
Designing Intelligent Database Systems through
Argumentation

Marcela Capobianco Carlos I. Chesñevar Alejandro J. Garcı́a
Guillermo R. Simari

Dpto. de Cs. e Ing. de la Computación – Universidad Nacional del Sur
Tel.: 0291-4595135 – Av. Alem 1253, Bahı́a Blanca

{mc, cic, ajg, grs}@cs.uns.edu.ar

1 Introduction
Information systems play an ever-increasing key role in our society. In particular, data intensive ap-
plications are in constant demand and there is need of computing environments with much more intel-
ligent capabilities than those present in today’s Data-base Management Systems (DBMS). Nowadays
intelligent applications require better reasoning capabilities than those present in older data processing
systems[7].

Argumentation frameworks appear to be an excellent starting-point for building such systems.
Research in argumentation has provided important results while striving to obtain tools for common
sense reasoning. As a result, argumentation systems have substantially evolved in the past few years,
and this resulted in a new set of argument-based applications in diverse areas where knowledge repre-
sentation issues play a major role. Clustering algorithms [6], intelligent web search [3], recommender
systems [4, 3], and natural language assessment [2] are the outcome of this evolution.

We claim that massive data processing systems can be combined with argumentation to obtain
systems that administer and reason with large databases. These would result in a system that can
extract and process information from massive databases and exhibit intelligent behavior and common
sense reasoning as a by-product of the argumentation system used for the reasoning process.

In this work, we present a specialization of the DeLP [5] system, called Database Defeasible
Logic Programming (DB DeLP). This framework could be easily integrated with a relational database
component to achieve a system capable of massive data processing and intelligent behavior. Next, we
formally define this system.

2 DBDeLP: Database Defeasible Logic Programing
In this section we present an specialization of the DeLP language, called Database Defeasible Logic
Programing (DB DeLP), that can be used as a reasoning module in a Database integrated system.
DB DeLP has common elements with the ODeLP language [1], another specialization of DeLP useful
for dynamic environments that provides perception mechanisms to detect the changes in the world
and integrate them into the knowledge base.

The language of DB DeLP is based on the language of logic programming. Standard logic pro-
gramming concepts (such as signature, variables, functions, etc) are defined in the usual way. Literals

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15777334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are atoms that may be preceded by the symbol “∼” denoting strict negation, as in extended logic
programming.

DB DeLP programs are formed by a set of defeasible rules. These rules provide a way of per-
forming tentative reasoning as in other argumentation formalisms. A defeasible rule has the form
L0 –≺L1,L2, . . . ,Lk, where L0 is a literal and L1,L2, . . . ,Lk is a non-empty finite set of literals. An
DB DeLP program, noted as ∆, is a finite set of defeasible rules.

Example 2.1 Lets consider the following program: ∆ = {feline(X) –≺ lion(X).,climbs(X) –≺ feline(X).,
∼climbs(X) –≺ lion(X).,∼climbs(X) –≺ sick(X).,climbs(X) –≺ lion(X), cub(X).}which shows general informa-
tion about lions’ behavior. The rules establish that felines usually climb trees, while lions usually do
not. Exceptionally, lion cubs could climb trees and usually sick animals cannot climb trees.

Defeasible rules are combined to build potential arguments. Since these rules are not instantiated,
potential argument may become arguments if the necessary evidence is available, they can be roughly
described as schematic arguments that may be instantiated to become concrete arguments. Therefore
every potential argument represents a set of instantiated arguments that are obtained using different
instances of the same defeasible rules. These instances are summarized in the concept of argument
(instantiated), that is later used to define potential arguments:

Definition 2.1 Let ∆ be a set of defeasible rules and Ξ a set of ground literals. An argument A for
a ground literal Q, also denoted 〈A ,Q〉, is a subset of ground instances of defeasible rules such that:
(1) there exists a defeasible derivation [5] for Q from Ξ∪A (denoted as Ξ∪A |∼Q), (2) Ξ∪A is
non-contradictory, and (3) A is minimal with respect to set inclusion in satisfying (1) and (2). Given
two arguments 〈A1,Q1〉 and 〈A2,Q2〉, we will say that 〈A1,Q1〉 is a sub-argument of 〈A2,Q2〉 iff
A1 ⊆A2.

Definition 2.2 Let ∆ be a set of defeasible rules. A subset A of ∆ is a potential argument for a literal
Q, noted as 〈〈A,Q〉〉, if there exists a non-contradictory set of ground literals Ξ, an instance A of the
rules in A, and a grounded instance R of Q such that 〈A ,R〉 is an argument wrt ∆ and Ξ.

Given a particular set of defeasible rules ∆ we can obtain a finite set of potential arguments based
on it. This set will be recorded to speed-up inference, but with a particular structure. In the inference
process arguments sustain theirs conclusions trough a dialectical process. To do this, arguments in
favor and against a certain conclusion are contested. These conflicts are formally defined in the notion
of attack or counter-argument between potential arguments. A potential argument 〈〈A1,Q1〉〉 counter-
argues an potential argument 〈〈A2,Q2〉〉 at a literal Q if and only if there is a sub-argument 〈〈A,Q〉〉 of
〈〈A2,Q2〉〉 such that Q1 and Q are complementary with respect to strong negation, denoted as ∼.

Defeat among potential arguments is defined combining the counter-argument relation and a pref-
erence criterion “�”. A potential argument 〈〈A1,Q1〉〉 defeats 〈〈A2,Q2〉〉 if 〈〈A1,Q1〉〉 is a counterargu-
ment of 〈〈A2,Q2〉〉 at a literal Q and 〈〈A,Q〉〉 � 〈〈A1,Q1〉〉 (proper defeater) or 〈〈A1,Q1〉〉 is unrelated
to 〈〈A,Q〉〉 (blocking defeater).

Defeaters may in turn be defeated by others potential arguments. Thus, a complete dialectical
analysis is required to determine which arguments are ultimately accepted. But before turning to the
particular details of the inference process, we must define the supporting structure that will be used
in it. The dialectical process will be guided by the dialectical graph associated to the set of rules ∆.

Definition 2.3 Let ∆ be a set of defeasible rules. The dialectical graph of ∆, denoted as DB∆, is
a 3-tuple (PotArgs(∆),Dp,Db) such that: (1) PotArgs(∆) is the set {〈〈A1,Q1〉〉, . . . , 〈〈Ak,Qk〉〉} of
every potential argument that can be built from ∆. (2) Dp and Db are relations over the elements
of PotArgs(∆) such that for every pair (〈〈A1,Q1〉〉,〈〈A2,Q2〉〉) in Dp (respectively Db) it holds that
〈〈A2,Q2〉〉 is a proper (respectively blocking) defeater of 〈〈A1,Q1〉〉.



A4 A5 A6

A1 A2 A3
�
�

�
��	

�

?

6@
@
@
@@R

I6

?�
�
�
���

�
���

���
���

Figure 1: Dialectical graph corresponding to Example 2.2.

Example 2.2 Consider the rules in Ex. 2.1, its dialectical graph is composed by:
〈〈A1,climbs(X)〉〉, where A1 = {climbs(X) –≺ feline(X)};
〈〈A2,climbs(X)〉〉, where A2 = {climbs(X) –≺ feline(X), feline(X) –≺ lion(X)};
〈〈A3,climbs(X)〉〉, where A3 = {climbs(X) –≺ lion(X), cub(X)};
〈〈A4,∼climbs(X)〉〉, where A4 = {∼climbs(X) –≺ lion(X)};
〈〈A5,∼climbs(X)〉〉, where A5 = {∼climbs(X) –≺ sick(X)};
〈〈A6, feline(X)〉〉, where A6 = {feline(X) –≺ lion(X)}.
The relations Db = {(A1,A4),(A4,A1),(A1,A5),(A5,A1),(A2,A5),(A5,A2),(A3,A5),(A5,A3)} and
Dp = {(A2,A4),(A4,A3)} are shown in Figure 2, where blocking defeat is indicated with a double
headed arrow. In this case the specificity criterion is used as the preference criterion for defeat.

A dialectical graph for a given set of rules collects a set of potential arguments and the defeat
relation among them. Bear in mind that every potential argument functions like an schema that
represents a set of arguments that can be obtained using different instances of the same defeasible
rules. This speeds-up the inference process functioning like a precompiled knowledge component
[1], without need of generating and storing many arguments which are structurally identical, only
differing in the constant names being used to build the corresponding derivations.

Now we can finally define our argumentation framework:

Definition 2.4 Let ∆ be a set of defeasible rules. The database argumentation framework of ∆ is a
pair AF = (DB∆,Ξ), where DB∆ is the dialectical graph obtained from ∆ and Ξ, called the evidential
base, is a relational database.

The facts derived from Ξ will be used as evidence to instantiate the potential arguments in the
dialectical graph. This gives raise to the inference process of the system.

3 Inference process
The inference process starts when a new query is posed to the system, regarding the derivation of
a given conclusion. Consider the dialectical graph in example 2.2 and suppose the following set of
facts can be derived from the evidential base: {lion(simba)., lion(mufasa)., cub(simba).} Lets see how
the system works when faced with the query climbs(simba).

First the set of potential arguments in the dialectical graph is searched to see if there exists an
element whose conclusion can be instantiated to match the query. It finds 〈〈A2,climbs(X)〉〉, A2 =
{climbs(X) –≺ feline(X), feline(X) –≺ lion(X)}. A2 can be instantiated to A2 = {climbs(simba) –≺ feline(simba),
feline(simba) –≺ lion(simba)}.

Now, to see if climbs(simba) is inferred by the system from ∆ and the evidential base, we must
check whether A2 can sustain its conclusion when confronted with its counterarguments. Using the
links in the dialectical graph we find one defeater for A2, instantiating A4 = {∼climbs(X) –≺ lion(X)}
to A4 = {∼climbs(simba) –≺ lion(simba)}. But defeaters are arguments and so may in turn be defeated



as well. This gives raises to a dialectical process [5] in which we recursively find defeaters for the
defeaters and so on. Such analysis results in a tree structure called dialectical tree, in which arguments
are nodes labeled as undefeated (U-nodes) or defeated (D-nodes) according to a marking procedure.

Definition 3.1 The dialectical tree for an argument 〈A ,Q〉, denoted T〈A ,Q〉, is recursively defined
as follows: (1) A single node labeled with an argument 〈A ,Q〉 with no defeaters (proper or blocking)
is by itself the dialectical tree for 〈A ,Q〉. (2) Let 〈A1,Q1〉,〈A2,Q2〉, . . . ,〈An,Qn〉 be all the defeaters
(proper or blocking) for 〈A ,Q〉. The dialectical tree for 〈A ,Q〉, T〈A ,Q〉, is obtained by labeling the
root node with 〈A ,Q〉, and making this node the parent of the root nodes for the dialectical trees of
〈A1,Q1〉,〈A2,Q2〉, . . . ,〈An,Qn〉.

For the marking procedure we start labeling the leaves as U-nodes. Then, for any inner node
〈A2,Q2〉, it will be marked as U-node iff every child of 〈A2,Q2〉 is marked as a D-node. If 〈A2,Q2〉
has at least one child marked as U-node then it is marked as a D-node.

Given a query Q for a given framework AF = (DB∆,Ξ), we will say that Q is warranted wrt
P iff there exists an argument 〈A ,Q〉 such that the root of its associated dialectical tree T〈A ,Q〉 is
marked as a U-node. Solving a query Q in DB DeLP accounts for trying to find a warrant for Q, that
is, an argument for Q that is warranted wrt to the DB DeLP under consideration.

Example 3.1 Continuing with example 2.1, let climbs(simba) be a query to that framework. In
this case argument 〈A2,climbs(simba)〉 (an instantiation of 〈〈A2,climbs(X)〉〉) is attacked by argument
〈A4,∼climbs(simba)〉 (an instantiation of 〈〈A4,∼climbs(X)〉〉), which is attacked by 〈A3,climbs(simba)〉
(an instantiation of 〈〈A3,climbs(X)〉〉).
Using specificity as the preference criterion, 〈A4,∼climbs(simba)〉 is a proper defeater for argument
〈A2,climbs(simba)〉, but A4 is properly defeated by 〈A3,climbs(simba)〉. Thus, climbs(simba) is
warranted. The structure of these arguments and the dialectical tree are shown in Fig. 2 (left), where
defeated nodes are marked with a D and undefeated nodes with an U .

The evidential base is subject to constant changes as every practical database does. The only
restriction is that it must not be changed while a query is being solved. Note that the dialectical graph
is not affected by changes in the database, as the following example shows:

Example 3.2 Suppose now that a new fact is added to the evidential base stating that simba is sick.
Even though the dialectical graph remains unchanged, now the potential argument 〈〈A5,∼climbs(X)〉〉
can be instantiated to argument 〈A5,∼climbs(simba)〉 (see Fig. 2 (right)).
Using specificity as the preference criterion, 〈A5,∼climbs(simba)〉 is a blocking defeater for both A2
and A3. The resulting dialectical tree is shown Fig. 2 (right). Now, the marking procedure classifies
the root as a D-node and thus climbs(simba) is no longer warranted.

4 Conclusions and future work
We have defined the DB DeLP system as the first step to achieve an intelligent database system capable
of massive database processing. The system shows several advantages. First, it allows a seamless
connection with massive databases. Precompiled knowledge is integrated in the framework since its
conception, and this speeds-up the inference process. This is a important step for solving the efficiency
problem in argumentation systems. Besides, changes in the database can be easily accommodate
since they don’t change the dialectical graph. Therefore no up-keeping process in necessary for the
dialectical graph, given that defeasible rules remain unchanged.



�
�
��

L
L
LL

U

lion(simba),cub(simba)
|f

climbs(simba)

�
�
��

L
L
LL

D

lion(simba)
|f

∼climbs(simba)

�
�
��

L
L
LL

U

lion(simba)
|f

feline(simba)
|f

climbs(simba)

�
�
��

L
L
LL

U
�
�
��

L
L
LL

D

sick(simba)
|f

∼climbs(simba)

�� @@

lion(simba),cub(simba)
|f

climbs(simba)

�
�
��

L
L
LL

U

lion(simba)
|f

∼climbs(simba)

�
�
��

L
L
LL

D

lion(simba)
|f

feline(simba)
|f

climbs(simba)

�
�
��

L
L
LL

U

sick(simba)
|f

∼climbs(simba)

Figure 2: First and second dialectical trees from Example 3.1

Considering these facts we claim that DB DeLP is an optimal argumentation system to be build
an intelligent system architecture capable of reasoning with and manage massive data. To test this
hypothesis empirically, we plan to implement the DB DeLP and build a prototype that interact with a
MySQL database.

Intelligent information systems are today’s most critical tools for survival in the business environ-
ment [7]. Having an implementation of the DB DeLP system can help us achieve a new set of practical
application based on argumentation-driven information systems.

References
[1] CAPOBIANCO, M., CHESÑEVAR, C., AND SIMARI, G. Argumentation and the dynamics of warranted beliefs in

changing environments. Journal of Autonomous Agents and Multiagent Systems 11 (2005), 127–151.

[2] CHESÑEVAR, C., AND MAGUITMAN, A. An argumentative approach to assesing natural language usage based
on the web corpus. In Proc. of European Conference on Artificial Intelligence (ECAI 2004). Valencia, Spain (Aug.
2004), ECCAI.

[3] CHESÑEVAR, C., AND MAGUITMAN, A. ARGUENET: An Argument-Based Recommender System for Solving
Web Search Queries. In Proc. of Intl. IEEE Conference on Intelligent Systems IS-2004. Varna, Bulgaria (June 2004).

[4] CHESÑEVAR, C. I., MAGUITMAN, A. G., AND SIMARI, G. R. Argument-based critics and recommenders: A
qualitative perspective on user support systems. Data & Knowledge Engineering 59, 2 (2006), 293–319.

[5] GARCÍA, A., AND SIMARI, G. Defeasible Logic Programming: An Argumentative Approach. Theory and Practice
of Logic Programming 4, 1 (2004), 95–138.

[6] GOMEZ, S., AND CHESÑEVAR, C. A Hybrid Approach to Pattern Classification Using Neural Networks and De-
feasible Argumentation. In Proc. of Intl. 17th FLAIRS Conference. Palm Beach, FL, USA (May 2004), AAAI,
pp. 393–398.

[7] ZANIOLO, C. Intelligent Databases: Old Challenges and New Opportunities. Journal of Intelligent Information
Systems 1 (1992), 271–292.


