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Abstract
Variational autoencoders are a powerful frame-
work for unsupervised learning. However, pre-
vious work has been restricted to shallow mod-
els with one or two layers of fully factorized
stochastic latent variables, limiting the flexibil-
ity of the latent representation. We propose three
advances in training algorithms of variational au-
toencoders, for the first time allowing to train
deep models of up to five stochastic layers, (1)
using a structure similar to the Ladder network
as the inference model, (2) warm-up period to
support stochastic units staying active in early
training, and (3) use of batch normalization. Us-
ing these improvements we show state-of-the-art
log-likelihood results for generative modeling on
several benchmark datasets.

1. Introduction
The recently introduced variational autoencoder (VAE)
(Kingma & Welling, 2013; Rezende et al., 2014) provides
a framework for deep generative models (DGM). DGMs
have later been shown to be a powerful framework for
semi-supervised learning (Kingma et al., 2014; Maaloee
et al., 2016). Another line of research starting from de-
noising autoencoders introduced the Ladder network for
unsupervised learning (Valpola, 2014) which have also
been shown to perform very well in the semi-supervised
setting (Rasmus et al., 2015).

Here we study DGMs with several layers of latent vari-
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Figure 1. Inference (or encoder/recognition) and generative (or
decoder) models. a) VAE inference model, b) Probabilistic lad-
der inference model and c) generative model. The z’s are latent
variables sampled from the approximate posterior distribution q
with mean and variances parameterized using neural networks.

ables, each conditioned on the layer above, which allows
highly flexible latent distributions. We study two different
model parameterizations: the first is a simple extension of
the VAE to multiple layers of latent variables and the sec-
ond is parameterized in such a way that it can be regarded
as a probabilistic variational variant of the Ladder network
which, contrary to the VAE, allows interactions between a
bottom up and top-down inference signal.

Previous work on DGMs have been restricted to shallow
models with one or two layers of stochastic latent variables
constraining the performance by the restrictive mean field
approximation of the intractable posterior distribution. Us-
ing only gradient descent optimization we show that DGMs
are only able to utilize the stochastic latent variables in the
second layer to a limited degree and not at all in the third
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How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks

layer or above. To alleviate these problems we propose (1)
the probabilistic ladder network, (2) a warm-up period to
support stochastic units staying active in early training, and
(3) use of batch normalization, for optimizing DGMs and
show that the likelihood can increase for up to five layers
of stochastic latent variables. These models, consisting of
deep hierarchies of latent variables, are both highly expres-
sive while maintaining the computational efficiency of fully
factorized models. We first show that these models have
competitive generative performance, measured in terms of
test log likelihood, when compared to equally or more
complicated methods for creating flexible variational dis-
tributions such as the Variational Gaussian Processes (Tran
et al., 2015) Normalizing Flows (Rezende & Mohamed,
2015) or Importance Weighted Autoencoders (Burda et al.,
2015). We find that batch normalization and warm-up al-
ways increase the generative performance, suggesting that
these methods are broadly useful. We also show that the
probabilistic ladder network performs as good or better
than strong VAEs making it an interesting model for fur-
ther studies. Secondly, we study the learned latent rep-
resentations. We find that the methods proposed here are
necessary for learning rich latent representations utilizing
several layers of latent variables. A qualitative assessment
of the latent representations further indicates that the multi-
layered DGMs capture high level structure in the datasets
which is likely to be useful for semi-supervised learning.

In summary our contributions are:

• A new parametrization of the VAE inspired by the
Ladder network performing as well or better than the
current best models.

• A novel warm-up period in training increasing both
the generative performance across several different
datasets and the number of active stochastic latent
variables.

• We show that batch normalization is essential for
training VAEs with several layers of stochastic latent
variables.

2. Methods
Variational autoencoders simultaneously train a generative
model pθ(x, z) = pθ(x|z)pθ(z) for data x using auxil-
iary latent variables z, and an inference model qφ(z|x)1

by optimizing a variational lower bound to the likelihood
pθ(x) =

∫
pθ(x, z)dz.

1The inference models is also known as the recognition model
or the encoder, and the generative model as the decoder.
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Figure 2. Flow of information in the inference and generative
models of a) probabilistic ladder network and b) VAE. The prob-
abilistic ladder network allows direct integration (+ in figure, see
Eq. (21) ) of bottom-up and top-down information in the infer-
ence model. In the VAE the top-down information is incorporated
indirectly through the conditional priors in the generative model.

The generative model pθ is specified as follows:

pθ(x|z1) = N
(
x|µθ(z1), σ2

θ(z1)
)

or (1)
Pθ(x|z1) = B (x|µθ(z1)) (2)

for continuous-valued (Gaussian N ) or binary-valued
(Bernoulli B) data, respectively. The latent variables z are
split into L layers zi, i = 1 . . . L:

pθ(zi|zi+1) = N
(
zi|µθ,i(zi+1), σ

2
θ,i(zi+1)

)
(3)

pθ(zL) = N (zL|0, I) . (4)

The hierarchical specification allows the lower layers of the
latent variables to be highly correlated but still maintain the
computational efficiency of fully factorized models.

Each layer in the inference model qφ(z|x) is specified using
a fully factorized Gaussian distribution:

qφ(z1|x) = N
(
z1|µφ,1(x), φ2φ,1(x)

)
(5)

qφ(zi|zi−1) = N
(
zi|µφ,i(zi−1), σ2

φ,i(zi−1)
)

(6)

for i = 2 . . . L.

Functions µ(·) and σ2(·) in both the generative and the in-
ference models are implemented as:

d(y) =MLP(y) (7)
µ(y) =Linear(d(y)) (8)

σ2(y) =Softplus(Linear(d(y))) , (9)

where MLP is a two layered multilayer perceptron network,
Linear is a single linear layer, and Softplus applies
log(1 + exp(·)) non linearity to each component of its ar-
gument vector. In our notation, each MLP(·) or Linear(·)
gives a new mapping with its own parameters, so the de-
terministic variable d is used to mark that the MLP-part is
shared between µ and σ2 whereas the last Linear layer is
not shared.
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Figure 3. MNIST test-set log-likelihood values for VAEs and the
probabilistic ladder networks with different number of latent lay-
ers, Batch normalizationBN and Warm-up WU

The variational principle provides a tractable lower bound
on the log likelihood which can be used as a training crite-
rion L.

log p(x) ≥ Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
= −L(θ, φ;x) (10)

= −KL(qφ(z|x)||pθ(z)) + Eqφ(z|x) [pθ(x|z)] ,
(11)

where KL is the Kullback-Leibler divergence.

A strictly tighter bound on the likelihood may be obtained
at the expense of a K-fold increase of samples by using the
importance weighted bound (Burda et al., 2015):

log p(x) ≥ Eqφ(z(1)|x) . . . Eqφ(z(K)|x)

[
log

K∑

k=1

pθ(x, z
(k))

qφ(z(k)|x)

]

≥ −L(θ, φ;x) . (12)

The inference and generative parameters, θ and φ, are
jointly trained by optimizing Eq. (11) using stochastic
gradient descent where we use the reparametrization trick
for stochastic backpropagation through the Gaussian latent
variables (Kingma & Welling, 2013; Rezende et al., 2014).
All expectations are approximated using Monte Carlo sam-
pling by drawing from the corresponding q distribution.

Previous work has been restricted to shallow models (L ≤
2). We propose two improvements to VAE training and a
new variational model structure allowing us to train deep
models with up to at least L = 5 stochastic layers.

2.1. Probabilistic Ladder Network

We propose a new inference model where we use the struc-
ture of the Ladder network (Valpola, 2014; Rasmus et al.,
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Figure 4. MNIST train (full lines) and test (dashed lines) perfor-
mance during training. The test set performance was estimated
using 5000 importance weighted samples providing a tighter
bound than the training bound explaining the better performance
here.

2015) as the inference model of a VAE, as shown in Figure
1. The generative model is the same as before.

The inference is constructed to first make a deterministic
upward pass:

d1 =MLP(x) (13)
µd,i =Linear(di), i = 1 . . . L (14)

σ2
d,i =Softplus(Linear(di)), i = 1 . . . L (15)

di =MLP(µd,i−1), i = 2 . . . L (16)

followed by a stochastic downward pass:

qφ(zL|x) =N
(
µd,L, σ

2
d,L

)
(17)

ti =MLP(zi+1), i = 1 . . . L− 1 (18)
µt,i =Linear(ti) (19)

σ2
t,i =Softplus(Linear(ti)) (20)

qθ(zi|zi+1,x) =N
(
µt,iσ

−2
t,i + µd,iσ

−2
d,i

σ−2t,i + σ−2d,i
,

1

σ−2t,i + σ−2d,i

)
.

(21)

Here µd and σ2
d carry the bottom-up information and σ2

t

and µt carry top-down information. This parametrization
has a probabilistic motivation by viewing µd and σ2

d as the
Gaussian likelihood that is combined with a Gaussian prior
µt and σ2

t from the top-down connections, together forming
the approximate posterior distribution qθ(zi|zi+1,x), see
Figure 2 a).

A line of motivation, already noted by Dayan et al. (1995),
is that a purely bottom-up inference process as in i.e. VAEs
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does not correspond well with real perception, where iter-
ative interaction between bottom-up and top-down signals
produces the final activity of a unit2, see Figure 2. Notably
it is difficult for the purely bottom-up inference networks
to model the explaining away phenomenon, see van den
Broeke (2016, Chapter 5) for a recent discussion on this
phenomenon. The probabilistic ladder network provides
a framework with the wanted interaction, while keeping
complications manageable. A further extension could be
to make the inference in k steps over an iterative inference
procedure (Raiko et al., 2014).

2.2. Warm-up from deterministic to variational
autoencoder

The variational training criterion in Eq. (11) contains the
reconstruction term pθ(x|z) and the variational regular-
ization term. The variational regularization term causes
some of the latent units to become inactive during train-
ing (MacKay, 2001) because the approximate posterior for
unit k, q(zi,k| . . . ) is regularized towards its own prior
p(zi,k| . . . ), a phenomenon also recognized in the VAE set-
ting (Burda et al., 2015). This can be seen as a virtue
of automatic relevance determination, but also as a prob-
lem when many units are pruned away early in training
before they learned a useful representation. We observed
that such units remain inactive for the rest of the training,
presumably trapped in a local minima or saddle point at
KL(qi,k|pi,k) ≈ 0, with the optimization algorithm unable
to re-activate them.

We propose to alleviate the problem by initializing train-
ing using the reconstruction error only (corresponding to
training a standard deterministic auto-encoder), and then
gradually introducing the variational regularization term:

−L(θ, φ;x)T = (22)
−βKL(qφ(z|x)||pθ(z)) + Eqφ(z|x) [pθ(x|z)] ,

where β is increased linearly from 0 to 1 during the firstNt
epochs of training. We denote this scheme warm-up (ab-
breviated WU in tables and graphs) because the objective
goes from having a delta-function solution (correspond-
ing to zero temperature) and then move towards the fully
stochastic variational objective. A similar idea has previ-
ously been considered in Raiko et al. (2007, Section 6.2),
however here used for Bayesian models trained with a co-
ordinate descent algorithm.

2.3. Batch Normalization

Batch normalization (Ioffe & Szegedy, 2015) is a recent
innovation that improves convergence speed and stabilizes

2The idea was dismissed at the time, since it could introduce
substantial theoretical complications.

Table 1. Fine-tuned test log-likelihood values for 5 layered VAE
and probabilistic ladder networks trained on MNIST. ANN. LR:
Annealed Learning rate, MC: Monte Carlo samples to approxi-
mate Eq(·)[·], IW: Importance weighted samples

FINETUNING NONE
ANN. LR.

MC=1
IW=1

ANN. LR.
MC=10
IW=1

ANN. LR.
MC=1
IW=10

ANN. LR.
MC=10
IW=10

VAE −82.14 −81.97 −81.84 −81.41 −81.30
PROB. LADDER −81.87 −81.54 −81.46 −81.35 -81.20

training in deep neural networks by normalizing the outputs
from each layer. We show that batch normalization (abbre-
viated BN in tables and graphs), applied to all layers except
the output layers, is essential for learning deep hierarchies
of latent variables for L > 2.

3. Experiments
To test our models we use the standard benchmark datasets
MNIST, OMNIGLOT (Lake et al., 2013) and NORB (Le-
Cun et al., 2004). The largest models trained used a hierar-
chy of five layers of stochastic latent variables of sizes 64,
32, 16, 8 and 4, going from bottom to top. We implemented
all mappings using two-layered MLP’s. In all models the
MLP’s between x and z1 or d1 were of size 512. Subse-
quent layers were connected by MLP’s of sizes 256, 128,
64 and 32 for all connections in both the VAE and proba-
bilistic ladder network. Shallower models were created by
removing latent variables from the top of the hierarchy. We
sometimes refer to the five layer models as 64-32-16-8-4,
the four layer models as 64-32-16-8 and so fourth. The
models were trained end-to-end using the Adam (Kingma
& Ba, 2014) optimizer with a mini-batch size of 256. The
reported test log-likelihoods were approximated using Eq.
(12) with 5000 importance weighted samples as in Burda
et al. (2015). The models were implemented in the Theano
(Bastien et al., 2012), Lasagne (Dieleman et al., 2015) and
Parmesan3 frameworks.

For MNIST we used a sigmoid output layer to predict the
mean of a Bernoulli observation model and leaky rectifiers
(max(x, 0.1x)) as nonlinearities in the MLP’s. The models
were trained for 2000 epochs with a learning rate of 0.001
on the complete training set. Models using warm-up used
Nt = 200. Similarly to Burda et al. (2015) we resam-
ple the binarized training values from the real-valued im-
ages using a Bernoulli distribution after each epoch which
prevents the models from over-fitting. Some of the mod-
els were fine-tuned by continuing training for 2000 epochs
while multiplying the learning rate with 0.75 after every
200 epochs and increase the number of Monte Carlo and

3github.com/casperkaae/parmesan
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Table 2. Number of active latent units in five layer VAE and prob-
abilistic ladder networks trained on MNIST. A unit was defined
as active if KL(qi,k||pi,k) > 0.01

VAE VAE
+BN

VAE
+BN
+WU

PROB. LADDER
+BN
+WU

LAYER 1 20 20 34 46
LAYER 2 1 9 18 22
LAYER 3 0 3 6 8
LAYER 4 0 3 2 3
LAYER 5 0 2 1 2
TOTAL 21 37 61 81

importance weighted samples to 10 to reduce the variance
in the approximation of the expectations in Eq. (10) and
improve the inference model, respectively.

Models trained on the OMNIGLOT dataset4, consisting of
28x28 binary images images were trained similar to above
except that the number of training epochs was 1500.

Models trained on the NORB dataset5, consisting of 32x32
grays-scale images with color-coding rescaled to [0, 1],
used a Gaussian observation model with mean and vari-
ance predicted using a linear and a softplus output layer
respectively. The settings were similar to the models above
except that: hyperbolic tangent was used as nonlinearities
in the MLP’s, the learning rate was 0.002, Nt = 1000 and
the number of training epochs were 4000.

4. Results & Discussion
To asses the performance of the VAE and the probabilis-
tic ladder networks with different numbers of stochastic la-
tent variable layers and with or without batch normaliza-
tion and warm-up we use the MNIST, OMNIGLOT and
NORB datasets. Firstly we study the generative model log-
likelihood for the different datasets and show that models
using our contributions perform better than the vanilla VAE
models6. Secondly we study the latent space representa-
tion and how batch normalization, warm-up and the proba-
bilistic ladder network affect these compared to the vanilla
VAE.

Generative log-likelihood performance

In Figure 3 we show the test set log-likelihood for a se-
ries of different models with varying number of stochas-

4The OMNIGLOT data was partitioned
and preprocessed as in Burda et al. (2015),
https://github.com/yburda/iwae/tree/master/datasets/OMNIGLOT

5The NORB dataset was downloaded in resized format from
github.com/gwtaylor/convnet matlab

6we use vanilla to refer to VAE models with out batch normal-
ization and warm-up

Table 3. Test set Log-likelihood values for models trained on the
OMNIGLOT and NORB datasets. The left most column show
dataset and the number of latent variables i each model.

VAE VAE
+BN

VAE
+BN
+WU

PROB. LADDER
+BN
+WU

OMNIGLOT
64 −114.45 −108.79 −104.63 −
64-32 −112.60 −106.86 −102.03 −102.12
64-32-16 −112.13 −107.09 −101.60 -101.26
64-32-16-8 −112.49 −107.66 −101.68 −101.27
64-32-16-8-4 −112.10 −107.94 −101.86 −101.59

NORB
64 2630.8 3263.7 3481.5 −
64-32 2830.8 3140.1 3532.9 3522.7
64-32-16 2757.5 3247.3 3346.7 3458.7
64-32-16-8 2832.0 3302.3 3393.6 3499.4
64-32-16-8-4 3064.1 3258.7 3393.6 3430.3

tic layers. The performance of the vanilla VAE model did
not improve with more than two layers of stochastic latent
variables. Contrary to this, models trained with batch nor-
malization and warm-up consistently increase the model
performance for additional layers of stochastic latent vari-
ables. As expected the improvement in performance is de-
creasing for each additional layer, but we emphasize that
the improvements are consistent even for the addition of
the top-most layers. The best performance is achieved us-
ing the probabilistic ladder network slightly outperforming
the best VAE models trained with batch normalization and
temperature. We emphasize that these VAE models already
have a very strong performance showing that the proba-
bilistic ladder network have competitive generative perfor-
mance.

The models in Figure 3 were trained using fixed learn-
ing rate and one Monte Carlo (MC) and one importance
weighted (IW) sample. To improve performance we fine-
tuned the best performing five layer models by training
these for a further 2000 epochs with annealed learning rate
and increasing the number of MC and IW samples. In
Table 1 we see that that by annealing the learning rate,
drawing 10 MC and IW samples we can improve the log-
likelihood of the VAE and probabilistic ladder network to
−81.30 and −81.20 respectively.

Comparing the results obtained here with current state-of-
the art results on permutation invariant MNIST, Burda et al.
(2015) report a test-set performance of−82.90 using 50 IW
samples and a two layer model with 100-50 latent units.
Using a similar model Tran et al. (2015) achieves −81.90
by adding a variational Gaussian Process prior for each
layer of latent variables, however here we note that our re-
sults are not directly comparable to these due to differences
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Figure 5. logKL(q|p) for each latent unit is shown at different training epochs. Low KL (white) corresponds to an inactive unit. The
units are sorted for visualization. It is clear that vanilla VAE cannot train the higher latent layers, while introducing batch normalization
helps. Warm-up creates more active units early in training, some of which are then gradually pruned away during training, resulting in
a more distributed final representation. Lastly, the probabilistic ladder network activates the highest number of units in each layer. The
division into active and inactive units at the end of the training is rather clear in most cases.

in the training procedure.

As shown above we found batch normalization (Ioffe &
Szegedy, 2015) to be essential for achieving good perfor-
mance for DGMs with L > 2. Figure 4 shows the MNIST
training and test convergence for models with five layers
of stochastic units. Comparing the VAE model with and
without batch normalization we see a large increase in both
trained and test performance. Adding warm-up does not
increase the training performance however the models gen-
eralize better indicating a more robust latent representa-
tion. Lastly the probabilistic ladder network converges to
slightly better values on both the test and training sets. We
saw no signs of over-fitting for any of our models even
though the hierarchical latent representations are highly ex-
pressive.

To test the models on more challenging data we used the
OMNIGLOT dataset, consisting of characters from 50 dif-
ferent alphabets with 20 samples of each character. The
Log-likelihood values, Table 3, shows similar trends as
for MNIST with substantial increases in performance by
adding batch-normalization and warm-up and again with
the probabilistic ladder network performing slightly better
than the other models. For both VAEs and probabilistic
ladder networks the performance increases up to three lay-
ers of stochastic latent variables after which no gain is seen
by adding more layers. The best Log-likelihood results ob-
tained here, −101.26, is higher than the best results from
Burda et al. (2015) at −103.38, which were obtained using
more latent variables (100-50 vs 64-32-16) and 50 impor-
tance weighted samples for training.

We tested the models using a continuous Gaussian obser-
vation model on the NORB dataset consisting of gray-scale
images of 5 different toy objects under different illumi-
nations and observation angles. As seen in Table 3 we
again find that bath normalization and warm-up increases
performance. However here we do not see a gain in per-
formance for L > 2 layers of latent stochastic variables.
We found the Gaussian observation models to be harder
to train requiring lower learning rates and hyperbolic tan-
gent instead of leaky rectifiers as nonlinearities for stable
training. The probabilistic ladder network were sometimes
unstable during training explaining the high variance in the
results. The harder optimization of the Gaussian observa-
tion model, also recognized in Oord et al. (2016), might
explain the lower utilization of the topmost latent layers in
these models.

The parametrization of the probabilistic ladder network al-
lows for natural parameter sharing between top-down part
µt,i(zi+1) and σ2

t,i(zi+1) of the inference model qφ, and
the top-down mapping µθ,i(zi+1) and σ2

θ,i(zi+1) of the
generative model pθ in Equation (3). We did initial ex-
periments with this setup but did not see improvements in
performance. However we believe that parameter sharing
between the inference and generative model is an interest-
ing future research direction.

Altogether for permutation invariant MNIST and OM-
NIGLOT we show state-of-the-art generative performance
achieved using a deep hierarchy of latent variables consist-
ing of fewer units (124 compared to 150) than current best
methods. We show similar findings on the NORB dataset
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Figure 6. a) MNIST test set KL-divergence between q(zi|zi−1)
andN (0, I) in each layer of four different five layer models. The
KL-divergence is large for the lower layers indicating highly non
(standard) Gaussian distributions. b) Generative model outputs
created by injecting samples z∗ ∼ N (0, I) at different layers in
the probabilistic ladder network. As expected the samples get
progressively better as the sampling is moved up in the hierarchy.

using the more challenging continuous Gaussian observa-
tion model.

Latent representations

The probabilistic generative models studied here automat-
ically tune the model complexity to the data by reducing
the effective dimension of the latent representation due to
the regularization effect of the priors in Eq. (10). However,
as previously identified (Raiko et al., 2007; Burda et al.,
2015), the latent representation is often overly sparse with
few stochastic latent variables propagating useful informa-
tion.

To study this effect we calculated the KL-divergence be-
tween q(zi,k|zi−1,k) and p(zi|zi+1) for each stochastic la-
tent variable k during training as seen in Figure 5. This
term is zero if the inference model is independent of the
data, i.e. q(zi,k|zi−1,k) = q(zi,k), and hence collapsed

Figure 7. PCA-plots of samples from q(zi|zi−1) for five layer
VAE and probabilistic ladder networks trained on MNIST. In the
vanilla VAE the stochastic units above the second layer is clearly
seen to be inactive with no dependency on the the input data. For
the other models a clear structure according to class is seen for
the higher layers.

onto the prior carrying no information about the data.
For the models without warm-up we find that the KL-
divergence for each unit is stable during all training epochs
with only very few new units activated during training. For
the models trained with warm-up we initially see many
active units which are then gradually pruned away as the
variational regularization term is introduced. At the end of
training warm-up results in more active units indicating a
more distributed representation. This effect is quantified in
Table 2 where we defined a stochastic latent unit zi,k to be
active if KL(qi,k||pi,k) > 0.01. We find that batch nor-
malization is essential for activating latent units above the
second layer but find that it does not affect the number of
active units in the first layer. Warm-up causes a large in-
crease in the number of active stochastic latent units, espe-
cially in the lower layers. We can explain this observation
from the structure of the VAE. For β = 0, i.e. fully deter-
ministic training, the stochastic latent layers above the first
layer are effectively disconnected from the model since the
variational regularization term is ignored. This causes all
information to flow through the lowest stochastic layer z1
as illustrated in Figure 2 b). We further find that the prob-
abilistic ladder network activates the most stochastic latent
units. We speculate that this is due to the deterministic path
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from the input data to all latent distributions in the infer-
ence model.

To qualitatively study the latent representations, PCA plots
of zi ∼ q(zi|zi−1) are seen in Figure 7. It is clear that the
VAE model without batch normalization is completely col-
lapsed on a standard normal prior above the second layer.
The latent representations shows progressively more clus-
tering according to class which is best seen in the topmost
layer of the probabilistic ladder network. These findings
indicate that hierarchical latent variable models produce
structured high level latent representations that are likely
useful for semi-supervised learning.

The hierarchical latent variable models used here allows
highly flexible distributions of the lower layers conditioned
on the layers above. We measure the divergence between
these conditional distributions and the restrictive mean field
approximation by calculating the KL-divergence between
q(zi|zi−1) and a standard normal distribution for several
models trained on MNIST, see Figure 6 a). As expected
the lower layers have highly non (standard) Gaussian dis-
tributions when conditioned on the layers above. Interest-
ingly the probabilistic ladder network seems to have more
active intermediate layers than t,he VAE with batch nor-
malization and warm-up. Again this might be explained
by the deterministic upward pass easing flow of informa-
tion to the intermediate and upper layers. We further note
that the KL-divergence is approximately zero in the vanilla
VAE model above the second layer confirming the inactiv-
ity of these layers. Figure 6 b) shows generative samples
from the probabilistic ladder network created by injecting
z∗ ∼ N (0, I) at different layers in the model. Sampling
from the top-most layer, having a standard normal prior,
produces nice looking samples whereas the samples get
progressively worse when we inject z∗ in the lower layers
supporting the finding above.

5. Conclusion
We presented three methods for optimization of VAEs us-
ing deep hierarchies of latent stochastic variables. Using
these models we demonstrated state-of-the-art generative
performance for the MNIST and OMNIGLOT datasets and
showed that a new parametrization, the probabilistic ladder
network, performed as good or better than current mod-
els. Further we demonstrated that VAEs with up to five
layer hierarchies of active stochastic units can be trained
and that especially the new probabilistic ladder network
were able to utilize many stochastic units. Future work in-
cludes extending these models to semi-supervised learning
and studying more elaborate iterative inference schemes in
the probabilistic ladder network.

Acknowledgments

This research was supported by the Novo Nordisk Founda-
tion, Danish Innovation Foundation and the NVIDIA Cor-
poration with the donation of TITAN X and Tesla K40
GPUs.

References
Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan,

Bergstra, James, Goodfellow, Ian, Bergeron, Arnaud,
Bouchard, Nicolas, Warde-Farley, David, and Bengio,
Yoshua. Theano: new features and speed improvements.
arXiv preprint arXiv:1211.5590, 2012.

Burda, Yuri, Grosse, Roger, and Salakhutdinov, Rus-
lan. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

Dayan, Peter, Hinton, Geoffrey E, Neal, Radford M, and
Zemel, Richard S. The Helmholtz machine. Neural com-
putation, 7(5):889–904, 1995.

Dieleman, Sander, Schlter, Jan, Raffel, Colin, Olson, Eben,
ren Kaae Sø nderby, Sø, Nouri, Daniel, van den Oord,
Aaron, and and, Eric Battenberg. Lasagne: First re-
lease., August 2015. URL http://dx.doi.org/
10.5281/zenodo.27878.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Kingma, Diederik P, Mohamed, Shakir, Rezende,
Danilo Jimenez, and Welling, Max. Semi-supervised
learning with deep generative models. In Advances in
Neural Information Processing Systems, pp. 3581–3589,
2014.

Lake, Brenden M, Salakhutdinov, Ruslan R, and Tenen-
baum, Josh. One-shot learning by inverting a composi-
tional causal process. In Advances in neural information
processing systems, pp. 2526–2534, 2013.

LeCun, Yann, Huang, Fu Jie, and Bottou, Leon. Learning
methods for generic object recognition with invariance
to pose and lighting. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2, pp.
II–97. IEEE, 2004.



How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks

Maaloee, Lars P, Sønderby, Casper Kaae, Sønderby,
Søren Kaae, and Winther, Ole. Improving semi-
supervised learning with auxiliary deep generative mod-
els. arXiv preprint arXiv:1312.6114, 2016.

MacKay, David JC. Local minima, symmetry-breaking,
and model pruning in variational free energy minimiza-
tion. Inference Group, Cavendish Laboratory, Cam-
bridge, UK, 2001.

Oord, Aaron van den, Kalchbrenner, Nal, and
Kavukcuoglu, Koray. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

Raiko, Tapani, Valpola, Harri, Harva, Markus, and
Karhunen, Juha. Building blocks for variational
bayesian learning of latent variable models. The Jour-
nal of Machine Learning Research, 8:155–201, 2007.

Raiko, Tapani, Li, Yao, Cho, Kyunghyun, and Bengio,
Yoshua. Iterative neural autoregressive distribution es-
timator nade-k. In Advances in Neural Information Pro-
cessing Systems, pp. 325–333, 2014.

Rasmus, Antti, Berglund, Mathias, Honkala, Mikko,
Valpola, Harri, and Raiko, Tapani. Semi-supervised
learning with ladder networks. In Advances in Neural
Information Processing Systems, pp. 3532–3540, 2015.

Rezende, Danilo Jimenez and Mohamed, Shakir. Varia-
tional inference with normalizing flows. arXiv preprint
arXiv:1505.05770, 2015.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wier-
stra, Daan. Stochastic backpropagation and approxi-
mate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

Tran, Dustin, Ranganath, Rajesh, and Blei, David M.
Variational gaussian process. arXiv preprint
arXiv:1511.06499, 2015.

Valpola, Harri. From neural pca to deep unsupervised
learning. arXiv preprint arXiv:1411.7783, 2014.

van den Broeke, Gerben. What auto-encoders could learn
from brains - generation as feedback in unsupervised
deep learning and inference, 2016.


