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Abstract 

Emotion regulation, a key component of healthy development, has been shown to be deficient in 

several psychiatric conditions, including conduct disorder. Conduct disorder is a neuropsychiatric 

disorder of childhood and adolescence characterized by severe aggressive behavior and violation 

of societal norms. It is highly prevalent and results in substantial economic costs and negative 

social consequences. Neuroimaging evidence has revealed brain activity alterations in several 

regions, including prefrontal, temporal, and limbic cortex (amygdala, insula, and cingulate gyrus). 

While the neuronal basis of emotion processing in conduct disorder has been intensely 

investigated, the brain correlates of implicit and explicit emotion regulation remain unclear. 

The main aim of this dissertation was to extend current knowledge by investigating the neuronal 

mechanisms of emotion regulation in children and adolescents with conduct disorder. First, we 

conducted a meta-analysis in order to identify the neuronal correlates of emotion processing in 

adolescents with aggressive behavior. We then developed an affective Stroop task designed to 

investigate the interplay between emotion and cognition in a paediatric population, and validated 

it in healthy young adults. We then employed the task to study the neuronal characteristics of 

implicit emotion-cognition interaction in children and adolescents with conduct disorder. Finally, 

we investigated explicit emotion regulation by cognitive reappraisal (i.e., reinterpretation of the 

meaning of an emotional stimulus) in conduct disorder. 

We here present findings on altered brain function during tasks assessing implicit and explicit 

emotion regulation in adolescents with conduct disorder that are in agreement with behaviorally 

observed deficits. Our meta-analysis on emotion processing in conduct disorder summarized 

previous literature indicating prefrontal and limbic brain structure and function alterations. The 

results from our study employing the affective Stroop task in healthy adults validated the 

usefulness of our task design and replicated previous findings suggesting that emotion 

significantly impacts cognition on a behavioral and neuronal level. Using the affective Stroop and 

cognitive reappraisal tasks in adolescents with conduct disorder revealed neuronal alterations 

within prefrontal and limbic regions, brain areas implicated in both emotion and cognition. 

Overall, the results of this dissertation provide novel evidence on the neuronal basis of emotion 

regulation deficits in conduct disorder. Future studies shall further investigate emotion regulation 

in specific subgroups of conduct disorder, for example those with psychopathic traits or high 

levels of anxiety with the ultimate goal of influencing the child’s immediate environment and 

society as a whole. 
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1 Introduction 

1.1 Conduct disorder 

During early development and throughout childhood and adolescence, individuals adapt to 

environmental demands while continuously developing their personality and individuality, 

and improving their emotional and cognitive abilities. Developmental changes include, 

amongst others, advances in social competence, emotion management, and neurobiological 

changes, and are often dependent on environmental factors such as positive family and peer 

relationships (Dodge et al., 2003; Park, 2004). All of these factors enhance positive feelings 

and are crucial for a successful coping with stressful life events and challenges during the 

development of an independent self. Adolescence has been suggested to be a particularly 

sensitive period for healthy and maladaptive development patterns (Blakemore & Mills, 2014; 

Steinberg, 2005, 2014). Unfavorable dispositions during this sensitive period can lead to a set 

of difficulties in managing the challenges of daily life and have been related to mental health 

problems characterized by poor social abilities, depressive symptoms, and aggressive 

behavior (Gowers, 2005; Silk, Steinberg, & Morris, 2003).  

Children’s ability to self-regulate their emotions already starts developing early in life and is 

viewed as a key component for adaptive functioning (Eisenberg, Spinrad, & Eggum, 2010). 

Deficits in emotion regulation can result in atypical developmental outcomes: Especially 

when negative affect is involved, individuals may show inappropriate reactions resulting in 

impulsive and aggressive behavior towards others (Eiden, Edwards, & Leonard, 2007; Frick 

& Morris, 2004; McLaughlin, Hatzenbuehler, Mennin, & Nolen-Hoeksema, 2011). Such 

aggressive behavior and emotion regulation difficulties constitute an integral part of the 

symptomatology of externalizing mental disorders. Individuals with persistent antisocial 

behavior may be diagnosed with conduct disorder (CD), one of the most frequent psychiatric 

disorders of childhood and adolescence. The lifetime prevalence of CD ranges between 2-

16%, differs greatly for males (12%) and females (7.1%), and is amongst the most common 

reasons for referrals to psychiatric institutions in the United States (Kazdin, 1995; Nock, 

Kazdin, Hiripi, & Kessler, 2006). The 5th edition of the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5, American Psychiatric Association (2013)) defines CD as a 

”repetitive and persistent pattern of behavior in which the basic rights of others or major age-

appropriate societal norms or rules are violated” (p. 469). Symptoms are further classified 

according to four main clusters, including aggression to people and animals, destruction of 
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property, deceitfulness or theft, and serious violations of rules (American Psychiatric 

Association, 2013). 

Within DSM-5, CD is classified as mild, when few symptoms are present and cause mild 

harm only, moderate, when the number of symptoms and harm caused are intermediate, or 

severe, when patients present with many symptoms and cause considerable harm. A minority 

of adolescents with CD additionally displays elevated callous-unemotional (CU) traits. In the 

new DSM-5 this was recognized by implementing a specifier named with limited prosocial 

emotions including behavioral characteristics such as lack of guilt and empathy, cold and 

uncaring behavior towards others, lack of concern about the consequences of one’s own 

behavior, as well as shallow/superficial affect (American Psychiatric Association, 2013; 

Kimonis et al., 2015; Stadler, Poustka, & Sterzer, 2010). Evidence indicates that adolescents 

with CD and with high CU traits are at specific risk for lifetime persistent aggressive and 

antisocial behavior (Frick & Dickens, 2006). 

CD is a highly heterogeneous disorder, which is reflected in the distinction between 

childhood-onset and adolescent-onset CD, subtypes of aggressive behavior, as well as a 

variety of risk factors, symptom profiles, and comorbidities. In an attempt to take 

interpersonal variability into account, the DSM-5 distinguishes between childhood-onset 

(emerging prior to age 10) and adolescent-onset (emerging after age 10) subtypes of CD. The 

childhood-onset subtype has been attributed a more persistent and genetically driven course of 

development than the adolescent-onset type (Loeber, Burke, Lahey, Winters, & Zera, 2000; 

Moore, Silberg, Roberson-Nay, & Mezuk, 2017), but has been blamed to represent an 

oversimplifying approach with limited predictive value (Fairchild, Goozen, Calder, & 

Goodyer, 2013; Loeber et al., 2000). 

Classification approaches have further distinguished between reactive (hot, impulsive, 

affective) and proactive (cold, instrumental) aggression (Kempes, Matthys, De Vries, & Van 

Engeland, 2005; Stadler et al., 2010; Vitaro, Brendgen, & Barker, 2006). Reactive aggression 

is typically preceded by negative emotions and triggers anger – aggression is immediate and 

impulsive. It is not goal-directed and responds to negative reinforcement. Proactive 

aggression, in contrast, is goal-oriented, driven by anticipated rewards, and includes 

physiological arousal. While reactive aggression has been linked to physical abuse, impulsive 

behavior, and peer rejection, proactive aggression has been related to the presence of elevated 

CU traits, delinquent behavior, and is thought to be specific for CD. 
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Ample evidence moreover indicates an involvement of several risk factors for the 

development of CD. Psychosocial risk factors include inconsistent parenting, early 

maltreatment, parental psychopathology, and low socio-economic status. However, also 

genetic, physiological, and temperamental influences have been discussed (for a review see 

Stadler et al. (2010)). In addition, adolescents with CD are at increased risk for comorbid 

mental disorders such as anxiety disorders, substance use disorders, attention 

deficit/hyperactivity disorder (ADHD), or oppositional defiant disorder (ODD) (Nock et al., 

2006). 

Together with ODD, CD has been categorized as a disruptive behavior disorder (DBD) 

(American Psychiatric Association, 2013). While ODD is characterized by a milder form of 

aggressive and antisocial behavior, a CD diagnosis is linked with more severe aggressive 

behavior and societal consequences. In the literature, ODD and CD have been placed along a 

continuum of antisocial behavior, rather than representing two separate disorders. As such, a 

subgroup of children with ODD will develop CD later in life. More specifically, children with 

an early onset and higher severity of conduct problems are at higher risk for developing CD 

(Nock, 2006, Moffit et al., 2008). Moreover, CD can continue as antisocial personality 

disorder (ASPD) in adulthood.  

If left untreated, conduct problems in childhood will often persist and increase in severity 

over time (Bunte, Schoemaker, Hessen, van der Heijden, & Matthys, 2014), resulting in 

substantial consequences and costs for society and public health. These may include higher 

rates of delinquency, poor academic performance, teenage pregnancies, negative 

relationships, and mental disorders in adulthood, all together leading to additional public 

health costs per child of above $70’000 (Biederman et al., 2008; Capaldi, Crosby, & 

Stoolmiller, 1996; Erskine et al., 2016; Fergusson, John Horwood, & Ridder, 2005; Foster & 

Jones, 2005; Lahey, Loeber, Burke, & Applegate, 2005; Swanson, 1994). Therefore, adequate 

treatment and prevention are of particular importance. Interventions focusing on the 

improvement of skills for solving emotional, social, and cognitive problems of children and 

parents, such as cognitive/dialectical behavioral therapy, parent management training, and 

multisystemic therapy, have proven effective and are under constant development and 

improvement (Blair, Leibenluft, & Pine, 2014; Kazdin, 1997; Stadler et al., 2010). In order to 

improve current programs, a deeper understanding of the behavioral and neuronal basis of CD 

is needed. Investigations aiming at the characterization of children and adolescents with DBD 

are therefore of utmost importance.  
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1.2 Functional neuroimaging evidence  

Modern neuroimaging techniques allow researchers to capture the intricate nature of neuronal 

mechanisms in humans. With the use of functional magnetic resonance imaging (fMRI) 

neuronal activity in response to task performance can be observed, providing a more 

comprehensive picture of behavioral impairments in individuals with psychiatric disorders. 

Functional MRI uses the properties of the magnetic field and radiofrequency pulses to detect 

local changes in the oxygenation of blood, which indirectly reflect brain activity. When an 

individual performs a cognitive task, the body sends out an increased amount of blood to the 

responsible brain regions. In fact, more blood is sent to the brain regions than is needed in 

order to refill the oxygen used by the neurons, resulting in an excess of oxygenated blood. 

The blood oxygen level dependent (BOLD) signal measured by the MRI reflects this change 

in blood oxygenation. With the use of statistical computations and visualization techniques, 

brain activity increases in response to a particular task can be monitored with a good spatial 

resolution (Poldrack, Mumford, & Nichols, 2011). 

In order to produce statistical maps displaying the neuronal response of brain regions 

responsible for one particular mental activity, many steps are needed. In general, this 

procedure consists of data preprocessing (including slice timing correction, realignment, 

coregistration, segmentation, normalization to a standard brain template, and smoothing), 

model specification, and statistical analysis. Adequate preprocessing of fMRI data ensures 

that confounding sources are accounted for. As such, different steps are conducted in order to 

correct for inconsistent acquisition times of different brain slices (slice timing correction), 

head motion (realignment), or scanner inhomogeneity (distortion correction), and the images 

acquired are mapped to the individual’s structural images (coregistration), segmented into 

gray matter, white matter, and cerebrospinal fluid (segmentation), aligned with a standardized 

brain template (e.g., normalization to the Montreal Neurological Institute template MNI), and 

blurred to improve the signal-to-noise ratio (i.e., smoothing) (Chen & Glover, 2015; Poldrack 

et al., 2011). Next, the general linear model to predict the neuronal response is defined and 

parametric or nonparametric statistical analyses with correction for multiple comparisons are 

computed. Moreover, repeated rigorous quality controls throughout data acquisition, 

preprocessing, and analysis pipeline warrant the quality of data and correct interpretation of 

results.  

In the past years, researchers have meticulously studied the neuronal correlates of CD and 

linked brain activity to behavioral characteristics. In line with the behaviorally observed 
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impairments in emotion processing and regulation, neuroimaging evidence has overall 

indicated altered brain function in several areas in DBD. As such, brain alterations in 

orbitofrontal, dorsolateral, and dorsomedial prefrontal cortices, temporal lobe, and limbic 

regions (amygdala, insula, and cingulate gyrus) were detected during different tasks engaging 

the emotion processing network of the brain, for example emotional Theory of Mind, 

empathy for pain, or face processing tasks (Baker, Clanton, Rogers, & De Brito, 2015; 

Fairchild et al., 2014; Passamonti et al., 2010). However, research has produced mixed 

findings regarding the direction of the neuronal response of these regions. While some report 

hypoactivations, others report hyperactivations in adolescents with disruptive behavior. This 

is likely due to symptom heterogeneity, variation in tasks employed, differences in the clinical 

sample chosen, age and sex of the participants, or the presence of CU traits. For example, 

studies have reported both increased (Herpertz et al., 2008; Sebastian et al., 2014; Sterzer, 

Stadler, Krebs, Kleinschmidt, & Poustka, 2005; Viding et al., 2012) and decreased (Jones, 

Laurens, Herba, Barker, & Viding, 2009; Marsh et al., 2008; Sebastian et al., 2012) amygdala 

activity in response to emotional face processing or emotional Theory of Mind tasks related to 

variations in CU traits (Baker et al., 2015; Blair, 2010a). Increased amygdala activity has been 

reported for individuals with low levels of CU traits, whereas decreased amygdala activation 

has been detected in individuals with elevated CU traits.  

Based on the impulsive patterns of behavior observed in adolescents with CD, research has 

moreover investigated response inhibition in CD. While some studies have reported impaired 

response inhibition performance in CD (Castellanos-­‐Ryan, Rubia, & Conrod, 2011; van der 

Meer & van der Meere, 2004), other investigations have not detected such differences (Banich 

et al., 2007; Rubia et al., 2010; Rubia et al., 2008). Evidence in adults with psychopathic or 

CU traits, in contrast, has consistently reported an improved performance during response 

inhibition (Blair et al., 2006; Hiatt, Schmitt, & Newman, 2004; Schiffer et al., 2014; Sommer, 

Hajak, Döhnel, Meinhardt, & Müller, 2008), potentially indicating a developmental effect or 

effects of antisocial symptom severity. Neuroimaging studies in adolescents with CD or 

conduct problems have revealed alterations in a wide network of brain regions. More 

specifically, they have detected neuronal increases (Banich et al., 2007) and decreases (Rubia 

et al., 2010; Rubia et al., 2009; Rubia et al., 2008) in the medial prefrontal cortex, 

temporoparietal, occipital, subcortical, and limbic regions during visuo-spatial response 

inhibition tasks (Banich et al., 2007; Rubia et al., 2010; Rubia et al., 2009; Rubia et al., 2008). 

In the upcoming section we will more extensively review previous behavioral and 

neuroimaging findings of emotion regulation in healthy individuals and adolescents with CD.  
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1.3 Emotion regulation 

Experiencing emotional states and adapting one’s own behavior in order to respond 

appropriately to environmental cues involves the use of emotion regulation skills, a broad 

term that subsumes at least two cognitive processes: implicit and explicit emotion regulation 

(Gyurak, Gross, & Etkin, 2011). Implicit emotion regulation is automatic and not monitored 

by the individual, whereas explicit emotion regulation is conscious, actively monitored 

(Gyurak et al., 2011), and involves strategies including reinterpretation of the meaning of an 

emotional stimulus with the explicit goal to influence its emotional impact (i.e., cognitive 

reappraisal, Gross (1998)). The following sections will focus on evidence on a form of 

implicit emotion regulation, namely emotion-cognition interaction, and explicit emotion 

regulation by cognitive reappraisal in healthy individuals and those with DBD. 

1.3.1 Emotion-cognition interaction 

Successfully integrating emotionally salient information and cognitive processes that serve 

goal-directed behavior is a prerequisite for healthy functioning (Blair, 2002; Okon-Singer, 

Hendler, Pessoa, & Shackman, 2014; Tugade, Fredrickson, & Feldman Barrett, 2004), a skill 

which has been repeatedly reported to be deficient in neuropsychiatric disorders, such as 

anxiety disorders (Blair et al., 2012; Hasler, Mondillo, Drevets, & Blair, 2009), post-traumatic 

stress syndrome (Mueller-Pfeiffer et al., 2010; Roy, Costanzo, Blair, & Rizzo, 2014; 

Vythilingam et al., 2007; White, Costanzo, Blair, & Roy, 2015), and ADHD (Hwang et al., 

2015), and has further been suggested to be impacted in CD (Hwang et al., 2016). However, 

in order to understand the impairments observed in neuropsychiatric disorders, it is crucial to 

examine healthy functioning in a first step. 

Behavioral studies investigating implicit emotion-cognition interaction in healthy adults have 

provided insights into the successful integration of these processes. Past investigations have 

reported both improvements as well as impairments due to emotion stimulation prior to tasks 

demanding cognitive resources, and have resulted in a broad understanding among 

researchers on different factors that influence emotion-cognition interaction. Stimulus and 

task characteristics, cognitive load, individual differences, and level of threat are all factors 

that have been shown to substantially impact the nature of emotion-cognition interaction 

(Cohen & Henik, 2012; Gupta, Hur, & Lavie, 2016; Hartikainen, Ogawa, & Knight, 2000; 

Okon-Singer, Lichtenstein-Vidne, & Cohen, 2013). As a result, experiencing emotions may 

differently impact consequent cognitive behavior. Visual or auditory emotional stimulus 

presentation has shown to improve cognitive performance (i.e., shorter reaction times and/or 
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higher accuracy) during conflict processing, visual attention, or decision making (Kanske & 

Kotz, 2011; Schupp et al., 2007; Zinchenko, Kanske, Obermeier, Schroger, & Kotz, 2015). In 

contrast, impaired cognitive performance (i.e., longer reaction times and/or lower accuracy) 

after emotion presentation was detected during a variety of tasks including working memory 

(Dolcos & McCarthy, 2006; Uher, Brooks, Bartholdy, Tchanturia, & Campbell, 2014), 

perceptual (Gupta & Deák, 2015), and response inhibition tasks (Blair et al., 2007; Hart, 

Green, Casp, & Belger, 2010; Hwang, White, Nolan, Sinclair, & Blair, 2014; Sommer et al., 

2008). 

Functional MRI studies have reported an implication of parietal, prefrontal, and limbic 

regions such as the amygdala, insula, and anterior cingulate during implicit emotion-cognition 

interaction using tasks integrating emotional stimuli with different cognitive stimuli (e.g., 

working memory (Gray, Braver, & Raichle, 2002; Kellermann et al., 2011), arithmetic (Van 

Dillen, Heslenfeld, & Koole, 2009), or response inhibition tasks (Etkin, Egner, Peraza, 

Kandel, & Hirsch, 2006; Gu, Liu, Van Dam, Hof, & Fan, 2013; Melcher, Born, & Gruber, 

2011; Rahm, Liberg, Wiberg-Kristoffersen, Aspelin, & Msghina, 2013; Sommer et al., 2008); 

for a review see Cromheeke and Mueller (2014) or Song et al. (2017)).  

The affective Stroop task is a paradigm that has proven to be a valid measure for implicit 

emotion-cognition interaction and has successfully been implemented by several authors 

(Blair et al., 2007; Hart et al., 2010; Hwang et al., 2016; Hwang et al., 2014). It involves both 

stimuli with strong emotional valence and a Stroop task with variations in cognitive load, 

which is achieved through trials of varying difficulty. More specifically, the Stroop task 

measures response inhibition and consists of congruent trials reflecting a low cognitive load 

(easy task), and incongruent trials reflecting a high cognitive load (difficult task). The Stroop 

effect (Stroop, 1935) represents increased reaction times and lower accuracy for trials with 

high cognitive load compared to trials with low cognitive load (Blair et al., 2007; Hart et al., 

2010; Hwang et al., 2014).	
   Studies using affective Stroop tasks in healthy adults have 

revealed an implication of the amygdala and orbitofrontal cortex in response to emotional 

images, and frontal and cingulate regions in response to Stroop task trials (Blair et al., 2007; 

Hart et al., 2010). Results on the interaction between emotional images and Stroop task trials 

are more complex to interpret. Blair and colleagues (2007) reported significantly decreased 

activity in areas responsible for emotion processing (bilateral amygdala and ventrolateral 

prefrontal cortex) during task performance after emotion processing, especially during high 

cognitive load trials. In line with the model by Desimone and Duncan (1995), the authors 

concluded that activity in the amygdala is reduced due to competing mechanisms of top-down 
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attentional selection evoked by simultaneous emotion and cognitive processing. Hart and 

colleagues (2010), in contrast, detected decreased neuronal activity after emotion stimulation 

in regions such as the insula, superior frontal cortex, and temporal cortex during low cognitive 

load trials, but no decreases during high cognitive load trials. This finding led the authors to 

conclude that increased cognitive load can override decreased activation in insula and 

prefrontal cortex observed during low cognitive load trials. Overall, both studies reported 

decreases in performance and changes in prefrontal and limbic cortex in order to meet 

cognitive demands of high complexity. The observed differences between the two 

investigations (Blair et al., 2007; Hart et al., 2010) may arise from task design variations such 

as the duration and timing of the stimulus presentation, or from sample size differences and 

the specific characteristics of each study. 

Behavioral and neuroimaging evidence has suggested that both emotion and cognitive 

processing are impaired in adolescents with disruptive behavior and even represent risk 

factors for a continuation of antisocial behavior later in life (Campbell, Shaw, & Gilliom, 

2000; Davidson, Putnam, & Larson, 2000; Wang, Chassin, Lee, Haller, & King, 2017; Young 

et al., 2009). Behaviorally, previous studies have revealed impaired performance (longer 

reaction times/higher error rates) during implicit emotion-cognition interaction in adolescents 

with DBD (Euler, Sterzer, & Stadler, 2014; Hwang et al., 2016; Prateeksha, Roopesh, & 

Vijayasagar, 2014).  

To date, one investigation has aimed at revealing the neuronal correlates of implicit emotion-

cognition interaction in DBD (Hwang et al., 2016). The authors reported reduced emotion-

related amygdala and ventromedial prefrontal cortex activity, and reduced cognition-related 

insula activity during an affective Stroop task in DBD. While amygdala and prefrontal cortex 

activity was inversely correlated with CU traits level, insula activity was inversely related to 

ADHD symptomatology. This study provides the only evidence so far indicating neuronal 

dysfunctions during implicit emotion regulation through emotion-cognition interaction in 

adolescents with DBD.  

1.3.2 Cognitive reappraisal 

Cognitive reappraisal is an explicit emotion regulation strategy, which is used to cognitively 

change an emotional experience. More specifically, the meaning of a stimulus and the 

personal connection to it are reinterpreted in order to modify (mostly downregulate) the 

emotional reaction (Gross, 1998; Ochsner, Silvers, & Buhle, 2012). It decreases the negative 

emotion experience by targeting the early stage of emotion generation (Goldin, McRae, 
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Ramel, & Gross, 2008; Szasz, Szentagotai, & Hofmann, 2011; Wolgast, Lundh, & Viborg, 

2011) and can have long-lasting effects (Kross & Ayduk, 2008). 

Cognitive reappraisal has been shown to evoke increased neuronal activation in a wide 

network of cognition-related prefrontal brain regions (dorsomedial, dorsolateral, ventrolateral 

prefrontal cortex), cingulate cortex, and temporoparietal regions. Dorsolateral and posterior 

prefrontal areas are recruited to monitor reappraisal goals, dorsal anterior cingulate cortex to 

monitor if the emotions are reinterpreted in the intended way, ventrolateral prefrontal areas to 

select goal-directed responses, and dorsomedial prefrontal cortex to interpret the own 

emotional state (Kohn et al., 2014; McRae, Ochsner, Mauss, Gabrieli, & Gross, 2008; Kevin 

N Ochsner et al., 2004; Ochsner et al., 2012). Activity in the amygdala, which was elicited by 

the emotions evoked in the first place, is reduced by cognitive reappraisal, in line with the 

behaviorally observed decreases in negative affect (Buhle et al., 2014; Goldin et al., 2008; 

McRae et al., 2010). 

Deficient emotion regulation represents a core impairment across different neuropsychiatric 

disorders, such as anxiety disorders (Mennin, McLaughlin, & Flanagan, 2009), ADHD 

(Shaw, Stringaris, Nigg, & Leibenluft, 2014), or DBD (Teisl & Cicchetti, 2008). Even though 

emotion regulation has been hypothesized to play a substantial role in the development and 

maintenance of CD (Teisl & Cicchetti, 2008), no behavioral or neuronal studies investigating 

explicit emotion regulation by cognitive reappraisal in disruptive behavior exist to date. 

1.4 Gaps in knowledge 

During the last decades, our knowledge on the neuronal mechanisms of typically developing 

individuals and adolescents with CD has increased significantly thanks to numerous studies 

devoted to further characterize this group. Despite the considerable progress within this 

research field, limitations of past studies restrict the conclusions than can be drawn from the 

findings. 

One major limitation of past investigations concerns the small sample sizes most results are 

based on. Potential reasons for this limitation are the high costs implicated in using expensive 

neuroimaging techniques such as MRI, but most importantly challenges in recruitment and 

testing of young neuropsychiatric populations, resulting in a lack of statistical power and low 

reproducibility (Button et al., 2013). Therefore, the findings of past studies are often 

inconsistent, indicating both hyper- and hypoactivations in relevant brain regions. This is 

possibly due to different inclusion criteria with regards to the age range, sex, IQ, and the 
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methods and experimental designs used. Meta-analyses are a valid method to combine the 

results from earlier studies in order to draw an overall conclusion based on statistical 

computations. Coordinate-based meta-analyses such as activation likelihood estimation 

(ALE) meta-analyses as performed via GingerALE (Eickhoff et al., 2009) allow researchers 

to identify brain regions with a consistent neuronal response during performance of a 

particular task or structural alterations by converging the coordinates of MRI findings across 

studies. As such, aim 1 of the present dissertation was to combine the results from previous 

studies investigating the neuronal basis of aggressive behavior with GingerALE in order to 

detect peak coordinate clusters of gray matter volume alterations and neuronal activation 

changes in those adolescents, as well as a potential overlap of structural and functional peaks 

(study 1). 

Past research has investigated not only the way individuals process emotions and perform 

cognitive tasks, but also the interaction thereof, i.e., tasks that demand both emotion and 

cognitive processing (e.g., implicit emotion regulation with the use of an affective Stroop 

task). However, earlier investigations have provided ambiguous results. Moreover, studies 

have often focused on providing novel task designs and findings with increased chances of 

publication. While this may be of great relevance in order to deepen our knowledge, the need 

to replicate previously reported findings has often been neglected. However, only by 

replicating studies, results can be re-evaluated and, ideally, generalized. In line with this idea, 

journals have increasingly acknowledged the value of replication studies within recent years 

(Fletcher & Grafton, 2013). Therefore, aim 2 of this dissertation was to investigate the 

neuronal basis of implicit emotion regulation using an affective Stroop task in healthy young 

adults (study 2). The motivation for this study was twofold: First, replicating results on the 

neuronal mechanisms of healthy emotion-cognition interaction with a child-friendly task 

design based on a previous study by Hart et al. (2010). Second, evaluating the task design for 

further application in adolescents with CD (see aim 3). 

While many studies have provided evidence for altered brain activity in response to emotion 

processing in adolescents with DBD, only one study so far has investigated the neuronal basis 

of implicit emotion-cognition interaction in adolescents with this diagnosis. Moreover, it 

remains unclear whether the observed impairments persist if only including adolescents with a 

strict diagnosis of CD. Therefore, aim 3 of this dissertation was to investigate the neuronal 

basis of implicit emotion regulation using an affective Stroop task in adolescents with CD 

(study 3).  
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Furthermore, the neuronal characteristics of deficient explicit emotion regulation as measured 

by cognitive reappraisal (K. N. Ochsner et al., 2004) have not yet been investigated in CD. 

Within aim 4 of this dissertation, we were therefore targeting at characterizing the neuronal 

basis of cognitive reappraisal in adolescents with CD (study 4) as part of a European 

consortium project (FemNAT-CD, https://www.femnat-cd.eu). 

In addition to the four main aims, three subaims are part of this dissertation. Subaim 5.1 

originated from the need to translate and disseminate scientific findings to the general public, 

and in particular to children and adolescents (study 5). In order to make research accessible to 

a non-expert public and fostering the interest of individuals of all ages in scientific findings it 

is crucial to find an appropriate language. Subaim 5.1 aimed at translating the findings of our 

meta-analysis to the non-scientific community and the youngest members of our society by 

providing them with an understanding of the concept of aggressive behavior, neuroimaging 

methods, and scientific procedure. Subaim 5.2 focused on white matter alterations in female 

antisocial behavior (study 6). Past investigations have focused on investigating white matter 

tracts in males with DBD, but did not yet account for possible sex differences. As such, 

subaim 5.2 aimed at characterizing white matter in females with antisocial behavior with the 

use of diffusion tensor imaging (DTI). Subaim 5.3 involved the investigation of CU traits in 

relation to brain structure in typically developing adolescents (study 7). Alterations in brain 

structure in relation to CU traits have previously been demonstrated in clinical samples. 

However, it is unclear whether CU traits are related to changes in brain structure beyond a 

psychiatric diagnosis. Here, our goal was to shed light on the neuronal correlates of CU traits 

in the absence of antisocial behavior.  

1.5 Aims 

Aim 1/study 1: Investigate structural and functional alterations in adolescents with 

aggressive behavior with an ALE meta-analysis 

• Conduct a systematic literature review on structural and functional correlates of 

aggressive behavior 

• Perform two separate meta-analyses with the use of the GingerALE software in 

order to identify clusters of structural (gray matter volume) and functional 

(neuronal activity during emotion processing) alterations in adolescents with 

aggressive behavior 

• Run a conjunction analysis to detect overlaps between structural and functional 

alterations in adolescents with aggressive behavior 
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Aim 2/study 2: Investigate the neuronal basis of implicit emotion regulation using an 

affective Stroop task in healthy young adults 

Aim 3/study 3: Investigate the neuronal basis of implicit emotion regulation using an 

affective Stroop task in adolescents with CD 

Aim 4/study 4: Investigate the neuronal basis of explicit emotion regulation by cognitive 

reappraisal in adolescents with CD 

Subaims: 

Subaim 5.1/study 5: Translate and disseminate the concept and methods of neuroscience to 

the general public, in particular children and adolescents 

Subaim 5.2/study 6: Investigate white matter alterations in the corpus callosum of females 

with CD 

Subaim 5.3/study 7: Investigate CU traits in relation to brain structure in typically 

developing adolescents 
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2 Study 1 

Structural and functional alterations in right dorsomedial prefrontal and left 

insular cortex co-localize in adolescents with aggressive behavior: An ALE 

meta-analysis 
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Abstract 

Recent neuroimaging work has suggested that aggressive behavior (AB) is associated with 

structural and functional brain abnormalities in processes subserving emotion processing and 

regulation. However, most neuroimaging studies on AB to date only contain relatively small 

sample sizes. To objectively investigate the consistency of previous structural and functional 

research in adolescent AB, we performed a systematic literature review and two coordinate-

based activation likelihood estimation meta-analyses on eight VBM and nine functional 

neuroimaging studies in a total of 783 participants (408 [224AB/184 controls] and 375 [215 

AB/160 controls] for structural and functional analysis respectively). We found 19 structural 

and eight functional foci of significant alterations in adolescents with AB, mainly located 

within the emotion processing and regulation network (including orbitofrontal, dorsomedial 

prefrontal and limbic cortex). A subsequent conjunction analysis revealed that functional and 

structural alterations co-localize in right dorsomedial prefrontal cortex and left insula. Our 

results are in line with meta-analytic work as well as structural, functional and connectivity 

findings to date, all of which make a strong point for the involvement of a network of brain 

areas responsible for emotion processing and regulation, which is disrupted in AB. Increased 

knowledge about the behavioral and neuronal underpinnings of AB is crucial for the 

development of novel and implementation of existing treatment strategies. Longitudinal 

research studies will have to show whether the observed alterations are a result or primary 

cause of the phenotypic characteristics in AB. 
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Introduction 

Aggressive behavior (AB), as observed in social disorders such as DBD (including conduct 

(CD) and oppositional defiant disorder (ODD)), is characterized by a repeated pattern of 

antisocial behaviour and severe aggression, where the basic rights of others, major age-

appropriate norms or societal rules are violated (R. J. Blair, Leibenluft, & Pine, 2014). Such 

problems can cause significant impairment in social, academic, or occupational functioning 

(Association, 2013; Scott, Knapp, Henderson, & Maughan, 2001). Clinical and subclinical 

forms of AB are observed in up to 14% of all girls and 16% of all boys (Ravens-Sieberer et 

al., 2008). The negative impact of aggression-related problems reaches beyond a patient’s 

family, ultimately affecting society as a whole (e.g. school-dropouts, delinquency, teen-

pregnancies, substance abuse or difficulties integrating into work life (Bardone et al., 1998; 

Pedersen & Mastekaasa, 2011; Scott et al., 2001)). Early conduct problems are key precursors 

of persistent AB and thus also predictive for ODD, CD and antisocial personality disorder in 

adulthood (Lahey, Loeber, Burke, & Applegate, 2005). Neurodevelopmental theories (Frick 

& Viding, 2009; Gao, Glenn, Schug, Yang, & Raine, 2009; Glenn & Raine, 2008) and 

longitudinal studies (Vloet, Konrad, Huebner, Herpertz, & Herpertz-Dahlmann, 2008) are in 

line with these behavioural observations, suggesting that the presence of early brain 

alterations in individuals with aggressive behaviour may heighten the risk for long-lasting 

social impairments (McEwen, 2003; Raine & Yang, 2006). In the current paper we 

particularly focus on adolescents with aggressive behaviour (AB), hereby summarizing 

neuroimaging research in youths with either conduct problems, CD or ODD.  

 

In recent years structural (e.g. voxel-based/surface-based) and functional (e.g. fMRI/PET) 

neuroimaging techniques have grown into powerful tools to investigate the neuronal basis of 

the human brain in typically developing individuals as well as patients. It has been 

demonstrated that both, brain structure and function, may be modified by experience 

(Maguire et al., 2000; Schmidt-Wilcke, Rosengarth, Luerding, Bogdahn, & Greenlee, 2010). 

Activation-dependent structural plasticity can even occur after as little as seven days of 

training (Draganski et al., 2004; Driemeyer, Boyke, Gaser, Buchel, & May, 2008) and it is 

suggested to play a key role in human adaptation to environmental changes and disease. Even 

though neuroimaging evidence points toward a neuronal basis of AB (R. J. Blair, 2003; Raine 

& Yang, 2006), the overall number of research studies within this population remains 

relatively scarce. Furthermore, it has to be noted that AB characteristics as seen in CD and/or 

ODD are considered heterogeneous in respect to their pathologies. CD and ODD are 
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frequently associated with comorbidities such as attention-deficit hyperactivity disorder 

(ADHD) or anxiety (Loeber, Burke, Lahey, Winters, & Zera, 2000)). These comorbid 

disorders can differ in their pathophysiological mechanisms, some of them seem exclusive on 

a biological level making it possible that different developmental trajectories with varying 

neurobiological bases lead to the clinical manifestations of AB (Crowe & Blair, 2008). The 

vagueness of the group definition within many of the current studies on AB is thus bound to 

impact general conclusions drawn from it. 

 

Even though the total number of studies is still limited, neuroanatomical and functional 

variations in youths with AB have been reported with increased frequency since the advent of 

modern neuroimaging. In particular, brain structure in AB has been investigated using voxel-

based morphometry (VBM), diffusion tensor imaging (DTI) or surfaced-based morphometry. 

VBM studies for example have revealed differences in gray and white matter volume in brain 

regions including the amygdala, insula, orbitofrontal and dorsomedial prefrontal cortex (e.g. 

(De Brito et al., 2009; Fairchild, Hagan, et al., 2013; Fairchild et al., 2011; Sterzer, Stadler, 

Poustka, & Kleinschmidt, 2007)) when comparing adolescents with AB and typically 

developing controls. Similarly, studies using surface-based morphometry (Hyatt, Haney-

Caron, & Stevens, 2012; Wallace et al., 2014) or DTI (Finger et al., 2012; Haney-Caron, 

Caprihan, & Stevens, 2014; Li, Mathews, Wang, Dunn, & Kronenberger, 2005; Passamonti et 

al., 2012; Sarkar et al., 2013; Zhang et al., 2014a; Zhang, Zhu, et al., 2014) provide evidence 

for structural alterations and/or impaired connectivity within brain regions involved in 

emotion processing, reward and empathy. Functional neuroimaging studies corroborate the 

structural neuroimaging literature. Cognitive paradigms employed in the investigation of AB 

have focused on disturbances in the emotion processing and regulation network of the brain. 

These tasks particularly target emotion processing/regulation (Herpertz et al., 2008; Jones, 

Laurens, Herba, Barker, & Viding, 2009; Lockwood et al., 2013; Marsh et al., 2008; Mathews 

et al., 2005; Passamonti et al., 2010; Sebastian et al., 2014; Stadler et al., 2007; Sterzer, 

Stadler, Krebs, Kleinschmidt, & Poustka, 2005; White et al., 2012), empathy (Decety, 

Michalska, Akitsuki, & Lahey, 2009; Lockwood et al., 2013; Marsh et al., 2013), theory of 

mind (Sebastian et al., 2012), passive avoidance (Finger et al., 2011), decision making (M. S. 

Dalwani et al., 2014; White et al., 2013) or executive functioning (Mathews et al., 2005; 

Rubia et al., 2008; White et al., 2012). Overall, studies point towards aberrant brain function 

in AB in key areas of social cognition and emotion, including prefrontal (orbitofrontal, 
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dorsolateral and medial prefrontal cortex), limbic (e.g. amygdala, anterior insula, cingulate 

cortex) and temporal cortices.  

 

Despite increasing evidence about the uniformity of atypical brain structure and function in 

AB, it has yet to be objectively determined which brain regions are commonly affected. 

Functional and structural neuroimaging studies are crucial for the understanding of the 

phenotype and etiology of AB. However, most results and interpretations are based on 

individual neuroimaging studies and present various limitations (e.g. small sample sizes, low 

reliability, dependency on task chosen (Eickhoff et al., 2009; Raemaekers, du Plessis, 

Ramsey, Weusten, & Vink, 2012; Stark & Squire, 2001)). Furthermore, very few imaging 

studies have yet investigated brain structure and function in the same population. Activation 

likelihood estimation (ALE) meta-analyses allow the identification of consistent findings of 

brain activation and structure across multiple data sets. Hereby, ALE quantitatively 

investigates communalities between reported foci based on modelling them as probability 

distributions centered around the corresponding coordinates. The resulting probability maps 

mirror the likelihood of morphological change and/or activation on a voxel-wise level across 

an entire set of studies (Eickhoff et al., 2009). ALE has been successfully applied in meta-

analyses of various neuropsychiatric disorders to date (Fusar-Poli et al., 2011; Glahn et al., 

2008; Kollndorfer et al., 2013; Linkersdorfer, Lonnemann, Lindberg, Hasselhorn, & Fiebach, 

2012; Schwindt & Black, 2009) and provides a promising tool for a more unified 

investigation of pathophysiologic changes in disease. 

 

Therefore, the present paper intends to close this gap in research and aims to aggregate all 

structural and functional neuroimaging studies conducted in adolescent AB to date. In a first 

step, we planned to conduct a systematic literature review of neuroimaging findings in 

adolescents with AB. Secondly two separate meta-analyses looking at gray matter volume 

reductions as well as hypoactivations during emotion processing tasks in AB were carried out. 

Finally, we decided to run a conjunction analysis to identify potential overlaps in deviant 

brain structure and function in adolescents with AB.  
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Method 

Participants 

We decided to focus our analysis on adolescents with aggressive behavior (AB) in general as 

opposed to a specific clinical diagnosis. By including both community samples and clinical 

samples in the present meta-analyses we adhere to the heterogeneity in juvenile aggression. 

This heterogeneity is further reflected by different behavioral symptoms of aggression and 

antisocial tendencies, such as oppositional behavior, impulsive hot-tempered quarrels or 

premeditated violent acts, the presence of callous unemotional/psychopathic traits or co-

morbid conditions in CD and ODD patients. All studies were conducted during childhood 

and/or adolescence and share the communality of aggression and antisocial tendencies within 

the populations studied. Thus, AB as defined here may be considered an umbrella term for 

children and adolescents with a range of subclinical and clinically relevant symptoms of 

pathological aggression. 

 

Study Selection 

For the structural and functional neuroimaging meta-analyses we used PubMed and Google 

Scholar to systematically search for neuroimaging literature in AB. Literature searches were 

conducted and reviewed by several research team members (NMR, WMM, LVF, ET) and 

adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines and the revised Quality Of Reporting Of Meta-analyses (QUOROM) 

statement (Moher, Liberati, Tetzlaff, Altman, & Group, 2009). Our main search (see Figure 

1) conducted through PubMed included the following key words: “conduct disorder”, 

“conduct problems”, “disruptive behavior disorder”, “oppositional defiant disorder” and 

“aggression”, each in combination with methodologically relevant terms including “VBM”, 

“fMRI” and/or “neuroimaging”. Moreover, a number of review articles published on conduct 

disorder, antisocial behavior and aggression in adolescents were considered (e.g. (Anderson & 

Kiehl, 2014; R. J. Blair, 2010; Cappadocia, Desrocher, Pepler, & Schroeder, 2009; Dolan, 

2010; Fairchild, van Goozen, Calder, & Goodyer, 2013; Viding & McCrory, 2012; Vloet et 

al., 2008)). Finally, additional publications were explored by searching the reference list of 

the articles obtained to assure integration of all data available. Studies were included in our 

meta-analyses if the following criteria were given: (I) included at least one clinical group with 

described aggressive behavior, (II) in combination with a healthy control sample, (III) 

conducted during adolescence, (IV) reported whole brain gray matter volume alterations or 

whole brain functional neuroimaging data, (V) results are described using a standard 
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reference space (Talairach or MNI) and (VI) the same threshold was used throughout the 

whole brain analysis. All structural studies included employed a standard VBM analysis 

protocol. In both meta-analysis of structural and functional brain alterations in adolescents 

with AB versus controls, no studies providing results based on a priori region-of-interest 

analysis only were included (since they violate the assumption, under the null hypothesis, that 

the likelihood of locating activated foci is equal at every voxel). Similarly, no animal studies 

or case reports were included in any meta-analysis and only studies from peer-reviewed 

journals that are written in English were considered. Data is current up to July 2015. 

 
Figure 1. Systematic literature research. Literature research according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the 
revised Quality Of Reporting Of Meta-analyses (QUOROM) statement (59) resulting in 17 
neuroimaging studies included in the current meta-analyses. 
 

Of the 1021 studies identified through our systematic review (see Figure 1), we screened 930 

(after removal of duplicates) and consequently assessed the full texts of 173 articles. 156 



Study 1: Meta-analysis on neuronal alterations in aggression 
 

22 
 

studies had to be excluded from the functional or structural meta-analysis in adolescents with 

AB, because they did not meet the criteria listed above (for detailed exclusion reasons, see 

Figure 1). Looking more closely at our review on structural research studies in AB revealed 

that only five studies reported on gray matter volume increases in AB (four reported de- and 

increases, one study only reported increases). Therefore we did not conduct a separate meta-

analysis for gray matter volume increases in AB. Consequently, eight studies were included in 

our meta-analysis about gray matter volume reductions, together reporting data from 408 

research participants (224 AB, 184 typically developing controls=TD), and 50 foci of gray 

matter volume decreases in youths with AB (Table 1, (M. Dalwani et al., 2011; M. S. 

Dalwani et al., 2015; De Brito et al., 2009; Fahim et al., 2011; Fairchild, Hagan, et al., 2013; 

Fairchild et al., 2011; Huebner et al., 2008; Stevens & Haney-Caron, 2012)).  

 

Table 1. Characteristics of the studies in adolescents with AB included in the current 
structural meta-analysis. 
       # First author Year Method  Diagnosis [N] Sex [m/f] Average age and 

[range] in years 
1 Huebner 2008 VBM CD, early-onset [23] 

TD [23] 
[23/0] 
[23/0] 

CD, early-onset: 14.5 
TD: 14.2 
[12-17] 

2 De Brito 2009 VBM CP/CU+ [23] 
TD [25] 

[23/0] 
[25/0] 

CP/CU+: 11.5 
TD: 11.8 
[10-13] 

3 Dalwani 2011 VBM CP+SUD [25] 
TD [19] 

[25/0] 
[19/0] 

CP+SUD: 16.6 
TD: 16.6 
[14-18] 

4 Fahim 2011 VBM DBD [22; 
11CD/11ODD] 
TD [25] 

[22/0] 
[25/0] 

DBD: 8.4 
TD: 8.4 

5 Fairchild 2011 VBM CD, early-onset [36] 
CD, late-onset [27] 
TD [27] 

[36/0] 
[27/0] 
[27/0] 

CD, early-onset: 17.7 
CD, late-onset: 17.9 
TD: 18.5 
[16-21] 

6 Stevens 2012 VBM CD [24] 
TD [24] 

[19/5] 
[16/8] 
[16/8] 

CD: 15.7 
TD: 16.0 
[12-18] 

7 Fairchild 2013 VBM CD [22] 
TD [20] 

[0/22] 
[0/20] 

CD: 17.6 
TD: 17.2 
[14-20] 
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8 Dalwani 2015 VBM CP [22]TD[21] [0/22][0/2
1] 

CP: 16.7 
TD: 16.1 
[14-18] 

CD = Conduct disorder. DBD = Disruptive behavior disorder. CU+ = with high callous-
unemotional traits. SUD = Substance use disorder. TD = Typically developing subjects. VBM = 
Voxel-based morphometry. 

    
 

Our systematic literature review of functional neuroimaging studies in youths with AB 

identified experiments targeting emotion processing (Herpertz et al., 2008; Jones et al., 2009; 

Lockwood et al., 2013; Marsh et al., 2008; Mathews et al., 2005; Passamonti et al., 2010; 

Sebastian et al., 2014; Stadler et al., 2007; Sterzer et al., 2005; White et al., 2012), empathy 

(Decety et al., 2009; Lockwood et al., 2013; Marsh et al., 2013), theory of mind (Sebastian et 

al., 2012), passive avoidance (Finger et al., 2011), decision making (M. S. Dalwani et al., 

2014; White et al., 2013) or executive functioning (Mathews et al., 2005; Rubia et al., 2008; 

White et al., 2012). We decided to restrict our functional meta-analysis to tasks only including 

emotionally loaded and visually presented stimuli (e.g. tasks of emotion processing and 

empathy). In case of sample overlap, the study with the highest subject number meeting all 

other criteria listed above was selected. In case of comparisons between AB and TD in more 

than one contrast, only foci from the contrast putting the highest demand on emotion 

processing, were included. The majority of studies indicated hypoactivations in AB. Only six 

studies that fulfilled all other criteria listed above reported hyperactivations in AB compared 

to TD. Therefore, we did not conduct a separate meta-analysis on functional overactivations 

in AB. Consequently nine studies suggesting hypoactivations in adolescents with AB 

compared to TD were selected (Table 2; (Fairchild et al., 2014; Lockwood et al., 2013; Marsh 

et al., 2013; Marsh et al., 2011; O'Nions et al., 2014; Passamonti et al., 2010; Sebastian et al., 

2014; Sterzer et al., 2005; White et al., 2012)). Together the selected studies report data from 

375 research participants (215 AB, 160 TD) and describe 58 foci of hypoactivation in AB 

compared to TD.  
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Table 2. Characteristics of the studies in adolescents with AB included in current functional 
meta-analysis. 
# First author Year Stimuli  Diagnosis [N] Sex  Average age and 
      [m/f] [range] in years 
1 Sterzer 2005 Pictures with 

neutral or strong 
negative 
affective valence 
(IAPS). 

  CD [13] 
TD [14] 

 [13/0] 
[14/0] 

CD: 12.9 
TD: 12.7 
[9-15] 

2 Passamonti 2010 Pictures of 
angry, sad and 
neutral faces. 

  CD, early-onset 
[27] 
CD , .late-onset 
[25] 
TD [23] 

[27/0] 
[25/0] 
[23/0] 

CD, early-onset: 
17.7 
CD, late-onset: 
17.1 
TD: 17.8 
[16-21] 

3 Marsh 2011 Emotional words 
(categorization 
task). 

  CD/ODD+PT [14] 
TD [14] 

[8/6] 
[11/3] 

CD/ODD+PT: 
14.4 
TD: 13.5 

4 White 2012 Pictures of 
fearful and 
neutral faces. 

  CD/ODD+PT [15] 
TD [17] 

[12/3] 
[9/8] 

CD/ODD+PT: 
15.7 
TD: 14.5 
[10-17] 

5 Lockwood  2013 Pictures of others 
in pain or no 
pain. 

  CD [37] 
TD [18] 

[37/0] 
[18/0] 

CD: 14.1 
TD: 13.7 
[10-16] 

6 Marsh 2013 Pictures of others 
in pain or no 
pain. 

  CD/ODD+PT [14] 
TD [21] 

[8/6] 
[15/6] 

CD/ODD+PT: 
15.4 
TD: 14.3 
[10-17] 

7 Fairchild 2014 Pictures of 
emotional or 
neutral faces. 

  CD [20] 
TD [20] 

[0/20] 
[0/20] 

CD: 17.0 
TD: 17.6 

8 O'Nions 2014 Cartoons 
(affective picture 
series) 

  CP/CU+ [16] 
TD [16] 

[16/0] 
[16/0] 
[16/0] 

CP/CU+: 14.2 
TD: 13.5 
[10-16]  

9 Sebastian 2014 Pictures of 
fearful and calm 
facial 
expressions. 

  CP/CU+ [17] 
CP/CU- [17] 
TD [17] 

[17/0] 
[17/0] 
[17/0] 

CP/CU+: 14.0 
CP/CU-: 14.5 
TD: 13.5 
[10-16] 

CD = Conduct disorder. CP = Conduct problems. ODD = Oppositional defiant disorder. PT = 
with psychopathic traits. CU+ = with high callous-unemotional traits. CU- = with low callous-
unemotional traits. TD = Typically developing subjects. 
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ALE meta-analysis procedure 

We conducted two separate meta-analyses on gray matter volume alterations and functional 

hypoactivations in adolescents with AB. Data analysis was carried out using the revised 

version of the ALE approach for coordinate-based meta-analysis of neuroimaging data 

(Ginger ALE software, version 2.3; available from http://brainmap.org/ale/ (Eickhoff, Bzdok, 

Laird, Kurth, & Fox, 2012; Eickhoff et al., 2009; Laird et al., 2005; Turkeltaub et al., 2012)). 

In short, this new approach implements a random-effects model, a quantitative uncertainty 

model to determine the FWHM and an exclusive gray matter mask (for further details, see 

also (Eickhoff et al., 2012; Eickhoff et al., 2009; Laird et al., 2005; Stark & Squire, 2001; 

Turkeltaub et al., 2012)). Most importantly, instead of testing for an above-chance clustering 

between foci, the revised ALE algorithm assesses above-chance clustering between 

experiments. The spatial relationship between foci in a given experiment is now assumed to 

be fixed and ALE results are assessed against a null distribution of random spatial association 

between experiments. Prior to running any analyses, coordinates reported in Talairach space 

were transformed to MNI space using the tal2icbm algorithm (Laird et al., 2010; Lancaster et 

al., 2007). The here employed revised ALE approach identifies areas of convergence of 

activation across various experiments, minimizing the within-groups effects (approach by 

Turkeltaub and colleagues (Turkeltaub et al., 2012)). Each focus is represented as a center for 

3D Gaussian probability distributions, where the standard deviation depends on group size 

(capturing spatial uncertainty) rather than single time points. First, the probabilities of all 

activation foci in a given experiment are combined for each voxel, which is represented in 

modelled activation maps (fMRI) or modelled anatomical maps (VBM). Secondly, the ALE 

method combines all modelled maps (fMRI and VBM separately) on a voxel-by-voxel basis 

to form an ALE image containing all unthresholded voxel ALE values. In the last step, this 

ALE image is tested against the null hypothesis under the assumption that all activated voxels 

are homogeneously distributed in the brain, independent of the experiments. This null-

hypothesis model (a distribution map made by multiple permutations of random voxel 

activation) was created using a random-effects statistical method and tested against the 

original ALE image according to the selected significance threshold. Therefore, the null 

distribution is constructed reflecting a random spatial association between different studies. 

Comparing the “true” ALE score to this distribution allows a focused inference on 

convergence between studies while preserving the relationship between individual foci within 

each study. Critically, this change from fixed- (foci-based) to random-effects (testing between 

study effects) inference in ALE analysis allows generalization of the results to the entire 
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population of studies from which the analyzed ones were drawn. This more conservative 

approach with an increased specificity (Eickhoff et al., 2012; Eickhoff et al., 2009) does also 

accommodate the idea of convergence across heterogeneous studies. We used a statistical 

threshold of p<0.05 False Discovery Rate (FDR) corrected for multiple comparisons and a 

minimum cluster size of 500mm3. ALE maps are overlaid onto a standard brain in MNI space 

(Colin27 available at http://www.brainmap.org/ale/) using the Multi-image Analysis GUI 

(Mango available at http://ric.uthscsa.edu/mango/mango.html) and clusters were anatomically 

labelled by cross-referencing the Talairach Daemon (Lancaster et al., 1997; Lancaster et al., 

2000) and aal (Tzourio-Mazoyer et al., 2002). In order to further investigate possible overlaps 

between the structural (VBM) and functional (fMRI) meta-analysis in adolescent AB, a 

formal conjunction analysis was performed by multiplying binarized versions of the 

individually thresholded ALE maps. 

 

Results 

Our meta-analysis of structural neuroimaging studies in adolescents with AB revealed 19 

clusters of significant convergence between the studies (see Table 3; Figure 2). The largest 

clusters were found in the right inferior frontal lobe (inferior frontal/precentral gyrus), right 

precuneus and left-hemispheric insula. Further smaller clusters were found bilaterally in the 

frontal (e.g. dorsolateral and medial frontal gyrus), parietal (e.g. precuneus) and temporal lobe 

(e.g. middle/superior temporal gyrus) as well as the cerebellum (e.g. culmen). Our meta-

analysis of functional hypoactivation in adolescents with AB revealed 8 clusters of significant 

convergence between the studies with the largest clusters in the right middle/superior frontal 

gyrus, left thalamus and basal ganglia, as well as left-hemispheric insula (see Table 3, Figure 

2). Beyond others, further clusters included the right anterior cingulate, left middle temporal 

gyrus and right amygdala. 
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Figure 2. Neuronal alterations in adolescents with aggressive behavior (TD>AB): Results 
from an ALE meta-analysis. 2-D axial slices displaying the thresholded and binarized ALE 
maps of significant overlap (p<0.05, FDR-corrected) in studies of structural (green) and 
functional (red) alterations in adolescent AB (TD>AB) as well as a conjunction analysis 
(blue) overlaid on the Colin T1-template in MNI space. Z-slices depicting the results range 
from z=21 to 120 and are displayed in neurological view using the Multi-image Analysis GUI 
(Mango available at http://ric.uthscsa.edu/mango/mango.html). 
 

Table 3. Results of the structural and functional ALE-meta analyses and conjunction analysis 
of structure and functional alterations in adolescents with AB 

#  Region BA H Volume Local Maxima 
   x          y           z                         

 

Structural Meta-Analysis 
(TD>AB) 

       

1 inferior frontal/precentral 
gyrus, 

13, R 1952 54 16 10  

 insula 44 , 45   62 20 6  
     56 26 16  
2 subcallosal gyrus, putamen,  34 R 1672 26 4 -16  
 lateral globus pallidus, 

amygdala 
   22 4 -8  

     14 10 -12  
3 inferior frontal gyrus 45, 47 R 1304 52 26 -10  
4 insula 13 L 1144 -38 8 8  
     -38 4 -2  
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5 middle/superior frontal gyrus 9,8 R 1112 34 48 30  
     40 38 30  
6 middle/inferior frontal gyrus 10,46 L 1040 -36 48 -2  
     -46 48 2  
7 putamen, claustrum  R 688 34 2 -2  
8 thalamus  R 560 20 -30 8  
9 subcallosal/middle frontal 

gyrus, cingulate 
25 R 528 10 14 -22  

10 cingulate/middle frontal gyrus 32 L 528 -10 24 42  
11 claustrum  L 520 -24 20 8  
12 claustrum, insula  R 520 32 14 10  
13 subcallosal/parahippocampal 

gyrus, amygdala 
34 L 512 -30 4 -18  

14 culmen, declive  R 512 4 -58 -16  
15 caudate  R 512 10 14 2  
16 thalamus  L 512 -8 -16 15  
17 inferior frontal gyrus 47 R 504 46 26 -30  
18 middle temporal gyrus 37 R 504 54 -68 12  
19 superior frontal gyrus 9 R 504 18 56 20  
#  Region BA H Volume Local Maxima 

   x             y          z                              
Functional Meta-Analysis (TD>AB)           
1 middle/superior frontal 

gyrus, 
8, 9,  R/L 3728 14 44 30 

  
anterior cingulate gyrus 

10, 32   8 36 28 

     22 48 22 
     32 50 14 
     0 36 24 
2 thalamus, lentiform nucleus,  L 1944 -6 -12 -4 

 putamen, medial globus 
pallidus 

   -26 -8 -12 

 amygdala    -16 -8 -4 
3 claustrum, insula 13 L 1896 -28 20 0 

     -38 20 12 
4 middle frontal gyrus,  11, 24 R 1328 12 30 -20 

 anterior cingulate    4 30 -14 
5 inferior/middle temporal 

gyrus 
21 L 1288 -48 -8 -26 

6 amygdala, parahippocampal  28 R 1224 30 -4 -28 
 gyrus     20 -2 -30 
7 claustrum, putamen, insula 13 R 776 28 20 0 

     30 24 -2 
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8 superior, middle frontal 
gyrus 

9 R 552 14 60 16 

        
Conjunction: Structural (TD>AB) ∩ Functional (TD>AB)    
1 superior frontal gyrus 

(dmPFC) 
9 R 128 16 58 18 

2 claustrum, insula  L 8 -26 20 4 
3 claustrum, insula   L 8 -28 18 6 

All x, y, z-coordinates represent local maxima in MNI space. AB=Aggressive Behavior. 
Volume=Volume (mm3). TD=Typically developing controls. H=Hemisphere. BA= 
Brodmann areas. R=Right. L=Left. 
 

A formal conjunction analysis using the thresholded ALE maps from the structural and 

functional meta-analysis discovered three areas of regional overlap (Table 3, Figure 3). The 

biggest area of functional and structural overlap (128mm3) in adolescents with AB was 

identified within the right dmPFC. Additionally, the analysis exposed two smaller, close-lying 

clusters of convergence with a peak in the left claustrum, extending into the insular cortex.  

Figure 3. Structural and functional neuroimaging findings in youths with AB co-localize 
in right dorsomedial prefrontal cortex (dmPFC) and left insular cortex. 2-D slices 
displaying the thresholded and binarized ALE maps of significant overlap (p<0.05, FDR-
corrected) in studies of structural (green) and functional (red) alterations in adolescents with 
AB (TD>AB) as well as a conjunction analysis (blue) overlaid on the Colin T1-template in 
MNI space. The upper-row including left cut-out as well as right surface-model highlight the 
right dmPFC where structural and functional alterations co-localize. The lower-row including 
left cut-out as well as right surface-model illustrate left insular cortex/claustrum where 
structural and functional alterations overlap.  
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Discussion 

To our knowledge, the current work provides the first quantitative summary of functional 

hypoactivations and gray matter volume reductions in adolescents with AB by summarizing 

findings of eight structural and nine functional neuroimaging studies in a total of 783 

participants (408 [224 AB/184 TD] and 375 [215 AB/160 TD] for structural and functional 

analysis respectively). Our findings indicate 19 structural and eight functional foci of 

significant alterations in AB, mainly located within the emotion processing and regulation 

network of the human brain (including orbitofrontal, dorsolateral/medial prefrontal cortex and 

limbic brain regions; for reviews on emotion processing and regulation see also (Lindquist, 

Wager, Kober, Bliss-Moreau, & Barrett, 2012; Ochsner, Silvers, & Buhle, 2012; Rubia, 

2011)). Conjunction analysis reveal that functional and structural alterations in AB overlap in 

three areas, with the largest cluster centered in the right dmPFC and two smaller clusters that 

encompass the left insula. 

 

In the following sections we will review structural and functional neuroanatomical evidence 

derived from healthy participants as well as those with aggressive behavior (e.g. conduct 

problems, CD, ODD) for the key areas implicated here (orbitofrontal and dorsomedial 

prefrontal cortex, insula, cingulate cortex, amygdala). 

 

Orbitofrontal and Dorsomedial Prefrontal Cortex 

Our findings identify prefrontal brain regions including orbitofrontal and dorsomedial 

prefrontal cortex as main locations of aberrant brain function and structure in youths with AB. 

Furthermore, an overlap in the foci representing structural and functional changes that co-

localize in AB is centered in the right dmPFC. While the orbitofrontal as well as the 

dorsomedial prefrontal cortex can be differentiated based on quantitative as well as qualitative 

markers (Zald, 2007), both have equally been suggested in emotion processing and working 

memory/inhibitory control (Golkar et al., 2012). The medial prefrontal cortex in particular has 

been implicated in emotional self-regulation (Davidson, Jackson, & Kalin, 2000), general 

self-referential activities (D'Argembeau et al., 2007) and emotion-related decision making 

(Euston, Gruber, & McNaughton, 2012). Meta-analytic evidence suggests a more generic role 

of the dmPFC in emotion processing (e.g. appraisal, evaluation, experience, response), non-

specific to a particular emotion (Phan, Wager, Taylor, & Liberzon, 2002). In addition, lesion, 

neurophysiological and neuroimaging evidence have linked the orbitofrontal and dorsomedial 

prefrontal cortex to stimulus-reinforcement association learning (Bechara, Damasio, & 
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Damasio, 2000). The ability to rapidly decode and readjust values of different input signals is 

likely to be crucial to emotional behavior and may ultimately influence emotional learning. It 

has been suggested that the observed deficits in decision making may directly result from 

aberrant emotion processing as for example observed after frontal brain damage (Bechara et 

al., 2000). Research has for instance demonstrated that aberrant self-monitoring abilities may 

be responsible to preclude the generation of social emotions typically associated with the 

resolution of social mistakes (Beer, John, Scabini, & Knight, 2006). Finally, a whole line of 

evidence (e.g. (Beyer, Munte, Gottlich, & Kramer, 2014; R. J. Blair, 2003; Potegal, 2012)) 

has linked the prefrontal cortex to aggression. In its extreme, antisocial personality disorder 

and psychopathy are exemplary for individuals displaying increased aggressive behavior and 

studies of both have linked structural (Ermer, Cope, Nyalakanti, Calhoun, & Kiehl, 2012; 

Raine, Lencz, Bihrle, LaCasse, & Colletti, 2000) and functional (Decety, Skelly, & Kiehl, 

2013; Liu, Liao, Jiang, & Wang, 2014) changes to the prefrontal cortex.  

 

Insula 

Both our functional and structural AB meta-analysis have found significant clusters of 

hypoactivations or altered brain structure within the insula. In addition to that, two smaller 

clusters reached significance in the left insular cortex during our conjunction analysis, 

mapping structural and functional alterations in youths with AB. The insula or insular cortex 

is part of the cerebral cortex forming the base of the lateral sulcus (or sylvian fissure 

(Gasquoine, 2014)). From a neurodevelopmental perspective it is the first region of the cortex 

to develop and differentiate around 6 weeks of fetal life (Afif, Bouvier, Buenerd, Trouillas, & 

Mertens, 2007). The insula is bi-directionally connected to various brain regions, including 

the orbitofrontal cortex, anterior cingulate, supplementary motor areas, parietal and temporal 

cortices, but also to subcortical structures such as the amygdala, basal ganglia and thalamus 

(Dupont, Bouilleret, Hasboun, Semah, & Baulac, 2003; Gasquoine, 2014). Connectivity to 

and from the insula is divided, in that the anterior part of the insula has greater connectivity 

with the frontal lobe, while posterior parts are more strongly connected to the parietal lobe. 

Neuroimaging evidence has suggested that the insula may play a key role in the awareness of 

bodily sensations and affective feelings (A. D. Craig, 2009; Lindquist et al., 2012). Meta-

analytic data supports this idea, and suggests that the insula is a key player in the evaluation, 

experience or expression of internally generated emotions (Phan et al., 2002). Particularly the 

left insula, along with frontal and temporal brain regions, is associated with anger (Lindquist 

et al., 2012). Furthermore, an emotion-specific role of the insula for disgust (Phillips et al., 
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1997) has been discussed. However, the majority of neuroimaging findings and meta-analytic 

reviews to date support a generic role of the insula in emotional behavior (e.g. (Lindquist et 

al., 2012; Phan, Wager, Taylor, & Liberzon, 2004)).  

 

Atypical neuronal functioning of the insula (e.g. during tasks of emotion processing and 

empathy) are linked to AB (e.g. (Decety et al., 2013; Lockwood et al., 2013)). However, so 

far, both hyper- (Decety et al., 2009; Fairchild et al., 2014) and hypoactivations (Lockwood et 

al., 2013; Passamonti et al., 2010; Rubia et al., 2009) are observed during tasks of empathy, 

face or pain processing. In psychopathy particularly fear conditioning has been linked to 

aberrant insula activation (Birbaumer et al., 2005). Functional atypicalities within the insula 

are further observed in borderline personality disorder (Koenigsberg et al., 2009), 

schizophrenia (Manoliu et al., 2013), depression (Manoliu et al., 2014) or anorexia nervosa 

(Bar, Berger, Schwier, Wutzler, & Beissner, 2013). Gray matter volume alterations within the 

insula are associated with various psychiatric conditions beyond antisocial populations (e.g. 

(Ermer et al., 2012; Sterzer et al., 2007)), including bipolar disorder (Selvaraj et al., 2012), 

schizophrenia (Glahn et al., 2008), drug dependence (Garavan, 2010), major depression 

(Bora, Fornito, Pantelis, & Yucel, 2012) or anorexia nervosa (Nunn, Frampton, Fuglset, 

Torzsok-Sonnevend, & Lask, 2011).Therefore, the neuronal and structural alterations within 

the insula may reflect a characteristic of psychiatric conditions per se (Gasquoine, 2014).  

 

Cingulate Cortex 

The cingulate cortex showed functional as well as structural foci of significance in each of our 

two meta-analyses individually. Cytoarchitectonically, the cingulate gyrus may be divided 

into four functionally independent but interconnected subregions, including the anterior 

cingulate cortex (emotion), the midcingulate cortex (response selection), the posterior 

cingulate cortex (personal orientation), and the retrosplenial cortex (memory formation and 

access) (Vogt, 2005). Overall the cingulate cortex has been implicated in the regulation of 

cognitive as well as emotional processes (Phan et al., 2002; Vogt, 2005) (e.g. processing of 

acute pain (Shackman et al., 2011) or affective stimulus material (Vogt, 2005)), most likely 

through an interaction with the prefrontal cortex, anterior insula, premotor area, the striatum 

and cerebellum (Derbyshire, 2000; Vogt, 2005). We here particularly identified regions 

within the bilateral anterior cingulate as foci of interest through both our functional and 

structural meta-analysis. While dorsal aspects of the anterior cingulate have been linked to 

tasks of executive functioning (Botvinick, 2007; Ridderinkhof, Ullsperger, Crone, & 
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Nieuwenhuis, 2004), the anterior part of the cingulate is part of the emotion processing 

network (Botvinick, 2007; Etkin, Egner, Peraza, Kandel, & Hirsch, 2006). It is further 

suggested that the cingulate gyrus may serve as a transition and/or interaction zone between 

affective and cognitive processing (Phan et al., 2002). 

 

Studies in AB and antisocial personality disorder have found both gray and white matter 

increases as well as decreases within the cingulate (e.g. (De Brito et al., 2009; Fahim et al., 

2011; Wu, Zhao, Liao, Yin, & Wang, 2011; Yeh et al., 2009)); the developmental pathway 

within this region thus still needs further assessment. Hypoactivation in AB within the 

cingulate has been reported during tasks of emotion processing (Stadler et al., 2007; Sterzer et 

al., 2005), empathy (M. Dalwani et al., 2011; Lockwood et al., 2013), response inhibition 

(Zald, 2007) and sustained attention (Rubia et al., 2009). Similarly, individuals with antisocial 

personality disorder or psychopathic tendencies show reduced activation within the cingulate 

during tasks of emotion processing and conflict resolution, as for example observed in moral 

decision making (Glenn, Raine, & Schug, 2009; Prehn et al., 2013), deception (Jiang et al., 

2013), frustration (Pawliczek et al., 2013) and emotion processing (Kiehl et al., 2001). 

 

Amygdala 

Both our functional and structural meta-analyses have identified the right and left-

hemispheric amygdala as significant foci of interest, even though this area has not reached 

significance in our conjunction analysis. The amygdala is crucial for the perception and 

encoding of emotionally loaded stimulus material and has been suggested as the brain locus of 

fear (e.g. detection, generation, maintenance of fear and coordination of response in the 

danger of such) (LeDoux, 2000; Lindquist et al., 2012). To summarize the existing fMRI 

evidence, neuronal activation within the amygdala has been observed in healthy individuals in 

tasks that include arousing stimulus material (e.g. emotionally loaded images (Garavan, 

Pendergrass, Ross, Stein, & Risinger, 2001; Irwin et al., 1996), facial expressions (Morris et 

al., 1998; Vuilleumier, Armony, Driver, & Dolan, 2001; Whalen et al., 1998) or words 

(Hamann, Ely, Hoffman, & Kilts, 2002; Kensinger & Schacter, 2006)), during tasks of 

empathy (Baron-Cohen et al., 1999; Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003), 

moral reasoning (Luo et al., 2006) or when processing potential threats (Phelps et al., 2001)). 

A range of tasks investigating amygdala responses to different evocative stimulus material led 

to the suggestion that increased activation within the amygdala may particularly mirror 

affective processing under acute danger or threat, rather than fear per se (Phan et al., 2002). 
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Furthermore, neuronal activation is thought to mirror dispositional affective style (Davidson 

& Irwin, 1999; Phan et al., 2002), whereby increased amygdala activity correlates with 

affective reactivity to negative stimuli. Interestingly, amygdala activation in response to 

emotionally loaded stimuli may be attenuated by task demand (K. S. Blair et al., 2007; Etkin 

et al., 2006; Mitchell et al., 2007) or comorbid anxiety and depression symptoms (Sterzer et 

al., 2005). For example, concurrent goal-directed processing can disrupt amygdala activation 

that is evoked by emotional images (K. S. Blair et al., 2007). This is in line with meta-analytic 

evidence indicating that studies employing a cognitive task during affect processing are less 

likely to demonstrate amygdala activation (Phan et al., 2002).  

 

Because of its role in aversive conditioning, instrumental learning and fear processing, the 

amygdala is often chosen as a region of interest in investigations targeting AB, antisocial 

personality disorder or psychopathy (R. J. Blair, 2003). Amygdala dysfunction is suggested to 

be one of the core features in the symptomatology of antisocial disorders (e.g. (R. J. Blair, 

2003; Dolan & Fullam, 2009; Sebastian et al., 2014; Sterzer et al., 2005)). Structurally, the 

amygdala is altered in AB similarly as in antisocial personality disorders and psychopathy 

(e.g. (Boccardi et al., 2011; M. C. Craig et al., 2009; Sterzer et al., 2007)). Finally, it is to note 

that the amygdala is strongly interconnected with the orbitofrontal brain regions and 

alterations in the connectivity between these two centers have been reported in AB and 

psychopathy (e.g. connectivity between key regions of the emotion processing and regulation 

network (e.g. (R. J. Blair, 2007; van Honk & Schutter, 2006), for a further discussion see 

following section). 

 

Structure-Function Relationship and Connectivity Findings 

While neuroplasticity is known to potentially range from synaptic plasticity to more complex 

changes (e.g. shrinkage in cell size, neural or glial cell genesis, spine density or even changes 

in blood flow or interstitial fluid (May et al., 2007)), the neurophysiological basis of 

experience-induced neuroplasticity is still a matter of extensive research (Schmidt-Wilcke et 

al., 2010). Some studies indicate that functional and structural measures of plasticity may be 

related. For example it could be hypothesized that experience-related gray matter volume 

changes correspond to task-specific processing, or, more precisely, synaptic remodeling 

within specific processing areas (Ilg et al., 2008). Another possibility may be that impaired 

connectivity between key regions leads to the functional alterations observed. For example 

researchers have argued that the social and emotional deficits seen in AB may be mediated by 
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impaired connectivity between the emotion processing and regulation network (R. J. Blair, 

2007; van Honk & Schutter, 2006). These system-specific deficits may be observed by 

diffusion tensor imaging and tractography measurements. For example, the uncinate 

fasciculus is a white-matter tract connecting the amygdala and neighboring anterior temporal 

lobe with the orbitofrontal cortex and it thus may be involved in facilitating empathy, emotion 

regulation and socio-cognitive processes (Von Der Heide, Skipper, Klobusicky, & Olson, 

2013). Such models would for example explain why local changes in brain structure cannot 

always be inferred from purely functional models. For example in individuals with reactive 

aggression aberrant amygdala activity but intact amygdala structure is observed (Bobes et al., 

2013). In such cases it is possible that impaired fiber connections (e.g. reduced functional 

anisotropy in the uncinate fasciculus) to and from this area cause the neuronal differences 

observed (Bobes et al., 2013). In line with evidence in AB (Bobes et al., 2013) significant 

differences in the fractional anisotropy (FA) measures of the uncinate fasciculus have been 

demonstrated in adolescents with conduct disorder (Passamonti et al., 2010; Sarkar et al., 

2013) as well as in adult psychopathy (M. C. Craig et al., 2009; Motzkin, Newman, Kiehl, & 

Koenigs, 2011). Similarly, studies of intrinsic connectivity (resting state) explore functional 

networks that are non-stimulus driven and may inform about the basic functional brain 

architecture while implicating anatomical connectivity of the regions involved (Buckner, 

Krienen, Castellanos, Diaz, & Yeo, 2011). In individuals with antisocial personality disorder 

this intrinsic connectivity between highly interconnected brain centers is disrupted (Tang, 

Jiang, Liao, Wang, & Luo, 2014).  

 

Independent of the precise neurophysiological nature of structure-function associations, our 

results have indicated co-localized structural and functional deficits in right dmPFC and left 

insular cortex. Based on today’s structure-function knowledge we thus hypothesize that 

decreased synaptic density may have led to a co-localized decrease within the BOLD response 

measured through fMRI. However, it has to be noted that here we only investigate co-

localized structure-function findings that are based on gray matter volume reductions and 

functional hypoactivations in AB. This limitation (no volume increases or hyperactivity 

investigated) is due to the nature of the existing neuroimaging evidence, with only five studies 

reporting gray matter volume increases and six studies providing evidence for functional 

hyperactivations in individuals with AB. Further studies comparing adolescents with AB 

compared to controls are needed in order to examine functional hypoactivations and gray 
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matter volume increases more extensively. Furthermore, only longitudinal research studies 

will be able to show the precise developmental trajectory of these alterations in detail. 

 

Limitations 

Meta-analytic approaches such as the current one have a number of limitations in need for 

discussion. The presented analyses are first of all limited by the detail and quality of the 

original research studies. This includes problems of variations within the significance 

threshold of data reported, insufficient information on possible coordinate transformations 

and variation in group sizes. Additionally, even though psychosocial factors have been 

significantly linked to brain structure in AB, none of the studies to date systematically studied 

the influence of these within their designs. Furthermore, only a small number of studies to 

date have examined brain structure and function in youths with AB on a whole brain level. 

We decided that a more stringent inclusion criteria is beneficial over the absolute number of 

studies entering the analyses, especially in regards to the attempt to truly capture the neuronal 

and structural phenotype of adolescents with AB. The number of studies entering each 

analysis therefore is on the lower limit. Contrast analyses are ideally contain a minimum of 15 

studies in each dataset to obtain sufficient statistical power (http://brainmap.org/ale/ (Eickhoff 

et al., 2012; Eickhoff et al., 2009; Laird et al., 2005; Turkeltaub et al., 2012)). Therefore, the 

current analysis runs the risk of being under-powered. 

 

Most of the studies included here consisted of only, or majority of, male participants (see 

Tables 1, 2). Some of the included study designs considered sex-matched clinical and control 

groups, while others applied a gender covariate within their design (e.g. (Stevens & Haney-

Caron, 2012; Wallace et al., 2014)). Two VBM (M. S. Dalwani et al., 2015; Fairchild, Hagan, 

et al., 2013) and one fMRI (Fairchild et al., 2014) study included only female participants. 

These studies were nevertheless included in the current meta-analyses because the structural 

alterations observed in girls with CD broadly overlapped with those previously reported in 

male samples only (Fairchild, Hagan, et al., 2013). But while the current population included 

mirrors the occurrence of AB in the general population (e.g. higher number of males with AB 

(Loeber et al., 2000)), research has shown that it may be crucial to differentiate clinical cases 

based on gender in future research studies (e.g. (Berkout, Young, & Gross, 2011)). 

Specifically, to determine possible gender related differences of structural and functional 

characteristics in individuals with AB, a comparison between meta-analyses of studies 

examining females and those examining males separately would have been of interest, but 
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was not possible due to the small number of studies that are available for each group 

individually. 

 

Another potential caveat is the fact that clinical and subclinical forms of aggressive behavior 

are often associated with comorbid diagnoses, most prominently attention-deficit 

hyperactivity disorder (ADHD; reported in up to 69% of CD patients (Klein et al., 1997)) and 

anxiety (Loeber et al., 2000). To date there is no neuroimaging evidence investigating pure 

diagnosis of clinical manifestations of aggressive behavior (e.g. CD or ODD) (Banaschewski 

et al., 2005). Researchers argue whether aggressive behavior in combination with ADHD 

even posits a distinct subtype or not (Banaschewski et al., 2003) and common neurobiological 

pathways are considered (Banaschewski et al., 2005). Overall it can be concluded that 

neuroimaging research studies on aggressive behavior in children and adolescents to date are 

characterized by diverse approaches in regards to the sample selection and definition, all of 

which have their justification and pitfalls (Sterzer & Stadler, 2009). Ultimately, only a 

comparison of both, pure and comorbid groups will be able to inform about the specificity and 

predictive value of either definition. Here we included adolescents with clinical and 

subclinical forms of aggressive behavior, most of which have comorbid ADHD symptoms 

(e.g. (M. Dalwani et al., 2011; De Brito et al., 2009; Fairchild et al., 2014; Fairchild, Hagan, 

et al., 2013; Fairchild et al., 2011; Huebner et al., 2008; Lockwood et al., 2013; Marsh et al., 

2013; Marsh et al., 2011; O'Nions et al., 2014; Passamonti et al., 2010; Sebastian et al., 2014; 

Sterzer et al., 2005; Wallace et al., 2014; White et al., 2012). Many of the included studies 

report no differences in results when controlling for ADHD (through exclusion or a covariate 

within the study design; (Fairchild et al., 2014; Marsh et al., 2013; O'Nions et al., 2014; 

Passamonti et al., 2010; Sebastian et al., 2014; Sterzer et al., 2005; White et al., 2013)).  

 

Similar problems are IQ differences, drug use or socioeconomic status, all of which are a 

characteristic of populations with aggressive behavior. Studies included in the current meta-

analysis have all matched their participants according to IQ measures (Fahim et al., 2011; 

Fairchild et al., 2014; Fairchild et al., 2011; Huebner et al., 2008; Lockwood et al., 2013; 

Marsh et al., 2013; Marsh et al., 2011; O'Nions et al., 2014; Passamonti et al., 2010; Sebastian 

et al., 2014; Stevens & Haney-Caron, 2012; White et al., 2012) or used IQ as a covariate 

within their study design (M. Dalwani et al., 2011; De Brito et al., 2009; Fairchild, Hagan, et 

al., 2013; Hyatt et al., 2012; Sterzer et al., 2005; Wallace et al., 2014). Drug use and socio-

economic status were controlled for in some, but not all, studies and further research is 
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needed using a more careful sample characterization in order to inform about the impact of 

these variables on brain structure and function.  

 

It is also to consider that the diagnosis of conduct disorder (clinical manifestation of AB) may 

encompass at least two clinically relevant subgroups. While the first group exhibits callous-

unemotional traits (e.g. reduced guilt, callousness, uncaring behavior and reduced empathy) 

and heightened risk of persistent antisocial behavior, the second group is characterized by 

heightened threat sensitivity and reactive aggression (R. J. Blair et al., 2014; Euler et al., 

2014). Callous-unemotional traits are highly heritable (Viding, Seara-Cardoso, & McCrory, 

2014), expressed as early as at two years of age (Waller et al., 2012) and are predictive of the 

most severe and persistent variant of conduct disorder (Dandreaux & Frick, 2009; Rowe et al., 

2010). Studies also indicate that this severity may significantly impact the neuronal alterations 

observed (Ducharme et al., 2011; Fairchild et al., 2014; Fairchild et al., 2011; Passamonti et 

al., 2010). To summarize, while we were unable to constrain the current meta-analysis based 

on potential subtypification and gender variables, these factors may pose an exciting view on 

data analysis strategies and interpretations for future studies. For all the reasons noted, the 

current results have to be interpreted with caution. However, multimodal neuroimaging 

methods combining two or more functional (fMRI and/or EEG) and structural (MRI and/or 

DTI) approaches are suggested to provide a more sensitive measure in comparison to 

unimodal imaging for disease classification (Sui, Huster, Yu, Segall, & Calhoun, 2014). 

Furthermore, we think that the confounding variables discussed here have influenced the 

functional and structural meta-analyses similarly.  

 

Overall, we could demonstrate that structural and functional alterations in adolescents with 

AB co-localize within key regions of the emotion processing and regulation network (e.g. 

prefrontal and insular cortex). Thus, our current analysis, using an activation likelihood 

estimation approach, provides an important step towards a more focused method of 

neuroimaging in AB. Future studies need to determine whether the here identified convergent 

clusters of neuronal and structural alterations may be applicable for clinical purposes (for 

example an improved pathophysiological description of individuals with AB) or whether a 

further specification (e.g. based on subtypes and gender) may be needed. However, the 

coordinates presented here can serve as non-independent regions of interest for future studies 

in AB, conduct disorder or in individuals with AB or antisocial/psychopathic tendencies.  
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Summary and conclusion 

Aggressive behavior constitutes a major issue of public health and increased knowledge about 

the behavioral and neuronal underpinnings of AB are crucial for the development of novel 

and implementation of existing treatment strategies. However, single site studies often suffer 

problems of small sample size and thus power issues. Quantitative meta-analysis techniques 

using activation likelihood estimations as implemented here offer a unique opportunity to 

investigate consistency of results between several studies investigating the same research 

question and population. We have implicated several brain regions of the emotion processing 

and regulation network to show hypoactivations and gray matter volume reductions in 

adolescents with AB (including prefrontal brain regions, amygdala, insular and cingulate 

cortex) and demonstrated that functional and structural alterations in AB co-localize within 

right dmPFC and left insular cortex. 

 

Overall, we are in line with meta-analytic work as well as structural, functional and 

connectivity findings that make a strong point for the involvement of a network of brain areas 

responsible for emotion processing and regulations. This network is impacted in individuals 

with AB and antisocial personality disorder/psychopathy. However, much still needs to be 

investigated. For example, study findings differ in regards to hypo- or hyperactivations and 

gray matter volume reductions or increases in different regions of the emotion processing and 

regulation network. Due to power constraints, the current meta-analysis only investigated 

hypoactivations and gray matter volume reductions in youths with AB and no 

hyperactivations or increases in brain structure. Future studies implementing longitudinal 

designs may be able to shed more light on the developmental pathway as well as onto typical 

and atypical trajectories within the regions reported. Such longitudinal designs will further 

allow the investigation of the bidirectional influence of biological and psychosocial influences 

in AB. 
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Abstract  

The human brain has the capacity to integrate various sources of information and 

continuously adapts our behavior according to situational needs in order to allow a healthy 

functioning. Emotion-cognition interactions are a key example for such integrative 

processing. However, the neuronal correlates investigating the effects of emotion on cognition 

remain to be explored and replication studies are needed. Previous neuroimaging studies have 

indicated an involvement of emotion and cognition-related brain structures including parietal 

and prefrontal cortices and limbic brain regions. Here we employed whole brain event-related 

functional magnetic resonance imaging during an affective number Stroop task and aimed at 

replicating previous findings using an adaptation of an existing task design in 30 healthy 

young adults. The Stroop task is an indicator of cognitive control and enables the 

quantification of interference in relation to variations in cognitive load. By the use of 

emotional primes (negative/neutral) prior to Stroop task performance, an emotional variation 

is added as well. Behavioral in-scanner data showed that negative primes delayed and 

disrupted cognitive processing. Trials with high cognitive demand furthermore negatively 

influenced cognitive control mechanisms. Neuronally, the emotional primes consistently 

activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions) 

while Stroop task performance lead to activations in cognition networks of the brain 

(prefrontal cortices, superior temporal lobe, and insula). When assessing the effect of emotion 

on cognition, increased cognitive demand led to decreases in neural activation in response to 

emotional stimuli (negative>neutral) within prefrontal cortex, amygdala, and insular cortex. 

Overall, these results suggest that emotional primes significantly impact cognitive 

performance and increasing cognitive demand leads to reduced neuronal activation in 

emotion-related brain regions, and therefore support previous findings investigating emotion-

cognition interaction in healthy adults. Moreover, emotion and cognition seem to be tightly 

related to each other, as indicated by shared neural networks involved in both of these 

processes. Emotion processing, cognitive control, and their interaction are crucial for healthy 

functioning and a lack thereof is related to psychiatric disorders such as disruptive behavior 

disorders. Future studies may investigate the neural characteristics of children and adolescents 

with disruptive behavior disorders. 
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Introduction 

An adequate handling of emotional information is a key factor for healthy functioning within 

our everyday life. How a person processes and regulates emotions impacts their cognition, 

behavior, and well-being (Dolan, 2002; Gross, 2002; John and Gross, 2004). Thereby, 

emotion processing not only influences cognitive control, but cognitive control may likewise 

affect emotions. Research has indicated that a fine balance of the emotion and cognition 

networks ultimately allows appropriate functioning (Hart et al., 2010). A failure to 

successfully process or regulate emotions is characteristic for different mental health 

disorders, including disruptive behavior disorders (Sterzer et al., 2005), attention-

deficit/hyperactivity disorder (ADHD) (Walcott and Landau, 2004), or psychosis 

(Livingstone et al., 2009). Therefore, an improved understanding of the mechanism 

supporting successful emotion regulation skills is of utmost personal, clinical, and societal 

relevance (Gross, 2002). 

 

Behavioral research studies have demonstrated that emotional stimuli can positively or 

negatively impact cognitive processing. For example, the presentation of emotional stimuli 

has shown to disrupt working memory performance (Dolcos and McCarthy, 2006) and impact 

reaction times during a perceptual task (Gupta and Deak, 2015). Similarly, it was 

demonstrated that the presence of an emotional stimulus can reduce task accuracy and 

reaction times during Stroop task performance, which reflects cognitive control mechanisms 

(Blair et al., 2007; Hart et al., 2010; Uher et al., 2014). Visually presented and/or auditory-

induced emotions can also positively influence cognition, resulting in improved accuracy or 

shorter reaction times during tasks including conflict processing, visual attention, or decision 

making (Schupp et al., 2007; Kanske and Kotz, 2011; Zinchenko et al., 2015). Factors that are 

known to influence the interaction of cognitive and emotional processes include cognitive 

load, level of threat, physical stimulus properties, position of emotional distractors (left or 

right hemifield), individual differences, and the availability of conflict-resolving brain 

resources (Arnsten and Goldman-Rakic, 1998; Hartikainen et al., 2000; Pessoa, 2009; 

Thompson et al., 2010; Cohen and Henik, 2012; Gupta and Raymond, 2012; Kanske, 2012; 

Okon-Singer et al., 2013; Gupta et al., 2016). By transiently enhancing or diminishing 

cognitive functioning, emotional states may thus impact the control of thoughts and behavior 

in order to meet situational demands (Gray et al., 2002). 
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Neuroimaging methods, such as functional magnetic resonance imaging (fMRI), can 

investigate the neural networks underlying emotional and cognitive processes as well as their 

interaction. Brain regions responsible for simple emotion-processing tasks are the amygdala, 

right insula, as well as the medial and ventrolateral prefrontal cortex (Phan et al., 2002; 

Dolcos and McCarthy, 2006; Van Dillen et al., 2009). Thereby, the engagement of individual 

brain regions depends on the quality of the emotion being processed. For example fear is 

particularly known to elicit amygdala activation, sadness is commonly represented by 

subcallosal cingulate activity, and emotion processing tasks with an additional cognitive 

component (e.g., emotional recall) also target the insular and anterior cingulate cortex (for a 

review see Phan et al. (2002)). Brain regions associated with simple cognitive control (e.g. 

during working memory, conflict resolution, inhibition, or emotion regulation tasks) include 

the ventromedial, right (dorso-)lateral and orbital prefrontal cortex, lateral and right superior 

parietal cortex, and anterior cingulate cortex (Phan et al., 2002; Ochsner et al., 2004; Ochsner 

and Gross, 2005; Dolcos and McCarthy, 2006; Van Dillen et al., 2009; Pitskel et al., 2011).  

 

To date, several fMRI studies have aimed at targeting the more complex interaction between 

cognition and emotion. The most commonly identified neural correlates of emotion-cognition 

interaction sites include parietal and prefrontal cortices, as well as limbic brain regions (i.e., 

cingulate, amygdala, and insula; (Gray et al., 2002; Etkin et al., 2006; Blair et al., 2007; Van 

Dillen et al., 2009; Hart et al., 2010; Melcher et al., 2011; Kellermann et al., 2012; Gu et al., 

2013; Cromheeke and Mueller, 2014)). For example, Etkin and colleagues (2006) used an 

emotional conflict task and found that neural activation within the amygdala, dorsomedial-, 

and dorsolateral prefrontal cortex represents the level of emotional conflict, while the rostral 

anterior cingulate may reflect emotional conflict per se (Etkin et al., 2006). Likewise, Gu and 

colleagues (2013) identified shared and distinct brain regions responsible for cognitive and 

emotion processing or the interaction of both (Gu et al., 2013). In particular, an interaction 

effect was observed within in bilateral anterior insula, somatosensory cortices, and 

frontoparietal regions. Using an emotional working memory task, Gray and colleagues (2002) 

pinpointed left and right lateral prefrontal cortex as the site of emotion-cognition interaction. 

And finally, Blair et al. (2007) as well as Hart and colleagues (2007) combined emotional 

stimuli and Stroop task performance within their designs in order to elicit areas that are 

dynamically modulated either by increased emotional or enhanced cognitive demands. Again, 

bilateral amygdala, inferior frontal/ventrolateral prefrontal, and the cingulate cortex were 
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identified as areas of neural changes dependent on cognitive and/or emotional load (Blair et 

al., 2007; Hart et al., 2010).  

 

For the present study we adapted and re-evaluated the affective number Stroop task as 

implemented by Hart and colleagues (2010). Our goal was the investigation of dynamic 

changes in either the emotion or cognition network elicited by both variations in emotional 

content (through the use of negative as opposed to neutral images), and changes in cognitive 

demand (using different conditions of a number Stroop task). A further motivation for this 

study was the characterization of the neural correlates representing the effect of emotions on 

cognition in young adults as a basis for future studies in children and adolescents with social 

disorders (e.g., disruptive behavior disorders). This is of particular interest since behavioral 

studies have already demonstrated altered emotion-cognition interactions in disruptive 

behavior disorders (Euler et al., 2014). Nevertheless, the neural correlates in these clinical 

populations are still unknown. Therefore, our aims were to: (I) elicit activation in emotion-

related brain regions in response to the affective primes implemented within our task (e.g., 

amygdala, insula, and prefrontal cortex (Phan et al., 2002)); (II) demonstrate activation in 

cognitive brain regions in response to the Stroop task (e.g., prefrontal cortex, lateral and right 

superior parietal cortex, anterior cingulate cortex; (Laird et al., 2005)); (III) investigate 

previously identified brain regions that are significant in relation to the emotion-cognition 

interaction (e.g. amygdala, prefrontal cortex and anterior insula (Gray et al., 2002; Etkin et al., 

2006; Blair et al., 2007; Hart et al., 2010; Gu et al., 2013)) and assess their involvement 

within the task described here. Based on strong prior behavioral evidence (Homack and 

Riccio, 2004), we hypothesized to observe delayed reaction times and reduced task accuracy 

for trials with increased cognitive load (i.e., from congruent to stars to incongruent Stroop 

trials), and for trials following affective (negative) primes compared to neutral primes. 

Neurally, we expected to replicate the above mentioned findings of changes in neural 

activation patterns within the emotion and/or cognition network in dependence to cognitive 

load (Gray et al., 2002; Etkin et al., 2006; Blair et al., 2007; Van Dillen et al., 2009; Hart et 

al., 2010; Melcher et al., 2011; Kellermann et al., 2012; Gu et al., 2013; Cromheeke and 

Mueller, 2014). 
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Material and Methods 

Participants. Thirty healthy, German-speaking volunteers (mean age: 21.74 years; range 19-

24 years; 15 males) with no prior psychological or neurological history were included in the 

current study. Participants took part in one testing session that included psychometric testing, 

one functional neuroimaging task and a T1-weighted structural image acquisition. Two 

participants were excluded from analysis since one of them had completely missing and the 

other person very low in-scanner performance (e.g., more than 20% misses in each run). All 

participants were further right-handed, had normal or corrected-to-normal vision, and 

provided written informed consent as approved by the local ethics committee 

(Ethikkommission der Nordwest- und Zentralschweiz).  

 

Psychometrics. Participants included in this study completed a battery of standardized tests 

comprising verbal and non-verbal-IQ (German version of the Vocabulary and Matrix 

reasoning subtests of the WAIS-IV (Petermann, 2012), present mood (EWL (Janke, 1978)), 

behavioral and emotional functioning (YSR (Achenbach, 1991)), psychopathic traits (YPI 

(Andershed H, 2007)), and handedness (EDI (Caplan and Mendoza, 2011)). The YPI, YSR, 

and EWL were missing for one person. The resulting behavioral group characteristics are 

provided in Table 1. 

 

Table 1. Behavioral group characteristics. 
    mean ± SD 

   Age (in years)   21.73 ± 1.53 
   IQ (WAIS-IV) Vocabulary 12.63 ± 3.15 
     Matrix reasoning 10.83 ± 1.37 
   YPI Dishonest charm 9.31 ± 2.88 
     Grandiosity 8.55 ± 2.95 
     Lying 7.10 ± 1.40 
     Manipulation 7.76 ± 2.20 
     Remorselessness 7.45 ± 2.25 
     Unemotionality 10.52 ± 3.19 
     Callousness 12.28 ± 1.65 
     Thrill-seeking 12.31 ± 2.65 
     Impulsiveness 11.14 ± 2.77 
     Irresponsibility 8.28 ± 2.63 
     Grandiose manipulative dimension 8.18 ± 1.84 
     Callous unemotional dimension 10.08 ± 1.51 
     Impulsive irresponsible dimension 10.57 ± 2.04 
     Total score 9.56 ± 1.41 
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YSR Withdrawn 56.66 ± 7.34 
     Somatic complaints 54.55 ± 5.23 
     Anxiety/depression 54.86 ± 5.15 
     Social problems 53.34 ± 4.41 
     Thought problems 52.76 ± 4.94 
     Attention problems 55.28 ± 5.94 
     Delinquent behavior 54.03 ± 5.74 
     Aggressive behavior 52.14 ± 3.98 
     Total score internalizing behavior 53.52 ± 8.03 
     Total score externalizing behavior 50.03 ± 6.90 
     Total score problem scale 52.69 ± 7.95 
    

For WAIS-IV, standard scores are reported; for YPI, mean scores are reported; and for YSR, 
t-values are reported.  
 

fMRI - Task procedure. The neuroimaging session included event-related functional 

neuroimaging during the performance of an emotional number Stroop task. Additionally, T1-

weighted structural images were acquired for each participant. The emotional number Stroop 

task was adapted and modified based on a design described by Hart and colleagues ((2010); 

see trial design in Figure 1). We decided to use a number Stroop task as it has particularly 

been developed for use in the MR environment and has previously successfully been 

implemented in neuroimaging research studies (e.g., (Blair et al., 2007; Hart et al., 2010)). 

Each trial started with an emotional prime of either neutral or negative valence, presented for 

150ms. Negative (Neg) or neutral (Neu) primes were first followed by an item of the number 

Stroop task presented for 1500ms, before a short relaxation period of 350ms ended the trial. 

During the number Stroop task, participants were presented with an array of 1, 2, 3, or 4 digits 

and were asked to indicate through button press the number of items presented. The number 

of items was either congruent (C) in relation to the printed digits (e.g., the digit 4 in an array 

of 4) or incongruent (IC) with the printed digits (e.g., digit 4 in an array of 3). Star shaped 

stimuli (S) were used as a control condition (no interference of digit and item number) and 

null trials (trials with a black screen instead of the Stroop trial) were added during the 

randomization process. Emotional stimuli were adapted from the Developmental Affective 

Photo System (DAPS; a child-appropriate picture system (Cordon et al., 2013)), which uses 

part of the IAPS (International Affective Picture System (Lang, 2008)) commonly used in 

adults. We implemented DAPS images because this task was designed to ultimately be 

employed in children and adolescents with psychiatric disorders. However, given that all 

images remained part of the IAPS system, the chosen stimuli were considered suitable for 
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both adult and adolescent populations. A list of the images used is provided in Supplemental 

Information 1. In combination with the negative or neutral primes, the following 

combinations of prime and trial condition were possible: negative-congruent (Neg_C), 

negative-stars (Neg_S), negative-incongruent (Neg_IC), and neutral-congruent (Neu_C), 

neutral-stars (Neu_S), neutral-incongruent (Neu_IC). Prior to study start, our task was 

behaviorally tested in adults. Pilot data assessment indicated a significant emotion by 

cognition interaction for reaction time and accuracy measurements (see Supplemental 

Information 1.2). 

 

Prior to the start of the experiments, an optimal stochastic trial order allowing for a rapid 

event-related design was determined using optseq2, a tool for automatically scheduling events 

for rapid-presentation event-related fMRI experiments (for further information see 

http://surfer.nmr.mgh.harvard.edu/optseq/ or experiments using similar designs (Ferri et al., 

2012; Kuhlmann et al., 2016)). We administered a total of 300 Stroop trials (100 for each 

C/S/IC) and 50 null trials. All 300 Stroop trials were preceded by either neutral or negative 

primes (50:50). Total scan time was about 11.5 minutes. The complete experiment was 

performed over the course of 2 runs. At the end of the neuroimaging session, participants 

were further asked to perform valence ratings of the images presented in the scanner using a 

Likert scale from -2 to 2 (with -2 representing very negative valence, 0 being neutral, and 2 

indicating high attractiveness of the stimulus). For each participant the mean scores of the 

negative images affect rating were used as a covariate of no interest within the group analysis 

to account for differences in valence judgements between the young adults (see also 

Supplemental Information 2.1 Emotional valence rating). 
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Figure 1. fMRI task design. Three exemplary emotional Stroop trials are displayed, depicting 
the following conditions (from top to bottom): Negative-congruent trial, neutral-incongruent 
trial and negative-stars trial. 
 

fMRI - Image acquisition and analysis. Whole brain blood oxygen level-dependent (BOLD) 

fMRI data and T1-weighted mprage images were acquired on a Siemens 3T MR imaging 

system (Siemens Prisma, Erlangen, Germany) and a 20-channel phased-array radio frequency 

head coil. For the fMRI task a rapid event-related stochastic design with TR=2000 ms, 

TE=30.0 ms, FOV=192 mm; image matrix=64x 64 mm; voxel size=3 mm and number of 

slices=37 was used. We further acquired a high resolution T1-weighted structural image using 

the following specifications: TR=1900.0 ms; TE=3.42 ms; FOV=256; image matrix = 

256x256; voxel size = 1 mm. T1-weighted mprage structural neuroimaging data was used for 

co-registration and to calculate the total intracranial volume (TIV). Men and women are 

known to differ in overall brain size (Leonard et al., 2008; Luders et al., 2009; Giedd et al., 

2012). This was also true for the present sample where TIV significantly differed between 

males and females (males M=1529.52 ± 87.22 / females M=: 1360.72 ± 91.99; t(28)=5.16, 

p<0.001). Likewise, socioeconomic status, sex, and age all correlate with total intracranial 
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volume (Luders et al., 2009; Taki et al., 2011; Jednorog et al., 2012; Luders et al., 2014). This 

was accounted for by using a covariate of no interest in consequent random effects analyses. 

Therefore, TIV was extracted through the voxel-based morphometry toolbox (VBM8; 

http://dbm.neuro.uni-jena.de/vbm) as implemented in SPM8 and executed in MATLAB 

(Mathworks, Natick, MA).  

 

All functional MRI data was analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). 

Preprocessing included slice timing correction, realignment, co-registration to the structural 

images, segmentation of the structural image, normalization to the Montreal Neurologic 

Institute (MNI) standard brain, and smoothing using an 8mm full-width at half maximum 

Gaussian kernel. During single subject analysis, the following regressors were built: Neg_C, 

Neg_S, Neg_IC, Neu_C, Neu_S, Neu_IC. Contrast images were created to investigate (1) the 

main effect of emotion (Neg>Neu trials), (2) the main effect of cognition (IC>C or IC>S 

trials), and (3) the influence of emotion on cognition along with increasing cognitive demand 

as based on two-sample t-tests comparing Neg_C vs. Neu_C, Neg_S vs. Neu_S, and Neg_IC 

vs. Neu_IC trials. 

 

Due to the challenges in capturing the intricate nature of emotion-cognition interactions, the 

majority of publications in this field have based their interpretation on a priori based regions 

of interests only. Here we present both small volume peak-level FWE-corrected findings at 

p<0.05 for the main regions of interest (i.e. amygdala, insula, and /inferior frontal 

junction/precentral gyrus according to previous literature (Gray et al., 2002; Etkin et al., 2006; 

Blair et al., 2007; Hart et al., 2010; Gu et al., 2013); defined anatomically using the automated 

anatomical labeling atlas (Tzourio-Mazoyer et al., 2002)) and uncorrected, exploratory, whole 

brain findings (p<0.001).  

 

Region of interest analyses. In order to further characterize the effects of cognitive load on 

the neural basis of emotion-cognition interactions, we further extracted mean peak activation 

scores as based on FWE-corrected findings from the two main contrasts targeting the emotion 

(Neg>Neu trials) and cognition (IC>S trials) networks of the brain. More specifically the 

signal change at the local peak activation scores for bilateral amygdala, right insula, and 

bilateral precentral gyrus were extracted using the marsbar toolbox (Matthew Brett, 2002) and 

further assessed using paired-samples t-tests.  
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In-scanner performance. In-scanner performance was assessed by computing the mean 

accuracy and reaction time in response to Neg_C, Neg_S, Neg_IC, Neu_C, Neu_S, and 

Neu_IC Stroop trials. For both accuracy and reaction times two separate 2 (emotion: Neg, 

Neu) by 3 (task: C, S, IC) repeated measures ANOVAs were performed in order to investigate 

the main effect of task, main effect of emotion, and the influence of emotion on task.  

 

3. Results 

In-scanner performance. The 2 (emotion: Neg, Neu) by 3 (task: C, S, IC) ANOVA on task 

accuracy (i.e., correctly answered Stroop trials) indicated a significant main effect of emotion 

(F(1,29)=7.34, p=.011) and a main effect of cognition (F(2,28)=12.38, p<.0001). Bonferroni 

corrected post hoc tests indicated that the main effect on emotion was constituted by lower 

accuracy following negative primes (compared to neutral primes) during Stroop task. 

Furthermore, significant differences in accuracy derived from the incongruent condition 

compared to the congruent (p<.0001) and stars condition (p=.002). However, the difference 

between congruent and stars conditions did not reach significance (p=1.00). Finally, the 

emotion by cognition interaction did not reach significance (F(2,28)=.33, p=.722).  

 

The 2x3 ANOVA implementing reaction time revealed a main effect of emotion (F(1,29)= 

11.93, p=.002) and a main effect of cognition (F(2,28)= 80.27, p<.001). Bonferroni corrected 

post hoc tests revealed significant reaction time differences for incongruent compared to 

congruent (p<.0001), congruent compared to stars (p=.019), and incongruent compared to 

stars (p<.0001) conditions. The emotion by cognition interaction did not reach significance 

(F(2,28)= .54, p=.590). An overview of the in-scanner performance as based on the mean 

accuracy and reaction time for the whole group is given in Table 2. 
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Table 2. In-scanner performance (accuracy, reaction times). 

  Congruent Stars Incongruent 
  [±SD] [±SD]  [±SD] 

Accuracy Negative prime 49.2 [1.5] 49.3 [1.0] 47.7 [3.1] 
[raw scores] Neutral prime 49.7 [1.1] 49.6 [0.9] 48.3 [2.4] 

     
     

Reaction 
Times 

Negative prime 720.5 [72.6] 731.0 [84.3] 800.0 [88.9] 

[ms] Neutral prime 704.5 [66.0] 718.6 [73.4] 791.9 [90.3] 
     

 

fMRI results. The fMRI result part is organized in line with our a priori listed main aims: (1) 

testing the activation of the emotion network by use of the negative prime (Neg>Neu trials); 

(2) assessing the activation of the cognition network by comparing an incongruent to a neutral 

Stroop condition (IC>S); (3) evaluating the emotion-cognition interaction dependent on 

increased cognitive load (Neg_C vs. Neu_C, Neg_S vs. Neu_S, and Neg_IC vs. Neu_IC 

trials). First, testing the (1) emotion processing network revealed that trials with a preceding 

negative prime compared to those with a preceding neutral prime led to significant increases 

in activation in known emotion processing areas of the brain (Phan et al., 2002), including 

insula, amygdala, and prefrontal cortices (for an overview of activated areas see Table 3, 

Figure 2). Secondly, testing the (2) cognition network by use of the Stroop task (IC>S) 

revealed activations in areas including left precentral gyrus (FWE-corrected) and uncorrected 

within further areas including the superior frontal brain regions, temporal cortex, and insula 

(Table 3, Figure 2).  
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Figure 2. Statistical parametric maps showing brain activation linked to the emotion network 
(green-blue; negative>neutral trials) and the cognition network (gold-yellow; 
incongruent>congruent). Results are displayed at a p<0.001, uncorrected threshold and 
neurologically displayed on axial slices using the Multi-image Analysis GUI as available at 
http://ric.uthscsa.edu/mango/mango.html. 

 

Table 3. MNI coordinates, cluster size and Z-scores for significant FWE small-volume 
corrected results and uncorrected (p<0.001; indicated with an asterix*) whole brain findings 
representing the emotion processing network (negative trials > neutral trials) and the 
cognition network (incongruent > stars trials) elicited by the given task. 
 

        Brain Region Hem k Z0 MNI coordinates [mm] 
         x y z 
               
 Emotion Network (Neg>NeuTrials) 

       precentral R 187 3.84 46 6 30 
 insula R 29 4.67 26 8 -14 
 amygdala R 19 3.65 30 0 -26 
 amygdala L 1 3.16 -22 6 -18 
 *occipital, temporal lobe, including calcarine, 

fusiform, lingual, angular gyrus R/L 3241 5.04 44 -48 12 
 *inferior/middle temporal/occipital lobe, 

including fusiform gyrus L 793 4.35 -38 -46 -16 
 *inferior orbitofrontal lobe, including 

precentral gyrus R 662 4.59 52 32 4 
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*cerebellum L 249 4.05 -12 -80 -40 
 *middle temporal, superior marginal, angular 

gyrus L 186 3.8 -52 -60 20 
 *superior frontal lobe R 73 4.15 10 38 54 
 *cerebellum L 72 3.93 -10 -50 -48 
 *putamen, pallidum R 68 3.89 20 -4 8 
 *middle frontal lobe, precentral gyrus L 58 3.55 -44 6 56 
 *angular gyrus, superior parietal lobe R 58 3.33 34 -64 50 
 *middle temporal lobe R 39 3.63 58 -2 -24 
 *superior temporal pole, insula, olfactory, 

inferior/superior orbitofrontal L 29 3.46 -24 10 -18 
 *middle/superior occipital lobe R 28 3.48 28 -66 24 
 *superior medial frontal lobe R 18 3.25 8 60 30 
 *middle frontal gyrus R 15 3.57 26 26 40 
 *inferior/middle temporal lobe L 13 3.28 -44 -8 -22 
 *inferior frontal, pars opercularis, middle 

frontal lobe L 12 3.61 -36 18 36 
 *superior frontal lobe L 10 3.32 -12 54 30 
 *superior frontal lobe L 9 3.38 -16 42 36 
 *middle temporal gyrus L 9 3.21 -60 -56 6 
 *cerebellum R 7 3.31 10 -32 -22 
 *middle occipital lobe R 7 3.18 42 -74 32 
 *superior medial frontal, superior motor area L 5 3.32 -4 28 66 
 *caudate L 3 3.14 -8 10 8 
 *middle temporal pole L 2 3.16 -40 16 -34 
 *middle temporal pole L 1 3.25 -38 14 -30 
 *middle occipital lobe L 1 3.14 -36 -66 16 
 *superior temporal pole L 1 3.12 -36 12 -28 
 *thalamus R 1 3.11 10 -6 0 
               
 

        Cognition Network (IC>S) 
       precentral L 87 4.03 -36 -2 34 

 *caudate R 120 3.89 -4 10 16 
 *paracentral lobule, supplementary motor 

area R/L 96 3.7 -6 -30 64 
 *superior temporal lobe R 79 3.86 56 -30 14 
 *superior temporal lobe, heschl's gyrus, 

insula, rolandic operculum R 48 3.98 46 -18 6 
 *superior temporal lobe L 27 3.41 -58 -16 4 
 *postcentral gyrus R 20 3.58 52 -20 60 
 *insula, rolandic operculum L 15 3.8 -42 -10 18 
 *putamen L 15 3.51 -24 -6 18 
 *superior frontal lobe R 4 3.31 14 42 30 
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*thalamus L 2 3.2 -16 -22 16 
 *superior temporal lobe R 1 3.19 52 -26 10 
               
 

        Results reported at small-volume FWE correction of p<0.05 
* additional uncorrected whole brain clusters at p<0.001 
Hem=Hemisphere; k= cluster size; Neg= negative; Neu=neutral; C=congruent condition; 
IC=incongruent condition; S=stars condition 
 

Both control conditions (IC>S and IC>S) were contrasted with the IC condition. However, we 

decided to focus on IC>S trials for definition of the cognition network since more prefrontal 

activation was evoked, potentially due to different effects of the primes on congruent as 

opposed to stars trials. This procedure is in line with similar previous fMRI Stroop 

publications (for a review see (Laird et al., 2005)). Finally, (3) the influence of emotion on 

cognitive control was measured by contrasting Stroop trials with a prior negative prime to 

those Stroop trials following a neutral trial. Two-sample t-tests for negative vs. neutral trials 

were calculated for Stroop trials with increasing cognitive load (from congruent, to stars, and 

incongruent condition) and revealed differential activations for each of the three contrasts 

reflecting the influence of emotion on cognitive task performance as modulated by differential 

cognitive load. More specifically, for the contrast ‘Neg>Neu trials’ during the congruent 

Stroop task condition, significant increases in activations were identified in bilateral 

amygdala, right insula, and right precentral gyrus (FWE-corrected) and on a whole-brain 

uncorrected level within further regions of the occipital, temporal, and inferior/middle frontal 

gyrus. For the opposite contrast ‘Neg<Neu trials’ during the congruent Stroop trial, FWE-

corrected activation within left precentral gyrus was observed. For the contrast ‘Neg>Neu 

trials’ during the stars Stroop task condition, significant FWE-corrected findings were 

identified in right amygdala, while further cluster of activations were located within bilateral 

inferior occipital cortex (uncorrected whole brain approach). For the opposite contrast 

‘Neg<Neu trials’ significant activation was located within right precentral gyrus (FWE-

corrected) and using a whole brain approach further clusters were located within occipital and 

superior frontal brain regions, left precuneus of the superior parietal lobe. Finally, for the 

contrast ‘Neg>Neu trials’ during the incongruent Stroop task condition significant clusters of 

activations were based in inferior frontal and middle frontal brain regions (uncorrected 

findings only), while the opposite contrast of ‘Neg<Neu trials’ during the incongruent Stroop 

task condition led to activity within left insula (FWE-corrected) as well as in further occipital 
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brain regions, left pre- and postcentral gyrus, when using an uncorrected whole-brain 

approach (Table 4, Figure 3). 

 

 
Figure 3. Statistical parametric maps showing emotion-cognition interaction related brain 
activation (blue: hypoactivations; red: hyperactivations) for negative>neutral emotional 
primes and the conditions congruent, stars, incongruent (ordered by lowest to highest 
cognitive load). Results are displayed at a p<0.001, uncorrected threshold and neurologically 
displayed on axial slices using the Multi-image Analysis GUI as available at 
http://ric.uthscsa.edu/mango/mango.html. 
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Table 4. MNI coordinates, cluster size and Z-scores for significant FWE small-volume 
corrected results and uncorrected (p<0.001; indicated with an asterix*) whole-brain findings 
representing the influence of emotion on cognitive processes dependent on cognitive load (i.e. 
congruent, stars and incongruent trials). 
 

       Brain Region Hem k Z0 MNI coordinates [mm] 
        x y z 
              
Congruent (NegC>NeuC) 

      precentral R 64 3.79 46 0 32 
insula R 7 3.65 30 8 -16 
amygdala R 6 3.39 28 2 -16 
amygdala L 2 3.33 -22 6 -18 
*occipitotemporal including fusiform, 
calcarine, lingual gyrus, cuneus, cerebellum R 2037 4.88 32 -66 -14 
*temporal/occipital lobe, including fusiform 
gyrus, cuneus L 1470 4.64 -34 -72 14 
*middle/superior temporal lobe, angular gyrus R 361 4.24 44 -42 18 
*inferior temporal lobe, cerebellum, fusiform, 
parahippocampal gyrus L 303 3.95 -34 -52 -14 
*cerebellum, fusiform, lingual, 
parahippocampal gyrus R 222 4.39 22 -34 -20 
*inferior/middle frontal lobe, including pars 
triangularis and opercularis L 54 3.57 -40 18 32 
*superior temporal pole, inferior orbitofrontal 
lobe L 51 3.77 -42 16 -16 
*amygdala R 47 4 30 6 -14 
*lingual, parahippocampal gyrus R 46 4.01 22 -50 -4 
*cerebellum L 44 3.75 -10 -54 -50 
*superior temporal pole R 30 3.82 40 6 -26 
*lingual gyrus L 28 3.43 -16 -52 -6 
*inferior/superior orbitofrontal lobe R 24 4.29 22 30 -16 
*middle cingulum R 19 3.64 10 6 34 
*superior temporal pole, superior orbitofrontal 
lobe, insula L 14 3.36 -26 12 -18 
*inferior frontal lobe, including pars 
triangularis R 14 3.26 46 30 16 
*middle/superior temporal pole, inferior 
orbitofrontal lobe L 12 3.53 -34 14 -24 
*inferior frontal lobe, including pars 
triangularis R 12 3.35 40 24 18 
*middle temporal lobe R 11 3.37 48 -50 0 
*middle/superior occipital lobe L 10 3.29 -24 -92 32 
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*cerebellum R 9 3.32 32 -46 -44 
*inferior frontal gyrus, including pars 
opercularis L 5 3.44 -36 6 24 
*middle/superior temporal lobe L 5 3.27 -46 -16 -8 
*inferior/superior parietal lobe L 5 3.22 -28 -54 48 
*inferior frontal lobe, including pars 
triangularis R 5 3.19 54 38 6 
*middle cingulum L 4 3.35 -10 -14 40 
*middle/superior occipital lobe R 4 3.22 28 -72 36 
*inferior frontal lobe, including pars 
triangularis L 4 3.17 -52 30 16 
*middle/superior occipital lobe R 4 3.16 30 -72 26 
*cerebelum R 4 3.13 40 -58 -32 
*supplementary motor area R 2 3.3 10 8 72 
*lingual gyrus L 2 3.16 -2 -80 -2 
*superior occipital lobe L 1 3.14 -20 -66 38 
*angular gyrus R 1 3.09 30 -60 52 

       Congruent (NegC<NeuC) 
      precentral L 100 4.21 -26 -20 60 

              

       Stars (NegS>NeuS) 
      amygdala R 1 3.66 26 2 -18 

*inferior occipitotemporal, including lingual, 
fusiform, calcarine, cerebellum R/L 862 5.27 8 -84 -6 
*inferior temporal lobe, including fusiform 
gyrus L 52 3.56 -40 -42 -16 
*middle temporal lobe R 50 4.11 66 -42 2 
*inferior temporal lobe, including fusiform 
gyrus R 41 3.7 36 -58 -10 
*middle temporal lobe R 40 4.01 56 0 -22 
*gyrus rectus, amygdala R 19 3.65 20 10 -16 
*cerebellum L 14 3.38 -14 -70 -30 
*inferior occipital lobe R 8 3.3 42 -82 -4 
*middle temporal, lobe including angular 
gyrus R 8 3.21 44 -60 20 
*middle/superior temporal pole L 7 3.32 -38 12 -28 
*middle temporal lobe L 5 3.3 -64 -50 0 
*superior occipital lobe L 5 3.19 -12 -100 12 
*cerebelum R 4 3.24 34 -66 -50 
*fusiform gyrus R 3 3.24 42 -44 -14 
*superior occipital lobe R 3 3.14 26 -84 24 
*angular gyrus R 2 3.16 40 -72 50 
*cerebellum R 2 3.15 12 -32 -20 
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*putamen R 1 3.2 26 14 -6 
*inferior occipital lobe L 1 3.16 -40 -72 -6 
*angular gyrus R 1 3.16 44 -70 50 
*anterior cingulate R 1 3.15 14 40 16 
*inferior occipital lobe L 1 3.12 -42 -68 -6 
*middle orbitofrontal lobe R 1 3.14 26 38 -12 
*thalamus L 1 3.1 -6 -14 2 
*superior temporal pole R 1 3.1 40 4 -24 

       Stars (NegS<NeuS) 
      precentral R 53 4.12 34 -12 56 

*superior occipital lobe, including cuneus, 
precuneus L 127 4.58 -6 -92 36 
*inferior parietal lobe, postcentral gyrus R 31 3.61 32 -42 52 
*supplementary motor area L 24 3.42 -10 -8 64 
*precuneus L 16 3.63 -26 -52 4 
*middle cingulum, supplementary motor area R 14 3.66 10 -2 44 
*lingual gyrus L 14 3.22 -10 -72 -4 
*superior parietal lobe, postcentral gyrus R 12 3.23 14 -54 66 
*superior temporal lobe R 11 3.33 66 -14 6 
*superior parietal lobe R 6 3.24 24 -54 64 
*precentral gyrus R 2 3.34 22 -18 62 
*superior frontal lobe L 2 3.16 -18 6 62 
              

       Incongruent (NegIC>NeuIC) 
      *inferior frontal lobe, including pars 

triangularis R 108 3.94 54 30 4 
*cerebellum, vermis R/L 32 3.72 -2 -40 -28 
*middle frontal lobe L 20 3.56 -40 10 60 
*pallidum, putamen R 5 3.4 24 0 4 
*superior/medial frontal lobe L 3 3.17 -6 36 58 
*caudate L 1 3.11 -6 8 12 
*cerebellum L 1 3.1 -10 -72 -36 

       Incongruent (NegIC<NeuIC) 
      insula L 14 3.67 -36 -2 10 

*postcentral, precentral gyrus L 614 4.35 -34 -32 62 
*middle/superior occipital lobe, including 
cuneus L 426 4.24 -18 -98 20 
*middle/superior occipital lobe, including 
cuneus, calcarine gyrus R 239 4.55 16 -100 8 
*postcentral, precentral gyurs R 25 3.56 38 -22 52 
*supramarginal gyrus, postcentral R 23 3.39 44 -30 48 
*supplementary motor area R/L 22 3.29 -2 -4 54 
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*postcentral, precentral gyrus R 14 3.41 52 -18 42 
*supramarginal gyrus, rolandic operculum R 10 3.3 54 -22 22 
*cerebellum, lingual gyrus L 9 3.32 -10 -50 -2 
*postcentral gyrus R 9 3.24 64 -6 38 
*precentral gyrus L 9 3.18 -22 -14 72 
*superior occipital lobe, including cuneus L 6 3.45 -8 -88 42 
*precentral gyrus R 5 3.27 30 -16 70 
*supplementary motor area L 4 3.33 -12 -14 50 
*precuneus L 3 3.17 -12 -42 4 
*precentral gyrus L 2 3.28 -52 0 24 
*postcentral gyrus R 2 3.13 62 0 32 
*precentral gyrus R 1 3.13 26 -28 76 
*precentral gyrus R 1 3.12 64 2 28 
*lingual gyrus L 1 3.11 -6 -56 0 
*postcentral gyrus R 1 3.1 26 -46 64 
*supplementary motor area L 1 3.1 -10 -10 54 
              

       Results reported at small-volume FWE correction of p<0.05 
* additional uncorrected whole brain clusters at p<0.001 
Hem=Hemisphere; k= cluster size; Neg= negative; Neu=neutral; C=congruent condition; 
IC=incongruent condition; S=stars condition 
 

Region of interest analyses  

Results. Further investigations on the influence of emotion on cognition within peak regions 

of interests as based on FWE-corrected peak regions derived from the here identified 

emotion- (Neg>Neu trials) and cognition (IC>S) network revealed a significant trend within 

left amygdala, right insula and right precentral gyrus to show decreases of neural activation 

along for emotional primes with increasing cognitive demand. More specifically paired two 

samples t-tests indicated significant decreases of neural activation for (Neg>Neu) from 

congruent to incongruent condition within left amygdala, right insula and right precentral 

gyrus (all p<0.05). For the right insula the comparison between stars and incongruent 

condition likewise became significant (see Figure 4; additional graphics for the remaining 

regions that did not reach significance see Supplemental Information 3).  
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Figure 4. Bar graphs displaying decreases in the mean parameter estimates in left precentral 
gyrus and right amygdala along with increasing cognitive demand (i.e. for congruent, stars 
and incongruent Stroop trials), as well as the associated sagittal brain slices including the 
statistical parametric maps (blue: hypoactivations; red: hyperactivations). Results are 
displayed at a p<0.001, uncorrected threshold and neurologically displayed on axial slices 
using the Multi-image Analysis GUI as available at http://ric.uthscsa.edu/mango/mango.html. 

 

4. Discussion 

In this study we investigated the influence of emotions on cognition in each corresponding 

network through the use of negative or neutral primes prior to a number Stroop task with 

increasing levels of cognitive demand. Our main behavioral findings demonstrated increased 

reaction time and reduced Stroop-task accuracy following negative primes and/or increasing 

cognitive demand. Neurally, the emotional primes consistently activated emotion-related 

brain regions (including amygdala, insula, and prefrontal brain regions) while the Stroop 

effect was associated with activations in areas linked to cognitive processing (including left 

inferior frontal junction/precentral gyrus, inferior/superior parietal lobe, and insula). And 

finally, the neural correlates representing the influence of emotion on cognition implementing 

variations in cognitive demand lead to decreases in neural activation in response to emotional 

stimuli (negative>neutral) along with increased cognitive demand within prefrontal cortex, 

amygdala, and insular cortex. Additionally, in trials with no preceding emotional prime 

(neutral>negative), significant increases along with increasing cognitive demand where 

observed. Overall we conclude that neural activation during a number Stroop task 
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performance is increasingly disrupted by preceding negative images along with increasing 

cognitive demand. 

 

Behavioral effects following emotional primes and Stroop trials with different cognitive 

load 

In line with previous work, negative compared to neutral primes prior to a Stroop task 

affected task performance, which resulted in decreased task accuracy and increased reaction 

times (Blair et al., 2007, Mitchell et al., 2006, Gray et al., 2002, Padmala et al., 2011). 

Furthermore, more incorrect answers were given during incongruent trials compared to 

congruent (Etkin et al, 2006) or stars trials, while the latter two showed similar accuracy 

measurements. Participants were fastest in responding to congruent trials, followed by stars 

trials and eventually incongruent trials, which reflects the so-called Stroop effect (Stroop, 

J.R., 1935, Hart et al., 2010; Blair et al., 2007). We propose that in this study reading the 

number was a more automatized/faster process compared to counting the actual stimuli, thus 

resulting in shorter reaction times for congruent compared to stars trials. Interestingly, 

congruent and stars trials had equivalent numbers of correctly answered trials, although 

participants responded faster to congruent than to stars trials. We therefore conclude that the 

behavioral advantage of the congruent condition only affected reaction time (increased 

speed), but not accuracy. However, behavioral analysis failed to observe an interaction effect 

between emotional priming and task difficulty in accuracy and reaction times. In line with the 

dual competition model by Pessoa (2009) and supported by previous studies (Hart et al., 

2010, Melcher et al., 2011, Padmala et al., 2011) the interference of negative primes on task 

performance was expected to augment with higher cognitive task load due to competing 

mechanisms. However, in line with previous evidence (e.g., Blair and colleagues (2007); van 

Dillen and colleagues (2009)), we did not observe a significant interaction effect in the 

present analysis. 

 

Neural basis of emotion-cognition interaction 

Here we demonstrate that the influence of emotion on cognition is neurally reflected within 

brain regions including prefrontal cortex, amygdala and insular cortex. Furthermore, 

activation in these brain regions shows an attenuating trend when increasing cognitive 

demand. Likewise, neural activation in the left inferior frontal junction/precentral gyrus, as 

indicative of cognitive control, is increased during neutral prime trials compared to trials 

following a negative prime. Prefrontal brain regions, amygdala, and insula have all 
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consistently been identified as relevant for emotion-cognition interactions or emotional 

conflict resolution (Gray et al., 2002; Beer et al., 2006; Etkin et al., 2006; Blair et al., 2007; 

Hart et al., 2010; Gu et al., 2013; Buhle et al., 2014). Likewise, similar areas are activated 

during tasks requiring cognitive reappraisal (an emotion regulation strategy in which the 

stimulus meaning is reinterpreted to downregulate the emotional valence; (Ochsner et al., 

2002; Ochsner et al., 2004; Ochsner and Gross, 2005)). Thus, we suggest that the here 

presented emotional number Stroop task activates similar areas within the neural network that 

are required for deliberate cognitive reappraisal.  

 

The prefrontal cortex can functionally and cytoarchitectonically be subdivided into distinct 

sub-regions, several of which are of relevance to affective processing, cognition, or both 

(Pessoa, 2008). Overall, prefrontal brain regions are commonly linked to attention, working 

memory, goal-directed behavior (e.g., cognitive control or decision making (Pessoa, 2008; 

Stokes et al., 2013; Leech and Sharp, 2014), and affective processing (Phan et al., 2002). 

From an evolutionary perspective, early research has suggested that the evolution of the 

human prefrontal cortex, particularly its expansion in volume, may reflect the development of 

more complex social behavior (Dunbar and Shultz, 2007). While such an interpretation may 

be too simplistic, still researchers commonly agree that the distinct parts of the prefrontal 

cortex are recruited by different high-level cognitive demands (Eickhoff et al., 2016). Based 

on animal and human studies, a functional and cytoarchitectonical subdivision of the medial 

prefrontal cortex may at least result in areas including the orbitofrontal cortex (BA11), ventral 

prefrontal cortex and prefrontal pole (BA10), and dorsomedial prefrontal cortex and frontal 

pole (BA9) (Eickhoff et al., 2016). All of these areas are strongly interconnected and 

associated with various other circuitries of the brain, including the limbic network (Reid et al., 

2016). Finally, particularly the right inferior frontal gyrus has been suggested to be a crucial 

hub during inhibitory processing and may consequently be an area affected in response 

control disorders (Aron et al., 2014).  

 

Emotion processing is generally assigned to medial prefrontal brain regions, whereas the 

amygdala, anterior cingulate cortex, or insula are thought to possess a more distinct function 

within emotional tasks (Phan et al., 2002). The amygdala is one of the most traditionally 

viewed emotion and motivation processing center. With its relatively small structure, the 

amygdala nevertheless comprises a multitude of anatomical connections allowing many 

intricate functionalities (Janak and Tye, 2015). While abundant research has linked the 
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amygdala to affective processing and particularly fear conditioning, strong evidence points 

towards a more integral role of the amygdala as a key node for valence processing during 

different aversive states, including fear, anxiety, or reward processing (Murray et al., 2014; 

Janak and Tye, 2015). Here we demonstrated that the amount of amygdala activation obtained 

during emotion-cognition interaction was highest during Stroop trials with lowest cognitive 

demand and decreases with increasing task difficulty. This finding is in line with Etkin (2006) 

as well as Blair and colleagues (2007) that found decreases in neural activation within the 

amygdala during concurrent task with increasing cognitive demand. In line with previous 

suggestions (Etkin et al., 2006), it could be concluded that amygdala activation mirrors the 

amount of emotional conflict, rather than the resolution of such. Importantly the amygdala is 

strongly interconnected with areas of the prefrontal/orbitofrontal cortex (Davidson et al., 

2000). This bi-directional connection allows regulatory processes important for mental well-

being. For example, early deprivation or life stress may lead to disruption in amygdala-

prefrontal coupling and patients with symptoms including anxiety, posttraumatic stress 

disorder, or heightened aggression oftentimes show structural and functional impairments 

within these circuitries (Gee et al., 2013).  

 

The present task closely resembles two prior fMRI study designs (Blair et al., 2007; Hart et 

al., 2010). With the exception of adaptations that account for the age of the participants being 

tested (i.e., use of only negative stimuli and age-appropriate images), it may be considered a 

replication study. The present manuscript used an adapted version of an affective number 

Stroop task as implemented by Hart and colleagues (2010) and resulted in comparable 

findings. Reproducibility of scientific studies is crucial in order to inform about the robustness 

of an observed phenomenon (Martin and Clarke, 2017). Comparing our findings more closely 

to these two prior studies confirm the following main findings: (1.) In line with both studies, 

negative primes slowed the participants’ reaction time during the number Stroop task and are 

thus confirmed to interrupt goal-directed processing; (2.) In line with Blair and colleagues 

(2007) increasing cognitive demand led to decreases in emotion-related brain regions (e.g. 

amygdala, insula, prefrontal cortex). Hart and colleagues observed the same trend (2010), 

however, no neural decreases in dorsolateral prefrontal areas during incongruent trials. 

Therefore, the authors concluded that high cognitive demand may override the attenuation 

effect in the prefrontal cortex. In contrast to Hart et al. (2010), we only observed decreases in 

neural activation with increasing cognitive demand. It remains to be investigated whether 

such a difference may be due to the number and characteristics of participants tested (N=14; 
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5males in (Hart et al., 2010)/N=30; 15 males in the present study) or are potentially due to the 

difference in stimuli choice and/or slightly longer presentation (an additional 500ms) of the 

Stroop trial in our study. It is important to note that the slightly longer Stroop presentation 

rate was chosen due to the aim of consequently applying this task in younger participants. 

 

The insula is a functionally heterogeneous brain region which is situated in the depth of the 

Sylvian fissure and may be divided into three sections: a dorsal anterior, a ventral anterior, 

and a posterior part (Nieuwenhuys, 2012; Uddin et al., 2014). The anterior insular cortex is, 

mostly bilaterally, connected to limbic and prefrontal brain regions (e.g. the amygdala), while 

the posterior part is more strongly interconnected with parietal, occipital and temporal parts of 

the brain (Kurth et al., 2010; Nieuwenhuys, 2012). The insula has shown to be activated 

during a wide range of functions, including auditory processing, vestibular and somatosensory 

functions, the perception of pain and temperature, viscerosensation, taste, olfactory 

processing, somatomotor control and motor plasticity, speech production, cognitive control, 

bodily awareness, as well as emotion processing (Nieuwenhuys, 2012). Importantly, 

according to research the anterior insula has a critical role during the regulation of social 

behavior, since its structure and function is altered in individuals with social disorders 

(including disruptive behavior disorder (Sterzer et al., 2007; Raschle et al., 2015)). Here our 

results are in line with findings assigning a critical role for the insula in emotion-cognition 

interactions (Hart et al., 2010; Shackman et al., 2011; Gu et al., 2013). 

 

Emotion-cognition integration in psychiatric disorders 

An intact integration and healthy balance of competing emotion-cognition processing is 

crucial for our everyday functioning and an imbalance, as for example observed in individuals 

with emotion processing deficits, is linked to different mental health disorders (Monk, 2008). 

For example, faulty integration or regulation of emotion-cognition processes may result in 

heightened violence and aggression (Davidson et al., 2000). Therefore it has been suggested 

that individuals with heightened aggression traits, as for example observed in children and 

adolescents with disruptive behavior disorders, may show impairments in these prefrontal 

circuitries responsible for successful emotion-cognition interaction and regulation. In fact, 

various structural and functional neuroimaging studies pinpoint areas of the limbic and 

prefrontal network to be disrupted in aggressive individuals (Raschle et al., 2015; Rogers and 

De Brito, 2016). Consequently, we conclude that future studies may implement the here 
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presented design in order to further characterize aggressive youths and potentially impact 

individualized classification and treatment approaches in health and disease. 

 

Limitations 

A potential caveat in the design of this study concerns the valence of the primes used. While 

we employed negative and neutral images only, positive primes have also been shown to 

disrupt task performance (Mitchell et al., 2006; Blair et al., 2007). Therefore, the addition of 

positive images should be considered in future studies aiming at characterizing the emotion-

cognition interaction. However, due to practical challenges when conducting pediatric 

neuroimaging studies (particularly time constraints; for a discussion see for example (Raschle 

et al., 2009)) we decided that it is of importance to keep the task as short as possible and gain 

maximum power for the emotional condition chosen. Additionally, since the processing of 

negative affect is a particular problem in disruptive behavior disorders, a focus on this 

emotion made most sense. Secondly, we here used DAPS images as primes. This system was 

developed as an adaptation of the International Affective Picture System (IAPS, (Lang, 

2008)) in order to be suitable for children and adolescents. The DAPS includes images from 

the IAPS series as well as additional stimulus material. We here only used images that were 

part of the IAPS and DAPS system, which can thus be considered suitable for evoking 

negative affect in both populations. However, IAPS images with the strongest negative affect 

were excluded within this process. Therefore, the images implemented here may have had a 

reduced impact on the young adults performing our task. Our decision to employ a child-

friendly image system is due to our aim of testing our task for future use in clinical 

populations involving children and adolescents with disruptive behavior disorders. While 

effects of negative priming were observable in the young adults sample investigated here, we 

believe the same images may lead to stronger behavioral and neural effects in younger 

participants as investigated in the future. Finally, while we implemented an automatic 

stochastic schedule for optimal event presentation and null trials for jittering, the inter-trial 

intervals may gain from additional variance (i.e., variations in inter-trial intervals around for 

example 500-1500 ms). 

 

Conclusion 

Converging evidence points towards the importance of a balanced handling of both emotional 

and cognitive information in our everyday life. Here we present data that validates the 

usefulness of the emotional number Stroop task in fMRI settings aiming to assess the neural 
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correlates of the influence of emotion on cognition. More specifically, we show an impact in 

behavior and the associated neural networks depending on emotional prime and cognitive 

demand. The respective influence of the emotion and cognition network in the brain may 

therefore be seen as a dynamic process which is modulated by the executive resources 

available. Moreover, emotion and cognition seem to be tightly related to each other, as 

indicated by shared neural networks involved in both of these processes. A failure to 

successfully integrate emotional and cognitive demands is characteristic to many psychiatric 

disorders. Future studies may thus further investigate the neural characteristics of children and 

adolescents that fail to successfully process emotional/cognitive demand, as for example seen 

in disruptive behavior disorders. 
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Abstract 

 

Conduct disorder (CD) is a psychiatric disorder of childhood and adolescence which has been 

linked to deficient emotion processing and regulation. The behavioral and neuronal correlates 

targeting the interaction of emotion processing and response inhibition are still investigated. 

Whole-brain event-related fMRI was applied during an affective Stroop task in 39 adolescents 

with CD and 39 typically developing adolescents (TD). Participants were presented with an 

emotional stimulus (negative/neutral) followed by a Stroop task with varying cognitive load 

(congruent/incongruent/blank trials). fMRI analysis included standard preprocessing, region 

of interest analyses (amygdala, insula, ventromedial prefrontal cortex) and whole-brain 

analyses based on a 2(group)x2(emotion)x3(task) full-factorial ANOVA. Adolescents with 

CD made significantly more errors, while reaction times did not significantly differ compared 

to TD. Additionally, we observed a lack of downregulation of left amygdala activity in 

response to task trials and decreased dorsoanterior/posterior insula and increased 

ventroanterior insula activity for CD relative to TD during affective Stroop task (cluster-level 

FWE-corrected (p<.05)).The findings presented provide evidence for the neuronal 

underpinnings of altered interaction of emotion processing and response inhibition in CD. 

Moreover, our results corroborate previous evidence of emotion dysregulation as a core 

dysfunction in CD. Future studies shall focus on CD subgroups (e.g., CU-traits or anxiety). 

 

Keywords: Conduct disorder, emotion processing, response inhibition, amygdala, insula 

 

 

 

 

 

  



Study 3: Emotion-cognition interaction in conduct disorder 
 

77 
 

Introduction 

Conduct disorder (CD) is a psychiatric disorder of childhood and adolescence marked by 

aggressive behavior outside of the age-appropriate norm (American Psychiatric Association, 

2013). CD youths are more likely to engage in antisocial behavior (e.g., rule breaking, 

stealing, and lying (Lahey & Waldman, 2012), and are at risk for academic failure, 

delinquency, and mental disorders in adulthood (Biederman et al., 2008; Erskine et al., 2016; 

Fergusson, John Horwood, & Ridder, 2005; Swanson, 1994). Antisocial youths are 

phenotypically characterized by a heterogeneous symptomatology, reflected in different 

aetiological paths and variations in response to treatment (Steiner, Daniels, Stadler, & Kelly, 

2017). Four main forms of neurocognitive dysfunctions relating to the development, 

heterogeneity, and core impairments of CD have been proposed: reduced affective empathy, 

threat sensitivity, decision-making, and response inhibition (Blair, Veroude, & Buitelaar, 

2016). In particular, mechanisms underlying deficient emotion processing and response 

inhibition have been hypothesized to increase the risk for antisocial behavior (Campbell, 

Shaw, & Gilliom, 2000; Davidson, Putnam, & Larson, 2000; Wang, Chassin, Lee, Haller, & 

King, 2017; Young et al., 2009).  

 

While altered response inhibition has been observed in adolescents with CD and disruptive 

behavior disorders (DBD; (Hwang et al., 2016; Prateeksha, Roopesh, & Vijayasagar, 2014), 

results are inconsistent in regards to the direction of findings. Some studies measuring 

response inhibition report no differences in performance of CD or DBD youths (Banich et al., 

2007; Rubia, Halari, et al., 2010; Rubia et al., 2008). Others indicate higher error rates and/or 

longer reaction times (RTs) (Euler, Sterzer, & Stadler, 2014; Hwang et al., 2016; Prateeksha 

et al., 2014; Rubia, Halari, et al., 2009). Importantly, when response inhibition is preceded by 

emotional stimuli, decreases in performance are more commonly reported (Euler et al., 2014; 

Hwang et al., 2016; Prateeksha et al., 2014).  

 

Studies using functional magnetic resonance imaging (fMRI) have shed light on the neuronal 

phenotype characteristic for CD youths. Most commonly, alterations in neural recruitment in 

frontal and limbic lobes (including insula, amygdala, and anterior cingulate) are reported 

(Blair, 2010; Hwang et al., 2016; Raschle, Menks, Fehlbaum, Tshomba, & Stadler, 2015; 

Rubia, 2011; Stadler et al., 2007; Sterzer & Stadler, 2009). Studies investigating response 

inhibition (e.g., stop, Simon, switch, or Stroop tasks) in CD have revealed decreased and 

increased neuronal activity in medial prefrontal cortex, insula, cingulate gyrus, 
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temporoparietal junction, subcortical regions, and occipital lobe (Banich et al., 2007; Rubia, 

Halari, et al., 2010; Rubia, Halari, et al., 2009; Rubia et al., 2008). To our knowledge, only 

one study has yet directly tested the interaction between emotion processing and response 

inhibition in DBD youths. In this study Hwang et al. (2016) detected reduced ventromedial 

prefrontal cortex (vmPFC) and amygdala activity in response to negative affective stimuli and 

reduced insula activity with increasing cognitive load in DBD compared to typically 

developing (TD) youths.  

 

The present study aims at adding to this first evidence in DBD by investigating the neuronal 

and behavioral correlates of the interaction between emotion processing and response 

inhibition in CD youths through fMRI during affective Stroop task performance. Using both 

region of interest and whole-brain approaches, we hypothesized (I) to observe emotion by 

task interactions for the Stroop effect (i.e., delayed RTs for trials with increased cognitive 

load and prior negative stimulation) in CD compared to TD youths, in line with previous work 

(Euler et al., 2014); (II) to detect reduced neuronal activity within brain regions involved in 

emotion processing and response inhibition (amygdala, insula, and vmPFC) during the 

affective Stroop task in CD relative to TD youths in line with previous findings (Hwang et al., 

2016). 

 

Methods 

Participants 

Seventy-eight youths (39CD/39TD) were included in the present analyses (age range: 10.1-

19.1 years, mean age: 15.7 years, 10 females in each group). CD was diagnosed according to 

DSM-5 criteria. Seventeen CD youths (43.6%) additionally met DSM-5 criteria for present 

attention-deficit hyperactivity disorder (ADHD), while 20 CD youths (51.3%) additionally 

met diagnostic criteria for oppositional defiant disorder (ODD). TD were included if no 

current psychiatric diagnosis was reported by either the participant and/or the parents/legal 

guardians. CD and TD groups were matched for age (t(76)=.87, p=.390) and non-verbal IQ 

(t(76)=-.72, p=.472) (Table 1/SI1). Participants were recruited through referrals from child 

and adolescent psychiatric institutions, public schools, and the general public through the use 

of fliers. 
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Ethical considerations 

All adolescents and parents/legal guardians gave written informed consent as approved by the 

local ethics committee ‘Ethikkommission der Nordwest- und Zentralschweiz’ and received 

vouchers for their participation.  

 

Clinical testing and questionnaires 

CD youths and their legal guardians completed the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children–Present and Lifetime version (K-SADS-PL; 

Kaufman et al., 1997) in order to assess CD criteria and comorbid disorders according to the 

DSM-5 (Table 1). CD and TD participants completed the Youth Psychopathic traits Inventory 

(YPI, Andershed, Hodgins, and Tengstrom (2007)) and the matrix reasoning subtest of the 

WISC-IV (ages ≤16y; Petermann, U. (Eds.) (2011)) and the WAIS-III (ages ≥17y; Petermann 

(1997)) measuring non-verbal IQ. For 10 participants (9 CD, 1 TD), only a composite IQ 

score was obtained. CD and TD legal guardians moreover completed a socioeconomic status 

(SES) questionnaire (SI2). Participants were asked to report any medication administered 

prior to the MRI session (SI3). Exclusion of participants with medication revealed similar 

results in significant regions of interest (ROI) and whole-brain analyses. 

 

fMRI task: The affective Stroop task 

We applied an affective number Stroop task as previously described in Raschle et al. (2017). 

Each trial started with an emotional stimulus, i.e., a negative (Neg) or neutral (Neu) stimulus 

(150ms), followed by a task trial (congruent/incongruent/neutral Stroop trial or a blank 

screen) and finally a relaxation period, i.e., blank screen (350ms). All pictures were selected 

from a child-appropriate image system (Developmental Affective Photo System (DAPS); 

Cordon, Melinder, Goodman, and Edelstein (2013)). During task trials, participants were 

presented with an array of 1 to 4 digits or a blank screen and were asked to press a button 

corresponding to the number of items displayed. The number of items was either congruent 

(C; e.g., number 3 in an array of 3) or incongruent (IC; e.g., number 2 in an array of 3) with 

the digits presented. Star shaped stimuli (S; as a neutral baseline counting condition) and 

blank trials (B; no response expected from participants) were used as control conditions (for 

further details see Raschle et al. (2017)). Trial order and interstimulus intervals (which were 

350–1850ms) were randomized using Optseq (http://surfer.nmr.mgh.harvard.edu/optseq) and 

kept constant across participants. A total of 300 task and 100 blank trials were administered 
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(100 for C/IC/S trials, 50 with preceding negative images, 50 with neutral images, in 2 runs), 

with a total scan time of about 16 minutes (7.59min each run). 

 

Behavioral measures: In-scanner performance 

All participants scored <60% correct responses per task condition and run. RTs and task 

accuracy (raw scores) were analyzed using 2x2x2 full-factorial ANOVAs with the between-

subject factor group (CD, TD) and within-subject factors emotion (negative, neutral) and task 

(congruent, incongruent) for RTs and accuracy separately using SPSS, version 24. Data was 

unavailable for a minority of responses because of technical difficulties with the response box 

(for a detailed description see SI4).  

 

fMRI data acquisition and analysis 

Acquisition parameter. In Basel, whole brain blood oxygen level-dependent (BOLD) fMRI 

data and structural T1-weighted magnetization prepared rapid gradient echo imaging images 

were acquired on a Siemens Prisma MRI system using a 20-channel phased-array radio 

frequency head coil. In Berlin, a Siemens TimTRIO MRI system equipped with a 12-channel 

head coil was used. At both sites a T2*-weighted EPI (echo-planar imaging) sequence with 

TR=2000ms, TE=30.0ms, FOV=192mm, image matrix=64x64mm, voxel size=3x3x3mm, 

and number of slices=37 was used. We further acquired high-resolution T1-weighted 

structural images for coregistration during fMRI preprocessing using the following 

specifications: TR=1900.0ms, TE=3.42ms, FOV=256mm, image matrix=256x256, voxel 

size=1mm.  

 

fMRI Analysis. fMRI data were analyzed using the Statistical Parametric Mapping software, 

version 12 (SPM12, www.fil.ion.ucl.ac.uk/spm/). Preprocessing of the data included 

realignment, co-registration to the structural image, segmentation, normalization to the 

Montreal Neurologic Institute (MNI) standard brain, and spatial smoothing using an 8mm 

Full Width at Half Maximum Gaussian kernel. Quality control was performed throughout the 

analysis in order to control for effects of motion. 

 

Single-subject fMRI data was analyzed using the general linear model. The model comprised 

eight task regressors (each combining a negative or neutral stimulus with congruent, 

incongruent, or neutral (stars/blank) Stroop trials, namely negative-congruent (NegC), 

negative-stars (NegS), negative-incongruent (NegIC), negative-blank (NegB), neutral-
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congruent (NeuC), neutral-stars (NeuS), neutral-incongruent (NeuIC), neutral-blank (NeuB)), 

one regressor for incorrect/missed responses, and six motion regressors. The task regressors 

were modeled as stick functions convolved with the hemodynamic response function as 

implemented in SPM12. 

 

At the second level, hypothesis-based region-of-interest (ROIs) and whole-brain analyses 

were performed. A-priori defined ROIs included bilateral amygdala and insula and bilateral 

vmPFC according to (Hwang et al., 2016; Raschle et al., 2015; Rubia, 2011; Rubia, Cubillo, 

et al., 2010; Rubia, Halari, et al., 2009; Rubia et al., 2008) and derived from the automated 

anatomical labeling atlas (aal; Tzourio-Mazoyer et al. (2002)). Mean parameter estimates 

were extracted from each ROI using the marsbar toolbox (Brett, Anton, Valabregue, & 

Poline, 2002). A repeated measures ANOVA with the factors group (CD, TD), emotion 

(negative, neutral), and task (blank, congruent, incongruent) and follow-up pairwise 

comparisons applying a Bonferroni correction were then computed within SPSS, version 24.  

 

For whole-brain analyses, beta images resulting from first-level model estimation for each 

regressor and run were submitted to a group-level random-effects analysis using 2x2x3 full-

factorial ANOVA with the between-subject factor group (CD, TD) and within-subject factors 

emotion (negative, neutral) and task (blank, congruent, incongruent).  

 

For all analyses, site (Basel, Berlin) was added as an additional factor of no interest. Brain 

activation was assessed for the main effects of group, emotion, and task, and all possible 

interactions thereof are reported at a cluster-extent family-wise error (FWE) rate of p<.05 

(cluster building threshold of p<.001). Significant clusters of main effects and interactions 

were followed up with masked post-hoc t-tests. 

 

Results 
 
Questionnaires 

Psychometric assessments are reported in Table 1. CD scored significantly higher than TD in 

the callous-unemotional and impulsive-irresponsible dimensions and the total score of the 

YPI (all p<.01; YPI, Andershed et al. (2007)). Nevertheless, psychopathic traits in our CD 

group were overall low (YPI total score: M=11.16, SD=2.38, CU dimension: M=11.23, 

SD=3.08; see also Stadlin, Pérez, Schmeck, Gallo, and Schmid (2016)). Nevertheless, CD 
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scored significantly higher than TD in the callous-unemotional and impulsive-irresponsible 

dimensions and the total score of the YPI (all p<.01; YPI, Andershed et al. (2007)).  

 

Table 1. Behavioral group characteristics. 

 

    CD TD p   

    Mean ± SD Mean ± SD 

Sig. 
2-

tailed   
Age (in years)   15.94 ± 1.88 15.54 ± 2.15 .390   
Sex (male/female)   29/10 29/10     
No. per site 
(Basel/Berlin)   11/28 11/28     
Handedness (right/left/both) 36/2/2 37/2/1     
IQ Matrix reasoning 99.47 ± 12.02 101.54 ± 11.31 .472   
Comorbidities  
(DSM-5) 

Attention-deficit 
hyperactivity disorder  17 0     

  Oppositional defiant disorder 20 0     
  Major depression 2 0     
  Anxiety disorder 6 0     

YPI   N=39 N=38     
  Grandiose-manipulative 8.68 ± 2.74 7.89 ± 1.90 .117   
  Callous-unemotional 11.23 ± 3.08 9.55 ± 1.94 .006 ** 
  Impulsive-irresponsible 13.57 ± 2.80 10.68 ± 1.72 <.001 *** 
  Total 11.16 ± 2.38 9.37 ± 1.21 <.001 *** 
*p<.05; **p<.01; ***p<.001     
For IQ, standard scores are reported; for YPI, mean scores are 
reported.       
CD=conduct disorder; TD=typically developing adolescents; SD=standard 
deviation.     
 
 
Behavioral results: In-scanner performance 

Analysis of RTs revealed a significant main effect of emotion (Neu>Neg, F(1,76)=5.74, 

p<.05), and a main effect of task (IC>C, F(1,76)=615.48, p<.001). There was no main effect 

of group and no interaction effects for RTs. For accuracy, we found a significant main effect 

of emotion (Neu>Neg, F(1,76)=8.29, p<.01), a main effect of task (C>IC, F(1,76)=118.42, 

p<.001), and a main effect of group (CD<TD, F(1,76)=6.77, p<.05). There were no 

significant interaction effects for accuracy (SI4). 
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Functional MRI results 

ROI results. A significant main effect of emotion (F(1,74)=7.12, p<.01) was detected in left 

amygdala, indicating increased neuronal activity for negative compared to neutral trials 

(Neg>Neu, p<.01) (Figure 1). Moreover, a group x task interaction was observed in left 

amygdala (F(2,73)=4.83, p<.05), reflecting significantly decreased activity for incongruent 

compared to blank trials in TD (IC<B, p<.05), but not CD (all p>.227). This effect was 

independent of emotion (no significant group x emotion x task interaction; F(2,73)=.73, 

p=.485). A significant emotion x task interaction effect was found in right amygdala 

(F(2,73)=4.77, p<.05). Across all subjects we observed relatively increased right amygdala 

activity for blank trials with a prior negative compared to neutral emotion (NegB>NeuB, 

p<.05), but relatively decreased activity in the right amygdala during congruent trials with a 

prior negative versus neutral emotion (NegC<NeuC, p<.05). In addition we observed 

relatively decreased activity in the right amygdala for during congruent relative to blank trials 

following negative stimuli (NegC<NegB, p<.01). Within right insula, a significant emotion x 

task effect was observed (F(2,73)=5.40, p<.01). This reflected increased activity during 

congruent trials following negative compared to neutral stimuli (NegC>NeuC, p<.005) and 

increased activity for incongruent compared to congruent trials after negative stimuli 

(NegIC>NegC, p=.001). Decreased right insula activity was moreover detected for congruent 

compared to blank trials following negative stimuli (NegC<NegB, p<.001). A significant 

main effect of task was detected in right (F(2,73)=5.40, p<.01) and left vmPFC 

(F(2,73)=9.36, p<.001) and resulting from relatively decreased activation for incongruent 

compared to blank and congruent trials (IC<B p<.001; IC<C, p<.005) on the left and 

incongruent compared to blank trials on the right (IC<B, p<.005). 

 

In order to examine the relationship between psychopathic traits (YPI total score) and left 

amygdala activity during IC–C (group x task interaction), follow-up bivariate correlations 

were computed for CD and TD separately. Results revealed no significant relationships 

between left amygdala activation and psychopathic traits for CD or TD. 
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Figure 1. Bar graphs displaying mean values of parameter estimates (mean centered) in 
predefined ROIs (amygdala, insula, ventromedial prefrontal cortex (vmPFC)) for the main 
effect of emotion and group x task interaction (left amygdala; A/B), emotion x task interaction 
(right amygdala and insula; C/D), and main effect of task (left and right vmPFC; E/F). 
CD=conduct disorder; TD=typically developing adolescents, *p<.05; **p<.01; ***p<.001, 
two-tailed t-test; all other t-tests non-significant at threshold p=.05. 
 

 

Whole-brain results. Whole-brain analysis of brain activation during affective Stroop task 

processing revealed significant main effects of group and task (Table 2), but no significant 

main effect of emotion. There were no significant two- or three-way interaction effects. All 

images are neurologically displayed using the Multi-image Analysis GUI as available at 

http://ric.uthscsa.edu/mango/mango.html. 
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Table 2. MNI coordinates, cluster size and Z-scores for whole-brain results using a FWE 
cluster level correction of p<.05 (cluster building threshold of p<.001) for the main effect of 
group and main effect of task during the affective Stroop task. 

 
            

Brain Region Hem k Z0 
MNI coordinates 
[mm] 

        x y z 
Main effect of group             
 
CD<TD             
supramarginal gyrus, middle frontal gyrus, including 
insula and precentral gyrus R 1035 7.19 40 -10 20 
postcentral gyrus L 392 6.04 -62 -2 26 
middle/superior temporal gyrus, hippocampus R 335 6.66 50 -18 -4 
pallidum, thalamus R/L 309 6.68 16 -16 -2 
              
CD>TD             
inferior/superior parietal lobe, middle 
temporal/occipital lobe R/L 4310 6.27 -30 -82 26 
precentral gyrus, inferior orbitofrontal lobe, caudate, 
putamen, including insula R/L 3869 >8 -30 12 22 
rolandic operculum, inferior parietal lobe L 2545 7.71 -32 -44 -26 
inferior/middle/superior frontal lobe, precentral 
gyrus, insula R 1680 7.44 48 34 28 
lingual gyrus, hippocampus, inferior 
temporal/occipital lobe, cerebelum R/L 1114 7.04 32 -54 8 
middle/superior frontal gyrus, supplementary motor 
area, anterior/middle cingulate gyrus R/L 787 6.28 4 26 44 
anterior/middle cingulate gyrus, caudate R/L 391 6.45 4 -2 32 
precentral gyrus, superior frontal gyrus L 343 6.29 -28 -24 30 
inferior parietal lobe, angular gyrus R 339 5.73 54 -34 18 
fusiform gyrus, inferior/middle occipital lobe L 294 6.00 -46 -82 -8 
fusiform gyrus, inferior/middle occipital lobe R 257 5.81 42 -52 -14 
supplementary motor area, superior frontal lobe L 212 5.78 -18 14 62 
              
Main effect of task             
 
IC>C             
calcarine sulcus, lingual gyrus, superior occipital 
lobe R/L 385 4.23 4 -82 0 
              
IC<C             
no suprathreshold voxels             
              
IC>B             
occipital lobe, fusiform gyrus, calcarine sulcus, 
cerebelum R/L 9665 >8 34 -86 0 
supramarginal gyrus, inferior/superior parietal lobe, 
middle/superior frontal lobe L 4888 >8 -46 -36 58 
supramarginal gyrus, inferior/superior parietal lobe R 1118 5.57 42 -40 52 
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hippocampus, pallidum, putamen, amygdala L 791 5.53 -24 0 -8 
inferior frontal operculum, precentral gyrus L 291 5.82 -54 8 38 
pallidum, caudate, putamen R 261 4.74 26 6 -8 
 
IC<B             
middle/posterior cingulate gyrus, paracentral lobule, 
including precuneus R/L 1850 5.98 -2 -34 44 
inferior/middle temporal lobe, inferior parietal lobe, 
middle occipital lobe L 872 6.67 -40 -84 28 
middle frontal lobe, precentral gyrus R 832 4.95 36 -16 44 
middle/superior temporal lobe, angular gyrus R 645 4.65 42 -80 30 
inferior temporal lobe, including fusiform gyrus L 232 4.70 -28 -36 -18 
              
C>B             
supramarginal gyrus, inferior/superior parietal lobe, 
superior frontal lobe L 3740 >8 -44 -38 60 
cerebelum, occipital lobe, including fusiform gyrus R 3049 6.71 32 -88 0 
cerebelum, occipital lobe, including fusiform gyrus L 2248 6.99 -38 -90 -8 
supramarginal gyrus, inferior/superior parietal lobe R 747 4.95 44 -40 58 
hippocampus, putamen L 232 4.11 -18 0 14 
              
C<B             
middle cingulate gyrus, precuneus, paracentral 
lobule R/L 941 4.96 6 -38 50 
postcentral gyrus, precentral gyrus R 432 4.17 36 -20 56 
angular gyrus, middle/superior occipital lobe L 455 4.81 -44 -82 22 
middle/superior temporal lobe R 312 4.09 64 -52 6 
fusiform gyrus, lingual gyrus R 228 4.48 28 -44 -12 
insula, putamen, rolandic operculum R 221 4.06 36 -12 6 

 
            

 FWE cluster level correction of p<.05 (cluster building threshold of p<.001) 
Hem=hemisphere; k= cluster size; B=blank trial; C=congruent trial; IC=incongruent trial; 
CD=conduct disorder patients; TD=typically developing adolescents 
       
 

Main effect of group. A main effect of group (Figure 2) was detected for regions including 

bilateral parietal and middle/inferior temporal and occipital lobes, bilateral precentral and 

inferior orbitofrontal areas extending into dorsoanterior and posterior insula and striatum, 

frontal cortices, and anterior/middle cingulate cortex (CD>TD) and regions including right 

middle frontal and supramarginal gyri (extending into ventroanterior insula), left postcentral 

gyrus, right middle/superior temporal cortex, and bilateral thalamus (CD<TD). 
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Figure 2. Statistical parametric maps depicting group differences between conduct disorder 
(CD) and typically developing (TD) adolescents in brain activation during the affective 
Stroop task (masked post-hoc t-tests, 39CD/39TD; hypoactivations in CD in red-yellow, 
hyperactivations in CD in green-yellow) (p<.05, FWE). 

 
 
Main effect of task. Regions showing a differential BOLD response in response to task 

included bilateral parietal and frontal lobes, supramarginal gyri, occipital, temporal, and 

cerebellar regions, right middle cingulate cortex, left precuneus, and left amygdala. Bilateral 

supramarginal, superior frontoparietal, and occipital areas exhibited increased activity for 

congruent and incongruent relative to blank trials (IC/C>B). Left amygdala and inferior 

frontal areas exhibited increased activity for incongruent compared to blank trials (IC>B). In 

contrast, decreased left inferior parietal lobe, right middle frontal and cingulate cortices, and 

left precuneus activity was detected for congruent and incongruent relative to blank trials 

(C/IC<B). Decreased activity in left inferior temporal and right middle/superior temporal 

regions was related to incongruent versus blank trials (IC<B, Figure 3). 
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Figure 3. Statistical parametric maps depicting the main effect of task during affective Stroop 
task processing (red-yellow) (p<0.05, FWE). 
 
 
Discussion 

Here we aimed at investigating the interaction of emotion processing and response inhibition 

in CD youths during an affective Stroop task. ROI analyses revealed a significant group x 

task interaction effect reflecting a lack of downregulation of left amygdala activity in 

response to task trials for CD compared to TD. This effect was independent of the emotion 

presented prior to Stroop task performance. Additionally, whole-brain analyses revealed a 

significant main effect of group representing decreased dorsoanterior/posterior and increased 

ventroanterior insula activity for CD relative to TD regardless of emotion and task demands. 

 

Contrary to our hypothesis and some previous investigations (Euler et al., 2014; Prateeksha et 

al., 2014; Rubia, Smith, et al., 2009) we did not detect group differences in RTs. However, 

research has not been conclusive to date and the present finding is in accordance with other 

studies (Banich et al., 2007; Rubia, Halari, et al., 2010; Rubia, Halari, et al., 2009; Rubia et 

al., 2008). Increased RTs for neutral compared to negative trials and for incongruent 

compared to congruent trials were detected across all participants. While increased RTs 

robustly reflect the Stroop effect (Stroop, 1935), shorter RTs for negative compared to neutral 

stimuli were not expected. However, participants’ responses were more accurate after 
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presentation of neutral relative to negative images. Faster responses at the expense of lower 

accuracy may be due to heightened stress. Moreover, in line with Rubia, Halari, et al. (2009) 

CD youths made more errors than TD, which is contrary to other reports in DBD and TD 

(Banich et al., 2007; Euler et al., 2014; Prateeksha et al., 2014; Rubia, Halari, et al., 2010; 

Rubia et al., 2008). 

 

In line with our second hypothesis, ROI analyses revealed decreased left amygdala activity 

during Stroop task trials with a high cognitive load (IC>B) in TD. In contrast, CD youths did 

not show any downregulation of emotion-related brain areas with increasing task difficulty. 

Unexpectedly, this group difference was independent of the emotionality. We would have 

expected to detect a difference depending on the emotion presented (i.e., a downregulation 

after negative images instead of on any image as observed here). Our data suggests that no 

task-dependent downregulation of left amygdala response takes place in CD as compared to 

TD, reflecting altered neuronal functioning of left amygdala which may be linked to altered 

regulatory processes.  

 

Aberrant amygdala activity in DBD has been previously reported for response inhibition 

(Hwang et al., 2016), facial emotion processing (Holz et al., 2017; Jones, Laurens, Herba, 

Barker, & Viding, 2009; Marsh et al., 2008), emotion processing (Sterzer, Stadler, Krebs, 

Kleinschmidt, & Poustka, 2005), stimulus-reinforcement learning, and reward processing 

(Finger et al., 2011). In addition to functional MRI evidence, past research has suggested 

reduced amygdala volumes in adolescents with conduct problems (Fairchild et al., 2011; 

Huebner et al., 2008; Rogers & De Brito, 2016; Sterzer, Stadler, Poustka, & Kleinschmidt, 

2007; Wallace et al., 2014), supporting a broader view of the amygdala as a key center of 

alterations in CD.  

 

Whole-brain results provided further insights into right insula activity during the affective 

Stroop task while distinguishing between insular subdivisions. CD exhibited decreased 

activity in dorsal anterior and posterior insula, areas involved in response inhibition and 

sensorimotor processing (Chang, Yarkoni, Khaw, & Sanfey, 2013; Mutschler et al., 2009). 

Additionally, CD showed increased activity in the ventroanterior insula implicated in 

affective processing (Chang et al., 2013; Mutschler et al., 2009). Our observations are in line 

with a broader view of the insula in integrating emotion and cognition in healthy adolescents 

(Chang et al., 2013; Pavuluri & May, 2015), whereas alterations thereof could be 
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hypothesized to reflect a failure in recruiting areas for task performance, while allocating 

neuronal resources for emotion processing instead. However, the observed differences 

emerged from a main effect of group and therefore need to be interpreted carefully. Future 

studies shall determine whether right amygdala and insula show significant co-activations 

(Kober et al., 2008) during task trials following negative stimuli, reflecting on the role of the 

insula in transferring sensory information to the amygdala (Shelley & Trimble, 2004). 

  

Limitations 

For the present study design we used child-appropriate emotional pictures (DAPS; Cordon, 

Melinder, Goodman, and Edelstein (2013)). However, the short presentation (150ms) and 

moderate image valence might have resulted in a reduced impact for CD youths. Moreover, 

we cannot exclude that confounding factors or comorbidities could have influenced the 

results. Finally, the here presented results characterize a group of CD youths on the lower 

spectrum of CU traits. Interpretation should therefore be drawn with caution. 

 

Conclusion 

We provide evidence for the neuronal characteristics of altered emotion processing and 

response inhibition interaction in CD. More specifically, we observed a significant lack of 

downregulation of left amygdala activity in response to task trials and decreased 

dorsoanterior/posterior and increased ventroanterior insula activity for CD relative to TD 

during affective Stroop task performance. Behaviorally, CD scored significantly lower than 

TD youths, while reaction times did not differ. These findings extend knowledge on altered 

emotion-cognition interaction in CD youths and support emotion dysregulation as a core 

deficit in CD. 
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Background: Conduct disorder (CD) characterized by severe aggressive and antisocial 

behaviour is commonly associated with emotion regulation deficits, but the associated neural 

correlates have yet to be investigated.  

 

Methods: We applied whole-brain event-related fMRI during emotion regulation in 60 

females with a CD diagnosis (according to DSM-IV guidelines, age range = 14-18 years; 

N=30) and those without (N=30). During scanning, participants were asked to look at a 

negative or neutral image (look_negative/look_neutral) or decrease feelings associated with a 

negative image (decrease_negative). Each trial was followed by an in-scanner affect rating. 

fMRI analysis included standard pre-processing steps and random effects analysis according 

to the GLM. Main regressors of interest were built to assess emotional reactivity 

(look_negative > look_neutral) and activation or modulation by emotion regulation 

(decrease_negative >/< look_negative). Results are whole brain FWE-corrected (p<0.05, 

TFCE).  

 

Results: In-scanner affect ratings confirmed that the stimuli elicited emotional reactivity and 

all participants regulated their emotions, but emotion regulation success was significantly 

lower in females with CD compared to TD. Whole-brain findings indicate less neural 

activation in left angular/temporoparietal and left insula/dorsomedial prefrontal cortex during 

emotion regulation in female with CD.  

 

Conclusion: We demonstrate for the first time atypical reduced neural response during 

emotion regulation in limbic and prefrontal regions of females with CD, furthering our 

understanding of the neural phenotype of CD in females. 
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Figure 1. Whole-brain activity for typically developing females (TD), females with conduct 
disorder (CD), and reduced activity for females with CD compared to TD for emotional 
reactivity. Displayed at p<0.001, FWE corrected. 

 

Figure 2. Whole-brain activity for typically developing females (TD), females with conduct 
disorder (CD), and reduced activity for females with CD compared to TD during cognitive 
reappraisal. Displayed at p<0.001, FWE corrected. 
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Abstract 

Do you like science fiction? Have you heard of, or are you even a fan of, the famous “Star 

Wars” series? To summarize, there are rebels, emperors, princesses, robots, and many more 

fabulous creatures. There is also a power source called “The Force.” It is used by the Jedi (the 

good ones) but also by the dark side (the evil ones). Only the dark side uses the destructive 

power of “The Force,” which is based on negative emotions such as fear, anger, jealousy, or 

hate. A Jedi masters “The Force” and uses it for knowledge and defense by learning to control 

his emotions. Our research also looks at emotions and how to control them. We know that in 

our galaxy too, we have more success when we can control our feelings. Therefore, we want 

to find the brain regions responsible for allowing us to deal with our emotions and to help 

those children struggling with controlling negative emotions.  
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Introduction 

Imagine walking down the school hall thinking about your next lesson. Suddenly, your best 

friend jumps out from a dark corner, right in front of you, wearing a silly mask and scaring 

you. This trick that was played on you immediately led to a reaction of your body. You can 

feel your heart beating and maybe you just screamed out loudly. A few seconds later though, 

you recognize your friend and notice there is no real threat. You may even start laughing 

about the joke. This is an example of how a person can react to an emotional situation. It also 

shows how our mind processes a situation using different clues. Emotions are feelings that 

(1) are caused by situations that are meaningful or important to you, (2) are something you 

feel or show through your body language, and (3) may compete with other important things 

(Gross & Barrett, 2011). In our example, the scary joke gave you the impression of being 

attacked, and it is important to you to stay unharmed. Your beating heart and the screaming is 

the reaction of your body. While you are scared and your first intention might be to run away 

quickly, you also noticed that this was simply your friend playing a joke on you. Being scared 

and knowing someone is your friend are two different clues that might compete with each 

other in your brain. One clue tells you to run away in order to stay unharmed, and the other 

tells you to stay with someone you like (competing reactions). Within a split second, you 

make a choice about which emotion you find important and which emotion you choose to 

control or suppress completely. Overall, people tend to choose to decrease negative emotions 

(anger, sadness, or fear) and increase positive emotions (happiness, love, and joyfulness). 

Changing or controlling your feelings is an action we call “emotion regulation.” The way 

that you control and change your emotions is called your “emotion regulation strategy.” 

Looking at data from many people, scientists were able to show that the way you regulate 

your emotions influences how you feel, but it also affects the people around you (Gross & 

Barrett, 2011). For example, if you have difficulties controlling your emotions when being 

angry you may end up cursing, punching, or even bullying the people around you. This is no 

fun for them either. Therefore, successful emotion processing and regulation is very important 

for humans. In fact, emotion regulation difficulties are a part of many mental health issues in 

children, teenagers, and adults. 

 

Using an MRI camera for studying the brain 

The way the brain processes and regulates emotions can be studied using a technique called 

magnetic resonance imaging (MRI). An MRI scanner looks like a big tunnel (see Figure 1A). 

Actually, it is just a very fancy camera that is able to take images of all the parts inside your 
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body. For example, an MRI camera can take an image of the bones in your leg, of your 

beating heart, or of the organ we are interested in – the brain. We can use the MRI camera to 

look at the structure (shape and size) of the brain. When we want to see how the brain works, 

then we can use an MRI camera to look at brain function. Just as you need more food when 

you do sports, your brain also needs more energy when it becomes active, but instead of food 

it needs oxygen. Therefore, when a specific region in the brain is hard at work, it will get 

more oxygen transported to it by the bloodstream. We call this blood oxygen-rich. Oxygen-

rich blood gives different signals to the MRI camera compared with blood that has less 

oxygen. Using this knowledge, researchers can create an image of both the brain’s structure 

and function. With special computer programs, we can make pictures like the ones in Figure 

1B. One of the most amazing things is that the MRI camera can take pictures of your brain at 

work without even touching you! But there are some challenges for people who take part in 

research studies using an MRI. Two of the biggest challenges are that (1) you have to stay 

super still while the pictures are taken or they become blurry (for an explanation, see Figure 

2) and (2) you have to protect your ears against the noise. Big cameras such as an MRI can be 

quite loud, which is why you need to wear special headphones. Staying still can be practiced 

with fun games, such as the freezing game, where you have to stay still like an ice statue. If 

you want to know more and see what MRI experiments involving young children look like, 

you can watch the following video (http://www.jove.com/video/1309/ making-mr-imaging-

child-s-play-pediatric-neuroimaging-protocol; Raschle et al., 2009). 

Figure 1. [A] Two of our research team members showing you an MRI camera and how it is 
used. [B] Different views of a child’s brain as taken by an MRI camera. The areas that are 
colored yellow are important for emotion processing and regulation. 
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Figure 2. Why staying still during an MRI session is important: [A] A picture taken by a 
regular camera can be very sharp when the person is standing super still (green happy face). 
But when the person is moving a lot, the picture becomes blurry (red sad face). [B] The same 
is true when taking brain pictures. The pictures can turn out super sharp when the person stays 
still (green happy face) or blurry and hard for scientists to read for when the person wiggles 
around (red sad face). 
 
What does the brain look like while processing and regulating emotions? 

Now, in the first section, you learned about feelings, which scientists call emotions. You 

heard that emotions can lead to a reaction in your body. You also know that sometimes we 

experience several emotions at once and that sometimes it is necessary to control a feeling 

and not to act on it. This process is called emotion regulation. In the second section, you 

learned how an MRI camera works and how it can be used to take images of the structure and 

function of the brain. In the next section, we want to combine these two things and talk about 

the parts of the brain that are responsible for processing and regulating emotion. 

 

Using MRI cameras, scientists have shown that emotions are processed by many different 

areas of the brain. There is not just one place that is responsible for processing an emotion. 

Several brain regions work together as a team. This is why scientists say that emotions are 

processed by a network of brain regions. A network of brain regions that process emotions is 

called an emotion- processing network (see Figure 3). Let us name some of those brain 

regions that are activated by emotions. They are the amygdala, the prefrontal cortex, the 
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cingulate cortex, the hippocampus, and the basal ganglia (Phan et al., 2002). Fancy names, but 

it is not these names you need to remember. What is important to understand is that there are 

many brain regions involved during emotion processing. All the different regions have their 

own job and they all work together to identify and control an emotion. The amygdala, for 

example, is a tiny part of the brain (it has the shape and size of an almond), and it is 

responsible for handling both positive and negative information. The amygdala is especially 

important when we experience the emotion of fear. Another region of the emotion processing 

network is the prefrontal cortex, which is named after its location: in the front of the brain. 

The prefrontal cortex is like a control center, helping to guide our actions, and therefore, this 

area is also involved during emotion regulation. Both the amygdala and the prefrontal cortex 

are part of the emotion network. Just like good friends, these different brain regions stay in 

touch and communicate frequently with each other. For example, the amygdala (the emotion 

center) can detect an important fearful event and transport that information to the prefrontal 

cortex (the control center). The prefrontal cortex gets the message that there is something 

scary happening. If necessary, this control center at the front of your head sends commands to 

other brain regions telling them to move your body and run away. To sum it up, many brain 

regions work together to process and react to an emotional situation (see Figure 3). 

 

What happens in the brain when emotion processing fails? 

By now, you understand that feelings are complicated and that emotions are represented and 

processed by many regions in the brain. You also remember that successful emotion 

regulation is important for a persons’ well-being and central for the people around them. As 

mentioned before, it can be really difficult to be around people that are constantly cursing, 

hitting, or bullying the people around them because they cannot control their negative 

emotions. Unfortunately, some children struggle more than others with their emotions. 

Imagine you have a classmate named Jamie, who has problems with regulating emotions, 

especially anger and fear. Now picture that you make a silly joke with Jamie, but instead of 

laughing, Jamie gets very upset and maybe even starts fighting with you. This is an example 

of someone who has emotion regulation difficulties. Such difficulties in handling emotions 

can often be observed in very aggressive (frequently fighting and bullying) and antisocial 

(breaking rules) teenagers. Research studies have shown that these teenagers cannot always 

successfully identify their emotions. It can also be very hard for these children to control their 

emotions, like in the case of Jamie. This is not fun for you, if you become a victim of Jamie 

when he wants to fight you. But it is also not fun for Jamie, who might be expelled from 
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school for his behavior. It is no fun either for his parents or the people around him. You can 

see that many individuals are affected by Jamie’s difficulties controlling his emotions. 

 

Because we are interested in how the brain processes and regulates emotions, we do a lot of 

work with children who can successfully handle their emotions. We also invite children who 

struggle with emotion processing and regulation to see whether their brain structure and 

function looks any different from the children who do not have trouble with emotion 

processing. So far, there have been several small studies, suggesting that there are differences 

in brain function and structure in children with aggressive behavior (Sterzer et al., 2007). But, 

as our MRI section describes, there are challenges when doing research studies with younger 

participants. For example, it is very hard for children to stay very still while the MRI takes 

pictures (Figure 2A). Because of this, most studies have a very small number of participants, 

and the results are not as clear. A method called “meta-analysis” helps to summarize the 

information from all of these very important small studies. Meta-analysis takes the results of 

many studies and combines them into one big finding. For example, we have combined all 

small studies done so far in children and teenagers with aggressive behavior (Raschle et al., 

2015). While each study had a maximum size of about 40 participants, combining all of them 

into one meta-analysis allowed us to look at over 500 children at once. By doing so, we were 

able to show changes in both brain structure and brain activity (function) in the emotion 

processing network in aggressive teenagers (Figure 3). 
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Figure 3. The emotion processing network includes several areas of the brain. Some of these 
areas are shown here shaded in blue and you can see their different jobs: the amygdala 
(almond) recognizes and sorts the emotions before transporting them to other areas. In the 
picture, this transportation is visualized by a train driving along the dotted track line to the 
most frontal part of the brain. Once the information arrives there, the prefrontal cortex and the 
cingulate cortex act as a control center (little man behind desk), deciding what has to be done 
next with the incoming emotions. Many areas work together to process an emotion! 
(illustration by Menks). 
 
May “the force” be with you! 
To summarize, emotions are feelings that are processed by a team of brain regions. Emotion 

processing is a complicated process, which sometimes does not work so well. Difficulties 

with emotion processing and regulation are found in children and teenagers with very 

aggressive and antisocial behavior. Using structural and functional neuroimaging techniques, 

we showed that areas of the emotion processing network of the brain are different in the 

youths with aggressive behavior. Luckily, the brain has the ability to change and adapt, 

especially when people are still young. The more we know about how our brain develops and 

how it processes and regulates emotions, the more we can help children with emotion 

processing problems. This knowledge also helps doctors to choose the most helpful treatment 

for these children. For example, if we know that a child struggles with recognizing an 

emotion, then that is what we teach them to practice. Or if we see that a child cannot control 
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his emotions, we teach him ways to do so. In the end, we want to understand and teach others 

how to deal with feelings of anger, fear, and aggression in a good way. We hope that we can 

help those children struggling with their emotions and bring all of us a little closer to the “Jedi 

in us”. 
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Abstract 

Diffusion tensor imaging (DTI) studies in adolescent conduct disorder (CD) have 

demonstrated white matter alterations of tracts connecting functionally distinct fronto-limbic 

regions, but only in boys or mixed-gender samples. So far, no study has investigated white 

matter integrity in CD girls on a whole-brain level. Therefore, our aim was to investigate 

white matter alterations in adolescent girls with CD. We collected high resolution DTI data 

from 24 girls with CD and 20 typically developing control girls using a 3T MR imaging 

system. Fractional anisotropy (FA) and mean diffusivity (MD) were analyzed for whole brain 

as well as a priori defined regions of interest, while controlling for age and intelligence, using 

a voxel-based analysis and an age-appropriate customized template. Whole-brain findings 

revealed white matter alterations (i.e. increased FA) in CD girls bilaterally within the body of 

the corpus callosum, expanding towards the right cingulum and left corona radiata. The FA 

and MD results in a priori defined regions of interest were more widespread and included 

changes in the cingulum, corona radiata, fornix and uncinate fasciculus. These results were 

not driven by age, intelligence or ADHD comorbidity. This paper provides the first evidence 

of white matter alterations in female adolescents with CD as indicated through white matter 

reductions in callosal tracts. This finding enhances current knowledge about the 

neuropathological basis of female CD. An increased understanding of gender-specific 

neuronal characteristics in CD may influence diagnosis, early detection and successful 

intervention strategies. 
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Introduction 

Conduct disorder (CD) is a mental disorder of childhood and adolescence and is characterized 

by repeated patterns of rule-breaking and aggressive or defiant behavior which is outside the 

appropriate age norm (DSM-5 312.8; American Psychiatric Association, 2013). A clinical 

diagnosis of CD affects familial, academic or occupational functioning and can thus result in 

substantial societal costs. Clinically, CD and oppositional defiant disorder are subsumed 

under the diagnosis disruptive behavior disorder (American Psychiatric Association, 2013). 

The estimated life time prevalence of CD corresponds to about 7% in girls and 12% in boys 

(Nock, Kazdin, Hiripi, & Kessler, 2006). Consequently, the majority of research studies 

investigating CD almost exclusively included male participants. However, considering the 

known sex differences in the prevalence and progression of CD, the importance of including 

gender as a critical factor within CD studies remains indispensable (Nock et al., 2006). 

Sixteen to thirty percent of adolescents with CD display comorbid attention deficit 

hyperactivity disorder (ADHD), resulting in a possible influence (Maughan, Rowe, Messer, 

Goodman, & Meltzer, 2004). However, research has indicated that CD specific deficits persist 

beyond the presence of comorbid ADHD symptoms (Pape et al., 2015; Passamonti et al., 

2012). 

 

Behaviorally, reduced empathy, emotion processing and regulation skills are key deficits in 

the behavioral symptomatology of CD. Likewise, impulsivity, decision making and 

reinforcement learning, are commonly impacted (Blair, 2013). In line with the known 

behavioral phenotype, functional neuroimaging studies in CD have revealed neuronal 

characteristics affecting the emotion processing, regulation and threat circuitries of the brain, 

as indicated by neuronal alterations in amygdala, insula, prefrontal, superior temporal and 

cingulate cortex (Marsh et al., 2008; Passamonti et al., 2010; Sterzer, Stadler, Krebs, 

Kleinschmidt, & Poustka, 2005; Viding et al., 2012). In line with functional evidence, 

changes in gray and white matter structure in brain areas of the frontal, limbic and temporal 

lobe have been identified when comparing CD to typically developing youths (Baker, 

Clanton, Rogers, & De Brito, 2015; De Brito et al., 2009; Sterzer, Stadler, Poustka, & 

Kleinschmidt, 2007). For example, by using voxel-, surface- or cortical thickness-based 

morphometry analysis structural alterations in CD have been linked to the amygdala, insula, 

precuneus, prefrontal cortex, cingulate cortex and corpus callosum (Baker et al., 2015; 

Fairchild et al., 2013; Raine et al., 2003; Raschle, Menks, Fehlbaum, Tshomba, & Stadler, 

2015). Structural and functional brain alterations are further dependent on age of onset, CD 
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symptom severity or the level of callous-unemotional traits displayed. Heightened scores are 

thereby predictive of a negative disease progression and the development of antisocial 

behavior later in life (Fairchild et al., 2013; Marsh et al., 2008; Passamonti et al., 2010; 

Viding et al., 2012). Regionally specific structural changes have been linked to alterations 

within the white matter tracts, or neural circuitries, connecting these regions, for example the 

prefrontal-limbic circuit. 

 

Neural circuits such as the prefrontal-limbic system may be investigated using diffusion 

tensor imaging (DTI), a technique measuring structural connectivity. DTI can inform about 

the fiber consistency and microstructural integrity of white matter tracts (e.g. fractional 

anisotropy (FA) or mean diffusivity (MD)). Previous DTI studies in male or mixed-gender 

groups of adolescents with disruptive behavior disorders have reported white matter increases 

and decreases in tracts comprising the corpus callosum, corona radiata, superior longitudinal 

fasciculus, fronto-occipital fasciculus, uncinate fasciculus, stria terminalis and cerebellar 

peduncle (Breeden, Cardinale, Lozier, VanMeter, & Marsh, 2015; Haney-Caron, Caprihan, & 

Stevens, 2014; Passamonti et al., 2012; Zhang et al., 2014b). 

 

To date it is unclear whether previously identified white matter alterations in CD boys are 

also present in CD girls. Two studies, one using a region of interest approach, the second 

based on post-hoc examinations of adult females with a prior CD diagnosis provide first 

evidence about potentially unique white-matter characteristics in female CD (Zhang et al., 

2014a; Lindner et al., 2016). However, no study to date has investigated whole-brain white 

matter alterations in female adolescents with a clinical diagnosis of CD using diffusion tensor 

imaging. Therefore, the present paper aims at bridging this gap in knowledge by comparing 

white matter tracts in CD girls compared to typically developing controls through voxel-based 

DTI-TK using both a whole-brain and a region-of-interest approach. By employing a more 

conservative whole brain approach as well as investigations within a priori defined regions of 

interest method we aim to gain novel insights into white matter alteration in CD girls, but also 

allowing comparability to past studies. Based on previous evidence implicating white matter 

alterations within the neurobiology of CD, we hypothesize that in a group of only girls with 

CD alterations in white matter structures are likewise observed (i.e. in the uncinate fasciculus, 

corpus callosum, corona radiata, fornix, cingulum and fronto-occipital fasciculus) (Breeden et 

al., 2015; Haney-Caron et al., 2014; Pape et al., 2015; Passamonti et al., 2012; Zhang et al., 

2014b). Comorbid ADHD symptoms will be accounted for by the repetition of analysis in CD 
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girls without ADHD comorbidity. Finally, using correlational analyses we will investigate 

whether callous-unemotional traits, which are known to increase the symptom severity and 

disease progression of CD, may be linked to the observed microstructural alterations (Frick, 

Cornell, Barry, Bodin, & Dane, 2003).  

 

Method 

Participants 

Forty-four average intelligent female adolescents, 24 with CD (age range: 12-18 years) and 20 

typically developing controls (age range: 12-19 years), were recruited through healthcare 

institutions and schools within this Swiss National Foundation study investigating adolescent 

CD. Some participants were part of FemNAT-CD, a project across Europe 

(http://www.femnat-cd.eu/). All patients fulfilled the DSM-5 criteria for CD using the semi-

structured diagnostic interview K-SADS-PL(Kaufman et al., 1997); Healthy controls were 

free of any psychiatric or neurological disorder. In line with the known overlap between CD 

and ADHD, we here identified nine CD patients with comorbid ADHD symptoms (Maughan 

et al., 2004). Furthermore, two patients were diagnosed with a present alcohol abuse and five 

patients with a present substance abuse. Handedness was assessed using the Edinburgh 

Handedness Inventory (Caplan & Mendoza, 2011). All participants completed two testing 

sessions, including clinical interview/psychometric testing and one MRI appointment. The 

MRI session occurred on average 2.6 months (±2.3 for CD; ±2.9 for controls) after the 

clinical interview. All participants and caretakers provided verbal and written informed 

consent to take part in the study as approved by the local ethics committee in Basel, 

Switzerland (Ethikkommission Nordwest- und Zentralschweiz). 
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Table 1. Group characteristics of girls with conduct disorder (CD) and typically developing 
controls (TD). 

Variable 
CD TD p-

value 
N 

Mean (±SD) Mean (±SD) (CD/TD) 
Age in years 15.8 (±1.4) 16.3 (±1.8) .262 (24/20) 
Age of CD onset     -   
  Child-onset (<10 years) 5 -     

  
Adolescent-onset (≥10 
years) 19 -     

Handedness 
  

.319 (22/20) 
  Left-handed 2 4     
  Right-handed 20 16     

Intelligence quotient (IQ; WISC-IV)* 99.5 (±10.5) 
108.1 

(±10.9) 
.011 (24/20) 

  Verbal IQ* 96.9 (±13.3) 
111.3 

(±13.5) 
.001 (24/20) 

  Performance IQ 102.1 
(±11.1) 

105.0 
(±11.5) 

.398 (24/20) 

Aggression (RPQ) 13.1 (±9.3) 8.6 (±4.3) .1271 (20/20) 

Psychopathic Traits (YPI)* 
107.5 

(±22.1) 
92.2 (±18.6) .019 (23/20) 

Callous-Unemotional Traits (ICU)* 28.6 (±10.8) 17.0 (±6.1) .001 (16/17) 
Puberty status 3.9 (±0.4) 4.2 (±0.7) .2331 (18/19) 
Socioeconomic status 5.0 (±1.8) 5.5 (±1.4) .502 (13/12) 
* significant group difference (p < 0.05), two-tailed T-test. 1 Mann-Whitney U test; For all tests, 
mean scores and standard deviations (SD) are reported. RPQ= Reactive-Proactive 
Questionnaire; YPI= Youth Psychopathic Traits Inventory; ICU= Inventory of Callous-
Unemotional Traits. 
 

Psychometric testing 

Participants completed a battery of standardized psychometric tests measuring psychopathic 

traits (Youth Psychopathic Traits Inventory self-report, based on 10 dimensions/50 items 

rated on a four-point Likert scale (Andershed, Kerr, Stattin, & Levander, 2002)), callous-

unemotional traits (Inventory of Callous-Unemotional traits parent-report, based on 24 items 

rated on a four-point Likert scale (Essau, Sasagawa, & Frick, 2006)), aggressive behavior 

(Reactive–Proactive Aggression Questionnaire, a 26-items self-report (Raine et al., 2006)) 

and pubertal status (Petersen, Crockett, Richards, & Boxer, 1988). Additionally, behavioral 

problems were recorded through parental reports (Child Behavior Checklist (Achenbach & 

Rescorla, 2001)). Furthermore, parental socioeconomic status was estimated using a six point 
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educational-scale based on the International Standard Classification of Education 

(OECD/Eurostat/UNESCO Institute for Statistics). Clinical and psychometric data analyses 

were based on the homogeneity of variance (Levene’s) test and parametric (two-sample t-test) 

or non-parametric testing (Mann-Whitney U test) as implemented in SPSSv23 (IBM Corp., 

Armonk, N.Y., USA). Group characteristics are presented in Table 1. There were no 

significant differences in respect to age, handedness, puberty status, socioeconomic status or 

performance IQ. The present group of CD girls is comparable in scores to previously 

described CD samples, including heightened aggression, callousness and psychopathy scores 

(Passamonti et al., 2012; Zhang et al., 2014a). Compared to controls, total and verbal but not 

performance IQ was significantly lower in CD girls. 

 

DTI acquisition 

Whole-brain neuroimaging data was acquired using a 3T MR imaging system (Siemens 

Prisma, Erlangen, Germany) and a 20-channel phased-array radio frequency head coil. A 

single-shot echo planar imaging (EPI) sequence was used with the following acquisition 

parameters: A>>P phase encoding direction; echo spacing of 0.65ms, GRAPPA parallel 

imaging with an acceleration factor of two, phase partial Fourier 6/8 acquisition, matrix 128 × 

128, field of view 256mm, 2 x 2 mm2 in-plane resolution, slice thickness of 2.0mm, no slice 

gap, 62 contiguous axial slices, TR = 7500ms, TE = 71ms and bandwidth of 1776 Hz/Pixel. 

Diffusion-sensitive gradients were applied along 64 directions (b=800 s/mm2), and two 

additional images were collected without a diffusion gradient (b0=0 s/mm2) with A>>P and 

P>>A phase encoding directions, necessary for distortion corrections of the EPI imaging data 

during analysis.  

 

DTI data processing 

Prior to preprocessing, all images underwent quality control using DTIPrep in addition to 

visual checks through two independent reviewers (WMM, RF) in order to exclude artifact-

influenced gradient directions. EPI distortions were corrected using eddy and TopUp in 

FSL5.0 and the brain fMRI software library (Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012; Oguz et al., 2014). With FSL-BET individual brain masks were created. 

Subsequently FA and MD values were obtained by using the FSL-DTIfit algorithm. Again, 

visual checks were applied to assure good coherence between individual FA- and MD- maps 

and corresponding diffusion tensor eigenvectors. 
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To increase specificity, particularly for smaller tracts a voxel-based analysis as opposed to 

tract based statistics was employed (Bach et al., 2014; Schwarz et al., 2014). Most 

importantly, by using DTI-TK and an existing tensor template (the IXI aging template v3.0 in 

standard space) a study-specific customized adolescent brain template was created based on 

our study population (Zhang, Yushkevich, Alexander, & Gee, 2006). Subsequently, all 

subjects’ DTI volumes were aligned to our customized template, using the affine and 

diffeomorphic alignment of DTI-TK. DTI-TK uses a deformable registration algorithm 

optimizing the white matter alignment of DTI images between participants based on the 

tensors itself (Zhang et al., 2006). Therefore an advantage of using DTI-TK is the more 

precise spatial normalization of the DTI data. Consequently, a higher sensitivity for white 

matter alterations is achieved (Bach et al., 2014; Schwarz et al., 2014). After normalization, 

the FA and MD data were smoothed using a Gaussian kernel with full width at half maximum 

of 6 mm. 

 

Statistical whole brain and region of interest analysis 

Statistical analyses were performed using both, a whole-brain and a region of interest 

approach. All analyses were based on a permutation inference (n=5000), with demeaned age 

and total IQ-scores as covariates. Results are based on between-group two sample-t-tests 

(two-tailed) and presented using a threshold-free cluster enhancement, p≤0.05 FWE-

corrected. The ICBM-DTI-81 atlas was implemented for determining tracts that lie within the 

clusters resulting from the analysis. In order to evaluate specific white matter tracts previously 

identified in males with disruptive behavior disorder, we further chose to investigate six tracts 

using an a-priori defined region of interest approach (Breeden et al., 2015; Haney-Caron et 

al., 2014; Pape et al., 2015; Passamonti et al., 2012). More specifically, these regions were 

generated from the ICBM-DTI-81 atlas for white matter tracts that were altered in previous 

studies investigating CD: the uncinate fasciculus, corpus callosum, corona radiata, fornix, 

cingulum, fronto-occipital fasciculus (Breeden et al., 2015; Haney-Caron et al., 2014; Mori et 

al., 2008; Pape et al., 2015; Passamonti et al., 2012; Zhang et al., 2014b). 
 

Post-hoc region of interest analysis 

Evidence indicates that CD adolescents can be further dissociated depending on the level 

(high versus low) of callous-unemotional traits displayed (Andersson, Skare, & Ashburner, 

2003; Fairchild et al., 2013; Lockwood et al., 2013; Viding et al., 2012; Wallace et al., 2014). 

There were not enough girls with high/low callous-unemotional traits allowing further 
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subgroup analysis. However, post-hoc correlation analysis comparing the mean FA and MD 

values in anatomically defined areas of interest to callous-unemotional traits (corrected for IQ 

and age) were conducted in order to assess the influence of callousness on white matter 

alterations in CD girls. Correlational analyses were conducted using the ICU questionnaire, as 

well as the callous-unemotional subscale of the YPI. Both questionnaires are commonly used 

to distinguish relevant subgroups of CD individuals based on callous-unemotional traits 

(Fairchild et al., 2013; Lockwood et al., 2013; Wallace et al., 2014). Additionally, we planned 

to investigate the effect of comorbid ADHD symptoms, present in nine CD girls, on our 

findings by (1.) re-estimation of DTI analysis excluding the nine CD/ADHD girls; (2.) 

multiple linear regression analyses using CD and ADHD symptoms as independent variables 

(with age and intelligence as covariates) and clusters of significant whole brain FA changes in 

CD girls as dependent variables.  

 

Results 

Whole brain DTI findings in female CD 

On a whole-brain level, DTI analysis identified one significant cluster of FA increases 

centered in the body of the corpus callosum expanding towards the right cingulum and the left 

corona radiata when comparing CD girls to healthy controls (Table 2; Figure 1). 

Table 2. MNI peak coordinates of microstructural white matter alterations in female 
conduct disorder (CD) compared to typically developing controls (TD). 

# Brain region L/R 

coordinates of 
peak locationa 

Cluster 
size 

(number of 
voxels) p-valueb X Y Z 

Fractional Anisotropy 
CD>TD 

       
1 

Bilateral corpus callosum 
(body) 

L -1 -26 24 2291 .038 

2 Corpus callosum (body)c R 1 -26 24 5926 .005 
3 Cingulum (cingulate)c R 12 -23 34 544 .011 
4 Corona radiata (anterior)c L -15 31 -3 91 .047 

TD>CD 
       

5 Cingulum (hippocampal)c L -20 -18 -27 196 .040 
6 Fornixc R 2 -2 8 69 .046 

Mean Diffusivity 
CD>TD 

       
1 Fornixc R 3 -3 8 109 .040 
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TD>CD        

2 Corpus callosum (body)c R 4 -24 26 5490 .010 
3 Cingulum (cingulate)c R 7 -14 33 1197 .004 
4 Uncinate fasciculusc R 38 -1 -18 156 .040 

a MNI space. b Threshold-free cluster enhancement, p≤0.05 FWE-corrected. c Region of 
interest 
 

Region of interest based DTI findings in female CD 

Further analyses within six a-priori based regions of interest derived from the literature on 

male CD (i.e. the uncinate fasciculus, corpus callosum, corona radiata, fornix, cingulum, 

fronto-occipital fasciculus) likewise confirmed several significant clusters of FA and MD 

alterations in girls with CD (Table 2). When compared to their typically developing peers, 

girls with CD displayed increased FA within the body of the corpus callosum, the right 

cingulate and the left anterior part of the corona radiata, but lower MD in the callosal body 

and right cingulate. The opposite pattern was observed for the left hippocampal part of the 

cingulum and the right hemispherical fornix, where FA was found to be significantly 

decreased in CD girls, but MD was increased in the fornix. Finally, within the right uncinate 

fasciculus girls with CD had lower MD, but no differences in FA, compared to typically 

developing girls.  
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Figure 1 (top). Increased fractional anisotropy (FA) values in the body of the corpus 
callosum in conduct disorder (CD) girls compared to controls (TD). In a priori defined 
regions of interest increased FA (middle) and mean diffusivity (MD) (bottom) alterations in 
CD were detected in areas including right corpus callosum, cingulum, left anterior corona 
radiate, right fornix and uncinate fasciculus. 
 

Post-hoc region of interest analysis 

Correlation analyses indicated no significant relationship between callous-unemotional traits 

(either ICU or YPI) and the MD or FA values within anatomically defined regions of interest 

in the group of CD girls. Furthermore, results of an additional DTI analysis excluding nine 

CD/ADHD girls remained significant (see Supplement 2). Additionally, multiple linear 

regression analysis indicated that ADHD symptoms do not explain any additional variance 

observed within the results (R2 change = .019; F(1.39)=1.09; p=.303). 

 

Discussion 

For the first time, we here describe white matter alterations in female adolescents with 

conduct disorder (CD) using a whole-brain DTI analysis. More specifically, female CD is 

characterized by increased fractional anisotropy (FA) scores within the body of the corpus 

callosum, expanding towards the right cingulum and the left corona radiata. Further 

investigations within a-priori defined regions of interest reveal additional clusters of 

significantly altered white matter integrity in brain areas including the bilateral cingulum, left 
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anterior corona radiata, right uncinate fasciculus and the right fornix. Overall, these findings 

align with findings in male CD or adolescents with aggressive behavior (Baker et al., 2015; 

Breeden et al., 2015; Haney-Caron et al., 2014; Passamonti et al., 2012; Sarkar et al., 2013; 

Sobhani, Baker, Martins, Tuvblad, & Aziz-Zadeh, 2015; Zhang et al., 2014a; Zhang et al., 

2014b). These findings were corrected for age and IQ and proven independent of ADHD 

symptoms, which is in line with previous studies indicating that characteristic CD alterations 

remain after removal/control for ADHD comorbidity (Pape et al., 2015; Passamonti et al., 

2012). 

 

The here observed white matter alterations within the body of the corpus callosum are in line 

with previous research in CD. For example, Zhang and colleagues (2014b) used tract-based 

spatial statistics in order to demonstrate FA increases within the body and genu of the corpus 

callosum of male adolescents with CD. The corpus callosum is the largest white matter tract 

of the brain and crucial for interhemispheric communication. It has abundant projections (so 

called callosal radiations) to and from the cortices of both hemispheres and is generally 

subdivided into three distinct areas: the genu, the body and the splenium. Each part thereby 

connects functionally distinct brain regions. While the genu connects parts of the frontal lobes 

(executive and higher order cognitive processing) and the splenium temporal/occipital regions 

(visual processing), the body of the corpus callosum as identified here is specifically thought 

to connect motor, parietal and temporal areas important for motoric and emotion processing 

tasks (Schulte & Muller-Oehring, 2010). Interhemispheric processing is known to become 

progressively relevant with increasing cognitive demand. An intact connectivity through the 

body of the corpus callosum may thus be critical for enabling higher order skills such as 

emotion regulation (Raine et al., 2003). Furthermore, fibers of the callosal body connect to the 

insula, a structure associated with emotion processing and commonly altered in CD (Raybaud, 

2010; Raschle et al., 2015). We therefore conclude that changes in the body of the corpus 

callosum of girls with CD may result in reduced interhemispheric processing and consequent 

lower emotion regulation abilities. In line with our finding, callosal alterations are linked to 

several childhood onset neuropsychiatric disorders (e.g. attention deficit hyperactivity 

disorder or developmental dyslexia (Catherine, 1994; Hasan et al., 2012)). 

 

It is to note, that corpus callosum alterations are commonly identified, however, reports differ 

in regards to the precise underlying neuroanatomical variations. For example, two studies 

including mixed-gender groups of adolescents with and without CD reported no FA 
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differences, but reduced radial diffusivity, which is the DTI measure for the transverse 

component of diffusion direction (Finger et al., 2012). Such inconsistencies may result from 

differences in the DTI methods or analysis approaches applied, small sample sizes or missing 

group heterogeneity (e.g. clinical criteria), variation in accompanying traits (e.g. high/low 

callous-unemotional traits), unbalanced gender or differences in the age of participants tested. 

For instance, previous studies have either used voxel-based analysis or tract-based spatial 

statistics (but rarely a combination), which may explain differences in results observed. Since 

DTI-TK has shown to enhance the specificity of the normalization of DTI data, we overall 

recommend using this tool (also prior to tract-based approaches) in order to increase the 

sensitivity in future studies (Bach et al., 2014). 

 

Developmentally, the corpus callosum matures throughout childhood and adolescence, with a 

peak typically expected around 20 to 35 years of age (Lebel et al., 2012). Based on this 

knowledge, three possible explanations for FA increases in CD may be used: (1) accelerated 

maturation, causing the FA peak to shift to an earlier age; (2) an earlier degeneration 

following the initial over-proliferation (Passamonti et al., 2012; Zhang et al., 2014b); or (3) 

compensatory processes following an initial under-myelination (Markham, Herting, Luszpak, 

Juraska, & Greenough, 2009). These explanations would be in line with the finding that adults 

with a antisocial personality disorder or previous diagnosis of CD display FA reductions 

within the corpus callosum (Lindner et al., 2016; Sundram et al., 2012), while increases are 

more commonly detected in younger individuals (e.g. the here presented findings or Zhang et 

al., 2014b). Therefore, we agree with previous suggestions and hypothesize that an initial 

over-acceleration of white matter maturation, either due to excessive stimulation following 

early life stress or as a consequence of compensatory mechanism cause the characteristic 

changes in the corpus callosum in adolescents with CD and may potentially be followed by 

the onset of an earlier degeneration. However, future studies implementing longitudinal 

designs are needed in order to test whether differences in white matter trajectories within the 

corpus callosum are origin or result of the behavioral challenges observed. Furthermore, it 

would be interesting for future studies to analyze the eigenvalues (i.e. λ1, λ2, λ3) of FA 

results separately in order to investigate which component is driving the observed findings 

(Passamonti et al., 2012). 

 

Investigating a-priori defined regions of interest based data in males (Breeden et al., 2015; 

Haney-Caron et al., 2014; Pape et al., 2015; Zhang et al., 2014b), additional FA increases (i.e. 
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in the right cingulum, left anterior corona radiate) but also decreases (i.e. in the left 

hippocampal part of the cingulum and right fornix) were detected. One area identified is the 

cingulum, a large c-shaped white matter tract positioned directly above the corpus callosum 

and connecting frontal, temporal and limbic brain regions. Particularly its anterior part is 

linked to cognitive and emotion processing (Bush, Luu, & Posner, 2000; Catani, Howard, 

Pajevic, & Jones, 2002). In line with our results, structural (i.e. voxel-based morphometry, 

DTI, surface-based morphometry) and functional (e.g. emotion, empathy and pain processing) 

cingulum alterations have been identified in CD (De Brito et al., 2009; Haney-Caron et al., 

2014; Lindner et al., 2016; Sterzer et al., 2005). In line with previous findings (Haney-Caron 

et al., 2014; Raine et al., 2003; Sundram et al., 2012; Zhang et al., 2014b), we identified the 

corona radiate to distinguish girls with CD from healthy controls (Haney-Caron et al., 2014; 

Fergusson, Horwood, & Ridder, 2007; Caplan & Mendoza, 2011; Andershed et al., 2002). 

Containing a fan-shaped array of ascending and descending projection fibers and fanning out 

widely (Catani et al., 2002), the position of white matter alterations within this structure 

varies and remains debated. However, alterations within the left anterior corona radiata were 

linked to increased impulsivity. 

 

Finally, we here identified the fornix a white matter tract connecting the hippocampus with 

the mammillary body, medial temporal lobe and the anterior thalamic nuclei (Catani et al., 

2002; Thomas, Koumellis, & Dineen, 2011). Being part of the limbic system, the fornix and 

hippocampus are crucial for learning and memory processes (Tsivilis et al., 2008). Reduced 

FA in the fornix and the uncinate fasciculus have been associated with early life stress (Choi, 

Jeong, Rohan, Polcari, & Teicher, 2009; Lindner et al., 2016), which is common in the 

etiology of CD. It is mentionable, that we did not observe FA alterations in the uncinated 

fasciculus in CD girls, but only reduced MD values. A reduction in MD may indicate 

increased myelination or more compact white matter tracts, however, various factors (e.g. 

fiber crossings) may play a role (Beaulieu, 2002). While reduced FA are consistently reported 

in male psychopaths (Craig et al., 2009; Motzkin, Newman, Kiehl, & Koenigs, 2011; Sobhani 

et al., 2015; Sundram et al., 2012), findings in adolescent CD show decreases (Breeden et al., 

2015; Haney-Caron et al., 2014), increases or no changes in FA at all (Finger et al., 2012; 

Passamonti et al., 2012; Sarkar et al., 2013; Zhang et al., 2014a). Differences may be due to 

variations in study designs, small sample sizes, unbalanced or single sex studies, 

age/developmental differences or no control for comorbidities.  
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Limitations 

A potential limitation of the present work is that the overall intelligence score was 

significantly lower in girls with CD. While we used the overall intelligence score as a 

covariate of no interest within the analysis conducted, it is still possible that intelligence may 

have influenced the data. Interestingly, only verbal IQ differentiated CD girls from controls, 

but performance IQ was comparable between the groups. Furthermore, past DTI studies 

focusing on intelligence have indicated that FA values are unrelated to variations in IQ (Meier 

et al., 2012). According to past research age of CD onset may distinguish meaningful 

neurobiological subgroups (Passamonti et al., 2012). This study included both child- (N=5) 

and adolescent-onset (N=19) CD girls which may have affected the final results. While no 

study has yet demonstrated differences in white matter integrity between child- and 

adolescent onset CD groups, it is recommendable to investigate this topic further. Lastly, 

some of the girls with CD had a diagnosis of alcohol and/or substance abuse, which was 

shown to strongly correlate with CD severity (Crowley, Mikulich, Ehlers, Whitmore, & 

MacDonald, 2001; Fergusson, Horwood, & Ridder, 2007), and consequent brain activation 

(Castellanos-Ryan et al., 2014). Therefore, we cannot exclude potential effects on the 

presented results. 

 

Conclusion 

Research has suggested that boys have an increased propensity to develop disruptive behavior 

disorders as opposed to girls who require a higher loading of biological risk factors to develop 

CD (Cloninger, Christiansen, Reich, & Gottesman, 1978). An increased understanding of the 

neurobiological basis of CD across both sexes is crucial in order to improve individualized 

diagnostics and facilitate early detection of children at risk. Particularly, because a timely start 

of intervention program precedes success (Pardini & Frick, 2013). Here we have identified 

structural white matter changes specific for the corpus callosum in girls with a diagnosis of 

CD. Our findings align with results in male adolescents with CD displaying corpus callosum 

deficits, but being on average about two years younger (Zhang et al., 2014b). Thus it could be 

hypothesized that these alterations may be indeed a characteristic of both, males and females 

with CD, however, linked to different sensitive periods. Continuous developmental research 

of the uniqueness and shared features of both female and male individuals with CD is needed 

in order to draw conclusions adaptable for both genders. 
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Abstract 

Aggressive and antisocial behaviors are common reasons for referral to youth mental health 

services, and result in adverse psychological, clinical and societal consequences. However, 

aggressive and antisocial youths are heterogeneous with respect to etiology, behavior, 

treatment responsiveness and neurobiology. Callous-unemotional traits differentiate 

meaningful subgroups, and callousness has been linked to neuroanatomical correlates in 

clinical samples. Nevertheless, it is unknown whether callous-unemotional traits are 

associated with neuroanatomical correlates within normative populations without clinical 

forms of aggression. Here we investigated the relationship between callous-unemotional traits 

and gray matter volume using voxel-based morphometry in typically-developing boys and 

girls (N=189). Whole-brain multiple regression analyses controlling for site, total intracranial 

volume and age were conducted in the whole sample and in boys/girls individually. Results 

revealed that callous-unemotional traits were positively correlated with bilateral anterior 

insula volume in boys, but not girls. Insula volume explained 19% of the variance in callous-

unemotional traits for boys. Our results demonstrate that callous-unemotional traits have a 

neurobiological basis beyond psychiatric samples. This association was sex-specific, 

underlining the importance to consider sex in future research designs. Longitudinal studies 

will need to determine whether these results persist over time and whether neural correlates of 

callous-unemotional traits are predictive of future psychiatric vulnerability. 

 

Keywords: Callous-unemotional traits, insula, pediatric neuroimaging, sex differences, 

voxel-based morphometry. 

 

General scientific summary: This study suggests that callous-unemotional traits have a 

neuroanatomical correlate within typically developing boys, but not girls. Bilateral anterior 

insula volume explains up to 19% of the variance in callous-unemotional traits in boys. 
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Highlights: 

- Sex-specific correlations between callous-unemotional (CU) traits and insula volume 

- CU-traits are positively linked to anterior insula in typically-developing boys 

- Variations in insula volume explained 19% of the variance in CU-traits in boys 

- Accounting for sex in neuroanatomical studies of individual differences is important 

 

Funding: This work was supported by the European Commission under the 7th Framework 

Programme [grant agreement number 602407]. NMR is a recipient of a Jacobs Foundation 

Early Career Research Fellowship 2017-2019. 

 

Acknowledgements: We thank all families and institutions that participated in this study. 

Thanks also, to all the members of the FemNAT-CD consortium contributing to this research 

and Réka Borbás for her support during the manuscript preparation. 

  



Study 7: Callous-unemotional traits and brain structure 

130 
 

Introduction 

The term callous-unemotional (CU) traits refers to a pattern of behaviors including a lack of 

empathy, guilt or remorse, shallow or deficient affect, as well as a lack of concern about the 

person’s actions or one’s own and others’ feelings (i.e., limited prosocial emotions (American 

Psychiatric Association 2013)). High levels of CU-traits are often observed in youths with 

severe aggression and antisocial behavior. Therefore, CU-traits have mostly been studied in 

children and adolescents with disruptive behavior disorders (DBDs, including oppositional 

defiant and conduct disorder; (Blair 2013; Frick, et al. 2014c)). Notably, children and 

adolescents with DBD form a very heterogeneous group in regard to etiology, associated 

behavioral symptoms, developmental trajectories, future risk for impairment, or response to 

treatment (Frick, et al. 2014a; Frick, et al. 2014c; Moffitt, et al. 2008). Devising a meaningful 

approach to subtyping antisocial behavior has thus been of long-lasting clinical interest 

(Frick, et al. 2014b). While various approaches have been proposed, separating individuals 

based on levels of CU-traits is thought to delineate a behaviorally, genetically, and 

neurobiologically distinct subgroup within antisocial populations ((Barker, et al. 2011; 

Bezdjian, et al. 2011; Essau, et al. 2006b; Frick, et al. 2003; Rogers and De Brito 2016); for 

reviews see (Blair 2013; Frick, et al. 2014c; Viding and McCrory 2012). This was likewise 

recognized within the latest version of the DSM by an additional specifier to the diagnosis of 

conduct disorder termed ‘limited prosocial emotions’ (American Psychiatric Association 

2013). Patients qualifying for this specifier (i.e. those with elevated CU-traits) are at high risk 

for the development of particularly severe, persistent, and treatment-resistant forms of 

conduct disorder (Frick, et al. 2014c). 

 

While CU-traits have most commonly been studied in DBD populations, there is increasing 

evidence that CU-traits may be important in community samples without DBDs, and that CU-

traits can be elevated in the absence of clinically-significant conduct problems (Fanti, et al. 

2013; Frick, et al. 2003; Herpers, et al. 2012; Kumsta, et al. 2012; Rowe, et al. 2010b; Viding 

and McCrory 2012). CU-traits in youths without DBDs have for example been related to 

subclinical variations of antisocial behavior, impairments affecting peer relationships, quality 

of life, hyperactivity and increased risk-taking (Barker, et al. 2011; Frick, et al. 2003; Herpers, 

et al. 2016; Pardini and Fite 2010); for a review see (Viding and McCrory 2012)). CU-traits in 

youths with or without conduct problems are highly heritable and may carry independent 

diagnostic value (Barker, et al. 2011; Frick, et al. 2003; Herpers, et al. 2017; Kumsta, et al. 

2012; Rowe, et al. 2010a; Viding and McCrory 2012).  
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To date, studies investigating the neural correlates of CU-traits have mostly focused on DBD 

samples. By doing so, functional neuroimaging evidence revealed that among youths with 

DBD, high levels of CU-traits were associated with reduced brain response during affective 

processing in several cortical (e.g., anterior insula, anterior cingulate cortices) and subcortical 

(e.g., amygdala) regions, responsible for empathic behaviours in typically developing youths 

(Lockwood, et al. 2013; Lozier, et al. 2014; Michalska, et al. 2016). Prefrontal functioning in 

response to punishment and rewards (e.g. in the caudate and ventromedial prefrontal cortex) 

has in turn been shown to be increased in DBD, as opposed to a reduction in prefrontal 

activation typically seen in healthy children and adolescents following punishment learning 

((Finger, et al. 2008); for a review see (Viding and McCrory 2017)). Additionally, studies 

have indicated that the functional connectivity between limbic and prefrontal brain regions, 

commonly impacted in DBD, was further negatively correlated with callous-unemotional 

traits (Marsh, et al. 2008), although not all studies were able to replicate this finding (Finger, 

et al. 2012).  

 

In contrast to functional MRI evidence, the unique associations between CU-traits and brain 

structure provides mixed findings in regards to the direction and precise location of effects 

and further investigations in youths with and without conduct problems are needed (Blair 

2013; Cohn, et al. 2016). More specifically, elevated CU-traits have been linked to both 

increases and decreases in gray matter volume and concentration within orbitofrontal, anterior 

cingulate, para-/hippocampal, and temporal cortices (Cohn, et al. 2016; Cope, et al. 2014; De 

Brito, et al. 2009a; Fairchild, et al. 2013a; Raschle, et al. 2015; Wallace, et al. 2014). 

Amygdala alterations in correlation with CU-traits are mostly absent (Dalwani, et al. 2011; 

De Brito, et al. 2009a; Fairchild, et al. 2013a); a modest association was identified by one 

study reporting a positive association between CU-traits and amygdala gray matter 

concentration in DBD youths low on CU-traits (Cohn, et al. 2016). Furthermore, a meta-

regression study analyzing across five voxel-based morphometry studies on DBDs published 

to date found that higher CU-traits were associated with a lower reduction in GMV in the 

putamen and, to a lesser extent, in the right amygdala (Rogers and De Brito 2016).  

 

Overall, structural and functional neuroimaging findings vary with respect to the direction and 

precise location of the observed associations with CU-traits. This may be due to the choice of 

assessment tool used, the use of different data analysis packages and strategies, as well as 

heterogeneity (e.g. differences in demographic and clinical features/diagnoses/comorbidities) 



Study 7: Callous-unemotional traits and brain structure 

132 
 

of the groups studied. For example, the mixed nature of previous findings may be related to 

the various measures employed to assess CU-traits. Research reports have used a range of 

assessments, such as the Inventory of Callous-Unemotional traits (Essau, et al. 2006a), the 

Youth Psychopathic traits Inventory (Andershed, et al. 2007), the Psychopathy Checklist: 

Youth Version (Forth, et al. 2003), or the callous-unemotional scale of the Antisocial Process 

Screening Device (Frick and Hare 2001) in order to classify participants into those with high 

versus low CU-traits. Variations in results to date may thus be based on differences in the 

measure employed, as well as differences between samples in levels of CU-traits which may 

reflect differences in recruitment sources (e.g., incarcerated offenders versus community 

samples). In order to maximize reliability of the assessments used to characterize callous-

unemotional traits the American Psychiatric Association (American Psychiatric Association 

2013) has suggested basing the assessments of limited prosocial emotions or CU-traits on 

multiple sources of information. However, such comprehensive measures have rarely been 

implemented in research studies to date.  

 

While all evidence points towards the importance of considering sex as a variable within 

research designs, the majority of neuroimaging studies, particularly those on CU-traits, focus 

solely on males (Rogers and De Brito 2016). This may be due to higher levels of crimes, 

delinquency, or aggressive and antisocial behavior being reported in boys (Loeber, et al. 

2013), but nevertheless limits the generalizability of the findings. Longitudinal brain imaging 

studies in typically developing youths have demonstrated sex-specific differences in brain 

maturation and cortical trajectories (Giedd and Rapoport 2010; Lenroot, et al. 2007). In fact, 

cortical and subcortical gray matter development has been suggested to follow an inverted U-

shaped pattern with main peaks being reached one to two years earlier in females as compared 

to males (Lenroot, et al. 2007). Likewise, epidemiologic as well as longitudinal research 

indicates sex-specific developmental trajectories for neuropsychiatric disorders (Giedd and 

Rapoport 2010; Moffitt, et al. 2008; Wilke, et al. 2007).  

 

To summarize, the majority of studies to date have only investigated the effects of variation in 

CU-traits in DBD populations and are thus limited by several factors: (1) it remains open 

whether effects previously attributed to CU-traits were actually driven by the presence of 

DBDs (i.e., including symptoms and behaviors not associated with CU-traits or common 

comorbidities such as attention deficit/hyperactivity disorder (ADHD) or anxiety), and also 

whether associations between CU-traits and brain structure only hold within DBD 
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populations; (2) while epidemiologic as well as longitudinal research indicate sex-specific 

developmental trajectories for neuropsychiatric disorders (Giedd and Rapoport 2010; Moffitt, 

et al. 2008), most studies on CU-traits in DBD groups or community samples have focused 

solely on males, limiting the generalizability of these findings to females; and (3) the group 

classification employed or the measures used to assess CU-traits have varied widely across 

studies (Essau, et al. 2006a; Kimonis, et al. 2016; Viding and McCrory 2012; Viding and 

McCrory 2017). These factors, as well as the small samples that have frequently been used, 

possibly explain the variability in findings reported to date and the lack of replication across 

studies. 

 

Therefore, the current study aimed at bridging this gap in knowledge resulting from a narrow 

focus on clinical populations by investigating relationships between CU-traits and brain 

structure in typically-developing boys and girls without DBDs using whole brain multiple 

regression analyses. Secondly, we aimed to test whether the association between CU-traits 

and brain structure differs across boys and girls by including an interaction term for sex and 

callous-unemotional traits within our multiple regression analysis. Finally, we aimed to 

implement a comprehensive measure of CU-traits by developing a composite score based on 

two sources of information (self and others’ rating) in order to obtain a robust index for 

testing for variability in brain structure related to CU-traits. Based on previous evidence in 

DBD and youths with conduct problems, we expected to find correlations between CU-traits 

and brain structure in typically-developing youths within limbic and prefrontal brain regions 

including amygdala, insula, and prefrontal cortex. On the basis of previous findings showing 

an interaction effect of sex and CU-traits in DBD (Smaragdi, et al. 2017), we expected to 

observe distinct associations between CU-traits and brain structure in boys and girls.  

 

Method 

Participants 

For the present analyses, we included 223 typically-developing adolescents (9-18 years), who 

were a subset of participants from an ongoing European multi-center study investigating 

female conduct disorder (FemNAT-CD). All adolescents included in the present analyses 

were explicitly screened to be free of any psychiatric disorder, including DBDs and substance 

abuse. Participants underwent standardized clinical interviews and psychometric testing and 

took part in a neuroimaging session. On average, the two sessions took place within 8.2±7.7 

weeks of each other. Data were acquired at five different sites, including the Universities of 
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Frankfurt #01 and Aachen #02 in Germany; the Psychiatric University Hospital in Basel, 

Switzerland #05; and the Universities of Birmingham #07 and Southampton #04, England 

(only site numbers will consequently be reported within the text). All participants and their 

caretakers provided verbal and written informed consent to take part in the study, and the 

study was approved by all local ethics committees. 

 
Clinical and psychometric testing 

Based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children-

Present and Lifetime version (K-SADS-PL (Kaufman, et al. 1997)) diagnostic interview, we 

ascertained that none of the youths included in the present analyses had a current clinical 

diagnosis or a past history of DBDs according to DSM-5 (American Psychiatric Association 

2013). Behavioral and emotional problems within the past 6 months were assessed using the 

Child Behavior Checklist (CBCL: 120 items, answered using a three-point Likert scale 

(Achenbach 1991)). Since we explicitly aimed to study CU-traits in non-aggressive 

individuals, participants scoring T≥70 on the aggression and/or the delinquency subscales of 

the CBCL were excluded from our analyses (see Figure S1). However, to be even stricter, we 

also re-ran our analysis with a more stringent criterion (all individuals with a T-score ≤65 on 

either the delinquency or aggression subscale of the CBCL) and did not observe a change in 

our main findings. IQ was assessed using the short-form of the Wechsler Abbreviated Scale 

of Intelligence (WASI (Wechsler 1999)) at English speaking sites (#04, #07) or the German 

version of the Wechsler Intelligence Scale for Children <17 years (WISC-­‐IV, (Petermann and 

Petermann 2011)) and the Wechsler Adult Intelligence Scale (WAIS-III, (Wechsler 1997)) for 

sites #01, #02 and #05. All t- and standard scores were first z-transformed prior to any 

analysis. Empathy scores were measured using the parental report of the Griffith Empathy 

Measure (GEM: 23 items, answered using a nine-point Likert scale; (Dadds, et al. 2008)). 

 

CU-traits were measured using parent ratings on the Inventory of Callous-Unemotional traits 

(ICU (Essau, et al. 2006a)) and self-ratings on the Youth Psychopathic traits Inventory (YPI 

(Andershed, et al. 2007)). The ICU (a 24-item parental report) has three subscales: 

callousness, uncaring, and unemotional, as well as a total score. Reliability values for the ICU 

lie within the range of acceptable to good (Cronbach alpha range: 0.77-0.89) (Essau, et al. 

2006a). The YPI (a 50-item self-report) comprises ten subscales, which generate the 

following three dimensions: callous-unemotional, grandiose-manipulative and impulsive-

irresponsible (Andershed, et al. 2007). Previous reliability scores of the YPI dimensions range 
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from moderate to good (Cronbach’s alphas of 0.36-0.71). While there is a validated short 

form of the YPI available for children aged 9-12 years, we used the original YPI for all ages 

because these versions differ only minimally and only the original YPI is available in all 

languages represented here (Andershed, et al. 2007; van Baardewijk, et al. 2008). A 

Cronbach’s alpha for the ICU total score of 0.79 (confidence interval: 0.74-0.83) and a 

Cronbach’s alpha for the YPI callous-unemotional dimension of 0.79 (confidence interval: 

0.74-0.83) was found in the present sample. We based CU-traits on multiple sources of 

information in order to maximize reliability, in line with suggestions by the American 

Psychiatric Association (American Psychiatric Association 2013). However, it is worth noting 

that we computed a composite score based on parent and child-ratings from two different 

instruments. Specifically, mean scores representing the YPI callous-unemotional dimension 

and the ICU total were z-transformed and a new composite score for ‘CU-traits’ was built by 

calculating the mean of the two resulting z-scores. The usefulness of this new composite score 

was verified by: (1) Running a reliability analysis including all respective items (Cronbach’s 

alpha of 0.83; CI: 0.79-0.87); (2) Investigating correlations between ICU total, YPI callous-

unemotional scale and composite CU-traits score and brain structure in separate analyses; and 

(3) Testing for significant differences between the Cronbach alphas for the old and new CU-

traits measures (see Supplement 2). The new composite score showed significantly higher 

internal reliability as compared to the ICU total score or the YPI callous-unemotional 

dimension. The composite scores were normally distributed and showed sufficient variance to 

justify a dimensional approach (Supplement 3). 

 

ICU and YPI scores, as well as the new composite scores are presented in Table 1. Overall, 

scores observed in the present sample are comparable to those reported in community samples 

or control groups in previous neuroimaging studies (Essau, et al. 2006a; Fairchild, et al. 

2013a). Boys scored significantly higher than girls on several subscales of the YPI, ICU or 

the composite measure as analyzed using two-sample t-tests as implemented in SPSSv23 

(IBM Corp., Armonk, N.Y., USA). 
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Table 1. Group characteristics – psychometrics and clinical testing. 

  
 Girls (N=108) Boys (N=81) p-value  

Mean (±SD) Mean (±SD) Two-Sample 
T 

Age in years 13.9 (±2.9) 13.2 (±2.5) 0.850   
            IQ 105.5 (±10.4) 106.6 (±11.4) 0.486   
            Psychopathic Traits (YPI)         
  Psychopathy (YPI total) 87.6 (±17.0) 96.1 (±18.0) 0.001 *** 
  Grandiose, Manipulative 32.0 (±8.4) 35.1 (±9.4) 0.020 * 
  Callous, Unemotional 25.3 (±5.7) 29.4 (±5.8) <0.001 *** 
  Impulsive, Irresponsible 30.2 (±6.1) 31.7 (±6.5) 0.115   
            CU-Traits (ICU)         
  ICU total 15.3 (±7.2) 18.3 (±7.5) 0.006 ** 
  Uncaring 7.2 (±4.1) 8.6 (±4.2) 0.024  * 
  Unemotional 4.2 (±2.5) 5.1(±2.6) 0.019  * 
  Callousness 3.9 (±3.0) 4.6 (±2.5) 0.080   
            Callous-unemotional traits         
  Composite score -0.2 (±0.8) 0.3 (±0.7) 0.001 *** 
            CBCL         
  Anxiety/Depression 55.5 (±6.2) 54.1 (±5.9) 0.121   
  Attention Problems 53.4 (±4.9) 53.1 (±5.0) 0.677   
  Delinquency 52.3 (±5.1) 52.3 (±3.9) 0.999   
  Aggression 52.7 (±4.4) 51.7 (±5.4) 0.160   
  Internal Problems 49.7 (±10.0) 49.7 (±10.0) 0.868   
  External Problems 47.7 (±8.5) 46.6 (±8.1) 0.385   
  Total Problems 48.4 (±9.6) 47.4 (±9.3) 0.472   
***significant at p≤0.001; **significant at p≤0.01; *significant at p≤0.05 
IQ= Intelligence quotient (Z-scores); YPI= Youth Psychopathic Traits Inventory (mean 
scores); ICU= Inventory of Callous-Unemotional traits (mean scores); CBCL= Child 
Behavior Checklist (T-scores). 
 

Structural image acquisition 

Participants completed between one and three functional neuroimaging tasks and/or diffusion 

tensor imaging scans in addition to structural T1-weighted magnetization prepared rapid 

gradient echo imaging (MPRAGE) on Siemens 3T (#01/#04: Trio; #02/#05: Prisma) or Philips 

3T (#07: Achieva) scanners. Each site underwent a site qualification procedure prior to 

starting data collection in which a radiological (ACR) phantom and healthy volunteers were 

scanned using multiple sequences (Chen, et al. 2004). The resulting data were reviewed by an 
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MR physicist, and scanning parameters were adjusted until the protocols were comparable 

(see acquisition parameters in Table S4). 

 

Voxel-based morphometry (VBM) analysis and statistics 

We utilized the computational anatomy toolbox (CAT12; http://www.neuro.uni-

jena.de/cat12/CAT12-Manual.pdf) as implemented in SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) and executed in MATLAB (Mathworks, Natick, MA). To 

account for the young age of the participants, we employed an adapted VBM-workflow that 

implemented customized tissue probability maps (TPM) as created through the template-o-

matic toolbox (TOM8; https://irc.cchmc.org/software/tom/downloads.php) and a customized 

DARTEL template based on the gray and white matter tissue segments of all participants. 

Analysis steps included: 

 

Quality control 

Prior to preprocessing, all images passed a first visual quality check targeting motion, gross 

anatomical artifacts and assuring whole-brain coverage. After preprocessing, additional 

information about data-quality (resolution, noise and bias) was provided by CAT12. We 

assured that all data had a weighted average quality of B or higher, representing very good 

image quality (http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). Finally, prior to 

statistical analysis we conducted another quality assessment by displaying the sample 

homogeneity using standard deviations through the CAT12 toolbox. Of the 223 scans 

reviewed, 14 had to be excluded due to motion artifacts and 2 individuals were excluded from 

the analysis due to significantly enlarged ventricles, resulting in N=207.  

 

Customized tissue probability maps (TPMs) and Dartel Template creation 

Customized TPMs were created using an average approach within TOM8 including vectors 

for age and sex, representing each of the 207 participants with useable T1 data based on the 

previous step (Wilke, et al. 2008). All images were segmented into gray matter, white matter 

and cerebrospinal fluid (whereas customized TPMs were inputted during affine registration) 

and the affine registered tissue segments were used to construct a customized DARTEL 

template representing the entire study sample. Finally, the template was normalized to MNI 

and registered to MNI (ICBM) space.  
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Preprocessing and calculation of total intracranial volume (TIV) 

Preprocessing was achieved through segmentation of all data using the custom 

template/TPMs and a Gaussian smoothing kernel of 8mm. Total intracranial volume (TIV) 

was calculated for each participant through CAT12. Since we were interested in group-based 

variations in the absolute tissue (gray matter volume), TIV was consequently incorporated in 

the statistical analysis to account for differences in brain size.  

 

Statistical analysis 

Prior to analysis, we excluded two participants with high scores on the aggression and 

delinquency subscales of the CBCL (≥70; see methods section for further explanation). 

Additionally, YPI or ICU subscale data were missing for 16 individuals which were 

consequently excluded from subsequent analysis. The total N entering statistical analysis was 

therefore 189 participants (108 female, 81 male). The DARTEL-normalized gray matter 

volumes entered multiple regression models linking CU-traits with brain structure. An 

interaction term for CU-traits and sex was computed by multiplying the z-standardized CU-

traits with the dichotomous sex variable. The interaction term between CU-traits and sex was 

then entered as a covariate within the multiple regression model. Scanning site, age and TIV 

were added as covariates of no interest and statistics were conducted for gray matter volume 

only. F-tests were used to assess the main effect of CU-traits and the interaction between CU-

traits and sex. Multiple regression analyses in each sex individually were subsequently used to 

further specify the direction of the results observed. The implemented t-tests were masked for 

the regions identified through the main analysis. Whole brain results are reported with a 

p<0.05, family-wise error (FWE) correction, using the Threshold-Free Cluster Enhancement 

technique (TFCE according to (Smith and Nichols 2009) with 10,000 permutations). 

 

Results 

Voxel-based morphometry results.  

Total intracranial volume was calculated for use as a covariate within the multiple regression 

analysis of absolute brain volume (TIV: [girls/boys] = [1414.4±112.9 / 1580.6±126.2]), white 

(WM: [girls/boys] = [470.3±49.8 / 529.3±48.5]) and gray matter volume (GM: [girls/boys] = 

[702.3±57.8 / 790.1±71.3]). In line with previous findings (e.g. (Giedd and Rapoport 2010)), 

girls and boys significantly differed in total intracranial volume (for TIV, GM and WM; all 

p<0.001). 
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Multiple regression analysis across the whole sample.  

Across all girls and boys (N=189), there were no significant positive or negative correlations 

between CU-traits and gray matter volume. However, there was a significant interaction effect 

for sex and CU-traits in bilateral clusters encompassing anterior insula, claustrum and inferior 

frontal gyrus (p<0.05; FWE TFCE corrected; see Figure 1). In order to assess the direction of 

this interaction effect further, we performed follow-up analyses in boys and girls individually, 

with a restricted analysis mask for left and right anterior insula based on the significant 

clusters identified through the interaction effects across the whole sample.  

 

Multiple regression analysis in boys. For boys, CU-traits were significantly positively 

correlated with gray matter volume of the previously identified bilateral anterior insular 

cortices (p<0.05; FWE TFCE corrected; see Table 2 and Figure 1). 

 

Table 2. Montreal Neurological Institute neuroanatomical coordinates, cluster size and p-

scores representing the peak coordinates for significant interaction effects in all youths and 

positive associations between callous-unemotional traits and gray matter volume in typically-

developing boys, but not girls (p<0.05; FWE TFCE corrected).  

          k   MNI 
coordinates   p 

           x y z (FWE) 

  Interaction: callous-unemotional traits x sex             
                    
      L insula, claustrum, inferior frontal gyrus   644 -26 22 8 0.003 
      R insula, claustrum, inferior frontal gyrus   161 28 21 2 0.001 
                    
                    
        Direction           
                    
    Masked post-hoc analysis in boys (N=81)             

      L insula, claustrum, inferior frontal gyrus positive 644 -28 22 3 <0.001 

      R insula, claustrum, inferior frontal gyrus positive 161 30 21 0 <0.001 
                    
    Masked post-hoc analysis in females (N=108)           
      ns   - - - - - 
                    
  k=cluster size; R=right; L=left; ns=no significance             
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Figure 1. Statistical parametric maps showing a significant positive correlation between 
callous-unemotional traits and bilateral anterior insula volume in boys (in blue; displayed 
a=axial, b=sagittal, c=coronal views using the Multi-image Analysis GUI, available at 
http://ric.uthscsa.edu/mango/mango.html; p<0.05; FWE TFCE corrected) and correlations 
between callous-unemotional traits and gray matter volume in independent left (d) and right 
(e) anterior insula regions of interest for boys (blue) and girls (green). 

 

Multiple regression analysis in girls. Within females, there were no significant positive or 

negative correlations between CU-traits and gray matter volume when restricting the multiple 

regression model to the bilateral anterior insula as identified by our interaction analysis.  

 

The robustness of the here observed significant interaction effect between CU-traits and sex 

within bilateral anterior insula across the whole group was further tested by accounting for 

aggressive behavior. Our results remained significant when a covariate based on scores from 

the CBCL aggression subscale were added into our multiple regression analysis. Additionally, 

we assessed a sex-matched group (81:81), excluding participants from centre #5 (only female 

participants). The analysis resulted in a similar outcome of an interaction effect in bilateral 
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anterior insula at an uncorrected p<0.001 (only left anterior insula remained significant for 

this group at p<0.05; FWE TFCE corrected).  

 

Post-hoc region of interest analyses 

Post-hoc region of interest and partial correlation analyses were conducted using the marsbar 

toolbox (http://marsbar.sourceforge.net/) to extract gray matter volume and SPSS v-23 to run 

statistical analyses. Bilateral anterior insula regions of interest were created using 5mm-radius 

spheres around the MNI coordinates (x=-32, y=22, z=-2) and (x=36, y=22, z=-6) as derived 

from a coordinate-based meta-analysis (Rottschy, et al. 2012). The average mean gray matter 

volume indices for these regions of interest were extracted and scaled by each individual’s 

TIV, in order to avoid multicollinearity and adjust for unmodulated scores. Resulting values 

were used to address three post-hoc aims, namely: (1) Investigate the specific CU-traits-

bilateral insula associations for boys and girls separately; (2) Investigate the amount of 

variance in CU-traits accounted for by variations in bilateral insula volume in boys, as was 

done previously in adult studies (Cope, et al. 2014; Ermer, et al. 2013); and (3) Investigate 

potential age effects on the bilateral insula findings in boys. Post-hoc results revealed 

significant positive correlations between left and right insula volumes and CU-traits in boys 

(Figure 1d-e). Although no significant correlations between CU-traits and anterior insula 

volumes were observed in our whole brain analysis in girls, additional post-hoc region of 

interest-based analysis were conducted for anatomically defined bilateral anterior insula in 

order to further evaluate and confirm this null relationship. These findings indicated a trend 

towards an opposite (negative) association between insular volume and CU-traits in girls, 

which did not reach formal levels of statistical significance. Additionally, we statistically 

examined whether the regressions (correlation between CU-traits and left and right anterior 

insula for boys and girls) significantly differed from each other by calculating Fisher’s z 

(Diedenhofen and Musch 2015). For both left (z = -3.54, p= 0.0004) and right (z = -4.38, p < 

0.0001) anterior insula, the slopes significantly differed across boys and girls. Secondly, the 

scaled mean gray matter bilateral insula volumes were entered as predictors into a multiple 

regression model with CU-traits scores as the dependent variable. The resulting model for 

boys, excluding the influence of the covariates, reached significance (p<0.001) and indicated 

that variations in bilateral anterior volume explained 19.4% of the variance in CU-traits. 

Finally, within our multiple regression model, we showed that age did not explain any 

additional variance in bilateral insula volume findings in boys (significant F-change=0.148). 

This effect was further investigated using an F-test within the multiple regression model in 
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SPM, plotting positive and/or negative effects of age on bilateral anterior insula volume 

shown to be associated with CU-traits in boys. No significant effects of age on associations 

between CU-traits and anterior insula volume were observed. 

 

Discussion 

In a sample of typically-developing community boys and girls, we show for the first time that 

callous-unemotional (CU) traits were correlated with the volume of the anterior insula, 

independent of disruptive behavior disorders (DBDs). This association was sex-specific, with 

CU-traits showing a significant positive correlation with bilateral anterior insula volume in 

boys alone. Overall, anterior insula volume accounted for 19.1% of the variance in CU-traits 

amongst boys; this is comparable to the informative value of structural associations in adult 

psychopathy (Cope, et al. 2014; Ermer, et al. 2013). The present study generated a composite 

CU-trait score based on multiple sources of information (i.e. self and parent-report). In line 

with previous authors before and according to psychometric evaluations (American 

Psychiatric Association 2013; Essau, et al. 2006a), we consider this a potential strength. 

However, we acknowledge that comparability with previous findings may be impacted as a 

result of using a newly generated measure of CU-traits.. 

 

Callous-unemotional traits and brain structure in boys 

Our analysis identified the bilateral anterior insula as a structural correlate of CU-traits in 

typically-developing boys, but not girls. Previous studies point towards a functionally 

plausible parcellation of the insula into at least three distinct sub-regions, subserving 

chemosensory and socioemotional processing (ventro-anterior), higher cognitive processing 

(dorso-anterior) and pain or sensorimotor processing (posterior) (Chang, et al. 2013). The 

correlation between CU-traits and brain structure observed here was strongest in bilateral 

anterior insula extending to the inferior frontal gyrus. The anterior insula has consistently 

been linked to emotion processing and empathy, and is activated in fMRI studies tapping 

these domains; it has additionally been associated with cognitive control mechanisms (Fan, et 

al. 2011; Phan, et al. 2002; Sundermann and Pfleiderer 2012).  

 

Past research has revealed structural and functional alterations in the anterior insula of 

individuals with DBDs (Blair 2013; Cohn, et al. 2013; Fahim, et al. 2011; Raschle, et al. 

2015; Rogers and De Brito 2016; Sterzer, et al. 2007). Thereby, functional neuroimaging has 

linked atypical empathic responding, emotional learning and decision-making to the anterior 
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insula (Blair 2013; Lockwood, et al. 2013; Michalska, et al. 2016; White, et al. 2012; White, 

et al. 2016). In DBDs high levels of CU-traits are further positively correlated with the 

amount neural reduction in limbic areas during affective processing and are considered 

reflective of a diminished empathy for pain (Lockwood, et al. 2013; Michalska, et al. 2016; 

Viding and McCrory 2017). However, atypical neural correlates in DBD during 

reinforcement learning which also implicate insular cortex, have not identified the same (or 

any) further association based on CU-traits (White, et al. 2012; White, et al. 2016). This may 

indicate that in DBD impaired insula functioning during affective processing (e.g., 

(Lockwood, et al. 2013; Michalska, et al. 2016)), but not reinforcement learning is further 

associated with variations in CU-traits (White, et al. 2012; White, et al. 2016); for a review 

see (Viding and McCrory 2017)). The association between CU-traits and brain anatomy is 

still matter of investigations. For example one study reported increases in insular cortex gray 

matter volume in DBD youths with high CU-traits (De Brito, et al. 2009a), others found a 

negative correlation between anterior insula volume or concentration and CU-traits in at-risk 

youths (Cohn, et al. 2013) or DBD girls (Fairchild, et al. 2013a), but the association in the 

latter study remained non-significant after correcting for CD symptoms (Fairchild, et al. 

2013a).  

 

Differences in reports of increased or decreased gray matter in anterior insula in community 

samples of boys, or boys as compared to girls, with elevated CU-traits may reflect 

maturational effects (i.e. delayed maturation of this region in males). Reports of an inverted 

U-shaped development for the insular cortex and differences in rates of cortical maturation 

between girls and boys of about 1-3 years support this hypothesis (Giedd and Rapoport 2010). 

However, comparability to studies in DBD is complicated since the developmental 

trajectories between groups of children with and without psychiatric diagnosis may likewise 

differ (Giedd and Rapoport 2010). Our findings of a positive association between CU-traits 

and brain structure in boys diverge from studies in DBD that have suggested a negative 

association between CU-traits and insula volume (i.e. see meta-analysis by (Rogers and De 

Brito 2016)) or aggression scores and insula volume across both CD and control participants 

(Sterzer, et al. 2007). This could suggest that the association between CU-traits and brain 

structure follows a different trajectory in typically-developing youths as compared to those 

with DBDs. However, differences may also be based on group selection (number of 

participants, clinical criteria, age, sex-ratio) or construct employed (e.g. measuring CU-traits 

versus empathy more specifically). 
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CU-traits and brain structure in girls: sex differences? 

We found no significant relationships between CU-traits and gray matter volume in a large 

sample of girls (N=108). Sex differences in insula structure and function, as well as sex 

differences in gray matter volume developmental trajectories, as mentioned above, may 

provide an explanation for this finding (Giedd and Rapoport 2010; Lenroot, et al. 2007). 

Furthermore, studies investigating the impact of CU-traits in DBD populations have almost 

exclusively focused on males, and therefore have not allowed a validation of the constructs 

employed in females (Rogstad and Rogers 2008). It is a matter of ongoing debate whether 

differences in CU-traits between boys and girls represent true sex differences or whether the 

instruments, which have predominantly been developed in male samples, do not apply as well 

to females (Rogstad and Rogers 2008). We suggest that the fact that did not observe a 

significant association between CU traits and gray matter volume does not result from 

measurement issues since the variance in the separate CU-traits subscores are similar within 

each sex. While the consideration of sex-differences in brain imaging studies is a 

controversial issue, bearing in mind the implications of incorrect conclusions (Cosgrove, et al. 

2007), future studies should focus on including and comparing both sexes in order to enhance 

our understanding of sex differences and apply this information to the study of 

neurodevelopmental and psychiatric disorders (i.e., DBDs), even if these are more prevalent 

in males. Ultimately, large-scale longitudinal studies are needed in order to answer the 

question whether the neuroanatomical differences observed here are of a developmental (e.g. 

through a time-specific shift in the cortical growth curve of boys and girls) or a fundamental 

nature (e.g. present across development). 

 

Study limitations 

This study had several limitations that should be considered when interpreting the results. 

First, while multicenter neuroimaging studies do offer considerable advantages in terms of 

increased sensitivity by including a higher number of participants, they also introduce 

challenges of inter-site variability which may introduce additional noise and potential 

systematic errors unless this factor is carefully controlled for (Chen, et al. 2014; Takao, et al. 

2014). For example, Takao and colleagues (2014) demonstrate the importance of balanced 

case and control ratios within structural multicenter neuroimaging analyses by discussing the 

example of sex differences (Takao, et al. 2014). We cannot fully exclude the possibility that 

remaining site differences and/or variations in the distribution of CU-traits across sexes have 

influenced our findings. Furthermore, previous evidence suggests that volumetric brain 
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alterations derive from changes in both cortical thickness and surface area (Panizzon, et al. 

2009). Investigating gray matter volume indices in relation to CU-traits cannot indicate which 

factor(s) has or have contributed to the results. For example, in a study comparing youth with 

conduct disorder and controls, cortical thickness and folding deficits were demonstrated to 

localize to different (posterior versus anterior) brain structures (Hyatt, et al. 2012). However, 

an advantage of using a voxel-based morphometry approach is to increase the comparability 

with past studies. It is also notable that while we assured that the identified insula findings in 

boys were not influenced by age within the range included, future studies will need to assess 

more complex issues related to development, which could not be answered using the present 

sample (e.g. stability of the observed associations across age). Finally, while we have ensured 

that CU-traits are normally distributed within our sample, thereby allowing us to adopt a 

dimensional approach, the scores reported here are representative of a community sample and 

substantially lower than mean CU-traits scores reported in youths with conduct problems (e.g. 

(Fairchild, et al. 2013a; Marsh, et al. 2008)). While we here demonstrate sex-specific effects 

of CU traits in typically-developing boys and girls, we note that any comparisons between the 

present study and the existing literature on DBDs are limited by not including boys and girls 

with DBDs and varying levels of callous-unemotional traits. 

 

CU-traits as a dimensional construct 

We here demonstrate the usefulness of CU-traits as a potential neurobiological specifier in 

adolescent boys beyond clinical populations. More specifically, CU-traits showed 

associations with brain structure in typically-developing boys, without diagnosable levels of 

antisocial behavior. Our findings thus support a dimensional approach to understanding 

mental health, as implemented within the Research Domain Criteria framework (Blair 2015). 

Moving away from categorical classifications, variations in traits are used to describe 

individual phenotypes. Frameworks assessing such traits must be able to differentiate not only 

across the clinical spectrum, but also within samples of typically-developing youths (Garvey, 

et al. 2016). While our findings of sex-specific positive effects between insula gray matter 

volume and CU-traits in typically-developing boys but not girls are somewhat surprising 

given previous opposite findings in DBD boys or mixed gender samples (Lockwood, et al. 

2013; Lozier, et al. 2014; Marsh, et al. 2008) or positive findings in DBD girls (Fairchild, et 

al. 2013a), it is mentionable that the direction of findings across prior studies varies (i.e. 

increases versus decreases of neural functioning or gray matter volume (e.g. (De Brito, et al. 

2009b))). This may indicate a different relationship between CU-traits and brain structures in 
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typically-developing youths relative to findings obtained in DBD youth. Interestingly, a 

recent voxel-based morphometry study in at-risk adolescents demonstrated a positive 

correlation between CU-traits and insular cortex volume in individuals with low, but not high, 

levels of CD symptoms (Cohn, et al. 2016). The study may be interpreted in line with the 

present analysis in typically developing youths who were deliberately selected to be low in or 

free of conduct problems and DBD symptoms. However, it is to mention that in the study by 

Cohn and colleagues (2016) even youths low on CU-traits were childhood arrestees before the 

age of 12. 

 

Another point to consider is that while CU-traits designate a risk factor for the development 

of serious conduct problems (e.g., (Frick, et al. 2014a)), the stability of these traits over time 

is less clear. More specifically, longitudinal research demonstrates that while children high in 

psychopathic traits at around age 13 have a higher chance to display high psychopathy scores 

in adulthood, only 9% of the variance in adulthood was actually explained by scores at age 13 

(Lynam, et al. 2007). Thus, while high levels of CU-traits may be a risk factor for negative 

outcomes in some children, they may not remain high over time, and a significant proportion 

of those with elevated scores will not develop clinically relevant difficulties, such as conduct 

disorder. In the present analysis, CU-traits were positively associated with bilateral anterior 

insula volume in boys. While this may be indicative of a heightened risk to develop conduct 

problems later in life, it is notable that none of the boys had elevated levels of conduct 

problems or DBD diagnoses at the time of assessment. It is also likely that many of them will 

not go on to show such difficulties.  

 

Assuming that the present structural variations relate to insula functioning, our findings may 

be interpreted as consistent with theories implicating atypical insula functioning in 

populations with CU-traits or antisocial features. However, it remains to be investigated 

whether variations in CU-traits and insula structure may serve as a potential risk factor for the 

development of future clinical, social, and psychological problems. However, alterations in 

brain structure alone may only be a latent or probabilistic risk factor, which, without an 

environmental trigger, may never manifest as psychopathology (see also (Fairchild, et al. 

2013b)). 

 

Future studies will need to examine the relationship between CU-traits and brain structure, not 

only in typically-developing individuals, but across the whole spectrum, which includes at-
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risk children or those with DBDs. By doing so, large-scale neuroimaging studies should 

investigate whether the structural variations accompanying CU-traits in boys, as identified 

here, are individually, or in combination with further environmental variables, predictive of 

future psychiatric illness or psychosocial maladjustment (Viding and McCrory 2012). 
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9 General discussion 

Past research has revealed behavioral and neuronal alterations in children and adolescents 

with CD. However, many of the underlying mechanisms of this disorder are yet to be 

determined. The present dissertation aimed at investigating the in-depth neuronal and 

behavioral underpinnings of emotion processing and regulation in children and adolescents 

with a diagnosis of CD. We initially conducted a systematic literature research and ALE 

meta-analysis in order to determine the state of research on the functional and structural brain 

correlates of adolescents with aggressive behavior. Next, we designed an affective Stroop task 

suitable for a paediatric population in order to investigate implicit emotion regulation by 

emotion-cognition interaction, and validated the task in a sample of adult participants. We 

then applied the affective Stroop task to children and adolescents with CD, revealing 

functional atypicalities in CD compared to typically developing adolescents. In a separate 

study we investigated the neuronal basis of explicit emotion regulation by cognitive 

reappraisal in female adolescents with CD. Additionally, we translated the results of our meta-

analysis on aggressive behavior, neuroimaging methods, and scientific procedure to the 

general public, we investigated white matter alterations in the corpus callosum in female CD, 

and we examined the structural correlates of CU traits in typically developing adolescents. 

The first aim of our work was to determine the neuronal signature of children and adolescents 

with aggressive behavior with the use of a coordinate-based ALE meta-analysis approach. 

Our analysis revealed 19 structural and eight functional foci of alterations within areas 

responsible for emotion processing and regulation. More specifically, the network included 

orbitofrontal, dorsomedial prefrontal, and limbic cortices of the brain. Examining the exact 

locations where functional and structural analyses co-localize (conjunction analysis) revealed 

significant foci in right dorsomedial prefrontal cortex and left insula (study 1). Our results 

provide an in-depth picture of previous literature reporting alterations in emotion processing 

brain regions in aggressive adolescents encompassing the orbitofrontal and prefrontal cortex 

(Blair, 2010b; Fairchild et al., 2014; Lotze, Veit, Anders, & Birbaumer, 2007), insula (Decety, 

Skelly, & Kiehl, 2013; Lockwood et al., 2013; Michalska, Zeffiro, & Decety, 2016), cingulate 

cortex (Marsh et al., 2013; Stadler et al., 2007), and amygdala (Marsh et al., 2008; Sterzer et 

al., 2005). 

The second and third aims of this dissertation were to develop and implement a functional 

neuroimaging task design assessing implicit emotion regulation by emotion-cognition 
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interaction. This task was likewise required to be suitable for children and adolescents 

(including those with a psychiatric condition, such as CD). For this purpose, we adapted an 

affective Stroop task which was used to investigate implicit emotion-cognition interaction in 

healthy adults by Hart and colleagues (2010). Using a sample of 30 young adults we aimed at 

validating the task design and re-evaluating previous neuronal findings in healthy adults. We 

detected emotion-related activity in brain areas responsible for emotion processing, namely 

the amygdala, insula, and precentral gyrus, and cognition-related activity in left precentral 

regions, superior frontal cortex, temporal lobe, and insula. Moreover, we found neuronal 

decreases in left amygdala, right insula, and right precentral gyrus with increasing cognitive 

load. We concluded that emotion and cognition-related processes are tightly linked with each 

other as indicated by shared neuronal networks, and that increased cognitive load of a task can 

lead to a downregulation of emotion-related brain activation in various regions of the brain 

(study 2). Our findings overlap with previous evidence indicating an attenuation of brain 

activity in response to emotional stimuli with increasing cognitive load (Blair et al., 2007; 

Hart et al., 2010) and shared neuronal networks for emotion and cognitive processing (Okon-

Singer, Hendler, Pessoa, & Shackman, 2015; Pessoa, 2015). 

The second study employing the affective Stroop task aimed at exploring the neuronal activity 

during implicit emotion regulation in adolescents with CD. For this purpose, we compared the 

neuronal activation in response to implicit emotion-cognition interaction of 39 adolescents 

with CD with 39 typically developing peers. In line with previous literature (Blair et al., 2007; 

Hart et al., 2010; Hwang et al., 2014) typically developing adolescents showed a 

downregulation of emotion-related amygdala activity during task performance. Adolescents 

with CD, however, demonstrated a similar amount of amygdala activity whether or not a task 

was presented after emotion stimulation and, therefore, no such downregulation. We 

hypothesize that this reflects a disruption of typically observed emotion-cognition regulatory 

processes. We moreover reported decreased neuronal activity in adolescents with CD in areas 

including the dorsoanterior and posterior insula (responsible for response inhibition and social 

information processing), and increased activity in the ventroanterior insula (involved in 

affective processing) during performance of the affective Stroop task (study 3).  

As a fourth aim of our work, we aimed at investigating the neuronal correlates of explicit 

emotion regulation by cognitive reappraisal in females with CD. We included 30 females with 

and 29 females without CD and detected decreased neuronal activation within left 

insula/dorsolateral frontal cortex, and left temporoparietal regions (angular gyrus) in 
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adolescents with CD during cognitive reappraisal (study 4). We here provide first evidence 

for atypical neuronal responses in prefrontal and limbic brain regions during cognitive 

reappraisal in females with CD. 

9.1 Neuronal correlates of emotion processing and regulation in conduct disorder 

During this dissertation work, we have furthered our understanding of the neuronal correlates 

of implicit and explicit emotion regulation in healthy young adults and in particular children 

and adolescents with CD. Furthermore, we have expanded current knowledge on the altered 

neuronal networks involved in emotion processing in aggressive behavior. 

Across our studies, we have consistently detected altered neuronal activity in the insula, 

amygdala, and frontal cortices in adolescents with CD and aggressive behavior. In line with 

our findings, previous literature has indicated an involvement of these brain regions in 

emotion processing and emotion regulation (Baker et al., 2015). We here emphasize the 

relevance of prefrontal and limbic cortices in tasks involving both emotion and cognition, and 

brain alterations thereof in CD and aggressive behavior. We especially highlight that brain 

areas responsible for emotion and cognitive processing cannot be strictly separated but rather 

form a conjoint network, reflecting their dynamic interplay (Okon-Singer et al., 2015; Pessoa, 

2015). Figure 1 shows the areas in which we consistently found typical and atypical 

activation patterns during emotion processing and implicit/explicit emotion regulation across 

our studies, which are further discussed in the upcoming section. 
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Figure 1. Overview of brain regions consistently detected across the studies included in this 
dissertation: Insula, amygdala, and dorsomedial prefrontal cortex (dmPFC). a) Brain regions 
consistently detected across all four studies (red). b) Brain regions revealed within the meta-analysis 
on emotion processing in aggressive adolescents (blue). c) Brain regions detected during implicit 
emotion-cognition interaction in healthy young adults (green). d) Brain regions detected during 
implicit emotion-cognition interaction in conduct disorder (yellow). e) Brain regions detected during 
explicit emotion regulation by cognitive reappraisal in female conduct disorder (plum). Areas with a 
gray background represent brain regions that were not detected in the corresponding study. Image 
adapted from https://www.kenhub.com/en/ library/anatomy/hypothalamus. 
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9.1.1  Insula 

The insular cortex is a hidden brain structure located deep in the Sylvian fissure implicated in 

numerous functions, for example emotional recall, empathy, or negative emotion processing 

(Fan, Duncan, de Greck, & Northoff, 2011; Kirby & Robinson, 2017; Phan, Wager, Taylor, & 

Liberzon, 2002; Singer, Critchley, & Preuschoff, 2009). This brain region has been attributed 

an integrative role in which information from major functional systems, e.g., perceptions, 

sensorimotor information, emotions, and cognitive processes, are linked (Kurth, Zilles, Fox, 

Laird, & Eickhoff, 2010). It is therefore responsible for rather complex processes of the 

human brain, as for example representations of current emotional states, predicted emotional 

states, and prediction errors, which are all modulated by individual preferences (Singer et al., 

2009). Large-scale meta-analyses have subdivided the human insular cortex into at least three 

different regions: a dorsoanterior, ventroanterior, and posterior region (Chang, Yarkoni, 

Khaw, & Sanfey, 2013; Kurth et al., 2010). Each subdivision has been suggested to hold a 

specific function. As such, the dorsoanterior insula has been suggested to be involved in 

language-related and cognitive processes such as response inhibition, the ventroanterior insula 

to process and evaluate affective input, and the posterior regions to be implicated in 

processing abstract social and sensorimotor information (Chang et al., 2013; Kurth et al., 

2010; Mutschler et al., 2009). Interestingly, a conjunction analysis has detected a considerable 

overlap of social-emotional and cognitive functions in the dorsoanterior insula, most likely 

representing a hub that integrates all information into a meaningful experience (Kurth et al., 

2010).  

In line with this view, anatomical connections and co-activations between the insula and other 

limbic structures (Chang et al., 2013; Höistad & Barbas, 2008; Kober et al., 2008) allow these 

regions to interact dynamically, enabling e.g. the transfer of sensory input to the amygdala 

(Shelley & Trimble, 2004) or the regulation of physiological changes and higher-order 

cognitive functions related to emotion processing (Chang et al., 2013; Phan et al., 2002). It 

moreover allows the insula to hold important functions in the regulation of social interactions 

and emotions. 

In the current dissertation, we reported alterations in insula functioning in adolescents with 

CD during performance of emotion processing tasks as indicated by the meta-analysis (study 

1), implicit emotion regulation by means of an affective Stroop task (study 3), and explicit 

emotion regulation by cognitive reappraisal (study 4). More specifically, the results of the 

explicit emotion regulation task are in line with our ALE meta-analysis by revealing 
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hypoactivations in the insular cortex in CD. During implicit emotion regulation using the 

affective Stroop task, however, we reported both hypo- and hyperactivations depending on the 

exact location within the insula: decreased insular activity in dorsoanterior and posterior 

regions (response inhibition, abstract social information processing) and increased insular 

activity in ventroanterior (emotion processing) regions. Our study employing the affective 

Stroop task in young adults (study 2) confirmed the insula as a brain region involved in 

processing emotional information and integrating emotion and cognitive information as 

indicated by a downregulation of this area with increased cognitive load during healthy 

functioning. Our findings are in line with previous literature demonstrating decreases 

(Fairchild et al., 2014; Lockwood et al., 2013; Passamonti et al., 2010) as well as increases 

(Decety, Michalska, Akitsuki, & Lahey, 2009; Decety et al., 2013) in insula activity in 

individuals with CD or severe conduct problems. It is important to note that these studies did 

not differentiate between the subdivisions of the insula beyond anterior versus posterior 

insula. In order to gain further knowledge on altered insula function during atypical 

development, we suggest that future studies should focus on functional parcellation of the 

insular cortex into three to four subdivisions. Overall, our findings highlight the importance of 

the insula as a core brain region for functional and structural alterations in adolescents with 

severely aggressive behavior and CD.  

9.1.2  Amygdala 

Supported by ample research, the amygdala has traditionally been regarded as the core center 

for emotion processing. As such, past literature has linked amygdala activity to processing of 

emotional information across different tasks and types of emotion. As such, increased 

amygdala activity has been reported for tasks using stimuli with an emotional valence 

(predominantly negative, but also positive images (Costafreda, Brammer, David, & Fu, 2008; 

Garavan, Pendergrass, Ross, Stein, & Risinger, 2001)), facial expression of emotion itself (for 

example fear, anxiety, sadness, disgust, but also positive emotions such as happiness (Harris, 

Young, & Andrews, 2014; Kirby & Robinson, 2017; Whalen et al., 1998)), emotional words 

(Hamann & Mao, 2002; Kensinger & Schacter, 2006), or aversive learning (Costafreda et al., 

2008; Dunsmoor, Kragel, Martin, & LaBar, 2014). Quantitative meta-analyses have 

corroborated previous evidence of an involvement of the amygdalae in processing emotional 

information of negative or positive valence, with a preference for facial expressions (Sergerie, 

Chochol, & Armony, 2008), in particular for fearful faces (Phan et al., 2002). Beyond 

emotion processing, the amygdala has been hypothesized to modulate cortical networks by 

evaluating the affective valence of visual stimuli (Pessoa & Adolphs, 2010), and to be 
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downregulated when cognitive resources are needed for simultaneous task processing (Blair et 

al., 2007; Etkin et al., 2006; Hart et al., 2010; Mitchell et al., 2007).  

This dissertation work strongly supports suggestions of the amygdala as key to emotion 

processing and regulation. The amygdala was indeed one of the regions that emerged in our 

meta-analysis on brain alterations in adolescents with aggressive behavior during emotion 

processing tasks (study 1). In line with previous evidence on implicit emotion regulation 

through emotion-cognition interaction (Blair et al., 2007; Etkin et al., 2006; Hart et al., 2010; 

Mitchell et al., 2007) we moreover detected increased amygdala activity in response to 

emotional images, and a downregulation of emotion-related amygdala activity with increasing 

cognitive load in healthy adults and adolescents by means of an affective Stroop task (studies 

2 and 3). In contrast to typically developing peers, increased cognitive load did not lead to 

decreases in emotion-related amygdala activity in adolescents with CD (study 3). This is in 

line with functional evidence suggesting alterations in amygdala activity in CD and 

psychopathy (Blair, 2007; Fairchild et al., 2011; Marsh et al., 2008). The current dissertation 

extends previous knowledge by providing evidence of failed integration of emotion and 

cognition in adolescents with CD as reflected by lacking adaptation of amygdala activity.  

9.1.3  Prefrontal cortex 

The prefrontal cortex is a large brain area implicated in higher order cognitive functioning, 

such as top-down cognitive control and integration of emotion and cognitive processes (Miller 

& Cohen, 2001). It has been functionally divided into several subregions with distinct 

functions. Dorsomedial and lateral prefrontal regions have a role in negative emotion 

generation and evaluation and emotional conflict resolution, whereas ventromedial prefrontal 

(i.e., orbitofrontal) regions are involved in emotion regulation, empathy, and motivation, and 

connected with the limbic system (Etkin, Egner, & Kalisch, 2011; Gray et al., 2002; Miller & 

Cohen, 2001; Shamay-Tsoory, Tomer, Berger, & Aharon-Peretz, 2003).  

The current dissertation provides evidence for an involvement of different regions of the 

prefrontal cortex, and in particular the dorsomedial prefrontal cortex, in emotion processing 

and explicit emotion regulation, and alterations thereof in aggressive behavior and CD. We 

detected decreased neuronal activity in the dorsomedial prefrontal cortex during explicit 

emotion regulation by cognitive reappraisal in CD (study 4), which is in line with our meta-

analysis on emotion processing in adolescents with aggressive behavior (study 1). 

Additionally, we detected an implication of more lateral regions of the prefrontal cortex 

during implicit emotion regulation by means of an affective Stroop task in healthy adults 
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(study 2) and some indication of increased neuronal activity in these regions during an 

affective Stroop task in CD. This effect was however only observed as a main effect of group 

and not within an interaction effect of group by emotion by cognition, and should therefore be 

interpreted with caution (study 3). Overall, our results suggest that the dorsomedial prefrontal 

cortex is more extensively recruited during explicit emotion regulation tasks in contrast to the 

more implicit nature of emotion-cognition interaction, where we observe an implication of 

lateral prefrontal regions. 

Our findings are in line with previous evidence demonstrating altered activity in prefrontal 

cortex in individuals with CD and psychopathy (Alegria, Radua, & Rubia, 2016; Blair, 2007, 

2010b; Finger et al., 2008; Hwang et al., 2016; Rubia et al., 2009; Smaragdi et al., 2017). We 

suggest that dorsal prefrontal alterations are at least partly related to the role of this area in 

emotional conflict resolution impaired in CD. Moreover, we propose that prefrontal 

alterations in aggressive behavior and CD may comprise a broader area including lateral and 

medial prefrontal areas depending on task and sample characteristics. 

Our findings on implicit emotion regulation by emotion-cognition interaction are based on an 

affective Stroop task developed and implemented within this dissertation. The upcoming 

section will focus on the task development. 

9.2 Task development: The affective Stroop task 

The affective Stroop task (Blair et al., 2007; Hart et al., 2010) is an fMRI suitable paradigm 

designed to assess the implicit interaction between emotion and cognition with the use of 

emotional images and variations in cognitive task load. It is an adaptation of the number 

Stroop task (Pansky & Algom, 2002), a variant of the traditional Stroop task (Stroop, 1935), 

originally developed as a behavioral task to be conducted outside of the MRI environment. 

After initial validation in healthy adults (Blair et al., 2007), slightly adapted versions of the 

affective Stroop tasks have been used within the last decade as a measure to study the 

behavioral and/or neuronal basis of implicit emotion regulation in psychiatric conditions. So 

far, it has been employed in anxiety disorders (Blair et al., 2012; Hasler et al., 2009), post-

traumatic stress syndrome (Mueller-Pfeiffer et al., 2010; Roy et al., 2014; Vythilingam et al., 

2007; White et al., 2015), attention-deficit hyperactivity disorder (Hwang et al., 2015), and 

DBD (Hwang et al., 2016).  

Adaptations of the task design of the affective Stroop task include differences in the duration 

of stimuli presentation, emotional valence of the images, number and duration of trials, 
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number and duration of task runs, the digits and number of items presented, and the precise 

task design respectively instruction provided (see Table 1 for a comparison of the affective 

Stroop task designs of the most relevant publications and Appendix F for a visualization of 

the task designs). 

Table 1. Affective Stroop task designs of the most relevant publications. 

 

The task designs by Blair et al. (2007) and Hwang et al. (2016) used emotional stimuli both 

before and after Stroop task performance. The authors were therefore able to additionally 

investigate effects of cognition on emotion, whereas the task designs of Hart et al. (2010) and 

our group only allowed to study the influence of emotion on cognition. Moreover, the original 

task design by Blair et al. (2007) involved a different instruction compared to all subsequently 

employed tasks. More specifically, participants were asked to indicate which of two task trials 

had the highest numerosity, whereas all other task designs involved indicating the number of 

items presented on one particular Stroop trial. 

One major aim of this dissertation was to develop an affective Stroop task especially adapted 

to the needs of children and adolescents with and without DBD. The task developed within 

this dissertation is based on the affective Stroop task by Hart and colleagues (2010) and was 

implemented within studies 2 and 3. In our task, each trial of the affective Stroop task starts 

with an emotional stimulus, i.e., an image of negative or neutral content. After emotion 

stimulation, a number Stroop task is presented, which varies in task difficulty (i.e., cognitive 

load), eventually followed by a relaxation period, i.e., blank screen. During Stroop trials, 

participants see an array of one to four digits and are asked to press a button corresponding to 

the number of items presented. On congruent trials, the number of items displayed 

corresponds to the actual digit presented (e.g., digit 4 in an array of four, reflecting low 

cognitive load), whereas on incongruent trials, the number of items presented does not 
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correspond to the actual digit presented (e.g., digit 2 in an array of four, reflecting increasing 

cognitive load). An array of star shaped stimuli serving as a neutral counting condition and 

blank trials during which no response is required are used as control conditions. Child-

friendly pictures were selected from the Developmental Affective Photo System (DAPS; 

Cordon, Melinder, Goodman, and Edelstein (2013)), a child-appropriate subset of pictures of 

the International Affective Picture System (IAPS; Lang (2008)). While the affective Stroop 

task developed by our group is very similar to the task design by Hart et al. (2010), it differs 

in some details. More specifically, our affective Stroop task included child-appropriate images 

and adaptations in the duration of the response window and the task itself in order to make 

sure that the task design is suitable even for young children (also see Table 1 and Figure 2). 

 

Figure 2. fMRI task design developed within this dissertation (Raschle et al., 2017), including three 
trials of the affective Stroop task (First row: negative-congruent trial, second row: neutral-incongruent 
trial, third row: negative-stars trial). 

After its validation in healthy adults, the affective Stroop task developed within this 

dissertation was successfully implemented in children and adolescents with CD and their 

typically developing peers within a child-appropriate neuroimaging session detailed in the 

following section. 
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9.3 Imaging the developing brain 

This dissertation work aimed at investigating the neuronal development in typical and atypical 

children and adolescents with the use of state-of-the-art neuroimaging methods. Investigating 

the developing brain offers a wide range of possibilities for clarifying important research 

questions regarding healthy brain development, prediction and development of mental 

diseases, and investigation of childhood disorders.  

Although modern imaging techniques offer a unique possibility of displaying changes in the 

brain, paediatric neuroimaging is still an emerging field. Specific challenges when imaging a 

paediatric population have been a source of debate in the past. Primary concerns are related to 

feasibility and practical reasons, such as maintaining the child’s motivation and attention 

during the session while reducing potential anxiety and motion. The use of child appropriate 

MR protocols (Raschle et al., 2012; Raschle et al., 2009) and trained staff can however 

provide children with an optimal experimental environment and make a participation in 

research fun and enjoyable. A child-friendly procedure does not only include imaging itself, 

but the whole study setting, including task development, preparation of the scanning session, 

and adequate data analysis. The experimental task for example needs to be designed according 

to the fact that children might find it challenging to lie still and concentrate for a long time. As 

such, the task and neuroimaging session should be kept as short as possible. Moreover, the 

stimuli should be selected according to the age of the participants (for a child-friendly image 

system see for example Cordon et al. (2013)). Extensive preparation and training using a 

mock scanner make the child and its family confident and at ease with the MR environment 

and scanning procedure. Furthermore, it is essential that the language used is age-appropriate, 

positive, and well understandable for the participants and family. By providing sufficient time 

to ask questions and get familiar with the new environment, potential anxiety can be reduced. 

Moreover, the procedure should be flexible, which enables the researcher to adapt the 

approach depending on the participant’s mood, anxiety, and overall state. During 

neuroimaging, offering breaks and communicating on a regular basis with the child increases 

comfort. Ear protection protects the child from MR-related noise and a pre-heated blanket 

keeps it warm and cozy. Providing feedback (either indirectly through communication during 

breaks or directly by a gentle hand press on the leg by a staff member in the MRI room) helps 

to reduce motion-related artifacts, which can, when needed, additionally be accounted for 

during data preprocessing (e.g., using ArtRepair; Mazaika, Whitfield-Gabrieli, Reiss, and 

Glover (2007)).  
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A special challenge within paediatric neuroimaging is given if the participant is not only of a 

young age, but moreover presents with a psychiatric condition such as CD. Here, it is of 

particular importance to know the characteristics of the participant as for example indicated 

by previous study sessions (e.g., behavioral testing) in order to predict possible defiant 

behavior or compliancy issues, and ensure the safety of the participant itself and staff 

involved within the neuroimaging setting. Children’s and adolescents’ responses during the 

training and imaging should be (even more) closely monitored in order to confirm that the 

participants have understood the task and to improve data quality.  

In conclusion, appropriate paediatric imaging protocols make participation in neuroimaging 

studies fun for children and adolescents and offer unique possibilities of studying the 

developing brain. This in turn has important implications including possible prevention of the 

development of mental diseases early in age or increasing chances of rapid remission.  

9.4 Strengths and caveats 

The current dissertation work informed about the neuronal mechanisms underlying altered 

emotion processing and implicit and explicit emotion regulation in CD. 

The most important strength of the present dissertation represents the effort to examine 

children and adolescents that meet a clinical diagnosis of CD. As such, two out of three of the 

studies conducted with clinical samples included adolescents with CD only (studies 2 and 4), 

focusing on rather small, but more homogeneous samples. This allowed us to provide a line of 

evidence demonstrating neuronal alterations during implicit and explicit emotion regulation in 

adolescents with a strict diagnosis of CD. Notably, the third study including a clinical sample 

was a meta-analysis (study 1) that required a minimum number of studies in order to result in 

reliable findings. Our first priority was, however, to pursue an optimal analytical approach by 

applying strict methodological inclusion criteria. This required a trade-off that led to our 

decision of not including only CD, but also adolescents with ODD or community samples 

characterized by conduct problems and/or high levels of CU traits.  

A further strength of this dissertation derives from the development and implementation of a 

child-friendly affective Stroop task as discussed above. In order to study the effects of implicit 

emotion regulation by emotion-cognition interaction, the task includes a selection of negative 

images from the DAPS system (Cordon et al., 2013), pictures which have proven to be 

adequate for children. We moreover adapted the duration of the trials, of the task itself, and 

also of the neuroimaging session by making sure that the questionnaires and other behavioral 
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data were acquired during another session prior to neuroimaging. Based on a child-

appropriate protocol (Raschle et al., 2012; Raschle et al., 2009) highly trained staff members 

prepared the participating children and adolescents for the neuroimaging session and 

conducted the experiments in a child-friendly manner. The affective Stroop task developed by 

our group was moreover extensively validated with a sample of 30 young adults prior to its 

use on children and adolescents (study 2). 

Nevertheless, a few limitations have to be highlighted. One limitation concerns the choice of 

images used in the affective Stroop task (studies 2 and 3). Our priority was to make sure to 

use pictures that are approved for its use for experiments with children in order to avoid 

negative consequences for our participants. It is likely that, as a consequence, the impact of 

the images used was reduced for some of the children, especially in those with a high 

probability of already being accustomed to images with a highly negative valence, e.g., high 

on violence. We cannot exclude that choosing child-appropriate images might have influenced 

our results (study 3).  

Another limitation refers to the aforementioned heterogeneity of CD. We have aimed at 

describing our samples as well as possible, taking into account for example the age of onset 

and an accurate estimation of psychopathic or CU traits, or potential comorbidities (studies 3 

and 4). Particularly within study 3, we were however not able to investigate CU traits in 

more detail due to the fact that most of the adolescents (also those with CD) were 

characterized by low CU scores, leaving few possibilities of investigating effects related to 

variations in CU traits due to a small sample size. Considering previous findings of altered 

amygdala activation during emotion processing in dependence of CU trait levels (Baker et al., 

2015; Blair, 2010a), future studies should consider focusing on groups with a higher variance 

in CU traits. This moreover applies to other important research questions which we were not 

able to focus on, such as sex and age differences, or effects of anxiety and attention. 

9.5 Clinical implications and outlook 

This dissertation work extends previous knowledge on neuronal alterations in adolescents 

with CD and overall suggests the presence of robust neuronal markers in the prefrontal cortex, 

insula, and amygdala for deficient emotion processing and regulation. It is likely that deficits 

in emotion processing and regulation impact daily life not only when directly dealing with 

emotions, but also have consequences when cognitive demands have to be met. Clinical 

interventions specifically targeted at improving emotion recognition and regulation skills 

using dialectical and/or cognitive behavior therapy (e.g., as implemented within the START 
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NOW training program (Kersten et al., 2016; Sampl, Trestman, & Krauss, 2013)) have proven 

effective in helping these adolescents at reducing externalizing, internalizing, and depressive 

symptoms, while increasing interpersonal and social problem solving skills (Lochman & 

Wells, 2004; Nelson-Gray et al., 2006). Furthermore, the development of treatment programs 

using neurofeedback for self-regulation training, an effective method already used in other 

psychiatric conditions such as ADHD (Gevensleben et al., 2009; Jacobs, 2006), might provide 

adolescents with further skills to train the brain to self-regulate. Given the heterogeneity of 

CD, we overall suggest that intervention programs shall focus on individualized approaches 

tailored to the specific needs of each patient (Pardini & Frick, 2013). 

We here consistently identified alterations in the prefrontal cortex and limbic system (insula, 

amygdala) in children and adolescents with CD (studies 3 and 4), but also in individuals with 

subclinical features of CD (study 1). Our findings make a strong point for a common basis of 

alterations in aggressive behavior, which is likely to be modulated by the severity of conduct 

problems. Future studies shall be conducted in order to provide even more detailed 

information about the neuronal phenotype of adolescents with CD, and the underlying 

mechanisms responsible for emotion processing and regulation. More specifically, we suggest 

following up on the here observed neuronal alterations during implicit emotion regulation by 

emotion-cognition interaction (study 3) and explicit emotion regulation by cognitive 

reappraisal (study 4) in adolescents with CD. Ideally, future studies should aim at 

investigating the implication of the amygdala, insula, and prefrontal cortex on a more detailed 

basis by distinguishing between the functionally divided subregions of the areas implicated in 

emotion processing and regulation (see e.g., Han, Lee, Kim, and Kim (2013)).  

The findings of this dissertation have furthered our knowledge on psychiatric disorders 

displaying aberrant neuronal activation during affective Stroop task processing in CD, which 

was already observed in other psychiatric disorders including ADHD (Hwang et al., 2015), 

affective disorders (Blair et al., 2012), post-traumatic stress disorders (Roy et al., 2014; White 

et al., 2015), and DBD (Hwang et al., 2016). A direct cross-disorder comparison is, however, 

yet missing and of high clinical relevance in order to determine the underlying neuronal 

mechanisms and development of different emotion-related psychiatric disorders. Depending 

on the exact aims of future investigations, an improvement of the affective Stroop paradigm 

used to investigate implicit emotion regulation as presented in studies 2 and 3 of this 

dissertation should be considered. Changes could potentially include the addition of images of 

positive valence in order to increase the knowledge deriving from the task, and increasing the 

duration of the emotion presented (to for example 400 instead of 150ms, see for example 
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Blair et al. (2007) or Hwang et al. (2016)) in order to being able to clearly distinguish effects 

of emotion and cognition. Furthermore, future studies using the affective Stroop task but also 

other tasks would clearly benefit from increased sample sizes and therefore larger variance. 

This would allow to investigate subgroups of CD, such as those with childhood-onset or 

adolescent-onset, comorbidities such as ADHD, anxiety, or ODD, symptom severity, those 

with high versus low CU traits, different age ranges, sex differences, or even cultural 

differences (e.g., within the frame of the European-wide consortium project FemNAT-CD, 

https://www.femnat-cd.eu, part of aim 4). With the use of increased sample sizes, future 

studies could potentially benefit by the use of a so-called RDoC approach focusing on 

dimensions of functioning across disorders rather than DSM diagnoses (Blair, 2015; Blair, 

White, Meffert, & Hwang, 2013; Fonagy & Luyten, 2017). Longitudinal studies and 

investigations on brain structure and connectivity would moreover add to the knowledge 

gained within this dissertation by providing a more comprehensive picture of the neuronal 

underpinnings of CD and related developmental research questions in health and disease. 

9.6 Conclusion 

CD is a psychiatric disorder of childhood and adolescence marked by severely aggressive 

behavior lying outside of the age-appropriate norm, leading to substantial economic costs and 

negative social consequences (Merikangas, Nakamura, & Kessler, 2009). Ample evidence has 

indicated atypical brain structure and function in adolescents with CD in prefrontal and limbic 

regions related to deficient emotion processing and regulation. However, the exact neuronal 

mechanisms underlying the observed altered emotion processing and regulation skills remain 

largely unknown. The present dissertation extends previous knowledge by providing a new 

line of evidence that aims to fill this gap in research. We report meta-analytic evidence for a 

network of functional alterations in aggressive behavior located in the prefrontal and limbic 

cortices, including the insula and amygdala. Our study in young adults demonstrated that 

emotion-related neuronal activity in prefrontal and limbic areas decreases in order to meet 

cognitive demands during implicit emotion regulation. In adolescents with CD, however, 

increased cognitive load did not lead to decreases in emotion-related amygdala activity. 

Moreover, adolescents with CD showed decreased prefrontal and insula activity during 

explicit emotion regulation by cognitive reappraisal. Our findings likely reflect a failure in 

adequate regulatory processes in CD. Overall, the results of this dissertation provide novel 

evidence on the neuronal characteristics of implicit and explicit emotion regulation in 

adolescents with CD, and align with the behaviorally observed deficits. Future investigations 
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shall further investigate emotion regulation in specific subgroups of conduct disorder, for 

example those with psychopathic traits or high levels of anxiety. Increased knowledge about 

the underlying neuronal and behavioral markers of CD is crucial for developing programs of 

early intervention and treatment targeting emotion processing and regulation skills, which 

shall ultimately influence the child’s immediate environment, but also public health and 

society as a whole. 

 
 

 

 
 

TAKE HOME MESSAGE 

Conduct disorder (CD) is a psychiatric condition of childhood and adolescence 

characterized by aggressive behavior and alterations in brain function related to 

emotion processing and regulation deficits. This dissertation presents novel 

evidence for altered neuronal activity in prefrontal and limbic brain regions 

during implicit and explicit emotion regulation in adolescents with CD compared 

to typically developing adolescents. The observed alterations in brain function 

align with the behaviorally observed deficits. Future studies shall inform further 

about the neuronal mechanisms in adolescents with CD by building up on the 

results of the present dissertation and ultimately influence social and economic 

outcomes. 
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Appendices 

Appendix A 

Supplementary material to study 1:  

Structural and functional alterations in right dorsomedial prefrontal and left insular cortex co-

localize in adolescents with aggressive behavior: An ALE meta-analysis 

 

Table S1. Checklist for PRISMA items. 

Section/topic  # Checklist item  
Reporte
d on 
page #  

TITLE   
Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   
Structured 
summary  

2 Provide a structured summary including, as applicable: background; 
objectives; data sources; study eligibility criteria, participants, and 
interventions; study appraisal and synthesis methods; results; 
limitations; conclusions and implications of key findings; systematic 
review registration number.  

2 

INTRODUCTION   
Rationale  3 Describe the rationale for the review in the context of what is already 

known.  
3,4,5 

Objectives  4 Provide an explicit statement of questions being addressed with 
reference to participants, interventions, comparisons, outcomes, and 
study design (PICOS).  

5 

METHODS   
Protocol and 
registration  

5 Indicate if a review protocol exists, if and where it can be accessed 
(e.g., Web address), and, if available, provide registration information 
including registration number.  

NA 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and 
report characteristics (e.g., years considered, language, publication 
status) used as criteria for eligibility, giving rationale.  

5-9 

Information 
sources  

7 Describe all information sources (e.g., databases with dates of 
coverage, contact with study authors to identify additional studies) in 
the search and date last searched.  

5 

Search  8 Present full electronic search strategy for at least one database, 
including any limits used, such that it could be repeated.  

5-9 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, 
included in systematic review, and, if applicable, included in the meta-
analysis).  

5-9 

Data collection 
process  

10 Describe method of data extraction from reports (e.g., piloted forms, 
independently, in duplicate) and any processes for obtaining and 
confirming data from investigators.  

5-9 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, 
funding sources) and any assumptions and simplifications made.  

5-9 
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Risk of bias in 
individual studies  

12 Describe methods used for assessing risk of bias of individual studies 
(including specification of whether this was done at the study or 
outcome level), and how this information is to be used in any data 
synthesis.  

 

Summary 
measures  

13 State the principal summary measures (e.g., risk ratio, difference in 
means).  

5-9 

Synthesis of 
results  

14 Describe the methods of handling data and combining results of 
studies, if done, including measures of consistency (e.g., I2) for each 
meta-analysis.  

5-9 

Risk of bias across 
studies  

15 Specify any assessment of risk of bias that may affect the cumulative 
evidence (e.g., publication bias, selective reporting within studies).  

 

Additional 
analyses  

16 Describe methods of additional analyses (e.g., sensitivity or subgroup 
analyses, meta-regression), if done, indicating which were pre-
specified.  

9, 10 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included 
in the review, with reasons for exclusions at each stage, ideally with a 
flow diagram.  

6-8 
Table 
S1 

Study 
characteristics  

18 For each study, present characteristics for which data were extracted 
(e.g., study size, PICOS, follow-up period) and provide the citations.  

6-8 
Table1+
2 

Risk of bias within 
studies  

19 Present data on risk of bias of each study and, if available, any 
outcome level assessment (see item 12).  

6-8 
Table1+
2 

Results of 
individual studies  

20 For all outcomes considered (benefits or harms), present, for each 
study: (a) simple summary data for each intervention group (b) effect 
estimates and confidence intervals, ideally with a forest plot.  

NA 

Synthesis of 
results  

21 Present results of each meta-analysis done, including confidence 
intervals and measures of consistency.  

6-8 

Risk of bias across 
studies  

22 Present results of any assessment of risk of bias across studies (see 
Item 15).  

 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup 
analyses, meta-regression [see Item 16]).  

10-14 

DISCUSSION   

Summary of 
evidence  

24 Summarize the main findings including the strength of evidence for 
each main outcome; consider their relevance to key groups (e.g., 
healthcare providers, users, and policy makers).  

14-20 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at 
review-level (e.g., incomplete retrieval of identified research, reporting 
bias).  

20-22 

Conclusions  26 Provide a general interpretation of the results in the context of other 
evidence, and implications for future research.  

22-23 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other 
support (e.g., supply of data); role of funders for the systematic review.  

NA 

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma-statement.org.  
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Appendix B 

Supplementary material to study 2:  

Investigating the neural correlates of emotion-cognition interaction using an affective Stroop 

task 

1.1 Negative and neutral images used in the emotional priming task. All images are part 

of the DAPS (Cordon et al., 2013), mirroring the IAPS commonly used in adults (Lang, 

2008). Numbers correspond to DAPS coding. 

1300 2222 2400 3180 6510 9007 9530 
1410 2273 2487 3250 6830 9040 9570 
1441 2274 2488 3500 6831 9050 9571 
1500 2299 2506 3530 7002 9120 9600 
1540 2302 2515 5201 7004 9140 9620 
1620 2308 2518 5202 7081 9180 9622 
1670 2314 2560 5390 7090 9181 9630 
1850 2342 2580 5870 7130 9230 9910 
1942 2382 2593 5940 7242 9250 9911 
2018 2383 2594 6190 7440 9400 9912 
2026 2384 2691 6210 7492 9420 9921 
2032 2385 2791 6211 7509 9421 

 2036 2388 2800 6250 7512 9430 
 2037 2390 2870 6260 7595 9440 
 2053 2393 2900 6300 7820 9470 
 2058 2396 3030 6312 8230 9490 
 2205 2398 3160 6370 8480 9500 
  

Cordon, I.M., Melinder, A.M., Goodman, G.S., and Edelstein, R.S. (2013). Children's and adults' memory for 
emotional pictures: examining age-related patterns using the Developmental Affective Photo System. J 
Exp Child Psychol 114(2), 339-356. doi: 10.1016/j.jecp.2012.08.004. 

Lang, P.J., Bradley, M.M., & Cuthbert, B.N. (2008). "International affective picture system (IAPS): Affective 
ratings of pictures and instruction manual. Technical Report A-8.". (Gainesville, FL.: University of 
Florida). 

 

1.2. Behavioral pilot study assessing in-scanner task 

A pilot study was run to validate the neuroimaging task behaviorally in 8 healthy adults (1 

dataset was discarded due to incomplete data). Data was analyzed with regards to accuracy 

and reaction times with two separate 2 (emotion: Neg, Neu) by 3 (task: C, S, IC) repeated 

measures ANOVAs. Pilot data assessment indicated a significant emotion by cognition 

interaction on both accuracy measures (F(2,5)=9.224, p=.021) and reaction times 
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(F(2,5)=14.451, p=.008). Moreover, a significant main effect of cognition was detected in 

accuracy measures (F(2,5)=182.542, p<0.001) and reaction times (F(1,6)=30.470, p=0.002). 

  
Congruent Stars Incongruent 

    [±SD] [±SD] [±SD] 

Accuracy Negative prime 50.0 [1.5] 42.9 [1.07] 46.0 [2.9] 

[raw scores] Neutral prime 49.4 [1.7] 40.6 [2.4] 46.6 [3.36] 

     Reaction Times Negative prime 672.4 [82.7] 684.9 [89.5] 761.4 [113.3] 

[ms] Neutral prime 663.7 [91.0] 696.8 [102.0] 784.0 [109.3] 

     
     

Supplementary Figures and Tables 

 
2.1 Emotional valence rating (N=30, raw scores). 
 

  

  Range Mean Standard Deviation 
Negative primes 1.75 -1.20 0.44 
Neutral primes 2.13 0.66 0.46 
     

2.2 Supplementary Figure 1. Additional graphs displaying follow-up investigations on the 

influence of emotion on cognition within regions of interests (right amygdala, left precentral 

gyrus). 
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Appendix C 

Supplementary material to study 3:  

Altered neuronal responses during affective Stroop task performance in adolescents with 

conduct disorder 

SI1. Additional information on participants 

All adolescents were invited to take part in two separate sessions including psychometric 

testing and magnetic resonance imaging. Clinical and behavioral assessments were conducted 

at the Department of Child and Adolescent Psychiatric Center in Basel or at the Department 

of Psychiatry and Psychotherapy at Charité – Universitätsmedizin Berlin, Campus Mitte, 

while neuroimaging took place at the University Hospital of Basel or at the Berlin Center of 

Advanced Neuroimaging at the Charité – Universitätsmedizin Berlin. We excluded subjects 

with an IQ score below 70. Adolescents with CD were assessed using the Schedule for 

Affective Disorders and Schizophrenia for School-Age Children–Present and Lifetime version 

(K-SADS-PL, Kaufman et al. (1997) and were excluded if they did not meet the DSM-5 

diagnostic criteria for CD. 

Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., . . . Ryan, N. (1997). Schedule for 
Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-
SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and 
Adolescent Psychiatry, 36(7), 980-988. doi:10.1097/00004583-199707000-00021 

 

 

SI2. Psychometric testing: Socioeconomic status 

Conduct disorder (CD) and typically developing (TD) adolescents did not differ in 

socioeconomic status as indexed by mothers’ education and family income earned within the 

last 12 months. However, they did differ with regards to fathers’ education (U=298.00, 

p=.017). Furthermore, CD and TD did not differ in subjective social status as assessed by the 

MacArthur Community ladder measuring social status within their community, but did differ 

in the MacArthur SES ladder assessing social status within their country (U=196.50, p=.026). 

 

 

 

 

 



Appendices 

186 
 

    CD TD p   

    [%] [%] 
Sig. 2-
tailed   

        

Mann-
Whitney 

test   
Mother 
characteristics           
  N= 28 38     
Education (highest  Pre-primary education (ISCED 0) 0.00% 0.00% .356   

degree earned) 
Primary education or first stage of basic education 
(ISCED 1) 3.60% 2.60%     

  
Lower secondary or second stage of basic education 
(ISCED 2) 14.30% 5.30%     

  (Upper) secondary education (ISCED 3) 60.70% 65.80%     
  Post-secondary non-tertiary education (ISCED 4) 3.60% 5.30%     
  First stage of teritary education (ISCED 5) 17.90% 21.10%     

  
Second stage of tertiary education (doctoral level) 
(ISCED 6) 0.00% 0.00%     

            
Father characteristics           
  N= 24 37     
Education (highest  Pre-primary education (ISCED 0) 4.20% 0.00% .017 * 

degree earned) 
Primary education or first stage of basic education 
(ISCED 1) 4.20% 0.00%     

  
Lower secondary or second stage of basic education 
(ISCED 2) 4.20% 5,4%     

  (Upper) secondary education (ISCED 3) 62.50% 37.80%     
  Post-secondary non-tertiary education (ISCED 4) 0.00% 2.70%     
  First stage of tertiary education (ISCED 5) 25.00% 54.10%     

  
Second stage of tertiary education (doctoral level) 
(ISCED 6) 0.00% 0.00%     

            
Family characteristics           
  N= 23 33     
Income earned within 
the less than 4'500 CHF 4.30% 3.00% .224   
past 12 months 4500 CHF - 10'699 CHF 4,3% 3.00%     
  10'700 CHF - 15'199 CHF 8,7% 3.00%     
  15'200 CHF - 22'299 CHF 4,3% 3.00%     
  22'300 CHF - 31'249 CHF 8,7% 3.00%     
  31'250 CHF - 44'599 CHF 8,7% 3.00%     
  44'599 CHF - 66'999 CHF 13.00% 12.10%     
  67'000 CHF - 88'999 CHF 8,7% 9.10%     
  89'000 and greater 13.00% 39.40%     
  I don't know 17,4% 6.10%     
  No response  4,3% 15.20%     
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[Mean ± 
SD] 

[Mean ± 
SD] 

Subjective 
socioeconomic  N= 20 31     
status (MacArthur) SES Ladder 5.35±2.08 6.68±1.96 .026 * 
  N= 21 30     
  SES Comunity ladder 6.57±2.16 7.13±1.78 .346   
            
* p<.05; two-tailed t-test; all other t-tests non-significant at threshold of p<.05         
Education ranking according to ISCED97         

 

SI3. Medication of adolescents with CD (N=35) and typically developing controls (N=39) 

at MRI session 

    CD TD 
    N=35 N=39 
ADHD medication Methylphenidate 6 0 

 
Atomoxetine 1 0 

Pain medication Paracetamol 1 0 
Depression/bipolar disorder medication Quetiapine 1 0 

 
Valproate 1 0 

Allergy medication Montelukast 0 1 

 
Antihistamines 0 1 

    
CD=conduct disorder patients; TD=typically developing adolescents     
 

 

SI4. Button box responses 

In the course of the study we faced technical problems with the recording of button #3 of the 

button box used to record the responses resulting in missing data for six controls and two 

patients (within the participants included in the present paper) for button number three only. 

Each file affected by this problem was individually evaluated with regards to whether the 

missing responses consistently represented correct answers. Only if we were certain that we 

are able to interpret the missing answers correctly, we proceeded with including the respective 

file into further MRI analyses (all other data were discarded). 
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SI5. In-scanner performance (accuracy, reaction times) for adolescents with CD (N=39) 

and typically developing controls (N=39) 

   
CD TD 

       Mean ± SD Mean ± SD 
 Reaction 

times Negative prime   
 [ms]  Congruent 758.8 [98.8] 739.3 [101.3]  

  Incongruent 857.9 [115.5] 848.2 [99.3]  

 
Neutral prime 

     Congruent 767.9 [96.1] 749.0 [99.7]  
  Incongruent 872.5 [107.4] 852.2 [111.2]             Accuracy Negative prime    [raw scores]  Congruent 46.6 [2.8] 48.0 [2.3]  
  Incongruent 43.2 [3.8] 44.8 [3.6]  

 
Neutral prime 

     Congruent 47.0 [2.9] 48.6 [1.5]  
  Incongruent 43.9 [3.6] 45.3 [3.6]              
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Appendix D 

Supplementary material to study 6:  

Microstructural white matter alterations in the corpus callosum of girls with conduct disorder 

Supplementary Table 1. Means and standard deviations (SD) for the λ1, λ2, λ3 eigenvalues 
(10-3 mm2/s) in the corpus callosum (body) of female adolescents with conduct disorder 
(CD) and typically developing controls (TD). 

 
  λ1 (SD)  λ2 (SD)  λ3 (SD) 

 CD 1.34 (0.03) 0.63 (0.03) 0.53 (0.03) 
 TD 1.35 (0.05) 0.65 (0.04) 0.55 (0.04) 
 

 

   

    
    
Supplementary table 2. Microstructural white matter alterations in 15 females with CD (CD) 
and without ADHD comorbidity compared to 20 typically developing controls (TD) using 
fractional anisotropy (FA) and mean diffusivity (MD). 

# Brain region L/R 

coordinates of 
peak locationa 

Cluster size 
(number of 

voxels) p-valueb X Y Z 
Fractional Anisotropy 
CD>TD   

           
1 Bilateral corpus callosum (body) L -1 -24 24 560 .046 
2 Bilateral corpus callosum (body) L -13 -22 32 197 .050 
3 Corpus callosum (body)c R 1 -25 23 6725 .003 

4 Cingulum (cingulate)c R 12 -23 34 159 .022 
TD>CD   

 
          

5 Cingulum (hippocampal)c L -22 -20 -27 628 .005 
Mean Diffusivity 
CD>TD    

          
  - 

 
          

TD>CD    
          

1 Corpus callosum (body)c R 4 -25 25 7644 .003 

2 Cingulum (cingulate)c R 7 -13 33 903 .008 

3 Uncinate fasciculusc R 37 3 -20 58 .047 
a Neurological view (MNI space). b Threshold-free cluster enhancement, p≤0.05 FWE-corrected. c Region of 
interest 
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Appendix E 

Supplementary material to study 7:  

Callous-unemotional traits and brain structure: Sex-specific effects in anterior insula of 

typically-developing youths 

 
Figure S1 

Distribution of the delinquency and aggression subscale from the CBCL (left: raw scores; right T-
scores). 

 
 
 
Supplement 2 

Here we present evidence for the usefulness of the newly built composite score reflecting CU 

traits: (1) Cronbach Alpha scores and confidence intervals (CI) for the YPI callous-

unemotional dimension, ICU total and the new composite score representing CU-traits; (2) 

Between-assessment correlations; (3) Changes in Cronbach’s alpha between assessments; and 

(4) replication of correlational findings in boys for ICU total, YPI callous-unemotional and 

composite score. Furthermore, previous work has indicated that CU-traits are negatively 

correlated with empathy (Kahn, et al. 2017; Pasalich, et al. 2014), which has been additionally 

tested, see point (5), by correlating the new composite score and data obtained using the 

Griffith Empathy Measure. Furthermore, mean gray matter volume parameter estimates from 
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independent bilateral anterior insula regions of interest were correlated with total empathy 

scores. 

(1) Reliability of Scales - Cronbach’s alpha scores 

Group Assessment Cronbach's Alpha Confidence Interval 

    All YPI (callous-unemotional) 0.785 0.737 to 0.828 
 ICU (total) 0.791 0.744 to 0.833 
 CU-traits (composite) 0.832 0.794 to 0.866 
    
    
Girls YPI (callous-unemotional) 0.765 0.694 to 0.825 
 ICU (total) 0.774 0.705 to 0.833 
 CU-traits (composite) 0.803 0.743 to 0.854 
    
    
Boys YPI (callous-unemotional) 0.752 0.662 to 0.827 
 ICU (total) 0.791 0.717 to 0.853 
 CU-traits (composite) 0.823 0.759 to 0.877 
        

Note. 95% Confidence Intervals. 

 

(2) Between-assessments correlations 
 

  
YPI (callous-
unemotional) ICU (total) CU-traits 

(composite) 

     
All YPI (callous-unemotional) 1 

  
 

ICU (total) 0.324** 1 
 

 
CU-traits (composite) 0.768** 0.853** 1 

     

     Girls YPI (callous-unemotional) 1 
  

 
ICU (total) 0.276** 1 

 
 

CU-traits (composite) 0.741** 0.850** 1 
     

     Boys YPI (callous-unemotional) 1 
  

 
ICU (total) 0.280* 1 

 
 

CU-traits (composite) 0.737** 0.851** 1 
    

   Note. Pearson correlations (r). ** p<.01. 
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(3) Testing changes in Cronbach’s alpha between assessments 

 

 
YPI  

(callous-unemotional) ICU (total) 

    
All YPI (callous-unemotional) 

  
 

ICU (total) p < 0.8460 
 

 
CU-traits (composite) p < 0.0058** p < 0.0120* 

    

    Girls YPI (callous-unemotional) 
  

 
ICU (total) p < 0.8423 

 
 

CU-traits (composite) p < 0.1956 p < 0.0846 

        
Boys YPI (callous-unemotional) 

  
 

ICU (total) p < 0.4509 
 

 
CU-traits (composite) p < 0.0343* p < 0.1725 

        

Note. Difference in Cronbach's Alpha (statistical inference based on cocron1,2). * p <.05; ** p<.01 
1Diedenhofen, B. (2013). cocron: Statistical comparisons of two or more alpha coefficients (Version 1.0-0). Available from 
http://r.birkdiedenhofen.de/pckg/cocron/ 
2Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha. Applied Psychological 
Measurement, 11, 93-103. 
 

(4) Replication of correlational findings in boys for ICU total, YPI callous-unemotional and 
composite score (p<0.001, uc). 

 
(5) Correlational analysis linking the new CU-composite score and empathy (as based on the 

total score of the Griffith Empathy Measure) indicate a significant negative relationship for 

both typically developing boys and girls (r=-0.526 and r=-0.485 ; both p<0.001). Furthermore, 

partial correlation analysis (considering the main covariates age, TIV, site) between mean 

parameter estimates derived from independent bilateral anterior insula regions of interest and 

empathy scores reveal a negative relationship. However, findings only reached formal levels 

of statistical significance for the right anterior insula (r=-0.236; p<0.040). 
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Kahn, R. E., et al. (2017). The Moderating Role of Anxiety in the Associations of Callous-Unemotional 
Traits with Self-Report and Laboratory Measures of Affective and Cognitive Empathy. J Abnorm Child Psychol 
45(3):583-596. 

Pasalich, D. S., M. R. Dadds, and D. J. Hawes (2014). Cognitive and affective empathy in children with 
conduct problems: additive and interactive effects of callous-unemotional traits and autism spectrum disorders 
symptoms. Psychiatry Res 219(3):625-30. 
 
Supplement 3 

Graphs show the distribution of callous-unemotional traits, for girls and boys respectively. 

Plots demonstrate that the data falls into a wide range and that a sufficient number of high, 

medium and low scores represent our groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplement 4 
Site-specific acquisition parameters and numbers of subjects tested. 

      Site # 01 02 04 05 07 

#of participants 36 41 44 18 50 

[girls/boys] [16/20] [22/19] [22/22] [18/0] [30/20] 

scanner model Siemens Trio Siemens Prisma Siemens Trio Siemens Prisma Phillips 

#of slices 192 192 192 192 192 

TR 1900ms 1900ms 1900ms 1900ms 1900ms 

TE 2.74ms 3,42ms 4.1ms 3.42ms 3.7ms 

TI 900ms 900ms 900ms 900ms 900ms 

flip angle (°) 9 9 9 9 9 

field of view 256mm 256mm 256mm 256mm 256mm 

voxel size 1×1×1mm 1×1×1mm 1×1×1mm 1×1×1mm 1×1×1mm 

01=Frankfurt; 02=Aachen; 04=Southampton; 05=Basel; 07=Birmingham; TR=repetition time; TE=echo time; 
TI=inversion time.  
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Appendix F 

Previously used affective Stroop task designs 

I) Task design by Blair and colleagues (2007). a) negative view trial, b) negative congruent 

trial, c) negative incongruent trial. 

 
 

Blair, K. S., Smith, B. W., Mitchell, D. G., Morton, J., Vythilingam, M., Pessoa, L., Fridberg, D., 
Zametkin, A., Sturman, D., Nelson, E. E., Drevets, W.C., Pine, D. S., Martin, A., & Blair, R. J. (2007). 
Modulation of emotion by cognition and cognition by emotion. Neuroimage, 35(1), 430-440. 
doi:10.1016/j.neuroimage.2006.11.048
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II) Task design by Hart and colleagues (2010). Aversive or neutral prime followed by a 

Stroop array (stars, congruent, or incongruent). ITI=intertrial interval. 

  

 

Hart, S. J., Green, S. R., Casp, M., & Belger, A. (2010). Emotional priming effects during Stroop task 
performance. Neuroimage, 49(3), 2662-2670. doi:10.1016/j.neuroimage.2009.10.076 
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III) Task design by Hwang and colleagues (2016). a) negative view trial, b) negative 

congruent trial, c) negative incongruent trial. 

 

 

Hwang, S., Nolan, Z. T., White, S. F., Williams, W. C., Sinclair, S., & Blair, R. J. (2016). Dual 
neurocircuitry dysfunctions in disruptive behavior disorders: emotional responding and response inhibition. 
Psychol Med, 46(7), 1485-1496. doi:10.1017/S0033291716000118 
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