
Dynamic Scheduling in Heterogeneous Multiprocessor

Architectures. Efficiency Analysis.

Laura C. De Giusti
1,

, Marcelo Naiouf
1
, Franco Chichizola

1
, Emilio Luque

2
,

Armando E. De Giusti
1

1Instituto de Investigación en Informática LIDI (III-LIDI) – School of Computer Sciences –

Universidad Nacional de La Plata. Argentina
2Universidad Autónoma de Barcelona (UAB) - Computer Architecture and Operating System

Department (CAOS) Spain

{ldegiusti, mnaiouf, francoch}@lidi.info.unlp.edu.ar, emilio.luque@uab.es,

degiusti@lidi.info.unlp.edu.ar

Abstract. A MPAHA (Model for Parallel Algorithms on Heterogeneous

Architectures) model that allows predicting parallel application performance

running over heterogeneous architectures is presented. MPAHA considers the

heterogeneity of processors and communications.

From the results obtained with the MPAHA model, the AMTHA (Automatic

Mapping Task on Heterogeneous Architectures) algorithm for task-to-

processors assignment is presented and its implementation is analyzed.

DCS_AMTHA, a dynamic scheduling strategy for multiple applications on

heterogeneous multiprocessor architectures, is defined and experimental results

focusing on global efficiency are presented.

Finally, current lines of research related with model extensions for clusters of

multicores are mentioned.

Keywords: Dynamic Scheduling – Parallel Algorithm Model - Distributed

Architectures – Heterogeneity

1 Introduction

The problem of automatic task-to-processor mapping in heterogeneous architectures

is highly complex [1]. This complexity can be briefly represented considering the two

main elements relating the parallel application to the supporting architecture: each

node processing capacity and the cost of inter-processor communications in time [2].

 In Computer Science, models are used to describe real entities such as processing

architectures and to obtain an “abstract” or a simplified version of the physical

machine, capturing crucial characteristics and disregarding minor details of the

implementation [3][4]. In the case of parallel systems, the most currently used

architectures – due to their cost/performance relation - are heterogeneous clusters and

multiclusters; for this reason, it is really important to develop a model that fits the

characteristics of these platforms. An essential element to be considered is the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15777709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

potential heterogeneity of processors and communications among them, which adds

complexity to the modeling [5][6].

 At present, there are different graph-based models to characterize the behavior of

parallel applications in distributed architectures [7]. Among them, we can mention

TIG (Task Interaction Graph), TPG (Task Precedence Graph), TTIG (Task Temporal

Interaction Graph) [8], TTIGHA (Task Temporal Interaction Graph on Heterogeneous

Architectures) [9] and MPAHA (Model on Parallel Algorithms on Heterogeneous

Architectures) [10].

 Once the graph modeling the application has been defined, the scheduling problem

[11] is solved by an algorithm that establishes an automatic mechanism to carry out

the task-to-processor assignment, searching for the optimization of some execution

parameter (usually, time) [12]. Among the known mapping/scheduling algorithms, we

consider AMTHA (Automatic Mapping Task on Heterogeneous Architectures), a

mapping algorithm, to carry out the assignment of tasks of the application to the

processors of the architecture [10]. This algorithm considers the heterogeneous

characteristics of the architecture taken into account in the MPAHA (Model on

Parallel Algorithms on Heterogeneous Architectures) model [10].

 Usually, scheduling/mapping algorithms are used to obtain the best assignment of

the processes that make up an application to the processors of the architecture in

which it will be run. In this paper, the DCS_AMTHA (Dynamic Concurrent

Scheduling) algorithm to carry out the scheduling of multiple parallel applications on

heterogeneously distributed architectures (cluster) is defined. This algorithm is based

on AMTHA and the goal is to optimize the efficiency achieved by the whole system.

 In Section 2, the MPAHA model is briefly described. In Section 3, the AMTHA

scheduling algorithm is dealt with. In Section 4, DCS_AMTHA scheduling algorithm

is detailed. Section 5 describes the experimental work, and Section 6 presents results

of speedup and efficiency of DCS_AMTHA for different processing architectures and

working loads. Finally, Section 7 presents the conclusions and the future lines of

work.

2 MPAHA Model

The MPAHA model is based on the construction of a directed graph G (V, E), where:

─ V is the set of nodes representing each of the tasks Ti of the parallel program.

─ E is the set of edges representing each of the communications between the nodes

of the graph.

2.1 Model parameters

Nowadays, most applications are formed by a set of tasks that perform different

functions and that communicate among themselves to exchange information at any

point. Each of these tasks can in turn be split in various blocks (subtasks) which do

not communicate with other blocks from other tasks.

 In the first parameter of the graph (V), each node represents a task Ti of the

parallel program, including its subtasks (Stj) and the order in which they should be

executed to perform the task. If there is a heterogeneous architecture available, the

computation times for each of the composing processors should be taken into account.

That is, node i (Vi V) stores the computation time at each of the different types of

processor for each subtask of task Ti. Therefore, Vi (s,p) = execution time of subtask s

in processor type p.

 In the second parameter of the graph (E), the edges represent the communications

exchanged between each pair of tasks. In this set, an edge A between two tasks Ti and

Tj contains the communication volume (in bytes), the source subtask (Ti), and a

target subtask (Tj). That is, Ei,j (o,d) = communication volume between the source

subtask (o Ti) and the target subtask (d Ti).

 It should be noted that, given the heterogeneity of the interconnecting network,

instead of representing the time required for the communication, the corresponding

communication volume between two subtasks is represented. Fig. 1 shows an

example of a graph generated with this model.

Fig. 1. Example of a graph generated by the model.

3 AMTHA mapping algorithm

AMTHA is a static mapping algorithm that is applied to the graph generated by the

MPAHA model. It allows determining the assignment of tasks to the processors of the

architecture to be used to minimize the execution times of the application in that

architecture. This algorithm must also provide the order in which subtasks (forming

the task) assigned to each processor should be executed (task scheduling). AMTHA

considers an architecture with a limited number of heterogeneous processors. As

T2

10000

1500

1800

1500

5000

T0

St0

(5 -- 7)

(20 -- 35)

T1

St1

St2

(20 -- 35)

(100 -- 145)

T3
St6

St7

St8

(15 -- 20)

(100 -- 115)

(25 -- 40)

T4
St9

St10

(35 -- 60)

(20 -- 35)

T5 St11

St12

(10 -- 15)

(15 -- 20)

St13

T6

(120 -- 160) T7 St14

St15

St16

(80 -- 85)

(20 -- 25)

(10 -- 13)

2500

2000

500

2000

1000

8000

6700

St3

St4

St5

(25 -- 40)

(15 -- 25)

(10 -- 15)

100

1100

regards the interconnecting network, the algorithm also considers that bandwidth and

transmission speed can be heterogeneous.

 The AMTHA algorithm uses the values of graph G generated by the MPAHA

model. These values are: the time required to compute a subtask in each type of

processor, the communication volume with adjacent processors, and the task each

subtask belongs to.

 The AMTHA algorithm assigns one task at a time until all tasks have been

assigned. Figure 2 shows the pseudo-code with the main steps of the algorithm:

When the execution of the algorithm ends, all the tasks have been assigned to one of

the processors and the order in which the subtasks forming the tasks assigned to these

processors will be executed has also been determined.

Fig. 2. Pseudo-code with the basic steps of the AMTHA algorithm.

 The following paragraphs describe each of the three steps followed during the

execution of the AMTHA algorithm.

3.1 Calculating the rank of a task

Given a graph G, the rank of a task Rk(T) is defined as the sum of the average times

of the subtasks forming it and that are ready for execution (all predecessors have

already been assigned to a processor and are already there). Equation 1 expresses this

definition:

)()()(iavgTLi StWTRk (1)

where:

L(T) is the set of subtasks that are ready for task T.

Wavg (St) is the average time of subtask St. The average time is calculated as

shown in Equation 2.

P

pprocessoroftypeV
StW

Pp St
iavg

i

#

)(
)(

 (2)

where P is the set of processors present in the architecture and #P is the

number of processors forming this set.

3.2 Selecting the task to execute

After obtaining the rank of each application task, the task that maximizes it is

selected. If there are two or more tasks that have the same maximum value, the

Calculate rank for each task.

Whereas (not all tasks have been assigned)

1. Select the next task t to assign.

2. Chose the processor p to which task t should be assigned.

3. Assign task t (selected in step 1) to processor p (selected in step 2).

4. Update the rank of the tasks involved in step 3.

algorithm breaks this tie by selecting the one that minimizes the total execution time

average for the task. Equation 3 shows this calculation:

)()(iavgTi StWTTavg (3)

3.3 Selecting the processor

Selecting the processor involves choosing the computer within the architecture that

minimizes the execution time when the selected task is assigned to that processor.

In order to understand how the time corresponding to processor p is calculated, the

fact that each processor keeps a list of subtasks LUp that were already assigned to it

and that can be executed (all its predecessors are already placed), and another list that

contains those subtasks that were assigned to p but whose execution is still pending

LNUp (some of their predecessors have not been placed yet) must be taken into

account.

Therefore, to calculate which processor p will be selected, two possible situations

are considered:

1. All subtasks of task t can be placed in p (that is, all its predecessors have

been placed).

2. Some of the subtasks of t cannot be placed in p (this happens when some

predecessor of this subtask has not been placed).

In the first case, the time Tp corresponding to processor p is given by the moment

in which p finishes the execution of the last subtask of t. However, in the second case,

the time Tp corresponding to processor p is given by the time when the last subtask of

LUp will finish plus the addition of all execution times in p for each of the subtasks on

LNUp.

3.4 Assigning the task to the selected processor

When assigning a task T to a processor p, there is an attempt to place each subtask Stk

belonging to T to the processor, at a moment when all the adjacent subtasks have

already finished (including the predecessor subtask within T, if any). This can be a

free interval between two subtasks that have already been placed in p, or an interval

after them. If subtask Stk cannot be placed, it is added to the LNUp list. Each time a

subtask Stk is added to the LU list of one of the processors, an attempt is made to place

all the predecessors belonging to the already assigned tasks.

3.5 Updating the rank value of pending tasks

The first action within this step consists in assigning -1 as rank value to the task t that

has been assigned to processor p. The reason for this is to prevent task t from being

re-selected for assignment.

 Also, the following situation is considered in this step: for each subtask Stk placed

in step 3.4, the need to update the rank of the tasks successor subtasks Stsucc of Stk

belong to is analyzed; that is, if all predecessors of Stsucc are already placed, then the

rank of the task Stsucc belongs to is updated by increasing it by Wavg(Stsucc).

4 Dynamic Concurrent Scheduling (DCS_AMTHA) Algorithm

Given a parallel application, the AMTHA algorithm generates an assignment of its

tasks so as to achieve an efficient use of the heterogeneous architecture in which it

will be executed [10]. As the multiprocessor architectures increase the number of

processors, a way to obtain high efficiency is to increase the volume of parallel work,

simultaneously dealing with multiple applications. In this work, DCS_AMTHA

algorithm is developed in order to carry out the scheduling of multiple applications on

a heterogeneously distributed architecture.

 This algorithm allows overlapping two or more applications when using the

architecture. The application Ai scheduling is carried out using the AMTHA

algorithm; the tasks that make up Ai can be assigned to empty gaps generated by the

assignment of applications prior to Ai. In this case, Ai time zero (t0=time on which

execution starts) is the time on which Ai reaches the system (Si).

 The DCS_AMTHA algorithm allows the reassignment of already assigned tasks to

a processor that are not being run yet.

 Application Ai is assigned through the AMTHA algorithm, considering t0 as the

moment of reaching Si. Those tasks belonging to previously assigned applications

(A0..Ai-1) whose starting time in the scheduling occurs after de-assigning Si, and

together with the Ai tasks, are part of the new scheduling process.

Among the most outstanding features of this algorithm, the following are to be

pointed out:

─ At some moment, it requires process migration or reconfiguration of location of

each application task. The generated communication overhead depends on the

physical distribution of processors.

─ It prioritizes to obtain minimum system end time, not regarding the order in

which applications reach the system.

5 Experimental Work

In previous works, DCS_AMTHA was compared to two alternative algorithms for

scheduling multiple applications (SCS_AMTHA and SS_AMTHA). As a result, it was

concluded that the DCS_AMTHA algorithm yields best response times for the whole

system, that is, the architecture is used in a more efficient way [13].

 Based on these results, the behavior of the algorithm after scaling the architecture

and/or the number of applications in the system is analyzed.

 A set of applications was selected, in which each of them varies in terms of the

number of application tasks, task size, number of subtasks making up a task, and

communication volume among subtasks. In all the applications, the total computing

time exceeded that of communications (coarse grained application). In this work, 150

synthetic applications were generated and placed on a queue Q. Each application has

the following characteristics:

─ The number of tasks in the application is between 25 and 50.

─ The number of subtasks in each application task is between 5 and 10.

─ The computation time for each subtask is between 100 and 650 seconds.

─ The degree of interaction between the subtasks of different tasks is high.

 To run the applications, a heterogeneous architecture formed by two clusters

interconnected by a switch is used. The first (cluster 1) is composed by 25 processors

(Pentium IV 2.4Ghz, 1Gb RAM), and the second (cluster 2) by 25 processors

(Celeron, 2 GHz, 128Mb RAM). The connection is made through a 100-Mbit

Ethernet network. This architecture was chosen so that the clusters forming it are of

different characteristics in terms of the processors’ computing power.

 Various tests were carried out, identified by two parameters: the computing power

of the subset of processors used (WPT), and the number of applications used (AN).

That is, the test WPT - AN uses the first AN applications of Q and runs them over an

architecture whose total computing power is WPT. The applications of the experiment

reach it at different times (between 100 and 600 seconds difference between two

successive applications), so that the following is observed:]148..0[1 iSS ii

6 Results

To assess the behavior of the dynamic concurrent scheduling algorithm

(DCS_AMTHA) when the architecture and/or the number of applications in the system

are scaling, the speedup and efficiency parameters are analyzed (in this case, over

heterogeneous architectures).

 The speedup metrics is used to analyze the algorithm performance in the parallel

architecture as indicated in Equation (4).

.
meParallelTi

TimeSequential
Speedup (4)

 In heterogeneous architectures, the “Sequential Time” is given by the time of the

best sequential algorithm executed in the machine with the greatest calculation power.

In this multiple application case, the time each application requires is added. “Parallel

Time” is the whole system end time.

 To evaluate how good the speedup obtained is, efficiency is calculated. To this

aim, the speedup obtained is compared with the total computing power (WPT) of the

architecture upon which work is being carried out (which determines the theoretical

speedup), as indicated in Equation (5).

.
WPT

Speedup
Efficiency (5)

 The total computing power considers the relative calculation power of each

machine with respect to the power of the most powerful machine. The WPT is

calculated with Equation (6), where #P is the number of machines of the architecture

used, and WPi is the relative calculation power of machine i regarding the best

machine power.

.#
1

P
i iWPWPT (6)

 Figure 3 shows, for the most representative tests, the speedup achieved by the

whole system when scheduling was done with the DCS_AMTHA algorithm. As it can

be observed in the graph, speedup increases as the number of applications NA

increases, with a tendency towards stabilization from NA=120.

 On the other hand, it can also be seen that speedup increases with computing

power WPT up to a point where increasing this power does not yield a significant

improvement (WPT ≈ 30).

0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

S
p

e
e
d

u
p

Number of Applications (NA)

WPT: 08,00 WPT: 18,25 WPT: 26,25 WPT: 35,00 WPT: 41,25

Fig. 3. Speedup obtained from each test.

 Figure 4 shows the efficiency achieved for the same tests represented in Fig. 3.

The same as with speedup, efficiency increases with NA, and it stabilizes after

NA=120. However, unlike speedup, efficiency decreases as the architecture grows

(WPT).

By combining both results, the limit up to which WPT can be increased to achieve

relevant improvements in response times can be inferred. For these particular tests,

this limit is given by an architecture with WPT = 30.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

E
ff

ic
ie

n
c
y

Number of Applications (NA)

WPT: 08,00 WPT: 18,25 WPT: 26,25 WPT: 35,00 WPT: 41,25

Fig. 4. Efficiency obtained from each test.

7 Conclusions and Work Guidelines

DCS_AMTHA, a dynamic scheduling strategy for multiple applications on

heterogeneous multiprocessor architectures, is defined. It is based on AMTHA task-

to-processor assignment on heterogeneous architectures.

 Experimental results for different processing configurations and different working

loads are analyzed, focusing on the global efficiency obtained.

 Within the future work lines, research will be carried out on the evaluation of the

scheduling algorithm presented (DCS_AMTHA) on clusters of multicore processors,

taking into account the particular features of such architectures.

References

1. Grama A., Gupta A., Karypis G., Kumar V., “An Introduction to Parallel

Computing. Design and Analysis of Algorithms. 2nd Edition”. Pearson Addison

Wesley (2003).

2. Kalinov A., Klimov S., “Optimal Mapping of a Parallel Application Processes

onto Heterogeneous Platform”. Proc. of 19th IEEE International Parallel and

Distributed Processing Symposium (IPDPS’05), pp 123. IEEE CS Press (2005).

3. Leopold C., “Parallel and Distributed Computing. A survey of Models, Paradigms,

and Approaches”. Wiley, New York (2001).

4. Attiya H., Welch J., “Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. 2nd Edition”. Wiley-IEEE, New Jersey (2004).

5. Topcuoglu H., Hariri S., Wu M., “Performance-Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing”. IEEE Transactions on Parallel

and Distributed Systems, vol. 13, pp. 260-274 (2002)

6. Goldman, “Scalable Algorithms for Complete Exchange on Multi-Cluster

Networks”. CCGRID'02, pp. 286 – 287. IEEE/ACM, Berlin (2002).

7. Roig C., Ripoll A., Senar M.A., Guirado F., Luque E., “Modelling Message-

Passing Programas for Static Mapping”. Euromicro Workshop on Parallel and

Distributed Processing (PDP’00), pp. 229--236, IEEE CS Press, USA (1999).

8. Roig C., Ripoll A., Senar M., Guirado F., Luque E., “Exploiting knowledge of

temporal behavior in parallel programs for improving distributed mapping”.

EuroPar 2000. LNCS, vol. 1900, pp. 262--71. Springer, Heidelberg (2000).

9. De Giusti L., Chichizola F., Naiouf M., De Giusti A. “Mapping Tasks to

Processors in Heterogeneous Multiprocessor Architectures: The MATEHa

Algorithm”. International Conference of the Chilean Computer Science Society,

pp. 85-91. IEEE CS Press (2008).

10. De Giusti L. “Mapping sobre Arquitecturas Heterogéneas”. PhD Dissertation,

Universidad Nacional de La Plata (2008).

11. Cuenca J., Gimenez D., Martinez J., “Heuristics for Work Distribution of a

Homogeneous Parallel Dynamic Programming Scheme on Heterogeneous

Systems”. Proceeding of the 3rd International Workshop on Algorithms, Models

and Tools for Parallel Computing on Heterogeneous Networks (HeteroPar’04), pp

354-361. IEEE CS Press (2004).

12. Cunha J.C., Kacsuk P., Winter S., “Parallel Program development for cluster

computing: methodology, tools and integrated environments”. Nova Science Pub.,

New York (2001).

13. De Giusti L., Chichizola F., Naiouf M., De Giusti A., “Scheduling Strategies in

Heterogeneous Multiprocessor Architectures using AMTHA Algorithm

(DCS_AMTHA, SCS_AMTHA, SS_AMTHA)”. Technical Report, March 2009.

