
Solving Hard Multiobjective Problems with a

Hybridized Method

Leticia C. Cagnina and Susana C. Esquivel

LIDIC (Research Group). Universidad Nacional de San Luis
Ej. de Los Andes 950 - (5700) San Luis, Argentina.

{lcagnina,esquivel}@unsl.edu.ar

Abstract. This paper presents a hybrid method to solve hard multi-
objective problems. The proposed approach adopts an epsilon-constraint
method which uses a Particle Swarm Optimizer to get points near of the
true Pareto front. In this approach, only few points will be generated
and then, new intermediate points will be calculated using an interpola-
tion method, to increase the among of points in the output Pareto front.
The proposed approach is validated using two difficult multiobjective
test problems and the results are compared with those obtained by a
multiobjective evolutionary algorithm representative of the state of the
art: NSGA-II.

1 Introduction

A great deal of problems that we find in science, industry and other areas, are
a kind of a general optimization problem that involves multiple objectives. A
multiobjective optimization problem (MOP) typically is formalized as the min-

imization or maximization of [2]: f (x) = [f1(x), f2(x), . . . , fk(x)]
T

subject to
x ∈ X . In other words, we want a single solution x that optimizes each one of
the k different objective functions. The problem is that usually these functions
forming a mathematical description of performance criteria, are in conflict with
each other.
In MOP the quality of x is no longer measures as a scalar (single objective op-
timization case), but a vector with the values of the k objective functions. We
might have that “x is better than y” which means that objective vector of x

is better than that of the y in at least one objective, and no worse in all the
others. This is named dominance and we say that x dominates y. In the other
hand, we might have a case in which “x is better than y in some objectives, but
y is better than x in others”. This is named non dominance and, we say that x

and y are incomparable or are nondominated.
The set of optimal solutions in X generally is denoted as Pareto set, and its
image in the objective space as Pareto front. Therefore, the goal of the opti-
mization is to find or approximate the Pareto set to obtain the Pareto front (the
true) or some front close to it.
There are different ways to approach MOP, although the most has concentrated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15777694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

on the approximation of the Pareto set.
In the last years, some proposal for extending Particle Swarm Optimization
(PSO) algorithms to treat MOPs, have been published [18, 6, 10, 9]. The Par-
ticle Swarm strategy for optimization [5] uses a population of particles to find
solutions through hyperdimensional search space. The change of the particle’s
position is based on the social-psychological tendency of individuals, to emulate
the success of other individuals. Each particle has associated a velocity vector
which drives the optimization process and reflects the socially exchanged infor-
mation.
In this paper we propose an alternative algorithm to solve hard multiobjec-
tive optimization problems, based on the mathematical programming technique
named epsilon-constraint method, which was hybridized with a PSO algorithm
to enhance the search process of solutions.
Section 2 presents the epsilon-constraint method and its classification inside the
techniques of resolution of multiobjective problems. Section 3 describes our pro-
posed algorithm. Section 4 shows the test functions selected for our experiments
and the metrics used to evaluate the behavior of our algorithm. In Section 5 the
experimental setup and results can be observed. Conclusions and future works
are showed in Section 6.

2 Techniques to Solve Multiobjective Problems

In this section, we present a possible classification of methods to solve multiob-
jective problems, and then, we focus on one of this methods in particular, the
epsilon-constraint technique.

2.1 Classification of Methods

The solution of a MOP can be divided into two different stages: the optimiza-
tion of the objective functions involved, and the process of deciding what kind
of “trade-offs” are appropriated from the perspective of the decision maker.
One possible classification of techniques within the Operations Research com-
munity is that proposed by Cohon and Marks [3]:

1. Techniques which rely on prior articulation of preferences (non-interactive
methods).

2. Techniques which rely on progressive articulation of preferences (interaction
with the decision maker).

3. Generating Techniques (a posteriori articulation of preferences).

This classification is popular because it clarifies the way in which each technique
handle the two stages: searching and making multicriterion decisions [16, 8].
The process of generation methods to find solutions is divided into two phases:
first, the generation of the efficient solutions and second, the involvement of
the decision maker when all information is ready. This method is convenient
whenever the decision maker is hardly available and his interaction is difficult



3

(because he is involved only in the second phase).
One of the Generating Techniques is the Epsilon-Constraint method. Usually
this method is a good alternative to solve difficult multiobjective functions, for
which standard multiobjective optimizers can not obtain good solutions in a
reasonable time and, with a reasonable computational effort.

2.2 The Epsilon-Constraint Method

Proposed by Haimes et al. [7], the idea of this method is to minimize one objective
function at a time, considering the other objectives as constraints bound by some
allowable level ǫ. That is, the problem will be:

minimize fselected(x)

subject to:

fl(x) ≤ ǫl for l = 1, 2, · · · , k with l 6= selected

All ǫl define the maximum values that its corresponding objective function can
obtain. Varying the values of epsilon for each objective function and performing
a new optimization process along the Pareto front, a new point (of the final
Pareto solution set) will be calculated. Each point of the solution can be gener-
ated using any single objective optimizer (a new run for a new point).
To improve the velocity of the generation of solutions, the metaheuristics can be
used because they generally offer good results with a low computational cost.
Particularly, PSO has demonstrated to be efficient in the optimization of con-
strained single objective functions [17, 11, 19, 1].

3 Hybridizing the Epsilon-Constraint Method with a

PSO

In this work we propose to use the epsilon-constraint method hybridized with an
efficient algorithm presented in [1], which showed a competitive performance in
single objective functions optimization. Next, we will explain the main character-
istics of the PSO algorithm, the hybridization of the epsilon-constraint method
with it and, the final step to obtain a larger Pareto front as solution of our
approach.

3.1 The PSO algorithm

The PSO algorithm presented in [1], was able to approximate the global mini-
mum of constrained optimization problems with a relatively low computational
cost. For this reason, we selected it as the technique used by the epsilon-constraint
method to obtain a point in the Pareto front of a multiobjective function.
Figure 1 shows the algorithm pseudocode, re-named for short, G-CPSO. This



4

algorithm is a PSO extended with a simple mechanism for constraint-handling,
a dynamic factor of tolerance (that is used to treat equalities as inequalities), a
new mechanism to update velocity and position, a bi-population and, a shake-
mechanism to avoid premature convergence.
The dynamic tolerance factor was implemented decreasing the factor value at
three different moments during the run. Its goal was to maintain some infeasi-
ble solutions at the beginning of the search process to finally converge towards
solutions that satisfy the equality constraints with a higher accuracy.
The algorithm uses a different way to update velocity, adding an additional learn-
ing factor. The new particle’s positions are calculated using the typical update
equation or an update Gaussian equation, depending of a predetermined value
of probability.
The bi-population means that the entire swarm is split in 2 sub-populations
which evolve independently in parallel. At the end of the search process the best
solution of both is reported. With this feature we treat to avoid obtain local
optimal (the search space is exploring by 2 sub-populations which are probably
guided by different leaders).
Shake-mechanism is a way to change the direction of particles in order to obtain
values closer to the optimum reached until a determined moment. For that, it
uses a good particle (a pbest) as reference. This mechanism was incorporated
due to some stagnation in the search process observed in difficult problems.
For more details of G-CPSO algorithm description, see [1].

3.2 The Hybridization Process

In our work, we use real-value 2D objective functions test to optimize. The ǫ
values were set using an approximation of the dimension of the Pareto front,
and then, we divided it into intervals depending of the number of solution that
we wanted. Hence, the ǫj varies from the best to the worst value for objective
function j. That means that the search must move from the ideal to the nadir
vectors. The ideal vector is estimated with the individual optimization of each
objective (one at time). The nadir vector it is not easy to calculate [13]. As we
are tackling 2 objective problems, there exists a single method named payoff

table which provides a good estimation of a nadir vector. We used this method
in our approach.
Assuming that the procedure G-CPSO(fl,ǫ,c) is avaliable as a single objective op-
timizer that minimizes the function fl (the others objectives are the constraints
according to the epsilon-constraint method), with ǫ to determine factibility of
constraints, and running during c cycles, the procedure returns the best point
found.
But we also need G-CPSO(fl,c), that is, when none constraint is considerated.
This last version of the procedure is used for calculating the ideal and nadir
vectors, in the first steps of the our algorithm, showed in Figure 2. The t value
in Figure 2 is the tolerance factor. This value is necessary because of the points
obtained with G-CPSO are only approximations. The δ value depends of the



5

0. G-CPSO:

1. Swarm Initialization

2. Initializate subpop1

3. Initializate velocity for subpop1

4. Initializate subpop2

5. Initializate velocity for subpop2

6. Init tolerance factor

7. Evaluate fitness for each subpop

8. Record pbest and gbest for each subpop

9. Swarm flights through the search space

10. DO

11. FOR each subpop DO

12. FOR i=1 TO numberOfparticles DO

13. Search the best leader in the

14. neighborhood of parti

15. and record in lbesti

16. FOR j=1 TO numberOfdimensions DO

17. Update velij
18. IF probability>(0.075)
19. Update partij with normal eq.

20. ELSE

21. Gaussian update eq.

22. END

23. END

24. END

25. END

26. Keeping particles

27. Calculating % infeasibles

28. IF % infeasibles > 10%

29. Move particles

30. END

31. Evaluate fitness(parti)

32. Record pbest and gbest

33. Update tolerance factor

34. WHILE(current cycle < max cycle)
35. result=BEST(best subpop1,best subpop2)
36. RETURN(result)

Fig. 1. Pseudocode of G-CPSO.



6

number of points (Pts) desired in the solution Pareto set. The number of eval-
uations is calculated as Pts × c × particles. Being particles the number of
particles in the population of the G-CPSO procedure. Solution is the set with
the Pareto front found.
The selection of f1 or f2 as the first function to be optimized is arbitrary. In our
case, f1 was always taken as the objective function to optimize.

0. Epsilon-Constraint with PSO:

1. Solution= ∅
2. ub= f2(G-CPSO(f1,c))
3. lb= f2(G-CPSO(f2,c))
4. t=0.05(ub-lb)

5. δ = (ub-lb)/Pts
6. ub=ub+t

7. lb=lb-t

8. ǫ =lb

9. WHILE ǫ ≤ ub DO

10. x=G-CPSO(f1,ǫ,c)
11. IF x is nondominated in Solution THEN

12. delete all dominated by x

13. add x to Solution

14. ǫ = ǫ + δ
15. RETURN Solution

Fig. 2. Pseudocode of our Epsilon-Constraint Approach.

3.3 Enhancing the Quality of the Pareto front obtained

Solving hard multiobjective functions can result computationally expensive, even
using epsilon-constraint method. On the other hand, we believe that Pareto
fronts with less of 50 points can not be adequate. For that, we consider that
keep the Pts value low is a priority, and propose to use a simple interpolation
technique to cover a larger area of the true Pareto front. We interpolate the
solution set obtained with the algorithm of Figure 2, with a cubic splines in-
terpolation [12]. Finally, we return the set so obtained as final solution of our
approach.

4 Test Functions and Metrics

To validate the performance of our approach, we select two difficult multiobjec-
tive problems. These have the particularity that modern multiobjective evolu-
tionary algorithms can not converge to the true Pareto front, even if the number



7

of evaluations is not restricted. For that, we want to test these and conclude if
our approach is a viable alternative to solve them.
These two problems were proposed by Okabe [14], referenced as OKA1 and
OKA2. They have 2 and 3 variables respectively, and 2 objective functions. The
geometry of their optimal sets is nonlinear and strongly biased to the opposite
side of the Pareto front.
We selected the following metrics to evaluate the performance of our algorithm:

a. Two Set Coverage (CS) metric [20], that is an indicator of how much a set
covers or dominates another one. Considering X and Y two Pareto fronts,
a value of CS(X,Y)=1 means that all points in X dominate or are equal to
those in Y. A CS(X,Y)=0 indicates the opposite. Note that CS(X,Y) it is
not the same that CS(Y,X), so both might be calculated.

b. Spread indicator (Spr), a diversity metric that measures the extend of spread
achieved among the obtained solutions [4]. A value of Spr=0 indicates that
the obtained front has an ideal distribution.

c. The Inverted Generational Distance [15] (IGD), a quality indicator that mea-
sures how far the elements are in the Pareto optimal set from those in the set
of nondominated vectors found. A IGD=0 indicates that all the generated
elements are in the Pareto true front.

5 Experimental Setup

In order to compare the results obtained by our approach, we use the results
obtained with NSGA-II [4], which is an algorithm representative of the state of
the art in the multiobjective optimization area.
We ran both algorithms for 15,000 and 25,000 fitness function evaluations for
OKA1 and OKA2, respectively. We had to increase the evaluation number for
OKA2 because is a more hard problem than OKA1. We aimed to obtain a set
of 50 points in the final Pareto fronts.
The parameters adopted here are the same proposed in [1] for G-CPSO: 10 parti-
cles, size of neighborhood=3, c1=c2=c3=1.8, w=0.8 and flip-probability=0.075.
The parameters for NSGA-II were the suggested by the authors: population=50,
probability of crossover=0.9, distribution index for crossover=15, probability of
mutation=1/number − variables and the distribution index for mutation=20.
We executed 30 independent runs with both algorithms. The means (and stan-
dard deviations) for each problem are showed in Table 1 and Table 2. Note that
our approach is referenced as ǫ−G-CPSO.

We did a one-to-one comparison for each one of the 30 runs. For OKA1 and
OKA2, ǫ−G-CPSO exhibits better average of metrics than NSGA-II. For CS
metric, we observed the high dominance of the points obtained with ǫ−G-CPSO
over those obtained with NSGA-II, while did not happen the same when the
metric is calculated with the points of NSGA-II with respect to our approach (see
last lines of both tables). The spread metrics reached were high for our algorithm
(the Pareto set obtained has not a good distribution of points compared with the
true Pareto front) although those results were better than the values obtained by



8

Table 1. Averaged metric values for OKA1. Means (and standard deviations).

Metric ǫ−G-CPSO NSGA-II

Spread 0.6978(0.2200) 0.7079(0.0630)

IGD 0.0024(0.0006) 0.0043(0.0019)

CS(ǫ−G-CPSO,NSGA-II) 0.5712(0.0861) -

CS(NSGA-II,ǫ−G-CPSO) - 0.2356(0.0730)

Table 2. Averaged metric values for OKA2. Means (and standard deviations).

Metric ǫ−G-CPSO NSGA-II

Spread 0.9190(0.2624) 1.1805(0.1285)

IGD 0.0057(0.0025) 0.0116(0.0040)

CS(ǫ−G-CPSO,NSGA-II) 0.6332(0.2980) -

CS(NSGA-II,ǫ−G-CPSO) - 0.2287(0.1505)

NSGA-II. The IGD are very small for our approach (many points in our solution
are in the true Pareto front) and are better than those obtained by NSGA-II.
To illustrate the performance of the algorithms, Figures 3 and 4 show the results
of a single run for each problem.

6 Conclusions and Future Work

We have introduced a new proposal to work on hard multiobjective optimization
problems using a mathematical technique hybridized with a particle swarm op-
timizer. The performance of our approach turned out to be satisfactory in this
preliminary study, even more, in both cases tested outperformed the results of
NSGA-II algorithm.
Our conclusion is that the results are promising and this fact encourages us
to continue working in this address, considering additional hard multiobjective
problems with two and three objective functions.

Acknowledgments

The authors gracefully acknowledge the continuous support from ANPCyT and
the Universidad Nacional de San Luis.



9

Fig. 3. Pareto fronts for OKA1.

Fig. 4. Pareto fronts for OKA2.



10

References

1. L. Cagnina, S. Esquivel, and C. Coello Coello. A bi-population pso with a shake-
mechanism for solving constrained numerical optimization. In IEEE Congress on

Evolutionary Computation - CEC2007, pages 670–676, Singapore, 2007.
2. C. Coello Coello, G. Lamont, and D. Van Veldhuizen. Evolutionary algorithms for

solving multi-objective problems. Springer, 2007. ISBN 978-0-387-33254-3.
3. J. L. Cohon and D. H. Marks. A review and evaluation of multiobjective program-

ming techniques. Water Resources Research, 11(2):208–220, 1975.
4. K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

5. R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In
Proceedings of the Sixth International Symposium on Micro Machine and Human

Science, MHS’95, pages 39–43, Nagoya, Japan, October 1995. IEEE Press.
6. J. Grobler and A. P. Engelbrecht. Hybridizing PSO and DE for improved vector

evaluated multi-objective optimization. E-Commerce Technology, IEEE Interna-

tional Conference on, 0:1255–1262, 2009.
7. Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a bicriterion formulation of

the problems of integrated system identification and system optimization. IEEE

Transaction on Systems, Man, and Cybernetics, 1(3):296–297, 1971.
8. J. Horn. Multicriterion decision making. Handbook of Evolutionary Computation,

1:F1.9:1–F1.9:15, 1997.
9. W. Jingxuan and W. Yuping. Multi-objective fuzzy particle swarm optimization

based on elite archiving and its convergence. Journal of Systems Engineering and

Electronics, 19(5):1035–1040, 2008.
10. X. Lin and H. Li. Enhanced pareto particle swarm approach for multi-objective

optimization of surface grinding process. 2007 Workshop on Intelligent Information

Technology Applications, 2:618–623, 2008.
11. C. Liu. New dynamic constrained optimization pso algorithm. In ICNC ’08:

Proceedings of the 2008 Fourth International Conference on Natural Computation,
pages 650–653, Washington, DC, USA, 2008. IEEE Computer Society.

12. S. McKinley and M. Levine. Cubic spline interpolation. Math 45: Linear Algebra.
13. K. M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Pub-

lishers, 1999. Boston, Massachusetts.
14. T. Okabe. Evolutionary Multi-Objective Optimization - On the Distribution of

Offspring in Parameter and Fitness Space. PhD thesis, Bielefeld University, 2004.
15. D. A. Van Veldhuizen and G. B. Lamont. Multiobjective evolutionary algorithm

research: A history and analysis. Technical report, Dept. Elec. Comput. Eng.,
Graduate School of Eng., Air Force Inst. Technol, Wright-Patterson, AFB.OH,
1998. TR-98-03.

16. D. A. Van Veldhuizen and G. B. Lamont. Multiobjective evolutionary algorithms:
Analysing the state-of-the-art. Evolutionary Computation, 7(3):1–26, 2000.

17. Y. Wang and Z. Cai. A hybrid multi-swarm particle swarm optimization to solve
constrained optimization problems. Frontiers of Computer Science in China, 2009.

18. Y. Wang and Y. Yang. Particle swarm optimization with preference order ranking
for multi-objective optimization. Inf. Sci., 179(12):1944–1959, 2009.

19. E. Zahara and C. Hu. Solving constrained optimization problems with hybrid
particle swarm optimization. Engineering Optimization, 40, 2008.

20. E. Zitzler, K. Deb, and L. Thiele. Comparison of the multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.


