catalysts (ASCs) (see Figure 3.9)
or material phases in solid oxide fuel cells (SOFCs) (see Paper A), it is important
to merge the segmented slices into a volume before computing particle centre
coordinates or quantifying material structures (volume fraction of each phase,
contact points between phases...). In analysing UD fibres this is not necessary
because we extract individual fibre centre coordinates from the 2D probabil-
ity maps. After determining 2D fibre centre coordinates, these are connected
through the volume to form individual fibre trajectories, as explained in Paper B.
The complete pipeline is illustrated for a very small volume in Figure 6.2.

We evaluated the accuracy of centre coordinate detection by comparing the es-
timated points to those obtained from a manually annotated test image. The
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Reconstructed volume Slices Centre detections over slices Fibre trajectories

Figure 6.2: Description of the individual fibre segmentation pipeline intro-
duced in Paper B. First, the volume is sliced. Then, fibre centre
coordinates are found in every slice. Finally, the centre points cor-
responding to the same fibre are connected through the volume by
tracking.

test image, which was not used in the training nor the validation steps of the al-
gorithm, had a width of 674.4 µm for the glass fibre reinforced polymer (GFRP)
and 289.2 µm for the carbon fibre reinforced polymer (CFRP). A small region of
this test image is shown in Figure 6.3, where the reported accuracy is measured
as the TPR for the whole test image.

(a) GFRP, TPR = 0.991. (b) CFRP, TPR = 1.

Figure 6.3: Centre points over a region from the test image with a scale bar
indicating 40 µm. In yellow the reference points and in red the
detected ones, missed detections are circled in pink.

To sum up, the main contributions of Paper B are:

• Development of a pipeline for automated fibre geometry extraction that
can be applied to segment UD fibres in low contrast and noisy tomograms
containing densely packed fibres.

• Evaluation of the centre detection accuracy through comparison to a man-
ually annotated reference.
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• Characterisation of fibre geometry through the orientation of individual
fibre trajectories, detailed in Section 7.1.1.

6.2 Improvements and Extensions

The basic blocks of the pipeline for individual fibre extraction developed in
Paper B are shown in blue in Figure 6.4. The basic blocks have been improved
and the pipeline has been extended to incorporate the possibility of estimating
individual fibre diameters.

Figure 6.4: Schematic description of the basic pipeline for individual fibre seg-
mentation presented in Paper B (in blue) with the developed im-
provements and extensions in black, which are applied/developed
in Papers C, D and E.
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In the basic pipeline the dictionary training step requires fully annotated label
images as explained in Section 3.2 and the dictionary is computed by weighted
k-means clustering (Section 3.3.1). An improved version, employed in Papers
C, D and E, provides a faster training which requires minimal user input and is
user friendly. To make the training process more user friendly a graphical user
interface (GUI) was developed. The user can partially label a training image
on the left window and immediately obtain a full segmentation of this image
on the right-hand side window, as shown in Figure 6.5. The user can continue
labelling on the left until the segmentation on the right is satisfactory. At this
point, the dictionary can be exported and a batch of slices can be processed.

Figure 6.5: GUI for dictionary-based probabilistic segmentation.

This interactive dictionary training is possible by computing the dictionary of
intensities (simple k-means) and finding the linear mapping between image and
dictionary space prior to running the GUI. The linear mapping, implemented in
Matlab R©as a matrix multiplication (see Section 3.3.4), enables fast propagation
of the labelling updates from the left window to the label dictionary and back
to the segmentation window on the right. Pixels on the left that have not been
labelled are given an equal probability of belonging to each class, as explained
in Section 3.3.5.

It could be said that now the training process is semi-supervised because a par-
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tial annotation of the training image can already provide an adequate dictionary.
The great advantage of the GUI lies in the possibility of seeing immediately how
the changes in the labelling affect the segmentation. This means that the user
can easily adapt the amount of manual input to the specific data-set. For high
quality data-sets annotating a couple of fibres will be enough whereas for lower
quality data-sets with noise, artefacts and/or blurring fibres will not be well-
resolved and more user input will be necessary.
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The label propagation idea for image segmentation is presented in Paper C. The
main contributions of this paper are:

• Development of a flexible approach for characterising image content where
the user is able to define the structures of interest.

• Design and implementation of an interactive GUI where the user can an-
notate pixels interactively with a real-time feedback. This allows for semi-
supervised segmentation with minimal user interaction.

• Demonstration of the applicability of this label propagation methodology
for segmentation of patterned images originating from imaging systems
for materials science and medicine.

The next improvement in the pipeline was created to solve the problem men-
tioned in the previous section, where two fibres were detected as one (see Fig-
ure 6.1c). A solution to this problem is to calculate the centre coordinates from
the probability maps using blob detection instead of thresholding and connected
component analysis.

As for fibre tracking, the detection of 2D fibre centre coordinates is so accurate
that a simple tracking straight down the volume in the same direction for all
fibres and volume depths provides accurate fibre trajectories. In Paper B we had
a unidirectional tracking algorithm where we matched centre coordinates from
one slice to the previous slice by a nearest neighbour search in one direction
(unidirectional fibre tracking methodology detailed in Paper B). We realised af-
terwards, through the visual validation explained in Section 8.1, that sometimes
two fibres were merging into one if the centre coordinates had not been placed
very precisely due to a lower data quality or coarser resolution. For this reason,
we incorporated a bidirectional tracking that only connects centre coordinates
from two consecutive slices if there is a nearest neighbour match both ways.

The tracking was also updated to handle double detections. Sometimes a fibre
is detected as two because the centre of the fibre is slightly black. This is simply
handled by merging centre detections if these are closer than the mean fibre
radius (reported by fibre manufacturers). Until now, more improvements of the
tracking have not been needed. However, we did try replicating the Kalman
filter approach for fibre tracking by (Czabaj et al., 2014), which we might apply
in the future. It is definitely important to somehow incorporate the direction
of the fibre in the tracking search. This will enable precise tracking of fibres
that are significantly misaligned due to, for example, compression loading of the
composite (see Section 7.2).
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Finally, an important extension to the basic pipeline is the determination of
diameter sizes. These are computed as explained in Section 4.2 and provide the
possibility to have a more complete description of fibre geometry from which
contact points between fibres can be estimated and more complete finite element
models (FEM) can be created.



Chapter 7

Applications of the Fibre
Pipeline

We have applied the fibre extraction pipeline covered in Chapter 6 to study
the geometry of real UD fibre reinforced polymers. These composite material
systems are being employed increasingly in aero (Soutis, 2005), ground trans-
portation and environmentally sustainable energy production systems such as
wind turbines (Brøndsted et al., 2005).

The case studies covered in this chapter can be divided into characterising the
geometry of real structures and studying the changes in geometry under pro-
gressive loading conditions.

7.1 Characterisation of Real Structures

As was explained in Chapter 1, it is important that fibre composites have good
stiffness and strength properties. Even though the influence of idealised fibre
orientation arrangements on the compression strength has been investigated
analytically and numerically (Budiansky and Fleck, 1993; Fleck and Shu, 1995;
Kyriakides and Arseculeratne, 1995; Jensen and Christoffersen, 1997), segmen-
tation of individual fibres enables characterisation of real geometries, which have
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a larger degree of randomness.

Additionally, extracting fibre diameters opens up possibilities for making more
complete studies, where contact points might be important. In particular, ex-
amining the spatial distribution of fibre diameters can provide insights into the
manufacturing process of fibre bundles.

7.1.1 Fibre Orientation

Fibre misalignment controls compressive failure and fatigue life under aligned
cyclic loads (Dadkhah et al., 1995; Fleck and Budiansky, 1991). Additionally,
the orientation of individual fibres is related to the stiffness and compression
strength properties of the material. In stiffness it is the mean fibre orientation
that is important (Krenchel, 1964) whereas in compression how the orientations
are distributed spatially is also very important (Liu et al., 2004).

Fibre orientations in 3D can be estimated directly from the intensities of an X-
ray tomogram. A good review is contained in (Wirjadi et al., 2016), where four
algorithms for local orientation analysis are compared and applied to estimate
orientations in fibre reinforced composites. However, the advantage of segment-
ing individual fibres beforehand is that the precision of the extracted geometry
can be assessed prior to computing fibre orientations to ensure accuracy in these
estimates. For more details on related work the reader is referred to Papers B
and E.

In Paper B we model the orientation for each individual fibre locally by cal-
culating the ∆’th order difference at every point f of a fibre, as illustrated in
Figure 7.1. The orientation at each point f is characterised with the azimuth
angle φ and the inclination angle θ (called elevation in Paper B). These rep-
resent the direction of misalignment and amount of misalignment respectively
in the reference coordinate system (xp, yp, zp), which was calculated as follows.
The zp axis was aligned with the mean fibre orientation (it could have also been
aligned with respect to a certain structural direction), calculated as the local
fibre orientation for the first point of the fibre and with a length ∆ defined by
the depth of the imaged field of view (FoV)–also called global fibre orientation.
Afterwards, xp and yp were rotated so that xp would be aligned with the di-
rection of maximum variation in fibre orientation, calculated through principal
component analysis (PCA) (Abdi and Williams, 2010). More details are given
in Paper B.

Two filament wound UD composites (Prabhakaran et al., 2013) were analysed in
Paper B, a glass fibre reinforced polymer (GFRP) and a carbon fibre reinforced
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Figure 7.1: Local fibre orientation in point f with respect to the reference
coordinate system, where θ ∈ [0, 90] and φ ∈ [0, 360).

polymer (CFRP) with fibre diameters of 17 µm and 7 µm. Figure 7.2 shows a
plane view of the extracted fibre trajectories. The length of the fibres in this
view gives an idea of the amount of misalignment (θ angle), fibres appear as
points if they are completely aligned, whereas the colour encodes the direction
in which the fibres are misaligned (φ angle).

(a) GFRP (b) CFRP

Figure 7.2: A plane view of the fibre trajectories. Fibre lengths increase with
the amount of misalignment (angle θ) and colours indicate the
direction of misalignment (angle φ).
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For the GFRP the local orientation was investigated for different lengths ∆ and
it was found that varying ∆ had no effect over the distribution of orientations.
In other words, fibres are essentially straight over the considered depth of D =
1.35 mm, which is D/d = 79 times the size of the glass fibre diameter d.

In Paper B we also estimated the compression strength of the material using
the formula by Budiansky (Budiansky and Fleck, 1993) and the mean fibre tilt
θ̄ obtained for the imaged field of view (FoV). We found that it was in the same
order of magnitude as the compression strength measured for the whole samples
which had a gauge section of size 3 × 10 × 12 mm3, compared to the analysed
regions of size 1.35× 1.35× 1.35 mm3 and 0.58× 0.58× 0.87 mm3.

To sum up, the main contributions of Paper B in terms of fibre orientation
characterisation are:

• Extraction of individual fibre trajectories, enabling characterisation of ori-
entations for individual fibres.

• Characterisation of local fibre orientations for individual fibres, defined at
every point in a fibre by an inclination and an azimuth angle.

• Quantification of orientations through summary statistics and histogram
inspection, as well as visualisation of spatial distributions (methodology
covered in Section 5.1).

• Demonstration of the method over a GFRP and also a CFRP. The orienta-
tions from both materials were compared through by means of exploratory
statistics (see Section 5.1).

• Estimation of material properties for both composites from their orien-
tations. In particular the compression strength through the formula by
Budiansky. (Budiansky and Fleck, 1993)

The compression strength estimation in Paper B was pretty rough because nei-
ther the individual fibre orientations nor the spatial distribution of fibre orien-
tations were considered in the estimation. For more precise estimates of the
compression strength see Section 7.1.2.

This will not be the case for the longitudinal stiffness of the sample which can be
predicted quite accurately for UD fibre composites from the fibre orientations
obtained in Paper B. The rule of mixtures for Young’s modulus can be combined
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with Krenchel’s efficiency factor (Krenchel, 1964) to calculate the longitudinal
stiffness of the sample as,

Ecomposite = ηoEfVf + EmVm, (7.1)

where Vf and Vm are the volume fractions for the fibre and matrix material; and
Ef and Em are the Young’s modulus, with Ef >> Em. Krenchel’s efficiency
factor ηo ∈ [0, 1] is 1 when all fibres are completely aligned with the nominal
fibre direction. Krenchel’s efficiency ηo corrects for the efficiency of the fibre
reinforcement which decreases with fibre misalignment and is calculated as,

ηo =
∑

∀i
aicos(θi)

4, (7.2)

where ai = 1/N with N being the number of fibre segments. In this equation
we can include the amount of misalignment for each individual fibre as opposed
to just using the average fibre misalignment.

7.1.2 Image-based Micro-mechanical Models

In the estimation of the compression strength carried out in Paper B we only
used the mean fibre tilt and obviated a very important factor, the spatial dis-
tribution of fibre orientations. To obtain more accurate predictions of the com-
pression strength, the extracted fibre geometry can be imported into the FEM
software ABAQUS.

The possibility of estimating the transverse stiffness from a 2D FEM model
produced using X-ray CT and our pipeline for individual fibre trajectory and
diameter extraction is introduced in (Mikkelsen et al., 2016). We extracted
individual fibres and diameters from three different bundles of the uni-directional
non-crimp fabric epoxy composite illustrated in Figure 7.3a and our collaborator
from DTU Wind Energy made a 2D micro-mechanical model for the 45◦ degree
bundles to predict the transverse stiffness. Then, this prediction is compared to
analytical estimates obtained with, amongst others, the inverse rule of mixtures.

Besides predicting material properties, simulations can be performed to investi-
gate how certain loading conditions would affect the real geometries we measure.
Figure 7.3b shows the distribution of the stresses in the cross-section of a trans-
verse loaded 45◦ backing bundle.
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(a) (b)

Figure 7.3: Image-based micro-mechanical model of a non-crimp fab-
ric (Mikkelsen et al., 2016). In (a) a schematic of the 3D structure
of the non-crimp fabric, where the cross-section of each UD bun-
dles is around 2 mm2. In (b) the stress contour plot of a transverse
loaded 45◦ backing bundle for a section of size 0.1× 0.1 mm2.

7.2 Evolution of Structures under Changing Load

Paper E brings together high speed X-ray CT with advanced image analysis to
follow the changes in UD fibrous materials under progressive loading conditions.
By establishing correspondence between the sequence of time-lapse X-ray CT
images we are able for the first time to accurately quantify the changes in each
individual fibre trajectory in 3D.

We applied the methodology to study a GFRP composite rod under uninter-
rupted compression loading of the sample in the axial direction–also called nom-
inal fibre direction. When a composite is loaded in compression fibres start to
buckle until the matrix material is not able to support the fibres any longer, at
this moment a kink-band is formed. In Paper B we demonstrate that we can
accurately measure fibre reorientations and determine the progressive deflection
of the composite ensemble and of the individual fibres in the steps leading up
to fibre micro-buckling and kinking.

The data acquisition was conducted by our collaborator from the School of
Materials of the University of Manchester. The scanning was carried out at the
TOMCAT synchrotron beamline of the Swiss Light Source where the sample
was loaded continuously from 0 N until failure using an in-situ rig, as displayed
in Figure 7.4. A scan was taken before loading (0 N), two interrupted scans were
acquired at loads 200 N and 600 N, after which continuous scans were taken until
sample failure. This occurred at some point in between 895 N and 900 N. We
analysed the region of interest (RoI) that was common to the four loading steps
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selected for the study in Paper E, shown in Figure 7.5.

Figure 7.4: Experiment set-up at the TOMCAT synchrotron beamline with
in-situ loading rig and ultra-fast imaging (Wang et al., 2016).

Figure 7.5: X-ray CT longitudinal slices from the centre of the composite rod.
The analysed region of interest (RoI) has a height of approximately
1.4 mm and the loading steps selected for the analysis are: i) 0N,
ii) 200N, iii) 600N and iv) 895N. The coordinate system is defined
according to the loading direction and the kink-band plane.

Fibres trajectories are computed for the four data-sets and in Paper E each of
these is approximated by a straight line that connects the points where the fibre
enters and leaves the RoI. Fibre curvature will be the subject investigated in
our next publication. As was mentioned in Section 7.1.1, in Paper B the z-axis
had to be aligned with the nominal fibre direction. This was not necessary
in Paper E because the loading was practically aligned with the mean fibre
direction already. However, we did rotate the xy plane around the z-axis so
as to characterise the orientations and deflections with respect to the ultimate
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kink-band location (see Figure 7.5).

Our results show that fibre misalignment is grouped in clusters and these seem
to coincide with the spatial clustering of fibres. Additionally, we observe that the
whole composite rod tilts towards the direction of the ultimate kink-band plane
already at 25% of the failure load, as shown in the top row row of Figure 7.6.
Additionally, we observe that fibres twist around the centre of the composite
rod (see Figure 7.6). For more details see Paper E.
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Figure 7.6: Evolution of fibre deflections under load. In the top row the scatter
plots of the deflection vectors in the horizontal plane. In the bottom
row the X-ray CT cross-section for the middle slice of the RoI with
the deflections displayed at the actual spatial location. The colour-
coding has been set relative to the deflection of the composite rod,
indicated by the black crosses. The yellow arrows indicate the
twist observed around the centre of the sample, note that these do
not represent the absolute magnitude of the twist, which is 1.06◦

at 895 N.

Summing up, the main contributions of Paper E are:

• Development of a methodology that combines the fibre geometry extrac-
tion pipeline with high speed X-ray CT to follow individual fibre reorien-
tations under progressive loading conditions.

• Interpretation of the spatial correlations between fibre orientations and
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fibre density in a glass fibre reinforced composite.

• Analysis of fibre deflection progression under uninterrupted compressive
loading of a composite rod in the nominal fibre direction.

• Demonstration of the insights that can be obtained by combining individ-
ual fibre tracking, high speed X-ray CT and in-situ loading.

Last but not least, it should be noted that Paper E does not focus on explaining
the mechanical causes of the observations. For example, we just mention that
the twist could be a result of either a preferential direction of misalignment
in the as-manufactured sample or a cause of a compressive loading that is not
perfectly aligned with the nominal fibre direction.

Thanks to the possibility of extracting individual fibre trajectories, instead of
just computing orientations directly from the tomograms, the latter explanation
could be discarded by creating a FEM with the geometry extracted from the
0 N data-set. The effect of loading the sample in axial compression could be
simulated in ABAQUS where we can be sure that the loading is perfectly aligned
with the nominal fibre direction.
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Chapter 8

The 3D Validation
Challenge

This chapter discusses the topic of validation, which refers to the process of
determining the geometric accuracy of objects. In our case, we would like to
asses the accuracy of the pipeline for geometry extraction developed in this
thesis work, as well as the the accuracy of X-ray CT in providing images that
represent the real fibre geometry.

A common approach for validating geometry extraction/segmentations is based
on comparing to a reference segmentation of the image, often times created
manually by an expert in the field. In the UD fibre geometry considered in
this thesis, a manual reference can be created by ourselves because it is easy
to determine where are the fibre centres by just looking at the images, without
being experts in material science. While it is feasible to make a manual ref-
erence of a significant size in 2D, it would take too much time to create a 3D
manual reference that is of a size which will be representative. For this reason,
qualitative validation based on visual assessment is quite common.

The advantage of a quantitative validation lies in showing the accuracy through
quantification, which makes the validation process more believable as well as
allowing for comparison. Section 8.1 explains the validation approaches em-
ployed in Papers A and B whereas Section 8.2 summarises Paper D, where we
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took a statistical approach for validating both our image analysis pipeline for
extraction of fibre geometry (Chapter 6) and X-ray CT, the imaging modality
for which it was developed.

8.1 Initial Validation of Geometry Extraction

In Paper A we assessed the accuracy in detecting fibre centres from tomographic
slices quantitatively by using a manual reference.

In Paper B we demonstrated the accuracy of the centre point detections in the
same way as in Paper A whereas we checked the accuracy of the 3D fibre tra-
jectories qualitatively by visual inspection. For this purpose, a Matlab R©script
was developed, the script would slice through the volume showing the estimated
centre coordinates. To check that the fibres had been tracked correctly, a few
fibres were randomly picked and the centre coordinates belonging to those fibres
were given different colours. Using this approach, we found that our tracking
algorithm was sometimes merging fibres. This motivated us to improve the
tracking as explained in Section 6.2.

Another approach for validating the accuracy of the pipeline is to compare ma-
terial properties estimated analytically from the fibre orientations to properties
measured through mechanical testing. In Paper B we compared the compression
strength but we could have also compared the stiffness, which can be obtained
numerically as detailed in Section 7.1.1 or by finite element modelling (FEM)
as explained in Section 7.1.2.

8.2 Statistical Validation of Analysis Methods and
Imaging Modalities

Paper D is concerned with assessing the accuracy of using X-ray CT coupled with
image analysis for characterising the micro-structure of UD fibre composites. We
perform a statistical analysis where we compare different quantification pipelines
(methods) for measuring fibre diameters. Each method consists of two steps:

1. Scanning technique, which refers to a specific imaging modality and
resolution (mode). We compare micro-CT at different resolutions (from
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synchrotron and laboratory sources) and microscopy, namely optical mi-
croscopy (OM) and scanning electron microscopy (SEM). For details on
these imaging modalities the reader is referred to Chapter 2.

2. Image analysis method, which refers to the method for diameter quan-
tification (algorithm). We compare our pipeline for fibre trajectory and
diameter determination (see Chapter 6) to the circular Hough transform
(see Section 4.1.3).

As explained in Section 2.1.3, there are several random processes in X-ray imag-
ing that can lead to quantum noise. Additionally, the volumetric image is re-
constructed from multiple measurements (see Section 2.1.2 on X-ray CT). This
indirect way of imaging 3D structures could introduce artefacts and variations
in spatial resolution across the volume, as mentioned in Section 2.1.3. Instead,
the microscopy modalities directly depict the surface of the sample.

We use the microscopy modalities as a reference for this reason, and also be-
cause they were acquired at a very high spatial resolution. Table 8.1 shows the
resolutions used for the six modes under comparison. As explained in Paper D,
the pixel/voxel sizes given by the instruments deviate a little from those mea-
sured relative to the OM pixel size through the image registration employed to
aligned the different scans. To compare our diameter measurements to the man-
ufacturer reported average fibre diameter of 17 µm, we transform the diameters
from pixel/voxel sizes into µm using the estimated pixel/voxel sizes.

Table 8.1: Instrument reported and measured pixel sizes for the different scans.

Modality Reported Estimated
SEM 0.1852 µm 0.1882 µm
OM 0.2908 µm reference

SRCT 0.6500 µm 0.6440 µm
XCTH 1.0376 µm 1.0356 µm
XCTM 1.6856 µm 1.6835 µm
XCTL 2.8059 µm 2.8082 µm

Fibre centres and diameters are detected from the field of view (FoV) shown
in Figure 8.1. We compute the fibre centres and diameters in 2D for all six
modes using the circular Hough transform (see Section 4.1.3). For the 3D scans
(micro-CT) we also use our pipeline. We process 60 slices in a ∼ 60 µm, where
we determine one diameter for each fibre trajectory by averaging the 60 di-
ameters estimates, calculated as explained in Section 4.2. Paper D contains
an illustration where we plot the fibre centre and diameter estimates over the
image, so one can visually asses how well these estimates fit the data.



86 The 3D Validation Challenge

(a) OM image. (b) Low resolution XCT image.

(c) SEM image. (d) Mid-resolution XCT image.

(e) SRCT image. (f) High resolution XCT image.

Figure 8.1: All six scans aligned after rotating and translating. Note that
scaling has not been applied to show the actual resolution of the
images.

We segmented N = 757 corresponding fibres for all n = 10 different quan-
tification pipelines (methods). As mentioned above, the micro-CT modes are
analysed with both methods (4 modes × 2 methods) and the microscopy modes
are analysed with one method (2 modes × 1 method).

We consider a univariate approach and a multivariate approach, for more details
see Paper D. In the univariate approach we describe the variation between fibre
diameters as deterministic contributions from the methods (or algorithm and
modes) adjusting for the different fibre contributions.

If we want to distinguish between algorithms and modes we use a three-way
factorial design model and, if we just focus upon the different methods, we use
a two-way layout. These models are written in Section 5.2.2 and Paper D.

With the two-way approach we test the difference between the average diameters
given by each quantification pipeline, this resulted in a grouping of the methods.
The groups that are closest to the production specification d = 17 µm are formed
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by the quantification pipelines listed below. The group that is furthest away is
formed by the XCTL analysed with the Hough transform. For the other groups
cf. Table 3 in Paper D. From the three-way approach we found that both mode
and algorithm have an effect over the measured diameter.

List of methods inside the group that is closest to the fibre production specifi-
cation:

1. SEM + Hough.

2. SRCT + our pipeline.

3. SRCT + Hough.

4. XCTH + our pipeline.

5. XCTM + our pipeline.

The dependence of fibre diameters with spatial coordinates was investigated by
regression analysis on the spatial coordinates using an ANOVA to choose the
model that fits the best, as explained in Section 5.2. We found that all methods
capture a spatial variation in diameters, so it must be that the variation is in
the physical properties of the sample. Regression on spatial coordinates could
therefore be an adequate method for learning about the fibre manufacturing
process.

In the multivariate approach, amongst others, we compared corresponding fibre
diameters across modes through scatter plots. In the first place, we compared
the high resolution modalities (4 modes) from which we found that OM has
a bias towards smaller diameters (see Paper D). In the second place, we com-
pared micro-CT modalities (4 modes). From the comparison across micro-CT
modalities in Figure 8.2 we can confirm that there is a good correspondence
between measurements obtained with the same algorithm whereas there is a
larger spread when comparing measurements obtained with different algorithms.
While the correspondence between measurements obtained with our algorithm
is still good for low resolutions, the correspondence between measurements ob-
tained with Hough transform decreases rapidly when the resolution of micro-CT
is decreased.
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Figure 8.2: Scatter plot for diameters obtained for the X-ray imaging. Meth-
ods employed row-wise are SRCT, and high, mid, and low res-
olution XCT, first with our pipeline and then with the Hough
transform algorithm. The blue line is the identity line and the
blue ellipse is the 99% prediction ellipse for a new observation.

To sum up, the main findings of Paper D are:

• Demonstration of the precision that our fibre trajectory and diameter de-
termination methodology has in characterising UD composites with micro-
CT, even at low resolutions. Low resolutions enable the analysis of larger
volumes, which are more representative of the actual fibre composite.
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• A regression on spatial coordinates is a good method for assessing physical
diameter variations. This could provide insights into the fibre manufac-
turing process.

Now that we have confirmed the validity of our fibre trajectory and diameter
determination method for charactering UD fibre composites with low resolution
X-ray CT, we could analyse a whole fibre bundle and estimated the amount
of fibre material in the bundle. A further quantitative validation could be a
comparison between this estimation and the manufacturer reported tex-value
[g km−1], which gives the amount of fibre material inside a complete bundle
through the weight of the bundle per length.
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Conclusions

This thesis has presented statistical image analysis tools mainly for character-
ising the micro-structure of fibrous materials in 3D. The methodology is based
on extracting fibre geometry from tomograms acquired through X-ray imaging.
It has been demonstrated that extracting the geometry of real fibre arrange-
ments opens up numerous possibilities for characterising and understanding the
behaviour of fibre composites under real life conditions. In addition, the accu-
racy in characterising UD fibre composites with the developed methodology and
X-ray tomography has been proven quantitatively.

The core methodology of this work is a pipeline that can extract the geometry
of individual fibres from X-ray tomograms. The strength of this methodology
is its ability to extract individual fibres from volumetric scans where there is a
high fibre volume fraction. The method is robust to noise and can analyse low
contrast scans, meaning that long scan times can be avoided and a broad range of
fibre materials can be investigated. Additionally, it has been demonstrated that
the methodology is highly precise for analysing large volumes, as it can deal with
low spatial resolutions. Due to its ability to accurately analyse representative
volumes and a wide range of materials, the fibre extraction methodology has
great potential in providing insights for understanding the relationship between
fibre micro-structure and material properties.

The pipeline, which has been under development throughout the thesis work,
detects individual fibre centres through a probabilistic segmentation framework
based on a dictionary that is able to learn image patterns. We have demon-
strated the flexibility and accuracy of the dictionary framework in segmenting
complex image structures. The speed of the method has been improved during
the course of the thesis work and currently the segmentation framework falls in
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the semi-supervised setting, as the amount of user interaction is minimal and
can be adapted to the specific data requirements. Therefore, the dictionary
segmentation framework can be a very useful tool in quantifying structures in
complex volumetric data, such as tomograms of energy materials.

The applicability of the pipeline has been show-cased over real composites in
collaboration with material scientists and mechanical engineers. The first appli-
cation entails characterisation of real geometries through fibre orientations and
diameters. Material properties such as stiffness or strength can be computed an-
alytically from individual fibre orientations. For more precise estimates, micro-
mechanical models can be created from the image-based fibre geometry. Besides
estimating material properties, the behaviour of the composite material under
load can be simulated through finite element modelling.

The other main application of the pipeline is in studying the behaviour of fibre
composites under real loading conditions. By combining ultra-fast X-ray CT,
in-situ loading of a sample and the fibre geometry extraction pipeline, we have
been able for the first time to accurately quantify changes in fibre trajectories
fibre by fibre. Quantifying the changes in composite micro-structure with a high
degree of accuracy both in space, time and load can provide valuable insight into
the behaviour of materials under real-life loading conditions, which will lead to
a better understanding of the very complex damage mechanisms that affect
composite materials. In particular, valuable insight has been provided with
regards to the behaviour of a UD fibre composite under compression loading.
Our work shows for the first time that fibres start to deflect at very low loads
and in a direction which is related to the final damage.

In conclusion, this thesis has demonstrated the potential in volumetric imag-
ing based on X-ray CT for understanding the relationship between the micro-
structure of a material and its macroscopic behaviour. With current develop-
ments in imaging methods, it will be possible to image material structures in
higher spatial and temporal resolution, and the need for simple, computation-
ally efficient, while also accurate methods, is urgent. The work in this thesis
has demonstrated an approach to meet these needs.
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Abstract. We present a method for supervised volumetric segmenta-
tion based on a dictionary of small cubes composed of pairs of intensity
and label cubes. Intensity cubes are small image volumes where each
voxel contains an image intensity. Label cubes are volumes with voxel-
wise probabilities for a given label. The segmentation process is done
by matching a cube from the volume, of the same size as the dictionary
intensity cubes, to the most similar intensity dictionary cube, and from
the associated label cube we get voxel-wise label probabilities. Probabil-
ities from overlapping cubes are averaged and hereby we obtain a robust
label probability encoding. The dictionary is computed from labeled vol-
umetric image data based on weighted clustering. We experimentally
demonstrate our method using two data sets from material science – a
phantom data set of a solid oxide fuel cell simulation for detecting three
phases and their interfaces, and a tomogram of a glass fiber composite
used in wind turbine blades for detecting individual glass fibers.

Keywords: Volume segmentation · Materials images · X-ray tomogra-
phy · Learning dictionaries · Glass fiber segmentation

1 Introduction

High resolution volumetric scanning has become a widely used technique in areas
like material science and medicine, and automated quantification methods are
necessary in order to obtain size and shape measures from these data. We present
a method for supervised segmentation of volumetric data. The method is trained
from manual annotations, and these annotations make the method very flexible,
which we demonstrate in our experiments.

Our method infers label information locally by matching the pattern in a
neighborhood around a voxel to a dictionary, and hereby accounts for the volume
texture. Texture segmentation has been widely addressed in 2D [4,8,19], whereas
volumetric texture segmentation has received less attention [1]. This fact could
be due to the extra computational effort introduced in 3D. However, 3D texture
segmentation is highly appropriate for quantifying size and shape in 3D data.
Applications in this paper are from energy material science.

c© Springer International Publishing Switzerland 2015
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Denmark is pursuing to obtain 100% of the energy from renewable resources
by 2050 [6]. For this reason, it is important to develop renewable energy tech-
nologies, which involves investigating material properties to ensure efficiency and
lifetime. Imaging the 3D micro-structure can be essential in characterizing and
understanding such properties, e.g. the geometric configuration of a solid oxide
fuel cell or the fiber geometry in a wind turbine blade material, which are the
applications we investigate here.

Our applications contain three spatial dimensions, but data could also be two
spatial dimensions and time as the third. If it were to be the latter, the evolu-
tion of the material’s micro-structure under certain conditions (e.g. temperature
or tension) could be investigated. Moreover, the flow of different elements (e.g.
gas or liquid) through porous materials can be investigated [17]. Other appli-
cations are segmentation of anatomical structures in medical imaging [1,16],
seismic facies analysis [14] or crystallography [15]. Many of the volumetric tex-
ture segmentation algorithms are extensions of common 2D techniques [2] or 2D
segmentation propagation approaches for segmenting 3D materials [18].

Wind turbines blades commonly use glass fiber composites for the load car-
rying parts of the blades, for which the fatigue damage mechanisms are not well
understood. Wind turbine blades have long expected lifespans where they expe-
rience a high number of load cycles, which gives rise to fatigue damage evolution.
In addition, the blade lengths are being increased because the power output of a
wind turbine is proportional to the blade length squared. As fatigue is one of the
main limiting factors of designing longer blades, improving the understanding
of fatigue damage evolution in glass fiber composites is important [7,13]. Here
microstructure analysis using imaging is an important tool, both for material
characterization and modeling.

Solid oxide fuel cells (SOFC) operate by oxidizing a fuel to produce electricity
and heat. The electrodes of an SOFC are typically two-phase porous systems.
The two solid phases are responsible for electron and ion conduction and the
pores allow transport of gaseous reactants and products to and from the elec-
trochemically active sites at the triple phase boundaries (TPB). The chemical
reactions can only take place at the TPBs where there is access for electrons,
ions and gases through the corresponding three phases. The performance of an
SOFC is thus strongly dependent on the density of TPBs in the electrodes and
on how easily, electrons ions and gases can be transported to and from the
TPBs [10]. The microstructure of an SOFC can only be indirectly controlled
through a complicated interaction between powder particle sizes, casting meth-
ods and sintering temperatures. 3D characterization of the micro-structure is
thus becoming an increasingly important tool to correlate the characteristics of
the micro-structure to the cell performance and the production recipes.

In this paper we extend the 2D segmentation algorithm in [5] to 3D. The
method is based on a dictionary of image patches and corresponding label
patches. Here we replace the image patches with volume cubes and investigate
the effects on the segmentation. We see an improved performance in some of
our experiments by extending to 3D, but at the expense of longer computation
times. However, we obtain close to perfect segmentation of individual glass fibers
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in wind turbine blades, and also high performance in segmenting solid oxide fuel
cell data.

The paper is organized as follows. In Section 2, we provide a description
of the algorithm. Section 3 explains the data sets and materials which are uti-
lized for the comparative study. In Section 4, the focus is on the results, where
three methods (method from literature, 2D dictionary and 3D dictionary) are
compared for each data set. Finally, Section 5 draws some conclusions.

2 Method

In the process of extending [5] to 3D, we have however changed some parts and
therefore we include a description of the entire method despite the overlap with
[5]. The method is based on a dictionary of small intensity cubes coupled with
label cubes, and the dictionary is learned using weighted clustering. First we
describe the dictionary, then we explain the problem we are optimizing, and
finally we describe an algorithm to compute the dictionary and the method for
inferring label information to an unlabeled volume.

The dictionary is based on annotated training data, where the annotation
assigns each voxel in the training volume to one class label. Given a volume
VI : Ω → R where Ω ⊂ R3 and an annotation of that volume VL : Ω → N
with labels l = 1, . . . , k, we want to build a dictionary D = (DI ,DL) consist-
ing of the intensity dictionary DI ∈ Rm×n and the associated label dictionary
DL ∈ Rkm×n. Each column in DI contains a vector representation of small
intensity cubes of side length M where m = M3, and n is the number of dictio-
nary elements. The columns of DL contain vectorized label cubes represented as
probabilities of labels. Therefore, each label vector contains km elements, where
the first m elements are the probabilities of label 1, the next m elements are for
label 2, etc. We get

k−1∑

l=0

dLi(lm + τ) = 1 for all τ ∈ {1, . . . , m},

where dLi is column i in DL.
An ideal dictionary would be

D̂ = arg min
D

o∑

η=1

(
λ̂‖dLi(η) − vLη‖2

2 + ‖dIi(η) − vIη‖2
2

)
, (1)

where vIη and vLη are the η’th intensity cube and label cube from VI , VL

respectively with η = 1, . . . , o where o is the number of intensity cubes in VI and
λ̂ is a scaling factor. i(η) is the index of the nearest intensity dictionary element

i(η) = arg min
i

‖dIi − vIη‖2
2. (2)

The first norm in (1) ‖dLi(η) − vLη‖2
2 measures the Euclidean distance

between the label dictionary element, and label cube and the second norm in (1)
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‖dIi(η) − vIη‖2
2 is the Euclidean distance between the intensity dictionary ele-

ment and intensity cube. Our aim is to minimize both simultaneously because we
hereby obtain a discriminative dictionary and good clustering properties. We will
later show that this is advantageous when using the dictionary for segmenting
an unlabeled image.

Finding a solution to (1) is a hard problem. Without the first norm concerning
the labels it is a k-means clustering problem, which is NP-hard, and we have not
found a solution with the addition of the label information. So, based on (1) we
suggest a heuristic clustering algorithm which has given good performance in our
experiments. The basic idea is to estimate a weight from the label information
and use that in a weighted k-means clustering approach.

The algorithm for building the dictionary is based on iteratively updating a
set of dictionary elements. Initially a random set of ξ associated intensity and
label cubes are selected as v̂j = (v̂Ij , v̂Lj) from the annotated training volume
and vectorized, where j = 1, . . . , ξ. A subset of n patches are randomly selected
as the initial dictionary D0, where n < ξ. New dictionary elements are now
estimated iteratively as

dt+1
Ii =

1

υi

∑

κ∈Si

(1 − λ‖dt
Li − v̂Lκ‖2)v̂Iκ, (3)

where dt+1
Ii is the intensity dictionary element at iteration number t + 1. Si is

the set of indices with intensity cubes closest to dictionary element i

κ ∈ Si s.t. κ = arg min
j

‖dIi − vIj‖2
2.

The normalization factor is estimated as

υi =
∑

κ∈Si

(1 − λ‖dLi − v̂Lκ‖2). (4)

This approach gives high weight to training samples with labels similar to the
dictionary element and low weight to dissimilar samples. The label dictionary
elements are estimated as average labels for the cluster as

dt+1
Li =

1

|Si|0
∑

κ∈Si

v̂Lκ, (5)

where |Si|0 is the cardinality of Si. In our experiments we have seen a satisfactory
result with little change in the dictionary after approximately 10 iterations.

The dictionary is used for segmenting a volume by building a label probability
volume. This is done by matching the intensity dictionary elements to the volume
we want to segment, and adding the associated label dictionary elements to an
empty label probability volume.

Given a volume UI : Ω → R that we want to segment with UI ∈ Rx×y×z we
compute a label probability volume UL : Ω → R with UL ∈ Rx×y×z×k. Initially
we set UL to having all elements zeros. We can extract vectorized intensity cubes
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uIh of the same spatial size as the dictionary elements, where h = 1, . . . , ρ is
the number of possible cubes with side length M , so e.g. for an odd M we get
ρ = (x − M + 1)(y − M + 1)(z − M + 1), which is a little less than the number
of voxels due to the volume boundaries. Each uIh is matched to the nearest
intensity dictionary element using Euclidian distance. For a given intensity vector
uIh we get the nearest dictionary element

i(h) = arg min
i

‖dIi − uIh‖2
2. (6)

From this we take the corresponding label dictionary element dLi(h) and add it
to the label volume UL at the coordinates of h’th cube extracted from UI for
each of the k labels. When the probabilities are added we weigh them using a
Gaussian weight function with standard deviation σ centered at the cube. After
adding the probabilities in UL up, we simply normalize by dividing the sum over
label probabilities for each voxel to make the probabilities sum to one over all k
labels.

Some smoothing at boundaries occurs which especially affects small features.
In order to account for that, we estimate label-wise weights on an annotated
validation set where we minimize the difference between the obtained probabil-
ity volume and the annotation. We are given an annotated volume QL and the
computed label probability volume PL using a trained dictionary. Then we rear-
range these volumes to QL and PL such that each row contains the voxel-wise
probabilities and each column represents the labels with each row summing to
1, i.e. QL(r, l) ∈ {0, 1}, PL(r, l) ∈ [0, 1] and

∑k
c=1 QL(r, l) =

∑k
c=1 PL(r, l) = 1,

where QL(r, l) and PL(r, l) are elements from QL and PL at row r and column
l respectively. We want to find the weight matrix W ∈ Rk×k that minimizes

W = arg min
W

‖QL − PLW‖2
2,

where the solution is found as

W = (PT
LPL)−1PT

LQL.

The voxel-wise probability of the final segmentation is obtained as

ũL(x) = uL(x)W, (7)

where uL(x) ∈ Rk is a vector of label probabilities of the voxel from the spatial
position x = (x, y, z)T in the intensity volume UI .

3 Materials

Two data sets are employed for the comparative study including:

1. Real data from glass fiber used for wind turbine blades.
2. Phantom data of solid oxide fuel cells.
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3.1 Glass Fiber

The data set was obtained through 3D X-ray computed tomography imaging.
The scanned sample is a cut-out of a fatigue test specimen and the dimensions
of approximately 5 × 5 × 10 mm. The material considered is a uni-directional
(UD) glass fiber/polyester composite used in the load carrying beam of a wind
turbine blade. Uni-directional in this case means that the fibers are aligned in one
main direction, making the composite strong in one direction, and weak in other
directions. In order to hold the UD fiber bundles in place during manufacturing,
they are stitched to a thin layer of transverse backing fiber bundles. As the
backing only contributes lightly to the mechanical properties of the material,
the main focus in this study is on segmenting the UD fibers.

In Figure 1, we see one of the training slices and its corresponding annotated
labeling where three different classes are defined: centers, fibers and matrix.

(a) Intensity image. (b) Labeled image.

Fig. 1. One slice of the fiber training data. In white: centers, gray : fibers and black :
matrix.

3.2 Solid Oxide Fuel Cell Phantom

We simulated a 3D SOFC phantom using a random process employing a sim-
ple curvature minimization scheme. Here the target phase fractions of 0.24, 0.38
and 0.38 where used for the pore, ion conducting and electron conducting phases
respectively. This phantom creation scheme greatly simplifies many aspects of
the evolution of a real micro-structure during sintering and as such the created
micro-structure is not suited for comparison of higher order properties to a real
SOFC. However, the scheme provides 3D micro-structure data that qualitatively
matches the structure observed in real SOFC data sets [9]. The scheme is thus
well suited as ground truth for segmentation. After the phantom creation of the
artificial 3D micro-structure data the X-ray projections and reconstruction were
simulated using slice wise radon and inverse radon transform using AIR tools1.
3% Gaussian noise was added to the radon transformed data before reconstruct-
ing it.

In Figure 2, we can see one of the training slices and its corresponding anno-
tated labeling, where three classes have been defined, corresponding to each of
the three phases.

1 http://www2.compute.dtu.dk/∼pcha/AIRtools/
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(a) Intensity image. (b) Labeled image.

Fig. 2. One slice of the fuel cell training data. In white: phase one, gray : phase two
and black : phase three.

4 Results

In this section we provide the results from our algorithm and compare it to well
established image analysis methods. Glass fiber detection is compared to 2D
scale space blob detection [12] and SOFC segmentation is compared to Markov
random field (MRF) segmentation solved using graph cuts with alpha expansion
[3,11]. For both methods we chose parameters that minimized the segmentation
error. It should be noted that the parameters for the MRF are not learned, i. e.
they are known.

For the dictionary algorithms, several parameters need to be set. It is known
that the segmentation is most sensitive to the change in atom size M , i.e. the side
length of the cubes, and number of dictionary elements n, so segmentation errors
will be calculated for different parameter settings so as to select the optimal.

4.1 Glass Fiber

For the glass fiber, the dictionaries have been trained with 9 slices of size 200×200
pixels, the validation set also contains 9 slices of the same size. The performance
is calculated over only one test slice of size 500 × 500 pixels.

The performance measure is computed object-wise over the center class, and
represents the true positive rate and false positive rate. We segment the center
part of the fibers, and the individual fibers are found as the center of mass
using connected component analysis on the center segments. Comparison to the
manual marked ground truth is done by counting the number of true matches,
which are found as points that have each other as nearest neighbors as well as
a distance of less than 4 voxels. The 4 voxels are chosen because the average
radius of the glass fibers is around 4 voxels. Results are shown in Table 1. The
computational time, defined as the time to train, validate and classify the one
test slice, has also been calculated.

The computational time (Ctime) grows as the number of elements in the
dictionary increases (n) or the size of the volume cube (M) becomes bigger.
The average Ctime is 100.3 seconds for 3D, whereas it is 3.2 seconds for the 2D
dictionary.
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Table 1. Performance measure dictionaries with different parameters

M n TPR2D FPR2D TPR3D FPR3D

3 50 0.8563 0.1674 0.9099 0.1202
3 250 0.9082 0.1678 0.9511 0.1520
3 1000 0.9350 0.1721 0.9561 0.1165
5 50 0.9468 0.0399 0.9926 0.0177
5 250 0.9762 0.0248 0.9977 0.0104
5 1000 0.9799 0.0208 0.9963 0.0121
7 50 0.9866 0.0104 0.9896 0.0104
7 250 0.9873 0.0117 0.9973 0.0080
7 1000 0.9910 0.0144 0.9980 0.0087
9 50 0.9484 0.0171 0.9461 0.0107
9 250 0.9930 0.0100 0.9940 0.0104
9 1000 0.9953 0.0097 0.9977 0.0100

(a) Ground truth. (b) Blob detection. (c) 2D dictionary. (d) 3D dictionary.

Fig. 3. Ground truth and circles around detected fiber centers

In Figure 3, we see a zoomed image of fibers with circles around each of
the detected centers for each of the three methods (blob detection, 2D dictio-
nary and 3D dictionary) and the ground truth image. Circles are plotted with
radius 4 for illustration purposes. As can be seen qualitatively from the images,
the performance of the dictionary methods is substantially better than the one
obtained through blob detection. The centers in the blob detection are found
less accurately compared to those in the ground truth and some centers are not
found (e.g. red circles in Figure 3). The displacement of the centers in the 2D
and 3D dictionary with respect to the ground truth is very small. Moreover, the
3D dictionary performs slightly better than the 2D dictionary, as it finds all the
centers, whereas in the 2D method results there are two centers which have been
detected as one only center (blue circle Figure 3). This is because there are some
pixels connecting these two centers.

Quantitatively the three methods can be compared using the performance
measures TPR and FPR.

1. Blob detection: TPR = 0.8339 and FPR = 0.0737.
2. 2D dictionary (M = 9, n = 1000): TPR = 0.9953 and FPR = 0.0097.
3. 3D dictionary (M = 7, n = 1000): TPR = 0.9980 and FPR = 0.0087.
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(a) Fiber centers expanded
with circles.

(b) Zoom of 4a. (c) Fiber centers (color
indicates depth).

Fig. 4. Segmentation over a stack of 100 slices

In Figure 4, a stack of 100 slices of 300 × 300 pixels was segmented using
the 3D dictionary (M = 7, n = 1000). In these images we present the results
in 3D, where the fiber orientation can be visualized (straight fibers appear as
points in 4c). Note how accurate the fiber orientation can be visualized using
this approach.

4.2 Solid Oxide Fuel Cell Phantom

For the fuel cell data, the measure used to evaluate the performance is defined
as the percentage of pixels which are classified correctly over all three classes.
Results are shown in Table 2. The dictionaries are trained with a volume of
50 × 100 × 100 pixels, validated with another volume of 50 × 100 × 100 and the
performance is measured over a volume of 100 × 100 × 100 voxels.

As for the glass fiber, the computational time is two orders greater when using
the 3D dictionary. In Figure 5, we see one segmented slice from the test set for
each of the three methods (MRF, 2D dictionary and 3D dictionary) compared

Table 2. Performance measure dictionaries with different parameters

M n Performance2D Performance3D

3 50 0.8864 0.9115
3 250 0.8917 0.9197
3 1000 0.8913 0.9192
5 50 0.9029 0.8886
5 250 0.9103 0.9034
5 1000 0.9119 0.9060
7 50 0.8819 0.8227
7 250 0.8995 0.8453
7 1000 0.9069 0.8512
9 50 0.8407 0.7455
9 250 0.8743 0.7786
9 1000 0.8886 0.7803
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(a) Ground truth. (b) MRF. (c) 2D dictionary. (d) 3D dictionary.

Fig. 5. Ground truth and segmentations of fuel cell phantoms

to the ground truth image. In this case, the benefit from the 3D expansion of the
dictionary method is not significant due to the excessive smoothing introduced
by the 3D dictionary. However, the dictionary methods do slightly outperform
the MRF technique, as we can see from in the following quantitative results:

1. MRF: Performance = 0.9078.
2. 2D dictionary (M = 5, n = 1000): Performance = 0.9119.
3. 3D dictionary (M = 3, n = 250): Performance = 0.9197.

5 Conclusions

In this paper, we have presented a highly flexible and accurate method for 3D
segmentation of complex image structures. The method is an extension of a 2D
segmentation method and we have investigated if adding a new spatial dimension
improved the segmentation performance, as this third dimension provides extra
contextual information. We have conducted an investigation to demonstrate the
flexibility of the proposed method. Our investigation included experiments for
segmenting individual glass fibers in X-ray computed tomography data and for
segmenting three phases in phantom data of solid oxide fuel cell data. With the
glass fiber data we obtained close to perfect segmentation of the fiber centers.
For the fuel cell phantoms we almost see no improvement going from 2D to 3D,
which might be due to the excessive smoothing introduce by the 3D algorithm.
The fiber detection was compared to scale space blob detection and the solid
oxide fuel cell data was compared to Markov random field segmentation using
alpha expansion. In both cases both the 2D and 3D methods outperformed these
standard methods.

In the current implementation the computational cost is high, but the method
has not been optimized for speed. Especially the 3D version is computational
expensive with two orders of magnitude higher computation time and our plan to
optimize the method for computational speed in our future work. With the ease
of training and very high performance, we believe that the proposed methods
can be a very useful tool in quantifying structures in complex volumetric data
like tomograms of material samples.
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a b s t r a c t

The aim of this paper is to characterise the fibre orientation in unidirectional fibre reinforced polymers,
namely glass and carbon fibre composites. The compression strength of the composite is related to the
orientation of the fibres. Thus the orientation is essential when designing materials for wind turbine
blades. The calculation of the fibre orientation distribution is based on segmenting the individual fibres
from volumes that have been acquired through X-ray tomography. The segmentation method presented
in this study can accurately extract individual fibres from low contrast X-ray scans of composites with
high fibre volume fraction. From the individual fibre orientations, it is possible to obtain results which
are independent of the scanning quality. The compression strength for both composites is estimated from
the average fibre orientations and is found to be of the same order of magnitude as the measured values.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The load carrying parts of large wind turbine blades are mainly
made of unidirectional (UD) fibre reinforced polymers where the
fibres are aligned with the main load direction. A low weight
together with a high stiffness, a good fatigue resistance and a high
compression strength are the key properties that the fibre compos-
ite should have when designing large wind turbines [1]. Even if the
load carrying composite is stiff, strong and fatigue resistant, a small
fibre misalignment would introduce shear stresses into the much
weaker and softer polymeric matrix material between the fibres.
Especially in compression this is critical [2], as the compression
strength of a UD composite relies on the ability of the matrix mate-
rial to keep the fibres straight [3]. Therefore, experimental charac-
terisation and numerical predictions of the compression strength
depend on a good knowledge of the fibre orientation. The influence
of different idealised fibre orientation arrangements on the com-
pression strength has been investigated analytically and numeri-
cally [3–6]. Nevertheless, in real composites, the fibre orientation
will often have a large degree of randomness and some work
addresses this as well [7,8].

Several image-based methods for determining the distribution
of the fibre orientation in composites have been proposed. These
are applied to 2D and 3D image data that can be acquired both

through destructive and non-destructive methods. 2D microscopy
provides high-resolution images of individual fibres, and has been
used for analysing fibres from different angles using 2D methods
[9,7,10].

Destructive methods for analysing the structure in 3D have
been investigated [11,12]. However, non-destructive 3D analysis
opens the possibility for monitoring changes in the fibre architec-
ture [13], e.g. during loading of a sample [14]. Therefore, it is of
interest to consider non-destructive 3D characterisation tech-
niques, which have become possible due to the recent increase in
the resolution that can be obtained using different scanning tech-
niques. Confocal laser scanning microscopy was used to determine
the 3D fibre orientation distribution of different types of glass fibre
composites in [12]. Nevertheless, this technique has some limita-
tions such as small sample size, outlined in [15].

Recent studies also include using 3D X-ray computed tomogra-
phy (CT), which enables imaging of volumes containing many
fibres. If a lab scanner is used and the scan time is short, the reso-
lution for CT will be lower than the one that can be obtained in
other microscopic systems. Therefore, it can be hard to segment
the individual fibres as they might be barely resolved. Fibre orien-
tations in 3D were obtained for a carbon fibre composite in [16]
and for a stitched non-woven fabric in [17], without extracting
the individual fibres beforehand. Instead, the fibre orientations
are estimated by applying filters to a binarisation of the 3D image
which is assumed to be correct. Consequently, the results for
the fibre orientation are highly dependant on the quality of the
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binarisation, which means that it is hard to asses for which kind of
data the results will degrade. In [18], cellulose fibres were tracked
individually; manual annotation had to be provided in one slice to
enable the segmentation of each fibre. Short fibres in composites
were also tracked in [15], using a line detection approach. How-
ever, the spacing between the fibres in the considered material
was fairly large, making it possible to separate fibres even at a
coarse resolution. Additionally, segmentation of carbon fibres
was carried out in [19,20]. In the first, a lab scanner was used
and the quality of the scans was similar to the one in this study,
resolution and projection-wise. However, this method requires a
tedious manual validation of the fibre tracks needed to deal with
the large amount of false centre detections obtained by template
matching. Therefore, it is not feasible for large volumes. In [20],
the method is applied to phase contrast synchrotron CT data with
well-defined boundaries and low noise.

To sum up, previous methods for automated fibre segmentation
of composites that contain a high fibre volume fraction have only
been able to perform individual fibre segmentation for low con-
trast scans in very small volumes. As well as enabling fibre orien-
tation characterisation, individual fibre segmentation opens up the
opportunity to acquire more knowledge in relation to the fibres
and their arrangement, e.g. diameters, distance between fibres
and contact points. The method that is proposed in this paper
can segment individual fibres in large and noisy data sets extracted
from standard compression test samples. The method is presented
for filament wound UD glass and carbon fibre composites, which
contain a fibre volume fraction in the range of Vf ¼ ½53;59�%. This
serves as a good initial case study since they are purely UD with no
secondarily oriented fibres and therefore should be considered as
an idealisation of the actual non-crimp fabric used in wind turbine
blades. The purpose of the idealisation is to exhibit the stiffness
and strength potential of the material system and not to represent
the actual architecture inside the blades. Furthermore, the applica-
bility to both glass and carbon fibre material systems is highly rel-
evant as they are commonly used composites.

2. Materials

This study is carried out on two frequently used composite
materials, namely a UD glass fibre reinforced polymer (GFRP) and
a carbon fibre reinforced polymer (CFRP). Both sample manufactur-
ing and scanner settings influence the quality of the recorded data,
so they are described in detail here.

Great care was taken to keep all manufacturing details as iden-
tical as possible when the fibre composite samples were produced.
However, the fibre orientation inside the bundles is given by the
fibre supplier and will therefore vary between the two materials.
The UD composites are manufactured using a filament winding
technique [21] with a small filament winding angle of 0.4�. The
fibres are vacuum infused with an epoxy resin and subsequently
cured and post-cured under controlled conditions. More details
regarding the manufacturing of the laminates can be found in
[21,22].

The compression strength is mainly controlled by the fibre ori-
entation and matrix behaviour, which are related as modelled in
Eq. (3). Therefore, quite similar compression strengths were
expected for the two materials. Nevertheless, [21,22] reported that
the compression strength was 10% higher for the CFRP than for the
GFRP. This could be due to different fibre orientation distributions
inside the fibre bundles. The present paper focuses on the charac-
terisation of this orientation using small cut-outs where the orien-
tation angles will be calculated with respect to a reference
coordinate system defined by the mean fibre orientation, see later

in Section 4.1. Note that the method would also work on full test
samples.

The cut-outs come from a gauge section of size
3� 10� 12 mm3 and were scanned in a laboratory micro-focus
X-ray CT system (Zeiss Xradia Versa 520) with the settings listed
in Table 1. Please note that the scan time can be estimated from
the number of projections and the exposure time; and that other
parameters such as tube current are set automatically by the scan-
ner to match the voltage and power. As it is a region of width W
and depth D that will be analysed, and not the whole field of view,
these values are given in Table 1, instead of the cut-out sizes. The
3D image reconstruction was performed using the software
XMReconstructor Cone Beam 10 by Zeiss, the binning was per-
formed using ImageJ and the numerical experiments were carried
out using Matlab.

3. Automated fibre segmentation method

A direct way of characterising the degree of fibre misalignment
is by analysing the orientation of individual fibres. This requires
the computation of each individual fibre ‘trajectory’, a 3D line char-
acterising the fibre orientation that is computed as a set of con-
nected centre points. The trajectories are obtained in two steps.
First, a method for detecting individual fibre centre points in
cross-sectional images from the reconstructed volumes is
described in Section 3.1. Then, from these detections the fibre tra-
jectories are computed through tracking, described in Section 3.2.

The process of obtaining the fibre trajectories is illustrated in
Fig. 1. The volume is sliced and the segmentation is done over
the 2D slices. Since the fibres are unidirectional, each slice gives
an image showing the fibre cross-section, which is perpendicular
to the axial direction of the scanner.

Despite the individual fibres appearing clear in the image, it is
challenging to detect them individually since they are lumped
together. Consequently, it was not possible to separate individual
fibres using simple segmentation techniques such as thresholding
with Otsu’s method [23], illustrated in Fig. 2. More complex seg-
mentation techniques such as blob detection or the template
matching scheme used in [19] are outperformed by the dictionary
segmentation method presented here. These methods can find
most of the centres, but at the cost of having a much higher degree
of false centre detections. If there should be no false centre detec-
tions, lots of true centres would be missed, leading to a signifi-
cantly lower accuracy compared to the dictionary method, as
demonstrated in [24] for blob detection.

Instead, a supervised segmentation technique is proposed, that
is, a segmentation method that requires a training step. This

Table 1
Materials and scans.

Material GFRP CFRP

Average fibre diameter d 17 lm 7 lm
Matrix density 1.2 g/cm3 1.2 g/cm3

Fibre density 2.6 g/cm3 1.8 g/cm3

Average fibre volume fraction 59% 53%
Optical Magnification 3.98(4�) 3.98(4�)
Source to sample distance 10 mm 10 mm
Detector to sample distance 20 mm 60 mm
Exposure time 6 s 15 s
Accelerating voltage 60 keV 60 keV
Power 4.98 W 5.04 W
Number of projections 3201 3201
Voxel size vs 1.124 lm 0.482 lm
Binned voxel size vds 2.248 lm 0.964 lm
Field of view on detector 2248 lm 964 lm
Analysed width W 1348.8 lm 578.4 lm
Analysed depth D 1348.8 lm 867.6 lm
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technique is based on ‘learning’ a so-called dictionary of image
patches and corresponding label patches [24]. The dictionary is a
compact representation of the information contained in a manually
annotated intensity image. Looking up this dictionary will enable
classification of an image, that is, to decide whether each pixel
belongs to class A or class B. A pixel will be labelled as class Awhen
it is in the area around a fibre centre, and class B if it is not.

3.1. Centre point detection

The two steps required for the centre point detection are illus-
trated in Fig. 3. First, a segmentation of the image is obtained. This
corresponds to a labelling where each pixel is marked as white if it
belongs to class A and as black if it belongs to B. The second step is
to find the geometric centre for each set of connected white pixels.
This will grant the centre points.

The process of segmenting an image based on the ‘learnt’ dic-
tionaries is described in Section 3.1.2, but first the training step
to obtain the dictionary will be presented in Section 3.1.1. These
steps were also described in [24].

3.1.1. Training the algorithm
The training process is illustrated in Fig. 4, where the dictionar-

ies are ‘learnt’ from a training set comprised by one single intensity
image and a label image for each class, where the actual class is
marked in white. The size of the intensity image used in this study
covers a region of 200� 200 pixels, which is equivalent to approx-
imately 30� d for both data sets. A training image should be cho-
sen to represent the typical patterns in the image. However, for
fibre segmentation the method was found to be very robust to
the choice of training image. The label images were created manu-
ally by annotating the areas around the centres. By only labelling
small areas around the centres instead of complete fibres, it is pos-
sible to obtain sets of centre pixels which are not connected one to
another. Therefore, individual fibres can be segmented.

There are several parameters that need to be set when training
the algorithm.

1. The number of classes k, which defines the amount of distinc-
tive segments required. It is set to k ¼ 2 in this specific case
(class A and class B).

2. The size of an image patch m ¼ M2, where M is the width of the
patch in pixels. Experience with the dictionary method has

Fig. 1. Description of the whole process for individual fibre segmentation. First, the volume is sliced. Then, each slice is processed so as to obtain the fibre centre points in
every slice. Finally, the centre points need to be tracked through the volume, i.e. the centres corresponding to the same fibre need to be connected. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Segmentation attempt of the intensity image in (a) using thresholding. This
intensity image corresponds to a part of a slice from a composite volume. (b) shows
the intensity histogram, (c) the thresholded image in the valley of the histogram at
intensity level 127 (obtained by Otsu’s method and marked in red in (b)). This image
illustrates the problem of connected fibres. (d) shows a threshold at a higher
intensity 150 (marked in green in (b)) illustrating the problem of fragmented parts.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. Example of fibre centre point detection in an intensity image, which is a part
of a slice from a composite volume. (a) shows the intensity image, (b) the
segmentation of class A, and (c) the computed centre points displayed on top of the
intensity image.
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revealed that this parameter is important (see [24]). M ¼ 9 pix-
els provides good results, that is M ’ 9d

7vds
, slightly bigger than

the fibre diameter.
3. The number of dictionary elements n, where a dictionary ele-

ment is comprised by an image patch and its corresponding
label patches. This parameter has also proven to be important.
n ¼ 250 is selected because results do not change significantly
when more elements are added (see [24]).

4. The number of iterations niter, which has proven to not be very
important, niter ¼ 10 is selected.

The training process in detail:

First Obtain a training set. Select an intensity image and create
the label images by manually annotating each class over
the intensity image. In this case created by marking the
area around the fibre centres.

Second Extract overlapping patches from the intensity and label
training images. This means that image patches will be
extracted starting from the top left corner and moving
one pixel down until the bottom of the image is reached.
Then, the next patch extracted is the one that is one pixel
to the right from the top left corner. Note that each inten-
sity patch has k ¼ 2 label patches associated.

Third Select a random set of w corresponding intensity and label
patches v j ¼ ðv Ij;vLjÞ where j ¼ 1 . . .w. It should be noted
that w should be large enough to capture the variety of
patches in the image and always w > n. In this study
w ¼ 3000.

Forth Initialise the n dictionary elements to a random selection
of n patches out of the w.

Fifth Follow the pseudo-code in Algorithm 1 to obtain the final
dictionary elements.

Algorithm 1. Building the dictionary

Require: Initialised dictionaries d0I and d0L with randomly
selected patches.

1: Set niter ¼ 10
2: for t ¼ 1 to niter do
3: Cluster the v I patches in n clusters where the cluster

centres are the intensity dictionary elements from the

previous iteration (dt�1
I ) and the similarity measure is

Euclidean.
4: for all clusters do
5: Define Si: set of indices for the patches in cluster i.
6: Define ni: number of elements in cluster i
7: Update the dictionary elements corresponding to

cluster i
8: dtIi ¼ 1P

l2Si
wli

P
l2Siwliv Il

where wli ¼ 1� 1ffiffi
2

p
M
kdt�1

Li � vLlk2
9: dtLi ¼ 1

ni

P
l2SivLl

10: end for
11: end for

In Algorithm 1 both intensity and label patches take part in the
process of building the dictionary. The intensity dictionary ele-
ments are a combination of the intensity patches in the corre-
sponding cluster weighted to maximise the uniqueness of the
label patches. That is, the smaller the difference between the label

of the dictionary element dt�1
L and the label of the image patch vL,

the more influence the specific image patch will have over the dic-
tionary element. Hereby a discriminative dictionary with good
clustering properties is obtained.

Fig. 4. Description of the training process. Overlapping image patches are extracted from the set of training images (intensity image and two corresponding label images for
class A and B). A random set of w from the extracted image patches is selected and clustered using weighted k-means [25] to obtain the n intensity dictionary elements, where
w is typically much larger than n. Each label dictionary element is the average of the label patches that correspond to the intensity patches used for estimating its
corresponding intensity dictionary element. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.1.2. Segmentation of an image
The classification procedure is illustrated in Fig. 5 and is based

on assigning a probability of belonging to the classes A and B to
each pixel in a test image, which is the image where the centre
points should be detected. Each pixel in the test image will be clas-
sified as the class that is most likely, given by the probability
images.

Given an image UI : X ! R that ought to be segmented with
UI 2 Rx�y, label probability images must be computed UL : X ! R

with UL 2 Rx�y�k where k is the number of classes. Initially UL is
set to having all elements zero. Overlapping image patches are
extracted from UI . These intensity patches uIh, which are of the
same spatial size as the dictionary elements, are vectorised and
then matched to the nearest intensity dictionary element using
Euclidean distance. For a given intensity vector uIh, the nearest dic-
tionary element is obtained as

iðhÞ ¼ arg min
i

kdIi � uIhk22: ð1Þ

The corresponding label dictionary elements dLiðhÞ are added to the
probability images UL at the coordinates of the h’th patch extracted
from UI for each of the k class labels. When all the dictionary ele-
ments have been added, the probability images are normalised to
make the probabilities sum to one over all k labels.

Some smoothing occurs at boundaries and it especially affects
small features. In order to account for that, label-wise weights
are estimated on an annotated validation set comprised by an
intensity image V and the label image for all classes QL. The differ-
ence between the probability images PL obtained for V and its label
images QL is minimised. The weights are found as

W ¼ ðPT
LPLÞ�1

PT
LQ L; ð2Þ

where the matrices, in bold, are of size nxny � k. In this study
nx ¼ ny ¼ 100 pixels.

3.2. Fibre tracking

The fibre tracking is the process of matching the centre points
from one slice to the next so as to define connected fibres through
the composite volume. Algorithm 2 describes this procedure,
where a centre point in a specific slice will be matched to a centre
point in an upcoming slice if the distance c between the centres is
less than a decided threshold s ¼ 2 pixels (’ 2d

7vds
).

Algorithm 2. Fibre tracking

Require: Centre points in every slice.
1: Assign a unique fibre ID to each centre point in slice p ¼ 1.
2: Add centres points in slice 1 to variable s, saved points.
3: for p ¼ 2 to nslices do
4: Create variable snew, where new points will be saved.
5: Add centre points in slice p to snew.
6: Nearest-neighbour search between points in s and

snew. All points in snew will be assigned with a distance
c to a point in s. However, some points in s might not
have a corresponding point in snew, but could have a
match in the next slices, if just due to missed
detections.

7: for all points 2 s do
8: if not matched then
9: Add centre point in s to snew
10: else
11: if c < s then
12: Old fibre continuing, assign to centre point in

snew the fibre ID from the associated centre
point in slice s.

13: else
14: New fibre starting, assign new fibre ID to centre

point in snew.
15: end if
16: end if
17: end for
18: Clear s
19: s ¼ snew
20: end for

Once the fibre trajectories are obtained, they should be post-
processed as shown in Fig. 6 and following the scheme described
below. Please note that the voxel size is the same in all three direc-
tions of a volume, therefore the distance between pixels and slices
is the same.

1. Split fibres where the detection has been missed in more than s1
slices in a row. This is done so as to avoid certain tracking arti-

facts occurring at the borders. s1 ¼ 5 ’ 5d
7vds

� �
was chosen by

visual inspection.
2. Eliminate fibres shorter than s2 slices because, in general, these

are due to artifacts from our tracking method. s2 ¼ 10 ’ 10d
7vds

� �

was selected by visual inspection, which corresponds to a
length of 22:48 lm and 9:64 lm for the GFRP and CFRP respec-
tively. The elimination of these fibres will not affect the overall
fibre orientation measurements, as the percentage of elimi-
nated centre points is of the order of 0.1% and 0.01% for the
glass and carbon fibre respectively.

3. Where the detection has been missed in s1 or less slices in a
row, the missing centres are estimated by interpolation.

s1 ¼ 5 ’ 5d
7vds

� �
was chosen because it was decided that a fibre

should either be split or interpolated, that is, no fibres with
missed detections should exist after post-processing.

Fig. 5. Description of the classification procedure. First, overlapping image patches
are extracted from the test image and each of these patches is associated to the
closest element in the intensity dictionary, using Euclidean distance. Then, to create
the probability images, the element from the label dictionary which corresponds to
the closest element in the intensity dictionary is added to the probability image for
that class in the position where the patch had been extracted from. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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4. Fibre trajectories are smoothed with a kernel of width equal to
s3 slices. This is done so as to eliminate the high frequency and
low amplitude noise generated by the algorithm used for the
centre point detection. This noise appears due to the lack of
sub-pixel precision when computing the centre points. A value
that eliminated the noise while preserving the natural move-

ments of a fibre was found to be s3 ¼ 30 ’ 30d
7vds

� �
. This value cor-

responds to a ratio between the smoothing length and the
average fibre diameter that is approximately equal to 4 for both
data sets. The smoothing length is 67:77 lm and 28:92 lm for
the glass and carbon fibre respectively.

4. Individual fibre orientation calculation method

This section describes how the local orientation is calculated
with respect to a reference coordinate system.

4.1. Calculation of the reference coordinate system

The individual fibre trajectories have been obtained in the scan-
ning coordinate system ðxs; ys; zsÞ. However, this coordinate system
will not be used as a reference because it may not represent the
objective orientation of the test samples. This is due to the scanned
samples being a cut-out from the test samples. In order to be able
to define the local fibre orientation in an objective way, the refer-
ence coordinate system ðxp; yp; zpÞ will be estimated statistically
based on the data. The zp axis will correspond to the mean fibre ori-
entation (MF), the xp axis to the direction that captures the maxi-
mum variation of the global fibre orientation in the plane that is
orthogonal to MF and yp will be defined given xp and zp.

The process of determining the reference coordinate system
consists of two steps. First, MF is obtained as the average global

orientation of the fibres and is defined by hMF and /MF. In order
to have a reliable estimate, only the fibres that run through the
whole volume are taken into account. After rotating the data sets
hMF so that the z axis corresponds to MF, the direction that captures
the maximum variation of the global fibre orientation is computed
through principal component analysis (PCA) [26]. Then, the data
sets are rotated /PC.

The global orientation of a fibre can be fully characterised with
the vector r, which is determined by the projection of the fibre’s
end point onto the ðx; yÞ plane, see Fig. 7a. It should be noted that
the vector r, and its projections rx and ry onto x and y respectively,
will be normalised so as to indicate pixels of deviation per slice.

The magnitude of r is proportional to the elevation angle h. In
other words, jrj encodes the amount of misalignment with respect
to the zp axis. The angle of r determines the azimuth /, which is the
direction in which the fibre is misaligned.

A scatter plot of rx against ry for each fibre gives an idea of
where MF lies. However, it should be interpreted carefully as some
information is lost, namely the density, that is, the areas where
there is a greater concentration of points. A histogram with con-
tour plots can reveal better where the dense areas are located. Both
scatter and contour plots are displayed in Fig. 8 for the GFRP.

In Fig. 9, the scatter plots of the global fibre orientation are
shown for both data sets before and after the two rotations. Note
that the rotations shift MF (marked in red) to the origin of the coor-
dinate system, as well as aligning the direction of maximum vari-
ation with the x axis.

4.2. Local fibre orientation description

The local fibre orientation captures the variations within a fibre
and is defined as the D’th order difference. This is the simplest esti-

Fig. 6. Post-processing steps: split, eliminate, interpolate and smooth. Note that the waviness of the fibres seems greater than it actually is due to the axes being scaled
differently. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. In (a) the definition of r, and its projections rx and ry, with respect to the scanning coordinate system, as the reference coordinate system has not yet been found. In (b)
the local fibre orientation in point f with respect to the reference coordinate system, where h 2 ½0;90� and / 2 ½0;360Þ. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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mate of the gradient, and is illustrated in Fig. 7. An elevation h and
azimuth / angle will be estimated for every point f in each fibre.

5. Results and discussion

In this section, the results from the automated individual fibre
segmentation are evaluated. Then, the mean fibre direction is pro-
vided and the reference coordinate system is defined for each data
set. Afterwards, the fibre orientation distribution is presented and
the compression strength predicted. Finally, a discussion on the
performance of the algorithm is included.

5.1. Automated fibre segmentation

Here the accuracy of the centre point detection is estimated and
the results from the tracking are visualised.

5.1.1. Centre coordinate detection
To evaluate the centre detection method, the automatically

obtained centre points are compared to reference points that were

created by manually annotating a test image. The test image corre-
sponds to a part of a slice that has not been used for training nor
validating the algorithm, the width of the test image is 674.4 lm
for the GFRP and 289.2 lm for the CFRP.

The accuracy of the method is calculated as the true positive
rate (TPR), which is the ratio between the amount of correctly
detected centres and the total amount of reference centres.
Fig. 10 shows a small region of the test image for both data sets.
It should be noted that the centre coordinates will be less precise
if the resolution of the scan is lower. In this study, the fibre
cross-sections contain around 7 pixels per diameter, which leads
to centre coordinate detections that are precise enough to charac-
terise the fibre orientation. However, better resolution will lead to
a more precise estimate, which might be necessary if one wants to
calculate fibre diameters or create an accurate finite element
model afterwards.

5.1.2. Fibre tracking
The fibre trajectories are shown with respect to the reference

coordinate system in Fig. 11.

5.2. Mean fibre direction

MF is given by hMF ¼ 0:53� and /MF ¼ 87:91� for the GFRF, and
by hMF ¼ 2:14� and /MF ¼ �18:85� for the CFRP.

5.3. Reference coordinate system

The rotations that are required to align the scanned volumes
with the reference coordinate system are first hMF ¼ 0:53� and then
/PC ¼ 90:35� for the GFRP; and hMF ¼ 2:14� followed by
/PC ¼ 16:60� for the CFRP.

5.4. Individual fibre orientation

In this section, the orientation of the individual fibres is pre-
sented. Note that the projections hx and hy of h on to the planes
ðx; zÞ and ðy; zÞ can be calculated from h and /. The notation used
for the estimated means will be hi.

5.4.1. Global fibre orientation
The global fibre orientation is defined as the local orientation

for D ¼ D, depth values reported in Table 1.
Fig. 12 contains a top view of the fibre trajectories shown in

Fig. 11 which have now been coloured depending on the global azi-
muth angle. The azimuth encodes the direction in which the fibre
is orientated in the ðx; yÞ plane. It can be seen that in different
regions the fibres tend to be orientated in a certain direction. The

Fig. 8. The variation in the global fibre orientation of the GFRP with respect to the
scanning coordinate system. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Measure of the global fibre orientation for both data sets with respect to the
scanning coordinate system on the left and with respect to the reference coordinate
system on the right. In yellow the x and y axes and in red MF. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Centre points over a region from the test image with a scale bar indicating
40 lm. In yellow the reference points and in red the detected ones, missed
detections are circled in pink. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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elevation angle, which grants the amount of misalignment with
respect to MF, is encoded in the length of the fibres, when these
are visualised from the top. The longer a fibre, the more misaligned
it is. When it appears as a point instead of a line, it means that it is
completely aligned with MF.

5.4.2. Local fibre orientation
An adequate value for the parameter D (see Fig. 7b) must be

determined. This value cannot be too small otherwise, the fibre ori-
entation calculation will be affected by noise, if any is left after
smoothing the fibre trajectories. In addition, the use of a fixed ratio
R between the length D and the average fibre diameter d (see
Table 1) will facilitate the comparison between data sets. In
Fig. 13, the distributions of the local fibre orientation for the GFRP
at ratios of R ¼ 4;10 and 79 are shown. Note that hhxi and hhyi are
zero for R ¼ 79 because this ratio corresponds to D ¼ D, the length
used when aligning the data set with MF. Moreover, note that the
influence of the length D on the calculated fibre orientations is
small. Fig. 14 shows the distribution of the local fibre orientation
in the planes ðx; zÞ and ðy; zÞ for the CFRP and R ¼ 4. It can be seen
that the glass fibres have a larger variation in fibre orientation, in
addition to presenting a preferred misalignment plane.

5.5. Compression strength

Based on the measured degree of fibre misalignment, the com-
pression strength can be predicted and compared with measured

strength values reported in [22]. Assuming an infinitely wide band
of fibres with an initial misalignment ĥ (measured in radians),
Budiansky [3] shows that the compression strength can be esti-
mated as

rc ¼ G

1þ ĥ=cy
ð3Þ

where it can be assumed that both the GFRP and CFRP have a shear
modulus of G ¼ 4:0 GPa and a shear yield strain of cy ¼ 0:006. From
the estimated mean of the absolute value of the elevation angles
shown in Figs. 13 and 14, the compression strengths can be pre-

Fig. 11. 3D side view of the fibre trajectories as connected points, where the colouring of the fibres is random. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. A top view of the fibre trajectories as connected points. Fibres will appear
as a point if they are completely aligned with MF, and the colour of each fibre
encodes the fibre’s azimuth angle /, as shown in the colour wheel. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 13. Distribution of the local fibre orientation for the GFRP with R ¼ 4 (in blue),
10 (in red) and 79 (in yellow), which correspond to lengths of
DGFRP ¼ 68 lm;170 lm and 1343 lm. Note that the histograms are normalised, so
as to approximate the probability density function. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 14. Distribution of the local fibre orientation for the CFRP with R ¼ 4, which
means that DCFRP ¼ 28 lm. Note that the histograms are normalised, so as to
approximate the probability density function.
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dicted r̂ and compared to the measured values rm from [21], as
shown in Table 2.

The measured compression strength is found to be of the same
order of magnitude as the predictions based on Eq. (3). As was sta-
ted in Section 2, the analysis here is performed just on a small
region of the whole measured gauge section of size
3� 10� 12 mm3. The analysed regions are of size
1:35� 1:35� 1:35 mm3 and 0:58� 0:58� 0:87 mm3 for the GFRP
and the CFRP respectively, thus they only represent a 0.68% and
a 0.08% of the whole tested gauge section. Despite this, the manu-
facturing process during filament winding is observed to result in
rather homogeneous specimens. In the future, a more thorough
investigation could be performed where either the whole tested
gauge section is analysed or where it is shown that the analysed
region is representative with respect to the fibre and bundle struc-
ture by inspecting a number of randomly chosen sub-regions. In
addition, the lowest compression strength is found for the compos-
ite material with the largest degree of misalignment. Nevertheless,
the complete spatial distribution of the fibre orientation should be
used for a more accurate prediction of the compression strength.
Readers are invited to try their own methods for estimating fibre
orientation, as well as methods for investigating the effect of the
non-homogeneous fibre orientation on the predicted compression
strength. The files with the X-ray scans and the fibre centre lines
are available online.1 The fibre centre lines can be used as an exam-
ple of fibre architecture in a filament wound composite material and,
together with the average fibre diameters reported in Table 1, they
can be used as a starting point for building up a micro-mechanical
based finite element model.

5.6. Performance of the algorithm

The algorithm requires a manually annotated image for training
the dictionary. Here an image of size 200� 200 pixels was used
and it took around half an hour to annotate. Afterwards, the pro-
cessing of a full volume of size 1000� 1000� 1000 pixels to
extract the fibre trajectories takes approximately 3 h on a Macbook
Pro 2,2 GHz Intel Core i7 and, since the method is highly robust,
there is no need for manual corrections. Furthermore, it should
be noted that the implementation in Matlab is not optimised for
speed and the possibility for parallelisation was not used. That is,
the most time consuming part is actually manually annotating
the training image. Nevertheless, already trained dictionaries can
be re-used for analysing samples with similar fibre volume fraction
and relationship between fibre diameter and voxel size.

6. Conclusion

In this paper, a method that is able to extract individual fibres to
calculate their orientation in a composite material has been

presented. The strength of this method is its ability to extract indi-
vidual fibres from low contrast and noisy volumetric scans where
there is a high fibre volume fraction, without requiring manual cor-
rections due to its high robustness. Consequently, it provides accu-
rate results independently of the quality of the grey scale images.
Previous methods that calculated the fibre orientation directly
from grey scale images suffered from noise contamination, grant-
ing different results for the same image with varying noise levels.
The ability to deal with low contrast and noisy scans is very impor-
tant, as it is not feasible to obtain high quality images in many
occasions, due to, for example, long scan times.
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Abstract—Efficient and easy segmentation of images and vol-
umes is of great practical importance. Segmentation problems
which motivate our approach originate from imaging commonly
used in materials science and medicine. We formulate image
segmentation as a probabilistic pixel classification, and we apply
segmentation as a step towards characterising image content.
Our method allows the user to define structures of interest by
marking a subset of pixels in an interactive manner. Thanks
to the real-time feedback, the user can place new labelling
strategically, depending on the current outcome. The final pixel
classification may be obtained from a very modest user input. An
important ingredient of our method is a graph that encodes image
content. This graph is built in an unsupervised manner during
initialisation, and is based on clustering of image features. Since
we combine a limited amount of labelled data with the clustering
information obtained from the unlabelled parts of the image, our
method fits in the general framework of semi-supervised learning.
We demonstrate how this can be a very efficient approach to
segmentation through pixel classification.

Index Terms—Image segmentation, object detection, semi-
supervised learning.

I. INTRODUCTION

IN this paper we propose an interactive method for proba-
bilistic classification of pixels, which can subsequently be

used for segmentation of 2D and 3D images. Our approach
is especially advantageous for detecting patterns, a situation
regularly occurring in images of materials and medical sam-
ples. Such images often show a collection of objects which
are to be separated from the background. One example we
extensively use in this paper is concerned with detection of
fibres in volumetric data of composite materials, see Fig 1.
Another example is detection and segmentation of cells in
histological images.

When segmenting images showing a collection of similar
objects, an established strategy involves extensive modelling
the appearance of the objects, usually leading to a highly
specialised method. Another common strategy is to learn the
appearance of the objects from a large amount of pre-labelled
data, often with high computational requirements during the
training phase. Here we aim for a general method that requires
limited computation.

Our method fits into the framework of semi-supervised
learning, combining two ingredients: a model for image
content created in an unsupervised manner from the image
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the Department of Applied Mathematics and Computer Science, Techni-
cal University of Denmark, Kgs. Lyngby, Denmark (e-mail: vand@dtu.dk;
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features, and a modest input form the user. When a user
marks a structure in the image as belonging to a class, our
method propagates the marks to similar structures in the
rest of the image. The output is a layered image which at
every pixel position contains the probabilities of belonging
to each of the defined classes. We call this output pixelwise
probabilities of belonging to segmentation classes. From this
output, segmentation is readily obtained by selecting the most
probable class for each pixel. The method is highly flexible
and captures the features which are of interest to the user,
an example with various image features is shown in Fig. 2.
This approach allows easy segmentation of complex structures,
that would otherwise require the development of algorithms
targeted at specific problems.

An important property of our model is real-time feedback,
allowing the user to place new markings strategically, depend-
ing on the current result. For this to work without delay, the
segmentation must be updated very fast. Our method relies
on a very efficient update of the parameters used for pixel
classification, and equally efficient update of the classification
results. With results shown immediately, the user can continue
adding marks until the desired outcome is learned by the algo-
rithm. Having learned the desired outcome, the classification
model can be applied to other images of the same type in
an unsupervised manner, without additional user input. This
has many applications, for example, in microscopy or when
segmenting slices from a volumetric image.

Our prototype implementation, including a graphical user
interface, is in Matlab, and we made the code available through
MathWorks File Exchange (search for InSegt).

A. Related work

Benefits of user input with real-time feedback have been
recognised in image segmentation. A comprehensive summary
of interactive approaches can be found in Boykov [1]. Here
we review some important advances to place our method in
the existing framework, and to explain how our method differs
from the current trends in interactive segmentation.

Early interactive techniques for segmentation of highly
complex images include intelligent scissors [2] or live wire
[3], where the user cuts out an object by placing markers
along its boundary. Based on edge information, the algorithm
traces the boundary by finding the shortest path in an edge-
weighted graph. These algorithms are computationally cheap,
but require a lot of user effort to obtain a segmentation.
Less user input is required when using interactive graph cuts
[4], [5], which often give very impressive results with only
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a few seeds provided by the user. The algorithm separates
the foreground from the background based on the boundary
and region properties of segments. In the GrabCut method
[6] the user provides a bounding rectangle, often leading
to very precise foreground-background separation. Optional
editing using brush strokes can be carried out to correct
finer details. Extensions of GrabCut include shape priors [7]
and and improvement to graph cut energy representation [8].
An alternative to combinatorial graph-based solutions is the
use of continuous representation of segmentation boundaries.
Such interactive active contours often minimise a variational
segmentation functional [9], [10].

Common to the described methods is the focus on seg-
menting relatively large foreground objects, which justifies
using regularisation on the length or the curvature of the
segmentation boundary. In some applications it is, however,
not possible to use a strong regulariser. For example, when
segmenting the circular fibres shown in Fig. 1, regularisation
would remove or merge small regions. The need for seg-
menting a number of small objects is often seen in areas
like microscopy imaging for life science or materials sci-
ence. Appearance of such images can vary significantly, with
texture as well as intensity carrying information useful for
obtaining the desired segmentation. A specialist would use
such clues to distinguish among structures, but automating the
segmentation task typically requires highly sophisticated and
problem-adapted methods. While there are situations which
justify the development of a specialised method, in many cases
a reasonable result with modest interactive effort would be
preferred.

When segmenting small image structures, e.g. cells, a
well-suited approach is classification of pixels. This is the
basis for the ilastik segmentation tool [11], which employs
a random forest classifier [12] trained on image features
including colour, edges, orientation and texture. The features
are computed from the image before starting the interactive
labelling of image structures, while parameters of the random
forest classifier are learned from the manual labelling. When
a user updates the labels to improve the segmentation, the
parameters of the classifier need to be re-learned, which
is computationally costly and causes a noticeable delay in
the feedback. Another specialised tool for segmentation of
microscopy images is trainable Weka segmentation [13] (a part
of the Fiji [14] distribution of ImageJ) which utilises a data
mining and machine learning toolkit for pixel classification
problems. A user can choose from a variety of image features
and interactively re-train the classifier.

Frameworks using neural networks are increasingly popular
in pixel classification, and often yield impressive results [15].
A neural network operates on features extracted locally from
the image. This input is fed through a series of linear functions,
with a non-linear activation between them, ending up in a
probabilistic output. The weights of the linear functions need
to be trained by optimising the performance on the usually
large set of labelled data. This provides an extreme flexibility
to the method and, provided an adequate training, neural
networks may solve pixel classification problems as accurately
as specialists. However, these methods are dependent on large

Fig. 1. Segmentation of glass and carbon fibers using our interactive pattern-
based method. On the left input images and a very small subset of pixels
manually labelled as either being close to fibre centre (cyan), or not being close
to fibre centre (magenta). On the right, the result obtained by thresholding
the probability image computed by using our method. The parameters used
for these experiments are M = 9 and K = 500.

training sets and require computationally costly training, which
makes them difficult to use for the task of segmenting a small
set of images.

Our approach shares some similarities with neural networks.
We also feed the input through linear functions with non-
linear steps in between. However, our method uses the features
extracted from the image to construct the linear functions
in a preprocessing step. The functions are then kept fixed,
while they operate on the interactive user input, resulting in
a probabilistic output. Due to the fixed linear functions, our
method is less adaptable than neural networks, and has limited
use for semantic segmentation of photographs. Nevertheless,
we achieve excellent results in case of patterned images, for
our method does not require a large set of labelled data, and
avoids performing a costly optimisation for each interactive
update.

The foundation of our method is a linear operator encoding
image content. This is done via a dictionary, by assigning
image pixels to dictionary pixels. The relation between the
image and the dictionary can be formulated as a bipartite graph
and represented using a biadjacency matrix. The approach
has been used for evolving deformable models in [16], [17],
[18]. In this work we use the image–dictionary relationship to
propagate the brush strokes provided by the users.

II. METHOD

Our method combines two sources of information, the
structure in the image and the user-provided partial labelling.
The structurein the image is captured in the preprocessing step,
namely clustering, which we describe in II-A. After that, in
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Fig. 2. An example demonstrating the flexibility of our method. In the top row, two manually labelled classes (cyan and magenta), corresponding to different
image features. In the bottom row, a resulting image segmentation obtained by thresholding a probability image.

II-B, we explain how clustering is used for transforming the
user-provided partial labelling into pixelwise probabilities of
belonging to each of the classes. The central part of our seg-
mentation, the interactive update, covered in II-C, is obtained
by immediately displaying the result of the transformation and
allowing the user to repeatedly improve the partial labelling.

Postprocessing choices, covered in II-D, are concerned
with the output of the interactive update, which consists of
two parts. The first and most obvious output is a proba-
bility image. The probability image can be thresholded for
image segmentation, but other postprocessing methods may
be utilised as well. For the second output, which we call
dictionary probabilities, the user-provided partial labellings
are propagated to the dictionary patches which were obtained
in the preprocessing step. This encodes the learned information
used for transforming the intensity image to the probability
image, and can be used for subsequent automatic processing
of similar images.

Our method comes in a range of flavours, governed by
the features used for clustering and the strategy used for
calculating pixelwise probabilities. In this section we only
explain the simplest variant, the other possibilities are covered
in Sec. III.

Notation. Throughout the paper we consider an image I
defined on an X-by-Y image grid with pixel values in either
grayscale or RGB colour space. During the interactive part, the
user will be placing marks in the image grid, to indicate the
pixels which belong to one of the C segmentation classes.
We chose to represent this user-provided information with
a layered label image L, where L(x, y, c) = 1 if the user
indicated that pixel (x, y) belongs to class c, and 0 otherwise.

A. Clustering image patches

The aim of preprocessing is to find the structures in the
image without considering the user-provided labels. In the
framework of semi-supervised learning, a cluster assumption
states that, if points are in the same cluster, they are likely

to be of the same class [19] (which does not imply that each
class forms a single cluster). For our purpose, we assume that
image features tend to form discrete clusters and that image
features in the same cluster are more likely to share a class.
However, we do not assume that each class is represented by
only one cluster, so we will need much more clusters than
classes. Therefore we create a multitude of clusters which
capture the variety of features present in the image.

In Sec. III we will explain the implementation details and
some more advanced ways of accomplishing clustering. In
this section we outline the basic approach, which operates
on intensity patches. For this case, only two parameters are
required: the number of clusters K and the size of the patches
M . The number of clusters should be large, measured in
hundreds or thousands, and is roughly reflecting the variability
in the image. The size of the patches should reflect the scale
of the distinctive image features and could, for example, be 9
pixels.

For clustering, we extract M -by-M patches from the im-
age, treat each image patch as a vector containing the pixel
intensities and group those vectors into K clusters, e.g. using
k-means clustering. The resulting collection of cluster centres
represents the content of the image. As these basic elements
are inferred from input data, we call the collection of K cluster
centres a dictionary, and each of its elements (each cluster
centre) is denoted dictionary patch. Every image pixel (x, y)
in the centre of an M -by-M image patch is, by means of
clustering, uniquely assigned to one cluster. We represent this
using an assignment image A. For boundary pixels we define
A(x, y) = 0.

B. Relation between image and dictionary

According to the cluster assumption, image patches assigned
to the same dictionary patch are more likely to belong to the
same class. Unique for our method is that we use this assump-
tion on a pixel level. That is, if image patches are assigned
to the same dictionary patch, their corresponding pixels (i.e.
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the pixels at the same position in the patch) are more likely to
belong to the same class. In other words, for every dictionary
patch there is a certain (unknown) classification of its pixels,
which all assigned patches are likely to share.

To exploit this assumption, we define a binary relation
between pixels which we expect to belong to the same class.
For example, a central pixel of an image patch assigned to a
certain dictionary patch relates to central pixels of all other
patches assigned to the same dictionary patch. Likewise, the
pixel directly above the central pixel relates to corresponding
pixels in other patches, and the similar relation extends to all
positions in a patch. This results in M2K cliques of pixels, one
for every pixel in the intensity dictionary. Due to the overlap
between image patches, every non-boundary pixel belongs to
M2 different cliques.

The central part of our method is concerned with trans-
forming a user-provided partial labelling to pixel-wise proba-
bilities. The transformation matrix we use has a very simple
decomposition, which makes our method efficient and allows
for immediate feedback to the user. The construction of the
transformation matrix is therefore fundamental for our method.
However, describing how this matrix is constructed provides
little intuition about our method, so we start by motivating our
approach.

As covered previously, the assignment image A, obtained in
an unsupervised manner, contains information on clusters of
structures in the image. We want to combine this information
with the user-provided partial labelling L. We do this by
creating a labelling dictionary to accompany our intensity
dictionary. For each cluster k ∈ {1, . . . ,K} we use A to
identify the locations of all image patches which are assigned
to the cluster. From those locations in the image grid we
extract corresponding patches of the labelling image L. For
the set of labelling patches we compute a pixel-wise and label-
wise average. As a result, every M -by-M dictionary patch
has now a corresponding M -by-M labelling representation
consisting of C layers.

When the image is fully labelled, the label image L sums
to one in every pixel, as only one out of C classes has a
label 1. Consequently, the labelling representation of every
dictionary element also sums to one in every pixel. The values
of this representation are not binary, they instead encode the
normalised frequency of a dictionary pixel being labelled
as belonging to class c in the current labelling image. For
this reason, we think of this labelling representation as of
pixelwise probabilities of belonging to class c, and we call
them dictionary probabilities.

Dictionary probabilities can now be pasted back into an X-
by-Y image grid, again using the location information from
A, and again averaged in every pixel. This results in an
X-by-Y probability image P consisting of C layers, where
P is a diffused version of L. In other words, we use the
self-similarity information encoded by A to diffuse the user-
provided labelling information from L onto the rest of the
image. Diffusion consists of two averaging processes, the first
when producing dictionary probabilities and the second when
producing image probabilities.

Now we turn to explaining the construction of the transfor-

mation matrices used for efficient computation of dictionary
probabilities and image probabilities. Fundamental for this
transformation is the relation between the X-by-Y image grid
and the M -by-M -by-K dictionary grid. This relation will
be encoded using an n-by-m biadjacency matrix B, where
n = XY and m = M2K. For this purpose, we need a linear
(single) index for the pixels in the image and the pixels in the
dictionary grid.

The linear index of an image pixel (x, y) is

i = x + (y − 1)X . (1)

As for the dictionary grid, we use (0, 0, k) for the central
pixel of the k-th dictionary element, and coordinates of other
pixels in the patch are defined in terms of within-patch
displacements ∆x and ∆y, both from {−s, . . . , 0, . . . , s} with
s = (M−1)/2. A dictionary pixel at coordinates (∆x,∆y, k)
has a linear index

j = (∆x + s) + (∆y + s)M + (k − 1)M2 . (2)

Each assignment of an image patch centered around (x, y)
to a k-th dictionary patch centered around (0, 0, k) induces a
relation between the M2 image pixels and the M2 dictionary
pixels, see Fig. 3. The reason is that not only central pixels are
related, but all pixels in the patch are. Using ∼ for denoting
a relation between image pixels and dictionary pixels gives

A(x, y) = k ⇒ (x + ∆x, y + ∆y) ∼ (∆x,∆y, k),
for all ∆x and ∆y

.

(3)
Since image patches are overlapping, every non-boundary

image pixel relates to M2 dictionary pixels. Image pixels in
a boundary relate to less than M2 dictionary pixels, and the
four corner pixels relate to only one dictionary pixel. In total
there are (X − 2c)(Y − 2c)M2 relations between the image
pixels and the dictionary pixels.

We represent the relations between n image pixels and m
dictionary pixels using an n-by-m biadjacency matrix B, with
elements

bij =

{
1 i ∼ j
0 otherwise

, (4)

where i and j are linear indices of an image pixel and a dic-
tionary pixel. The algorithm for constructing B is summarised
in Alg. 1

Algorithm 1 Construction of B
1: Initiate B as an n-by-m matrix with bij = 0
2: for an non-boundary pixel (x, y) do
3: Retrieve pixel assignment k = A(x, y)
4: for within-patch displacement (∆x,∆y) do
5: compute i for (x + ∆x, y + ∆y) using Eq. (1)
6: compute j for (∆x,∆y, k) using Eq. (2)
7: assign bij = 1
8: end for
9: end for

The biadjacency matrix B defines the linear mapping used
to propagate the information from the image to the dictionary
and vice versa. Consider a quantity defined on the image grid
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Fig. 3. A subset of relations between a 7×5 image and a 3×3×3 dictionary
caused by the framed patch centered around the darker pixel being assigned
to the first dictionary patch.

(e.g. user-provided markings indicating pixels which belong
to class 1) arranged into a length n vector v such that the i-th
element contains the value of the i-th image pixel. Propagating
these values to the dictionary is carried out by calculating a
length m vector

d = diag(BT1n×1)−1BTv , (5)

where 1 denotes a column vector of ones, while diag(·)
denotes a diagonal matrix with the diagonal defined by the
argument. Each element of d contains the value of the j-th
dictionary element computed by averaging the values of the
related pixels. The summation is accomplished by multiplying
with BT while the diagonal matrix accomplishes the division
with the total number of related pixels.

For this reason we define the m-by-n transformation matrix
for mapping from the image to the dictionary as

T1 = diag(BT1n×1)−1BT . (6)

Similarly, mapping from the dictionary to the image is given
by the n-by-m matrix

T2 = diag(B1m×1)−1B . (7)

Those two transformation matrices are fundamental for our
method. The diffused user-provided labellings (as described in
the motivational paragraphs) are computed as

P = T2T1L , (8)

where L is the user-provided labelling L arranged in a n-by-C
matrix. The resulting n-by-C matrix P can also be arranged
back into an layered image P , which is a diffused version of
L.

C. Interactive update

When equipping our method with the user-provided interac-
tive update, we run into choices with regards to: i) the way in
which we treat non-labelled pixels, ii) the number of applied
diffusion steps, and the way of treating intermediate results
between the steps, and iii) the possibility of changing the
number of segmentation classes. the number of segmentation
classes. After testing many types of the interactive updates,
we kept three main versions. In all versions the number of
classes C is chosen during initialisation and kept fixed during
the update.

The way in which we handle pixels that have not been
labelled by the user is also common to all versions. Such pixels

are assigned equal probability of belonging to each class. As
a result, before the user places the first label, all probabilities
are equal and no segmentation is possible.

The user starts the interaction by choosing a pencil cor-
responding to one of the C classes and scribbles over some
pixels. The partial labelling information is immediately trans-
formed to the probability image and shown to the user as an
image segmentation, such that every pixel is placed in the class
with the highest probability. Only one class will have values
larger than 1

C in the label image L, and the same applies for
the probability image P computed using (8). Thus, after the
first pencil stroke, some pixels will belong to the marked class
and no pixels will be assigned to the classes that have not been
labelled yet.

Thanks to the real-time feedback, a user can quickly im-
prove the result by placing markings in misclassified regions
(he regions that have been incorrectly classified). With many
un-labelled pixels in L, the image P will typically have many
values that only differ slightly from 1

C . Those small deviations
carry the information needed for inferring the class of the
unlabelled pixels.

As for the number of applied diffusion steps, we use
either one or two. When using two diffusion steps, instead
of continuing to diffuse the (already diffused) probability
image, we can apply additional operations in between the
two diffusions. Very good results are obtained if we apply
binarisation of the labels between the two diffusion steps. For
binarisation we identify the class of the highest probability
for each pixel, and apply {0, 1} labelling. If there are pixels
with no clear probability maximum, we let them retain their
unresolved labels. Consequently, for the second iteration of
the diffusion, many pixels act as labelled, and this improves
the quality of the result.

Another additional operation for the two-step diffusion
involves the subset of pixels which has been labelled by the
user. After the first diffusion step, the {0, 1} labelling of those
pixels has probably dispersed, and some might even have a
maximal probability in a class different from the markings
indicated by the user. The operation of overwriting imposes
the original user-provided labelling to all labelled pixels in
between the diffusion step.

The options for the two-step diffusion, binarisation and
overwriting, are implemented in our segmentation tool, such
that the user can quickly switch between the variants of the
method and decide which one yields the best results for
the data at hand. Likewise, the user can quickly determine
whether the quality of the results is sufficient or decide to
place additional scribbles in the image.

The user can choose to see the output of the classification
displayed as a final segmentation based on the resulting proba-
bility image. Alternatively, there is an option for inspecting the
C probability images, which often gives a better insight into
the quality of the result. In some cases the final classification
may seem incorrect, but the probability images do contain
useful information which can be postprocessed in some other
way to obtain the desired result.
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D. Postprocessing

Our approach allows for two postprocessing strategies. One
strategy involves processing the probability image to obtain the
segmentation. The other strategy involves detection of interest-
ing features from the probability image. These operations are
application-driven and examples are illustrated in the Sec. IV.

The second strategy involves reusing the information stored
in the dictionary and the associated dictionary probabilities.
The linear transformation (8), which is core to our method,
first transforms the user-provided markings from L to the
dictionary space (using matrix T1) and then back to the image
space (using matrix T2). Consider the first product

D = T1L .

This is an m-by-C matrix containing the pixelwise probabil-
ities of the dictionary pixels (i.e. the dictionary probabilities)
which can be useful for processing a previously unseen image
similar to I .

Processing a new image Î requires extracting all M -by-M
patches for every pixel of Î and assigning those patches to the
existing dictionary, i.e. the dictionary created using patches
from I . Just like before, this assignment defines an image-
to-dictionary relation and the closely related transformation
matrices. Here we are interested in the dictionary-to-image
transformation T̂2. To compute the probability image cor-
responding to the unlabelled image Î we therefore need to
compute

P̂ = T̂2D .

and rearrange the result into P̂ .
This way of using our method fits into the framework of

supervised learning. The original image I and the computed
labelling L can in this context be seen as a labelled training
set (ignoring the fact that the labelling is computed in a semi-
supervised way). Our method is then capable of producing
the probability image P̂ for the new, unlabelled image Î . The
approach will work as long as the initial clustering captures
the features present in both I and Î . This will hold for similar
images.

III. IMPLEMENTATION DETAILS

A multitude of implementational choices have been made
when developing our method. The part of the method concern-
ing the update eventually converged and only involves a few
of the choices mentioned earlier (running the diffusion step
twice and discretising between diffusion steps).

As for the clustering step for preprocessing the data, our
experience leads to two conclusions. First, our method is rather
robust to the quality of the clustering, so using an approximate
result will generally not deteriorate the output. Second, the
features used for clustering need to reflect the distinction in the
appearance of the classes we want to separate. For many types
of images, an intensity-based approach as sketched in Sec. II
will perform reasonably well. However, in challenging cases,
more elaborate image features might provide better results. In
this section, we briefly touch upon different possibilities.

For simplicity, we always assume that the size of the image
patches M is odd and patches are centred around the central

pixel, but we forsee a straightforward generalisation to patches
of different sizes. When clustering intensity patches, different
similarity measures can be employed for grouping, but in
our experiments we use either squared Euclidean distance
or normalised cross correlation. Furthermore, depending on
the problem at hand, it might be advantageous to normalise
all image patches prior to clustering. This is true when the
distribution of the intensities, rather than the absolute value,
is carrying the information we want to utilise for segmentation.

With the method being robust with respect to the quality
of the clustering, we focus on efficiency when building the
dictionary. Therefore, we choose to use a k-means tree [20],
which is built from consecutive k-means clusterings. In this
implementation, the size of the dictionary is defined in terms
of the branching factor b and the number of layers t. Since
each node in the tree makes up a dictionary element, the total
number of dictionary elements is given by K = bt+1−1

b−1 .
Our experience is that good performance is obtained also

without running the k-means until convergence for each layer,
and therefore a fixed number of iterations is chosen, e.g. 10
iterations. Furthermore, in order to limit the computational
burden and memory usage, we extract only a subset of M -by-
M patches from the image when building the dictionary.

As for producing A given the dictionary represented by a
k-means tree, the patch vector is compared with the nodes
in the first layer to find the match. The patch vector is then
compared to the children of this node, and the most similar
node is again chosen. This process is repeated until a leaf node
or an empty node is reached. The patch vector is assigned to
the most similar node along this path.

Apart from clustering image patches, we also experimented
with different image features. Some of the results we show in
Sec. IV are based on SIFT [21], but other features can also
be incorporated in our method. The approach is as following.
First, image features represented by vectors are extracted from
all pixel positions in the image and clustered in K clusters.
For speed, it often suffices to consider only a subset of pixels
for clustering, as long as we capture the variability in the
image. Every position (x, y) from the image grid can now be
uniquely assigned to one of the k clusters–the cluster that is
closest to the feature vector extracted at (x, y). This results
in an assignment image A. The only additional information
we need for building the transformation matrices is a value
M , which earlier represented the size of the extracted image
patches. The value M now determines the size of the overlap
when linking the image to the dictionary. While we now freely
chose M , it is reasonable to use a value which corresponds to
the size of the extracted features.

IV. RESULTS

In Fig. 4 we show a three-class classification of a volu-
metric X-ray image of peripheral nerves appearing as tubular
structures. Using a purely intensity-based approach to pixel
classification, it would be difficult to differentiate between the
bright background and the bright regions inside the dark tubes.
Furthermore, a significant bias field makes it difficult to choose
a global threshold. Our approach utilises a very limited user
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input in just one slice of the volume to differentiate between
three classes: background, tubes and inside. Furthermore, the
learned classification can be used for automatic classification
of all other slices in the volume, yielding a volumetric seg-
mentation.

Fig. 5 shows an example of segmenting a volumetric image
of a fibre composite into two classes: background class and
fibre centre class. Using our method, a huge number of
individual fibres can be segmented with a modest user input.
The probability image of a fibre centre class precisely indicates
a region for each fibre centre, and can readily be used in
postprocessing for obtaining a quantitative information about
the spatial distribution of fibres. In this example we also use
the result of single-slice segmentation for batch processing of
a whole volume stack. In principle, this yields the trajectory of
each individual fibre. For comparison, we also show a result
obtained by thresholding the intensity image. This nicely illus-
trates a challenge in segmenting densely packed fibres, when
the image resolution does not suffice to clearly delineate the
boundary of every individual fibre. In this case, a successful
segmentation requires utilisation of the repetitive patterns in
the image. Our method accomplishes this via clustering.

In Fig. 6 we show a three-class segmentation of onion
cells. Since cell walls and nuclei both appear dark, a purely
intensity-base method would not distinguish these two classes–
a task which our methods successfully solves with only a
modest user input.

In Fig. 7 we show the use of our method for counting
cells in a stained microscopy image. Unlike other examples,
this is a colour (RGB) image. To utilise colour information,
the features extracted from every image patch contains three
color channels concatenated in a single feature vector. Since
the final goal is to count and measure the size of cells, we
postprocess the probability images to obtain individual cell
segmentation. We detect the center of each cell by computing
the local maxima of the center-class probability image and we
estimate the extent of each cell by considering both the centre-
class and boundary-class probability images, coupled with the
distance from the previously detected cell centers.

V. CONCLUSION

Instrumental for our method is a pair of closely related
linear transformations which propagate the information from
the image grid, via a dictionary, and back to the image. The
transformations are constructed such that the propagation is
strong between image pixels with similar appearance, captured
by some extracted image features.

In this paper we present an algorithm for building an effi-
cient matrix representation of those transformations, allowing
a real-time processing. We demonstrate how this can be used
for an interactive image segmentation by propagating user-
provided labelling. Furthermore, such a segmentation of one
image allows for subsequent automatic processing of similar
images.

With only a modest user input, our method can yield
good results when segmenting patterned images. We find this
extremely useful for many tasks in materials and life sciences.

Fig. 4. Volumetric segmentation of peripheral nerves. In the top row, a slice
from the volumetric data with overlayed limited user input and the three-class
segmentation dividing the pixels into background (cyan), tubes (purple) and
inside (magenta). The middle row shows two layers of probability images,
corresponding to the tube class and the inside class. High intensity indicates
a hight probability of belonging to the class. The bottom row shows the
3D visualization of the volumetric data obtained by processing a full image
stack and thresholding the resulting probability volumes. This experiment was
performed using M = 9, K = 4000 and a clustering based on SIFT features.
Small connected components of less than 104 voxels were removed during
postprocessing.
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1. Introduction

Imaging is an important method for characterising the micro-structure of

materials. Characterising a material requires measurements of the size and

shape of material features, and this often involves an automated image analysis

method. Therefore, the image-based characterisation of a material’s micro-5

structure can be seen as a coupling of the imaging system and the image analysis

method.

Some imaging modalities, like optical microscopy (OM) and scanning elec-

tron microscopy (SEM), directly depict the surface of the imaged sample. Other

modalities measure the image indirectly, and X-ray micro-CT (computed tomog-10

raphy) is such a method. Here the attenuation of X-rays penetrating a sample

is measured, and a volumetric image is reconstructed from multiple measure-

ments. Since the reconstruction model can introduce artefacts, it is important

to determine the accuracy of the measurements obtained from CT.

CT has for a long time shown to be useful for characterising the micro-15

structure of fibre composites [1], and the resolution of micro-CT images allows

for studying fibre bundles or individual fibres in 3D [2]. Current micro-CT

laboratory X-ray scanning systems produce volumetric images of 1k3-2k3 voxels,

often depicting more than 10K distinguishable fibres, and synchrotron imaging

often provides larger volumes (more voxels). Automated image analysis methods20

are required to obtain quantitative information from such images.

With sufficient resolution it is possible to characterise individual fibres, which

typically involves a segmentation of the fibre to estimate its position and diam-

eter. Individual fibre segmentation poses several challenges. In composites with

high fibre volume fractions (FVF) the fibres are close together, so it can be dif-25

ficult to separate them. Image noise also makes it challenging to automatically

segment fibres, and reducing the noise in the image acquisition process requires

longer scan times. These challenges become more pronounced when reducing

the spatial resolution to include more fibres in the scanned volume.

Imaging with CT gives some freedom in choosing the spatial resolution of the30
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recorded data, within the limits determined by the scanning setup. However,

there is a trade-off between the size of the imaged volume (field of view) and the

size of the smallest distinguishable features (spatial resolution). Increasing the

field of view will reduce the spatial resolution. For this reason, it is important to

investigate the accuracy of the combined CT acquisition and analysis pipeline35

across resolutions.

Assessing the precision of a scanning system can be done using a physical

phantom reference object with similar material properties and known geometry.

If a reference object is available, it should also have similar geometric features

to evaluate the image analysis method employed. An example of validating40

the precision of CT scanning with a physical phantom was shown in [3]. Their

approach used a simple threshold-based analysis. In our investigation such a

phantom should resemble geometry of fibres, and we do not have such an object.

Alternatively, the size of the fibres can be measured with a system that is more

precise than micro-CT, which is why we use OM and SEM.45

Employing virtual computerised phantoms, composed of artificially created

images, will provide a ground truth reference for the analysis method, and this

has been used in e.g. [4, 5, 6]. Typically, it is difficult to make a virtual phantom

that resembles the imaging system accurately enough to assess its precision, in

this case the micro-CT scanning. Another method for validating a quantification50

pipeline (scanning technique and image analysis method) is to compare obtained

measures to derived physical parameters, as shown in [7, 8, 9].

Studies for evaluating different tomographic techniques for characterising

defects in composites have been demonstrated in [10, 5, 11]. These studies fo-

cused on porosity in composites, and have been carried out on images where55

individual fibres are not resolved. Nikishkov et al. [12] also perform void geom-

etry quantification using X-ray CT, and they validated their approach through

microscopy measurements.

For individual fibre characterisation, a segmentation method is typically

employed. Methods for segmenting individual fibres have been presented in [13]60

for a relatively small number of fibres and in [14] for a much larger number
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of fibres. Both methods carried out finite element simulations based on the

segmented fibres.

In [8] we employ a model for fibre segmentation that can handle large vol-

umes of low quality images, which has shown to be highly robust to noise and65

allows precise segmentation of fibres from low resolution scans, as described

in [4]. The method was used for extracting fibre orientations and relating these

to the compression strength of the material [8]. In the current paper we use

this segmentation method for estimating the diameter and position of fibres to

compare the micro-CT scans to SEM and OM images fibre by fibre.70

For validation, we compare the results obtained from laboratory X-ray CT

(XCT) at three resolutions, synchrotron radiation CT (SRCT), OM and SEM

images. The number of pixels covering a fibre in the SRCT and high resolution

XCT is similar to the images analysed in [13, 14] whereas mid and low resolution

scans have fewer pixels relative to the fibre size. This allows us to investigate how75

the loss in resolution affects the fibre diameter and position estimates, hereby

assessing the degradation of the image analysis methods when increasing the

imaged volume.

We have acquired OM and SEM images of very high spatial resolution with

between two and fifteen times smaller pixels and, since these methods directly80

depict the fibres, we employ SEM and OM as reference for the validation. We

do not have a direct measure of their precision, so we will make a relative

comparison to micro-CT. SEM and OM images are obtained from a polished

surface of the fibre sample, imaged orthogonal to the fibre direction, and from

these images we can compute the fibre diameters with high precision.85

Through validation we demonstrate the high accuracy of our method in

measuring fibre diameters from micro-CT, also at the very low spatial resolution.

Therefore, we are capable of analysing fibres from data which covers a large field

of view. As such, we demonstrate a high precision method for measuring the

fibre diameter distribution inside complete fibre bundles.90
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2. Materials

This study is based on imaging a non-crimp fabric (NCF) glass fibre rein-

forced polymer. A detailed description of this type composite is given in [15].

We could also have used other types of unidirectional (UD) composites such as

composites manufactured using filament winding, pultrusion or pre-preg, and95

even composites based on carbon fibres.

In the specific NCF, glass fibres are arranged in bundles. The load carrying

part of the composite is made of UD fibre bundles that are stitched on backing

bundles. Figure 1 shows the sample with the imaged surface marked in green

and the imaged volume delineated with a red box. The investigated fibres100

are from the UD part of the composite, and the product is specified to have

approximately 4000 fibres per bundle, an overall fibre volume fraction (FVF) of

57% and an average fibre diameter of 17 µm.

Figure 1: Glass fibre sample mounted for CT scanning. The volume outlined by the red box

has been CT-scanned, and the top surface in green has been imaged using SEM and OM.

Microscope imaging based on OM and SEM was chosen to directly depict

the surface of the sample. For the SEM image to be acquired a thin layer of gold105

was added to the top of the sample, which was polished away after scanning.

The XCT images were obtained by scanning the sample in a laboratory X-ray

CT scanner (Carl Zeiss Versa 520) at three different resolutions, and finally

the SRCT scan was acquired at the synchrotron ESRF (European Synchrotron

5



Radiation Facility, ID19). For XCT and SRCT volumetric images are obtained110

indirectly by computing the image using reconstruction methods. The recon-

struction for the lab-based XCT was performed with the software provided by

the scanner supplier (Carl Zeiss Versa 520) and for the SRCT image the filtered

back projection algorithm was employed. The data files for the six scans can be

found in [ref Data-in-Brief].115

Table 1 lists the pixel/voxel sizes reported by the instruments, which deviate

a little from those measured by comparing the images. Therefore, the image-

based measured pixel/voxel sizes relative to the OM image are also given in

Table 1, these were obtained through the image registration process described

in Section 3.1.120

Table 1: Instrument reported and measured pixel/voxel sizes for the different scans.

Scan Reported Reg. Scale

SEM 0.1852 µm 0.1882 µm

OM 0.2908 µm 0.2908 µm (reference)

SRCT 0.6500 µm 0.6440 µm

XCTH 1.0376 µm 1.0356 µm

XCTM 1.6856 µm 1.6835 µm

XCTL 2.8059 µm 2.8082 µm

Images from the six scans employed in this study are shown in Fig. 2 after

rotation and translation. To illustrate the actual resolution we did not resize

the images. The size of the region that will be analysed is approximately the

size covered by the images in Fig. 2, of length 1.02 mm and width 0.42 mm. For

the three-dimensional modalities, 60 slices in a depth of 0.6 mm were analysed.125

This depth is shown in Fig. 1 to illustrate how much of the sample is included

in the analysis.
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(a) OM image. (b) Low resolution XCT image.

(c) SEM image. (d) Mid-resolution XCT image.

(e) SRCT image. (f) High resolution XCT image.

Figure 2: All six scans aligned after rotating and translating. Note that scaling has not been

applied to show the actual resolution of the images.

3. Methods

To evaluate the use of CT imaging for fibre characterisation we have cho-

sen to compute diameters and positions of individual fibres. The evaluation is130

based on comparing corresponding fibre diameters obtained from the six scans

employing two different analysis methods.

3.1. Fibre segmentation and matching

Fibres are modelled as circles, each of them defined by a centre point and

a diameter. These fibre parameters are calculated by segmenting the fibres as135

circles from the images shown in Fig. 2. To get an impression of the 3D structure

of the sample, Fig. 3 shows a 3D rendering of the high resolution XCT scan.

Two methods were used for extracting fibre parameters, the circular Hough

transform [16, 17] and our probabilistic feature labelling method [18], which we
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Figure 3: Rendering of fibres in the high resolution XCT scan.

have used for fibre detection in [8, 4]. In [8] we characterised fibres in 3D with140

fibre trajectories, centre lines connecting the 2D centre coordinates that belong

to the same fibre. In contrast to that, here we compare micro-CT to 2D OM

and SEM, so we only need to compute fibre parameters in 2D.

The circular Hough Transform is a two stage algorithm [16, 17]. In the first

stage an edge image is computed, and in the second stage circles are matched145

to the edge image through a voting scheme. The algorithm we use has three

parameters including an edge parameter, determining when a pixel is considered

an edge pixel, a sensitivity parameter, determining when a circle is detected, and

a parameter giving a circle diameter range. In the employed implementation, the

diameter range is given as integers, which especially for low resolution images150

will give a coarse approximation of the fibre diameters. To obtain a higher

precision in the diameter estimation, we up-scaled the CT-scanned images by

linear interpolation. The SRCT and high resolution XCT were up-scaled with

a factor 2, mid-resolution XCT with a factor 3 and low resolution XCT with a

factor 4. Additionally, the sensitivity parameter was adjusted to find all fibres155

in the set used for the comparison.

The probabilistic feature labelling is a general method that we have de-

veloped for detecting repetitive image features [18, 8, 4]. The method detects
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repetitive image features through a learning scheme based on limited user input,

and here we use it for detecting fibre centre points. This detection returns an160

image where each pixel has a probability of being a centre point. To compute

the centre coordinates, the probability image is thresholded and the average

position of each connected component gives the centre position of the fibre.

After detecting the centre points, diameters must be computed. Since the

employed UD fibres are very dense, the diameter is computed as the distance165

to the the nearest centre point. To utilise our volumetric CT scan, we compute

the average of the fibre diameters in 60 slices, which gives extra robustness to

the measurements. Despite computing fibre parameters in 60 slices, we only use

the centre position from the top slice in our comparative study.

For a direct comparison, we must establish correspondence between the im-170

aged fibres. Since the OM and SEM images are obtained from the top surface

of the sample and the micro-CT images are obtained just beneath this surface,

we assume a negligible change in fibre position. Therefore, the main difference

between the images can be modelled using a rotation, translation and scale.

The transformation is computed from p = sRq + t, where p and q are two set175

of corresponding points, s is a scaling factor, R is a rotation matrix and t is a

translation. The parameters s, R and t are computed as the least squares fit

from four manually annotated points.

To establish correspondence between fibres, the detected fibre parameters

are transformed, i.e. their centre positions are rotated, translated and scaled,180

and their diameters are scaled. Correspondence between fibres is then found

as the nearest neighbour using Euclidean distance. Examples of the segmented

fibres can be seen in Fig. 4.

3.2. Statistical analysis

We consider the fibre diameter measurements on N = 757 fibres by n = 10185

different quantification pipelines (methods), listed in Tab. 2. Each method

consists of two steps: i) scanning technique (mode), which refers to a specific

imaging modality and resolution, and ii) image analysis method (algorithm).
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The modes are CT scans including synchrotron, high, medium, and low res-

olution X-rays (called SRCT, XCTH, XCTM, XCTL) and microscopy images,190

namely optical and scanning electron microscopy (called OM and SEM). The

algorithms are denoted Prob. for the analysis based on the probabilistic feature

labelling in 3D and Hough for the circular Hough transform on the top layer of

the sample. We organise the measurements in two different ways: the univariate

and the multivariate approach.195

Table 2: Model parameters for statistical Model I and II. Dνk = Dijk.

Model I Model II

Algorithm × Mode × Fibre Method × Fibre

Abbrev. Alg., i = 1, 2 i j Dijk ν Dνk

SRCT Prob. 1 1 D(1,1,k) 1 D(1,k)

XCTH Prob. 1 2 D(1,2,k) 2 D(2,k)

XCTM Prob. 1 3 D(1,3,k) 3 D(3,k)

XCTL Prob. 1 4 D(1,4,k) 4 D(4,k)

SRCT Hough 2 1 D(2,1,k) 5 D(5,k)

XCTH Hough 2 2 D(2,2,k) 6 D(6,k)

XCTM Hough 2 3 D(2,3,k) 7 D(7,k)

XCTL Hough 2 4 D(2,4,k) 8 D(8,k)

OM Hough 2 5 D(2,5,k) 9 D(9,k)

SEM Hough 2 6 D(2,6,k) 10 D(10,k)

In the univariate approach we describe the variation between fibre diame-

ters as deterministic contributions from the methods (or algorithm and modes)

adjusting for the different fibre contributions.

If we want to distinguish between algorithms and modes we use a three-way

factorial design model, symbolically written Algorithm × Mode × Fibre’. If we200

just focus upon the different methods we use a two-way layout written Method

× Fibre’. For the three-way layout (Model I) we consider the measured diameter
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for fibre k, algorithm i and mode j,

Model I: Dijk = µ+ αi + βj + (αβ)ij + γk + εijk,

i = 1, 2, j = 1, ..., 6 and k = 1, ..., N

where µ is the general level, αi is the deviation from the mean for algorithm i,

βj is the deviation from the mean for mode j, (αβ)ij is the interaction between205

algorithm and mode and γk is the kth fibre’s deviation from the mean. The

error terms εijk are assumed to be independent and normally distributed with

the same variance, i.e. εijk ∼ N(0, σ2). Note that the design is not balanced,

i.e. we do not have measurements for all combinations of algorithm and mode

since the 3D-based data analysis is not possible for the surface-based modes OM210

and SEM.

For the two-way model (Model II) we describe the measured diameters as

Model II: Dνk = µ+ θν + γk + ενk, ν = 1, ..., 10 and k = 1, ..., N ,

with similar interpretations and assumptions as in Model I.

The possible dependence on the spatial layout may be investigated by con-

sidering regression on spatial coordinates, i.e. we fit polynomial models to the215

size of the diameter as a function of the centre coordinates (xk, yk) for the k’th

fibre. For the methods ν = 1, ..., n we consider the models:

A: Dνk = γ(ν) + δ(ν)xk + ρ(ν)yk + η(ν)x2k + κ(ν)y2k + λ(ν)xkyk + ενk,

B: Dνk = γ(ν) + δxk + ρyk + ηx2k + κy2k + λxkyk + ενk,

C: Dνk = γ + δxk + ρyk + ηx2k + κy2k + λxkyk + ενk,

where the errors are independent and normally distributed ενk ∼ N(0, σ2). The

first model corresponds to individual, quadratic surfaces, one for each method.

In the second case we have the same coefficients to the spatial coordinates for220

all methods, only the intercepts γ(ν) are method dependent. In the last case

we use the same surface for all methods.
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The unknown parameters in the models above are estimated using ordinary

least squares, and hypothesis on possible simplifications of the models are done

by means of suitable Analyses of Variance (ANOVA). For a detailed description225

see for instance [19].

In the multivariate approach, we organise the observations in N = 757 ten-

dimensional vectors

Dk = [D1,k, D2,k, D3,k, ..., D10,k]T , k = 1, ..., N .

Under the normality assumption, the multivariate distribution of the Dk’s is

determined by the means and standard deviations of the coordinates (in this230

case measured diameters) in the observation vector defined above, and the cor-

relations between those. The latter will be collected in the correlation matrix

Q =




1 · · · ρ1,10
...

. . .
...

ρ1,10 · · · 1


 ,

where ρr,s, r = 1, ..., 10, s = 1, ..., 10 is the correlation between the r’th and

the s’th component in Dk. If we project Dk on the eigenvectors of Q we obtain

the so-called principal components (PC) of Dk. They are uncorrelated and the235

first component describes the maximal variation amongst all linear combina-

tions (with normed coefficients) of D-components. The following components

maximise the variation subject to the constraint that they are uncorrelated with

the previous. Such a Principal Component Analysis (PCA) [20] is thus a decom-

position of the often very correlated coordinates in the observation vector into240

independent components describing decreasing amounts of the total variation.

4. Results and discussion

The field of view varies between scans, which constraints the amount of

fibres that can be compared. Fig. 2 shows the fibres seen in all scans, and

the overlap between these images defines the region of interest where we have245

carried out the analysis. Only the fibres in the lower part of the image have
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been analysed (circled in red in Fig. 4(a)), because these are from a UD bundle

that is orthogonal to the viewing direction. The upper fibres (not circled) are

backing fibres that are at an angle of 45◦ relative to the UD part. This difference

in orientation is easily seen in the upper part of the rendering in Fig. 3.250

Examples of the fibre segmentation are shown for the different scans in Fig. 4.

All scans have been analysed using circular Hough Transform, and the micro-

CT modalities have in addition been analysed using our probabilistic feature

labelling. This allows us to analyse the effect of scanning technique (mode) and

the effect of the image analysis method for fibre segmentation (algorithm).255

(a) XCTH with fibres detected. (b) SEM (c) OM

(d) SRCT Prob. (e) XCTH Prob. (f) XCTM Prob. (g) XCTL Prob.

(h) SRCT Hough (i) XCTH Hough (j) XCTM Hough (k) XCTL Hough

Figure 4: Diameter estimates over scans. In (a) the diameters for the high resolution XCT

scan. In (b-k) zoomed versions of all scans showing the diameter estimates inside the blue

square marked in (a) is shown. (k) shows some false positives using Hough Transform. Sub-

scripts (H, M and L) are for high, mid, low resolution respectively. Prob. denotes probabilistic

feature labelling and Hough denotes circular Hough Transform.
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Fig. 4 shows that most fibres are found quite precisely for all scans using both

algorithms. The only exception is the low resolution XCT analysed with circular

Hough Transform, where some non-existent fibres (false positives) are detected,

as shown in Fig. 4(k). False positives appear because the sensitivity parameter

must be set to a high value to detect all fibres. When all true positives are260

detected, some false positives are also detected. To include only one detection

per fibre, we utilise the alignment of the images. In other words, after aligning

the low resolution XCT image, we select the fibres closest to the fibres found in

the high resolution XCT. The removal of these false positives obtained with the

Hough transform would not affect the precision of correct fibre detections. Thus,265

we decided not to focus on this for the current paper, where we are evaluating the

precision of the Hough transform algorithm for fibre detection, and comparing

it to our probabilistic fibre segmentation algorithm. Nevertheless, it should

be noted that the Hough transform algorithm would not be directly applicable

for fibre segmentation at low resolutions when reference detections (obtained270

through other methods) are not available.

4.1. Univariate approach

The evaluation of X-ray imaging for fibre characterisation is based on com-

paring the measured fibre parameters. In the region of interest, that was deter-

mined by the overlap between the different scans, 757 fibres were segmented for275

all combinations of modes and algorithms.

Average diameters and deviations from the mean are given in Tab. 3. We

have applied a two-way analysis of variance to test the difference in average

diameters between the 10 different methods, resulting in a grouping of the mea-

surements. Group a, b and c are very close to the product specification of280

17 µm, and the high-resolution SEM is in this group. OM has a comparable

pixel-size to SEM, but the diameters are on average 0.50 µm smaller. For the

micro-CT scans, the diameter estimates decrease with lower resolution, and

this is especially pronounced for segmentation obtained using circular Hough

transform. Here the low resolution is significantly different from all other esti-285
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Table 3: Multiple comparisons between the means (µ̂ + θ̂) for 10 methods using Model II.

Average deviation is given by θ̂ν , and superscripts denotes groups in which the average di-

ameters are not significantly different based on a two-way analysis of variance over Model II.

The overall mean is µ̂ = 16.57 µm.

Method Hough Probabilistic

Modality Mean: µ̂+ θ̂ν Deviation: θ̂ν Mean: µ̂+ θ̂ν Deviation: θ̂ν

SEM 17.05 µma,b 0.48 µm - -

OM 16.55 µmd −0.027 µm - -

SRCT 16.86 µmc 0.29 µm 17.15 µma 0.57 µm

XCTH 16.32 µme −0.25 µm 17.06 µma,b 0.48 µm

XCTM 16.26 µme −0.32 µm 16.96 µmb,c 0.39 µm

XCTL 14.96 µmf −1.62 µm 16.58 µmd 0.0026 µm

mates (classified in group f). A smaller decrease is observed for segmentation

obtained using the probabilistic feature labelling method, where only the low

resolution is significantly different from SEM. Segmentation from probabilistic

feature labelling also gives very consistent standard deviations independently of

scan resolution. Additionally, Tab. 3 indicates that both mode and algorithm290

have an effect on the measured diameters.

Spatial distributions of diameters

To further validate the findings of our analysis, we fitted to our data the three

quadratic spatial models A, B, and C presented in Section 3.2. The diameter

estimates employed here were obtained with the Hough method for the OM and295

SEM modes and with the Prob. method for the four modes. Since least square

estimates are sensitive to extreme outliers, we made an outlier test on the 6 ×
757 fibre measurements using the studentised residuals from a simple two-sided

ANOVA with fibres and methods as factors. Residuals with an absolute value

larger than 3.5 were considered extreme and discarded from the analysis leaving300

738 fibres for further statistical investigations. The simplification from model A
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to model B is not statistically significant, i.e. we may assume that the coefficients

to the linear and quadratic terms are independent of method. However, model

C differs significantly from model B, i.e. we need individual intercept terms for

the six methods, which correspond to the significant difference in the means for305

the methods depicted in Tab. 3. The fact that the spatial variation is the same

for all methods indicates that the spatial dependence of the diameter values is

not an estimation artefact, but very likely expresses a real phenomenon possibly

due to inherent inhomogeneities in the fibre manufacturing process.

In Fig. 5(a) we show the spatial distribution of fibre diameters on the left,310

computed by averaging the estimates obtained through the six methods to which

we fitted the spatial models (mentioned above), and the fitted model C on the

right. Fig. 5(b) displays the diameter estimates for a complete UD bundle,

computed with the method comprised by the low resolution XCT scan and the

probabilistic algorithm. Note that there is an agreement between Fig. 5(a) left315

and Fig. 5(b), illustrating that it is possible to accurately measure the spatial

distribution of fibre diameters for complete bundles. This computation requires

under one minute and can, for example, be employed to obtain insights about

the fibre bundle manufacturing process.

4.2. Multivariate approach320

Fig. 6 shows scatter plots and diameter distributions of scans using the high

resolution images (SEM, OM, SRCT and XCTH). For SRCT and XCTH both

Hough transform and probabilistic feature labelling have been used. The plot is

coloured according to three main groups, i.e. the SEM and OM (blue), XCTH

and SRCT using circular Hough transform (green) and probabilistic feature325

labelling (red). The interactions between groups are shown in other colours.

It can be seen that OM has a general bias towards smaller diameters and that

there is a good correspondence between segmentations obtained using the same

algorithm whereas there is a larger spread between measurements obtained with

different algorithms.330

The coefficients for computing the principal components in Tab. 4 show that
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(a)

(b)

Figure 5: Spatial distribution of diameter values. In (a) measured and predicted diameters

inside the RoI. On the left, individual fibres are coloured according to the average of the

diameter estimates across 6 methods. Contour lines (left) and surface (right) for the quadratic

fit in model C (based on N = 738 fibres) give the predicted diameter values. In (b) diameters

measured for the whole UD bundle from the low resolution XCT modality with our Prob.

algorithm.

the first principal component is (approximately) proportional to the average of

the values from all methods using high resolution images. The second princi-

pal component is a contrast (difference) between diameter values obtained by

surface-based methods (Hough) and 3D methods (Prob.).335

A comparison of the micro-CT scans and the two algorithms is shown in

Fig. 7. The plot is divided into a part that is blue showing segmentation results
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Figure 6: Scatter plot for diameters obtained for the high resolution images. Methods em-

ployed row-wise are OM, SEM, SRCT, and XCTH, first with the Hough transform and then

with probabilistic feature labelling. The blue line is the identity line and the blue ellipse is

the 99% prediction ellipse for a new observation.

Table 4: Principal components based on the covariance of high resolution scans illustrated in

Fig. 6.

Alg. Hough Prob.

Mode OM SEM SRCT XCTH SRCT XCTH

PC1 0.4139 0.4178 0.4186 0.4130 0.3955 0.3898

PC2 -0.2977 -0.2827 -0.2825 -0.2461 0.5649 0.6099
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obtained with probabilistic feature labelling, red shows circular Hough trans-

form, and magenta is the interactions. Again, it is evident that the spread

within group is smaller than between group, and especially the low resolution340

scan analysed with the circular Hough transform deviates very much from the

other scans.
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Figure 7: Scatter plot for diameters obtained for with micro-CT imaging. Methods employed

row-wise are SRCT, and high, mid, and low resolution XCT, first with Hough transform and

then with probabilistic feature labelling. The blue line is the identity line and the blue ellipse

is the 99% prediction ellipse for a new observation.

The principal component coefficients in Tab. 5 show again that the first

principal component is approximately proportional to the mean of all meth-

ods using synchrotron and micro-CT and that the second principal component345

captures the difference between the algorithms. Furthermore, it can be seen
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that the coefficient for the Hough algorithm over XCTL deviates considerably

from the others. This corresponds to the rather low correlation between val-

ues obtained with the Hough transform and with the remaining methods as

mentioned when discussing Fig. 7. A reasonable conclusion drawn from this is350

that we have reached the resolution limit for obtaining reliable results with the

Hough transform algorithm.

Table 5: Principal components based on the covariance of micro-CT scans illustrated in Fig. 7.

Alg. Prob. Hough

Mode SRCT XCTH XCTM XCTL SRCT XCTH XCTM XCTL

PC1 0.3777 0.3742 0.3777 0.3686 0.3650 0.3647 0.3352 0.2452

PC2 -0.2589 -0.2642 -0.2825 -0.2999 0.1932 0.1910 0.2777 0.7365

5. Conclusion

Our investigation of fibre characterisation using X-ray CT demonstrates that

this scanning technique has similar precision as scanning electron microscopy355

(SEM) and optical microscopy (OM) for measuring fibre diameters and centre

positions. We also showed that high precision can be obtained even if the

resolution is lowered significantly, and we obtained results similar to SEM with

X-ray CT images at nine times lower resolution and only slight degradation

in performance at fifteen times lower resolution. However, this performance360

requires high precision methods for fibre segmentation, such as our probabilistic

feature labelling method. This illustrates that image-based characterisation

should consider the imaging modality in combination with the image analysis

method. In addition to high precision, X-ray CT combined with the proposed

segmentation method, opens the possibility for high precision analysis of large365

volumes, which has a great potential in giving insights for understanding the

relation between fibre micro-structure and material properties.
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ABSTRACT

Unidirectional fibre reinforced composites are widely employed for their high specific strength and stiffness. Analytical and
numerical models that describe composite behaviour have been hard to verify due to a lack of experimental observation,
particularly in 3D. The aim of this paper is to combine fast in-situ X-ray computed tomography (CT) with advanced image
analysis to capture the changes in fibre orientation in 3D during uninterrupted progressive loading in compression of a UD glass
fibre reinforced polymer (GFRP) composite. By analysing and establishing correspondence between a sequence of time-lapse
X-ray CT images of the composite, we are able for the first time to follow each fibre and quantify the progressive deflection
that takes place during axial compression in the steps leading up to fibre micro-buckling and kinking. Our results show fibre
misaligned clusters of around 200 µm in diameter. Even at 25% of the failure load, fibres have started to tilt in approximately
the direction of the ultimate kink-band. The rate of tilting increases as the load approaches collapse. More generally our fibre
tracking approach can be applied to investigate the behaviour of a wide range of fibrous materials under progressive loading
conditions.

Introduction
Composite materials are used extensively in advanced structures where properties such as high stiffness and low weight are
required. In particular, carbon and glass fibre reinforced polymers (CFRP and GFRP) are being employed increasingly in
aero1 and ground transportation, as well as in environmentally sustainable energy production systems such as wind turbines2.
Therefore, it is crucial to understand their performance under realistic loading conditions with the ultimate goal of optimising
performance through the use of analytical or numerical models3. Currently, the lack of confidence in these models means
that expensive experimental mechanical testing is relied upon in the development of new composite structures, and is still the
gold standard for quality control in industry4. What is more, this lack of confidence in the prediction of composite behaviour,
together with high safety requirements, leads to an unnecessary over-engineering of the components.

The compressive strengths of unidirectional (UD) composites are typically significantly below their tensile strengths. This
is because many of the mechanisms of compressive failure are dictated largely by the matrix properties, in contrast to the
tensile properties which are dictated by the fibres. Fleck5 describes a number of failure mechanisms, the most important of
which for the current study is fibre micro-buckling (see Fig. 1b-c). The former is a shear buckling instability where the matrix
deforms in simple shear and the latter instability occurs at sufficiently large strains for the matrix to deform in a non-linear
manner. Longitudinal splitting along the fibre direction is also a potential damage mode (see Fig. 1d). Fibre micro-buckling
is highly sensitive to the initial fibre misalignment. As a result of the composite manufacturing process, the fibres are not
generally perfectly aligned with the axial direction. This means that when compression is applied, some level of shear is
induced in the region of the misaligned fibres. When the local shear stress exceeds the matrix shear yield strength, the matrix
yields and fibres buckle. In other words, the compression strength of a UD composite relies on the ability of the matrix
material to keep the fibres straight6. Fibres finally fracture when the strain on the compressive/tensile side of the fibre exceeds
the fibre’s compressive/tensile failure strain, and a kink-band is formed7. Although for the reasons discussed above many
researchers believe that fibre misalignment plays a big role8, 9, and the degree of lateral constraint on the fibres from the matrix
is important10, the initiation mechanism for fibre micro-buckling is still a subject of debate. This is largely because of the lack
of direct evidence of the fibre movements in the moments leading up to micro-buckling and the point at which this becomes a



kink-band. The difficulty in capturing experimentally the precursors to failure is partly due to the small levels of misalignment
required to trigger instability, and partly because of the sudden and catastrophic nature of the instability when the kink-bands
form.

In recent years, optical and scanning electron microscopy have increased in image acquisition speeds. This has been
exploited to study the development of kink-bands in composites loaded in-situ11 by observing the surface of the composites.
Guynn et al.11 and more recently Moran et al.12 have observed experimentally in 2D that fibres buckle before a kink-band is
formed. However, the stage of fibre deflection prior to the onset of kink-band formation, which is expected to influence the
kink-band geometry, has not yet been captured experimentally. The use of 2D characterisation techniques limits the development
of accurate analytical and numerical models, as there is evidence that both micro-buckling and kink-band formation are 3D
phenomena13. X-ray computed tomography (CT) enables 3D imaging of FRP specimens containing many fibres at a resolution
where individual fibres can be resolved. Moreover, it is possible to scan a sample while it is loaded in-situ in compression so that
the evolution in fibre orientation under load can be observed in 3D from zero load towards failure. Conventional tomography,
even at synchrotron sources, is too slow to capture the onset of micro-buckling14. However, ultra-fast imaging (∼ 500−10,000
projections per second) is now possible on some beamlines which enables the events leading up to failure to be captured15.

Figure 1. Schematic illustration of a loaded specimen and damage modes associated with axial compression. (a)
Composite specimen geometry and loading condition, and potential damage modes associated with axial compression failure of
unidirectional fibre composite, namely (b-c) fibre micro-buckling and (d) longitudinal splitting.

The focus of this paper is on combining in-situ X-ray CT with advanced image analysis with the purpose of providing
an experimental description of the changes in fibre orientation during progressive loading in compression. Fibre orientations
can be estimated from tomograms16–18 without previously segmenting individual fibres, but the accuracy of these estimates is
highly dependent on the quality of the tomograms. However, if individual fibres can be segmented beforehand, the accuracy
of the individual fibre trajectories can be ascertained prior to computing fibre orientations. Additionally, segmentation of
individual fibres opens up the possibility of following the changes in trajectory for each individual fibre across successive
loading steps. Methods that can segment densely packed individual fibres from tomograms have been developed and applied to
extract fibre geometry for high quality data19 and also for lower quality scans20–22. The method by Czabaj et al.20 involves a
time-consuming validation of the extracted fibre trajectories and is therefore not applicable to large volumes containing many
fibres. Sencu et al.22 built a micro-mechanical model with some fibres extracted from bundles oriented in different directions
whereas the focus of Emerson et al.21 was on determining individual fibre orientations.

Our proposed methodology is to characterise the trajectory of individual fibres in the as-manufactured condition in 3D
from X-ray CT images and then to quantify, as compressive loading progresses, the deflections by the analysis of a time-lapse
CT image sequence for the first time. The aim is to capture precursors to fibre micro-buckling in a end-tabbed UD glass fibre
reinforced polymer (GFRP) rod specimen (see Fig 1a). As shown in Fig 1, the sample was scanned with a field of view (FoV)
of 1.5 mm in height. To ensure that the material would fail within the FoV, a notch was introduced around the circumference of
the reduced gauge section (diameter 1.5 mm) of the 20 mm long composite rod. The CT scanning was performed at the Swiss
Light Source (SLS) while progressively loading the specimen in-situ in the axial direction from 0 N to failure (just before 900 N
in this experiment).
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Figure 2. X-ray CT longitudinal slices from the centre of the composite rod in the direction of the kink-band plane.
The composite rod of length 20 mm and diameter of 1.5 mm at the reduced gauge section was scanned with a field of view
(FoV) of 1.5 mm in height during uninterrupted in-situ axial compression loading from 0 N to 900 N. Images corresponding to
four loads are selected for the analysis: i) 0 N, ii) 200 N, iii) 600 N and iv) 895 N; and the analysed region of interest (RoI) has
a height of approximately 1.4 mm. The coordinate system is defined according to the loading direction (z-axis, inclination
φ = 0) and the kink-band plane (x-axis, azimuth θ = 0).

The evolution of individual fibre orientations is analysed in 3D at instances corresponding to four loads for the region of
interest (RoI) shown in Fig. 2. The height of the RoI is defined by the region within the FoV that is common to all data-sets.
As shown in Fig. 2, the overall length of the RoI along the fibre direction is 1.4 mm, which is short compared to the 20 mm
long composite rod. As illustrated in Fig 1, the small size of the FoV will mean that we can capture only a partial view of the
fibre deflections along the sample height. The method by Emerson21 is employed here to track the individual fibres because of
its ability to segment individual fibres in large volumes of densely packed fibres and its robustness to noise. The algorithm,
presented in the Section ”Methods”, is able to delineate the fibre trajectories within the tomographic volumes and follow the
evolution of each individual fibre from tomogram to tomogram as the load is increased. The fibre trajectories are shown in
Fig. 3a-b for the as-manufactured condition and the evolution of a few randomly selected fibres is shown in Fig. 3c-d. It is
evident from Fig. 3a-b that over the 1.5 mm high FoV the fibres are predominantly straight. Once individual fibre trajectories
are obtained, individual fibre orientations are computed and individual fibre deflections can be calculated at every imaged
loading step as the change in fibre orientation with respect to the as-manufactured fibre orientation.

In order to quantify the fibre trajectories and deflections during loading a series of vectors is employed. These are defined
mathematically in the Section ”Methods” and described pictorially in Fig. 4a. In essence, each slightly curved fibre trajectory
can be approximated by a sequence of straight lines computed for different horizontal segments. Since the curvature of the
fibres is small within the RoI, for our current analysis we approximate each fibre by a straight line through the RoI. The
fibre trajectory for the n-th fibre under the i-th load state is captured by the fibre vector vi

fn
which joins the points where

the fibre enters and leaves the RoI. The corresponding vector for the composite is the average of all the fibre vectors and is
denoted by the composite vector vi

c. The fibre deflection for the n-th fibre considers only the lateral deflection of the fibre end
relative to its orientation in the 0 N load case, and is represented by the fibre deflection vector di

fn
. The composite deflection

vector di
c captures the deflection of the composite rod given by the mean of all the fibre deflection vectors. Finally there is

the relative deflection, which expresses the movement of the fibre relative to the deflection of the composite rod as a whole
and is represented by the relative deflection vector ri

fn
. Since fibres are not free to move independently of one another, an

additional important composite movement is given by the twist γc, as observed by Ueda et al.23. The twist is proportional to the
torque induced by the compression loading and involves the fibres rotating collectively around the central axis of the composite
rod. For ease of discussion, the vectors are described using either Cartesian or spherical coordinates where i) the z-axis is
aligned with the loading z-axis (inclination φ = 0 and points in the direction opposite to the loading direction, and ii) the x-axis
(azimuth θ = 0) is aligned with the kink-band plane, pointing towards the shallowest part of the notch. For clarification, the
coordinate system is defined in Fig. 2. In the following section these vectors for describing the orientation and deflection
of both the individual fibres and the composite as a whole are used to examine the behaviour of the UD composite through
uninterrupted compressive loading in the moments leading up to kink-band formation.
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Figure 3. The as-manufactured fibre trajectories and their evolution under load. In the top row, a 3D side view (a) and
plan view (b) of all the fibre trajectories extracted from the RoI for the as-manufactured test piece prior to the application of
load, where the colour of each fibre encodes the azimuth θ of its fibre vector (defined in Fig. 4). The projected length in the plan
view (b) shows the amount of misalignment, fibres appear as points when they are completely aligned with the z-axis. In the
bottom row a side (c) and plan (d) view showing the evolution under compression of randomly selected fibre trajectories inside
the RoI. The coordinate system, defined according to the loading direction and the kink-band plane is indicated in (b) and (d).

Results and discussion
Characterisation of fibre orientations before and under load
It has been widely accepted that fibre misalignment in the as-manufactured composite has a significant effect on the compressive
failure load at which catastrophic kink-band forms5. Fig. 3a-b shows all the fibre trajectories for the as-manufactured data-set
(0 N load). It is evident from the figure that the fibres are predominantly straight and that the orientation of the fibres is to a
large extent grouped into clusters.

The spatial clustering of fibre orientations as a function of loading is shown in Fig. 5. The scatter plots (top) show the
individual fibre vectors projected onto the horizontal plane where each point corresponds to the end of a fibre vector. The
colour-coding represents the in-plane misorientation direction (represented by θ in Fig. 4) with a saturation that decreases with
fibre alignment, i.e. with decreasing tilt (represented by φ in Fig. 4). When looking at the scatter plots one might underestimate
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the number of highly aligned fibres, as the scatter plots do not show the density of points when these are closely clustered
together. That is, there are many more aligned fibres than it seems when looking at the scatter plots.

With regards to the fibre orientations displayed in Fig. 5, it can be concluded that both the degree of fibre misalignment
relative to the loading axis (fibre tilt) and the direction of the misalignment (fibre direction) cluster spatially. It is noteworthy
that the clustering of the fibre direction is correlated with the local fibre volume fraction. Where fibres are very close together
they tend to be misaligned in the same direction whereas there tends to be a resin-rich region in between the differently oriented
clusters of fibres. This is a reflection of the packing efficiency which drops when fibres are not similarly aligned. It is notable
that while there is a gradual drift of the composite (as indicated by the black crosses in Fig. 5a) there are no significant changes
in the clustering of fibre misalignments as the load is increased. This confirms that the fibres deform in a cooperative way in
FRPs with relatively high fibre volume fraction. As to the evolution of the fibre vectors under progressive loading, a gradual
deflection in the direction of the ultimate kink-band plane is observed in the scatter plots as the loading increases. This shift
translates to an increase of green colour in the cross-sectional images under increasing load.

Evolution of fibre deflections under load
The spatial distribution of the deflection introduced by loading the sample in compression is analysed by looking at the
deflection vectors and the relative deflection vectors.

As was mentioned previously, the deflection vectors capture the change in orientation that each individual fibre undergoes
with respect to the 0 N state as a consequence of applying a certain load Fi. The deflection vectors in the horizontal plane are
shown in the scatter plots in Fig. 6a. They show that even at the 200N most of the fibres have already deflected towards the
direction defined by the kink-band plane, although the magnitude of the deflection is still small.

The relative deflection vectors capture the deflection of individual fibres with respect to the mean fibre deflection, namely
composite deflection di

c (indicated with a black cross over the scatter plots in Fig. 6a). The deflection vectors in these scatter
plots have been colour-coded according to the composite deflection. Thus, the cross-sectional slices in Fig. 6b show the spatial
distribution of the relative deflection vectors. By looking at the spatial distribution of the relative deflection vectors it can be
concluded that the deflection behaviour is not influenced by the initial orientation, as there is no similar clustering. Instead, all
the fibres in the composite rod primarily undergo a cooperative deflection, as indicated by the crosses in black in Fig. 6a, and a
twist in an anti-clockwise direction with respect to the centre of the rod, indicated by the arrows in yellow in Fig. 6b. The twist
picks up the mean angle by which the relative deflection vectors turn around the centre of the rod.

Evolution of composite deflection under load
The histograms for the tilt of the fibre vectors are reported for all loads in Fig. 7a. Note that the spread of fibre inclinations
increases somewhat as the load increases. The histograms for the direction of the fibre vectors are reported for all loads in
Fig. 7b, it can be seen that fibres are not uniformly distributed around the circumference. Preferential directions exist and it is
noticeable that there is a deficit of fibres at −180/180◦, this might by the reason for the kink-band forming in this direction.
Additionally, the (all fibre averaged) composite behaviour is shown as a function of loading in terms of the composite deflection
(inclination of the composite segment in the FoV (Fig. 7c)) and the twist of the composite rod about its central axis (Fig. 7d).
The twist has been estimated by fitting a rotation to the relative deflection vectors and minimising the residual in the least
squares sense24. Unsurprisingly, the angle of inclination of the rod segment moves off axis faster as the load increases, but it is
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Figure 5. Spatial clustering of fibre orientations under load. The top row shows scatter plots of the projection of fibre
vectors onto the horizontal plane for the four considered loading steps. Each point corresponds to a certain fibre, fn, and is
coloured according to: i) inclination φ (colour saturation) and ii) azimuth θ (colour hue). The black crosses indicate the
composite orientation (average over all fibres). In the bottom row the X-ray CT cross-section of the fibres for the middle slice
of the RoI is shown with the fibre vectors displayed at their actual spatial locations.
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Figure 6. Evolution of deflection vectors and spatial distribution of relative deflection vectors under load. In the top
row the scatter plots of the deflection vectors in the horizontal plane, di

fn
. The colour-coding has been set relative to the

deflection of the composite rod, indicated by the black crosses. Thus, it is the relative deflection vectors ri
fn

that are shown over
the X-ray CT cross-section (middle slice of the RoI) in the bottom row. The yellow arrows indicate the twist observed around
the centre of the sample, note that these do not represent the absolute magnitude of the twist, which is 1.06◦ at 895 N.
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perhaps surprising that the fibres deflect in the direction of the final kink-band (see Fig. 6 top) even at 25% of the kink-band
collapse load.

The twist angle increases together with axial compression load, and amounts to 1.06◦ just prior to failure. On the one
hand, this may arise because of a slight bias in the misalignment direction of the fibres in the as-manufactured test-piece. In
histogram 5b fibres have a preferred alignment direction, as opposed to a random alignment direction which would give a
uniform histogram for the azimuth. On the other hand, the twist could arise from non-ideal loading which could introduce some
torque onto the specimen. While a rotational moment was not intentionally applied, it is possible that imprecise alignment
of top and bottom jaws introduced some degree of rotational movement. Moreover, as the sample was end-loaded without
being clamped, there is freedom of movement in the xy plane. Regarding the effect of this twist on the damage evolution, it is
expected that the twist will result in some degree of fibre deflection out of the dominant kink-band plane, such that the collapse
mechanism has a 3D nature.
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Figure 7. Progression of histograms capturing the magnitude and direction of fibre misalignment for the fibre
vectors and the trend of the composite behaviour under load. In (a) and (b) the histograms for the inclination and azimuth
of the fibre vectors. In (c) and (d) the trends for the composite tilt and twist.

Concluding remarks
In this study the 3D orientations of individual fibres under load have been measured and tracked experimentally for the first
time by means of time-lapse X-ray CT and statistical image analysis. In this way we have been able to quantify the changes
in fibre orientation to a very high level of accuracy, tracking the great majority of fibres in the composite. This approach has
allowed to better visualise and understand precursors to fibre micro-buckling in a GFRP under compression loading. The main
findings are considered below.
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It is a good question to ask whether the ultimate kink-band location and failure direction is predestined from the start. This
paper reports only the average orientations of individual fibres along the RoI and does not set out to measure the change in the
curvature of the fibres. This will be the subject of a further paper. It is clear from Fig. 3a that the gauge section contains a
number of misaligned clusters of around 200 µm in diameter. It is worthwhile to consider whether the gauge is large enough to
be statistically representative of the composite as a whole. It seems that the test-piece contains around 30−40 clusters and so it
is probably just large enough for it to be unlikely that a particular cluster would dominate the compressive failure behaviour.
Nevertheless, it is useful to ask whether the average misalignment angle/direction of all the fibres affects the initiation of the
micro-buckling behaviour. Certainly it was remarked upon earlier that there appears to be few fibres oriented at 180◦ to the
kink direction (Fig. 7b) and this may help explain why the fibre tilting and eventual micro-buckling occurs in the direction it
does. When considering the relative deflection vectors in Fig. 6 we can infer that there is no tendency for longitudinal splitting
between fibres (no neighbouring clusters move in opposite directions laterally, as illustrated in Fig. 1d). Without information
about the local curvature we are not able to identify whether the fibres buckle solely as depicted in Fig. 1c or whether there
is an increase in the local curvatures as in Fig. 1b. Certainly our work shows for the first time that the deflection initiates at
very low loads and is in a direction close to the ultimate kink-band direction. Furthermore, this deflection increase accelerates
as load increases such that the composite segment in the RoI is inclined by 1.81◦ at 895 N (just prior to buckling instability).
It is also clear that despite aiming to impose solely axial compression, there is a tendency for the composite to twist under
increasing load, introducing another loading mode onto the composite. If the shear modulus of the composite is around 3 GPa
(adapted from Hull and Clyne25) the 1.06◦ of twist equates to a torque of around 0.02 Nm. Ultimately the notch does ensure
that the final failure sequence occurs local to it but the current fibre tracking method does not pick up any local reorientation of
the fibres in the periphery of the gauge volume associated with the notch because it approximates fibres in the RoI with straight
lines. Of course future measurements of the fibre curvature may provide indication of notch localised fibre curvature in the
gauge volume. The quantification of fibre curvatures will be the topic of a follow up study. Finally, the presented methodology,
which can follow changes in individual fibres under load, is applicable to a wide range of materials based on UD fibres.

Methods

Materials and experimental procedures
Manufacturing and preparation of composite sample
A modified resin infusion technique referred to as small-scale resin infusion, as reported by Wang et al.26, was used to fabricate
the 2 mm diameter UD E-glass fibre (12 µm in diameter)/epoxy (Huntsman Araldite LY564/XB3486) composite rod. Fig. 1a
shows the specimen geometry for in-situ testing. Specimens with a reduced gauge section of around 1.5 mm in diameter over
3 mm in length were prepared from the manufactured composite rods. As mentioned in the Section ”Introduction”, in order
to localise the damage site, a groove around the circumference was made using a razor blade giving a notch depth between
100 µm and 200 µm. The two ends of the specimen were then glued with an epoxy adhesive into chamfered steel end caps so
that end-splitting damage could be avoided. This resulted in a length of the composite rod equal to 20 mm and an overall length
of the specimen of ∼ 28mm.

Ultra-fast synchrotron X-ray computed tomography (CT) imaging under in-situ compression
Ultra-fast imaging was performed at the TOMCAT beamline from the Swiss Light Source (SLS). A monochromatic beam with
mean energy of 20 keV was used and the specimen-detector distance was set so as to aid micro-crack detection with a level of
phase contrast. 500 projections were acquired over 180◦ rotation and the exposure time for each projection was 2 ms. These
settings equate to a fast acquisition at 1 scan per second. The data-sets were reconstructed at TOMCAT using the Paganin
algorithm27. The voxel size of the reconstructed CT data-sets is 1.1µm3.

Specimens were end-loaded in a tension-compression in-situ loading rig developed at INSA-Lyon28, which could be
accommodated for dynamic imaging. The compression tests were conducted under displacement control at the rate of 1 µms−1.
For the sample presented in this paper, an initial static scan was performed at 0 N, followed by interrupted scans at intermediate
loads (200 N and 600 N) followed by continuous dynamic scans as the expected failure load was approached. Each interrupted
CT scan started at an arbitrary angle, so there is an angular difference between each data-set in the xy plane.

Individual fibre extraction and matching across data-sets
Extraction of individual fibre trajectories
UD fibres are essentially aligned with the the z-axis, so in each horizontal slice through the volume fibres appear as circles,
as shown in Fig. 8. This allows the detection of fibre centres in each cross-sectional slice and these are connected together
afterwards to form individual fibres. Each individual fibre centre line is called a ‘trajectory’, which is the curve that connects
the centres of a fibre through the volume. These trajectories are extracted in two steps: i) centre coordinates are detected for
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every fibre in each 2D tomographic cross-sectional slice, obtained by slicing the 3D volume along fibre cross-sections and ii)
3D fibre trajectories are determined by tracking, i.e. connecting the 2D detected centres that belong to the same fibre.

The process of centre coordinate detection is illustrated and explained in Fig. 8. First, a dictionary-based probabilistic
segmentation is applied so as to estimate pixel-wise probabilities of belonging to the centre region. Secondly, the obtained
probability map is thresholded to obtain the individual centre regions. Finally, centre coordinates are computed as the centres of
mass of the connected regions. For more details refer to Emerson et al.21.

a) Intensity image b) Probability map c) Segmentation d) Detected fibre centres

Figure 8. Steps in the 2D centre detection process. Fibre centre coordinates calculated using the method by Emerson et
al.21. The intensity image in (a) is segmented into two classes (fibre centre regions or not). Using a dictionary-based
probabilistic segmentation method the likelihood for each pixel belonging to the fibre centre class is obtained, shown in (b).
This probability map is thresholded to obtain the segmentation in (c), which determines what are fibre centre regions (pink) or
not (blue). The centre coordinates for the individual fibres in (d) are found as the centroids (yellow) of the pink connected
regions.

A new implementation of the dictionary-based segmentation method is available29. The main improvements are lower
computational time for training the dictionary model as well as for the segmentation phase and, most importantly, the
development of a graphical user interface (GUI) in Matlab R©to wrap up the algorithm and provide a user-friendly tool that
requires minimal user input for training the dictionary.

The process of fibre tracking for connecting the detected centres across the 2D slices is explained in Emerson et al.21. The
fibre tracking used here is an improved version that can deal with the problems encountered in the previous version. This
includes handling of i) double detections, by merging 2D fibre centre detections when these are closer than the manufacturer
specified fibre radius, and handling of ii) merging fibres, by matching fibre centres from one slice to the next only if the match
between the points is bidirectional, as opposed to utilising the unidirectional backward tracking approach in Emerson et al.21.

Matching corresponding fibre trajectories across loading steps
As mentioned above, there is an angular disregistry between each data-set in the xy plane and it needs to be corrected so
that corresponding fibres can be matched across data-sets. Corresponding fibre trajectories are matched across the four
microtomograms using a rigid registration for alignment, followed by a nearest neighbour search algorithm for matching
corresponding fibres.

Tomograms are aligned manually, first in the z direction by visual inspection and then in the horizontal direction by choosing
three corresponding points and calculating a rigid transformation (rotation plus translation). The corresponding points are
selected as far as possible from each other and towards the edges of the cross-section to ensure precision in the registration.

Vectors of the Deflection Model
For the n-th fibre at loading step i the fibre vector vi

fn
is calculated by joining the points where fibre fn enters and leaves the RoI

with Fi ∈ {0N,200N,600N,895N} and n ∈ {1, ...,N}, where the number of fibres considered in this study is N = 4957 (see
Fig. 4). The composite vector at load step i is computed by the mean of the fibre vectors at that step vi

c =
1
N ∑N

n=1 vi
fn

.
Given the fibre vectors, the deflection vector di

fn
for fibre fn at load step i is calculated as the difference between the fibre

vector for fn at load step i and the fibre vector for fn at load F1 = 0N, i.e. di
fn
= vi

fn
−v1

fn
. The composite deflection vector

at load step i is given by averaging the deflection vectors di
c =

1
N ∑N

n=1 di
fn

. For the fibre and composite deflection vectors
Fi ∈ {200N,600N,895N}.

The relative deflection vectors, which characterise how each fibre deflects compared to the mean fibre deflection (deflection
of the composite rod), are given by ri

fn
= di

fn
−di

c.
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Data availability
The data-sets analysed during the current study, the segmented fibre trajectories with correspondence across volumes and the
code used for this study are available from the corresponding author on reasonable request.
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