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The Role of Supervised Learning in the Decision Process to Fair Trade U.S. 

Municipal Debt 
 

Abstract 

Determining a fair price and an appropriate timescale to trade municipal debt is a complex decision. This 

research uses big data informatics to explore transaction characteristics and trading activity of investment 

grade U.S. municipal bonds. Using the relatively recent data stream distributed by the Municipal 

Securities Rulemaking Board (MSRB) to Thomson Reuters Municipal Markets Division (MMD) we 

provide an institutional summary of market participants and their trading behavior. Subsequently, we 

focus on a sample of AAA bonds to derive a new methodology to estimate a trade weighted benchmark 

municipal yield curve. The methodology integrates the study of ridge regression, artificial neural 

networks, and support vector regression. We find an enhanced radial basis function artificial neural 

network outperforms alternate methods used to estimate municipal term structure. This result forms the 

foundation for establishing a decision theory on optimal municipal bond trading. Using multivariate 

modeling where the target variables are defined by three popular liquidity measures, we investigate the 

proposed decision theory by estimating weekly production-theoretic bond liquidity returns-to-scale. 

Across the three liquidity measures and for almost all weeks investigated bond trading liquidity is elastic 

with respect to the modeled factors. This finding leads us to conclude that an optimal trading policy for 

municipal debt can be implemented on a weekly timescale using the elasticity estimates of bond price, 

trade size, risk, days-to-maturity and the macroeconomic influences of labor in the workforce and 

building activity. 

 

Keywords: Decision Theory, Municipal Bonds; Supervised Learning, and Production Theory 

JEL Codes:  C15, C45, C55, C58  
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1. Introduction 

Market participants believe the primary market for U.S. municipal bonds is efficient for the 

supply of funds to municipalities and state governments. But, by participant consensus, many 

argue this same market is widely inefficient in meeting its secondary function of promoting the 

price-efficient trading of municipal debt. One explanatory reason for this perceived secondary 

market failure is the lack of a benchmark term structure (yield) curve. The absence of a 

bellwether curve retards the ability of market participants to compare yields of traded bonds to a 

generally accepted market-wide snapshot. Absent a benchmark it is all too possible that funds are 

trapped in the market thereby causing liquidity and pricing distortions. This characterization begs 

a question about whether the decision to trade securities in the U.S. municipal market can be 

made efficiently and in a timely manner. 

Bond liquidity, credit rating, along with macroeconomic events are some of the important 

features that influence the decision to trade a fixed income instrument at a fair price. To increase 

market transparency and to encourage research about municipal debt liquidity and trading 

activity, in 2001 under the direction of the Securities and Exchange Commission (SEC), the 

Municipal Securities Rulemaking Board (MSRB) mandated all-trade reporting for the municipal 

market. Today, the MSRB manufactures and distributes a delayed trade tape (or, a digital 

representation thereof). This significant achievement was designed to improve the decision 

process for describing, predicting and trading municipal bonds across all rating classes. 

Coincidentally and somewhat unexpectedly, the sudden availability of voluminous fragmented 

trade data brought about a new informational complexity in decision-making as market 

participants confronted “Big Data” in the municipal trading. 

In a rational market, an optimal trading decision is based on a descriptive theory that 

incorporates the municipal bond valuation matrix. A study of this decision process is dependent 

upon the enumeration of a generally accepted benchmark yield curve that best captures the 

valuation of all traded bonds. Currently, the Thomson Reuters Municipal Markets Division 

(MMD) set of credit differentiated municipal bond curves serve as the leading, if not benchmark, 

term structures for the industry. The term structure characterized by these curves is accumulated 

from a daily informal survey. Hence, the MMD curves do not use an objective sampling of all, or 

some subset, of available market data. Research contributions on this topic by Vasicek (1977), 

and Cox, Ingersoll and Ross (1985) were among the first to introduce the need for fixed-income 

markets to rely on an objectively defined term structure models (see, (Dai and Singleton 2000)) 

for a review and classification of the affine models study during this era). While objective 

econometric methodology has successfully fit term structure models, the early approaches did 

not consider the statistical link between yield factors and macroeconomic forces.  

We can divide subsequent research efforts into alternate methodological strains. One strain is 

generally referred to as the ‘segmented-loading’ term structure model (SL). This approach 

focuses on splitting the original set of maturities into a group of segments where local factors 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The Role of Supervised Learning in the Decision Process to Fair Trade U.S. Municipal Debt Page -4- 

become time-varying coefficients from a linear combination of the individual basis functions. 

The attractiveness of this approach lies in the fact that it is computationally flexible when 

explaining how shocks to local factors affect only those maturities specific to each segment 

(Almeida et al. 2013). By way of example, motivated by the Preferred-Habitat theory, Bowsher 

and Meeks (2013) employed an exponential SL model with piecewise cubic spline post 

smoothing to demonstrate that local shocks are important determinants of yield curve dynamics.  

Of interest to the research goals of this paper is a competing strain of research that focuses on 

regime switching models (RS). RS models are known to map historical data efficiently and 

generate robust out-of-sample forecasts. Findings report that at the time of a regime shift, non-

switching models understate fluctuations in excess returns and overstate excess returns and 

volatility factor risk premiums (Dai et al. 2007). Newer findings demonstrate a preference for a 

two regime model (Xiang and Zhu 2013). Accepted practice expresses a RS model as an 

extension to the well-known Nelson-Siegel (NS) term structure model (Nelson and Siegel 1987). 

The NS model is based upon three factors: a long-run component to capture the long-run interest 

level; a short-term component that decays monotonically; and, a medium term component that 

starts at zero (0), increases, then decays to zero. When a fourth factor was added to account for 

dynamic regime switching, Levant and Ma (2013) found the additional factor’s loading 

parameter and conditional volatilities showed switching significance (in contrast to the 

conditional means previously evaluated in the literature). NS-based models also include 

extensions to account for macroeconomic factors. Research contributions by Ang and Piazzesi 

(2003), Diebold, Rudebush, and Aruoba (2006), Moench (2008), and De Pooter, et. al. (2010) 

provide confirmatory evidence of the importance of macroeconomic influences. Gonzalez-

Rozada, et.al. (2012) shows how macroeconomic factors significantly affect the level, slope, and 

curvature of the government bond term structure.1 Some of these same research methodologies 

have been used to investigate the municipal term structure. For example, questions about the 

slope of the curve were investigated by Kalotay, et.al. (2008) and Daniels and Ejara (2009). 

Studies on municipal debt credit worthiness are also represented in the literature (Olej and Hájek 

2009) and (Lin et al. 2010).  

In this paper we focus we form a descriptive theory to explain the decision process of trading 

municipal debt with a fair price on a timely basis. The evolution of the theoretical approach takes 

place in two steps. The first is to develop an AI-inspired benchmark yield curve based on the 

Nelson-Siegel (NS) term structure model (Nelson and Siegel 1987). The AI-inspired modeling 

extension is used to design and deploy a new benchmark municipal yield curve; a new curve 

methodology that natively captures both regime shifts and macroeconomic pricing factors. The 

second step in developing a new descriptive decision theory for trading municipal debt is to 

                                                           
1 Creal and Wu (2014) provide an alternative research strain based on affine models to demonstrate how spanned 

stochastic volatility captures either the cross-section of yields or the fitted volatility .  
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invoke a production theoretic model to estimate individual bond liquidity (Illiquidity) scale 

elasticity metrics for the driving production factors. These factors include bond fundamentals, 

information from a benchmark yield spread, and representative economic factors. 

The paper proceeds as follows. In section 2 we describe market characteristics of municipal bond 

trades. Alternative supervised learning models for term structure mapping are developed 

throughout section 3. Section 4 presents model estimation results. In section 5 we present 

production-theoretic traded bond liquidity factor scale-elasticity metrics. The metrics are related 

to the trading decision process. A summary and conclusion closes the paper in section 6. 

2. Market Characteristics of Municipal Bond Trades  

The first step in our quest to replace systematic biases and heuristics in the trading of municipal 

bonds is to evolve a descriptive theory for the pricing of an all-trade benchmark term structure 

across rating classes. Currently, the Thomson Reuters Municipal Markets Division (MMD) set of 

credit differentiated municipal bond curves serve as the leading, if not benchmark, term 

structures for the industry. Accordingly, in this section we begin the process of evolving a new 

descriptive theory empirically examining the market composition of daily trades as reported on 

the MSRB data tape.  

2.1 Data Munging and Extraction 

In February-2015 Luis A. Aguilar, Commissioner of the Securities and Exchange Commission, 

updated regulatory concerns about the need to make the U.S. municipal securities market more 

transparent, liquid and fair rather than “excessively opaque, illiquid, and decentralized” (Aguilar 

2015). Aguilar challenged the Municipal Rule Making Board (MSRB) to produce a series of 

cumulative changes that would, over time, enhance all aspects of efficiency. Importantly, his 

decree called for the MSRB to enhance muni market structure by disclosing pricing and 

reference information on customer confirmations for transactions. The dissemination of the 

MSRB trade tape is a partial response to this challenge. Today, the MSRB reports about 40,000 

municipal bond trades via the trade tape. 

As a relatively new big data product, upon inspection researchers are not surprised to encounter 

inaccurate and missing data. Errors and omissions include, missing effective maturity date, 

negative coupons, missing market price, etc. Trades of bonds bearing error data are not included 

in our study sample. Given the need to evolve a new benchmark term structure we compute a 

discrete term structure from the dynamic data. Additionally, in recognition of confidentiality 

requirements, any trade with a trade size of 1 million dollars (1M) or above is recorded in the 

sample study as a 1M trade.  

As stated previously a primary study goal is to develop a benchmark trade-weighted yield curve 

to improve the efficiency of fair pricing in the industry. The process begins with munged data 

covering 2012-May to 2014-February inclusive. Subsequently, we exclude individual bond 
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trades from the study for any one of the following reasons: a) bond is priced to PUT; b) bond 

interest payments are taxable; c) the bond has a variable rate of interest; d) bond does not have a 

third-party investment grade (IG) credit rating (BBB or higher); e) bond is a zero coupon bond; 

and, f) computed bond maturity is less than 1 year or greater than 30 years. We also note each 

reported trade is tagged as: a sale to a customer, a purchase from a customer, or a dealer-to-

dealer transaction. 

2.2 Market Activity for Investment Grade Municipal Bonds 

For big data management, the filter was applied to bond trades recorded during the middle month 

of each calendar quarter (February, May, August, and November) starting in May 2012 and 

ending in February 2014. The number and percent density of monthly trades for the study period 

are presented in table 1. 

Table 1. Number and percent of trades for investment grade bond classification 

 May-12 Aug-12 Nov-12 Feb-13 May-13 Aug-13 Nov-13 Feb-14 

AAA 20,218 

8.44% 

42,894 

8.95% 

40,826 

8.74% 

45,400 

9.70% 

49,912 

9.73% 

64,046 

8.89% 

48,961 

9.15% 

45,112 

9.61% 

AA 137,548 

57.43% 

259,981 

54.27% 

264,548 

56.61% 

231,622 

49.50% 

253,394 

49.42% 

333,888 

46.33% 

247,733 

46.29% 

224,702 

47.87% 

A 54,326 

22.68% 

109,025 

22.76% 

107,957 

23.10% 

146,039 

31.21% 

164,914 

32.16% 

264,687 

36.73% 

185,848 

34.72% 

158,525 

33.77% 

BBB 27,422 

11.45% 

67,107 

14.01% 

54,025 

11.56% 

44,826 

9.58% 

44,506 

8.68% 

58,038 

8.05% 

52,659 

9.84% 

41,045 

8.74% 

TOTAL  239,514 479,007 467,356 467,887 512,726 720,659 535,201 469,384 

In the municipal bond market there are three important ways a trade is executed. These are: a) 

between two dealers which is labeled as “Dealer to Dealer”; b) dealer selling to a customer 

which is labeled as “Purchase by Customer”; and c) when a dealer purchases from a customer 

which is labeled as “Sale by Customer”. Next we investigate the trading behavior for the 

investment grade trades. As shown in figure 1, for the most part, until May-2013 the trading 

levels by each group remain relatively stable. Between May-2013 and August-2013 the indicator 

for both ‘interdealer’ and ‘purchases by customer’ show a drop in trading. Over the 

corresponding time period ‘sale by customer’ increases sharply. Without delving into further 

analytical review, we note this trend coincides with the June-2013 policy announcement by the 

United States Federal Reserve to taper QE policies. 

<< Insert Figure 1 here >> 
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2.3 Daily AAA Trades 

For practical reasons, the majority of our analysis will focus on the AAA panel of table 1. In this 

credit class the percentage of filtered bonds traded on any given day remains fairly constant 

across all days of the month and all months for the study period. By contrast, the percentage of 

filtered AA bonds traded relative to all trades shows a decline over the study period. The inverse 

is true for the filtered A bonds. The number of AA and A bonds traded has an up and down 

relationship with a sharp spike in Aug-2013. Taken together filtered AA and A rated bonds 

demonstrate more variability in their trading characteristics when compared to both AAA and 

BBB rated bonds. The yields reported in this section are yield-to-worst (YTW) and are not 

subjected to outlier detection. The provided industry AAA benchmark is from MMD.  

2.4 AAA Term Yields by Maturity 

Table 2 reports dispersion data of the YTW of the traded bonds for 01-May-2012 as well as for 

the month of May 2012. The range of yield spreads stands out for both the day- and month-view. 

To exemplify we focus on the 5 year spot of the term structure for 01-May-2012. At this maturity 

point the spread is noticeable and comparatively broad. This one-day visualization provides 

simple evidence of the possibility traders may face yield spreads over or approaching 600 basis 

points on maturities up to 10 years. On this day, traded yields ranged from a low 1.29% (30yr 

spot) to a high of 5.16% (5yr spot). Within the monthly reported data, the yield range spanned 

from a low of 2.85% (30yr spot) to a high of 6.22% (1yr spot). The hypothesized upward sloping 

term structure is in evidence. As the analysis proceeds towards a discussion on switching 

regimes, we note the 6.13% spike in yield range at the 10-year spot. Otherwise, the range is 

continually decreasing over the entire term structure. Table 3, provides a similar analysis for Feb 

2014. In 2014 the spike anomaly occurs at the 20-year spot.  

Table 2. Range of dispersion of the AAA yield-to-worst for May 2012 

 
May 1st, 2012  Month of May, 2012 

Total Trades 887  20218 

# of Unique bonds 775  1022 

Minimum Yield 0.03% @ 7 year maturity  0.01% @ 12 year maturity 

Maximum Yield 5.79% @ 2 year maturity  11.80% @ 3 year maturity 

 
Min Max Median Range  Min Max Median Range 

1yr 0.05% 2.84% 0.70% 2.79%  0.04% 6.26% 0.65% 6.22% 

5yr 0.55% 5.71% 1.21% 5.16%  0.20% 5.71% 1.17% 5.69% 

7yr 0.03% 2.48% 1.62% 2.45%  0.03% 5.31% 1.55% 5.28% 

10yr 0.51% 3.21% 1.85% 2.70%  0.23% 6.36% 2.00% 6.13% 

15yr 2.04% 3.57% 2.72% 1.53%  0.13% 5.17% 2.55% 5.04% 

20yr 0.78% 3.98% 3.11% 3.20%  0.29% 5.02% 2.70% 4.73% 

30yr 2.49% 3.78% 3.22% 1.29%  1.00% 3.85% 2.18% 2.85% 
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Table 3. Range of Dispersion of the AAA Yield-to-Worst for Feb 2014 

 
Feb 3rd, 2014  Month of Feb, 2014 

Total Trades 2433  45112 

# of Unique Bonds 1006  8297 

Minimum Yield 0.17% @ 1 year maturity  0.00% @ 1 year maturity 

Maximum Yield 5.59% @ 4 year maturity  6.38% @ 11 year maturity 

 
Min Max Median Range  Min Max Median Range 

1yr 0.17% 1.87% 0.47% 1.70%  0.00% 5.35% 5.00% 5.35% 

5yr 0.50% 3.58% 1.34% 3.08%  0.07% 5.24% 1.33% 5.17% 

7yr 0.85% 3.97% 2.06% 3.12%  0.01% 5.33% 2.03% 5.32% 

10yr 0.23% 4.94% 2.65% 4.71%  0.23% 4.94% 2.57% 4.71% 

15yr 1.20% 4.55% 3.01% 3.35%  0.59% 5.12% 3.18% 4.53% 

20yr 1.45% 4.82% 3.39% 3.37%  0.01% 5.11% 3.54% 5.10% 

30yr - - - -  3.45% 4.55% 3.77% 1.10% 

The asymmetric nature of the dispersion is not just a one-day phenomenon. Covering all trading 

days in the month of May, figures 2 and 3 use the non-parametric box-and-whiskers (BW) plot at 

maturity points of 1, 2, 5, 7, 10, 15, 20, 25, and 30 years to visually demonstrate the asymmetric 

dispersion of daily trade yields in 2012 and 2014, respectively. The lines extending vertically 

from the boxes (the whiskers) indicate variability outside the upper- and lower-quartiles; an 

indication that may result in the identification of an extreme yield outlier. We note that box-and-

whisker charts for all months of the study period are provided.2  

<< Insert Figure 2 here >> 

<< Insert Figure 3 here >> 

The dispersion results presented to this point lead to a conjecture about the level, slope, and 

curvature of the daily municipal term structure. To punctuate the BW comparative analysis 

figures 4 and 5 show daily term structure for the months of May-2012 and Feb-2914, 

respectively.3 In an efficient market, the charts would show the characteristic smooth shape of an 

upward sloping yield curve. The ‘wrinkles’ in the chart provide additional evidence of municipal 

pricing inefficiency; or, following Daniels and Ejara (2009) in their study of general obligation 

and revenue bonds, the wrinkles represent a form of irrational to random behavior. 

<< Insert Figure 4 here >> 

<< Insert Figure 5 here >> 

These findings lend credence to the belief that, in general, traders seek to develop a visual “feel” 

for the market in which they trade Steenbarger (2003). A more logical approach for the data 

scientist is to invoke a “computing machine” to reconcile the vagaries of human decision-making 

and the economic theories of rational behavior. 

                                                           
2 For a complete listing see: http://bit.ly/2eZvyY5 
3 All term structure curves are available at: http://bit.ly/2eZvyY5 
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The observations provided thus far lead to interesting questions about decision process required 

to make trade decisions in the secondary municipal bond market at a fair price and on a timely 

basis. For example, what is the impact of market liquidity on traded yields? Does the time-

varying dispersion of traded yields influence trading on a given day or week? Is daily liquidity 

induced (retarded) by changes in macroeconomic influences? To address these questions and 

more the next section of the paper proposes a hierarchical model-building methodology to 

estimate an all-in-all trade weighted (trade size) benchmark yield curve for the U.S. municipal 

bond market. 

3. Alternative Models for Term Structure Mapping 

This section turns its attention to extending the NS model by applying AI mapping to yields 

estimated from MSRB reported trades. To establish the statistical domination of the newly 

designed curve, we compare and contrast alternate approaches. Linear regression based 

approaches tend to dominate the extant literature (see, (De Pooter 2007; Diebold and Li 2006; 

Fabozzi et al. 2005)). But, in an effort to improve the shape parameter Annaert, et. al. (2010) 

introduced ridge regression. Even with this extension, all variants of regression-based modeling 

still exhibit ill-behaved parameter estimates characterized by relatively large variances from 

excessive multicollinearity. 

Based on the findings provided, this paper implements a comparative analysis of four alternate 

mapping models. We begin with a simple piecewise approximation using a B-Spline technique 

(not to be confused with the more popular Bezier curve/surface). Included in the comparative 

analysis is a ridge regression model. Subsequently, we introduce two alternate modeling 

methodologies that are new to the mapping of bond yield term structure. One is an artificial 

intelligence-inspired radial basis function artificial neural network (RANN) – the K3-RANN 

(Kajiji 2001). The other model uses the support vector machine regression (SVR) method. 

3.1 Removal of Extreme YTW Outliers 

Over the study period, the data presented in table 1 reports 357,369 AAA-rated trades. As 

discussed in section 2, these trades include some extreme outliers. Owing to the existence of 

outliers, at a given discrete maturity point (t) we compute a traditional z-score or a modified z-

score (Iglewicz and Hoaglin 1993) as follows: 
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In equation 1 above, for the ith trade at the tth maturity, x is the YTW, n is the number of trades, 𝑥̅ 

denotes the average yield, s is the standard deviation of the yields, MAD denotes the median 
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absolute deviation of yields, and 𝑥̃ denotes the median yield. We statistically eliminate outlier 

yields if the z-score is > 1.96  (or outside the 95% confidence interval) or if the modified z-score 

is > |3.5|. The outlier test is not performed for tn < 5.  

3.2 Trade-Weighted Yields 

The new term structure is designed to reflect yields modified by their daily trade size impact on 

market valuation. For each trade point we compute the associated trade-weighted YTW as 

follows:  
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In equation 2 above for the ith trade at the tth maturity itx  is the unweighted YTW, itv is the trade 

size, and the trade-weighted yield is represented by ity . The number of trades at a maturity point 

is expressed by tn . We then compute a harmonic average of all the traded-weighted yields for a 

given maturity (Hwg). 

3.3 The Extant Nelson-Siegel Model 

The NS model is widely used in the practice of fitting term structure. The model for the forward 

rate curve is generally specified as: 

 𝑓(𝜏) = [

𝛽0

𝛽1

𝛽2

]

′
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1
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′
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] (3) 

Where: τ is time to maturity, 𝛽0, 𝛽1, 𝛽2and λ are coefficients with λ > 0. The three factors are: 𝑓0 

a constant representing the (long-term) interest rate, 𝑓1  an exponential decay function 

representing the slope of the curve, and 𝑓2 a Laguerre function representing the curvature of the 

yield curve. The corresponding model for the spot rate curve is stated as: 
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The three factors 𝑟0, 𝑟1, 𝑟2represent the level, slope and curvature of the spot rate curve. All other 

variables are as previously defined. Traditional parametric estimation methods for estimating the 

parameters of the NS model by either minimizing the SSE using OLS over a grid of pre-specified 

lambda values; or, using linear regression conditioned by a fixed shape parameter (Fabozzi et al. 

2005). 

3.3.1 Modeling NS by a Ridge Regression  

Ridge regression is the most commonly used method to estimate the traditional three-factor NS 

model. Given a response vector 𝑦 ∈  ℛ𝑛 and a predictor matrix 𝑋 ∈  ℛ𝑛×𝑝, the ridge regression 

coefficients are defined as:  

2 2

1 1
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( )

pn
ridge

i i j

i j

y x   
  

 
   

 
      (5) 

Here λ ≥ 0 controls the strength of the penalty term. Note that, when λ = 0 we get the linear 

regression estimate. Similarly when λ = ∞, we get ridge = 0. For λ in between, we are balancing 

two ideas: fitting a linear model of 𝑦 𝑜𝑛 𝑋 , and shrinking the coefficients or penalizing the 

extreme observations. Essentially λ is the regularization constant. Ridge is the abbreviation for 

term structure yield curves produced by this technique. 

3.3.2 Mapping NS using the K3-RANN 

The K3-RANN is a single layer network that is known to offer excellent mapping capabilities. 

The K3-RANN has robust history in modeling financial data over several different time scales. 

For example, for hourly findings see Dash et. al. (2003) and Dash and Kajiji (2003); and, Dash 

and Kajiji (2008) for performance within the monthly domain. For performance comparisons 

across alternative ANN topologies, see Dash and Kajiji (2002). As with the generalized RANN 

method, the optimal weighting values, jw , are generally extracted by applying a supervised least-

squares method to a subset (training set) of the data series. The supervised learning function is 

stated as, y = f(x) where y, the output vector, is a function of the input vector x with p number of 

inputs. The function can be restated as: 

1

( ) ( )
m

j ji

j

f x xw h


       (6) 

where, m is the number of basis functions (centers), h is the number of hidden units, w is the 

weight vector, and i = 1..p where p is the number of input vectors. As shown by equation (7) the 

K3-RANN minimizes a modified SSE cost function: 
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The result of applying the K3-RANN is a set of weights (wj) that minimize error (SSE) while 

optimizing the accuracy of the predicted fit (smoothness). The estimated weights are analogous 

to nonlinear least squares regression parameters. Hereafter, the estimated term structure curve 

generated by this technique is referred to as the K3-Hwg. 

3.3.3 Modeling NS by the Support Vector Machine Regression 

The support vector machine (SVM) is relatively new computing machine in the field of 

computational finance. The SVM algorithm is a nonlinear extension to the Generalized Portrait 

algorithm of Vapnick (1998). The SVR extension to the SVM learning algorithm is known to 

provide accurate, robust and very effective mapping across both small and large samples. When 

used as a regression mapping machine, given some training data X := {(x1,y1),…,(xl,yl)} drawn 

i.i.d. from some probability distribution P(x,y), the technique seeks to find a function f that 

minimizes the empirical risk function: 

 𝑅𝑒𝑚𝑝[𝑓] =
1

𝑙
∑𝑐(𝑥𝑖, 𝑦𝑖, 𝑓(𝑥𝑖))

𝑙

𝑖=1

 (8) 

Estimating equation (8) directly could lead to overfitting and thus bad generalization especially if 

the training sample is small. Thus, a regularized risk functional is recommended: 

 𝑅𝑟𝑒𝑔[𝑓] =
1

𝑙
∑ 𝑐(𝑥𝑖 , 𝑦𝑖 , 𝑓(𝑥𝑖))

𝑙
𝑖=1 +

𝜆

2
‖𝑤‖2 . (9) 

Here λ > 0 and is known as a regularization constant. This is similar to the regularization 

parameter k mentioned in the K3-RANN (equation (7)) and λ mentioned in ridge regression 

(equation (5)). The SVR extension formulated by Vapnik is: 

 min [
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

]  (10) 

ST{

𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ ε + 𝜉𝑖

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ ε + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

  

Where the constant C > 0 determines the trade-off between flatness of f and the amount up to 

which deviations larger than є are tolerated. Term structure curves generated by this technique 

are labeled SVR. 

A primary objective of this research is to identify which estimated term structure generates 

efficient curves in the presence of switching regimes. Computational similarities (e.g., 

regularization in the form of parameters λ and k) imply the more purposeful comparison of 
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statistical difference in term structure curves involves the results generated by the K3-RANN and 

SVR methods.  

4. Estimation Results 

In this section we compare comparative results from mapping the term structure of trade yields. 

4.1 The Municipal Market Regime Shift  

The extensive bond yield literature reviewed previously described how switching-regime models 

are likely to describe historical yield rates better than single-regime models. Based on the 

observed time-series dispersion presented in section 2, a-priori we assume the possibility of a 

regime shift in municipal bond yields. In this section we search for the possibility of a two or 

more bond yield regimes by subjecting weighted average AAA YTW calculations to an SVM 

classification analysis. We start by following the arguments presented by Dai, et.al (2006). By 

assumption there are S+1 “regimes” that govern the dynamic properties of the N-dimensional 

state vector Y. But, unlike the Dai (2006) formulation, the SVM mapping does not require the 

introduction of regime factor-variable. Still, in this machine learning approach agents are 

presumed to know the past histories of the state vector and the regime, but they are not required 

to recognize the regime the economy is in. Instead the Markov process governing regime 

changes is conditionally independent of the Y process. The result of mapping a 3-factor non-

parametric SVM to YTM bond yields finds two regimes. As shown in figure 6 one regime is 

characterized by yields with bond maturities up to the 14-year maturity point on the AAA term 

structure. The transition to the second regime occurs between up to the 20-year spot. 

<< Insert Figure 6 here >> 

Although we are unable to generalize these findings across the investment grade credit spectrum, 

this initial finding adds new information about the regime switching behavior of municipal bond 

yields. The SVM results confirm earlier findings of how traditional single-regime factor-based 

modeling techniques are likely to understate yield fluctuations during the transition between 

regimes. We postulate that estimating the term structure using NS-inspired supervised learning 

networks will provide an effective alternative to ‘priced’ parametric factor models. 

4.2 Time Series of 5, 10, 20 & 30 Year Spot for May, 2012 

Figure 7A-D shows comparative term structure yields for 22 trading days in May-2012 at 

maturity points of 5, 10, 20 and 30 years. Model performance at the 5-year spot produced higher 

estimated yields than those reported by the subjectively constructed MMD benchmark. The 

relatively even estimation performance across models begins to dissipate at the 10-year spot and 

is completely eradicated at the 30-year spot. By observation, these results provide preliminary 

evidence that the alternate yield curves have a coherent estimation structure up to the 10-year 

maturity point. Conversely, for maturity periods greater than 10 years, yield curve mapping 

topology appears to have a significant bearing on the efficient pricing of traded municipal debt.  
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<< Insert Figures 7A - D here >> 

4.3 Multiple Comparison Test  

In this section we test the hypothesis of no relationship between the median of daily yields 

obtained from alternate models at a given maturity. Owing to a violation of the homogenous 

variance assumption, we apply the Mood’s Median test – a special case of the Pearson Chi-Sq 

test (𝜒2). Additionally, Cramer’s V is used to identify the inter-correlation structure among the 

term-structure modeling results. We compute Cramer’s V as follows: 

𝜑𝑐 = √
𝜒2

𝑁(𝑘 − 1)
 𝑤ℎ𝑒𝑟𝑒 𝑘 = min(𝑅, 𝐶) ; 𝑎𝑛𝑑 𝑁 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 

We recognize that the Cramer’s V is biased since it increases with the number of rows (R) of the 

contingency table or the number of columns (C) of the contingency table. In our case the rows 

are fixed at 2. Row 1 of the contingency table is the frequency count of all yields that are less 

than and equal to the median, and row 2 is the frequency count of all yields greater than the 

median. The columns in our contingency table are denoted by alternate computational methods. 

As observed from the above equation, the Cramer’s V is related to the χ2. When computed, we 

report only the Cramer’s V statistic along with the asymptotic significance value (p-value). 

Because our goal is to identify where statistical differences among curve estimates are not 

statistically different, we bold the techniques that do not meet the significance test in tables 4, 5, 

6, and 7. 

4.3.1 5 Year Spot  

The overall Median test indicates that there is a significant difference (χ2 =76.772) between the 

median yields generated by the alternate computational techniques. Post hoc, Cramer’s V is 

reported at 0.766; a finding leading us to conclude there is a relatively large effect (or 

differences) due to the application of alternate modeling techniques. Turning to table 4, it is 

revealed that the B-Spline term structure is not significantly different from the Ridge model (p-

value = 0.150) or the SVR model (p-value = 0.172). Additionally, the ridge term structure is also 

not significantly different than K3-Hwg (p-value = 0.294). However, the K3-Hwg and B-Spline 

algorithmic methods are significantly different (p-value = 0.019). There is a very high effect size 

with Ridge, K3-Hwg, and B-Spline (each produces a Cramer’s V > 0.70).  
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Table 4. Cramer’s V for the 5-yr Spot 

 Ridge SVR K3-Hwg B-Spline 

MMD 0.872 

(0.000) 

0.563 

(0.000) 

0.956 

(0.000) 

0.719 

(0.000) 

Ridge  0.413 

(0.007) 
0.158 

(0.294) 

0.217 

(0.150) 

SVR   0.533 

(0.000) 
0.208 

(0.172) 

K3-Hwg    0.354 

(0.019) 
Note: p-values of the Craver’s V are in parenthesis 

4.3.2 10 Year Spot 

Table 5 presents the post hoc results for the overall Median test. The results provide evidence 

that there is a significant difference (χ2 =59.638) between the median yields generated by the 

alternate modelling methodologies. Cramer’s V effect size is 0.672; a finding which indicates a 

relatively large effect due to the application of alternate models. While significantly different 

than the SVR model results, the post-hoc analysis (table 5) reveals K3-Hwg is not significantly 

different from the Ridge model. As previously reported, the MMD yields remain significantly 

different than all computation techniques.  

Table 5. Cramer’s V for the 10-yr Spot 

 Ridge SVR K3-Hwg B-Spline 

MMD 0.577 

(0.000) 

0.832 

(0.000) 

0.542 

(0.000) 

1.000 

(0.000) 

Ridge  0.336 

(0.026) 
0.046 

(0.763) 

0.577 

(0.000) 

SVR   0.378 

(0.012) 

0.316 

(0.036) 

K3-Hwg    0.612 

(0.000) 
Note: p-values of the Cramer’s V are in parenthesis 

4.3.3 20 Year Spot 

The overall Median test results indicate that there is a significant difference (χ2 =24.364) 

between the median yields generated by the alternate models. Cramer’s V total effect size is 

0.471; a level that suggest a moderate effect (or differences) attributable to alternate model 

application. The post hoc analysis is presented in table 6. At the 20-yr spot the alternate models 

estimate significantly different yields than those reported by the subjectively computed 

benchmark MMD term structure. Both SVR with B-Spline, and K3-Hwg with Ridge report small 

effect sizes. 
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Table 6. Cramer’s V for the 20Yr Spot 

 Ridge SVR K3-Hwg B-Spline 

MMD 0.688 

(0.000) 

0.408 

(0.007) 

0.607 

(0.000) 

0.448 

(0.003) 

Ridge  0.327 

(0.030) 
0.102 

(0.498) 

0.283 

(0.060) 

SVR   0.229 

(0.128) 

0.046 

(0.763) 

K3-Hwg    0.185 

(0.220) 
Note: p-values of the Craver’s V are in parenthesis 

4.3.4 30 Year Spot 

As with the 30-yr spot, the result of applying the overall Median test indicates a significant 

difference (χ2 =31.273) among the median yields generated by the alternate models. The total 

effect size from Cramer’s V is 0.487. As with the 20-year spot, there is only a moderate effect 

attributable to the alternate models. Table 7 reports the post hoc analysis. In a manner that is 

consistent with all other spots, the MMD yield is significantly different from all other computed 

yields. The smallest effect size is captured between Ridge with K3-Hwg. B-Spline measured 

against both Ridge and K3-Hwg follows close behind. The SVR technique reports the largest 

difference in effect size measured against Ridge and K3-Hwg.  

Table 7. Cramer’s V for the 30yr Spot 

 Ridge SVR K3-Hwg B-Spline 

MMD 0.719 

(0.000) 

0.542 

(0.000) 

0.756 

(0.000) 

0.683 

(0.000) 

Ridge  0.229 

(0.128) 

0.050 

(0.741) 

0.048 

(0.750) 

SVR   0.277 

(0.066) 

0.183 

(0.226) 

K3-Hwg    0.098 

(0.517) 
Note: p-values of the Cramer’s V are in parenthesis 

4.3.5 Modeling Summary 

By way of section summary, when we deployed alternate models to map the U.S. municipal 

bond term structure the results showed that Ridge and K3-Hwg do not produce significantly 

different estimates of YTW. This is not completely surprising as the K3-Hwg mapping embodies 

a modified ridge regression. Correspondingly, at only one spot (30-year) was Ridge compared to 

SVR not significantly different. At the 5% level, Ridge and B-Spline are not significantly 

different at the 5-, 20-, and 30-year spots. At 𝑝 ≤ 0.10 Ridge and B-Spline are significantly 

different at the 20-year spot. The research interests of this research are directed pointedly at the 

performance of the SVR and K3-Hwg models. Interestingly, these two methods are not 
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significantly different at the 20- and 30-year spots; sport on the term structure that occurs after 

the transition to a different regime. Lastly, as reported in table 8, for May-2012 the K3-Hwg 

model produced the lowest comparative RMSE at tested points across the term structure. 

Table 8. RMSE for the spot rates 

 

Ridge SVR K3-HWg 

5Yr 0.01137 0.01134 0.00110 

10Yr 0.01882 0.01866 0.00138 

20Yr 0.02602 0.02602 0.00456 

30Yr 0.02889 0.02892 0.00698 

As reported in the literature, spline and ridge techniques provides accurate estimates of bond 

yields in a single-regime economy. However, based on the performance results provided herein, 

like previously reported findings these non-mapping methods produce unstable and estimates 

post regime transition. With evidence of a regime transition period around the 14-year maturity, 

both K3-Hwg and SVR produce homogenous yield estimates post transition (20- and 30-year 

spots). In summary, while closely related to the performance of the SVR, the K3-Hwg model 

matched the modeling results of the single-regime Ridge model. Post regime switch, the K3-

Hwg model results were confirmed by near identical results from solving the SVR model. 

Overall, the K3-Hwg model is the preferred method for mapping dynamic bond yield term 

structure with the expectation for regime-shift risks. 

5. The Production of Traded Bond Liquidity and Factor Scale-Elasticity 

This section of the paper proposes a RANN methodology to generalize the returns-to-scale of 

individual municipal bond liquidity using bond characteristics and macroeconomic data as 

production factor proxies. Comparative scale effects are estimated using both parametric and 

nonparametric methods. We begin by describing the importance of bond liquidity. This is 

followed by a description of the bond generalized bond production function. Lastly, we introduce 

the alternative modeling methodologies. 

5.1 Bond Illiquidity 

The research strain investigating transaction costs, liquidity, and creditworthiness reports lower 

creditworthiness is associated with higher transactions costs. To the extent that transaction costs 

influence the willingness of counterparties to conduct a trade this finding implies there may be 

an impact on bond liquidity (see for example, Edwards, Harris and Piwowar (2007)). Earlier, 

Harris and Piwowar (2006) reported how municipal bond trading costs increase with time to 

maturity and bond complexity. Importantly, they found lower and negligible differences in 

trading costs among investment grade bonds rated AA and above. In an investigation of trade 

size, Edwards, Harris and Piwowar (2007) also reported how recently issued bonds and bonds 

closer to maturity produce lower trade costs. This study also finds a positive relationship 

between creditworthiness and transactions costs. Bao, Pan and Wang (2011) shifted the study of 
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illiquidity to yield spread components. They were unable to show that a given illiquidity measure 

produces a significant relationship between creditworthiness and bond liquidity. In study of how 

dealers’ manage illiquid assets within a 30-day window of purchase, Goldstein and Hotchkiss 

(2015) report that dealers act more like brokers as they manage holding period risk more 

aggressively for less liquid bonds. However, they do not report a significant relationship between 

their measure of transaction costs (dealer roundtrip spreads) and investment grade bonds. 

The literature provides evidence that increased liquidity and lower (stable) transactions cost 

influences efficient pricing in bond markets. We propose a methodology to estimate generalized 

bond liquidity from traded instruments. The model’s proxies for liquidity response variables are 

three well-known liquidity measures: Amihud (Ami), IRC and the modified IRC (IRCm). Details 

are provided next. 

5.1.1 Amihud 

The daily Amihud (2002) measure is calculated as the average ratio of absolute return to the 

trade size of consecutive transactions during a day: 
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5.1.2 IRC  

The Feldhütter (2012) imputed round-trip cost, IRC, takes into consideration the dispersion of 

traded prices around the market-wide consensus bond valuation: 

max min
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
        (12) 

Here, Pmax is the largest price in an imputed round trip and Pmin is the smallest. On a given day, 

when several trades occur on a given bond with the same trade size the measure assumes the 

trades reflect the dealer imposed bid-ask spread and reflect a dealer taking one side of a trade 

only to offset the trade at a later point in the day.  

5.1.3 Modified IRC  

The modified imputed roundtrip cost (IRCm) treats a round trip as a transaction between a dealer 

and customer; a dealer to a different dealer; or, a trade between two customers.  

To examine the production of generalized bond liquidity we shift the analysis to a monthly time 

series. In the month of February, 2014 the three liquidity measures are calculated for each traded 

bond. 
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5.2 The Parametric Double-Log Production Function 

The double log (Cobb and Douglas 1928) functional form of the production function is well 

known for its representation of the functional relationship of an output to factor inputs. A popular 

form of the double-log model is the well-known Cobb-Douglas function. For our purposes, the 

generalized double-log model is expressed as: 

1

( ) , 0, 1,2,...i

n

i i

i

f x A x i n




     (13) 

This functional form has the following properties: a) Strict monotonic – if x’> x then f(x’) > f(x); 

b) Quasi-concavity – V(y) = [x : f(x) > y] is a convex set; c) Strict essentiality – f(xa,…xi-1, 0, 

xi+a,…,xn) = 0 for all xi > 0; d) the set V(y) is finite, nonnegative, real valued and single valued 

for all nonnegative and finite x. It is also continuous and everywhere twice-continuously 

differentiable; e) f(x) is homogenous of degree k = sum of I. Additionally, stated in this 

functional form all inputs can be interchanged without affecting output and each input must be 

used in strictly positive amounts to obtain a positive output. Where necessary, transformation to 

the zero-value arguments is applied. Despite imposing a unit elasticity of substitution the simple 

double-log specification has proven useful and accurate in a study by Juillard and Villemot 

(2011) on real business cycles. Extant literature does not express a preference for any one 

particular liquidity proxy; hence, we propose an economic model to jointly estimate the elasticity 

of municipal bond liquidity by utilizing three liquidity response variables: Amihud, IRC, and 

IRCm. The model is formally stated as: 
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where 1,2,...,i n  and є ~ N(0,1). Components of Y include the Amihud (A), IRC (R), and 

modified IRC (I) liquidity measures. Predictor variable proxies, 𝑥𝑖, are identified in table 9. 

Table 9. Predictor variables used for modelling the illiquidity 

Variable 
Information 

Effect Factor 
Source 

Abs Diff of YTWs (AbsDifYTW) Instrument YTW spread vs K3 

Days to Maturity Instrument MSRB 

Trade Size Market  MSRB 

Trade Price Market MSRB 

State Building Permits 

(Bldg Permits) 

Macroeconomic US Census Bureau  

State Civilian Labor Force (Labor) Macroeconomic US Census Bureau 

Convexity Instrument risk Computed 
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5.3 RTS implications 

Scale economies are a measurement of the amount bond liquidity (output) changes if all liquidity 

input factors (bond and macroeconomic factors) change by the same amount. In the decision-

making process, bond scale economies provide insight into pricing policies, market structure 

and, government intervention or regulation. The investigation in this section of the paper 

involves the largely unexplored nature of estimating generalized bond returns-to-scale (RTS) by 

alternative approaches and then reconciling computational differences to enumerate probable 

scale economics. We follow the arguments of Kajiji and Dash (2013) by comparing parameter 

estimates obtained by mapping the multivariate K7-RANN against estimates from a multivariate 

GLS (SPSS v23). For the month of Feb-2014, tables 10-14 present the weekly estimated 

elasticity coefficients for both models. The weekly RTS is the sum of the input elasticities. 

Table 10. Week 1 parameter estimates illiquidity measure using alternate techniques. 

 MRANN  Multivariate Regression 

Predictors\Targets Amihud IRC IRCm  Amihud IRC IRCm 

Ln(AbsDiffYTW) 0.064 0.524 0.425  0.096* 0.047 0.069 

Ln(Trade Size) 0.734 0.314 0.293  -0.026 0.064 0.078 

Ln(Trade Price) -1.142 -0.848 -0.969  -1.750* -4.014* -3.932* 

Ln(Days To Maturity) 1.899 1.413 1.522  -0.319* 0.499* 0.403* 

Ln(Bldg Permits) -0.970 -0.702 -0.623  -0.871* -0.677* -0.681* 

Ln(Labor) -1.076 -0.623 -0.748  1.001* 0.951* 0.966 

Ln(Convexity) 1.402 0.622 0.79  0.008 -0.038 -0.029 

RTS Week 1 

N=6161 
1.319 1.234 1.366 

 
-0.018 0.073 1.084 

Note: *p < 0.05. 

 

Table 11. Week 2 parameter estimates illiquidity measure using alternate techniques. 

 MRANN  Multivariate Regression 

Predictors\Targets Amihud IRC IRCm  Amihud IRC IRCm 

Ln(AbsDiffYTW) 37.135 19.323 18.342  0.079 0.169* 0.183* 

Ln(Trade Size) 5.321 3.291 3.277  0.058 0.120* 0.115* 

Ln(Trade Price) 1.635 0.172 -0.204  -2.319* -3.684* -3.644* 

Ln(Days To Maturity) -35.606 -17.151 -15.705  -0.178 0.476* 0.458* 

Ln(Bldg Permits) 3.299 2.263 2.383  -0.963* -0.552* -0.536* 

Ln(Labor) 0.774 0.254 0.234  1.081* 0.763* 0.754* 

Ln(Convexity) -9.539 -6.154 -6.322  0.007 -0.048* -0.053* 

RTS Week 2 

N=5670 
3.019 1.998 2.005 

 
-0.034 0.000 0.000 

Note: *p < 0.05. 
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Table 12. Week 3 parameter estimates illiquidity measure using alternate techniques. 

 MRANN  Multivariate Regression 

Predictors\Targets Amihud IRC IRCm  Amihud IRC IRCm 

Ln(AbsDiffYTW) 1.338 1.022 1.077  -0.040 -0.028 -0.028 

Ln(Trade Size) 3.619 3.308 3.437  -1.737 0.198* 0.207* 

Ln(Trade Price) -4.065 -3.801 -3.994  -0.193* -3.064* -3.084* 

Ln(Days To Maturity) -5.028 -4.350 -4.468  -0.833 0.257 0.279 

Ln(Bldg Permits) 6.831 5.865 6.138  0.868* -0.580* -0.568* 

Ln(Labor) -2.768 -2.742 -2.981  -1.737* 0.655* 0.634* 

Ln(Convexity) 1.446 1.646 1.760  0.032 -0.005 -0.010 

RTS Week 3 

N=4722 
1.373 0.948 0.969 

 
-2.578 0.224 0.241 

Note: *p < 0.05. 

 

Table 13. Week 4 parameter estimates illiquidity measure using alternate techniques. 

 MRANN  Multivariate Regression 

Predictors\Targets Amihud IRC IRCm  Amihud IRC IRCm 

Ln(AbsDiffYTW) -0.044 0.004 -0.039  0.013 -0.001 0.028 

Ln(Trade Size) 1.192 0.467 0.441  0.049 0.148* 0.155* 

Ln(Trade Price) 0.617 0.333 0.358  -1.654* -3.182* -3.141* 

Ln(Days To Maturity) 0.063 0.383 0.374  0.010 0.300* 0.212* 

Ln(Bldg Permits) -0.674 -0.416 -0.380  -1.109* -0.907* -0.939* 

Ln(Labor) -0.143 0.040 0.047  0.867* 0.857* 0.901 

Ln(Convexity) 0.716 0.343 0.368  -0.025 -0.036 -0.026 

RTS Week 4 

N=5811 
1.727 1.154 1.169 

 
0.047 -0.037 0.903 

Note: *p < 0.05. 

The analysis of these four tables begins with a review of weekly RTS. Except for week 3, all 

weekly K7-MRANN RTS estimates exhibit increasing returns to scale (IRS). The IRS finding 

suggests that at an economic decision point bond liquidity experiences a greater percentage 

change than the simultaneous changes realized by all input variables. For example, take week 4. 

The Amihud RTS implies that the bond’s Amihud liquidity measure will increase by 1.727 

percent for a one-percent simultaneous change in the factor inputs. Only in week 3 and according 

to the values for IRC and IRCm is the reported RTS diminishing (but close to unity, or constant 

RTS). 

The multivariate GLS results do not produce uniform RTS results across the weeks of the month. 

In fact, for many months the Amihud RTS is negative or zero. We do not provide further 

analysis of the GLS scale elasticities as the results lack consistency with historical findings and 

beg for an interpretation that would shed new light on evolving a descriptive theory for the 

efficient trading of municipal bonds. Instead, we devote the remainder of this section to an in-

depth analysis of the variable scale elasticities generated by the K7-MRANN mapping. 
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5.3.1 YTW Spread vs K3 

Previously we noted that Bao, Pan and Wang (2011) reported illiquidity was a substantial 

component of spread rates. Their study was unable to confirm a significant relationship between 

the credit rating of IG bonds and liquidity. To capture this effect, we include the proxy factor 

computed as the absolute value of the spread between the traded bond’s YTW and the K3-Hwg 

efficient yield. This particular spread calculation captures overall pricing inefficiency for the 

traded bond. Except for week 4 where IRC deviates, in each week the factor elasticity across 

each liquidity domain bears the same sign. Mostly positive across the month, this elasticity 

suggests that as the spread between actual bond yield and the K3-Hwg benchmark widen, bond 

liquidity increases. 

5.3.2 Days to Maturity 

By reflection we noted the Harris and Piwowar (2006) study reported bond trading costs increase 

(i.e., illiquidity increases) with instrument time to maturity (complexity and age). The elasticity 

metrics for this variable are interesting as they differ by week. All three liquidity proxies have 

positive elasticity values in weeks 1 and 4. Amihud is reported at 1.899 and 0.062, respectively. 

We also note week 2 reports the lowest number of bond trades. The two middle weeks of the 

month display consistently negative elasticities with a correspondingly low number of bond 

trades. The reported elasticity values for these two weeks are -35.606 and -5.028, respectively. 

To the decision-maker this implies the need for a weekly analysis of scale economies along with 

an analysis of the type of trades (clients) within week. 

5.3.3 Trade Size 

Edwards, Harris and Piwowar (2007) examined the impact of trade size on transactions costs and 

liquidity. The study found trade size and transaction costs move inversely thereby implying 

increased liquidity. Trade size decline is often associated with an increase in retail participation. 

A recent FINRA analysis notes that price impacts associated with the size of a trade are, on 

average, transitory and is not necessarily indicative of dealer profitability in block trades 

(Mizrach 2015). The trade size elasticity metrics are completely uniformly positive across 

measures and weeks. This finding complements earlier findings on the relation to transactions 

costs. In this study, we find bond liquidity increases as trade size increase. 

5.3.4 Trade Price 

Edwards, Harris and Piwowar (2007) also showed that bonds with transparent trade prices have 

lower transactions costs; a finding that supports the expectation of increased market liquidity. 

Based on the computed Amihud value, trade price elasticity (i.e., absolute value) is elastic in 

weeks 1 (-1.142), 2 (1.635), and 3 (-4.065). In weed 4 trade price elasticity is consistently 

represented as inelastic (e.g., 0.617). The liquidity reaction to a change in price ranges from a 

low of 0.617 percent to a high of 4.065 percent. 
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5.3.5 State Building Permits and State Civilian Labor Force 

Earlier we reviewed confirmatory evidence of improved yield predictions from the addition of 

macroeconomic factors to the base NS model. State building permits have a direct impact on 

related economic activities such as financing and employment. The state civilian labor force 

measure captures all employed persons as well as the unemployed who are actively seeking 

employment. Variation in this rate is an indicator of overall economic activity. Using the 

Amihud result, in week 1 both factor coefficients are negative (uniformly, as economic activity 

increases bond liquidity declines). In week 2 both are positive (uniformly, as economic activity 

increased bond liquidity increases). In week 3 the decision-maker must evaluate each proxy 

separately as the coefficient for building is positive while the labor coefficient is negative. By 

week 4 both factors coefficients have a negative sign attached. Clearly, the source of 

macroeconomic activity is important to determining changes to bond liquidity. 

5.3.6 Risk Factor Convexity 

We capture nonlinear changes in bond price relative to yield changes by including bond 

convexity. Convexity is a measure of the curvature of the changes in bond price in relation to 

changes in yields. The Amihud convexity findings are positive except in week 2. Positive 

convexity is known to increase bond return. For example, in week 2 convexity elasticity is 

reported as 1.446 implying a one-percent increase in convexity will result in a 1.446 percent 

increase in bond liquidity. 

5.3.7 The Municipal Bond Decision Process for Efficient Trades 

As reasoned in this research, the decision theoretic process for trading municipal bonds in the 

U.S. municipal bond market involves the execution of six distinct steps. The first step is to 

“Decide to trade”. The second step is to obtain MSRB near-real time trade information. The third 

step is to cull and munge the Big Data on the MSRB tape. Fourth, step is to update the NS daily 

term structure curve using the K3-RANN; or, secondarily, SVR. The fifth step is to up-date the 

weekly bond-trading liquidity valuation model. The sixth and final step is to compute production 

RTS with a factor greater than unity indicating a feasible weekly environment in which to trade s 

specific bond at the K3-Hwg equilibrium price. 

6. Summary and Conclusions 

This paper was motivated from concerns expressed by regulators and market participants alike 

about the lack of transparency in secondary market operation across the U.S. municipal bond 

market. This concern incorporates the inability of the industry to establish a set of benchmark 

yield curves across all investment level credit grades. As such, a primary objective of this paper 

sought to establish a decision-processes required to design an optimal municipal bond trading 

policy. After providing an institutional view of trades reported on the MSRB trade tape, the 

research turned to the development of a new benchmark term structure. The big data 

characteristics of the MSRB trade tape encouraged this initial investigation to sample within 
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credit ratings and by time period. Using all trades for AAA rated bonds we invoked artificial 

intelligence mapping to develop alternate yield curves for statistical evaluation and comparison. 

Prior to producing a multiple comparison examination the research also addressed switching 

regimes in the AAA term structure. Using SVM analytics, a regime shift was detected at 

approximately the 14-year spot with the transition to the next regime fully accomplished by the 

20-year spot. With a focus on curves generated by ridge regression, a K3-RANN, and a SVR we 

provided MSE-based evidence that the NS K3-Hwg produced statistically superior term structure 

within the switching regime environment.  

We synthesize our empirical findings by multivariate mapping of a production-theoretic RTS 

derived from traded municipal bonds. As part of this process, we use the estimated factor 

elasticity metrics to support the implementation of a weekly bond trade policy relative to changes 

in individual bond liquidity. Lastly, we find a production relationship between liquidity 

production and macroeconomic factor conditions. Premised by the weekly RTS this research 

demonstrates the importance of both daily and weekly valuation updates. 

With MSRB data now fully distributed, future research will certainly want to investigate bond 

liquidity and valuation decisions in greater detail. In addition to cross-sectional views, credit 

differentiated yield curves and their relationship to bond liquidity are sure to mimic similar 

studies directed at the corporate bond markets. However, in the case of the municipal market, 

there is a chance to take valuation studies a step further by relating new yield curves to sectors 

and Federal Reserve districts. 
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Figure Captions 
 

Fig. 1 Participants traders of investment grade bonds 

Fig. 2 Daily dispersion of AAA trades for May-2012 

Fig. 3 Daily dispersion of AAA trades for February-2014 

Fig. 4 Daily AAA term structure for May, 2012 

 

Fig. 5 Daily AAA term structure for Feb, 2014 

 

Fig. 6 SVM regime shift identification (May 1, 2012) 

 

Fig. 7A May-2012 alternative term structure at the 5-year spot  

 

Fig. 7B May-2012 alternative term structure at the 10-year spot 

 

Fig. 7C May-2012 alternative term structure at the 20-year spot 

 

Fig. 7D May-2012 alternative term structure at the 30-year spot 
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