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Abstract

In [5] we study Nonassociative Lambek Calculus (NL) augmented with De Mor-

gan negation, satisfying the double negation and contraposition laws. This logic,

introduced by de Grooté and Lamarche [10], is called Classical Non-Associative

Lambek Calculus (CNL). Here we study a weaker logic InNL, i.e. NL with two

involutive negations. We present a one-sided sequent system for InNL, admitting

cut elimination. We also prove that InNL is PTIME.
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1. Introduction and preliminaries

InNL is a nonassociative version of noncommutative multiplicative linear

logic (noncommutative MLL) of Abrusci [1], but - like in CNL - the mul-

tiplicative (intensional) constants 1, 0 are not admitted. Nonetheless, all

results remain true for InNL augmented with these constants, denoted by

InNL1.

These logics belong to substructural logics [8]. Associative and com-

mutative substructural logics include several important non-classical logics,

e.g. many-valued and fuzzy logics [14]. Nonassociative substructural log-

ics, usually some extensions of NL, are used in type grammars as logics of

syntactic types of structured expressions [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/157772618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


76 Wojciech Buszkowski

InNL1 with additive (extensional) connectives ∧,∨ amounts to InGL

(involutive groupoid logic) from Galatos and Jipsen [7]; it is a conservative

extension of InNL1. [7] provides a two-sided sequent system for InGL, ad-

mitting cut elimination. By the subformula property, this system restricted

to multiplicative connectives and constants is good for InNL1. We, how-

ever, present a simpler, one-sided sequent system. The system from [7]

employs special structural operators for negations, and the corresponding

structural rules reflect the laws of free involutive groupoids, which com-

plicates formal proofs and meta-logical proofs (e.g. of decidability, finite

model property). Our systems are better suited for these purposes.

The paper [10], introducing CNL, is purely proof-theoretic: the authors

focus on proof nets. [5] defines phase spaces for CNL and employs them in

proofs of some meta-logical theorems; phase spaces for InNL (denoted there

by CNL−) are defined, but not worked out. Phase spaces for associative

substructural logics were studied in [9, 1, 15]. The present paper is mostly

proof-theoretic (but we avoid proof nets). The semantic notions are limited

to some basic algebras. Phase spaces for InNL and its extensions have been

elaborated in [6].

[10] proves that CNL is PTIME. The main technical result of the

present paper establishes the PTIME complexity of InNL (in a different

way). [5] shows that the finitary consequence relation for CNL is PTIME,

like for NL [3]. Those methods, however, cannot be applied to InNL. The

complexity of the consequence relation for InNL is left as an open problem.

Now, we briefly describe the algebraic models of our logics.

The algebraic models of NL are residuated groupoids, i.e. (ordered)

algebras M = (M,⊗, \, /,≤) such that (M,≤) is a poset, and ⊗, \, / are

binary operations on M , satisfying the residuation laws :

a⊗ b ≤ c iff b ≤ a\c iff a ≤ c/b

for all a, b, c ∈ M . A residuated groupoid M is unital, if it contains an

element 1 such that 1⊗ a = a = a⊗ 1, for any a ∈ M . For any residuated

groupoid M, the product ⊗ is isotone in both arguments, hence (M,⊗,≤)

is a p.o. groupoid. We refer to \, / as the residual operations for product.

The algebraic models of InNL are involutive residuated groupoids, i.e.

algebras M = (M,⊗, \, /,∼ ,− ,≤) such that (M,⊗, \, /,≤) is a residuated

groupoid, and ∼,− are antitone (i.e. order-reversing) unary operations on

M , satisfying the double negation laws and the contraposition law:

(DN) a∼− = a = a−∼ ,
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(CON) a∼/b = a\b−

for all a, b ∈ M . One easily derives other contraposition laws: a\b = a∼/b∼,
a/b = a−\b−. In a unital involutive residuated groupoid, there holds

1∼ = 1−, since 1∼ = 1∼/1 = 1\1− = 1− (in any unital residuated groupoid,

a/1 = a = 1\a). One defines 0 = 1∼.

One shows: (b− ⊗ a−)∼ = (b∼ ⊗ a∼)−, for all a, b, and defines the dual

product: a ⊕ b = (b− ⊗ a−)∼ (also called par in the literature on linear

logics). If 1 ∈ M , then 0 ⊕ a = a = a ⊕ 0. One obtains: a\b = a∼ ⊕ b,
a/b = a⊕b−. Hence a\b = (b−⊗a)∼, a/b = (b⊗a∼)−. In unital involutive

residuated groupoids, there hold: a∼ = a\0, a− = 0/a.
Involutive residuated groupoids are term equivalent to algebras, called

involutive p.o. groupoids in [8], i.e. (M,⊗,∼ ,− ,≤) such that (M,⊗) is a

groupoid, (M,≤) is a poset, and ∼,− are antitone unary operations on M ,

satisfying (DN) and the compatibility condition:

(COMP) if a⊗ b ≤ c then c− ⊗ a ≤ b− and b⊗ c∼ ≤ a∼ ,

for all a, b, c ∈ M . (COMP) holds in any involutive residuated groupoid.

In an involutive p.o. groupoid, one defines \, / in terms of ⊗,∼ ,− as above,

which yields an involutive residuated groupoid. Notice that (COMP) en-

tails the converse implications:

if c− ⊗ a ≤ b− then a⊗ b ≤ c ,

if b⊗ c∼ ≤ a∼ then a⊗ b ≤ c .

An involutive residuated groupoid is said to be cyclic, if a∼ = a−, for
any element a. Cyclic involutive residuated groupoids are algebraic models

of CNL; see [5]. CNL might also be named Cyclic Involutive Nonassociative

Lambek Calculus (CyInNL), following the terminology of [8].

Now, we present NL and InNL as intutionistic sequent systems.

The formulas of NL are built from variables p, q, r, . . . by means of

connectives ⊗, \, /. One defines bunches: (i) every formula is a bunch, (ii)

if Γ and ∆ are bunches, then (Γ,∆) is a bunch. Bunches can be treated

as the elements of the free groupoid generated by the set of formulas. NL-

sequents are of the form Γ ⇒ A, where Γ is a bunch and A is a formula. A

context is a bunch containing a special atom x (a place for substitution).

We denote formulas by A,B,C, . . ., bunches by Γ,∆,Θ, and contexts by

Γ[ ],∆[ ] etc. Γ[∆] denotes the result of substituting ∆ for x in Γ[ ]. The

axioms and the inference rules of NL are as follows.
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(NL-id) A ⇒ A (NL-cut)
Γ[A] ⇒ B ∆ ⇒ A

Γ[∆] ⇒ B

(⊗ ⇒)
Γ[(A,B)] ⇒ C

Γ[A⊗B] ⇒ C
(⇒ ⊗)

Γ ⇒ A ∆ ⇒ B

(Γ,∆) ⇒ A⊗B

(\ ⇒)
Γ[B] ⇒ C ∆ ⇒ A

Γ[(∆, A\B)] ⇒ C
(⇒ \)

(A,Γ) ⇒ B

Γ ⇒ A\B

(/ ⇒)
Γ[A] ⇒ C ∆ ⇒ B

Γ[(A/B,∆)] ⇒ C
(⇒ /)

(Γ, B) ⇒ A

Γ ⇒ A/B

This sequent system is due to Lambek [11]. NL1 is obtained by admit-

ting the empty bunch ǫ, satisfying (ǫ,Γ) = Γ = (Γ, ǫ), and the constant 1

(an atom) with two new rules and one new axiom.

(1 ⇒)
Γ[∆] ⇒ A

Γ[(1,∆)] ⇒ A

Γ[∆] ⇒ A

Γ[(∆, 1)] ⇒ A
(⇒ 1) ǫ ⇒ 1

We write ⇒ A for ǫ ⇒ A. NL1 is not a conservative extension of NL;

p/(q/q) ⇒ p is provable in NL1 but not in NL. Lambek [11] proved the

cut-elimination theorem: every sequent provable in NL is provable without

(NL-cut). His standard syntactic proof can easily be adapted for NL1.

InNL (resp. InNL1) can be presented as an extension of NL (resp.

NL1) with new unary connectives ∼,−, the new axioms:

(a.DN) A∼− ⇔ A, A−∼ ⇔ A (a.CON) A∼/B ⇔ A\B− ,

and the new inference rules:

(r-CON)
A ⇒ B

B∼ ⇒ A∼

A ⇒ B

B− ⇒ A−
.

We write A ⇔ B for ‘A ⇒ B and B ⇒ A’. Notice that in InNL1 (r-CON)

can be omitted; they are derivable in the resulting system.

CNL (resp. CNL1) can be obtained from InNL (resp. InNL1) by adding

the axioms A∼ ⇔ A−. Equivalently, one omits − and replaces − by ∼ in

the afore-mentioned axioms and rules.

Using standard tools (e.g. the Lindenbaum-Tarski algebra), one proves

that NL is strongly complete with respect to residuated groupoids. This

means that for any set of sequents X and any sequent Γ ⇒ A, X ⊢NL Γ ⇒
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A if and only if, for any residuated groupoid M and any valuation µ in

M, if M, µ |= X then M, µ |= Γ ⇒ A. Recall that µ is a homomorphism

from the formula algebra to M; it is extended for bunches by: µ((Γ,∆)) =

µ(Γ)⊗ µ(∆). M, µ |= Γ ⇒ A means: µ(Γ) ≤ µ(A).

Analogously, NL1 is strongly complete with respect to unital residuated

groupoids. Now µ(1) = µ(ǫ) = 1. InNL (resp. CNL) is strongly complete

with respect to (resp. cyclic) involutive residuated groupoids and InNL1

(resp. CNL1) with respect to the unital algebras from this class.

The systems for InNL, InNL1, CNL, CNL1, presented above, do not

admit cut elimination. A (one-sided) cut-free system for CNL was given

in [10]. This system is in Schütte style; the sequent Γ means ⇒ Γ, and

each comma in Γ is interpreted as dual product. [5] studies a dual Schütte

style system for CNL; the sequent Γ means Γ ⇒, and each comma in Γ

is interpreted as product. For (associative) bilinear logic, a system of the

latter form was considered by Lambek [12].

In this paper, we present analogous systems for InNL and InNL1. We

prefer dual Schütte style systems, because their syntax is closer to the

intuitionistic systems NL, NL1, which facilitates some constructions and

arguments. All results can be easily adapted for Schütte style systems.

[5] shows that CNL is a strongly conservative extension of NL. This

means that for any set of NL-sequents X and any NL-sequent Γ ⇒ A,
X ⊢NL Γ ⇒ A if and only if X ⊢CNL Γ ⇒ A. Also CNL1 is a strongly

conservative extension of NL1. Since InNL (resp. InNL1) is intermediate

between NL (resp. NL1) and CNL (resp. CNL1), InNL (resp. InNL1) is

evidently a strongly conservative extension of NL (resp. NL1).

Let us note an algebraic characterization of strong conservativeness. A

system S′ is a strongly conservative extension of a system S if and only if

every algebraic model for S′ is an expansion of a model for S and every

model for S is embeddable in a model for S′. This characterization has

some value for applications. In mathematical linguistics, an intended model

for NL is the powerset of the set of all finite (skeletal) binary trees over

a finite alphabet; the trees are interpreted as phrase structures of expres-

sions of a language. These algebras need not admit linguistically natural

negation operations, satisfying (DN), (CON). They, however, can be iso-

morphically embedded in algebras with such operations. Therefore logics

with negations of this kind can be used for natural language processing, e.g.

in type grammars, instead of their intuitionistic fragments, with a sound

interpretation in the extended models.
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We note a striking difference between CNL and InNL: the former pos-

sesses the strong finite model property, but the latter does not [5]. In invo-

lutive residuated groupoids (even involutive posets) a∼ < a− gives rise to

the infinite chain a < a2×∼ < a4×∼ < . . ., hence in finite models p∼ ⇒ p−

implies p− ⇒ p∼. There exist infinite models with a∼ < a− for some ele-

ments a, e.g. Lambek’s pregroup of all unbounded order-preserving maps

on Z (it can be shown that f∼ < f− for every map f which is injective but

not surjective). Pregroups are special involutive residuated monoids, where

⊗ = ⊕ and 1 = 0. A model with ⊗ 6= ⊕ can be constructed as an algebra

of downsets of Lambek’s pregroup [13]. In the literature on pregroups, one

writes ar for a∼ and al for a−.
This paper is organized as follows. In section 2 we present sequent

systems for InNL and InNL1; the cut-elimination theorem is proved in a

standard (syntactic) way. Section 3 establishes the PTIME complexity of

InNL (this also holds for InNL1).

2. Sequent systems

We present our one-sided sequent system for InNL. (Other systems have

been proposed in [2]; they, however, do not possess the subformula prop-

erty). Propositional variables are denoted by p, q, r, . . .. Atomic formulas

(atoms) are of the form p(n), where p is a variable and n ∈ Z. One in-

terprets p(n), for n ≥ 0, as p∼···∼ with ∼ occurring n times, and p(n), for
n < 0, as p−···− with − occurring |n| times. The connectives are ⊗,⊕.

Bunches are defined as for NL. The meta-logical notation is like for NL.

Sequents are the bunches containing at least two formulas. Often we omit

the outer parentheses in sequents.

The axioms of our cut-free system are:

(id) p(n), p(n+1) for all variables p and n ∈ Z.

The inference rules are as follows.

(r-⊗)
Γ[(A,B)]

Γ[A⊗B]

(r-⊕1)
Γ[B] ∆, A

Γ[(∆, A⊕B)]
(r-⊕2)

Γ[A] B,∆

Γ[(A⊕B,∆)]
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(r-shift)
(Γ,∆),Θ

Γ, (∆,Θ)

The algebraic models are involutive residuated groupoids. Every val-

uation µ must satisfy: µ(p(n+1)) = µ(p(n))∼, for any atom p(n); it follows
that µ(p(n−1)) = µ(p(n))−. µ is extended for sequents by: µ((Γ,∆)) =

µ(Γ) ⊗ µ(∆). We define: M, µ |= Γ,∆ iff µ(Γ) ≤ µ(∆)− (equivalently:

µ(∆) ≤ µ(Γ)∼).
Observe that (r-shift), looking like a weak associativity rule, expresses

the contraposition laws. In algebraic terms: a ⊗ b ≤ c− iff b ≤ a\c− iff

b ≤ a∼/c iff b⊗ c ≤ a∼.
We denote this system by S-InNL. Negations ∼,− are defined in meta-

language.

(p(n))∼ = p(n+1) (p(n))− = p(n−1)

(A⊗B)∼ = B∼ ⊕A∼ (A⊕B)∼ = B∼ ⊗A∼

(A⊗B)− = B− ⊕A− (A⊕B)− = B− ⊗A−

One easily proves A∼− = A, A−∼ = A, by induction on A. If µ is

a valuation in an involutive residuated groupoid, then a straightforward

induction on A yields:

µ(A∼) = µ(A)∼, µ(A−) = µ(A)−, for any formula A. (2.1)

We write ⊢ Γ, if Γ is provable in S-InNL. By induction on derivations

in S-InNL one easily proves that (r-⊗) is reversible: if ⊢ Γ[A ⊗ B], then

⊢ Γ[(A,B)]. The following lemma can be proved by induction on A.

Lemma 1. ⊢ A−, A and ⊢ A,A∼, for any formula A.

We want to prove that the cut rules:

(cut∼)
Γ[A] ∆, A∼

Γ[∆]
(cut−)

Γ[A] A−,∆

Γ[∆]

are admissible in S-InNL. With the cut-rules this system is strongly com-

plete with respect to involutive residuated groupoids (see Theorem 2).

By S0 we denote the system arising from S-InNL, after one has replaced

(r-shift) with two new rules.

(r-⊕3)
A,Γ B,∆

A⊕B, (∆,Γ)
(r-⊕4)

Γ, A ∆, B

(∆,Γ), A⊕B
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(r-⊕3) is derivable in S-InNL, by (r-⊕2) and (r-shift), and (r-⊕4) is deriv-

able, by (r-⊕1) and (r-shift). By ⊢0 we denote the provability in S0.

Lemma 2. The rule (r-shift) is admissible in S0.

Proof: We only prove the admissibility of the top-down direction of (r-

shift): if ⊢0 (Γ1,Γ2),Γ3 then ⊢0 Γ1, (Γ2,Γ3). The converse implication

is proved in a similar way. We proceed by induction on the proof of

(Γ1,Γ2),Γ3 in S0. This sequent cannot be an axiom (id). Then, it must be

the conclusion of a rule. We consider several cases.

(r-⊗). Then, the active formula A⊗B occurs in Γi for some 1 ≤ i ≤ 3.

Take i = 1. So Γ1 = ∆[A ⊗ B] and the premise is (∆[(A,B)],Γ2),Γ3. By

the induction hypothesis, ⊢0 ∆[(A,B)], (Γ2,Γ3), hence ⊢0 Γ1, (Γ2,Γ3), by

(r-⊗). For 2 ≤ i ≤ 3, the argument is similar.

(r-⊕1). We consider two subcases. 1◦. The active bunch (∆, A ⊕ B)

occurs in Γi for some 1 ≤ i ≤ 3. We apply the induction hypothesis, as

above. 2◦. (∆, A ⊕ B) = (Γ1,Γ2). Then, Γ1 = ∆, Γ2 = A ⊕ B, and the

premises are B,Γ3 and ∆, A. One derives ∆, (A⊕B,Γ3), by (r-⊕2).

(r-⊕2). We consider two subcases. 1◦. The active bunch (A ⊕ B,∆)

occurs in Γi for some 1 ≤ i ≤ 3. We apply the induction hypothesis, as

above. 2◦. (A ⊕ B,∆) = (Γ1,Γ2). Then Γ1 = A ⊕ B, Γ2 = ∆, and the

premises are A,Γ3 and B,∆. One derives A⊕B, (∆,Γ3), by (r-⊕3).

(r-⊕3). (Γ1,Γ2),Γ3 cannot be the conclusion of this rule.

(r-⊕4). Then, Γ3 = A⊕B, and the premises are Γ2, A and Γ1, B. One

derives Γ1, (Γ2, A⊕B), by (r-⊕1).

Corollary 1. For any sequent Γ, ⊢ Γ if and only if ⊢0 Γ.

We need two new rules.

(r-∼∼)
A,Γ

Γ, A∼∼
(r-−−)

Γ, A

A−−,Γ

Lemma 3. The rules (r-∼∼) and (r-−−) are admissible in S-InNL.

Proof: By Corollary 1, it suffices to prove that these rules are admissible

in S0. We give a proof for (r-∼∼). The proof for (r-−−) is similar. We

prove: if ⊢0 D,Θ then ⊢0 Θ, D∼∼, by the outer induction on the number

of connectives in D and the inner induction on the proof of D,Θ in S0.

Assuming our claim for all D′ having less connectives than D, we run

the inner induction.

If D,Θ is an axiom (id), where D = p(n), Θ = p(n+1), then Θ, D∼∼

equals p(n+1).p(n+2), which is an axiom, too.
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Assume that D,Θ is a conclusion of a rule. If D is not the active

formula of the rule (this may only happen for (r-⊗), (r-⊕1), (r-⊕2)), then

one applies the (inner) induction hypothesis to the premise which contains

D (this must be Γ[B] in (r-⊕1) and Γ[A] in (r-⊕2)), next applies the same

rule. Assume that D is the active formula of the rule. This may happen

for (r-⊗) and (r-⊕3).

(r-⊗). So D = A ⊗ B and the premise is (A,B),Θ. By Lemma 2 and

the outer induction hypothesis, we obtain ⊢0 A, (B,Θ), ⊢0 (B,Θ), A∼∼,

⊢0 B, (Θ, A∼∼), ⊢0 (Θ, A∼∼), B∼∼, ⊢0 Θ, (A∼∼, B∼∼), hence ⊢0 Θ, D∼∼,

by (r-⊗).

(r-⊕3). So D = A⊕B, Θ = (∆,Γ), and the premises are A,Γ and B,∆.

By the (inner or outer) induction hypothesis, ⊢0 Γ, A∼∼ and ⊢0 ∆, B∼∼,

hence ⊢0 Θ, D∼∼, by (r-⊕4).

As a consequence, ⊢ A−,Γ if and only if ⊢ Γ, A∼; we write Γ ⇒ A for

A−,Γ.

Theorem 1. The cut rules are admissible in S-InNL.

Proof: By Corollary 1, it suffices to prove that (cut∼), (cut−) are admis-

sible in S0, this means:

Claim 1. if ⊢0 Θ[C] and ⊢0 Ψ, C∼ then ⊢0 Θ[Ψ],

Claim 2. if ⊢0 Θ[C] and ⊢0 C−,Ψ then ⊢0 Θ[Ψ].

Claim 2 follows from Claim 1, by Corollary 1 and Lemma 3. We prove

Claim 1 by the outer induction on the number of connectives in C, the

intermediate induction on the proof of Θ[C] (the major premise), and the

inner induction on the proof of Ψ, C∼ (the minor premise). Observe that

A, A∼ and A− have the same number of connectives.

Let C = p(n). We run the intermediate induction. Let Θ[p(n)] be an

axiom. If the axiom is p(n), p(n+1), then Ψ, C∼ equals Ψ, p(n+1), hence

it equals Θ[Ψ]. If the axiom is p(n−1), p(n), then Ψ, C∼ equals Ψ, p(n+1),

which yields Θ[Ψ], by (r−−). Let Θ[C] be obtained by a rule. Since C is

not the active formula of any rule, then C must occur in one premise of

this rule. One applies the induction hypothesis to this premise and Ψ, C∼,

then the same rule.

Let C be not an atom. We run the intermediate induction. Θ[C] is not

an axiom, hence it is obtained by a rule. If C is not the active formula of

the rule, then we proceed as above. Otherwise we consider several cases,

corresponding to particular rules.
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(r-⊗). So C = A ⊗ B, C∼ = B∼ ⊕ A∼, and the premise is Θ[(A,B)].

We run the inner induction. Ψ, C∼ is not an axiom, hence it is obtained by

a rule. The only possible rules are (r-⊗), (r-⊕1), (r-⊕2), (r-⊕4). For (r-⊗),

we apply the induction hypothesis to Θ[C] and the premise of this rule,

then we apply this rule. For (r-⊕1), the active bunch introduced by the

rule must appear in Ψ, hence Ψ = Ψ′[(∆, D ⊕ E)], and the left premise is

Ψ′[E], C∼. By the induction hypothesis, we obtain Θ[Ψ′[E]], hence Θ[Ψ],

by (r-⊕1). For (r-⊕2), the argument is similar. For (r-⊕4), C∼ is the active

formula, Ψ = (∆,Γ), and the premises are Γ, B∼ and ∆, A∼. We obtain

Θ[Ψ] by the outer induction hypothesis (applied twice).

(r-⊕1). So C = A ⊕ B, C∼ = B∼ ⊗ A∼, Θ[C] = Θ′[(∆, A ⊕ B)], and

the premises are Θ′[B] and ∆, A. We run the inner induction. Ψ, C∼ is

not an axiom, and it can only be obtained by (r-⊗), (r-⊕1), (r-⊕2), If C∼

is not the active formula of the rule, then we argue as above. Otherwise,

the rule is (r-⊗) with the premise Ψ, (B∼, A∼). By (r-shift), we obtain

(Ψ, B∼), A∼, hence ∆, (Ψ, B∼), by the outer induction hypothesis, then

(∆,Ψ), B∼, by (r-shift), and finally, Θ′[(∆,Ψ)], which equals Θ[Ψ], by the

outer induction hypothesis.

(r-⊕2). C and C∼ are as above. Θ[C] = Θ′[(A ⊕ B,∆)], and the

premises are Θ′[A] and B,∆. We run the inner induction. The only in-

teresting case is that Ψ, C∼ arises by (r-⊗) with the premise Ψ, (B∼, A∼).

Using (r-shift), (r-−−), we obtain: (Ψ, B∼), A∼, then A−, (Ψ, B∼), and

(A−,Ψ), B∼. Hence (A−,Ψ),∆, by the outer induction hypothesis, which

yields A−, (Ψ,∆), then (Ψ,∆), A∼ (by (r-∼∼)), and Θ′[(Ψ,∆)], by the outer

induction hypothesis.

(r-⊕3). C and C∼ are as above, Θ[C] = (A ⊕ B, (∆,Γ)), and the

premises are A,Γ and B,∆. We run the inner induction. Ψ, C∼ can be

obtained by (r-⊗), (r-⊕1), (r-⊕2). We only consider (r-⊗) with the active

formula C∼ and the premise Ψ, (B∼, A∼). By (r-shift) and the outer induc-

tion hypothesis, we obtain (Ψ, B∼), A∼, hence (Ψ, B∼),Γ, then Ψ, (B∼,Γ).
From B,∆ we obtain ∆, B∼∼, by (r-∼∼). This yields Ψ, (∆,Γ), which

equals Θ[Ψ], by the outer induction hypothesis.

(r-⊕4). C and C∼ are as above. Θ[C] = ((∆,Γ), A ⊕ B), and the

premises are Γ, A and ∆, B. We run the inner induction. We only consider

(r-⊗) with the premise Ψ, (B∼, A∼). As above, we obtain: (Ψ, B∼), A∼,

then A−, (Ψ, B∼), and (A−,Ψ), B∼. Hence ∆, (A−,Ψ), by the outer in-

duction hypothesis, which yields (∆, A−),Ψ, and (∆,Γ),Ψ, by the outer

induction hypothesis, since Γ, A equals Γ, A−∼.
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Observe that (r-∼∼), (r-−−) are derivable in S-InNL with the cut rules.

We derive (r-∼∼). Assume A,Γ, which equals A∼−,Γ. A∼, A∼∼ is provable,

by Lemma 1. This yields Γ, A∼∼, by (cut−).

A sequent Γ is said to be valid in InNL, if M, µ |= Γ for all involutive

residuated groupoids M and all valuations µ in M. We say that a set of

sequents X entails a sequent Γ in InNL, if for any involutive residuated

gropoid M and any valuation µ in M, if M, µ |= X then M, µ |= Γ. The

strong completeness means: Γ is provable from X if and only if X entails

Γ, for all X,Γ. The weak completeness means: Γ is provable iff Γ is valid.

For any bunch Γ we define a formula f(Γ) as follows: f(A) = A,
f((Γ,∆)) = f(Γ) ⊗ f(∆). We have µ(Γ) = µ(f(Γ)), for any valuation

µ. Since (r-⊗) is reversible in S-InNL (also with the cut rules), then se-

quents Γ,∆ and f(Γ), f(∆) are deductively equivalent. We assume that all

sequents in X are of the form (A,B).

Theorem 2. S-InNL with (cut∼), (cut−) is strongly complete with respect

to involutive residuated groupoids.

Proof: Soundness is easy: the axioms (id) are valid and all rules preserve

the truth for µ in M.

For completeness, we define: A ≤ B iff X ⊢ A ⇒ B (now ⊢ denotes

the provability in S-InNL with the cut rules). Also: A ∼ B iff A ≤ B and

B ≤ A. One shows that ∼ is a congruence in the algebra of formulas. Also:

if A ∼ B then A∼ ∼ B∼ and A− ∼ B−. The quotient algebra (with the

quotient ordering) is an involutive residuated groupoid. We define: µ(p) =
[p]∼ for p = p(0), µ(p(n+1)) = µ(p(n))∼ for n ≥ 0, and µ(p(n−1)) = µ(p(n))−

for n ≤ 0. Then, µ satisfies µ(p(n+1)) = µ(p(n))∼ for any n ∈ Z. One

easily proves: µ(A) = [A]∼ for any formula A, hence µ(Γ) = [f(Γ)]∼ for

any bunch Γ. Consequently, all sequents from X are true for µ. Also: if

X 6⊢ Γ,∆, then µ(Γ) 6≤ µ(∆)−, hence Γ,∆ is not true for µ.

Corollary 2. The cut-free S-InNL is weakly complete with respect to

involutive residuated groupoids.

The sequent system S-InNL1 is an extension of S-InNL. We add the

empty bunch ǫ and constants 1 and 0. Sequents are all nonempty bunches.

We add one new axiom and two new rules.

(a.0) 0 (r-1)
Γ[∆]

Γ[(1,∆)]

Γ[∆]

Γ[(∆, 1)]

In rules (r-⊕1), (r-⊕2) we admit ∆ = ǫ, and similarly for (cut∼), (cut−).
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In the derivable rules (r-⊕3), (r-⊕4) both Γ and ∆ may be empty; in rules

(r-∼∼), (r-−−) Γ may be empty. We extend metalanguage negations by:

1∼ = 1− = 0 and 0∼ = 0− = 1.

The algebraic models are unital involutive residuated monoids. We

define: M, µ |= Γ iff µ(Γ) ≤ 0. Also µ(ǫ) = µ(1) = 1.

All results, proved above and appropriately modified, remain true for

S-InNL1. The proofs are quite similar. For Lemma 1, observe that 1−, 1
equals 0, 0∼ and 1, 1∼ equals 0−, 0; they are obtained from (a.0) by (r-1).

S0 is defined in the same way as above (in relation to S-InNL1). In Lemma

2, (r-shift) is considered for nonempty Γi only. The proofs of Lemma 2,

Lemma 3 and Theorem 1 require more cases. For instance (Γ1,Γ2),Γ3 can

be obtained by (r-⊕1) with premises B and (Γ1,Γ2), A; then Γ3 = A⊕B.

We obtain Γ1, (Γ2, A), by the induction hypothesis, and apply (r-⊕2). We

leave further changes to the reader. In the proof of Theorem 2 we may

assume that all sequents in X are single formulas. We define f(ǫ) = 1.

Observe that from A,A∼ one obtains A ⊗ A∼ in S-InNL1, but not in

S-InNL. In S-InNL1 A,A∼ expresses the algebraic law a ⊗ a∼ ≤ 0, while

in S-InNL it expresses a ≤ a.
These systems can be augmented with additive connectives ∧,∨, in-

terpreted as meet and join in lattice-ordered (l.o.) involutive residuated

groupoids. The rules for them are as follows.

(r-∧)
Γ[Ai]

Γ[A1 ∧A2]
(i ∈ {1, 2}) (r-∨)

Γ[A] Γ[B]

Γ[A ∨B]

The resulting logics may be denoted by InFNL, InFNL1, since FNL (Full

NL) is used for NL with ∧,∨, and the sequent systems by S-InFNL,

S-InFNL1. InFNL1 is equivalent to InGL in [7]. All results of this sec-

tion (appropriately modified) are true for InFNL and InFNL1. Our system

S-InFNL1 is simpler than the two-sided sequent system for InGL, proposed

in [7]. Using S-InFNL1, one may simplify certain proofs of model-theoretic

results, e.g. the finite model property [7].

3. PTIME complexity

Let T be a set of formulas. By a T−sequent we mean a sequent built from

formulas from T . By a T−proof we mean a proof consisting of T−sequents.

We write ⊢T Γ (resp. ⊢T
0 Γ), if there exists a T−proof of Γ in S-InNL (resp.

S0). S-InNL and S0 possess the subformula property : if ⊢ Γ then ⊢T Γ,
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where T is the subformula closure of the set of formulas in Γ, and similarly

for ⊢0.

We prove the PTIME complexity of InNL in the following way. A

sequent is said to be restricted, if it contains at most three formulas. So

the restricted sequents are of the form (A,B), ((A,B), C) or (A, (B,C)).

We show that a restricted sequent Γ is provable in S-InNL if and only if

Γ is provable in S-InNL limited to restricted c(T )−sequents, where c(T )
is a finite superset of the set T , consisting of all formulas in Γ. The set

c(T ) is computable in time polynomial in the size of Γ. The number of

restricted c(T )−sequents is O(n3), where n is the cardinality of c(T ), and
all provable restricted T−sequents can be computed in polynomial time.

Γ,∆ is provable if and only if f(Γ), f(∆) is provable, and the latter sequent

is restricted.

We define T∼ = {A∼ : A ∈ T}, T− = {A− : A ∈ T}, and c(T ) =

T ∪ T∼ ∪ T−. Let T be a finite set of formulas, closed under subformulas.

We define an auxiliary system ST
1 (we often write S1) as follows. The

axioms are all sequents A−, A and A,A∼, for A ∈ T . The inference rules

are all rules of S0, limited to restricted c(T )−sequents with the active

formula in T and (cut∼), (cut−), limited to c(T )−sequents. By ⊢1 we

denote the provability in S1. We show that S1 possesses an interpolation

property.

Lemma 4. If ⊢1 Θ[Ψ], Θ[Ψ] 6= Ψ, then there exists D ∈ c(T ) such that

⊢1 Θ[D] and either ⊢1 D−,Ψ or ⊢1 Ψ, D∼.

Proof: We proceed by induction on proofs of Θ[Ψ] in S1. If Ψ is a formula,

say Ψ = A, we put D = A. Clearly ⊢1 Θ[D]. If A ∈ T , then Ψ, A∼ is an

axiom. If A ∈ T−, then A∼ ∈ T , hence Ψ, A∼ is the axiom A∼−, A∼. If

A ∈ T∼, then A− ∈ T , hence A−,Ψ is the axiom A−, A−∼.

We assume that Ψ is not a formula. So Θ[Ψ] cannot be an axiom. We

consider several cases corresponding to the rules of S1.

(r-⊗). The premise is a restricted sequent. The only possibilities are:

(A,B), C

A⊗B,C

C, (A,B)

C,A⊗B
.

In both cases a bunch properly contained in the conclusion must be a

formula.
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(r-⊕1). The only possibilities are:

C1, B C2, A

C1, (C2, A⊕B)

B,C1 C2, A

(C2, A⊕B), C1
.

So Ψ = (C2, A⊕ B). We put D = B. Then Θ[D] equals the first premise.

B ∈ T , hence B,B∼ is an axiom, and we obtain (C2, A ⊕ B), B∼ from

this axiom and the second premise, by (r-⊕1). For (r-⊕2) the argument is

symmetrical (take D = A and use the axiom A−, A).
(r-⊕3). The only possibility is:

A,C1 B,C2

A⊕B, (C2, C1)
.

So Ψ = (C2, C1). A ⊕ B ∈ T , and we put D = (A ⊕ B)∼. Then Θ[D] is

the axiom A⊕B, (A⊕B)∼ and D−,Ψ is the conclusion.

(r-⊕4). The only possibility is:

C1, A C2, B

(C2, C1), A⊕B
.

So Ψ = (C2, C1). A ⊕ B ∈ T , and we put D = (A ⊕ B)−. Then Θ[D] is

the axiom (A⊕B)−, A⊕B and Ψ, D∼ is the conclusion.

(cut∼). So Θ[Ψ] = Γ[∆] and the premises are: Γ[A] and ∆, A∼. If Ψ

occurs in Γ[ ], then we take D for Ψ in Γ[A] (Ψ cannot contain A). We

obtain Θ[D], by (cut∼). If Ψ occurs in ∆, then we take D for Ψ in ∆, A∼.

We obtain Θ[D] as above. The last possibility is: Γ[∆] = Γ1[Γ2[∆]] and

Ψ = Γ2[∆], Ψ 6= ∆. Then, Γ[A] = Γ1[Γ2[A]]. Since Ψ 6= Γ[∆], then

Γ2[A] 6= Γ[A]. We take D for Γ2[A] in Γ[A]. We have: ⊢1 Γ1[D] and either

⊢1 D−,Γ2[A], or ⊢1 Γ2[A], D
∼. We obtain ⊢1 D−,Γ2[∆] or ⊢1 Γ2[∆], D∼,

by (cut∼). For (cut−) the argument is similar.

For a sequent Γ we take T as the subformula closure of the set of all

formulas appearing in Γ. We define ST
1 as above.

Lemma 5. Γ is provable in S-InNL if and only if ⊢1 Γ.

Proof: The ‘if’ part follows from the fact that the axioms of S1 are prov-

able in S-InNL and the rules of S1 either are instances of rules of S-InNL,

or are derivable in S-InNL. We prove the only-if part.

Assume that Γ is provable in S-InNL. By Corollary 1, Γ is provable

in S0. By the subformula property, ⊢T
0 Γ. It suffices to show that all
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axiomatic T−sequents of S0 are provable in S1 and all rules of S0, limited

to T−sequents, are admissible in S1.

If p(n) ∈ T , then (id) is an axiom A,A∼ of S1.

(r-⊗). Assume that ⊢1 Γ[(A,B)] and Γ[A ⊗ B] is a T−sequent. So

Γ[(A,B)] is different from (A,B). By Lemma 4, there exists D ∈ c(T ) such
that ⊢1 Γ[D] and either ⊢1 D−, (A,B) or ⊢1 (A,B), D∼. By (r-⊕) in S1,

we obtain ⊢1 D−, A⊗B or ⊢1 A⊗B,D∼. Consequently, ⊢1 Γ[A⊗B], by

(cut−) or (cut∼).

(r-⊕1). Assume that ⊢1 Γ[B], ⊢1 ∆, A and Γ[(∆, A⊕B)] is a T−sequent.

By Lemma 4, there exists D ∈ c(T ) such that ⊢1, D,A and either ⊢1

D−,∆ or ⊢1 ∆, D∼. From D,A and B,B∼ (an axiom of S1) we obtain

(D,A ⊕ B), B∼, by (r-⊕1) in S1, hence (∆, A ⊕ B), B∼ by a cut rule in

S1. This yields Γ[(∆, A⊕B)] by (cut∼) in S1. For (r-⊕2) the argument is

similar.

(r-⊕3). Assume that ⊢1 A,Γ, ⊢1 B,∆ and A⊕B, (∆,Γ) is a T−sequent.

By Lemma 4, there exist D1 ∈ T and D2 ∈ T such that ⊢1 A,D1, ⊢1 B,D2,

either ⊢1 D−

1 ,Γ or ⊢1 Γ, D∼

1 , and either ⊢1 D−

2 ,∆ or ⊢1 ∆, D∼

2 . We obtain

A ⊕ B, (D2, D1), by (r-⊕3) in S1, hence A ⊕ B, (∆,Γ) by the cut rules in

S1. For (r-⊕4) the argument is similar.

For any rule of S1, if the conclusion is restricted, then the premises are

restricted. This holds for ⊗− and ⊕−rules, by the definition of S1, and is

obvious for the cut rules. Therefore every restricted sequent Γ provable in

S-InNL has a proof in ST
1 which consists of restricted c(T )−sequents only

(T is constructed from Γ, as above).

We want to verify the provability of a restricted sequent Γ. We define

the size of Γ (s(Γ)) as follows: s(p(n)) = |n| + 1, s(A ◦ B) = s(A) +
s(B) + 1, for ◦ ∈ {⊗,⊕}, s((Γ1,Γ2)) = s(Γ1) + s(Γ2). Here |n| can be

understood as the absolute value of n or as the length of the binary or

decimal representation of n. Let n = s(Γ). We compute T in O(n2) and T
has at most n elements. We compute c(T ) in O(n) and c(T ) has at most

3n elements. The number of all possible restricted c(T )−sequents is O(n3).

Those which are provable in ST
1 can be computed in time polynomial in n.

The procedure can be described as follows.

We compute a list Γ1,Γ2,Γ3, . . . of all restricted c(T )−sequents prov-

able in ST
1 . First, we write all axioms, say Γ1, . . . ,Γk. They cannot be

premises of (r-⊗). For i = 2, 3, 4, . . ., we compute all possible conclusions

of the ⊕−rules and cut rules applied to Γi and Γj , for any j < i, and add
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them to the list (we only add new sequents). For any i, this can be done

in time O(ni), assuming that one rule is executed in time O(n). For i > k,
one also admits (r-⊗), if applicable to Γi. Since the complete list has at

most O(n3) elements, we obtain a rough estimation O(n7).

Theorem 3. InNL is PTIME.

This theorem remains true for InNL1. Now, restricted sequents may

be single formulas. In the cut rules, the conclusion can be shorter than the

major premise, if ∆ = ǫ. In S1 for S-InNL1, we admit the cut rules with

∆ 6= ǫ only. Lemma 4 is proved for Ψ 6= ǫ. We leave further details to the

reader.

With ∧,∨, these logics are PSPACE; the lower bound of complexity

is not known. Associative versions of these logics without additives are

NP-complete [16] and with additives PSPACE-complete. The latter logics

are evidently PSPACE. They are PSPACE-hard, since they contain Full

Lambek Calculus and are contained in MALL; see [4].
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