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Abstract. In this paper, we present an algorithm inspired on the T-Cell
model of the immune system, i.e., an artificial immune system (AIS). The
proposed approach (called DTC) is intented to solve dynamic optimiza-
tion problems. We realize a first study and we validate our algorithm
using dynamic functions taken from the specialized literature. Results
are promising when we compare them with respect to the results ob-
tained by five AIS representative of the state of the art in this field.
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1 Introduction

In general, the conditions of an optimization problem changes by one of the
following reasons or a combination of both [1]: 1) The objective function changes
itself, 2) The constraints change. In this paper the first problematic is addressed.

In recent years, a bio-inspired metaheuristic known as the “artificial immune
system” (AIS) has gained popularity in a wide variety of tasks [12]. The AIS is
inspired on our natural immune system, which has a number of very interesting
features, from a computational point of view, that make it a very good candidate
to be modelled in a computer. For example, it is a distributed system, it is fault-
tolerant, it has memory, it is able to distinguish between its own components
and those which are foreign, and it learns by experience. AISs have been used for
solving dynamic optimization problems (see for example [16, 7, 13]), but in most
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cases, it has been applied only to global optimization problems. In this paper, we
precisely focus on solving dynamic optimization problems with an AIS that we
have proposed, and which we believe that can be a viable alternative for solving
these kind of problems.

The remainder of the paper is organized as follows. In Section 2, we describe
the benchmark used to generate the dynamic functions. Section 3 describes the
existing AIS for dynamic optimization. In Section 4, we describe our AIS, which
is based on the T-Cell Model. In Section 5, we present our experimental setup,
our results and we discuss them. Finally, in Section 6, we present our conclusions
and some possible paths for continuing with this research line.

2 Moving Peaks Benchmark (MPB)

Moving Peaks Benchmark was proposed in [2]. MPB defines a dynamically
changing fitness landscape f : X × T −→ ℜ, where T stands for the (dis-
crete) time, and X = x1, . . . , x5 is the set of admissible solutions. The land-
scape is build of a set of peaks (scenario 1) or cones (scenario 2). Every ith

peak or cone has its height hi , width wi, and the coordinates of its maximum
cmaxi. All the parameters characterizing each peak are generated randomly
from the corresponding interval. The fitness function for ith peak is evaluated
as follows: fi(x1, . . . , x5) = hi

1+wi

∏

5

j=1
(xj−cmaxi[j])2

, while the equation for an

ith cone is fi(x1, . . . , x5) = hi − wi

√

∏5
j=1(xj − cmaxi[j])2. Then the value

of the overall fitness function f(x1, . . . , x5) is computed as: f(x1, . . . , x5) =
maxi=1,...,N fi(x1, . . . , x5), where N is a number of peaks or cones defined in
the scenario. For such a fitness landscape, all the three features of each peak or
cone can be modified to perform landscape changes [16].

3 Previous Related Work

Gaspar et. al [7] proposed a Simple Artificial Immune System (Sais). Sais starts
with an initial random population of B-Cells, each able to detect a given anti-
gen specified by a binary bits long string. Then, it applies at each generation
three operators : Evaluation, Clonal Selection and Recruitment (elimination of
undesirable B-cells). Sais was validated with pattern tracking problem.

Trojanowski K. in [14] analyze the efficiency of two mutation operators ap-
plied in a clonal selection based optimization algorithm (AIIA) for non-stationary
tasks. Both operators use a α−stable random number generator. The author ar-
gues that appropriate tuning of the α parameter allows to outperform the results
of algorithms with the traditional operators. The algorithms were tested with
six environments generated with two test-benchmarks: a Test Case Generator
and a Moving Peaks Benchmark.

Nanas et. al [10] compared Evolutionary Algorithms and Artificial Immune
Systems under Multimodal Dynamic Optimization. They review the basic evo-
lutionary and immune-inspired approaches to multimodal dynamic optimisation



and they identify correspondences and differences and point out essential com-
putational elements.

Trojanowski K. in [13] analyze the efficiency of the B-Cell algorithm applied
to Moving Peaks Benchmark. The algorithm starts with a population of solutions
randomly generated and performs the process of iterated improvement of the
solutions by the repetition of: 1) affinity evaluation and 2) clonal selection and
expansion.

Trojanowski K. et. al compared in [16] five instances of AISs: 1) Artificial Im-
mune Iterated Algorithm (AIIA) [15], 2) B-Cell Algorithm (BCA) [8], 3) Clonal
Selection Algorithm (CLONALG) [4], 4) opt-Ainet algorithm [11], and a Simple
Artificial Immune System (Sais) [7]. All of them implement non-deterministic
iterated process of search and all of them work with a population of antibodies
or B-cells. These represent candidate solutions to the problem. The coordinates
of these points are represented by real numbers or can be coded as bit strings.
Each algorithm starts with a population of randomly generated tentative solu-
tions which are iteratively improvement. The authors tested those approaches
with seven types of mutations. M1 to M7 (see [16] for details). The algorithms
were tested with six environments generated with two test-benchmarks: a Simple
Test Case Generator and a Moving Peaks Benchmark.

4 T Cell Theory

In this paper, we present what we believe to be a new adaptive immune system
model based upon the immune responses mediated by the T-cells. Our model
is called TCELL, and it considers many of the processes that the T cells suffer
from their origin in the hematopoietic stem cells in the bone marrow until they
become memory cells.

T cells belong to a group of white blood cells known as lymphocytes. They
play a central role in cell-mediated immunity. They present a special receptor
on their cell surface called T cell receptors (TCR3).

T cells can be classified in different populations according to the antigen
receptor they express,TCR-1 or TCR-2. Additionally, TCR-2 cells express CD4
or CD84.

Also, T cells can be divided into three groups according to their maturation or
development level (phylogenies of the T cells [5]). Virgin cells are those which had
never been activated (i.e., they did not suffer proliferation or differentiation). At
the beginning, these cells do not express CD4 nor CD8. However, later on, they
develop and express both marks, CD4 and CD8. Finally, virgin cells mature and
express only one mark, either CD4 or CD8. Before these cells release the thymus,
they are subject to both positive selection [6] and negative selection [6]. Positive

3 TCRs are responsible for recognizing antigens bound to major histocompatibility
complex (MHC) molecules.

4 Lymphocytes express a large number of surface molecules that can be used to mark
different cellular populations. CD means Cluster Denomination and indicates the
group to which lymphocytes belong.



selection guarantees that the only survivors are the cells with TCRs that present
a moderate affinity with respect to the self MHC. Negative selection eliminates
the cells with TCRs that recognize self components unrelated to the MHC.

Effector cells are a type of cells that express only one mark, CD4 or CD8.
They can be activated by co-stimulating signals plus their ability to recognize
an antigen [3, 9]. The immune cells interact through the secretion of cytokines.5

Cytokines allow cellular comunication. Thus, an immune cell ci influences the
activities (proliferation and differentiation) of another cell cj by the secretion
of cytokines, modulating the production and secretion of cytokines by cj [5].
In order to activate an effector cell, a co-stimulated signal is necessary. Such
signal corresponds to the cytokines secreted from another effector cell. The ac-
tivation of an effector cell implies that it will be proliferated and differentiated.
The proliferation process has as its goal to replicate the cells and the differenti-
ation process changes the clones in order to they acquire specialized functional
properties.

Finally, the memory cells are cells that persist into the host even when the
infection or danger have been overtaken, so that in the future, they are able to get
stimulated by the same or by a similar antigen. It is worth noting that, although
the effector and memory cells are proliferated, they are not subject to somatic
hypermutation. For the effector cells, the differentiation process is subject to
the cytokines released by another effector cell. In our model, the differentiation
process of the memory cells relies on their own cytokines.

4.1 Our Proposed Algorithm Based on TCELL

DTC (Dynamic T-Cell) is an algorithm inspired on our TCELL model, which we
propose to solve dynamic optimization problems. DTC operates on four popu-
lations, corresponding to the groups in which the T-cells are divided: (1) Virgin
Cells (VC), (2) Effector Cells with cluster denomination CD4 (CD4), (3) Effector
Cells with cluster denomination CD8 (CD8) and (4) Memory Cells (MC). Each
population is composed by a set of T-cells whose characteristics are subject to
the population to which they belong.

Virgin Cells (VC) do not suffer the activation process. They have to provide
diversity.Virgin cells are represented by 1) a TCR (TCR b): represented by a
bitstring using Gray coding and 2) a TCR (TCR r): represented by a vector of
real numbers.

Effector Cells are composed by 1) a TCR b or TCR r, if belongs to CD4 or
CD8, respectively , 2) a proliferation level and 3) a differentiation level. The goal
of this type of cell is to explore in a global way the search space.

The goal of memory cells is to explore the neighborhood of the best found
solutions. These cells are represented by the same components that CD8.

For our propose the TCR identifies the decision variables of the problem,
independently of the TCR representation. The proliferation level indicates the

5 Proteins act as signal transmitters between cells, and also induce growth, differenti-
ation, activation, etc.



number of clones that will be assigned to a cell and the differentiation level
indicates the number of bits or decision variables (according with the TCR rep-
resentation) that will be changed, when the differentiation process is applied.

The activation of an effector cell, cei, implies the random selection of a set of
potential activator (or stimulating) cells. The closer one to cei, using Hamming
or Euclidean distance according to the TCR, in the set is chosen to become the
stimulating cell, say cej . Then, cei proliferates and differentiates.

At the beginning, the proliferation level of each stimulated cell, cei, is given
by a random value between [1, 5], but then it is determined taking into account
the proliferation level of its stimulating cell (cej). If the cei is better than cej ,
then cei keeps its own proliferation level; otherwise, cei receive a level which is
10% lower than level of cej .

Memory cells proliferate and differentiate according to their proliferation
level (random between 1 and the size of MC) and differentiation level (random
between 1 and the 90% of the number of decision variables), respectively. Both
levels are independent from the others memory cells.

Each type of cell has its own differentiation process, which is blind to their
representation and population.

Differentiation for CD4: the differentiation level is determined by the Ham-
ming distance between the stimulated (cei) and stimulating (cej) cells. Each
decision variable and the bit to be changed are chosen in a random way. The
bit changes according to a mutation (or reaction) probability probmut−CD4.

Differentiation for CD8: the differentiation level from each cell is related to
its stimulating cell (cej). If cej is better than the stimulated cell cei, then the
level (for cei) is a random between [1, | dv |]; otherwise is a random between
[1, | dv | /2], where | dv | is the number of decision variables of the problem.
Each variable to be change is chosen in a random way and it is modified
according to the following expression: x

′

= x ± U(0, lu − ll)U(0,1), where x
and x

′

are the original and the mutated decision variables, respectively. lu
and ll are the upper and lower bounds of x, respectively. At the moment
of the differentiation of a cell (cei), the value of the objective function of
its stimulating cell (cej) is taken into account. In order to determinate if
r = U(0, lu− ll)U(0,1), will be added or subtracted to x, the following criteria
are considered: 1) if cej is better than cei and the decision variable value of
cej is less than the value of cei, or if cei is better than cej and the decision
variable value of cei is less than the value of cej , then r is subtracted to x;
otherwise r is added to x. Both criteria are motivated by our aim to guide
the search towards the best solutions found so far.

Differentiation for MC : Each variable to be change is chosen in a ran-
dom way and it is modified according to the following expression: x

′

=

x ±
(

U(0,lu−ll)
100iter

)U(0,1)

, where x and x
′

are the original and the mutated de-

cision variables, respectively. lu and ll are the upper and lower bounds of x.
iter indicates the number of iterations until reach the amount maximum of



Algorithm 1 DTC Algorithm

1: Initialize Function();
2: Initialize-Evaluate VC();
3: Assign Proliferation();
4: Divide CDs();
5: Positive Selection CD4 CD8();// eliminate the cells in CD4 and CD8 with worst

objective function value
6: Negative Selection CD4 CD8();// eliminate the most similar cells in CD4 and CD8
7: while Repeat a predetermined number of change do

8: while Repeat a predetermined number of evaluations do

9: Active CD4();
10: Sort CD4();
11: Active CD8();
12: Sort CD8();
13: Insert CDs en MC();
14: while Repeat a predetermined number of times (repMC) do

15: Active MC();
16: end while

17: Sort CM();
18: end while

19: Statistics();
20: Change Function();
21: Re-evaluate Populations();
22: end while

evaluations for a change. In a random way, we decide if r =
(

U(0,lu−ll)
100iter

)U(0,1)

,

will be added or subtracted to x.

In both differentiation processes U(0, w) refers to a random number with a
uniform distribution in the range (0,w).

The general structure of our proposed algorithm for dynamic optimization
problems is given in Algorithm 1.

The algorithm works in the following way. At the beginning TCR b and
TCR r from virgin cells are initialized in a random way. Then, they are evaluated.
The negative and positive selections are applied, the first eliminates the similar
cells (keeping the best cells) and second eliminate a 10% of the worst cells.
Next, the best virgins cells are divided in order to compose the populations CD4
(TCR b) and CD8 (TCR r).

Once the CD4 and CD8 populations have been activated (proliferation and
differentiation) the best solutions from these populations are inserted or replace
the worst solutions in MC (if MC is empty or not, respectively). When a cell
from CD4 has to be inserted into MC, the cell first has to be converted in
its real-value vector through the application of the following equation: dvj =

llj +

∑

Lj

i=0
2Lj−i

dv′

ij(luj−llj)

2L
j
−1

, where dvj is the jth decision variable with j = 1, . . . ,

number of decision variables of the problem, Lj is the number of bits for the



jth decision variable, luj and llj are the upper and lower limits for the decision
variable dvj and dv′ij is the ith-bit of the binary string that represents dvj .

Next, the cells from MC are activated a predefined number of times (rep MC).

The algorithm finishes when a predefined number of evaluations for each
change is reached. We assume that the algorithm knows when the environment
has changed, in order to re-evaluate the populations.

5 Numerical Experiments

In order to evaluate the performance of the algorithm we use the measure
[16] Offline error (oe), it represents the average deviation of the best indi-
vidual evaluated since the last change from the optimum. It is defined by:

oe = 1
Nc

∑Nc

j=1(
1

Ne(j)

∑Ne(j)
i=1 (f∗

j − f∗

ji)), where Nc is the number of fitness land-

scape changes within a single experiment, Ne(j) is the number of solution evalu-
ations performed for the jth state of the landscape, f∗

j is the value of the optimal

solution for the jth landscape and f∗

ji is the current best fitness value found for

the jth landscape [16].

To validate DTC, we use two fitness landscapes created with MPB. Each
landscape consist of a number of peaks, changing in a random way their height,
width and location. The two environments were used according to standard
settings given in the web page6: scenarios 1 (5 dimensions - 5 peaks) and 2
(5 dimensions - 50 peaks, see the web page for details). For each scenario the
function changes every 5000 evaluations of the objective function.

The required parameters for DTC are: size of VC, CD4, CD8 and MC; num-
ber of repetitions MC (rep MC); percentage of replacement for MC; Probability
of mutation probmutCD4. For the experiments, we adopted the following param-
eters, which were empirically derived alter numerous experiments, we used a
population size, for VC, of 100 cells. For CD4 and CD8 we adopted a population
size of 50 and 70 cells , for scenario 1 and 2 respectively. For MC 5 cells. The
mutation probability probmut was 0.07. rep MC was set to 10 and 100, for sce-
nario 1 and 2 respectively. Finally, 50% replacement was adopted for replacing
from CDs to MC. 50 independents runs and 110 change of the objective function
were performed for each scenario. For both scenarios we use a binary Gray code
(for VC and CD4) with 40 bits for each decision variable.

Our results were compared respect to the results obtained for the best com-
bination AIS-mutation operator presented in [16] for each scenario, they are:
AIIA-M6- α = 2.0, CLONALG-M2, Sais-M3 and opt-Ainet -M2 for scenario 1
and AIIA-M5- α = 1.5, CLONALG-M3, Sais-M2 and opt-Ainet -M1 for scenario
2. BCA- M5- α = 1.75, for scenario 1 and - α = 2.0 for scenario 2.

6 http://www.aifb.uni-karlsruhe.de/ jbr/MovPeaks/movpeaks/.



5.1 Analysis of Results

Comparing our proposed DTC with respect to the AIS presented in [16] (see
Table 1), our approach obtained better results in scenario 1 and competitive
results for scenario 2.

Fig. 1a shows the average of the best found solutions, of each population
(CD4, CD8 and MC)and the optimum before the objective function change,
for scenario 1. Here, we can see that the solutions found by CD4 are better
than the solutions found by CD8. MC performs a good local search for the
solutions provide by CD4. The performance of DTC does not deteriorate in the
presence of a change. While for scenario 2 (see Fig. 1b), we can observe that
both populations, CD4 and CD8, provide good solutions in order to MC find
solutions near the optimum and its performance is affected. This fact makes us
think that scenario 2 requires more diversity due to the number of peaks, fifty
peaks while scenario 1 has only five peaks.

Fig. 1c shows the average of the offline error, over the 50 runs, for both
scenarios. The presence of a change affects the performance of DTC worst in
scenario 2 than scenario 1.

Table 1. Offline Error obtained for each Approach.

Approach Scenario 1 Scenario 2

AIIA 0.71 3.44

CLONALG 11.71 10.53

Sais 12.40 11.57

BCA 0.39 2.69

opt-Ainet 2.39 4.76

DTC 0.37 3.02

6 Conclusions and Future Work

We have presented an artificial immune system based on the T-Cell model,
which has been proposed to solve dynamic optimization problems. The proposed
approach is inspired on the processes suffered by the T-Cells within our immune
system. In this first study, the proposed approach has been tested with two
scenarios generated by a generator of dynamic functions (MPB). The results
obtained by our proposed approach are promising, resulting better in one of
the cases to those generated by the other algorithms with respect to which it
was compared. This fact encourages us, as future work, to deep this study over
different kind of dynamic environments.
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Fig. 1. Optimum, Best Solutions and Offline Errors for DTC.
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a. Optimum and Best Solutions Before a Change Found by CD4, CD8 and MC for Scenario 1
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b. Optimum and Best Solutions Before a Change Found by CD4, CD8 and MC for Scenario 2
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