
Grid Desktop Computing for Constructive Battlefield

Simulation

Alejandro Juan Manuel Repetto

Ejército Argentino – DIDEP1/CIDESO2 – Universidad del Ejército/Facultad de Ingeniería del

Ejército/Escuela Superior Técnica

Av. Cabildo 15, Ciudad Autónoma de Buenos Aires, República Argentina
ajmrepetto@ejercito.mil.ar

Abstract. It is a fact that gaming technology is a state-of-the-art tool for

military training, not only in low level simulations, e.g. flight training

simulations, but also for strategic and tactical training. It is also a fact that users

of this kind of technologies require increasingly more realistic representations

of the real world. This functional reality threatens both hardware and software

capabilities, making almost impossible to keep up with the requirements. Many

optimizations have been performed over simulation algorithms in order to fulfill

these needs; no definitive solution, however, has yet been achieved. The

question that arises naturally is, then: Does any generic global solution to the

problem of the uneven growth of the computational power requirements with

respect to the available capacities exist? This paper presents the problem by

describing a real situation, analyzing the Batalla Virtual3 case of study and, in

answering the motivating question, it proposes a potential software architecture

employing a grid desktop computing (GDC) framework to empower

constructive simulation systems, pulling off an adaptive hardware

infrastructure. Additionally, as the constructive simulation scenarios do not

fully adapt to the market-available GDC frameworks, the solution recommends

suitable modifications to these software.

Keyworkds: Grid Desktop Computing; Distributed Computing; Constructive

Simulation; Battlefield Simulation.

1 Introduction

Distributed computing solutions are being applied mostly in scientific problems.

However, over the last years, this technology has exceeded this boundary and

conventional computing problems are been solved with it, as shown in [1].

There exists a wide span of distributed computing architectures. In particular, grid

desktop computing (GDC) architecture is becoming progressively more popular for

1 DIDEP: Office of Development, Research and Production, Argentine Army.
2 CIDESO: Center of Software Research and Development, Argentine Army.
3 Batalla Virtual (BV): family of constructive simulation software of the Argentine Army for

training

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15777703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Alejandro Juan Manuel Repetto

its easiness of implementation and its unbeatable economic advantages. However, it is

yet an upcoming technology that has some dangling problems that must be taken into

account.

The computational power of GDC architectures and the low costs have brought an

innumerable amount of applications in the military field, including cryptanalysis,

decision making and image analysis software, among others.

To keep up with advance of the computer science, the Argentine Army through the

CIDESO decided to investigate this technology with an innovative point of view:

distributed constructive interactive simulation software.

In the present work the problem that the CIDESO wanted to tackle down using GDC

will be presented. Then, grid desktop computing, describing its components and

different implementations, will be illustrated. And, finally, the solution achieved will

be described.

2 The CIDESO’s Problem

The main products of the CIDESO are simulation programs. It develops constructive

simulation software for military training; one of its main products is Batalla Virtual

(BV). It uses a customizable set of simulation models in order to emulate different

portions of reality.

BV immerses the players in a virtual scenario, setting up an operative military

problem that they have to solve putting in practice their theoretical knowledge about

doctrine. One game engages several people, considering the variety of roles involved

in a real military operation. Each participant is in charge of commanding one element

or playing the role of advisor (staff) of the commander.

2.1 Batalla Virtual’s Challenges

BV was born as an upper-intermediate command and control training system, it

simulates up to company level. The quantity of players involved in a game hardly

passes the couple of hundreds. However, as the users get more and more involved

with the product, the necessity of increasing the level of detail is growing. This

requirement is leading not only to enable new simulation models in order to perform

more meticulous actions but also to modify and adapt the already existing models for

supporting more players interacting among them.

The scale problem made the CIDESO’s engineers to rethink and redirect the software

development efforts, realizing that the computational power needed to play a

simulation game was exceeding the available capacities.

The most processor time consuming model detected is DLI (Detection, Localization

and Identification). DLI is the vision simulation model which calculates the line of

sight for each player. Basically, it is in charge of showing to each user only the

elements of the game that the user is able to see considering his position, the position

of all the other elements, the topography of the terrain and the exploring devices of

the element. The only way of doing so is by try-and-error strategy. That is, for each

Grid Desktop Computing for Constructive Battlefield Simulation 3

element, for each exploring device, it is necessary to check if each objective is visible

or not considering the device properties and the topography.

The complexity of this problem is proportional to O(n2-n), being n the amount of

elements in the game. Moreover, for each pair of elements that are been checked,

every point of the map that relies over the line which connects both elements must be

analyzed in order to see if there is no geographical interference between them. This

search has to be exhaustive, making the necessary processor time really high.

2.2 The Solution Space

Three possible paths were considered in order to solve the problem: code refactoring,

code rewriting and architecture reengineering.

The code refactoring consists on reengineering the source code in order to

mathematically and/or computationally optimize the algorithms. When possible,

doing this is an economical solution to performance problems.

Another - more radical - solution was to rewrite the code in other language or for

another platform. One plausible way out was to rewrite part of the problematic code

in other more-performing language, such as C or C++.

The last option was to apply an architectural change. The basic idea was to introduce

distributed computing facilities for the problematic models and integrate them with

the already functioning architecture.

Even though the code refactoring was performed and considerable optimizations have

been achieved, they were not enough in order to be prepared to increasing the level of

reality of the simulation. The performance was more than acceptable for large games,

but large in the nowadays scale. Consequently, the problem has been momentarily

fixed; however it has not been definitely solved.

In order to propose a definitive solution, the other two proposals have been analyzed

and joined. The intention was to deploy GDC architecture where the same machines

that are playing the game act as processing units of simulation, developing an

adaptive processing infrastructure, proportional to the size of the game.

The key concept of the plan was: if the processing requirement is proportional to the

size of the game, and the size of the game is proportional to the number of clients

connected, distributing the workload over the same connected clients produces an

auto sufficient computing infrastructure.

3 The Grid

3.1 Introduction to the Grid

Although Grid computing systems started to be studied in the eighties, as described in

[1], in recent years, because of the continuous increase in the computational needs and

the limitations in rising the computational power with the same speed, they have

attracted the attention of both the commercial enterprises and the research institutions.

The confluence of a set of factors have driven to the idea of what is called third

generation Grid Computing. Among them we can mention the overcome of new

4 Alejandro Juan Manuel Repetto

computational paradigms, e.g. service oriented architectures, the availability of

powerful under-utilized desktop computers and their interconnection through fast

high-bandwidth networks.

Buyya et al., in [2], summarize Grid computing as a dynamic network of

heterogeneous computing resources which cooperate building a uniform computing

environment. A more detailed definition of the Grid has been given by Ian Foster in

[3], who combines three fundamental concepts of this architecture: heterogeneity,

transparency (also known as virtualization) and performance.
The first concept refers to the major challenge that this architecture has to face. The

Grid must consider a wide range of computing and communication technologies. Grid

infrastructures should support different computer architectures, different operative

systems, different means of communication and different data sources, everything

working in a synergic way.

Transparency is also a must in Grid computing. Taking into account the

heterogeneity, the final user cannot be charged with the responsibility of managing all

the technologies in a separate way. From the user sight, the Grid should be seen as a

conventional computer program that receives an input and returns an output, without

even knowing if the intermediate process has been executed by a single machine or a

cloud of thousands. Thanks to the lasts advances in web technologies and the arisen of

Service Oriented Architectures – SOA–, this challenge has been worked out, as

explained in [4].

Finally, the third concept refers to the crucial objective of the Grid. The major benefit

of this technology is the unbeatable performance that can be reached in a completely

economical way. The Grid has the ability of exploiting both dedicated and shared

already-acquired underutilized resources.

Beside these three characteristics, there are others interesting points to highlight with

respect to the benefits of the Grid. Among them, the resource balancing capabilities,

as the Grid is seen as a whole by the users, the Grid system manager can balance the

utilization of each resource in order to avoid bottlenecks; and the increase in the

reliability of the processes, the lack of the single point of failure due to the

distribution makes Grid systems more reliable than centralized systems.

3.2 Grid Components

The components of the Grid can be summarized in Grid users, jobs, Grid resources,

communications facilities and Grid infrastructure:

─ Grid users are the users (or applications) who submit jobs to the Grid.
─ Jobs are the requests that the users do to the system. These jobs will be split up
in tasks, which are the atomic units of instructions.

─ The Grid resources are all the subsystems which give the computational power
to the Grid. In [3] the resources are classified in computational resources and

storage resources.

─ The communication, are routers, switches, fiber optics, satellites or any other
type of communication device that the Grid will use in order to connect all the

resources among them.

Grid Desktop Computing for Constructive Battlefield Simulation 5

─ The Grid infrastructure is composed by all the ad-hoc equips and services,
declared by the Open Grid Services Architecture – OGSA-, which will manage

the Grid itself, see Fig. 1. The most important components, described in [5], are:

o the scheduler, in charge of assign the tasks to the resources,

o the resource allocation manager, which provides remote execution

capabilities and status management;

o the monitoring and discovery service, which obtains the information

about the resources and maintain the service directory up to date;

o the data sharing module, in charge of providing the datasets to the

resources and exchange information among them, and

o the security module, which provides the authentication,

authorization and accounting (AAA) service to the structure.

Fig. 1. Grid Architecture.

3.3 Grids’ Classification

One possible classification of GDC divides these systems in two big sets: intragrid

and intergrid [5]. The first are the ones which their bounds are in the intranet of an

organization. This is the typical scenario of enterprises which exploit the

computational power of their idle resources to run their own business processes.

However, with the geographically expansion of the network and the requirements of

collaboration among organizations, the Grid can cross the intranet boundaries and

become an intergrid. This is a typical case of laboratories collaborating in a specific

research. The difference between the intergrids and intragrids is that the firsts uses

public communication resources to empower the computational capacity.

From another point of view, the Grid can be divided in volunteer and not volunteer

systems. The volunteer systems are the ones which the user decides to share resources

with the Grid. She decides which resources to share, how to share them and for which

project. These systems are public, e.g. BOI,C projects [6]. On the other side, there

are systems in which an administrator is in charge of assigning portions of

computational power of the resource to the Grid. This last class can be applied in

closed systems.

6 Alejandro Juan Manuel Repetto

3.4 Existing Grid Computing Infrastructures

Two grid computing architectures are the most well known in the market: The Globus

Toolkit, developed by The Globus Alliance, and BOI,C, developed by Berkeley

University. Both are GDC infrastructures but with differences in what referrers to the

profile of the target user.

Globus is a set of independent grid computing tools that can be used together or

inserted into other grid computing system in order to perform any of the grid tasks.

All these tools are community-based, open-architecture and open-source and they

were developed by The Globus Alliance, an alliance of universities, laboratories and

government U.S. agencies [7]. It is working in several laboratories in highly

heterogeneous environments. Principally, it is used for solving scientific problems

which require large amounts of computational time in order to obtain results, e.g. in

[8] [9].
In contrast, BOI,C, detailed in [10], is oriented to open volunteer projects where the

resources are given by Internet users. It is an open-source infrastructure which gives

to the users the possibility of creating projects over it. The projects can be either close

or open. The close are those where the donators are in a close set of possible

volunteers while the open are the ones submitted to the BOI,C servers and any

Internet user can voluntarily donate part of she’s own computational time to the

project. The main difference between BOI,C and Globus is that the first can also

work in open environments due to its special validation module which checks the

results given by the volunteers in order to certify its accuracy. This infrastructure is

well known for been the first volunteer grid computing approach and for building the

most powerful computer facility ever with the project SETI@HOME, described [6].

3.5 Framework Selection

BOI,C has been selected as target architecture principally because of scheduling

problem. Without any previous experience in implementation of distributed solutions,

with low knowledge of UNIX platform and with only two resources (one senior

engineer and one assistant), the project should be delivered six months. So, after

analyzing both products, we decided that BOI,C was enough easy-to-use and have a

more active supporting community which permit us to fulfill our objective in time.

4 The solution

4.1 Architecture

The proposed architecture is relatively simple, see Fig. 2. As the simulation models in

BV are conveniently packaged, the only change that must be introduce is a control

before the execution of the model to decide whether to process the simulation

internally or to send the work to the distributed infrastructure. If the second option is

chosen, then it has to wait for the global result and continue processing.

Grid Desktop Computing for Constructive Battlefield Simulation 7

When the platform receives the job, the work-creator program splits it in several

atomic tasks and sends them to the BOI,C scheduler. The scheduler builds up the

execution program and the clients (BV clients plus, eventually, other volunteers) starts

pulling the jobs, processes them and returns them to the BOI,C server.

Fig. 2. BOINC-BV Architecture

As the server receives the partial results, the work-assimilator joins them in a single

global result. When all the partial results are joined, the work-assimilator returns it via

TCP/IP to the BV server.

4.2 Algorithm distribution

The target algorithm for the beta deployment was DLI. As it has been explained, DLI

exhaustively examines the set of elements seen by all the participants of the game.

Therefore, if there are five players deployed in the game, the algorithm for checking

whether one element sees another is executed twenty times (5
2
-5 = 20). It is important

to highlight that each execution of the algorithm is absolutely independent from the

others, making it possible to parallelize the overall execution.

The algorithm to check the visibility of one point from another point of the map was

rewritten in ANSI C, and deployed over the BOI,C clients. Each atomic task contains

a set of pairs of points that must be analyzed. So, the volunteer performs the analysis

and return the single result to the BOI,C server.

4.3 Adapting BOI�C to the CIDESO’s Problem

However BOI,C is one of the most spread grid desktop computing frameworks, it

does not fully adapt to the BV requirements. It was actually thought to solve other

kind of problems. Two main challenges have been faced: the pull strategy and the

short-running processes.

The fact of being thought for intergrid scenarios makes BOI,C’s client to work in

pull mode. The client asks for tasks to the server when his computer conditions

reaches a set of predefined preferences.

8 Alejandro Juan Manuel Repetto

For the objective of DLI, the ideal situation was the opposed. A push-like strategy fits

better than a pull strategy. Nevertheless, through simple configurations, it is possible

to preset the pulling time. Thus, reducing this parameter to the minimum (1 second)

we functionally change the strategy making the client to continuously ask the server

for new jobs, if there are no jobs to be processed, nothing is sent.

With respect to the short-running processes, the problem is more complex. Most grid

desktop computing infrastructures are meant for processing long-running processes,

the result is not expected to be in quasi-on-line fashion. Yet, BV, for being an

interactive system, requires immediate results.

In order to optimize the distribution circuit, the overheads introduced by the

distribution platform have been analyzed. Three critical points have been observed:

1. Communication overhead: the time used for transmitting the job to the platform,
the time for transmitting the tasks to the volunteers, the time for returning the

partial results to the platform and the time for transmitting the final result to BV

server, were optimized by using raw TCP/IP communication, avoiding any kind of

web services and XML parsing.

2. Job splitting overhead: the platform receives the entire job that must be split in
atomic tasks to be processed. This software has been written in ANSI C, using low

level instructions in order to minimize the splitting time.

3. Job assimilation overhead: this overhead is related with the reception of the partial
results and their integration. It was finally reduced to a simple task sender program.

The shape of the partial results was modified in order to be able to directly send

them to BV without any summarization.

These three overheads have a peculiarity: the first is almost constant, no matter the

amount of jobs submitted, the time expected will be roughly the same; and the two

others are linearly related with the amount of elements of the game. This makes the

overhead time to grow slower to the processing time in a non-distributed strategy.

Although these overhead have been optimized, there exists an intrinsic limit for which

the distributed solution does not increase the performance of the overall system but

harms it. As Fig. 3 shows, the equilibrium point, where both strategies perform

equally, must be found in order to decide whether to activate or not the distribution.

Fig. 3. Time Consumed vs. Amount of Elements.

T
im

e
C
o
n
su
m
ed

Amount of Elements

Time consumed vs Amount of elements

Non-distributed solution Distributed solution

Grid Desktop Computing for Constructive Battlefield Simulation 9

Surpassing the equilibrium point it will be convenient to use the distributed platform.

Before that point it will be convenient to use the non-distributed solution. Inside BV

will reside a decision algorithm that will chose whether to send the job outside the

simulation server or process it inside.

5 Conclusions

The main contribution of this article is the new application for grid desktop

computing that has been presented. Analyzing the prior works over this field of

computing engineering, no previous applications which use GDC infrastructures for

short-running process applied to interactive computing have been found.

Moreover, the challenges that have been faced in order to adapt this infrastructure to a

non-conventional problem have been described and analyzed, showing the solutions

applied in a real case of study. These challenged also put in evidence the possible

limitations in the use of this technology.

From the CIDESO’s point of view, the introduction of GDC technology in its

applications enabled a new world of research and moved the boundary of its products

in which computer performance respects. This research also permitted to develop new

skills widening the knowledge of the laboratory.

In conclusion, the experience performed with GDC over constructive simulation

models contributed not only inside the laboratory, enabling new technologies, but also

outside, opening a new possible line of research over this tool.

6 Further work

Particularly, in what BV case of study respects, two main works will be preformed:

─ Benchmark with other infrastructures: as it has been highlighted, the Globus
Toolkit was also analyzed as a possible solution for the presented problem. This

infrastructure will be set up and compared with the BOI,C implementation,

looking for pros and cons of both architectures trying to generate tools for

deciding for which problems performs better each platform.

─ Extend to other algorithms: other algorithms of BV will be implemented in a
distributed manner with the objective of reducing the overall simulation time.

Overcoming the CIDESO’s boundary, two modifications to BOI,C will be analyzed:

─ Push mode client: taking advantage of the openness in the source-code, an
adaptation in the BOI,C strategy will be analyzed, trying to change from pull to

push mode client.

─ Extension for mobile computing: having applied BOI,C infrastructure for short
running processes, a mobile client can extend the power of the overall

infrastructure by adding other processing units such as handhelds or smart

phones.

10 Alejandro Juan Manuel Repetto

7 Bibliography

1. Roure, D., Baker, M.A., Jennings, N.R, Shadbolt, N.R.: The evolution of the grid.

In Grid computing - making the global infrastructure a reality. John Wiley and

Sons Ltd (2003)

2. Rajkumar Buyya, David Abramson, Jonathan Giddy and Heinz Stockinger:

Economic models for resource management and scheduling in grid computing.

(2002)

3. Foster, Ian: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In

: In Proceedings of the 7th International Euro-Par Conference Manchester on

Parallel Processing. (2001)

4. Carpenter, Brian: Grid Computing. (2003)

5. Ferreira, Luis, Berstis, Viktors, Armstrong, Jonathan, Kendzierski, Mike,

Neukoetter, Andreas, MasanobuTakagi, Bing-Wo, Richard, Amir, Adeeb,

Murakawa, Ryo, Hernandez, Olegario, Magowan, James, Bieberstein, Norbert:

Introduction to grid computing with Globus. IBM Red BOOKS (2003)

6. Anderson, David, Cobb, Jeff, Korpela, Eric, Lebofsky, Matt, Werthimer., Dan:

SETI@home: an experiment in public-resource computing. Communications of

the ACM 45(11) (2002)

7. Foster, Ian: The Physiology of the Grid: An Open Grid Services Architecture for

Distributed Systems Integration. Globus Project (2002)

8. Stef-Praun, T., Clifford, B., Foster, I., Hasson, U., Hategan, M., Small, S., Wilde,

Zhao, M, Y.: Accelerating Medical Research using the Swift Workflow System

Health Grid. (2007)

9. Nefedova, V., Jacob, R., Foster, I., Liu, Z., Liu, Y., Deelman, E., Mehta, G, Su,

M., Vahi., K.: Automating Climate Science: Large Ensemble Simulations on the

TeraGrid with the GriPhyN Virtual Data System. In : In Proceedings of the

Second IEEE International Conference on e-Science and Grid Computing. IEEE

(2006)

10. Anderson, David: BOINC: A System for Public-Resource Computing and

Storage. In : In Proceedings of the Fifth IEEE/ACM International Workshop on

Grid Computing. IEEE (2004)

