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Abstract. Globally optimal pseudo-triangulations are difficult to be
found by deterministic methods as, for most type of criteria, no polyno-
mial algorithm is known. In this work, we consider the Minimum Weight
Pseudo-Triangulation (MWPT) problem of a given set of n points in the
plane. This paper shows how the Ant Colony Optimization (ACO) meta-
heuristic can be used to find optimal pseudo-triangulations of minimum
weight. For the experimental study presented here we have created a set
of instances for MWPT since no reference to benchmarks for these pro-
blems were found in the literature. We assess through the experimental
evaluation the applicability of the ACO metaheuristic for MWPT.
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1 Introduction

In Computational Geometry there are many problems that either are NP-hard or
no polynomial algorithms are known. Therefore, it is interesting to find approx-
imate solutions using metaheuristics. The optimization problems related to spe-
cial geometric configurations, such as triangulations and pseudo-triangulations,
are interesting to research due to their use in many fields of application, e.g.,
visibility, ray-shooting, kinetic collision detection, rigidity, guarding, etc. The
pseudo-triangulations, like triangulations, are planar partitions. Minimizing the
total length has been one of the main optimality criteria. The related pro-
blems are the Minimum Weight Triangulation (MWT) and the Minimum Weight
Pseudo-Triangulation (MWPT), that minimize the sum of the edge lengths, pro-
viding a quality measure for determining how good a structure is. The complexity
of computing a minimum weight triangulation has been one of the most long-
standing open problems in Computational Geometry, introduced by Garey and
Johnson [5] in their open problems list, and various approximation algorithms
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were proposed over time. Mulzer and Rote [7] recently showed that MWT prob-
lem is NP-hard. The complexity of MWPT problem is unknown, but Levcopou-
los and Gudmundsson [6] show that a 12-approximation of an MWPT can be
computed in O(n3) time. They give an O(log n · w(MST )) approximation of
an MWPT, in O(n log n) time, where w(MST ) is the weight of the minimum
Euclidean spanning tree, which is a subset of the obtained structure.

Given the inherent difficulty of these problems, the approximate algorithms
arise as alternative candidates. These algorithms can obtain approximate solu-
tions to the optimal solutions, and they can be specific for a particular problem
or they can be part of a general applicable strategy in the resolution of different
problems. The metaheuristic methods satisfy these properties.

In this work, we consider the MWPT problem of a given set of n points in the
plane. This paper shows how the Ant Colony Optimization (ACO) metaheuristic
can be used to find optimal pseudo-triangulations of minimum weight. For the
experimental study presented in this work we use the Ant Colony Optimization
(ACO) metaheuristic.

This paper is organized as follows. In the next section we present the theo-
retical aspects of pseudo-triangulations. In Section 3, we present the general
overview of the ACO metaheuristic. Section 4 presents the proposed ACO algo-
rithms for the MWPT problem. Finally, we describe the MWPT instances used
and the details and results of the experimental study in which we analyze the
sensitivity of some important parameters on the performance of the proposed
ACO algorithm.

2 Minimum Weight Pseudo-Triangulation

Let S be a set of points in the plane. A pseudo-triangulation PT of S is a parti-
tion of the convex hull of S into pseudo-triangles whose vertex set is exactly S. A
pseudo-triangle is a planar polygon that has exactly three convex vertices, called
corners. The weight of a pseudo-triangulation PT is the sum of the Euclidean
lengths of all the edges of PT. The pseudo-triangulation that minimizes this sum
is named a Minimum Weight Pseudo-Triangulation of S and it is denoted by
MWPT (S).

(a) (b) (c)

Fig. 1. (a) A pseudo-triangle, (b) a pseudo-triangulation of a point set and (c) a pseudo-
triangulation of a simple polygon, including a geodesic path from u to v [9].



Approximations on MWPT using ACO 3

The concept of pseudo-triangulation was introduced by Pocchiola and Veg-
ter in [8] on the analogy of the arrangements of pseudo-lines; see [9] for a
survey with many results of pseudo-triangulations. As we mentioned in Sec-
tion 1, there exists a set of points for which any triangulation will have weight
O(nwt(M(S))). A natural question is whether there exist a similar worst-case
bounds for pseudo-triangulations. Rote et al.,[10] were those who asked if the
MWPT is a NP-hard problem, stimulating the search of exact or approximate
algorithms. Gudmundsson and Levcopoulos [6] considered the problem of com-
puting a minimum weight pseudo-triangulation of a set S of n points in the plane,
presenting an O(nlogn)-time algorithm that produces a pseudo-triangulation of
weight O(logn.wt(M(S))) which is shown to be asymptotically worst-case opti-
mal. That is, there exists a point set S for which every pseudo-triangulation has
weight Ω(logn.wt(M(S))), where wt(M(S)) is the weight of a minimum span-
ning tree of S. Also, they presented a constant factor approximation algorithm
running in cubic time, and they gave an algorithm that produces a minimum
weight pseudo-triangulation of a simple polygon. Previous works about approx-
imations on mentioned problems using metaheuristic, were presented in [2] and
[3] , where we described the design of the ACO algorithms and gave the first
steps in this research.

3 Ant Colony Optimization Metaheuristic

The ACO metaheuristic involves a family of algorithms in which a colony of
artificial ants cooperate in finding good solutions to difficult discrete optimiza-
tion problems. Cooperation is a key design component of ACO algorithms: The
choice is to allocate the computational resources to a set of relatively simple
agents (artificial ants) that communicate indirectly by stigmergy. Thus, good
quality solutions are an emergent property of the agents cooperative interaction.

An artificial ant in an ACO algorithm is a stochastic constructive proce-
dure that incrementally builds a solution by adding opportunely defined solution
components to a partial solution under construction. Therefore, the ACO meta-
heuristic can be applied to any combinatorial optimization problem for which
a constructive graph can be defined. Each edge (i, j) in the graph represents a
posible path and it has associated two information sources that guide the ant
moves: pheromone trails and heuristic information. The pheromone trail, de-
noted by τij , encodes a long-term memory about the entire ant search process,
and is updated by the ants themselves. The heuristic information, denoted by
ηij , represents a priori information about the problem instance or run-time in-
formation provided by a source different from the ants. In many cases η is the
cost, or an estimate of the cost, of adding the component or connection to the
solution under construction. These values are used by the ants to make proba-
bilistic decisions on how to move on the graph. The ants act concurrently and
independently and although each ant is complex enough to find a solution to the
problem, which is probably poor, good-quality solutions can only emerge as the
result of the collective interaction among the ants. This is obtained via indirect
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communication mediated by the information ants read or write in the variables
storing pheromone trail values. It is a distributed learning process in which the
single agents, the ants, are not adaptive themselves but, on the contrary, adap-
tively modify the way the problem is represented and perceived by other ants
[4].

There are two additional process for updating pheromone and the daemon ac-
tions. The pheromone updating is the process by which the pheromone trails are
modified. The trail values can either increase, as ants deposit pheromone on the
components or connections they use, or decrease, due to pheromone evaporation.
The daemon procedure is used to implement centralized actions which cannot
be performed by single ants. Examples of daemon actions are the activation of
a local optimization procedure, or the collection of global information that can
be used to decide whether it is useful or not to deposit additional pheromone
to bias the search process from a nonlocal perspective. The daemon can observe
the path found by each ant in the colony and select one or a few ants, like those
that built the best solutions in the algorithm iteration that allowed to deposit
additional pheromone on the connections they used.

3.1 The general ACO algorithm

In this section we present a general ACO algorithm (Algorithm 1) and a des-
cription of the main components. After that, the next section describes in detail
the specific component of the general ACO algorithm (function BuildSolutionk)
that have to be adapted for MWPT. Main components of Algorithm 1:

Algorithm 1 General-ACO
Initialize
for c ∈ {1, . . . , C} do

for k ∈ {1, . . . ,K} do
BuildSolutionk
EvaluateSolution

end for
SaveBestSolutionSoFar
UpdateTrails

end for
ReturnBestSolution

Initialize: this process initializes the parameters considered for the algorithm.
The initial trail of pheromone is associated to each edge, τ0; it is an small positive
value, in general, the same for all edges. The quantity of ants of the colony, K.
The weights that define the proportion in which they will affect the heuristic
information and pheromone trails in the probabilistic transition rule, named
respectively β y α. C is the maximum number of cycles.

BuildSolutionk : this process begins with a partial empty solution which is
extended at each step by adding a feasible solution component chosen from the
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current solution neighbors; i.e., to find a route on the construction graph guided
by the mechanism that defines the set of feasible neighbors with regard to the
partial solution. The choice of a feasible neighbor is done in a probabilistic way
in every step of the construction, depending on the used ACO variant. In this
work, the selection rule for the solutions construction is based on the following
probabilistic model:

Pij =


ταij .η

β
ij∑

h∈F (i)
ταih.η

β
ih

, j ∈ F (i);

0, otherwise.
(1)

F (i) is the set of feasible points for point i. τij is the pheromone value associ-
ated to edge (i, j). ηij is the heuristic value associated to edge (i, j). α and β are
positives parameters for determining the relative importance of the pheromone
with respect to the heuristic information.

EvaluateSolution: evaluates and saves the best solution found by ant k in the
current cycle.

SaveBestSolutionSoFar : saves the best solution found for all cycles so far.
UpdateTrails: increases the pheromone level in the promising paths, and is

decreased in other case. First, all the pheromone values are decreased by means
of the process of evaporation. Then, the pheromone level is increased when good
solutions appear. The following equation is used:

τij = (1− ρ)τij +∆τij (2)

– ρ ∈ (0, 1] is the factor of persistence of the trail.

– ∆τij =
K∑
k=1

∆kτij is the accumulation of trail, proportional to the quality of

the solutions.

– ∆kτij =
{
Q/Lk, when ant k used edge (i, j);
0, in other case.

– Q is a constant depending of the problem; usually is set to 1.
– Lk is the objective value of the solution k.

Pheromone evaporation avoids a fast convergence of the algorithm. In ad-
dition, this way of forgetting allows the exploration of new areas of the search
space. The update of the pheromone trail can be done according to one of the
following criteria: elitist and non-elitist. In the elitist case, the best found so-
lution is used to give an additional reinforcement to the levels of pheromone.
The non-elitist one uses the solutions found by all the ants to give an additional
reinforcement to the levels of pheromone.

3.2 The proposed ACO algorithm for MWPT (ACO-MWPT)

For ACO-MWPT, each ant in BuildSolutionk function builds a pseudo-triangula-
tion, starting with one face. This face has the edges obtained by the convex hull
of the points set S, i.e., CH(S). For the solution construction, each ant performs
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a process of partitioning CH(S) in faces. This process finishes when all faces are
pseudo-triangles without interior points. A face is divided into two faces when it
has interior points or is not a pseudo-triangle. Thus, the partition can be done if
i) there are at least one interior point and two points in the border; or ii) there
is not an interior point, so the procedure use two points located on the border.
Facesk represents the set of no treated faces.

Algorithm 2 BuildSolutionk
Sk ← ∅ /* solution builded by k-ant */
while (Facesk 6= ∅) do

Let F be a face in Facesk

if F is Pseudo-triangle without interior points then
Sk ← Sk ∪ {F} /* F is a new pseudo-triangle */
Facesk ← Facesk − {F}

else
PartitionFace(F )

end if
end while

PartitionFace(F ) selects the points of F to build the new faces. It takes one
interior point and two probabilistic selected points of the border, or (if there
is not interior point) only two probabilistic selected points of the border. The
feasible points for a point are those visible and not adjacent to it. The selection
is done according to Eq. 1. Also, this process uses two additional procedures
SelectInteriorPoint(F ) and SelectBorderPoint(F ), where the point selection is
achieved according to one of the following criteria: i) at random; ii) the largest
quantity of feasible points; or, iii) the lowest quantity of feasible points.

4 Experimental Evaluation

For the whole experimental evaluation, we developed a generator of points, us-
ing different functions of random generation of CGAL Library [1]. The points in
the plane are non collinear, uniform distributed, with coordinates in (0, 1000).
The set of instances has been formed by 5 collections of 10 points sets of dif-
ferent cardinality: 40/80/120/160/200-collection respectively. We have the 40-
collection with the point sets LD401, LD402,.., LD410; and so on. We emphasize
that these collections are not available in previous related researches, and con-
tribute in this paper. The ACO-MWPT algorithms has been implemented in C
programming language.

We show the initial experimental phase, that will allow us to decide which
are the most suitable parameter settings. The analyzed collections correspond to
LD401, LD402, LD403 and LD404. The parameter setting, are according to the
Eq. 1 and 2, corresponding to (α-β-ρ-elit-criterion), where α: 1; β: 1 and 5; ρ:
0.1, 0.25 and 0.5; . If elit is set to 1, the trail is update in a elitist way; in other
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case, the updating is done in a not elitist way. The criterion and τ are set to 1. So,
there are twelve parameter setting, and for each were performed 30 runs by using
different random seeds. The number of cycles, C, is 1000; the number of ants, K,
is 50. We obtain average, median, best, and variance/standard deviation values,
considering the objective function (weight); and quantity of pseudo-triangles.
Then, we select only the four best parameter settings. The numerical work were
done using the BACO parallel cluster, composed by 60 PCs, with a 3.0 GHz
Pentium-4 processor each one and 90 PCs with a 2.4 GHz Core 2 Quad processor
each one, under CONDOR batch queuing system.

Next, the results for this experimental study are resumed in Tables 1 to 6. In
Tables 1 to 4, we show the results according to the four best parameter settings
with respect to the smaller weights. The configuration (1-5-25-1) obtained the
smallest weight for the LD402. See Table 2. Table 5 shows a comparison between
the four best parameter settings for the obtained smaller weight values and the
four best parameter settings for the obtained smaller average values. The values
are similar. Better results were obtained by β: 5; elit: 1; ρ: 0.1, 0.25 and 0.5.
We obtained better results giving more relevance to the heuristic information
and updating the trails in a elitist way. We considerer necessary to observe
the influence of parameters in general. Table 6 shows the influence percentage
for each parameter with respect to the best found weights values. Likewise, we
observe what happened with the best average values. Additionally, in Table 7,
we show the influence percentage of every parameter for the best performance
with respect to the average. We can observe that the percentages are similar.
Figure 2 shows the boxplots of the weights obtained, for the 30 seeds for LD401,
LD402 and LD403 for the four best configurations.

Figure 2, from a) to d), show the boxplots of the weights obtained for the 30
seeds for LD401, LD402, LD403 and LD404 for the four best configurations. The
boxplots are not similar; for the LD402, the best weights obtained are outliers
and has a good behavior. In the case of LD404, the boxplots are regular, but the
best values are not approximate to the minimum.

In this sense, Tables 6 and 7 give a clearer idea over which are the suitable
parameter settings.

With respect to the quantity of pseudo-triangles found in the most approxi-
mate pseudo-triangulation we can observe that not necessarily it is minor.

Table 1. MWPT: Results for LD401.

Par. Setting Average Median Best Std. Dev. #PT

1-5-10-1 6557443,73 6607908,75 6115636,63 166770,70 51

1-5-25-1 6644026,13 6658654,75 6286985,04 166104,26 48

1-5-50-1 6669542,40 6713656,75 6320652,56 159069,87 49

1-5-50-0 6777518,93 6847951,25 6322956,39 158225,32 52
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Table 2. MWPT: Results for LD402.

Par. Setting Average Median Best Std. Dev. #PT

1-5-25-1 4748353,60 4757694,50 4442710,43 114885,64 49

1-5-10-0 4681136,53 4685804,75 4470550,00 69468,03 48

1-5-10-1 4707699,73 4747199,25 4490214,33 83905,98 50

1-5-25-0 4729018,67 4749318,25 4524206,34 77542,87 43

Table 3. MWPT: Results for LD403.

Par. Setting Average Median Best Std. Dev. #PT

1-5-25-1 6069210,67 6071705,00 5684342,58 143063,20 49

1-5-10-1 5980440,00 6021063,00 5699513,63 136174,19 50

1-5-25-0 6075029,87 6118394,25 5744775,81 110439,30 45

1-5-50-0 6073308,80 6104511,25 5746463,24 121285,65 51

Table 4. MWPT: Results for LD404.

Par. Setting Average Median Best Std. Dev. #PT

1-1-50-1 6236883,73 6258985,50 5627098,22 218860,42 48

1-5-10-1 6162888,00 6154961,25 5668910,18 166455,96 49

1-5-50-1 6229822,93 6237045,50 5869145,72 202030,98 50

1-5-50-0 6237883,20 6252135,50 5903381,03 139767,35 47

Table 5. MWPT: Comparison between four best BEST and AVERAGE parameter
settings.

Par. Setting Best Par. Setting Average

LD402 1-5-25-1 4442710,43 LD402 1-5-10-0 4681136,53

LD404 1-1-50-1 5627098,22 LD403 1-5-10-1 5980440,00

LD403 1-5-25-1 5684342,58 LD404 1-5-10-1 6162888,00

LD401 1-5-10-1 6115636,63 LD401 1-5-10-1 6557443,73

Table 6. MWPT: Abstract Table for LD401, LD402, LD403, and LD404 w.r.t. best
BEST values.

α β ρ elit

1 (100%) 5 (95%) 0.1 (31.25%) 1 (62.50%)

1 (5%) 0.25 (31.25%) 0 (37.50%)

0.5 (37.50%)

Table 7. MWPT: Abstract Table for LD401, LD402, LD403, and LD404 w.r.t. best
AVERAGE values.

α β ρ elit

1 (100%) 5 (88%) 0.1 (37.50%) 1 (62.50%)

1 (12%) 0.25 (25.00%) 0 (37.50%)

0.5 (37.50%)
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(a) (b)

(c) (d)

Fig. 2. MWPT: Boxplots for a) LD401, b) LD402, c) LD403 and d) LD404.

5 Conclusion

In this work, we present the design of approximation algorithms for solving the
Minimum Weight Pseudo-Triangulation problems for sets of points in the plane.
The proposed ACO model for the MWPT is represented by an Ant System
(AS), a particular instance of the class of ACO algorithms. We also detailed the
generation of sets of points for the experimental evaluation, considering that is
an other contribution. We show the initial experimental phase, where we have
preliminary results that guide the future experimentation. So, from our analysis
of these approximation algorithms, we obtained the suitable parameter setting.
The future work will consist to continue the experimentation with the total
collection of set of points and to compare the proposed algorithms against other
strategies like Greedy or others metaheuristics. Finally, since the metaheuristics
have proven to behave very well in solving this class of NP-hard problem, there
are several directions for further research.
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ACO aplicado a la obtención aproximada de Triangulaciones de Peso Mı́nimo.
XXXV Conferencia Latinoamericana de Informática (CLEI), 2009.
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tros de Geometŕıa Computacional (EGC09), 2009.
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