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Abstract. It is a fact that gaming technology is a state-of-the-art tool for 

military training, not only in low level simulations, e.g. flight training 

simulations, but also for strategic and tactical training. It is also a fact that users 

of this kind of technologies require increasingly more realistic representations 

of the real world. This functional reality threatens both hardware and software 

capabilities, making almost impossible to keep up with the requirements. Many 

optimizations have been performed over simulation algorithms in order to fulfill 

these needs; no definitive solution, however, has yet been achieved. The 

question that arises naturally is, then: Does any generic global solution to the 

problem of the uneven growth of the computational power requirements with 

respect to the available capacities exist? This paper presents the problem by 

describing a real situation, analyzing the Batalla Virtual3 case of study and, in 

answering the motivating question, it proposes a potential software architecture 

employing a grid desktop computing (GDC) framework to empower 

constructive simulation systems, pulling off an adaptive hardware 

infrastructure. Additionally, as the constructive simulation scenarios do not 

fully adapt to the market-available GDC frameworks, the solution recommends 

suitable modifications to these software. 

Keyworkds: Grid Desktop Computing; Distributed Computing; Constructive 

Simulation; Battlefield Simulation. 

1 Introduction 

Distributed computing solutions are being applied mostly in scientific problems. 

However, over the last years, this technology has exceeded this boundary and 

conventional computing problems are been solved with it, as shown in [1]. 

There exists a wide span of distributed computing architectures. In particular, grid 

desktop computing (GDC) architecture is becoming progressively more popular for 

                                                           
1 DIDEP: Office of Development, Research and Production, Argentine Army. 
2 CIDESO: Center of Software Research and Development, Argentine Army. 
3 Batalla Virtual (BV): family of constructive simulation software of the Argentine Army for 

training 
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its easiness of implementation and its unbeatable economic advantages. However, it is 

yet an upcoming technology that has some dangling problems that must be taken into 

account. 

The computational power of GDC architectures and the low costs have brought an 

innumerable amount of applications in the military field, including cryptanalysis, 

decision making and image analysis software, among others. 

To keep up with advance of the computer science, the Argentine Army through the 

CIDESO decided to investigate this technology with an innovative point of view: 

distributed constructive interactive simulation software. 

In the present work the problem that the CIDESO wanted to tackle down using GDC 

will be presented. Then, grid desktop computing, describing its components and 

different implementations, will be illustrated. And, finally, the solution achieved will 

be described. 

2 The CIDESO’s Problem 

The main products of the CIDESO are simulation programs. It develops constructive 

simulation software for military training; one of its main products is Batalla Virtual 

(BV). It uses a customizable set of simulation models in order to emulate different 

portions of reality. 

BV immerses the players in a virtual scenario, setting up an operative military 

problem that they have to solve putting in practice their theoretical knowledge about 

doctrine. One game engages several people, considering the variety of roles involved 

in a real military operation. Each participant is in charge of commanding one element 

or playing the role of advisor (staff) of the commander.  

2.1 Batalla Virtual’s Challenges 

BV was born as an upper-intermediate command and control training system, it 

simulates up to company level. The quantity of players involved in a game hardly 

passes the couple of hundreds. However, as the users get more and more involved 

with the product, the necessity of increasing the level of detail is growing. This 

requirement is leading not only to enable new simulation models in order to perform 

more meticulous actions but also to modify and adapt the already existing models for 

supporting more players interacting among them. 

The scale problem made the CIDESO’s engineers to rethink and redirect the software 

development efforts, realizing that the computational power needed to play a 

simulation game was exceeding the available capacities.  

The most processor time consuming model detected is DLI (Detection, Localization 

and Identification). DLI is the vision simulation model which calculates the line of 

sight for each player. Basically, it is in charge of showing to each user only the 

elements of the game that the user is able to see considering his position, the position 

of all the other elements, the topography of the terrain and the exploring devices of 

the element. The only way of doing so is by try-and-error strategy. That is, for each 
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element, for each exploring device, it is necessary to check if each objective is visible 

or not considering the device properties and the topography. 

The complexity of this problem is proportional to O(n2-n), being n the amount of 

elements in the game. Moreover, for each pair of elements that are been checked, 

every point of the map that relies over the line which connects both elements must be 

analyzed in order to see if there is no geographical interference between them. This 

search has to be exhaustive, making the necessary processor time really high. 

2.2 The Solution Space 

Three possible paths were considered in order to solve the problem: code refactoring, 

code rewriting and architecture reengineering. 

The code refactoring consists on reengineering the source code in order to 

mathematically and/or computationally optimize the algorithms. When possible, 

doing this is an economical solution to performance problems. 

Another - more radical - solution was to rewrite the code in other language or for 

another platform. One plausible way out was to rewrite part of the problematic code 

in other more-performing language, such as C or C++. 

The last option was to apply an architectural change. The basic idea was to introduce 

distributed computing facilities for the problematic models and integrate them with 

the already functioning architecture. 

Even though the code refactoring was performed and considerable optimizations have 

been achieved, they were not enough in order to be prepared to increasing the level of 

reality of the simulation. The performance was more than acceptable for large games, 

but large in the nowadays scale. Consequently, the problem has been momentarily 

fixed; however it has not been definitely solved. 

In order to propose a definitive solution, the other two proposals have been analyzed 

and joined. The intention was to deploy GDC architecture where the same machines 

that are playing the game act as processing units of simulation, developing an 

adaptive processing infrastructure, proportional to the size of the game.  

The key concept of the plan was: if the processing requirement is proportional to the 

size of the game, and the size of the game is proportional to the number of clients 

connected, distributing the workload over the same connected clients produces an 

auto sufficient computing infrastructure.  

3 The Grid 

3.1 Introduction to the Grid 

Although Grid computing systems started to be studied in the eighties, as described in 

[1], in recent years, because of the continuous increase in the computational needs and 

the limitations in rising the computational power with the same speed, they have 

attracted the attention of both the commercial enterprises and the research institutions. 

The confluence of a set of factors have driven to the idea of what is called third 

generation Grid Computing. Among them we can mention the overcome of new 
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computational paradigms, e.g. service oriented architectures, the availability of 

powerful under-utilized desktop computers and their interconnection through fast 

high-bandwidth networks. 

Buyya et al., in [2], summarize Grid computing as a dynamic network of 

heterogeneous computing resources which cooperate building a uniform computing 

environment. A more detailed definition of the Grid has been given by Ian Foster in 

[3], who combines three fundamental concepts of this architecture: heterogeneity, 

transparency (also known as virtualization) and performance. 
The first concept refers to the major challenge that this architecture has to face. The 

Grid must consider a wide range of computing and communication technologies. Grid 

infrastructures should support different computer architectures, different operative 

systems, different means of communication and different data sources, everything 

working in a synergic way. 

Transparency is also a must in Grid computing. Taking into account the 

heterogeneity, the final user cannot be charged with the responsibility of managing all 

the technologies in a separate way. From the user sight, the Grid should be seen as a 

conventional computer program that receives an input and returns an output, without 

even knowing if the intermediate process has been executed by a single machine or a 

cloud of thousands. Thanks to the lasts advances in web technologies and the arisen of 

Service Oriented Architectures – SOA–, this challenge has been worked out, as 

explained in [4]. 

Finally, the third concept refers to the crucial objective of the Grid. The major benefit 

of this technology is the unbeatable performance that can be reached in a completely 

economical way. The Grid has the ability of exploiting both dedicated and shared 

already-acquired underutilized resources. 

Beside these three characteristics, there are others interesting points to highlight with 

respect to the benefits of the Grid. Among them, the resource balancing capabilities, 

as the Grid is seen as a whole by the users, the Grid system manager can balance the 

utilization of each resource in order to avoid bottlenecks; and the increase in the 

reliability of the processes, the lack of the single point of failure due to the 

distribution makes Grid systems more reliable than centralized systems. 

3.2 Grid Components 

The components of the Grid can be summarized in Grid users, jobs, Grid resources, 

communications facilities and Grid infrastructure: 

─ Grid users are the users (or applications) who submit jobs to the Grid. 
─ Jobs are the requests that the users do to the system. These jobs will be split up 
in tasks, which are the atomic units of instructions. 

─ The Grid resources are all the subsystems which give the computational power 
to the Grid. In [3] the resources are classified in computational resources and 

storage resources. 

─ The communication, are routers, switches, fiber optics, satellites or any other 
type of communication device that the Grid will use in order to connect all the 

resources among them.  
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─ The Grid infrastructure is composed by all the ad-hoc equips and services, 
declared by the Open Grid Services Architecture – OGSA-, which will manage 

the Grid itself, see Fig. 1. The most important components, described in [5], are:  

o the scheduler, in charge of assign the tasks to the resources,  

o the resource allocation manager, which provides remote execution 

capabilities and status management;  

o the monitoring and discovery service, which obtains the information 

about the resources and maintain the service directory up to date;  

o the data sharing module, in charge of providing the datasets to the 

resources and exchange information among them, and 

o the security module, which provides the authentication, 

authorization and accounting (AAA) service to the structure. 

 

Fig. 1. Grid Architecture. 

3.3 Grids’ Classification 

One possible classification of GDC divides these systems in two big sets: intragrid 

and intergrid [5]. The first are the ones which their bounds are in the intranet of an 

organization. This is the typical scenario of enterprises which exploit the 

computational power of their idle resources to run their own business processes. 

However, with the geographically expansion of the network and the requirements of 

collaboration among organizations, the Grid can cross the intranet boundaries and 

become an intergrid. This is a typical case of laboratories collaborating in a specific 

research. The difference between the intergrids and intragrids is that the firsts uses 

public communication resources to empower the computational capacity. 

From another point of view, the Grid can be divided in volunteer and not volunteer 

systems. The volunteer systems are the ones which the user decides to share resources 

with the Grid. She decides which resources to share, how to share them and for which 

project. These systems are public, e.g. BOI,C projects [6]. On the other side, there 

are systems in which an administrator is in charge of assigning portions of 

computational power of the resource to the Grid. This last class can be applied in 

closed systems. 
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3.4 Existing Grid Computing Infrastructures 

Two grid computing architectures are the most well known in the market: The Globus 

Toolkit, developed by The Globus Alliance, and BOI,C, developed by Berkeley 

University. Both are GDC infrastructures but with differences in what referrers to the 

profile of the target user.  

Globus is a set of independent grid computing tools that can be used together or 

inserted into other grid computing system in order to perform any of the grid tasks. 

All these tools are community-based, open-architecture and open-source and they 

were developed by The Globus Alliance, an alliance of universities, laboratories and 

government U.S. agencies [7]. It is working in several laboratories in highly 

heterogeneous environments. Principally, it is used for solving scientific problems 

which require large amounts of computational time in order to obtain results, e.g. in 

[8] [9]. 
In contrast, BOI,C, detailed in [10], is oriented to open volunteer projects where the 

resources are given by Internet users. It is an open-source infrastructure which gives 

to the users the possibility of creating projects over it. The projects can be either close 

or open. The close are those where the donators are in a close set of possible 

volunteers while the open are the ones submitted to the BOI,C servers and any 

Internet user can voluntarily donate part of she’s own computational time to the 

project. The main difference between BOI,C and Globus is that the first can also 

work in open environments due to its special validation module which checks the 

results given by the volunteers in order to certify its accuracy. This infrastructure is 

well known for been the first volunteer grid computing approach and for building the 

most powerful computer facility ever with the project SETI@HOME, described [6]. 

3.5 Framework Selection 

BOI,C has been selected as target architecture principally because of scheduling 

problem. Without any previous experience in implementation of distributed solutions, 

with low knowledge of UNIX platform and with only two resources (one senior 

engineer and one assistant), the project should be delivered six months. So, after 

analyzing both products, we decided that BOI,C was enough easy-to-use and have a 

more active supporting community which permit us to fulfill our objective in time. 

4 The solution 

4.1 Architecture 

The proposed architecture is relatively simple, see Fig. 2. As the simulation models in 

BV are conveniently packaged, the only change that must be introduce is a control 

before the execution of the model to decide whether to process the simulation 

internally or to send the work to the distributed infrastructure. If the second option is 

chosen, then it has to wait for the global result and continue processing. 
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When the platform receives the job, the work-creator program splits it in several 

atomic tasks and sends them to the BOI,C scheduler. The scheduler builds up the 

execution program and the clients (BV clients plus, eventually, other volunteers) starts 

pulling the jobs, processes them and returns them to the BOI,C server. 

 

 

Fig. 2. BOINC-BV Architecture 

As the server receives the partial results, the work-assimilator joins them in a single 

global result. When all the partial results are joined, the work-assimilator returns it via 

TCP/IP to the BV server. 

4.2 Algorithm distribution 

The target algorithm for the beta deployment was DLI. As it has been explained, DLI 

exhaustively examines the set of elements seen by all the participants of the game. 

Therefore, if there are five players deployed in the game, the algorithm for checking 

whether one element sees another is executed twenty times (5
2
-5 = 20). It is important 

to highlight that each execution of the algorithm is absolutely independent from the 

others, making it possible to parallelize the overall execution. 

The algorithm to check the visibility of one point from another point of the map was 

rewritten in ANSI C, and deployed over the BOI,C clients. Each atomic task contains 

a set of pairs of points that must be analyzed. So, the volunteer performs the analysis 

and return the single result to the BOI,C server. 

4.3 Adapting BOI�C to the CIDESO’s Problem 

However BOI,C is one of the most spread grid desktop computing frameworks, it 

does not fully adapt to the BV requirements. It was actually thought to solve other 

kind of problems. Two main challenges have been faced: the pull strategy and the 

short-running processes. 

The fact of being thought for intergrid scenarios makes BOI,C’s client to work in 

pull mode. The client asks for tasks to the server when his computer conditions 

reaches a set of predefined preferences. 
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For the objective of DLI, the ideal situation was the opposed. A push-like strategy fits 

better than a pull strategy. Nevertheless, through simple configurations, it is possible 

to preset the pulling time. Thus, reducing this parameter to the minimum (1 second) 

we functionally change the strategy making the client to continuously ask the server 

for new jobs, if there are no jobs to be processed, nothing is sent. 

With respect to the short-running processes, the problem is more complex. Most grid 

desktop computing infrastructures are meant for processing long-running processes, 

the result is not expected to be in quasi-on-line fashion. Yet, BV, for being an 

interactive system, requires immediate results. 

In order to optimize the distribution circuit, the overheads introduced by the 

distribution platform have been analyzed. Three critical points have been observed: 

1. Communication overhead: the time used for transmitting the job to the platform, 
the time for transmitting the tasks to the volunteers, the time for returning the 

partial results to the platform and the time for transmitting the final result to BV 

server, were optimized by using raw TCP/IP communication, avoiding any kind of 

web services and XML parsing. 

2. Job splitting overhead: the platform receives the entire job that must be split in 
atomic tasks to be processed. This software has been written in ANSI C, using low 

level instructions in order to minimize the splitting time. 

3. Job assimilation overhead: this overhead is related with the reception of the partial 
results and their integration. It was finally reduced to a simple task sender program. 

The shape of the partial results was modified in order to be able to directly send 

them to BV without any summarization.  

These three overheads have a peculiarity: the first is almost constant, no matter the 

amount of jobs submitted, the time expected will be roughly the same; and the two 

others are linearly related with the amount of elements of the game. This makes the 

overhead time to grow slower to the processing time in a non-distributed strategy. 

Although these overhead have been optimized, there exists an intrinsic limit for which 

the distributed solution does not increase the performance of the overall system but 

harms it. As Fig. 3 shows, the equilibrium point, where both strategies perform 

equally, must be found in order to decide whether to activate or not the distribution. 

 

 

Fig. 3. Time Consumed vs. Amount of Elements. 
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Surpassing the equilibrium point it will be convenient to use the distributed platform. 

Before that point it will be convenient to use the non-distributed solution. Inside BV 

will reside a decision algorithm that will chose whether to send the job outside the 

simulation server or process it inside. 

5 Conclusions 

The main contribution of this article is the new application for grid desktop 

computing that has been presented. Analyzing the prior works over this field of 

computing engineering, no previous applications which use GDC infrastructures for 

short-running process applied to interactive computing have been found. 

Moreover, the challenges that have been faced in order to adapt this infrastructure to a 

non-conventional problem have been described and analyzed, showing the solutions 

applied in a real case of study. These challenged also put in evidence the possible 

limitations in the use of this technology. 

From the CIDESO’s point of view, the introduction of GDC technology in its 

applications enabled a new world of research and moved the boundary of its products 

in which computer performance respects. This research also permitted to develop new 

skills widening the knowledge of the laboratory. 

In conclusion, the experience performed with GDC over constructive simulation 

models contributed not only inside the laboratory, enabling new technologies, but also 

outside, opening a new possible line of research over this tool.  

6 Further work 

Particularly, in what BV case of study respects, two main works will be preformed: 

─ Benchmark with other infrastructures: as it has been highlighted, the Globus 
Toolkit was also analyzed as a possible solution for the presented problem. This 

infrastructure will be set up and compared with the BOI,C implementation, 

looking for pros and cons of both architectures trying to generate tools for 

deciding for which problems performs better each platform.  

─ Extend to other algorithms: other algorithms of BV will be implemented in a 
distributed manner with the objective of reducing the overall simulation time. 

Overcoming the CIDESO’s boundary, two modifications to BOI,C will be analyzed: 

─ Push mode client: taking advantage of the openness in the source-code, an 
adaptation in the BOI,C strategy will be analyzed, trying to change from pull to 

push mode client. 

─ Extension for mobile computing: having applied BOI,C infrastructure for short 
running processes, a mobile client can extend the power of the overall 

infrastructure by adding other processing units such as handhelds or smart 

phones. 
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