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Chapter 1

Introduction

Biological soil crusts (BSCs) are unique soil communities which are also re-

ferred to as cryptogamic, cryptobiotic, microbiotic, microfloral, microphytic

or organogenic crusts as well as simply biocrusts (Belnap et al., 2001a, 2016).

They consist of different prokaryotic and eukaryotic organisms which may be

either autotrophic, heterotrophic or saprotrophic (Belnap et al., 2001a, 2016).

These micro- and macroscopic organisms belong to different groups such as

Cyanobacteria (capitalized throughout the thesis as it is a phylum), eukary-

otic microalgae, bryophytes, lichens, Fungi (capitalized throughout the thesis

as it is a kingdom), heterotrophic Bacteria (capitalized throughout the thesis

as it is a domain), non-algal protists (e.g. amoebae, flagellates, ciliates), nema-

todes, rotifers, tardigrades and microarthropods (Belnap et al., 2001a, 2016;

Darby and Neher, 2016; Fiore-Donno et al., 2017). They colonize the top of the

soil and form a living crust cover (Belnap et al., 2001a, 2016). The following

paragraphs will provide more details on the biodiversity and ecology of BSCs

as well as their potential for biological applications and research methods.

1



1.1. BIODIVERSITY CHAPTER 1. INTRODUCTION

1.1 Biodiversity

1.1.1 Cyanobacteria

Cyanobacteria is a phylum of oxygenic photosynthetic prokaryotes which use

water as an electron donor during photosynthesis leading to oxygen evolution

(Whitton and Potts, 2012). About 2,100 to 2,400 million years ago, these

microbes played a key role in the oxygenation of the atmosphere (Hamilton

et al., 2016; Stal, 2007; Whitton and Potts, 2012). However, the earliest record

of Cyanobacteria extends back to about 3,500 million years ago (Whitton and

Potts, 2012). All Cyanobacteria possess chlorophyll a and three main accessory

pigments: Allophycocyanin, phycocyanin, phycoerythrin (Stal, 2007; Whitton

and Potts, 2012). The pigment phycocyanin gives these microbes their typ-

ical blueish color (Whitton and Potts, 2012). Certain cyanobacterial genera

are capable of fixing molecular nitrogen from the air (diazotrophs) and, thus,

make it available to other organisms (Stal, 2007; Whitton and Potts, 2012;

Zakhia et al., 2008). Cyanobacteria are morphologically diverse organisms,

they can be unicellular or filamentous, may form colonies or sheaths and the

cell size ranges from 0.5 to 30 μm (Stal, 2007; Whitton and Potts, 2012). Fur-

thermore, certain Cyanobacteria develop special cell types: heterocysts and

diazocytes, which are different types of nitrogen-fixing cells, akinetes, robust

resting cells which are able to survive extended periods of unfavorable con-

ditions, and hormogonia, which are small and motile and help the dispersal

of the cyanobacterium (Sandh et al., 2012; Stal, 2007; Whitton and Potts,

2012). Their diversity enables Cyanobacteria to occupy a wide range of habi-

tats such as aqueous, both marine and freshwater, and terrestrial environments

(Whitton and Potts, 2012; Zakhia et al., 2008). Moreover, these prokaryotes

can cope with extreme abiotic stressors and, thus, occur in environments with

high salinity (e.g. salt lakes, hyper saline lagoons), extremely acidic and al-

kaline lakes (down to pH 3.7 and up to pH 13) as well as ecosystems with

very high and low temperatures (hot springs, Polar Regions) (Seckbach and

Oren, 2007). For example, a huge part of the ice shelf at McMurdo Sound,

2
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A B C D

Figure 1: Typical BSC Cyanobacteria. A) Chroococcidiopsis sp. B) Micro-

coleus vaginatus. C) Nostoc commune. D) Scytonema cf. ocellatum. Images were

taken from Büdel et al. (2016).

Antarctica, is covered by Oscillatoria and Nostoc (Seckbach and Oren, 2007).

The most recent review of cyanobacterial taxonomy was done by Komárek

et al. (2014) who used a polyphasic approach and divided the phylum into

eight different orders: Chroococcales, Chroococcidiopsidales, Gloeobacterales,

Nostocales, Oscillatoriales, Pleurocapsales, Spirulinales and Synechococcales.

In BSC communities, Cyanobacteria fulfill important ecological functions

such as the initial colonization of the soil and crust formation, they contribute

to the carbon and nitrogen cycle and associate with Fungi to form lichens

(please also refer to Section 1.2) (Büdel et al., 2016). By means of morpho-

logical and molecular identification, more than 320 species were found in BSC

all over the world (Büdel et al., 2016). Typical cyanobacterial genera, which

are occurring within these aggregations, are the unicellular Chroococcidiop-

sis as well as the filamentous Microcoleus, Nostoc and Scytonema which are

displayed in Figure 1 (Büdel et al., 2016).

1.1.2 Eukaryotic microalgae

Eukaryotic microalgae exhibit a high morphological and physiological diver-

sity which is the key to their ubiquitous distribution (Andersen, 1992). These

photosynthetic microorganisms can be found in oceans, lakes, ponds as well

3
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Fungi

Animalia

Amoebozoa

Excavata

Glaucophyta

Rhodophyta

Viridiplantae

Cryptophyta

Haptophyta

Stramenopila

Alveolata

Rhizaria SAR

Hacrobia

Archaeplastida

Ophistokonta

Figure 2: Phylogenetic tree of Eukaryota. The taxa highlighted in bold contain

algal genera. The tree was adapted from De Clerck et al. (2012).

as on soil, rocks, snow, ice and other organisms such as plants and animals

(Andersen, 1992). Due to special adaptions, certain microalgae are also able

to grow in extremely acidic (down to pH 0), alkaline (up to pH 10.6), hyper-

saline, hot (up to 57◦C) and cold environments (even below 0◦C) (Seckbach and

Oren, 2007). The alga Chlamydomonas nivalis, for instance, grows on snow

causing a phenomenon called "watermelon snow" which are the red pigmented

resting spores of C. nivalis (Seckbach and Oren, 2007). Microalgae may be

summarized by their ability to perform oxygenic photosynthesis, however, they

are polyphyletic and belong to different phyla and subphyla (Andersen, 1992).

Figure 2 shows the phylogenetic relationships of eukaryotic taxa containing mi-

croalgal genera. Within the Archaeplastida, there are three major taxonomic

groups: The Glaucophyta, the Rhodophyta and the Viridiplantae (De Clerck

et al., 2012). Rhodophyta or red algae are mostly multicellular and occupy

mainly marine habitats (De Clerck et al., 2012). Similar to Cyanobacteria, they

use phycobiliproteins (allophycocyanin, phycocyanin, phycoerythrin) as acces-

sory pigments (De Clerck et al., 2012). The same holds true for Glaucophyta,

a taxon comprised of unicellular microalgae which can be found in freshwater

and terrestrial ecosystems (De Clerck et al., 2012). The clade Viridiplantae

4
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contains a huge diversity of green algae which belong either to the Chlorophyta

or the Streptophyta (De Clerck et al., 2012; Leliaert et al., 2012). These or-

ganisms colonize both aquatic and terrestrial environments (De Clerck et al.,

2012; Leliaert et al., 2012). From an evolutionary point of view, the emergence

of streptophytic algae was of major importance as they represent the ancestors

of the land plants (De Clerck et al., 2012; Leliaert et al., 2012). Especially,

Zygnematophyceae and Coleochaetophyceae are important taxa as they are

the closest living relatives of the land plants (Becker and Marin, 2009; De

Clerck et al., 2012; Leliaert et al., 2012; Wodniok et al., 2011). In contrast

to Glaucophyta and Rhodophyta, Viridiplantae possess chlorophyll a and b as

well as carotenoids and xanthophylls as accessory pigments (De Clerck et al.,

2012; Leliaert et al., 2012). The divisions Cryptophyta and Haptophyta en-

compass unicellular algae possessing two flagella (Gran-Stadniczeñko et al.,

2017; Hoef-Emden et al., 2002). Cryptophyta possess chlorophyll a and c

and phycobiliproteins, while Haptophyta contain chlorophyll a, c1 and c2 as

well as carotenoids (Pal and Choudhury, 2014). These flagellates occupy both

marine and freshwater environments (Gran-Stadniczeñko et al., 2017; Hoef-

Emden et al., 2002; Pal and Choudhury, 2014). Similar preferences in terms

of habitat are observed for Dinophyta, an algal division within the Alveolata

(Pal and Choudhury, 2014; Taylor et al., 2007). Dinoflagellates are mostly

symbiotic but about 5% lead a parasitic lifestyle (Taylor et al., 2007). The

main pigments of Dinophyta are chlorophyll a and c2 and the carotenoids

peridin and neoperidin (Pal and Choudhury, 2014). Stramenopila, which is

also part of the SAR super group, contains several algal taxa within the di-

vision Heterokontophyta (De Clerck et al., 2012; Pal and Choudhury, 2014).

These organisms are quite diverse and may be found in marine, freshwater

and terrestrial ecosystems (Büdel et al., 2016; Heinrich et al., 2016; Pal and

Choudhury, 2014). Chlorophyll a and c as well as fucoxanthin are the major

pigments found in Heterokontophyta (Pal and Choudhury, 2014).

Some of the above mentioned microalgal taxa are part of BSCs (Büdel

et al., 2016). Streptophytic algae, such as Klebsormidium (Klebsormidio-
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A B C D

10 µm

Figure 3: Typical BSC microalgae. A) Klebsormidium flaccidum. B) Stichococ-

cus bacillaris. C) Luticola mutica. D) Pleurochloris pseudopolychloris. Images A-C

were taken from Büdel et al. (2016) and image D from Borchhardt et al. (2017b).

phyceae, Figure 3A) and Zygogonium (Zygnematophyceae), assist the crust

formation providing niches for a huge diversity of chlorophytic genera (Chloro-

phyceae, Trebouxiophyceae, Ulvophyceae) and Heterokontophyta such as Bacil-

lariophyceae (e.g. Luticola, see Figure 3C), Eustigmatophyceae and Xantho-

phyceae (e.g. Pleurochloris, see Figure 3D) (Borchhardt et al., 2017b; Büdel

et al., 2016). Certain chlorophytes, for example Stichococcus (Figure 3B), be-

come the photobionts of lichens (please also refer to Section 1.1.4 and 1.2)

(Borchhardt et al., 2017b; Büdel et al., 2016).

1.1.3 Bryophytes

Bryophytes, which traditionally include mosses (Bryophyta), liverworts (Mar-

chantiophyta) and hornworts (Anthocerophyta), are small, non-flowering plants

(Prestø et al., 2014; Seppelt et al., 2016; Shaw et al., 2011). These three phyla

combined comprise about 15,000-20,000 species and share a haploid-dominant

life cycle (Shaw et al., 2011). As most land plants, bryophytes are capable

of oxygenic photosynthesis and, thus, have an important ecological role as

primary producers (Prestø et al., 2014).

Mosses, liverworts and hornworts are integral parts of BSC communities

as they stabilize the soil surface, promote water infiltration as well as chemi-
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A B C D

Figure 4: Typical BSC bryophytes and lichens. A) Polytrichium piliferum.

B) Riccia sp. C) Psora decipiens. D) Fulgensia bracteata. Image A was taken from

Prestø et al. (2014), image B from Seppelt et al. (2016), image C from Ruprecht

et al. (2014) and image D from Brodo et al. (2001).

cal and physical weathering of soil material (please also refer to Section 1.2)

(Seppelt et al., 2016). Typical BSC bryophytes are Polytrichum (Bryophyta,

see Figure 4A) and Riccia (Marchantiophyta, see Figure 4B) (Seppelt et al.,

2016). Within BSC, these bryophytes may also serve as habitats for other

organisms such as algae or Cyanobacteria (Seppelt et al., 2016).

1.1.4 Fungi and lichens

Fungi are a highly diverse group of eukaryotic microorganisms which play key

roles in various ecosystems (Tedersoo et al., 2014). The kingdom is estimated

to contain between 800,000 to 5,100,000 species of which about 100,000 have

been described (Tedersoo et al., 2014). Certain fungal species may form sym-

bioses with either eukaryotic microalgae (about 86% of the lichen species),

prokaryotic Cyanobacteria (about 10%) or both (about 4%) (Maier et al.,

2016). The photobiont (alga, cyanobacterium) is surrounded by tight struc-

tures, which are formed by the mycobiont (fungus) and extremely robust

against changing environmental conditions (Maier et al., 2016; Rosentreter

et al., 2016). In return, the photobiont provides nutrients (Rosentreter et al.,

2016).
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In BSCs, non-lichenized Fungi may recycle nutrients between crust com-

munities and plant vegetation (fungal loop hypothesis) (Maier et al., 2016). A

fungus typically associated with BSCs is the hyphomycete Alternaria (Maier

et al., 2016). Figures 4C and D show the genera Psora and Fulgensia, repec-

tively, two lichens commonly found in BSC communities across the globe

(Rosentreter et al., 2016). The hyphae of Psora cerebriformis, for instance,

can penetrate the soil, assist particle aggregation and, thereby, crust forma-

tion (please also refer to Section 1.2) (Rosentreter et al., 2016).

1.1.5 Soil prokaryotes

Typical prokaryotic phyla found in soil communities are Acidobacteria, Acti-

nobacteria, Bacteroidetes, Planctomycetes, Proteobacteria, Verrucomicrobia

(Bacteria), Crenarchaeota, Euryarchaeota and Parvarchaeota (Archaea) (Fierer,

2017). In terms of Bacteria, the same taxa as well as Armatimonadetes and

Gemmatimonadetes colonize BSCs (Maier et al., 2016). Archaea seem to be

more abundant below the crust (Maier et al., 2016). Soil microbes are involved

in nutrient cycling (N, P, S, Fe), biogeochemical processes and affect soil water

availability (Fierer, 2017). Certain taxa produce and excrete exopolysaccha-

rides (EPS) which are crucial for soil adhesion and crust formation (please

also refer to Section 1.2) (Gundlapally and Garcia-Pichel, 2006; Kielak et al.,

2016).

1.1.6 Microfauna

BSCs are inhabited by a diverse microfauna including protists, such as amoeba,

flagellates and ciliates, nematodes, tardigrades, rotifers and microarthropods

(Darby and Neher, 2016; Fiore-Donno et al., 2017). These organisms are het-

erotrophs, feeding on Bacteria, Fungi, algae and/or plants or lead a predatory

lifestyle (Darby and Neher, 2016). Thus, they regulate microbe populations

and mediate nutrient cycling (Darby and Neher, 2016). Moreover, they them-

8



CHAPTER 1. INTRODUCTION 1.1. BIODIVERSITY

selves are preyed on by macrofauna representing an important link in the food

web (Darby and Neher, 2016).

1.1.7 Biological succession of BSCs

The community composition of BSCs changes over time from the initiation by

pioneer species to the terminal succession which is dependent on the environ-

mental conditions (Belnap et al., 2008; Frey et al., 2013; Garcia-Pichel et al.,

2016; Lan et al., 2013). Barren soil, which may originate from disturbance

but also glacier retreat, is colonized by filamentous Cyanobacteria (see also

Section 1.1.1) which aggregate soil particles and stabilize them (Frey et al.,

2013; Garcia-Pichel et al., 2016; Lan et al., 2013). Frey et al. (2013) analyzed

the initialization of BSC communities along the chronosequence of a retreat-

ing glacier. Alpha- and Betaproteobacteria dominated the microbiome of the

pristine soil while Cyanobacteria, mostly Oscillatoriales, were only present

in low numbers (Frey et al., 2013). These young microbial communities are

mainly restricted by carbon and nitrogen availability (Frey et al., 2013). Thus,

Cyanobacteria and eukaryotic algae are crucial for the crust development as

they fix carbon and make it available for other organisms (Frey et al., 2013).

Young cyanobacterial crusts are often dominated by the filamentous cyanobac-

terium Microleus vaginatus which is regarded as a keystone species for the

formation of BSCs (Couradeau et al., 2016; Garcia-Pichel et al., 2016). At

this early stage, the BSC is still prone to erosion and exhibits a low water

and nutrient content (Lan et al., 2013). Over time, soil stability and carbon

input are enhanced by an increase of cyanobacterial biomass (Belnap et al.,

2008). Subsequently, heterocystous, non-motile Cyanobacteria become more

abundant and increase nitrogen availability (Belnap et al., 2008; Garcia-Pichel

et al., 2016). The appearance of the crust changes to darker shades due to

the accumulation of ultraviolet radiation (UVR) protection pigments such as

scytonemin (Belnap et al., 2008; Couradeau et al., 2016; Garcia-Pichel et al.,

2016). These alkaloids are produced by certain late-successional Cyanobacteria

and cause a decrease of the surface albedo (Couradeau et al., 2016; Garcia-
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Pichel et al., 2016). As a result, the local temperature rises which is leading to

changes in species composition (Couradeau et al., 2016; Garcia-Pichel et al.,

2016). Couradeau et al. (2016) measured an temperature increase of up to

10◦C in the crust causing the replacement of Microcoleus vaginatus by the

more thermotolerant M. steenstrupii. During this stage, eukaryotic algae as

well as heterotrophic microbes become more abundant (Garcia-Pichel et al.,

2016; Lan et al., 2013). As heterotrophs convert organic into inorganic com-

pounds, they improve the conditions for photoautotrophs (positive feedback

loop) (Lan et al., 2013). Finally, when the top soil is cemented, lichens and/or

bryophytes appear and shape the community: The metabolic efficiency and

protection against erosion is higher; the physical structure and porosity of the

crust is altered; changes in water and gas fluxes occur (Garcia-Pichel et al.,

2016; Lan et al., 2013). Furthermore, bryophytes provide microhabitats for

epiphytic Cyanobacteria which increase crust fertility (Garcia-Pichel et al.,

2016).

1.2 Ecology

1.2.1 Distribution

BSCs are the predominant vegetation cover in hostile environments such as

hot and dry steppes and deserts, alpine and subalpine areas as well as the

Polar Regions (Bu et al., 2013; Büdel, 2001; Colesie et al., 2014). These arid

and semiarid regions are the Earth’s biggest terrestrial ecosystem comprising

about 41% of the Earth’s terrestrial area as well as 27% and 95% of the total

soil organic and inorganic carbon reservoir, respectively (Belnap et al., 2016;

Chiquoine et al., 2016; Rutherford et al., 2017). Thus, drylands have a sig-

nificant influence on the global climate (Chiquoine et al., 2016). In general,

the vascular plant cover in these ecosystems is sparse or absent, restricted by

extreme temperatures and low water availability (Belnap et al., 2016; Colesie

et al., 2014). However, the soil surface is not barren but colonized by BSCs

which can contribute up to 70% of the total vegetational cover in drylands
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(Colesie et al., 2014; Rutherford et al., 2017). Hence, the presence of BSCs

is an important characteristic of the Earth’s terrestrial land (Belnap et al.,

2016). Several studies confirmed the presence of BSCs in North and South

America, Europe, the Middle East, Africa, Asia, Australia and Antarctica

(Abed et al., 2013; Bu et al., 2013; Büdel et al., 2009; Ponzetti and McCune,

2001; Rosentreter et al., 2014; Williams et al., 2016). However, BSC communi-

ties, collected from different places, vary in structure and species composition

(Bowker et al., 2016; Büdel, 2001). A number of factors determine the type

of crust present in a certain ecosystem (Bowker et al., 2016). Age and degree

of land mass isolation has a significant influence on BSC distribution (Bowker

et al., 2016). In regards to the distribution of BSC Cyanobacteria, for exam-

ple, Antarctica has a similarity of more than 10% with all other continents,

although it is the most isolated one (Bowker et al., 2016). This might not be

surprising as these prokaryotes are an ancient group of crust organisms that

colonized the land 3,500 million years ago, thus, before the breakup of Pan-

gaea (Rogers and Santosh, 2004; Whitton and Potts, 2012). In contrast, the

similarity for lichens between Antarctica and the other continents lies below

10% (Bowker et al., 2016). Not only biogeography but also climatic conditions,

such as the thermal regime as well as the amount and frequency of precipitation

prevailing in a specific ecoregion, affect BSC distribution and abundance (Bel-

nap et al., 2001b; Garcia-Pichel et al., 2013; Reed et al., 2012). For instance,

the cyanobacterium Microcoleus vaginatus prefers cooler soils and winter pre-

cipitation, while Microcoleus steenstrupii colonizes hot drylands with summer

precipitation (Garcia-Pichel et al., 2013). Moreover, the distribution and com-

position of BSCs is also determined by soil properties such as texture, pH,

salinity, sodicity and fertility (Belnap et al., 2001b; Steven et al., 2013a). Ex-

amples include the promotion of cyanobacterial richness by sandy and poorly

aggregated soils, while highly developed moss and lichen crusts dominate cal-

careous or gypsiferous soils (Belnap and Lange, 2001; Martínez et al., 2006;

Root and McCune, 2012). As the photosynthetic biomass of BSCs is high,

these communities are dependent on sunlight (Lange, 2001). Nevertheless, ex-
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cessive solar radiation causes the soil to dry out more quickly affecting BSCs

negatively (Bowker et al., 2016). Plant canopies can protect crust communities

from strong radiation and drying out by providing shade (Belnap et al., 2001b).

Furthermore, higher plants may increase soil stability, moisture and fertility,

promoting BSC diversity (Bowker et al., 2016). In some cases, however, crust

richness is limited by higher vegetation (Eldridge et al., 2006; Langhans et al.,

2010). Another important factor influencing BSC cover in drylands is geomor-

phologies (Bowker et al., 2016). The distribution of BSCs across the Negev

Desert, Israel, illustrates the point (Veste et al., 2001). Crust cover is absent

on top of the dunes, but lower slopes are colonized by BSCs (Veste et al.,

2001).

The Polar Regions

The Polar Regions, the Arctic and Antarctica, may be defined as the areas con-

fined by the Polar Circles at 66◦ 33’ N/S, by the 10◦C summer isotherm (mean

temperature of the warmest month is below 10◦C) or the tree line (Thomas

et al., 2008). These regions, also referred to as the cryosphere, are dominated

by extremely low temperatures, are covered by ice and snow for the most part

and exhibit a high seasonality (Thomas et al., 2008). During summer, these

ecosystems receive continuous irradiance displaced by long periods of dark-

ness in winter (Thomas et al., 2008). Albeit the huge number of similarities,

the Arctic and Antarctica differ significantly from each other (Thomas et al.,

2008). The biggest part of the Arctic consists of land-locked sea, which is cov-

ered by ice, but also expands into the North of Canada, Alaska and Siberia,

and includes Greenland and Svalbard (Thomas et al., 2008). Antarctica, on

the other hand, is a continent that is permanently covered by ice and snow

(up to 99.2%) surrounded by the Southern Ocean (Green and Broady, 2001;

Thomas et al., 2008).

Despite the hostile conditions, which are prevailing in the cryosphere, these

ecosystems are not dead, but inhabited by a number of survivalists (Thomas

et al., 2008). For example, Antarctica, the coldest, windiest and driest conti-
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nent, features two species of seed plants, Colobanthus quitensis and Deschamp-

sia antarctica (Green and Broady, 2001). However, there is an overall trend

to a lower degree of biodiversity (Green and Broady, 2001). BSCs are the

dominant vegetation unit in these areas, albeit with a distribution restricted

to ice-free terrestrial surfaces (Borchhardt et al., 2017a; Colesie et al., 2014;

Green and Broady, 2001). Take, for instance, the case of Arctic Svalbard which

exhibits a BSC coverage of up to 90%, with bryophytes and Cyanobacteria be-

ing most dominant (Williams et al., 2017). In contrast, Livingston Island, a

part of the Antarctic Peninsula, is covered up to 55% by lichen dominated

communities (Williams et al., 2017).

Alpine and subalpine areas

Alpine zones span the elevated areas above the treeline, while subalpine refers

to the zone between the borders of the montane forest and upper limits of scat-

tered, wind-shaped trees growing on open land (Martin, 2001). Alpine habitats

account for approximately 3% of Earth’s terrestrial area (Martin, 2001). These

rugged ecosystems are characterized by rocky ridges and steep terrain, strong

winds, extreme temperatures, high radiation, low water availability and per-

manent or temporary snow cover which causes the vegetation to be small and

patchy (Karsten and Holzinger, 2014; Martin, 2001). Furthermore, biodiver-

sity is lower compared to lower altitudes which might also be caused by hypoxic

conditions at higher elevations, a high climatic stochasticity and short growing

seasons (Martin, 2001).

Vascular vegetation is poorly developed in alpine and subalpine areas, how-

ever, BSCs colonize the open ground between the vegetation patches (Türk

and Gärtner, 2001). Records of alpine BSCs exist from the Andes, Olympic

Mountains (Washington, USA) and the Austrian Alps, among others (Colesie

et al., 2016; Williams et al., 2017). For instance, at Hohe Tauern National

Park, a part of the Austrian Alps, 60% of the soil surface is covered by crust

communities which exhibit a high abundance of Cyanobacteria (Williams et al.,

2017)
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1.2.2 Abiotic stress

As described in Section 1.2.1, BSCs have to cope with extreme conditions in

these hostile environments: High and low temperatures, high irradiance and

low water availability (Belnap et al., 2016). A plethora of physiological and

molecular mechanisms enable the crust-inhabiting organisms to survive and

adapt to this harsh abiotic stress.

Temperature

Elevated temperatures cause proteins and nucleic acids to denature and desta-

bilize membranes, threatening the viability of exposed organisms (Kobayashi

et al., 2014). The general response after heat exposure are changes in the car-

bohydrate profile, membrane modifications, as well as the expression and/or

upregulation of heat shock proteins (HSPs) (Ianutsevich et al., 2016). The

green alga Chlamydomonas reinhardtii and the red alga Cyanidioschyzon mero-

lae, for example, increase the transcript pool of small HSPs upon heat shock

treatment (Kobayashi et al., 2014). An example for changes in membrane com-

position are the two fungal species Rhizomucor tauricus and Myceliophthora

thermophila which increased the amount of phosphatidic acids and sterols in

response to elevated temperatures while the phosphatidylcholine and phos-

phatidylethanolamine contents are reduced (Ianutsevich et al., 2016). More-

over, Ianutsevich et al. (2016) observed a shift in the trehalose concentration,

suggesting that this sugar plays an important role in this process. Oukarroum

et al. (2012) investigated the heat shock response of the lichen Parmelina

tiliacea in different physiological states. Interestingly, the lichen is more heat-

tolerant in a desiccated than in a wet state (Oukarroum et al., 2012).

The other extreme, low temperatures close to the freezing point, is accom-

panied by a number of constraints such as decreased transport and enzyme

reaction rates and reduced membrane fluidity (Tsuji, 2016). During freezing,

dehydration occurs and the formation of ice crystals can even damage the cell

(Jung et al., 2014; Park et al., 1997). To counteract low temperatures and

freezing, organisms accumulate high- and low-molecular-weight solutes, which
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act as cryoprotectants, antioxidants and change their membrane structure and

composition (Minami et al., 2005; Quesada and Vincent, 2012; Rütten and

Santarius, 1992; Zakhia et al., 2008). Bryophytes, for instance Polytrichum

formosum, exhibit increased sucrose levels, a known cryoprotectant, during

winter (Rütten and Santarius, 1992). Certain polar organisms also synthesize

antifreeze proteins, e.g. the Antarctic green alga Pyramimonas gelidicola and

the diatom Chaetoceros neogracile, which bind to ice-crystals and lower the

freezing point (Jung et al., 2014; Kim et al., 2017).

Light and UV radiation

Intensive solar radiation may cause deoxyribonucleic acid (DNA) damage,

promotes reactive oxygen species (ROS) generation and impairs growth, pho-

tosynthesis, respiration and reproduction (Holzinger et al., 2009; Pichrtová

et al., 2013; Rajeev et al., 2013). To cope with DNA damage induced by UVR,

Cyanobacteria use excision repair and photo-reactivation (Zakhia et al., 2008).

Furthermore, these microorganisms synthesize a number of sunscreen com-

pounds, such as scytonemin and mycosporine, to mitigate the effect of UVR

(Couradeau et al., 2016; Zakhia et al., 2008). Eukaryotic algae, e.g. Zygnema

and Tetracystis, use mycosporine-like amino acids (MAAs), carotenoids, phe-

nolics or sporopollenin to attenuate harmful UVR (Pichrtová et al., 2013).

Singaravelan et al. (2008) found that the soil fungus Aspergillus niger gains an

increased UVR resistance by melanin formation. Highly pigmented organisms,

such as Zygnema, Tetracystis and Aspergillus, can then shade other light- and

UVR-sensitive organisms in the BSC community (Belnap and Lange, 2001;

Karsten and Holzinger, 2014).

Drought

The loss of water is a lethal threat to all organisms as it causes the desintegra-

tion of membranes, organelles and biomolecules, as well as the aggregation of

macromolecules such as proteins (Holzinger and Karsten, 2013; Karsten and

Holzinger, 2014; Wang et al., 2004). However, certain, dessication-tolerant
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organisms can withstand severe dehydration without compromising their via-

bility (Potts, 1994). Cameron (1962), for example, could revive the cyanobac-

terium Nostoc commune after it had been dried out for 87 years. The mech-

anisms, underlying desiccation tolerance, are complex and manifold (Alpert,

2005; Fernández-Marín et al., 2013; Holzinger and Karsten, 2013; Potts, 1994).

For photosynthetic organisms, the availability of water is crucial as it maintains

cellular integrity, functionality and acts as an electron donor in the electron

transport chain (Fernández-Marín et al., 2013). Some organisms, such as the

streptophytic alga Klebsormidium crenulatum and chlorophytic alga Trebouxia

gelatinosa, increase the pool of photosynthetic transcripts to counteract desic-

cation, while the bryophyte Syntrichya ruralis reduces the expression of pho-

tosynthetic genes (Carniel et al., 2016; Holzinger et al., 2014). Furthermore,

early light-induced proteins (ELIPs) are commonly upregulated in response

to dehydration (Fernández-Marín et al., 2013). Holzinger et al. (2014) and

Zeng et al. (2002) observed an increase of ELIP transcripts in the alga K.

crenulatum and the moss S. ruralis, repectively, when exposed to drought.

ELIPs are low-molecular-weight proteins that belong to the chlorophyll a/b-

binding superfamily and protect the photosynthetic apparatus by preventing

the formation of free radicals (Fernández-Marín et al., 2013; Norén et al.,

2003). Water stress is also associated with the production of the disaccha-

rides sucrose and trehalose which act as osmolytes and membrane stabilizers

(Alpert, 2005; Fernández-Marín et al., 2013; Potts, 1994). For instance, tre-

halose concentration is increased in the cyanobacterium Nostoc commune when

desiccated (Potts, 1994). Two ecotypes of the nematode Steinernema feltiae,

one originating from a temperate and the other from a semi-arid region, were

compared in terms of desiccation tolerance (Alpert, 2005). The temperate

nematode exhibited a higher rate of trehalose removal compared to the semi-

arid one, suggesting a lower tolerance of the former (Alpert, 2005). Sadowsky

et al. (2016) studied the desiccation-induced response of the photobiont in the

Antarctic lichen Usnea lambii and found that sucrose levels were increased.

Dehydration and rehydration also affect the integrity of membranes negatively
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(Perlikowski et al., 2016). Thus, desiccation tolerant organisms are required

to protect their biomembranes by modification (Perlikowski et al., 2016). To

counteract dehydration, the cyanobacterium Nostoc increases the portion of

unsaturated fatty acids of its cytoplasmic membrane (Potts, 1994). The strep-

tophyte K. crenulatum increases its pool of transcripts involved in the lipid

metabolism suggesting membrane modification (Holzinger et al., 2014). Des-

iccation also induces the formation of ROS, which is extremely harmful to

the cell as these radicals can cause nucleic acids, proteins, polysaccharides

and lipids to denature (Heinrich et al., 2015; Potts, 1994). Cyanobacteria,

for example, express the enzymes ascorbate peroxidase and catalase during

dehydration to scavenge harmful ROS (Potts, 1994). The alga T. gelatinosa

also responds with the induction of the ROS-scavengers to desiccation stress

(Carniel et al., 2016). As mentioned before, water stress compromises the

structural integrity and functionality of proteins (Wang et al., 2004). Hence,

organisms counteract this stress by expressing molecular chaperones, such as

HSPs and late embryogenesis abundant (LEA) proteins (Alpert, 2005; Wang

et al., 2004). Homologues of LEA proteins, which are typically associated with

water stress, were found in a number of Bacteria, nematodes, bryophytes and

algae (Alpert, 2005; Gasulla et al., 2013; Goyal et al., 2005; Holzinger et al.,

2014). Examples include the moss Physcomitrella patens, which exhibits an in-

creased abundance of LEA transcripts upon desiccation stress (Shinde et al.,

2012). Furthermore, P. patens induced the expression of HSPs and other

chaperones (Wang et al., 2009a). Desiccation may also cause the transition

to permanent stages, e.g. cysts, akinetes, zygo- or oospores, as an avoidance

mechanism (Holzinger and Karsten, 2013).

1.2.3 Ecological functions

BSC communities are essential components in dryland ecosystems as they

contribute to primary production, nitrogen fixation and phosphorus cycling

(Belnap, 2003; Belnap et al., 2016; Bu et al., 2013). Furthermore, BSCs offer
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erosion protection and influence hydrology, albedo and the surface temperature

(Belnap, 2003; Belnap et al., 2016; Bu et al., 2013; Chamizo et al., 2015).

Carbon cycle

The photosynthetic biomass of BSCs, including Cyanobacteria, eukaryotic al-

gae, bryophytes and lichens, contribute greatly to primary production in arid

and semi-arid regions where vascular plants are rare or absent (Baran et al.,

2015; Belnap, 2003; Belnap et al., 2001b; Su et al., 2013). On a global scale,

BSCs fix 3.9 Pg carbon per year corresponding to 7% of the net primary pro-

duction of the terrestrial vegetation (Elbert et al., 2012). However, the carbon

fixation by the autotrophs inhabiting BSCs is restricted by available water,

which is coming from rain, fog, dew, increased humidity or snow melt (Belnap,

2003; Belnap and Lange, 2001; Steven et al., 2013b). When exposed to mois-

ture, metabolic processes resume almost directly; respiratory activity starts

after about 3 min and photosynthesis takes 30 min to become fully activated

(Belnap et al., 2001b). Hence, prolonged wet periods lead to carbon accumu-

lation while short wet periods as well as dry periods may result in a negative

carbon budget (Belnap et al., 2001b). Photosynthesis is also controlled by

temperature (Belnap et al., 2001b). Up to 28◦C carbon fixation is increas-

ing, however, it experiences a drop above this temperature (Belnap et al.,

2001b). There are some exceptions, such as the lichen Collema tenax, which

does not arrest photosynthesis up to a temperature of 36◦C (Belnap et al.,

2001b). Overall, BSCs contribute carbon and nutrients to heterotrophic or-

ganisms, such as Fungi and Bacteria, fertilize the soil and contribute to humus

formation (Belnap, 2003; Belnap and Lange, 2001; Belnap et al., 2001b).

Nitrogen cycle

Nitrogen fixation in drylands is mainly carried out by lichenized and free-

living Cyanobacteria which are part of BSC communities with lichens to be

most important (Belnap, 2003; Belnap and Lange, 2001; Belnap et al., 2001b).

As primary production is limited by nitrogen availability, continuous fixation
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is crucial for soil fertility and to prevent desertification (Belnap et al., 2001b).

Similar to carbon fixation, nitrogen fixation depends not only on water but

also community composition (Belnap, 2003; Belnap et al., 2001b). Lichens

reach the highest turnover rates once the carbon reservoirs are full (Belnap

et al., 2001b). Moreover, temperature affects nitrogen fixation rates (Belnap

and Lange, 2001; Belnap et al., 2001b). For most lichen species, an increase

can be observed up to 25 − 30◦C (Belnap and Lange, 2001; Belnap et al.,

2001b). Consequently, fixation rates are higher during cooler seasons in hot

climates, while temperate and Polar Regions have the highest rates in warmer

seasons (Belnap and Lange, 2001). A large part of the fixed nitrogen leaks

directly into the surroundings and is taken up by vascular plants, as well as

heterotrophs such as Fungi and Bacteria (Belnap, 2003; Belnap and Lange,

2001; Belnap et al., 2001b). For instance, the cyanobacterium Nostoc releases

88% of the fixed nitrogen into the environment (Belnap et al., 2001b). In total,

BSCs contribute about 50% of the nitrogen fixed on land, which corresponds

to 49 Tg per year (Elbert et al., 2012).

Phosporus cycle

BSCs also increase phosphorus bioavailability in the adjacent soil and are

involved in the conversion of inorganic to organic phosphorus (Baumann et al.,

2017; Zhang et al., 2016). Hence, they play an essential role in the phosphorus

cycle, however, the underlying mechanisms are not well studied yet (Baumann

et al., 2017). It is anticipated that associated Fungi supply phosphorus to

lichens and bryophytes or secrete enzymes, such as phosphatase, into the soil

to generate bioavailable phosphorus (Belnap et al., 2016).

Wind and water erosion

The process of soil development in arid regions is slow and the formed soil is

extremely erodible (Belnap, 2003). Biologically crusted soils are less prone to

erosion as the EPS produced by Cyanobacteria and green algae, as well as

the rhizines of lichens and the rhizoids of bryophytes aggregate soil particles
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which makes it more difficult for wind and water to move them (Belnap, 2003;

Belnap et al., 2001b). The more developed a crust is, e.g. lichen and moss

crusts, the better it can provide protection against erosive forces (Belnap, 2003;

Belnap et al., 2001b). Hence, BSCs increase soil stability and minimize soil

loss (Belnap and Lange, 2001; Belnap et al., 2001b).

Hydrology

The presence and type of BSC community have an influence on water infil-

tration, water retention and, thus, soil moisture (Belnap, 2003, 2006; Belnap

and Lange, 2001; Belnap et al., 2001b; Rodríguez-Caballero et al., 2013). De-

pending on the morphology of the crust, water infiltration can be increased

or decreased (Belnap, 2003; Belnap and Lange, 2001). BSCs with a smooth

or rugose appearance exhibit smaller and fewer pores which decreases water

residence time and, in turn, infiltration (Belnap, 2003; Belnap et al., 2001b).

Furthermore, mucilaginous Cyanobacteria can amplify this effect as they ex-

crete hydrophobic substances and due to their ability to swell and clog pores

upon wetting (Belnap et al., 2001b; Rodríguez-Caballero et al., 2013). Pin-

nacled and rolling morphologies, on the other hand, which are more common

in cooler ecosystems, feature a higher porosity and rougher surface resulting

in an enhanced water infiltration (Belnap, 2003; Rodríguez-Caballero et al.,

2013). However, factors such as site and soil texture can overrule the effect

of biocrusts (Belnap, 2003; Belnap et al., 2001b). Clay-rich soils, for exam-

ple, exhibit an impaired infiltration of water whether or not BSCs are present

(Belnap et al., 2001b).

Albedo and surface temperature

Soil albedo is the reflective power of the soil surface which is affected by the

crust cover (Belnap et al., 2001b; Couradeau et al., 2016). Well-developed,

darker BSCs have a lower albedo than uncrusted soil or younger crusts (Bel-

nap, 2003; Belnap et al., 2001b). Lichen or moss dominated crusts, for instance,

reflect only 50% of the incoming light compared to bare soil (Belnap, 2003).
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As a consequence, surface temperatures are increasing by 10− 14◦C (Belnap,

2003). Many ecosystem functions and processes, such as carbon and nitrogen

fixation, microbial activity, seed germination and plant growth, are directly

controlled by temperature (Belnap, 2003; Belnap et al., 2001b). Surface tem-

perature also affects the microfauna (Belnap, 2003; Belnap et al., 2001b).

1.2.4 Disturbance

Disturbance influences ecosystem structure and composition and is the main

reason for spatial heterogeneity (Bu et al., 2013). It also affects competition

and the availability of resources (Bu et al., 2013). Disturbance can be caused by

grazing, fire, human activity or invasive species (Belnap and Lange, 2001; Bu

et al., 2013; Kuske et al., 2012). The disturbance of biocrusts leads to changes

in surface albedo and temperature, alters nutrient cycles and metabolic pro-

cesses, decreases soil fertility, increases the erosion risk as well as the composi-

tion of the crust cover (Belnap and Lange, 2001; Belnap et al., 2001b; Bu et al.,

2013; Eldridge et al., 2015; Kuske et al., 2012). Severely disturbed BSCs may

take decades or even centuries to recover, which influences the performance of

the whole ecosystem (Belnap and Lange, 2001; Kuske et al., 2012). Factors,

such as climate, soil type and the degree of disturbance, determine the recovery

rate (Belnap and Lange, 2001).

1.3 Global change scenarios

Climate change is a major threat to biodiversity and ecosystem functionality

worldwide (Frenot et al., 2005; Lee et al., 2017; Walther et al., 2002). Over

the past 50 years, the mean temperature on Earth has increased by 0.17◦C per

decade (NOAA National Centers for Environmental Information, 2017). In

the Arctic, for instance, the increase was even two to three times higher (Post

et al., 2009). These changes in temperature and also precipitation regimes

are likely to affect arid and semi-arid regions across the globe (Rutherford

et al., 2017). Global change is expected to promote the development of deserts
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which is also linked to a regression of vegetation and an accumulation of mobile

sand (Fischer and Subbotina, 2014). Furthermore, biodiversity and ecosystem

interactions are highly affected, e.g. by the invasion of alien species and the

disruption of the trophic hierarchy (Frenot et al., 2005; Walther et al., 2002).

BSCs are no exception, being extremely sensitive to alterations in temperature

as well as precipitation amount and frequency (Fischer and Subbotina, 2014;

Rutherford et al., 2017). Consequently, their community composition and

ecological functionality are altered (Fischer and Subbotina, 2014; Rutherford

et al., 2017). Increased temperatures and changes in precipitation, for example,

can lead to a dramatic increase in moss mortality and a decline in lichen

coverage (Bowker et al., 2014; Rutherford et al., 2017). In turn, the surface

albedo can increase which may be a positive feedback loop for further changes

(Rutherford et al., 2017).

Looking at a global scale, both Polar Regions have experienced rather

strong warming events in the past (Lee et al., 2017; Post et al., 2009). Besides

freezing later and breaking up earlier, the Arctic sea ice has retreated for the

past two to three decades (Post et al., 2009). These changes in temperature,

snow and ice cover as well as nutrient availability cause shifts in vegetation and

even extinctions (Post et al., 2009). The terrestrial biodiversity of Antarctica

is mostly bound to ice-free zones (Lee et al., 2017). However, increased tem-

peratures may cause these zones to expand and coalesce which could abolish

ancient species boundaries (Lee et al., 2017).

1.4 Applications

BSCs offer several possibilities for application such as artificial cultivation

to counteract desertification or to rehabilitate agricultural fields after overex-

ploitation (Bu et al., 2013; Chen et al., 2006; Rossi et al., 2016; Xiao et al.,

2015). Chen et al. (2006) used cultures of the cyanobacterium Microcoleus

vaginatus to inoculate sand dunes in Inner Mongolia, China, to increase the

resistance against soil erosion. After 22 days, crusts were established and less
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prone to wind and water erosion (Chen et al., 2006). Xiao et al. (2015) cul-

tured moss crusts artificially on the Loess Plateau, China, and monitored the

effects on soil stabilization as well as water infiltration and retention over eight

years. The results indicate a positive impact, however, the effect on the sur-

face water conditions was only negligible (Xiao et al., 2015). BSCs are also

sources of biotechnological products such as the microbial sunscreen scytone-

min (Siezen, 2011). As mentioned in Section 1.2.1, BSCs occupy extremely

cold environments such as the Arctic and Antarctica (Williams et al., 2017).

These cold-adapted and cold-acclimated organisms possess unique features in

terms of transcriptome, proteome and lipidome (Jung et al., 2014). In order

to cope with low temperatures and freezing, they produce antifreeze proteins

(AFPs) which can be biotechnologically exploited (Jung et al., 2014). AFPs

can be added to red blood cells to prevent hemolysis during freeze-thaw cycles

or to food, such as meat and ice cream, to reduce ice crystal size (Jung et al.,

2014).

1.5 Methodology

Studying BSC communities involves a plethora of methods as they may be

analyzed in an ecological context as well as in terms of biodiversity and func-

tionality (Borchhardt et al., 2017b; Liu et al., 2014; Williams et al., 2017).

There are non-invasive methods, which can be carried out in the field, but

most techniques involve sampling and further analysis of the material in a lab-

oratory (Belnap et al., 2001b; Borchhardt et al., 2017a; Rajeev et al., 2013).

There are three different methods commonly used to assess the BSC cover

along a transect in a certain area: Quadrats, line-point intercept and line in-

tercept (Belnap et al., 2001b; Bowker et al., 2013; Williams et al., 2017). Each

methodology has advantages and drawbacks and the choice should be depen-

dent on the degree of accuracy and detail required (Belnap et al., 2001b).

Within these predefined sampling areas, so-called vegetation plots, either in-

dividual taxa or morphological groups are determined (Belnap et al., 2001b;
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Castillo-Monroy et al., 2016). The classification of morphological groups is

quick, simple and gives information about the ecological role (Belnap et al.,

2001b; Williams et al., 2017). The identification of taxa, on the other hand,

is more precise but in the field it is limited to bryophytes and lichens (Bel-

nap et al., 2001b; Bowker et al., 2013; Castillo-Monroy et al., 2016; Chiquoine

et al., 2016). Microorganisms, such as Cyanobacteria and algae, have to be

sampled and analyzed in the laboratory (Borchhardt et al., 2017a; Chiquoine

et al., 2016). Portable devices enable researches to measure several parameters

directly in the field (Colesie et al., 2016). Colesie et al. (2016), for example,

monitored the activity of BSCs using an IMAGING-PAM and a gas exchange

system, both portable.

Sampled BSC material can be analyzed in different ways. Commonly, soil

properties, such as carbon, nitrogen, phosphorus, sulfur, sand, silt and clay

content as well as pH, are determined (Baumann et al., 2017; Borchhardt

et al., 2017a; Bowker et al., 2013; Castillo-Monroy et al., 2016). Moreover, the

chlorophyll a, EPS and scytonemin concentration are measured giving infor-

mation about biomass, crust stability and stage of development, respectively

(Belnap et al., 2008; Chiquoine et al., 2016; Couradeau et al., 2016; Kuske

et al., 2012). In order to study nutrient cycles, activity assays of key enzymes,

such as phosphatase, urease, invertase and catalase, are carried out (Bowker

et al., 2013; Liu et al., 2014). However, collecting BSC samples also enables

the identification of microorganisms inhabiting the crust (Borchhardt et al.,

2017a; Chiquoine et al., 2016; Williams et al., 2016). Using light microscopy,

a great variety of taxa can be identified either directly in the sample or after

the preparation of enrichment cultures and isolates (Baumann et al., 2017;

Borchhardt et al., 2017a; Cameron and Devaney, 1970; Williams et al., 2016).

This type of identification is based on the recognition of morphological traits

such as color, cell size and shape, or motility (Ab Majid et al., 2015; Cox, 1996;

John et al., 2002; Lányi, 1988). For instance, Borchhardt et al. (2017a) isolated

eukaryotic microalgae from BSCs by cultivating them on agar plates and used

the morphological key by Ettl and Gärtner (2014) to identify the taxa. Despite
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this method being relatively fast and cheap, morphological features are often

ambiguous and, thus, difficult to identify (Albrecht et al., 2017; Manoylov,

2014; Misawa, 1999). Molecular techniques, such as barcoding, offer a reliable

alternative (Vieira et al., 2016; Wang et al., 2016). A barcode is a molecular

marker gene, such as the 16S/18S ribosomal ribonucleic acid (rRNA) gene

and the internal transcribed spacer (ITS) region, the ribulose-1,5-bisphosphat

carboxylase/oxygenase (RuBisCO) large subunit or the cytochrome c oxidase

I (COX1), which is amplified and sequenced (An et al., 1999; Doyle et al.,

1997; Evans et al., 2007; Wilmotte, 1994). Commonly, these amplified prod-

ucts are sequenced using the chain-termination method originally developed

by Sanger et al. (1977). The resulting sequence can be identified by perform-

ing a sequence homology search against a suitable database (Altschul et al.,

1990; Raja et al., 2017). However, these databases can contain incorrect and

wrongly annotated sequences or even lack the reference sequence required for

identification (Taberlet et al., 2012). To circumvent this problem, the query

sequence may be combined with an appropriate taxon sampling and analyzed

using e.g. maximum parsimony or maximum likelihood based phylogenetic

inference methods (Komárek et al., 2014; Mount, 2008; Wang et al., 2016).

Culture isolates also provide the possibility to perform physiological ex-

periments with BSC organisms. For example, typical abiotic stressors, which

are prevailing in terrestrial habitats (e.g. high radiation, drought), can be

mimicked and the effects recorded (Herburger and Holzinger, 2015; Holzinger

et al., 2009; Karsten and Holzinger, 2014). A recent study by Herburger and

Holzinger (2015) compared the physiological response to desiccation stress of

differentKlebsormidium and Zygnema strains. Additionally, underlying molec-

ular mechanisms can be studied by using approaches such as transcriptomics

or proteomics (Carniel et al., 2016; Holzinger et al., 2014; Wang et al., 2009a).

Proteomic studies focus on all proteins of an organism at a certain time, which

constantly change in response to environmental conditions, while transcrip-

tomics are based on gene expression levels (Han et al., 2008; Liang and Zeng,

2016). For transcriptomic studies, total ribonucleic acid (RNA) is isolated
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and transcribed into complementary deoxyribonucleic acid (cDNA) which is

subsequently sequenced using next-generation sequencing (NGS) tools such

as Illumina or Roche 454 (Bentley et al., 2008; Holzinger et al., 2014; Liang

and Zeng, 2016; Margulies et al., 2005). The raw data is filtered and ex-

pression levels are determined using different software, e.g. the R package

Bioconductor (Liang and Zeng, 2016). If annotations for the differentially ex-

pressed genes (DEGs) are available, conclusions on functional relations can

be drawn (Carniel et al., 2016; Holzinger et al., 2014; Liang and Zeng, 2016).

Ideally, physiological data is also recorded and used for comparison and val-

idation (Iñiguez et al., 2017). Holzinger et al. (2014), for example, studied

the desiccation stress response of the streptophyte Klebsormidium crenulatum

using the effective quantum yield of photosystem II as a fitness parameter and

transcriptomics to shed light on the molecular mechanisms.

Unfortunately, most organisms inhabiting natural habitats, such as BSCs,

are unculturable and, thus, cannot be studied individually as described above

(Massana et al., 2014; Schloss and Handelsman, 2005; Shi et al., 2009; Ward

et al., 1990). Furthermore, the interactions between all organisms within a

community should also be considered for a holistic understanding (Urich et al.,

2014). A barcode amplicon (e.g. the 16S rRNA gene) can be produced from

the whole community and used in a metabarcoding approach, either cloned into

vectors and sequenced using the chain-termination technique, or directly ap-

plied to a NGS platform (Couradeau et al., 2016; Eldridge et al., 2015; Fierer,

2017; Fiore-Donno et al., 2017; Frey et al., 2013; Kuske et al., 2012). The latter

is also referred to as amplicon sequencing and can give insights into biodiver-

sity and relative abundance of individual organisms in a sample (Lange et al.,

2015; Taberlet et al., 2012). The generated sequences are counted, normalized

and annotated to obtain the percentage per taxa, also known as operational

taxonomic unit (OTU) (Caporaso et al., 2010; Couradeau et al., 2016; Fiore-

Donno et al., 2017; Taberlet et al., 2012). To minimize spurious OTUs and

overestimation, a so-called mock community, which is an artificial sample with

known diversity and abundance, should be included in the sequencing run
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(Fiore-Donno et al., 2017). The bioinformatic tool kit for amplicon sequencing

is vast, including software such as QIIME, mothur and the R package vegan

(Caporaso et al., 2010; Fiore-Donno et al., 2017; Oksanen et al., 2017; Steven

et al., 2013b). These tools help to reduce errors introduced during the ampli-

fication and produce sound results (Caporaso et al., 2010; Fiore-Donno et al.,

2017; Oksanen et al., 2017; Steven et al., 2013b).

Metabarcoding gives insights into BSC diversity and abundance (Taber-

let et al., 2012). However, the usage of barcoding genes limits the results to

organisms which possess the corresponding gene (Taberlet et al., 2012). To

overcome this problem, total DNA or RNA, extracted from environmental

samples, can be used for metagenomics or metatranscriptomics, respectively

(Rajeev et al., 2013; Urich et al., 2008, 2014). The DNA or cDNA is processed

employing NGS techniques and the outcome is subjected to a bioinformatic

pipeline which gives results on community composition as well as functional-

ity (Rajeev et al., 2013; Urich et al., 2008, 2014). Moreover, the proteome

or even the metabolome of BSCs may be examined using metaproteomics or

metabolomics, respectively (Bastida et al., 2014; Jones et al., 2014; Zampieri

et al., 2016). However, all these omic techniques highly depend on high-quality

biomolecules, which are often difficult to isolate from soil (Chen et al., 2009;

Wang et al., 2009b). Soil almost always contains humic substances (humin,

humic acid, fulvic acid) which are partly coextracted with nucleic acids (Wang

et al., 2012, 2009b). These compounds inhibit enzymatic reactions and, there-

fore, have to be removed during, or directly after the extraction (Wang et al.,

2012, 2009b). Hence, the establishment of reliable protocols is indispensable

when working with soil communities such as BSCs.

1.6 Objectives

This thesis aims to shed light on the biodiversity and functionality of BSCs

which are the dominant vegetation type in alpine regions and polar deserts.

These communities are of major importance as they contribute to carbon and
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nitrogen fixation, protect the soil against erosion, increase soil fertility and

provide the nutritional base for higher trophic levels. The main focus lies

on terrestrial microalgae and Cyanobacteria which play a key role as primary

producers in these ecosystems.

First and foremost, a method for nucleic acid extraction, which produces

high-quality DNA and RNA, had to be established and refined. BSC samples

were collected from the Arctic Svalbard (August 2014) and Livingston Island

which is part of the Antarctic Peninsula (February 2015). These communities

were studied in terms of biodiversity using metatranscriptomics (RNA-Seq)

and metabarcoding (amplicon sequencing). Furthermore, an alpine isolate of

the hydro-terrestrial alga Zygnema circumcarinatum was exposed to desicca-

tion stress and analyzed by applying transcriptomics.
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2.1. ABSTRACT CHAPTER 2. PAPER I

2.1 Abstract

Biological soil crust (BSC) communities can be found in almost all environ-

ments except for the tropics. These microbial mats are especially predominant

in ecosystems, which exhibit harsh conditions, in which they play a key role as

primary producers. Studying their metatranscriptomic data enables scientists

to shed light on taxa composition, the interactions between those organisms

and their ability to cope with abiotic stressors in the extreme environments,

e.g. the polar regions. The basis of a successful metatranscriptomic analysis

is the isolation of pure RNA of high quality and integrity. Nucleic acid ex-

traction from soil samples is challenging due the diverse chemical and physical

properties of soil. Humic substances are often co-extracted and, subsequently,

contaminate the sample. In this study, different RNA extraction techniques

were tested and evaluated for the isolation of high quality RNA from four BSC

samples, three isolated in Germany and one polar BSC: a CTAB based proto-

col, the SpectrumTM Plant Total RNA Kit and the Precellys Plant RNA Kit.

The CTAB based method provides high quality RNA at a low yield and with

an average degree of contamination for all tested samples. RNA obtained by

using the SpectrumTM Plant Total RNA Kit is of high quality with only little

contamination but only half of the samples could be processed successfully. A

high throughput approach is the Precellys Plant RNA Kit resulting in a fair

RNA quality but with the highest level of contamination. Furthermore, only

three out of four samples yielded any results. Further purification is often nec-

essary as DNA and humic substances often cannot be easily removed. Using

enzymatic digestion DNA can be specifically cleaved while humic substances

can be separated from the RNA fraction by using either gel filtration or RNA

affinity binding columns.

2.2 Keywords

Biological soil crust, metatranscriptomics, RNA extraction, RNA purification,

CTAB
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2.3 Introduction

About 40% of terrestrial ecosystems exhibit harsh conditions, such as rather

low or high temperatures, high irradiance or low water as well as nutrient

availability that prevents any vascular plant cover. However, the soil surface

of these habitats is mostly not bare but overgrown by green, red, brown or

black patches which are termed biological soil crusts (BSC) (Belnap, 2006;

Belnap and Eldridge, 2001; Büdel, 2001; Rindi et al., 2010). BSC are micro-

bial communities consisting of phototrophic organisms, such as cyanobacteria,

green eukaryotic algae, lichens and bryophytes (mosses and liverworts), and

heterotrophic microbes, including nonlichenised microfungi and heterotrophic

bacteria, in varying proportions (Belnap, 2006; Belnap et al., 2001b; Belnap

and Weber, 2013; Evans and Johansen, 1999). By producing a matrix of fil-

aments, which weave through the top layer of soil binding particles together,

a living crust cover is formed either on the surface or within the top cen-

timeter of soil (Belnap, 2006; Belnap et al., 2001a,b; Evans and Johansen,

1999). These soil crusts are rather dominant in arid and semiarid regions,

where they cover up to 70% of the surface, but occur as well in various other

habitats from temperate to boreal and even polar latitudes as they are able to

cope with extreme conditions such as heat, cold, high UV irradiation, chang-

ing salinity and desiccation (Belnap and Eldridge, 2001; Belnap and Lange,

2001; Belnap et al., 2001b; Belnap and Weber, 2013; Hagemann et al., 2015;

Raanan et al., 2015). Only the tropical rain forest appears to be free of BSC

(Belnap, 2006; Büdel, 2001). Due to their robustness and adaptability to

various climates BSC play a key role as pioneering organisms in harsh envi-

ronments (Breen and Lévesque, 2008; Mikhailyuk et al., 2015; Rajeev et al.,

2013). Apart from primary production, these microbial communities recycle

nutrients, mineralise the soil and retain water which increases soil fertility. In

turn, seed germination and survival as well as growth of vascular plants in gen-

eral is enhanced which promotes biodiversity in sparse regions (Belnap et al.,

2001b; Büdel et al., 2009; Eldridge, 2000; Evans and Johansen, 1999; Karsten
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and Holzinger, 2014; Mikhailyuk et al., 2015). Furthermore, the extracellular

polysaccharides production of the crust organisms leads to the formation of

soil aggregates which are consequently less prone to wind and water erosion

(Belnap and Lange, 2001; Belnap et al., 2008, 2001b; Evans and Johansen,

1999; Hagemann et al., 2015). Another important ecological aspect of BSC is

their ability to fix atmospheric carbon and nitrogen into organic compounds

(Belnap et al., 2001b; Elbert et al., 2009; Hagemann et al., 2015; Karsten and

Holzinger, 2014; Lenhardt et al., 2015). Elbert et al. (2012) argues that crust

communities even play a major role in global carbon and nitrogen cycles as

they contribute approximately 7% of the estimated net primary production of

terrestrial vegetation and about 50% of the global terrestrial nitrogen fixation.

As a consequence of extreme conditions, such as drought, high intensity

solar radiation and short vegetation periods as well as temperatures around or

below the freezing point causing freezing-thawing-cycles, the terrestrial vege-

tation in the Arctic and Antarctica is rather limited. In Antarctica, for ex-

ample, only two species of phanerogams occur which might not be surprising

considering the fact that Antarctica is the coldest, windiest as well as dri-

est continent (Breen and Lévesque, 2008; Green and Broady, 2001; Pichrtová

et al., 2013; Remias et al., 2011). Nevertheless, both polar regions exhibit

a multitude of BSC on the ice-free soil surfaces (Belnap and Lange, 2001;

Green and Broady, 2001; Kaplan et al., 2013). It was recently found that in

the Arctic (Spitsbergen) BSC cover up to 90% of the soil surface whereas the

Antarctic Peninsula (Livingston Island) exhibits a lower coverage of up to 55%

(Williams et al., 2017). Typical green microalgae found in polar BSC are, for

example, Prasiola crispa, Zygnema and Klebsormidium (Elster et al., 2008;

Green and Broady, 2001; Mikhailyuk et al., 2015; Pichrtová et al., 2013; Rindi

et al., 2010). Cyanobacterial genera, which are usually encountered in the

Arctic and Antarctica, are Anabaena, Aphanothece, Chroococcidiopsis, Gloeo-

capsa, Leptolyngbya, Lyngbya, Microcoleus, Nostoc, Oscillatoria, Phormidium

and Synechococcus (Quesada and Vincent, 2012).
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2.3.1 Metatranscriptomic analysis of BSC

Biological soil crust communities are complex in terms of microorganism di-

versity but also functionality as described above. They possess many unique

features and are extremely well adapted to the barren environments they are

usually located in. To study both the different taxa and their mechanisms of

adaption a cultivation approach will only give limited insights. Up to 99%

of the microbes found in certain environmental samples cannot be cultivated

under laboratory conditions and the method does not provide an adequate

degree of sensitivity (Bailly et al., 2007; Geisen et al., 2015; Rajendhran and

Gunasekaran, 2008; Sessitsch et al., 2002; Wang et al., 2012). However, the

extraction of nucleic acids directly from environmental samples may give a

broader picture of the microbes comprising the BSC as well as their interac-

tions and enables scientists to learn about their strategies to cope with stressors

such as heat or drought. While the isolation of DNA for metagenomic pur-

poses allows genome analysis and its organisation for all taxa present in the

crust, RNA-based metatranscriptomic approaches provide a method to inves-

tigate the viable and active part of the BSC and their expressed set of genes

(Damon et al., 2012; Duarte et al., 1998; Rajendhran and Gunasekaran, 2008;

Sessitsch et al., 2002; Urich et al., 2008; Wang et al., 2012). The analysis of

rRNA, for example, reveals microbe diversity and abundance, whereas study-

ing eukaryotic poly-A mRNA provides a focused view on active eukaryotic

cellular functions (Damon et al., 2012; Sessitsch et al., 2002). Moreover, the

influence of soil characteristics, climate and type of vegetation, which are as-

sociated with different habitats, on soil communities and their development

can be evaluated (Damon et al., 2012). Apart from providing new insights

for a more profound understanding of these organisms, the knowledge gained

by metagenomics and -transcriptomics can be also used for biotechnological

applications. Sequences coding for novel enzymes or whole pathways may be

revealed building the foundation for new bioprocesses (Bailly et al., 2007; Da-

mon et al., 2012; Rajendhran and Gunasekaran, 2008).
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Despite the clear advantages of metatranscriptomic analysis there are some

general drawbacks which should be considered. Firstly, RNA is, compared to

DNA, easily degraded which makes it more laborious to isolate appropriate

amounts of high quality RNA (Sessitsch et al., 2002). Furthermore, metatran-

scriptomics of environmental samples feature a bias if the regions of interest

might be unaccessible to primers and enzymes due to secondary structure for-

mation (Geisen et al., 2015; Rajendhran and Gunasekaran, 2008). However,

the biggest challenge might be metatranscriptomic analysis of soil communi-

ties such as BSC. The first difficulties may be encountered when sampling

microbial mats from the environment. Depending on the crust type and its

adhesion to the surface as well as the soil type, texture and moisture, a larger

or smaller amount of soil particles will contaminate the sample. These par-

ticles can present a major threat to successful metranscriptomic analysis as

they may contain humic substances, rather persistent contaminants in RNA

preparations, or even allophane (found in volcanic ash soils) which can absorb

RNA prior to extraction (Wang et al., 2012).

Humic substances are a group of structurally diverse, yellow to dark brown-

ish, polyelectrolytic organic compounds with a molecular mass of 0.1 to about

300 kDa. They possess various reactive functional groups allowing them to

absorb water, ions and organic molecules. Hence, almost any kind of organic

molecule, i.e. nucleic acids, might become attached to humic substances. To

classify them, their solubility properties are considered: Humin is insoluble

at any pH, humic acids are only soluble at a lower pH and the fraction of

fulvic acids is soluble at any pH. Due to their physico-chemical characteris-

tics, which are similar to nucleic acids, humic and fulvic acids are often coex-

tracted with RNA. Contaminated RNA cannot be used for various molecular

biological methods as humic acids inhibit enzymatic reactions, such as diges-

tion using restriction enzymes, DNases or RNases, hybridisation, PCR and

RT-PCR, transformation as well as nucleic acid detection and measurement

(Peršoh et al., 2008; Rajendhran and Gunasekaran, 2008; Wang et al., 2012,

2009).
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Naturally, different soil samples have different physicochemical properties

causing different problems when extracting nucleic acids (Wang et al., 2012).

Ideally, a universal protocol is sought which could be applied for all kinds of

samples. At the moment, however, miscellaneous methods have been reported

which might work, or not, for particular BSC. Hereinafter, certain RNA iso-

lation methods are evaluated and discussed which may help to overcome the

previously described problems and enable the extraction of high purity RNA

from BSC samples.

2.4 Material and methods

2.4.1 BSC sampling

Four different soil crust communities were isolated. The samples were retrieved

from the horticulture of the Botanical Institute of the University of Cologne,

North Rhine-Westphalia, Germany (BSC C1 & C2), from limestone gravel in

close vicinity to Frammersbach, Bavaria, Germany (BSC FR), and from the

surroundings of the Ny-Ålesund Research Station on Spitsbergen, Svalbard,

Arctic (BSC NÅ). The corresponding sampling sites are displayed in Figure

1. The sample C1, C2 and NÅ were crusts dominated by eukaryotic green

microalgae while sample FR was a cyanobacterial crust community. The sam-

ples were preserved with LifeGuardTM Soil Preservation Solution (MO BIO

Laboratories, Inc., Carlsbad, CA, USA). The reagent was used according to

manufacturer’s instructions and the samples stored at −80◦C.

2.4.2 RNA extraction

The samples BSC C1, C2, FR and NÅ were processed using three RNA extrac-

tion methods: a CTAB based protocol (Chang et al., 1993), the SpectrumTM

Plant Total RNA Kit (Sigma-Aldrich, Inc., St. Louis, MO, USA) and the

Precellys Plant RNA Kit (peqlab/VWR International, GmbH, Erlangen, Ger-

many).
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Figure 1: Sampling Sites of the tested BSC samples. 1 - BSC C1 isolated from the

horticulture of the Botanical Institute of the University of Cologne, North Rhine-

Westphalia, Germany, high water and peat content; 2 - BSC C2 isolated from the

horticulture of the University of Cologne, North Rhine-Westphalia, Germany, low

water and peat content; 3 - BSC FR isolated from the top of limestone gravel close

to Frammersbach, Bavaria, Germany, high water content; 4 - BSC NÅ isolated in

close vicinity of the Ny-Ålesund Research Station on Spitsbergen, Svalbard, Arctic;

high water and peat content.

CTAB protocol: The extraction buffer (2% CTAB, 2% PVPP, 100 mM

Tris-HCl (pH 8.0), 25 mM EDTA, 2.0 M NaCl, 0.5 g/L spermidine, adjusted

to pH 7.0, amended freshly with 2% β-mercaptoethanol before use) was pre-

heated to 60◦C prior to cell disruption. Initially, the BSC material was thawed

at 4◦C and the LifeGuardTM Soil Preservation Solution removed after a cen-

trifugation step (2,500 g, 4◦C, 10 min). For homogenisation 1 g of the sample

was moved to a mortar, chilled with liquid nitrogen, and ground with a cooled

pestle as soon as all the nitrogen evaporated. Subsequently, the ground and

frozen material was gradually transferred to the preheated buffer solution (10

mL) and immediately dispersed by vortexing. To extract nucleic acids from the
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cell lysate, an equal volume of chloroform:isoamyl alcohol 24:1 (V:V) was added

and mixed with the solution by inverting the tube. Incubating the sample for

10-15 min at 65◦C was followed by a 10 min centrifugation step at 4,000 g

resulting in phase separation. The aqueous phase was collected and once more

extracted using chloroform:isoamyl alcohol. By means of a 8 M LiCl stock

solution the sample’s concentration was set to approximately 2 M and kept at

4◦C over night. Precipitated DNA and RNA were collected by centrifugation

for 30 min at 17,000 g and 4◦C in an Eppendorf centrifuge. After supernatant

removal and air drying, the pellet was resuspended in 200-500 μL SSTE buffer

(1.0 M NaCl, 0.5% SDS, 10 mM Tris-HCl at pH 8.0, 1 mM EDTA, preheated

if white precipitates visible). Several tubes were combined (up to 600 μL) to

facilitate handling. An additional extraction with chloroform:isoamyl alcohol

was carried out with subsequent collection of the aqueous phase by centrifu-

gation at 12,000 g for 10 min. A second RNA precipitation was performed by

adding two volumes of ice-cold absolute ethanol to the solution and incubating

the samples at −20◦C for at least 2 h. Nucleic acids precipitate and were spun

down for 30 min at 17,000 g and 4◦C. The Supernatant was discarded. The

nucleic acid pellet was washed with 70% ethanol, dried and finally dissolved

in nuclease-free water.

SpectrumTM Plant Total RNA Kit: The kit was used according to manu-

facturer’s instructions following protocol A. The BSC sample was prepared as

described in the CTAB based method.

Precellys Plant RNA Kit: The protocol of the kit was obeyed applying

buffer T-P for BSC sample treatment. The bead tube was loaded with 250

mg of the crust sample and 600 μL buffer T-P for cell lysis. After homogeni-

sation and incubation at room temperature according to the manufacturer’s

instructions, an additional centrifugation step was performed to remove all of

the insoluble material. Spinning the tubes at 12,000 g for 10 min was suffi-

cient. The supernatant was carefully transferred to the DNA removal column

without disturbing the pellet. Subsequently, all steps of the Precellys Plant

RNA Kit protocol were carried out.
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RNA quantity and quality were determined using a NanoDrop 2000 Spec-

trophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and performing

an agarose gel electrophoresis loading at least 300 ng of the sample onto a 1%

agarose gel stained with ethidium bromide.

2.4.3 Further purification steps

The nucleic acid solution was subjected to enzymatic digestion with DNase

I (Thermo Fisher Scientific, Waltham, MA, USA) following manufacturer’s

instructions.

To separate humic substances from the isolated RNA, MicroSpin S-400

HR columns (GE Healthcare, Little Chalfont, UK) were used according to

manufacturer’s protocol. Samples were solved in water or 10 mM, 25 mM, 50

mM and 100 mM Tris buffer adjusted to pH 8.0 and a sample volume of 50 μL

was loaded onto the column.

Finally, samples were concentrated and purified using the RNeasy MinElute

Cleanup Kit (Qiagen, Hilden, Germany).

2.5 Results and discussion

2.5.1 Sampling

Metatranscriptomic and metagenomics analysis is only possible if the nucleic

acid integrity of the sample is preserved until extraction is due. This is of par-

ticular importance when working with RNA considering its liability to degra-

dation. Quenching the cells down to low temperatures is often not enough,

thus, utilising a preserving agent is indispensable. Early studies employed

RNAlater R© Storage Solution (Ambion, Austin, TX, USA) to preserve RNA

(Cai et al., 2013; Florell et al., 2001; Linke et al., 2010; Sikulu et al., 2011;

Wang et al., 2012), however, a range of other solutions became available re-

cently (McCarthy et al., 2015). During this study the LifeGuardTM Soil Preser-

vation Solution (MO BIO Laboratories, Inc., Carlsbad, CA, USA) was the first
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and only tested preserving agent. This choice was based on the fact that it

was specifically designed to stabilise nucleic acids in soil samples (Goffredi

et al., 2015; Mondav et al., 2014; Peay et al., 2013; Simmons et al., 2014).

The effectiveness of the LifeGuardTM Soil Preservation Solution was evaluated

using a liquid culture of Zygnema sp. and the BSC sample C1. In order to

investigate the influence of soil particles on the integrity of RNA two aliquots

of the algae culture was blended with soil. The samples were then treated

with the agent and stored at −20◦C for several days. Subsequently, RNA was

extracted applying the CTAB protocol. Figure 2-1, lanes b1 and b2, indicate

that the presence of soil particles in the Zygnema sample prevents the isola-

tion of RNA. However, if the sample was pretreated with LifeGuardTM Soil

Preservation Solution prior to extraction intact RNA was obtained (Figure

2-1, lanes c1 and c2). Similarly, nucleic acids from BSC sample C1 could only

be obtained if protected by the preserving agent (Figure 2-2, lanes b1 and b2).

These findings suggest that the LifeGuardTM Soil Preservation Solution is a

suitable RNA preserving agent applicable to BSC samples. Whether other

RNA preservation solutions achieve similar or better results was not evaluated

due to the positive outcome of these experiments. Based on this result the

LifeGuardTM Soil Preservation Solution was used for all RNA preparations in

this study.

2.5.2 Extraction protocols

CTAB protocol

The original CTAB (Cetyl trimethylammonium bromide) protocol, which was

published by Chang et al. (1993), is widely used for RNA isolation. Depending

on sample type and desired quality, modifications were introduced to optimise

the method. Different studies already confirmed the effectiveness of processing

soil samples with the CTAB based method (Griffiths et al., 2000; Robe et al.,

2003; Sessitsch et al., 2002; Urich et al., 2008). Due to the CTAB and the

polyvinylpolypyrrolidone (PVPP) in the extraction buffer co-precipitation of
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a1 a2 b2b1 c1 c2 a1 a2 b2b1
1 2

L L

Figure 2: RNA extraction in the presence of soil. A 1% agarose gel image of RNA

extracted from biological duplicates (1/2) of a liquid culture of Zygnema sp. (1) and

BSC sample C1 (2) is shown. RNA was extracted using the CTAB based method.

1 - L = Ladder, a1/2 = pure culture, b1/2 = culture + soil, c1/2 = culture + soil +

LifeGuardTM Soil Preservation Solution; 2 - L = Ladder, a1/2 = BSC C1, b1/2 =

BSC C1 + LifeGuardTM Soil Preservation Solution.

humic substances is inhibited and the nucleic acid purity is enhanced (Ra-

jendhran and Gunasekaran, 2008; Wang et al., 2012; Zhou et al., 1996). The

composition of the extraction buffer differs among various publications. We

used the original extraction buffer recipe (Chang et al., 1993) adjusted to pH

7.0 (Wang et al., 2009) in this study.

Bead beating is a very convenient way of lysing cells intended for nucleic

acid extraction. Many novel studies suggest bead based cell disruption (Urich

et al., 2008; Wang et al., 2008) as it is fast and allows a high throughput of

various samples (Leite et al., 2012). However, the agitating beads may cause

shear forces which break the nucleic acids into smaller fragments decreasing

their integrity (Robe et al., 2003; Yuan et al., 2012). During this study, the

isolation of high quality RNA from BSC using any bead beating protocol was

not achieved (see also Precellys Plant RNA kit). Thus, homogenization with

mortar and pestle is recommended. Unfortunately, only one sample at a time

can be processed which makes this treatment more tedious. Subsequently, the

ground and frozen material was gradually transferred to the preheated buffer

solution and immediately dispersed by vortexing. This step was shown to be
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C1 C2 NÅFRL
1 2 3

C1 C2 NÅFRL C1 C2 NÅFRL

Figure 3: Comparison of RNA extracted from BSC samples C1, C2, FR and NÅ

using different methods (1% agarose gel image). 1 - CTAB based protocol, L =

Ladder; 2 - SpectrumTM Plant Total RNA Kit, L = Ladder; 3 - Precellys Plant

RNA Kit, L = Ladder.

extremely crucial for successful RNA extraction (MacRae, 2007). After extrac-

tion with the organic solvents a first RNA precipitation step was performed

using LiCl which facilitates the separation of humic substances from RNA.

All four BSC samples yielded RNA when processed with the CTAB protocol

as shown in Figure 3-1. Clearly, the protocol is rather time consuming but the

integrity of the RNA obtained is higher than for any other method tested

(Figure 3). Thus, the CTAB extraction method enables the isolation of high

quality RNA. Nevertheless, the samples often needed a further clean up to

remove remaining DNA and humic substances.

SpectrumTM Plant Total RNA Kit

A variety of commercial kits is available for RNA extraction from different tis-

sues. However, many of these kits cannot cope with the secondary metabolites

and contaminants contained in many samples. Sigma-Aldrich (St. Louis, MO,

USA) states that their SpectrumTM Plant Total RNA Kit may overcome this

problem while avoiding the usage of hazardous chemicals, such as chloroform

or phenol, producing high quality RNA. The system is simple and requires

only a short time depending on the number of samples.

Different BSC samples were tested with varying results. Depending on the

water and peat content, RNA isolation was successful or not. Generally, a

lower sample volume per tube is recommended if handling problematic tissue.
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The manufacturer suggests protocol A for root or stem tissue, material which

contains plenty of water and low levels of RNA or extremely difficult samples

in general. Thus, protocol A was followed yielding rather pure, intact RNA

at high quantities if successful. The resulting gel image is shown in Figure

3-2 suggesting that DNA was completely removed as no DNA band is observ-

able. Nevertheless, only from two out of four BSC samples, processed with the

SpectrumTM Plant Total RNA Kit, RNA could be isolated.

If an appropriate sample volume is available the kit should be considered

since satisfying amounts of RNA of good quality may be obtained. Unfortu-

nately, the SpectrumTM Plant Total RNA Kit is not a universal method for

processing BSC samples.

Precellys Plant RNA Kit

Another commercially available kit for rapid RNA extraction from plant tis-

sue tested was the Precellys Plant RNA Kit marketed by peqlab/VWR Inter-

national, GmbH (Erlangen, Germany). This system uses bead beating (not

successful for the BSC samples tested, see above) for cell disruption allowing

the processing of various samples at a time. Moreover, handling of hazardous

chemicals is not required. Certain modifications in the protocol enabled RNA

extraction from soil crust samples with decent yield and quality.

Both supplied buffers, buffer T-P and P-P, were compared indicating that

the utilisation of buffer T-P resulted on average in a 3.5 times higher RNA

amount per sample (data not shown). Hence, buffer T-P was applied for BSC

sample treatment, although, a higher quantity of humic substances was co-

extracted compared to buffer P-P. It is recommended to load the tube with

250 mg of the crust sample and 600 μL buffer for cell lysis. This ratio was

found to be ideal for extracting the highest amount of nucleic acids per sample

volume. The final eluate might still contain DNA and humic substances which

need to be separated from the RNA. Furthermore, the method did not yield

satisfying RNA quantities for certain BSC material as displayed in Figure 3-
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Table 1: Comparison of CTAB based method, SpectrumTM Plant Total RNA Kit

and the Precellys Plant RNA Kit in terms of RNA yield, quality/integrity, robust-

ness, working time and contamination. (n = number of replicates per BSC)

CTAB based

method

SpectrumTM

Plant To-

tal RNA

Kit Sigma-

Aldrich

Precellys

Plant RNA

Kit peqlab

RNA Yield in μg/mg

sample (n)

9 ± 3.4 (4) 52.9 ± 34 (4) 52.7 ± 22 (4)

RNA Quality/Integrity High High Low

Number of BSC samples

yielding RNA

4/4 2/4 3/4

Average time to process

1 g of sample in h

20 1 1

DNA contamination yes no yes

Average A260/280 (n) 1.55 ± 0.08 (4) 1.86 ± 0.15 (4) 1.43 ± 0.03 (4)

Average A260/230 (n) 1.03 ± 0.06 (4) 1.44 ± 0.37 (4) 0.76 ± 0.05 (4)

3. Optimising the lysis conditions may increase the outcome, however, if the

sample volume is limited optimisation might not be an option.

The Precellys Plant RNA Kit allows RNA extraction from several samples

in parallel while handling is fairly easy. Albeit the produced RNA lacks purity

and may be partly sheared.

There are several other protocols and commercial kits available for RNA

extraction from soil samples available (Bailly et al., 2007; Wang et al., 2009,

2008). The commonly used RNeasy Plant Mini Kit (Qiagen, Hilden, Ger-

many) as well as the RNA PowerSoil R© Total RNA Isolation Kit (MO BIO

Laboratories, Inc., Carlsbad, CA, USA), which was especially designed for soil

samples, did not yield any usable RNA with our BSC samples. In Table 1, all

three successfully applied methods are compared in terms of RNA yield and

quality, successful RNA isolation, processing time and contamination. Thus,
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depending on desired quality and available time the appropriate protocol may

be chosen. Although, a final clean up to remove all humic substances may be

necessary before using the RNA preparation for further enzymatic reactions,

e.g. cDNA synthesis (Wang et al., 2012).

2.5.3 Further purification

Due to the co-extraction of DNA as well as humic and fulvic acids, the ob-

tained RNA might need additional purification steps after successful isolation

(Wang et al., 2012, 2009). A variety of methods is available to remove any

contaminants using molecular differences between the different substances.

Both the CTAB based protocol and the Precellys Plant RNA Kit do not

separate DNA completely from the RNA fraction. Hence, the remaining traces

of DNA have to be removed. For this purpose, the RNA sample was subjected

to an enzymatic digestion with DNase removing DNA completely while RNA

was not degraded as the enzyme is specifically cleaving DNA molecules. How-

ever, many down-stream applications require the subsequent elimination of the

enzyme as well as a high RNA concentration. During this study, the RNeasy

MinElute Cleanup Kit was commonly used which allows both a concentra-

tion of RNA and separation of contaminants to increase the sample purity

which is assessed by photometric measurement. Pure RNA corresponds to an

A 260/280 value of 2.00. The rather low average values for A 260/280 given

in Table 1 were often improved by applying this kit (up to 0.21 units was

observed).

Gel filtration provides a suitable tool to separate molecules depending on

their size. As humic and fulvic acids in soil possess a molecular weight average

of less than about 20 kDa and, thus, less than rRNA and mRNA, an appropri-

ate size exclusion column may be able to separate these contaminants from the

nucleic acid fraction. Studies by Wang et al. (2012, 2009) found the MicroSpin

S-400 HR column (GE Healthcare, Little Chalfont, UK) to be appropriate

for this purpose as the balance between product recovery and contaminant

removal was optimal compared to similar columns. Figure 4 shows a very effi-
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1 2

Figure 4: Removal of humic substances using MicroSpin S-400 HR columns. A

RNA solution of BSC C1. 1 - before application to spin column; 2 - and after

application of the spin column.

cient separation of humic contaminants which is also supported by an increased

A 260/280 value (up to 0.39 units) in the filtrated sample. Unfortunately, the

RNA recovery is rather low considering a loss of up to 80%. It was not possi-

ble to improve the RNA yield by modifying buffer composition and pH. RNA

preparations from microbial crust communities mostly contain higher levels of

contaminants compared to nucleic acids extracted from most cultivated mi-

crobes. Therefore, subsequent purification might become necessary depending

on the intended employment. To yield the desired RNA quality and quantity,

the techniques described above should be combined in an appropriate matter.

2.6 Conclusion

RNA extraction from biological soil crust communities is not as trivial as nu-

cleic acid isolation from most pure cultures. Still RNA from environmental

samples may provide a more distinct picture of the interactions of the com-

munity and its adaptions to location and climate. A major problem during

RNA extraction from soil-containing samples is the co-extraction of humic

substances, which are challenging to remove. The three presented protocols in
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combination with an appropriate downstream purification form a good foun-

dation to deal with these obstacles and isolate high quality RNA in sufficient

amounts. The decision for a certain method should be based on required purity

and quality of the final product, but also on the amount of sample available.

The CTAB extraction protocol allows only a rather slow sample throughput

and does not remove a sufficient amount of contaminants but yields RNA

of good quality from most samples (all samples tested were successfully pro-

cessed). In contrast, the SpectrumTM Plant Total RNA Kit provides a platform

to handle several samples in parallel and yields RNA of high purity and quality.

However, not all of the tested BSC isolates yielded RNA. The lowest quality

of RNA may be obtained using the Precellys Plant RNA Kit, but the handling

is fairly easy and allows parallel runs of different samples. In combination

with DNA digestion as well as humic contaminants removal by gel filtration

and/or affinity binding columns the resulting RNA should possess a sufficient

quality for sequencing purposes. RNA extracted from the BSC sample NÅ by

applying the CTAB method has been used successfully for metatranscriptomic

analysis (unpublished own results). Thus, the RNA quality was sufficient for

down-stream applications (e.g. NGS).

In conclusion, many protocols and commercial kits are available for RNA

extraction, however, many do not yield any, or only yield unsatisfactory, re-

sults. The selected techniques discussed above were proven to work for at least

half of the selected BSC samples making them feasible for RNA isolation. The

best working technique was the CTAB based protocol. In combination with

DNA digestion and the RNeasy Cleanup Kit the RNA samples will possess a

fair to good quality and high integrity.
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3.1. ABSTRACT CHAPTER 3. PAPER II

3.1 Abstract

Biological soil crusts (BSCs) are key components of polar ecosystems. These

complex communities are important for terrestrial polar habitats as they in-

clude major primary producers that fix nitrogen, prevent soil erosion and can

be regarded as indicators for climate change. To study the genus richness

of microalgae and Cyanobacteria in BSCs, two different methodologies were

employed and the outcome compared: Morphological identification using light

microscopy and the annotation of ribosomal sequences taken from metatran-

scriptomes. The analyzed samples were collected from Ny-Ålesund, Svalbard,

Norway, and the Juan Carlos I Antarctic Base, Livingston Island, Antarctica.

This study focused on the following taxonomic groups: Klebsormidiophyceae,

Chlorophyceae, Trebouxiophyceae, Xanthophyceae and Cyanobacteria. In to-

tal, combining both approaches, 143 and 103 genera were identified in the

Arctic and Antarctic samples, respectively. Furthermore, both techniques con-

cordantly determined 15 taxa in the Arctic and 7 taxa in the Antarctic BSC.

In general, the molecular analysis indicated a higher microalgal and cyanobac-

terial genus richness (about 11 times higher) than the morphological approach.

In terms of eukaryotic algae, the two sampling sites displayed comparable genus

counts while the cyanobacterial genus richness was much higher in the BSC

from Ny-Ålesund. For the first time, the presence of the genera Chloroid-

ium, Ankistrodesmus and Dunaliella in Polar Regions was determined by the

metatranscriptomic analysis. Overall, these findings illustrate that only the

combination of morphological and molecular techniques, in contrast to one

single approach, reveals higher genus richness for complex communities such

as polar BSCs.

3.2 Keywords

Biological soil crust, eukaryotic algae, Cyanobacteria, morphological identifica-

tion, metatranscriptomics
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3.3 Introduction

The Arctic region and Antarctica are extreme environments defined by low

temperatures year-round, low water availability, and large seasonal fluctua-

tions with long periods of darkness during winter vs. continuous irradiance

in summer (Thomas et al., 2008a). Thus, plant cover is sparse and biodiver-

sity is generally low; e.g. only two autochthonous flowering plants occur in

Antarctica and these are mainly found in a few suitable areas along the coast

(Pointing et al., 2015; Thomas et al., 2008b). These ecosystems are instead

dominated by biological soil crusts (BSCs), which are the main terrestrial pri-

mary producers and also important ecosystem engineers (Evans and Johansen,

1999; Pointing and Belnap, 2012; Williams et al., 2017; Yoshitake et al., 2010).

BSCs are communities of eukaryotic algae, Cyanobacteria, lichens, bryophytes,

as well as heterotrophic fungi and bacteria which colonize the surface and top

millimeters of the soil (Belnap, 2006; Belnap et al., 2001a; Büdel et al., 2016).

Typically occurring phyla of eukaryotic microalgae are Streptophyta (Kleb-

sormidiophyceae, Zygnematophyceae), Chlorophyta (Chlorophyceae, Treboux-

iophyceae, Ulvophyceae) and Ochrophyta (Bacillariophyceae, Eustigmatophy-

ceae, Xanthophyceae) (Büdel et al., 2016). Certain crust organisms, such as

Cyanobacteria and eukaryotic algae, form a matrix which aggregates the liv-

ing cells and soil particles (Belnap, 2006; Breen and Lévesque, 2008). Hence,

BSCs provide protection against soil erosion and cryoturbation (Evans and

Johansen, 1999). Moreover, BSCs enhance water and nutrient retention and

the crust-associated Cyanobacteria fix nitrogen which in turn creates improved

conditions (fertilization) for seed germination and plant growth (Belnap et al.,

2001b; Breen and Lévesque, 2008). This accumulation of biomass forms the nu-

tritional basis for higher trophic levels such as the Svalbard reindeer (Rangifer

tarandus platyrhynchus) (Cooper and Wookey, 2001; Elster et al., 1999). In

general, BSCs are essential components of sparse ecosystems such as the polar

deserts. These communities are valuable biological indicators for abiotic fac-

tors, ecological health and climate change (Belnap et al., 2001b; Pushkareva
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et al., 2016). Due to global warming which particularly affects the Arctic and

the Antarctic Peninsula, an invasion by alien species is likely, which in turn

might alter the BSC composition (Chown et al., 2012; Frenot et al., 2005; Lee

et al., 2017; Pushkareva et al., 2016). Hence, studying individual BSC organ-

isms, as well as the whole community, is important to fully address biodiver-

sity, which is a prerequisite for monitoring changes, as well as for predictions

of future climate change (Pushkareva et al., 2016).

The identification of autotrophic microorganisms in BSCs, such as eukary-

otic algae and Cyanobacteria, is traditionally performed using light microscopy

to examine BSCs in situ, or through established cultures of selected crust or-

ganisms (Bischoff and Bold, 1963; Büdel et al., 2009; Skinner, 1932; Water-

bury and Stanier, 1978). The taxa of interest are typically identified using

morphological traits such as color, cell size and shape, or motility (Cox, 1996;

John et al., 2002; Lind and Brook, 1980; Prescott, 1964). The utilization of

light microscopy for identification is rather quick and inexpensive compared to

molecular techniques (Misawa, 1999), but requires expert knowledge for many

taxa as morphological features are often difficult to recognize and distinguish

(Manoylov, 2014). In addition, morphological features are not always stable as

they can change in response to environmental factors (Albrecht et al., 2017).

As an alternative, a number of molecular markers, so called barcodes, can be

used if unialgal cultures are available (Vieira et al., 2016). Typical barcode

sequences are the 16S/18S rRNA gene and the internal transcribed spacer

(ITS) rDNA, the RuBisCO large subunit (rbcL), the plastid elongation factor

tufA, the cytochrome oxidase I (COX I), as well as internal simple sequence

repeats (ISSR) of microsatellite regions (An et al., 1999; Buchheim and Chap-

man, 1991; Doyle et al., 1997; Evans et al., 2007; Hall et al., 2010; Shen, 2008;

Sherwood et al., 2008; Wilmotte, 1994). A huge pitfall is that the majority of

microorganisms present in environmental samples, such as BSCs, are uncul-

turable (Massana et al., 2014; Schloss and Handelsman, 2005; Shi et al., 2009;

Ward et al., 1990). To overcome the limitation of cultivation, biodiversity as-

sessments can be performed by metabarcoding (Elferink et al., 2017; Taberlet
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et al., 2012; Yoon et al., 2016). For this purpose, total DNA is extracted from

an environmental sample (eDNA) and used as a template to generate an am-

plicon mixture from a barcoding gene (Taberlet et al., 2012). Subsequently,

the generated PCR products are sequenced with a high-throughput sequencing

(HTS) technique, such as Roche 454 or Illumina (Bentley et al., 2008; Mar-

gulies et al., 2005; Taberlet et al., 2012). The identification of taxa is carried

out by annotating the obtained sequence reads against an adequate database

and sequence counts provide information about taxonomic abundance in the

sample (Pawlowski et al., 2011; Taberlet et al., 2012). However, metabarcod-

ing also exhibits various pitfalls such as the introduction of sequence errors

during PCR, the design of suitable metabarcoding primers, covering all taxa

of interest, and, again, the need for appropriate reference databases (Taberlet

et al., 2012). Fortunately, PCR-dependent bias and the dependency on single

barcodes can be avoided by exploiting shotgun metagenomics and metatran-

scriptomics (Urich et al., 2008, 2014). Similar to metabarcoding, total nucleic

acids are isolated from an environmental sample but the amplification step is

omitted (Urich et al., 2008, 2014). Instead, total DNA or cDNA is directly

applied to HTS and the resulting sequences are assembled for any desired gene

or transcript of interest, e.g. the small ribosomal subunit RNA (SSU) (Geisen

et al., 2015). This powerful approach enables a more reliable taxonomic iden-

tification compared to metabarcoding but relies on the availability of correctly

determined sequence data (Klimke et al., 2011; Urich et al., 2008). Addition-

ally, the isolation of high quality nucleic acids from soil samples, suitable for

HTS, can be difficult due to the presence of humic substances and exocellular

RNase activity (Greaves and Wilson, 1970; Rippin et al., 2016).

The present study focused on a methodological comparison of morpho-

logical and molecular approaches to analyze the microalgal and cyanobac-

terial genus richness of Arctic and Antarctic BSCs. Studying polar BSCs

improves the knowledge on these microecosystems, their biodiversity and eco-

logical structure. In this study, the identification of various groups of eukary-

otic algae (Klebsormidiophyceae, Chlorophyceae, Trebouxiophyceae, Xantho-
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phyceae) and Cyanobacteria in one Arctic and one Antarctic BSC sample was

carried out. Eukaryotic and prokaryotic algae were identified using light mi-

croscopy in combination with suitable taxonomic keys. Furthermore, active

species in the crust were targeted by applying a metatranscriptomic approach

and algal as well as cyanobacterial taxa were identified using fully assembled

SSUs. The final results were combined and compared to assess the compre-

hensiveness of both techniques regarding the genus richness.

3.4 Material and methods

3.4.1 Sampling

BSC samples were collected during expeditions to the Arctic and Antarctica

in August 2014 and February 2015, respectively. The Arctic BSC (NÅ; cf.

Borchhardt et al. (2017a); Rippin et al. (2016); Williams et al. (2017); Jung et

al. (in preparation)) was sampled in close vicinity to Ny-Ålesund, Svalbard,

Norway (78◦ 55’ 26.33” N 11◦ 55’ 23.84” E; Figure 1a). The research station

Ny-Ålesund is located at Kongsfjorden and its climate is classified as polar

tundra (ET) according to the Köppen-Geiger system (Peel et al., 2007; Vogel

et al., 2012). The temperature is low year-round with an annual average of

−4.5◦C, the highest monthly temperature is in July with 5.8◦C and the low-

est in March with −12◦C (all temperatures are averaged from August 1993

to July 2011) (Maturilli et al., 2013). The mean annual precipitation is 433

mm (Førland et al., 2011). Williams et al. (2017) found 90% of the area to

be covered by BSCs. The Antarctic BSC (Gr1; cf. Williams et al. (2017))

was collected close by the Spanish Juan Carlos I Antarctic Base at Livingston

Island, South Shetland Islands (62◦ 39’ 55.44” S 60◦ 23’ 42.76” W; Figure 1b).

Similar to Svalbard, the South Shetland Islands rank as polar tundra (ET)

using the Köppen-Geiger system (Michel et al., 2014; Pereira et al., 2006).

The temperature at the Juan Carlos I Antarctic Base averages −1◦C annually,

with the highest mean temperature (2.1◦C) in austral summer and the lowest

mean temperature (−4.6◦C) in winter (all temperatures are averaged from De-
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cember 2001 to April 2003 and January 2007 to February 2011) (Bañón et al.,

2013). The site receives on average 444.5 mm of precipitation annually (Bañón

et al., 2013). The BSC coverage is approximately 43% with skeletal soils be-

ing predominant (Williams et al., 2017). BSC samples for metatranscriptomic

analysis (1 g) were preserved using the LifeGuardTM Soil Preservation Solution

(MO BIO Laboratories, Carlsbad, CA, USA).
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America

South
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Figure 1: Overview map of sampling sites in the Arctic and Antarctica. a - Svalbard

in the Arctic. Samples were taken at Ny-Ålesund (NÅ). b - Livingston Island which

is part of the South Shetland Islands. Isolates were collected in close vicinity of the

Juan Carlos I Antarctic Base (Gr1). Maps were created using snazzymaps.com.
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3.4.2 Cultivation and microscopy

Enrichment cultures of eukaryotic algae were established by transferring the

sampled BSCs (NÅ, Gr1) onto solid 1.5% DifcoTM Agar (Becton Dickonson,

Heidelberg, Germany) containing Bold’s Basal Medium modified according to

Starr and Jeffrey (1993). The cultures were kept at 15◦C, 30 μmol photons m-2

s-1 under a 16:8 hour light-dark regime. A detailed outline on the procedure

is given in Borchhardt et al. (2017b). The identification of genera or species

was carried out by light microscopy (BX51, Olympus, Tokyo, Japan) with

oil-immersion and a 1000-fold magnification. Relevant identification keys are

listed in Borchhardt et al. (2017b). A complete list of the identified Arctic algae

(NÅ) was published by Borchhardt et al. (2017a) and is used for comparison

in the present study.

Cyanobacterial genera, present in the Arctic (NÅ) and Antarctic (Gr1)

BSC were directly determined using light microscopy with oil immersion and

a 630-fold magnification by using identification keys (Geitler, 1932; Komárek

and Anagnostidis, 1998, 2005). Cyanobacteria were additionally pre-cultivated

on BG-11 medium at 15− 17◦C, 20-50 μm photons m-2 s-1 under a 14:10 hour

light-dark cycle and identified using suitable taxonomic keys as described by

Williams et al. (2016). The data of Jung et al. (in preparation), which exam-

ined the cyanobacterial diversity of both sites, was compared to the molecular

dataset.

3.4.3 RNA Isolation and sequencing

The Arctic sample (NÅ) was processed according to Rippin et al. (2016) using

the CTAB protocol, DNase I (Thermo Fisher Scientific, Waltham, MA, USA)

and the RNeasy MinElute Cleanup Kit (Qiagen, Hilden, Germany). Due to low

RNA yields, a total of six biological replicates were extracted and combined to

obtain three pooled replicates. RNA from three biological replicates, collected

at Livingston Island (Gr1), was isolated using the SpectrumTM Plant Total

RNA Kit (Sigma Aldrich, St. Louis, MO, USA), treated with DNase I (Thermo
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Fisher Scientific, Waltham, MA, USA) and purified using the RNeasy MinElute

Cleanup Kit (Qiagen, Hilden, Germany) as described by Rippin et al. (2016).

Single samples yielded sufficient amounts of RNA.

All RNA samples were further processed by Eurofins Genomics (Ebersberg,

Germany). The processing included quality control utilizing the BioAnalyzer

(Agilent Technologies, Santa Clara, CA, USA) and library preparation for

both triplicates. Eukaryotic mRNA was enriched by using oligo-(dT) beads,

fragmented and, subsequently, cDNA was synthesized using random hexam-

ers. Finally, Illumina compatible adapters were ligated. The libraries of the

individual samples NÅ and Gr1 were applied to an Illumina HiSeq 2500, all

triplicates multiplexed on one lane, using 125 bp paired-end and single-end

mode, respectively. For sample NÅ, the HiSeq Control Software 2.2.58, RTA

1.18.64 and bcl2fastq-1.8.4 were used while the detected signals from sam-

ple Gr1 were processed by operating the HiSeq Control Software 2.2.38, RTA

1.18.61 and bcl2fastq-1.8.4 (Illumina, San Diego, CA, USA).

3.4.4 Bioinformatics

The obtained raw reads (SRA bioproject PRJNA421095) were quality trimmed

using Trimmomatics 0.35 (Bolger et al., 2014) and rRNA gene reads were

filtered out using SortMeRNA 2.1 (Kopylova et al., 2012) and the SILVA

SSU NR Ref 119. All rRNA SSU reads were assembled using EMIRGE

0.61.0 (Miller et al., 2011) combined with the SILVA SSU NR Ref 128. The

script emirge_amplicon.py for single-end reads with the flag phred33 was run.

Only successfully assembled SSUs were considered. The assigned genera for

Klebsormidiophyceae, Chlorophyceae, Trebouxiophyceae, Xanthophyceae and

Cyanobacteria were extracted and compiled with an in-house R-script (Version

3.3.2).
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3.5 Results

The genus richness of phototrophic organisms in BSCs, isolated from Svalbard

(NÅ) and Livingston Island (Gr1), was assessed using morphological features

and annotated environmental rRNA SSU sequences. We obtained 18,041,893,

28,446,946 and 116,112,134 forward raw reads for sample NÅ and 62,235,763,

70,163,318 and 48,605,923 for Gr1. After quality trimming and rRNA SSU fil-

tering we ended up with 8,936, 7,818 and 38,320 sequences for NÅ and 706,549,

1,081,090 and 8,646 for Gr1. This study focused on genera belonging to the

Klebsormidiophyceae, Chlorophyceae, Trebouxiophyceae, Xanthophyceae or

Cyanobacteria. All the taxa that were identified are included in the supple-

mentary information (Online Resource 1). Additional taxonomic groups, for

example Fungi, that were identified in the molecular analysis were not further

investigated in this study.

3.5.1 The Arctic BSC

The Arctic sample contained 26 genera of eukaryotic algae and Cyanobacteria

identified by light microscopy while 132 were assigned by metatranscriptomic

analysis. The average number of genera in the metatranscriptomic triplicates

was 71.7 ± 36.1 (SD). In total, 15 genera were determined by both method-

ologies, compared to 117 and 11 genera which were solely found by molecular

and morphological identification, respectively (Figure 2a). The utilized 18S

reference database contained sequences for 5 of the 11 genera identified by

morphology. Figures 3a and 4a display all genera identified with 1, 44, 25,

6 and 67 taxa belonging to Klebsormidiophyceae, Chlorophyceae, Treboux-

iophyceae, Xanthophyceae and Cyanobacteria, respectively. The genera Coc-

comyxa, Elliptochloris, Stichococcus (Trebouxiophyceae), Leptolyngbya, Micro-

coleus, Nostoc and Phormidium (Cyanobacteria) were found in the culture iso-

lates and in all three metatranscriptomes while Klebsormidium (Klebsormid-

iophyceae), Chlorococcum, Coelastrella, Desmodesmus, Lobochlamys (Chloro-

phyceae), Botrydiopsis, Heterococcus (Xanthophyceae) and Stigonema (Cyano-
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15 5/11117

a

rRNA
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7 3/888

b

rRNA

Culture

Figure 2: Comparing the molecular (blue, violet) and morphological (red, orange)

approach in terms of identified algal genera, both eukaryotic and prokaryotic. The

numbers divided by a slash represent the taxa present in the reference database (left)

and all genera identified (right). a - NÅ; b - Gr1.

bacteria) were identified in at least one of the three replicates and by light mi-

croscopy. All three metatranscriptomes per site included rRNA SSU sequences

of the following genera, which could not be cultivated: Chloromonas, Dicty-

ococcus, Oedogonium, Scenedesmus (Chlorophyceae), Chlorella, Chloroidium,

Dictyochloropsis (Trebouxiophyceae), Anabaena, Aphanizonemon, Arthronema,

Calothrix, Chroococcidiopsis, Crinalium, Cyanothece, Cylindrospermum, Gloeo-

bacter, Nodularia, Tolypothrix and Trichormus (Cyanobacteria). The mor-

phology based method identified the eukaryotic generaGloeocystis*,Macrochlo-

ris*, Neocystis*, Tetracystis (Chlorophyceae), Desmococcus*, Koliella, Lo-

bosphaera (Trebouxiophyceae), Pleurochloris*, Pleurogaster*, Tribonema and

Xanthonema (Xanthophyceae), of which 6 were not represented by 18S rRNA

gene sequences in the reference database (asterisk).
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Figure 3: All genera identified belonging to either Klebsormidiophyceae (Kleb-

sormidium), Chlorophyceae, Trebouxiophyceae or Xanthophyceae. The metatran-

scriptome (blue or violet shades) is separated in three replicates while the culture

isolates are represented by a single category (red, orange). Chords connect the

methodologies with the identified genera. Genera displayed in grey were absent from

the database used for the metatranscriptomic analyses. a - NÅ; b - Gr1.
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Figure 4: All genera identified belonging to Cyanobacteria. The metatranscriptome

(blue or violet shades) is separated in three replicates while the culture isolates are

represented by a single category (red, orange). Chords connect the methodologies

with the genera identified. a - NÅ; b - Gr1.
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3.5.2 The Antarctic BSC

A total of 15 genera, present in the Antarctic BSC, were determined based on

morphology while molecular identification yielded 95 taxa. The genera mean

value of the three molecular replicates was 51.3 ± 5.7 (SD). Both techniques

found 7 genera while 8 and 88 genera were solely determined by morphology

or sequence homology search, respectively (Figure 2b). For 3 genera, identified

from culture isolates, rRNA reference sequences were present in the database.

Regarding the different taxonomic groups, several genera were determined: 1

genus of Klebsormidiophyceae, 53 genera of Chlorophyceae, 28 genera of Tre-

bouxiophyceae, 6 genera of Xanthophyceae and 16 genera of Cyanobacteria

(Figure 3b and 4b). The genera Coccomyxa (Trebouxiophyceae), Leptolyn-

gbya, Nostoc and Phormidium (Cyanobacteria) could be determined mor-

phologically and were identified in all replicates used for the molecular ap-

proach. In addition, the genera Elliptochloris, Prasiola (Trebouxiophyceae),

Heterococcus (Xanthophyceae) were determined by morphology and present

in at least one out of three metatranscriptomic replicates. All three repli-

cates prepared for molecular identification included the genera Ankistrodesmus,

Bracteacoccus, Chlamydomonas, Chloromonas, Dunaliella, Hemiflagellochloris,

Monoraphidium, Oedogonium, Scenedesmus (Chlorophyceae), Botryococcus,

Chlorella, Chloroidium, Heterochlorella, Nannochloris, Stichococcus (Treboux-

iophyceae), Botrydiopsis (Xanthophyceae) and Chamaesiphon (Cyanobacte-

ria), however, cultivation failed for these organisms. In contrast, cultures were

established for the genera Chlorococcum, Heterotetracystis, Mychonastes, Neo-

cystis* (Chlorophyceae), Desmococcus*, Muriella*, Myrmecia* (Trebouxio-

phyceae) and Pleurochloris* (Xanthophyceae) which are missing in the rRNA

dataset. Five of these genera were not represented by 18S sequences in the

used database (asterisk).

68



CHAPTER 3. PAPER II 3.5. RESULTS
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Figure 5: Comparing the Arctic sample (NÅ) and the Antarctic BSC (Gr1) in

terms of identified total genera (grey) and genera belonging to either Klebsormidio-

phyceae (dark green), Chlorophyceae (green), Trebouxiophyceae (light green), Xan-

thophyceae (yellow) or Cyanobacteria (turquoise).

3.5.3 Site comparison

By comparing the Arctic and Antarctic crust samples we found 63 genera

that were shared between both locations (Figure 5). However, the BSC col-

lected from Svalbard, included 80 microalgae and Cyanobacteria which were

not shared with the Antarctic sample, although the sample from Livingston

Island contained 40 additional taxa. The genus Klebsormidium occurred at

both sites. The biggest portion of chlorophycean (28) and trebouxiophycean
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(16) genera was found in both samples. Regarding Xanthophyceae, both BSCs

contained 6 genera of which 3 were shared between sites. The analyses of the

Arctic and Antarctic samples revealed 67 and 16 cyanobacterial genera to be

present, respectively. An overlap of 15 cyanobacterial genera was detected.

3.6 Discussion

Overall, the molecular survey of the BSC samples revealed a higher degree of

genera richness for Chlorophyceae, Trebouxiophyceae and Cyanobacteria com-

pared to the culture and morphology based methodology. However, the rRNA

SSU identification did not recover all genera determined by light microscopy.

Regarding Cyanobacteria, the Arctic crust sample exhibited a much higher

variety compared to the sample collected at Livingston Island.

3.6.1 Assessment of microalgal and cyanobacterial gen-

era richness

The genus Klebsormidium (Klebsormidiophyceae) is typically found in BSC

communities and has been previously found to colonize soils of both Livingston

Island and Svalbard (Borchhardt et al., 2017b; Büdel, 2001; Kastovská et al.,

2005; Zidarova, 2008). Our metatranscriptomic analyses confirmed the pres-

ence of this streptophytic taxon in the Polar Regions, although Klebsormidium

was not identified by light microscopy in the sample collected from Livingston

Island.

Several chlorophycean genera were identified in both the Arctic and the

Antarctic samples by metatranscriptomic analysis: Ankistrodesmus, Chlamy-

domonas, Chloromonas, Coelastrella, Desmodesmus, Dictyococcus, Dunaliella,

Lobochlamys, Monoraphidium, Oedogonium and Scenedesmus. Coelastrella,

Desmodesmus and Lobochlamys were also found in Arctic culture isolates. All

the aforementioned genera are known to occupy terrestrial habitats from tem-

perate to cold climates (Borchhardt et al., 2017b; Borie and Ibraheem, 2003;

Büdel, 2001; Büdel et al., 2016; De Wever et al., 2009; Lürling, 2003; Matuła
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et al., 2007; Pushkareva et al., 2016; Schulz et al., 2016; Thorn and Lynch, 2007;

Tschaikner et al., 2007; Uzunov et al., 2008; Wu et al., 2016; Zidarova, 2008).

For Chlamydomonas, Chloromonas, Coelastrella and Monoraphidium, earlier

records exist confirming their occurrence in both Polar Regions, however, Dic-

tyococcus, Oedogonium and Scenedesmus have only been identified from Arctic

BSCs (Borchhardt et al., 2017b; Matuła et al., 2007; Pushkareva et al., 2016;

Zidarova, 2008). The genera Chlamydomonas, Coelastrella and Scenedesmus

were previously identified from Svalbard and Monoraphidium from Livingston

Island (Matuła et al., 2007; Pushkareva et al., 2016; Zidarova, 2008). Previ-

ous research, describing the genera Ankistrodesmus and Dunaliella in polar

habitats was not found, therefore, this is the first study which confirms their

presence in Svalbard and Livingston Island BSCs. Species of Chlorococcum

were found in culture isolates prepared from both the Arctic and Antarctic

BSCs as well as in the metatranscriptomic dataset generated from the NÅ

sample. Kastovská et al. (2005) also found Chlorococcum in close vicinity to

Ny-Ålesund and Borchhardt et al. (2017b) identified this genus from sam-

ples collected from Ardley and King George Island, Antarctica. The genus

Tetracystis was identified from both BSC communities. Based on morphology,

Tetracystis was found in the Arctic sample and metatranscriptomics confirmed

its presence in the BSC from Livingston Island. Evidence exists that suggests

Tetracystis colonizes the soil of Arctic and Antarctica ecosystems (Broady,

1986; Giełwanowska and Olech, 2012; Patova et al., 2015; Pushkareva et al.,

2016). The following eukaryotic algae were only identified in culture isolates:

Gloeocystis and Macrochloris were present in isolates from the Arctic while

Heterotetracystis and Mychonastes grew in the Antarctic enrichment cultures.

The genus Neocystis was found in both samples. For almost five genera their

presence in polar and alpine ecosystems has been reported previously (An-

dreyeva and Kurbatova, 2014; Borchhardt et al., 2017b; Lukešová et al., 2010;

Matuła et al., 2007; Patova et al., 2015; Pushkareva et al., 2016; Zidarova,

2008).
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Both the Arctic and Antarctic metatranscriptomic datasets and culture

isolates contained the trebouxiophycean genus Coccomyxa. Previous studies

also found that this genus is an inhabitant of Svalbard and Livingston Island

ecosystems (Matuła et al., 2007; Pushkareva et al., 2016; Zidarova, 2008). Coc-

comyxa has a ubiquitous distribution and exhibits an extraordinary versatility,

it occurs in terrestrial mats, in associations with soil, Fungi and bryophytes,

and is also planktonic in freshwater systems (Büdel, 2001; Darienko et al.,

2015; Peveling and Galun, 1976; Schmidle, 1901; Vogel, 1955). An ecophysio-

logical study on three Coccomyxa strains isolated from Antarctic BSC samples

points to pronounced cold and drought tolerance (Pfaff et al., 2016). Rivasseau

et al. (2016) even found a new species of Coccomyxa, C. actinabiotis, in the

cooling pool of a nuclear power plant. Thus, it is not surprising that mem-

bers of this genus can colonize the extreme habitats which prevail in the Polar

Regions. The green alga Elliptochloris generally occupies terrestrial habitats

and associates with Fungi to form lichens (Ettl and Gärtner, 2014). Further-

more, this genus was found in the Canadian Arctic and King George Island,

Antarctica (Borchhardt et al., 2017b; Pushkareva et al., 2016). Both method-

ologies that were used in this study confirm that Elliptochloris is present in

Svalbard and Livingston Island BSCs. In contrast, the genus Stichococcus was

found in both the Arctic and the Antarctic metatranscriptomic data and in iso-

lates from Livingston Island but not from Svalbard. This alga has often been

identified as a member of BSC communities (Kastovská et al., 2005). Differ-

ent species of Stichococcus have been previously found to colonize the soils of

both Livingston Island and Svalbard (Kastovská et al., 2005; Zidarova, 2008).

The green alga Prasiola, was identified through both the metatranscriptomic

and microscopic identification for Livingston Island terrestrial habitats. How-

ever, only the Arctic metatranscriptomes showed evidence for Prasiola species.

These findings are supported by a previous survey on species richness which

reported Prasiola from both Livingston Island and Svalbard (Matuła et al.,

2007; Zidarova, 2008). Based solely on the metatranscriptomic analysis, the

genera Chlorella, Chloroidium and Nannochloris were identified in both the
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Arctic and Antarctic BSC samples. Different species of Chlorella have been

previously isolated from Svalbard and Livingston Island (Matuła et al., 2007;

Pushkareva et al., 2016; Zidarova, 2008). Vishnivetskaya (2009) identified Nan-

nochloris in Siberian permafrost using molecular techniques, which suggests

that this alga can survive in extreme conditions. The genus Chloroidium has

been previously identified in BSCs, however, it has not been reported from

polar habitats so far (Schulz et al., 2016). Therefore, this study provides the

first molecular record of Chloroidium in Arctic and Antarctic ecosystems. The

presence of Lobosphaera in the Arctic and Antarctic BSC samples was sup-

ported by the morphological and metatranscriptomic identification. Addition-

ally, Giełwanowska and Olech (2012) identified Lobosphaera as a photobiont

of Antarctic lichens. Based on morphological identification, the genus Desmo-

coccus was found in BSC samples from both sites, Koliella was identified in

isolates from the Arctic, while Muriella and Myrmecia grew in the Antarctic

enrichment cultures. These findings are in accordance with previous studies

reporting the presence of these genera in polar and alpine habitats (Andreyeva

and Kurbatova, 2014; Borchhardt et al., 2017b; Czerwik-Marcinkowska et al.,

2015; Kawecka, 1986; Lukešová et al., 2010; Patova et al., 2015; Pushkareva

et al., 2016; Takeuchi, 2001; Zidarova, 2008).

The xanthophyte Heterococcus was identified by both techniques from the

Svalbard and Livingston Island samples. Pushkareva et al. (2016) and Borch-

hardt et al. (2017b) also identified this genus in BSCs collected in the Cana-

dian Arctic and King George Island, Antarctica. The genus Botrydiopsis is

also typically found in BSCs and was previously isolated from other Arctic and

Antarctic locations (Broady, 1976; Büdel, 2001; Pushkareva et al., 2016). Our

metatranscriptomic analyses support the presence of this xanthophycean alga

in the Polar Regions. However, it was identified by light microscopy only in the

sample collected from Livingston Island. On the other hand, the genera Pleu-

rogaster, Tribonema and Xanthonema were only present in isolates from the

Arctic, while Pleurochloris was identified in both samples by means of mor-

phological methods. Pleurochloris, Tribonema and Xanthonema have been
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previously found in polar and alpine ecosystems (Borchhardt et al., 2017b;

Matuła et al., 2007; Patova et al., 2015; Pushkareva et al., 2016; Zidarova,

2008). However, the genus Pleurogaster had previously only been isolated

from terrestrial habitats outside of polar regions (Stoyneva, 2000).

All metatranscriptomes and morphological analyses identified the cyanobac-

terial genera Leptolyngbya, Nostoc and Phormidium from Svalbard and Liv-

ingston Island samples, which was also reported by Pushkareva et al. (2016)

and Zidarova (2008), respectively. All genera occur in various climates and in

aquatic and terrestrial habitats (Büdel, 2001; Casamatta et al., 2005; Dojani

et al., 2014; Rippka et al., 1979). The cyanobacterium Microcoleus also has

a ubiquitous distribution, is often associated with BSCs and has been found

in both Arctic and Antarctic environments (Büdel, 2001; Pushkareva et al.,

2015). All metatranscriptomic datasets contained evidence of Microcoleus,

however, it was only identified from Svalbard through the morphological in-

vestigation. The genus Stigonema was identified from Svalbard through both

metatranscriptomic and morphological methods, which is in agreement with

other reports (Matuła et al., 2007; Pushkareva et al., 2015). However, in

contrast to our results Stigonema can also be found in Antarctic ecosystems

(Büdel, 2001). The cyanobacterial genera Calothrix, Chamaesiphon, Chroococ-

cidiopsis, Nodularia and Tolypothrix, typically found in soil biocenoses (Büdel,

2001; Wang et al., 2015), were identified in the Arctic and the Antarctic sam-

ple using metatranscriptomics. Earlier studies, assessing the species richness

of aeroterrestrial algae from Svalbard, recorded all of these genera (Matuła

et al., 2007; Pushkareva et al., 2016, 2015).

Interestingly, the Arctic crust community exhibited higher cyanobacterial

genus richness than the BSC from Livingston Island, while the genus richness of

eukaryotic algae was similar. Our morphological and molecular analyses found

only 16 different genera of Cyanobacteria in the Antarctic sample compared

to 67 in the Arctic. BSCs develop over time and undergo changes in species

composition (Büdel et al., 2009). Early successional stages of BSCs are usually

dominated by Cyanobacteria, however, bryophytes, lichens and/or liverworts
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may become the dominant groups in many ecosystems (Büdel et al., 2009).

Thus, differences in cyanobacterial genus richness may be explained by the

different developmental stages of the communities. Furthermore, Williams

et al. (2017) reported a lower abundance of cyanobacterial crusts on Livingston

Island than at Ny-Ålesund, Svalbard. Our observation might also be linked to

the reduced occurrence of Cyanobacteria in these soil communities which was

previously reported by Colesie et al. (2014a,b).

3.6.2 Methodological differences and difficulties

The identification of microalgae through metatrancriptomics yielded a higher

number of genera compared to the morphological determination of cultivated

and directly observed organisms. This is an indication for the lack of cultur-

ability of most microorganisms associated with BSCs (Massana et al., 2014;

Schloss and Handelsman, 2005; Shi et al., 2009; Ward et al., 1990). The suc-

cessful cultivation of microalgae is highly dependent on the applied growth

conditions including temperature, irradiance and culture medium (Bold, 1942;

Hoham, 1975; Singh and Singh, 2015; Wu et al., 2016). For example, Hoham

(1975) tested various cryophilic algae, isolated from alpine habitats in Wash-

ington, USA, and discovered that Chloromonas pichinchae reached the highest

growth rate at 1◦C while Cylindrocystis brébissonii grew fastest at 10◦C. There-

fore, the genus Chloromonas might have been inhibited during our culturing

procedure due to unsuitable temperatures. Regarding the growth medium,

one single solution, that is suitable for all algae and Cyanobacteria, does not

exist (Bold, 1942; Lee et al., 2014). Even though the medium, used to estab-

lish the enrichment cultures, was optimized for a broad range of algae, certain

strains may not exhibit growth due to individual nutrient requirements. Some

species of the genus Dunaliella, for example, prefer higher salt concentrations

compared to other algae (Oren, 2005). The salt concentrations of Bold’s Basal

Medium, used to establish the enrichment cultures, could have been too low

to enable the growth of Dunaliella. Similar reports exist for the cyanobac-

terium Chroococcidiopsis. Different strains of Chroococcidiopsis, isolated from
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different habitats, exhibited growth only if the medium was supplied with

the appropriate amount of sea salt (Cumbers and Rothschild, 2014). However,

growth parameters and culture medium determine the culturability of microor-

ganisms only to a certain extent. For many organisms, especially algae, the

co-cultivation of certain helper organisms (other algae, bacteria etc.) is es-

sential for growth and development (Jones et al., 1973; Sanders et al., 2001;

Vartoukian et al., 2010). Some Cyanobacteria, which form symbioses with eu-

karyotic algae, fail to grow in the absence of their partner (Thompson et al.,

2012). It is likely that quorum sensing plays an important role for these biotic

interactions as certain signal molecules from one organism influence growth

and development of another (Poonguzhali et al., 2007; Williams, 2007). Chi

et al. (2017) studied the marine bacterium Ponticoccus sp. PD-2 and how

it controls the growth of the dinoflagellates Alexandrium tamarense, Proro-

centrum donghaiense and the haptophyte Phaeocystis globosa. Although this

clear indication of microalgae interacting with other microbes exists, hardly

anything is known about the underlying mechanisms. BSCs are complex bio-

coenoses with many dependencies and co-dependencies which are not yet fully

understood.

Another potential problem when comparing morphological and molecular

methodologies is the false identification of taxa due to ambiguous morpho-

logical traits (Hodač et al., 2016; Wu et al., 2001). Some genera, such as

Chlorella, are difficult to identify as their morphological characters are limited

and changeable depending on environmental conditions (Bock et al., 2011;

Hodač et al., 2016). This might be one possible explanation why the meta-

transcriptomic data confirmed the presence of Chlorella in the Arctic and the

Antarctic sample but the morphology based identification did not. However, it

is more likely that the spatial heterogeneity of the sample replicates collected

for molecular and light microscopic analysis caused some of the differences

(Concostrina-Zubiri et al., 2013; Kim et al., 2015). A clear indication of het-

erogeneity is the differing results observed for the replicates of the same site

in the molecular analysis. For example, the genera Coelastrella, Chlorococcum
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and Chloromonas were found in one, two and three replicates of the Arctic

metatranscriptome, respectively. Furthermore, the high standard deviation of

the averaged genera number for the molecular dataset of the Arctic BSC sug-

gests sample heterogeneity. Differences in taxonomic determination may also

arise due to a lack of consensus in the algal taxonomy. Many species concepts

are still being revised based on molecular analyses rendering an unambiguous

morphological identification difficult (Champenois et al., 2015; Kawasaki et al.,

2015; Škaloud et al., 2016; Stoyanov et al., 2014). The genus Leptolyngbya, for

example, was revealed to be heterogeneous and only recently split up into 15

new genera (Komárek, 2016).

Finally, we came across a number of genera which could be identified by

light microscopy but not by the analysis of the rRNA SSU sequences. Regard-

ing the genera Gloeocystis, Macrochloris, Neocystis, Desmococcus, Muriella,

Myrmecia, Pleurochloris and Pleurogaster, the corresponding 18S sequences

were missing from the database utilized in the course of identification. Incom-

plete and wrongly annotated references are a major problem when perform-

ing molecular analyses of any kind and impair the correct determination of

genera in environmental samples (Klimke et al., 2011; Taberlet et al., 2012).

The microbial dark matter, meaning the total of unculturable microorganisms,

complicates this matter even more (Solden et al., 2016). However, by study-

ing metagenomics, metatranscriptomics and single cell genomics researchers

can overcome the limit of culturability and supply the databases with novel

sequences (Solden et al., 2016). A number of algae, such as Chlorococcum,

Heterotetracystis, Mychonastes, Tetracystis, Koliella, Lobosphaera, Tribonema

and Xanthonema, were isolated from the BSC samples and were included in

the reference database, used for this study. However, they were not detected in

the metatranscriptomes. One possible explanation is the spatial heterogeneity

of the sample replicates (Concostrina-Zubiri et al., 2013; Kim et al., 2015).

Furthermore, these organisms may have been inactive during sampling and

were therefore undetectable during total RNA analysis (Geisen et al., 2015).

Many algae are known to develop resting cells to survive unfavorable conditions
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such as drought (Holzinger and Karsten, 2013; Li et al., 2015). Li et al. (2015)

identified 35 different algae in resting stages; among them Chlorococcum which

surrounds resting cells with a thin layer of mucus. A species of Mychonastes,

M. desiccatus, may produce desiccation-resistant cysts if dried out (Margulis

et al., 1988). Massalski et al. (1994) isolated Lobosphaera from King George

Island, Antarctica, and studied its ultrastructure. The alga, colonizing vol-

canic rocks, was able to produce resting cysts with thickened cell walls to

outlast detrimental conditions. Similar observations were made for Tribonema

bombycinum which produced akinetes in response to starvation (Nagao et al.,

1999). Our crust samples were collected in rather extreme habitats exhibiting

low temperatures, high irradiance or complete darkness and low water avail-

ability throughout the year resulting in a hostile environment (Thomas et al.,

2008a). Thus, the absence of certain genera in the molecular datasets might

be attributed to the occurrence of resting stages, which likely occur under the

conditions prevailing at Svalbard and Livingston Island.

3.7 Conclusion

BSCs represent an important part of polar ecosystems and serve as indicators

for ecological health and climate change. Thus, these complex communities

need to be closely examined in order to gain insights into not only taxon-

omy but also physiological plasticity and functionality. This study focused

on comparing methodologies to analyze the genus richness of these interesting

biocoenoses. Cultivating microorganisms, present in the BSC, combined with

light microscopy offers individual analysis of certain organisms while meta-

transcriptomics enables investigation of the whole genera richness within the

crust. The selection of one or the other technique should be based on the

individual research focus as both come with certain benefits, as well as costs.

The isolation of microorganisms and establishment of cultures enables detailed

investigations and follow-up experiments on the isolated algae. However, un-

culturable genera will be neglected. In contrast, molecular surveys are always
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dependent on appropriate and complete reference datasets as it is difficult to

correctly annotate taxa which are absent from, or misidentified in the database.

Moreover, PCR biases and sequencing errors may falsify the results. In our

opinion, the combination of both approaches will generate reliable results of

higher quality. Thus, we recommend conjoined studies to validate findings and

maximize outcome.
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4.1 Abstract

Biological soil crusts (BSCs) are amalgamations of autotrophic, heterotrophic

and saprotrophic organisms. In the Polar Regions, these unique communi-

ties occupy essential ecological functions such as primary production, nitrogen

fixation and ecosystem engineering. Here we present the first molecular sur-

vey of BSCs from the Arctic and Antarctica focused on both eukaryotes and

prokaryotes as well as passive and active biodiversity. Considering sequence

abundance, Bryophyta is among the most abundant taxa in all analyzed BSCs

suggesting that they were in a late successional stage. In terms of algal and

cyanobacterial biodiversity, the genera Chloromonas, Coccomyxa, Elliptochlo-

ris and Nostoc were identified in all samples regardless of origin confirming

their ubiquitous distribution. For the first time, we found the chrysophyte

Spumella to be common in polar BSCs as it was present in all analyzed sam-

ples. Co-occurrence analysis revealed the presence of sulfur metabolizing mi-

crobes indicating that BSCs also play an important role for the sulfur cycle. In

general, phototrophs were most abundant within the BSCs but there was also

a diverse community of heterotrophs and saprotrophs. Our results show that

BSCs are unique microecosystems in polar environments with an unexpectedly

high biodiversity.

4.2 Keywords

Biological soil crust, algae, terrestrial Cyanobacteria, Bryophyta, Svalbard,

Livingston Island

4.3 Introduction

Biological soil crusts (BSCs) are the dominant primary producers in polar

deserts of the Arctic and Antarctica (Borchhardt et al., 2017b; Colesie et al.,

2014; Williams et al., 2017; Yoshitake et al., 2010). The extreme conditions

prevailing in these ecosystems limit the occurrence of vascular plants (Pointing
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et al., 2015; Thomas et al., 2008a,b). Instead, BSCs cover the ground, e.g. up

to 90% at Arctic Svalbard, adopting various important ecological roles such as

primary production (Williams et al., 2017). The diazotrophic microbes inhab-

iting BSCs fix dinitrogen from the atmosphere and make it available to other

organisms (Belnap, 2003; Maier et al., 2016; Yoshitake et al., 2010). Certain

BSC species grow in filaments or sheaths, while others excrete extracellular

polymeric substances forming a soil binding matrix and, thus, stabilize the

soil and prevent erosion and cryoturbation (Belnap et al., 2001a; Evans and

Johansen, 1999; Gold and Bliss, 1995). BSCs are ecosystem engineers that

develop the soil by increasing its moisture and nutrient content (Belnap, 2006;

Bowker et al., 2006; Evans and Johansen, 1999; Pointing and Belnap, 2012).

These processes have a positive effect on seed germination and plant growth

which in turn promotes biodiversity (Belnap et al., 2001a; Breen and Lévesque,

2008; Evans and Johansen, 1999). Furthermore, BSCs are food resources for

higher trophic levels (Cooper and Wookey, 2001; Devetter et al., 2017; Guan

et al., 2018).

BSC communities are complex microecosystems comprised of autotrophs,

heterotrophs and saprotrophs, all of which can be prokaryotic or eukaryotic

(Belnap et al., 2001a, 2016). Cyanobacteria, eukaryotic algae and lichens as

well as Bryophyta and Marchantiophyta build the basis of BSCs as they are

able to fix carbon into organic compounds (Belnap et al., 2001a; Belnap and

Lange, 2001; Yoshitake et al., 2010). Cyanobacterial genera that typically oc-

cur in BSCs are Chroococcus, Gloeocapsa, Leptolyngbya, Microcoleus, Nostoc,

Phormidium and Scytonema (Büdel et al., 2016; Hoffmann, 1989; Pushkareva

et al., 2016; Zidarova, 2008). Algal taxa commonly found in these communities

are members of the Klebsormidiophyceae, Zygnematophyceae (Streptophyta),

Chlorophyceae, Trebouxiophyceae, Ulvophyceae (Chlorophyta), Diatomea, Eu-

stigmatophyceae and Xanthophyceae (Ochrophyta) (Büdel et al., 2016; Hoff-

mann, 1989; Pushkareva et al., 2016; Zidarova, 2008). Typical prokaryotic

taxa, representing heterotrophic BSC members, are Archaea and the bacterial

phyla Acidobacteria, Actinobacteria and Proteobacteria (Maier et al., 2016).
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On the other hand, eukaryotic heterotrophs present in BSCs are Ascomycota

and Hyphomycetes as well as Bilateria and the taxonomically diverse Protozoa

(Darby and Neher, 2016; Fiore-Donno et al., 2017; Maier et al., 2016; Soule

et al., 2009). Certain Bacteria, Fungi and Bilateria are decomposers closing

the nutrient cycle (Darby and Neher, 2016; Hendriksen, 1990).

Establishing and developing BSC communities depends on several biotic

and abiotic factors such as pedological properties and climate (Belnap, 2006;

Büdel et al., 2009; Elster et al., 1999; Pushkareva et al., 2016). Initially,

Cyanobacteria colonize the barren soil forming the basis of BSCs that are sub-

sequently populated by algae, lichens, mosses and liverworts (Belnap, 2006;

Belnap et al., 2008; Büdel et al., 2009). Polar BSCs are generally dominated

by lichens, mosses and liverworts in later successional stages (Belnap, 2006).

Despite the resilience of these unique biocoenoses to extreme abiotic stress,

climate change is a major threat to BSCs as it can dramatically affect their

composition and abundance (Evans and Lange, 2001; Johnson et al., 2012; Ze-

likova et al., 2012). Increased temperatures and irradiance as well as altered

precipitation patterns in the Arctic and Antarctica are expected to change

the species diversity and community structure of BSCs by an invasion of for-

eign species (Chown et al., 2012; Evans and Lange, 2001; Lee et al., 2017;

Pushkareva et al., 2016). Hence, the investigation and monitoring of BSCs,

one of the key players in polar desert ecosystems, is essential to evaluate and

even predict the effects of the ongoing climate change.

According to Elster et al. (1999) there is only a small number of studies

focusing on terrestrial compared to the aquatic microalgal flora in the Polar

Regions. To contribute new insights into the microalgal and cyanobacterial

diversity, we performed a comprehensive metabarcoding survey on BSCs from

Svalbard, Norway, and Livingston Island, Antarctic Peninsula. As general

prokaryotic and eukaryotic markers (16S and 18S rRNA gene) were used to

study these biocrust isolates, other organism groups, such as bryophytes, were

covered as well. The prepared amplicon pools were sequenced together with a

mock community which served as an intrinsic control. The generated data was
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also used to identify influential abiotic parameters and co-occurrence patterns.

Furthermore, these results complement the morphological, molecular and eco-

logical studies of Borchhardt et al. (2017a), Rippin et al. (2018) and Williams

et al. (2017), respectively.

4.4 Material and methods

4.4.1 BSC sampling

BSC samples were collected from the Arctic Svalbard, Norway, and Livingston

Island, Antarctic Peninsula, in August 2014 and January 2015, respectively

(refer to Borchhardt et al. (2017a) and Williams et al. (2017) for details). Both

islands are located in the polar tundra zone according to the Köppen-Geiger

classification system (Pereira et al., 2006; Vogel et al., 2012). Details on the

individual samples are given in Table 1, while images of the analyzed BSCs

and the corresponding sampling sites are depicted in Figure 1. The nucleic

acid content of the BSC samples was preserved using the LifeGuardTM Soil

Preservation Solution (MO BIO Laboratories, Carlsbad, CA, USA) according

to the manufacturer’s instructions and stored at −80◦C.

4.4.2 Algal cultivation

To establish a mock community (MC), the following algal strains were retrieved

from the Culture Collection of Algae at the University of Cologne: Chlorella

sorokiniana (CCAC 5791), Chlorococcum sp. (CCAC 3846 B), Chloromonas

vacuolata (CCAC 2316), Gloeocystis sp. (CCAC 4293 B), Microthamnion

kuetzingianum cf. (CCAC 5521 B), Oocystis sp. (CCAC 1782 B), Stichococcus

bacillaris (CCAC 1896 B), Zygnema sp. (CCAC 1384 B). Klebsormidium

crenulatum (SAG 2415) was obtained from the Culture Collection of Algae

at Goettingen University. Chlamydomonas reinhardtii (CC3395) was taken

from the stock commonly used in our lab. All algae, except C. reinhardtii,

were cultivated in liquid Waris-H medium (McFadden and Melkonian, 1986)
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Table 1: Sampling Locations. BSCs were collected from the Arctic Svalbard, Nor-

way (BG, ED, NÅ, TD), and Livingston Island, Antarctic Peninsula (JC). Sampling

location and the corresponding coordinates as well as previous studies, which were

focused on samples from the same sites, are included.

Sample Sampling location Coordinates Publications

BG Breinosa Gruve 7, close

to Longyearbyen, Sval-

bard, Norway

78.1485000 N

16.0481500 E

Borchhardt et al.

(2017a); Williams

et al. (2017)

ED Endalen, close to

Longyearbyen, Sval-

bard, Norway

78.1863400 N

15.7610330 E

Borchhardt et al.

(2017a); Williams

et al. (2017)

JC Spanish Juan Carlos I

Antarctic Base, Antarc-

tic Peninsula

62.6653889 S

60.3952200

W

Rippin et al. (2018);

Williams et al. (2017)

NÅ Ny-Ålesund, Svalbard,

Norway

78.9233167 N

11.9245833 E

Borchhardt et al.

(2017a); Rippin et al.

(2018); Williams et al.

(2017)

TD Todalen, close to

Longyearbyen, Sval-

bard, Norway

78.9233167 N

11.9245833 E

Borchhardt et al.

(2017a)

at 20◦C and 60 μmol photons m-2 s-1 with an light:dark cycle of 14:10 h. C.

reinhardtii was grown in TAP medium (Gorman and Levine, 1965) using the

same temperature and light settings.

4.4.3 Nucleic acid extraction and amplification

Total nucleic acids were extracted from the BSC samples (all in triplicates,

except NÅ which was only one sample) using the cetyltrimethylammonium

bromide protocol according to Rippin et al. (2016) with several modifications:

The LifeGuardTM Soil Preservation Solution was not removed prior to the ex-
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(a) (b) (c) (d) (e)

100 km

(f)

NÅ

BG
ED
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ANTARCTICAANTARCTICA
10 km

(g)

JC

Figure 1: BSC samples and locations. Images of the sampled BSCs BG (a), ED

(b), JC (c) NÅ(d) and TD (e). BG, ED and TD were collected in close vicinity to

Longyearbyen, while NÅ was isolated from Ny-Ålesund as indicated on the map (f).

JC was sampled at Livingston Island close by the Spanish Juan Carlos I Antarctic

Base (g). (photos courtesy of N. Borchhardt & C. Colesie, maps were created with

snazzymaps.com)

traction and the aqueous phase, retained after the second chloroform washing

step, was further processed using the peqGOLD Plant RNA Kit (peqlab/VWR

International, Erlangen, Germany) according to the manufacturer’s instruc-

tions.

To obtain DNA, the extract was treated with RNase A (Thermo Fisher

Scientific, Waltham, MA, USA) as suggested in the manual and purified using

the illustra MicroSpin S-400 HR Columns (GE Healthcare, Little Chalfont,

UK).

RNA based metabarcoding was only performed for the samples NÅ and

JC as the sampling sites are most comparable in terms of climate (seaside,
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similar precipitation patterns etc.). RNA was purified by DNA removal using

DNase I (Thermo Fisher Scientific, Waltham, MA, USA) according to the

manufacturer’s protocol. cDNA synthesis was performed using the Revert

Aid H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,

Waltham, MA, USA).

The extraction of DNA from all cultivated algae except K. crenulatum was

carried out using the DNeasy Plant Kit (Qiagen, Hilden, Germany) follow-

ing the manufacturer’s protocol. The harvested filaments of K. crenulatum

were processed using a modified version of the cetyltrimethylammonium bro-

mide protocol described by Rippin et al. (2016). After the second chloroform

washing step, the upper phase was collected. The DNA was precipitated with

isopropanol at −20◦C for at least 1 h. After a washing step with 75% ethanol,

the DNA was eluted in RNase-free water.

Amplicons were generated for all triplicates (for NÅ three technical repli-

cates were produced) using the Kapa HiFi HotStart DNA Polymerase (Roche,

Basel, Switzerland). To analyze the eukaryotic diversity, we targeted the ri-

bosomal small subunit (SSU) V4 region with the universal eukaryotic primers

TAReuk454FWD1 (5’-CCAGCASCYGCGGTAATTCC-3’) and TAReukREV3

(5’-ACTTTCGTTCTTGATYRA-3’) designed by Stoeck et al. (2010) (Ampli-

con size≈ 380 bp). Similarly, the prokaryotic 16S rRNA gene V2-V3 region was

amplified using the universal primers 104F (5’-GGCGVACGGGTGMGTAA-

3’) and 515R (5’-TTACCGCGGCKGCTGGCAC-3’) taken from Lange et al.

(2015) (Amplicon size ≈ 400 bp). The eukaryotic amplicons of the BSC sam-

ples were amplified employing the following protocol: an initial denaturation

step at 95◦C for 3 min and 25 3-step cycles at 98◦C for 20 s, at 49◦C for 15

s and 72◦C for 35 s were followed by a final elongation at 72◦C for 1 min.

The prokaryotic target was amplified in a similar way, however, the 25 cycles

included 20 s at 98◦C, 10 s at 65◦C and 15 s at 72◦C. Each template was am-

plified three times (NÅ was amplified nine times) with each primer pair and

these triplicates were pooled in an equimolar manner to minimize PCR bias.

For the mock community, the templates, obtained from the cultivated algae,
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the bryophyte Physcomitrella patens and the liverwort Marchantia polymor-

pha (both supplied by O. Artz, AG Höcker, Botanical Institute, University of

Cologne), were only targeted with eukaryotic primers and the PCR protocol

consisted of 30 cycles of 20 s at 98◦C, 15 s at 51.8◦C and 35 s at 72◦C. All PCR

products were purified using the Agencourt R© AMPure R© XP system (Beckman

Coulter, Brea, CA, USA) according to the manufacturer’s protocol.

4.4.4 Library preparation and sequencing

The eukaryotic amplicons of the cultivated algae, P. patens and M. polymor-

pha were quantified, using the Qubit (Thermo Fisher Scientific, Waltham,

MA, USA), and combined in equimolar portions to yield a mock community

(MC). This synthetic community was only prepared for the eukaryotic barcode

as it was used to minimize sequencing bias and to adjust the bioinformatic

pipeline. All BSC amplicons and MC were subjected to A-tailing using the

DreamTaq DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA).

Subsequently, libraries were prepared employing the Qiagen QIAseq 1-Step

Amplicon Library Kit (Qiagen, Hilden, Germany). The libraries were multi-

plexed and sequenced on the Illumina MiSeq platform (300 bp, paired-end) at

the MPI for Plant Breeding Research, Cologne.

4.4.5 Bioinformatic pipeline

The demultiplexed raw reads were quality checked with VSEARCH 2.4 (Rognes

et al., 2016) and read pairs with a minimal overlap of 100 bp and a minimum

Phred score of 33 were merged with PEAR 0.9.10 (Zhang et al., 2014). Sub-

sequently, primer sequences and sequences containing ambiguous bases were

removed and all sequences were dereplicated using VSEARCH. After pool-

ing all samples, clustering of operational taxonomic units (OTUs) was per-

formed using Swarm 2.1.13 (Mahé et al., 2014, 2015) with flag d = 1. Chimera

detection was carried out with UCHIME (Edgar et al., 2011), integrated in

VSEARCH, and taxonomic annotations were assigned employing blastn 2.3
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Table 2: Environmental parameters at the Arctic sampling sites. Precipitation of

the Arctic sampling sites as well as chemical parameters (C = carbon, N = nitrogen,

S = sulfur, P = phosphorus) of the soil underneath the sampled Arctic BSCs taken

from Borchhardt et al. (2017a) (BG = Berg, ED = EiE, NÅ = NA, TD = TD).

Sample Precipitation

[mm/a]

C

[g/kg]

N

[g/kg]

S

[g/kg]

Total P

[mg/kg]

Water-

extractable

P [mg/kg]

BG 205 26 1.9 0.8 461.9 4.5

ED 205 331.6 9.6 4.9 395 4.4

NÅ 471 17 1.4 0.5 169.1 5.5

TD 205 296.2 12.1 6.4 515.9 108.1

(Altschul et al., 1990) with an E-value of E-10 and the Silva SSURef database

128 (Quast et al., 2013). Finally, an OTU table was constructed by running the

script OTU_contingency_table.py which is part of the SWARM package. All

chimeric OTUs and OTUs shorter than 300 bp or with less than 72 reads were

filtered out. Additionally, a read count threshold of 6 was applied. Rarefac-

tion (Hurlbert, 1971) and MDS plots (Bray and Curtis, 1957; Jaccard, 1912)

were produced with the vegan package 2.4.4 in R (Oksanen et al., 2017). The

MDS plots were based on the Bray-Curtis dissimilarity index and generated

individually for the prokaryotic and the eukaryotic dataset. Furthermore, the

package was used to calculate the Shannon, Simpson and Inverse Simpson in-

dex. Moreover, environmental vectors (the values for each parameter in Table

2 were retrieved from Borchhardt et al. (2017a)) were fitted onto ordination

(MDS based on the Jaccard index) using the squared correlation coefficient r2

and require 999 permutations. The R package metagenomeSeq 1.16 (Paulson

et al., 2013) was used for several different tasks: Read count normalization

employing the CSS method; OTU heat map plotting of all replicates including

only the 1,000 OTUs with the largest overall variance; differential abundance

testing considering only groups with a fold change of more than 4 and a false

discovery rate of less than 0.001. Based on the Spearman correlation coeffi-
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cient (Spearman, 1904), co-occurrence patterns were analyzed by running the

modified scripts co_occurrence_pairwise_routine.R and edgelist_creation.R

written by Williams et al. (2014). The analysis was based on prokaryotic

orders and eukaryotic classes, as far as applicable, and the Spearman coeffi-

cient cutoff was set to 0.75. All scripts and auxillary files can be accessed via

github (https://github.com/Klebsi/BSC_Amplicon). All raw sequences were

submitted to the NCBI Sequence Read Archive (SRA) under the Bioproject

PRJNA415906.

4.5 Results

4.5.1 Sequencing outcome, OTU table and mock commu-

nity

The sequencing produced a total of 21,530,106 paired-end reads. After quality

filtering and removing 245,825 potential chimeras, 9,978,488 merged sequences

remained and were clustered into 9,062 OTUs. On average, each sample con-

tained 230,814 sequences and 1,084 OTUs. Read and OTU counts for the

individual sample replicates are summarized in Table S1. By means of rarefac-

tion sampling, we found that all replicates, except one eukaryotic RNA derived

JC replicate, reached saturation (Figure S2). This JC replicate also exhibited

a low read count (530 reads after clustering and filtering, Table S1) and was

subsequently removed from the analysis. For the remaining BSC samples, we

were able to recover the full prokaryotic and eukaryotic diversity within the

limits of our methodology.

A mock community (MC), consisting of ten different eukaryotic microalgae,

a bryophyte and a liverwort, was included in the sequencing run to adjust

the bioinformatic pipeline. We ended up with 12 OTUs with 8.3 ± 0.7%

relative abundance each after aggregation according to taxonomic affiliation

and normalization (Figure S3). Furthermore, the taxonomic annotation of

each OTU corresponded to one of the used organisms.
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Figure 2: Biodiversity analysis. α-diversity indices (Shannon, Simpson, Inverse

Simpson) of the eukaryotic (a) and prokaryotic (b) amplicon dataset given as box

plots.

The heatmap in Figure S4a shows that the samples cluster in two main

groups, the eukaryotic replicates on the left and the prokaryotic on the right.

Furthermore, MDS plots were produced revealing that one replicate of the

eukaryotic DNA derived JC sample (Figure S4b) and one of the prokaryotic

TD sample (Figure S4c) were clear outliers in both analyses. Hence, they were

subsequently removed.

4.5.2 BSC Biodiversity

Biodiversity of the different BSC samples was measured by calculating Shan-

non, Simpson (1-D) and Inverse Simpson (1/D) indices. The individual indices

ranged from approximately 2 to 5, 0.7 to 0.99 and 3 to 65 for Shannon, Simpson

and Inverse Simpson, respectively (Figure 2). Overall, the eukaryotic biodiver-

sity (Figure 2a), as measured by these indices, had a lower range compared to

the prokaryotic diversity (Figure 2b). The RNA derived NÅ amplicon exhib-

108

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiy036#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiy036#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiy036#supplementary-data


CHAPTER 4. PAPER III 4.5. RESULTS

(a)

(c)

(b)

(d)

DNA

RNA

B
G

E
D

J
C

N
Å

T
D

M
C

Verrucomicrobia

TM6 (Dependentiae)

Saccharibacteria

Proteobacteria

Planctomycetes

Latescibacteria

Ignavibacteriae

Gemmatimonadetes

Firmicutes

FBP

Deinococcus−Thermus

Cyanobacteria

Chloroflexi

Chlorobi

Bacteroidetes

Armatimonadetes

Actinobacteria

Acidobacteria

SAR

Opisthokonta

Incertae Sedis

Excavata

Cryptophyceae

Archaeplastida

Amoebozoa

Other

Trebouxiophyceae

Tracheophyta

Marchantiophyta

Chlorophyceae

Bryophyta

Stramenopiles

Rhizaria

Alveolata

Relative abundance [%]9070503010

Figure 3: Relative taxonomic abundance. Relative abundance of eukaryotic (a)

and prokaryotic phyla (b) and taxonomic groups within Archaeplastida (c) and SAR

(d). For Chloroplastida, groups with a relative abundance of less than 1% were

summarized as "Others". Relative abundance is given as bubble size and SD as

rings.

ited the highest mean values across all eukaryotic indices. DNA derived from

TD and NÅ showed the highest average indices among the prokaryotic indices.

The bubble plots in Figure 3 depict the relative abundances, meaning

the percentage of sequences per OTU, of eukaryotic phyla, other lower taxo-

nomic categories within Archaeplastida and SAR as well as prokaryotic phyla.

All samples exhibited similar patterns for the relative abundances of the tar-

geted taxonomical groups with minor differences. The most abundant eukary-

otic phyla were Archaeplastida, Opisthokonta and the supergroup SAR (Figure

3a). Within the the Archaeplastida, Bryophyta were most dominant, while Tre-
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Figure 4: Algal and cyanobacterial diversity. Venn diagrams depicting how

many OTUs, belonging to the Klebsormidiophyceae, Zygnematophyceae, Chloro-

phyceae, Trebouxiophyceae, Chrysophyceae, Diatomea, Eustigmatophyceae, Xantho-

phyceae (Eukaryota) and Cyanobacteria (Bacteria), were shared between the DNA

derived amplicons. Zeros are not displayed for better comprehension.

bouxiophyceae and Marchantiophyta were the second and third most abundant

taxa (Figure 3c). The relative abundances of the taxa Stramenopiles, Alveo-

lata and Rhizaria within the SAR supergroup were in similar ranges (Figure

3d). Cyanobacteria and Proteobacteria were the most abundant prokaryotic

phyla in all samples (Figure 3b). Furthermore, Acidobacteria, Actinobacteria,

Bacteroidetes, Gemmatimonadetes and Verrucomicrobia were also dominant

in the analyzed BSCs.

In Figure 4, the distribution of selected OTUs among the analyzed

DNA derived samples is presented. The taxa Chlorophyceae, Trebouxiophyceae,

Chrysophyceae and the phylum Cyanobacteria were present in all BSC sam-
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ples, while Klebsormidiophyceae, Ulvophyceae and Xanthophyceae were absent

from BG, Zygnematophyceae were missing in ED, JC and TD, JC was lacking

Diatomea and Dinophyceae and Eustigmatophyceae were only found in NÅ

and TD. The highest diversity was found within the Chlorophyceae, Treboux-

iophyceae and Cyanobacteria.

BSC samples collected from the same spots were analyzed previously. Mor-

phological identification of Klebsormidiophyceae, Zygnematophyceae, Chloro-

phyceae, Trebouxiophyceae, Eustigmatophyceae and Xanthophyceae was per-

formed for BG, ED, NÅ and TD by Borchhardt et al. (2017a). Rippin et al.

(2018) published the morphological identification of the same algal taxa and

Cyanobacteria for JC and NÅ. Additionally, the authors used the full SSU

rRNA gene assembled from metatranscriptomes for the identification of Kleb-

sormidiophyceae, Zygnematophyceae, Chlorophyceae, Trebouxiophyceae, Ulvo-

phyceae, Dinophyceae, Chrysophyceae, Diatomea, Eustigmatophyceae, Xantho-

phyceae and Cyanobacteria. Both methodologies and the results presented in

this study confirm the presence of Klebsormidium, Stichococcus and Micro-

coleus in NÅ, Prasiola and Heterococcus in JC as well as Coccomyxa, Ellip-

tochloris, Leptolyngbya, Nostoc and Phormidium in both samples (Table S5).

In addition, amplicon sequencing found the genera Chloromonas, Coccomyxa,

Elliptochloris, Spumella and Nostoc to be present in all analyzed BSCs. In

total, morphological identification and the amplicon data shared 32 genera

across all samples (excluding Ulvophyceae, Dinophyceae, Chrysophyceae and

Diatomea), while the two molecular techniques (amplicon, metatranscriptome)

concordantly confirmed 40 genera within NÅ and JC (including Ulvophyceae,

Dinophyceae, Chrysophyceae and Diatomea).

4.5.3 Passive vs. active community

DNA and RNA derived amplicons were prepared for the Arctic NÅ and the

Antarctic JC to compare passive and active biodiversity. These amplicons

shared a total of 473 and 665 OTUs for JC and NÅ, respectively (Figure 5).

Moreover, the RNA derived amplicons contained more unique OTUs (JC: 47,
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Figure 5: Comparison of DNA- and RNA-derived amplicons. OTUs shared between

the DNA and RNA amplicons of sample JC (green shades) and NÅ (blue shades).

NÅ: 127) than the DNA derived ones (JC: 37, NÅ: 107). Concerning biodiver-

sity indices, NÅ exhibited significant differences (p < 0.001) in the Shannon

and Inverse Simpson index for the eukaryotic and prokaryotic communities

between the DNA and RNA derived amplicons.

The BSC samples JC and NÅ were tested for differential abundance com-

paring DNA and RNA derived amplicons. NÅ exhibited changes in abundance,

while JC did not. For NÅ, we observed an abundance increase in Bacteroidetes

and Cyanobacteria, and a decrease in Verrucomicrobia, Archaeplastida and

Opisthokonta (Figure 6). While Bryophyta became less abundant in the RNA

derived dataset, uncultured Cyanobacteria, e.g. Nostoc, and two Diatomea

(Amphora, Stauroneis) occurred more frequently.

4.5.4 Co-occurrence patterns

Testing the collected BSC samples for co-occurrences revealed a total of six

clusters, three solely prokaryotic (II, III, VI) and three mixed ones (I, IV, V;

Figure 7). A cluster was defined as a connected network of nodes with at least
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Figure 6: Differential abundance analysis. Differential abundance heat map of

sample NÅ comparing DNA and RNA amplicons. The analysis was carried out at

different taxonomic levels which were based on the classification according to the

Silva database.

one node that has three edges. Cluster I is the biggest consisting of 40 nodes,

24 eukaryotic and 16 prokaryotic. The taxa with the most links are Arbo-

ramoeba, Eustigmatophyceae, Hyphochytriomycetes, Malawimonadea, Polytri-

chopsida (Eukaryota), Bacteroidales, Chroococcales, Gloeobacterales, Desul-

furellales, Desulfuromonadales, Ignavibacteriales and Rubrobacterales (Prokary-

ota). Interestingly, cluster V contains four classes of eukaryotic algae, which

appear to be co-occurring: Chlorophyceae, Klebsormidiophyceae, Trebouxio-

phyceae and Xanthophyceae.

4.5.5 Influence of environmental parameters

The relationship of OTU abundance and environmental parameters was in-

vestigated for the Arctic BSC samples. Precipitation and soil parameter val-

ues were retrieved from Borchhardt et al. (2017a) and fitted onto ordination

(Figure 8). For the eukaryotic amplicons, a correlation with precipitation,

carbon, nitrogen, sulfur and phosphorus (total and water-extractable) content

was found (Figure 8a). Precipitation exhibited the highest correlation coef-

ficient with R2 = 0.95. Total phosphorus, sulfur and nitrogen also showed a

high correlation with a coefficient of 0.85, 0.84 and 0.83, respectively. The
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Figure 7: Co-occurrence analysis. Co-occurrence patterns between eukaryotic

classes (if applicable, blue) and prokaryotic orders (red) based on a Spearman cor-

relation coefficient of at least 0.75.

prokaryotic community composition was correlated to precipitation, carbon,

nitrogen, sulfur and total phosphorus content again with precipitation show-

ing the highest influence (R2 = 0.73; Figure 8b). Total phosphorus exhibited

the second highest correlation with R2 = 0.6.

4.6 Discussion

4.6.1 BSCs in polar ecosystems

BSCs represent special microbiotas in polar environments as opposed to barren

soil. Typical soil communities are dominated by Opisthokonta, SAR, Acidobac-

teria, Bacteroidetes, Proteobacteria and Verrucomicrobia (Faoro et al., 2010;
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Figure 8: Environmental vector fitting. MDS plot based on Jaccard distance ma-

trix derived from normalized relative abundance data. Vectors corresponding to

environmental variables given in Table 2 (Precipitation, C = carbon, N = nitro-

gen, S = sulfur, Pt = total phosphorus, Pw = water-extractable phosphorus) were

fitted onto the ordination. For eukaryotic dataset, the vectors representing precipita-

tion**, C***, N/S***, Pt** and Pw** were fitted (a), while the prokaryotic amplicon

data was explained by vectors representing precipitation***, C*, N/S* and Pt** (b).

(Significance levels <0.001 ***; <0.01 **; <0.05 *)
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Fierer, 2017; He et al., 2017). In Arctic desert soils, the prokaryotic ratios

appear to be slightly shifted with Actinobacteria and Chloroflexi to be more

abundant and Acidobacteria as well as Verrucomicrobia to be less dominant

(McCann et al., 2016). In contrast, the bacterial community in Antarctic soil

habitats is dominated by Acidobacteria, Bacteroidetes, Planctomycetes, Pro-

teobacteria and Verrucomicrobia (Geyer et al., 2014). Geisen et al. (2015)

reported a dominance of SAR in the eukaryotic community of Arctic peat-

land soils, while Opisthokonta were less abundant. All these microbiotas, in

contrast to BSCs, feature little to no photosynthetic organisms. The data,

presented in this study, shows a clear dominance of photosynthetically ac-

tive organisms including Archaeplastida, algal groups within the Alveolata and

Stramenopiles, as well as Cyanobacteria (Figure 3). Steven et al. (2013) an-

alyzed BSCs, collected from the Canadian high Arctic, and also found that

Cyanobacteria make up a major fraction of the prokaryotic community. These

results highlight that BSCs play an essential role as primary producers in po-

lar environments as higher vegetation is mostly absent (Pointing et al., 2015;

Thomas et al., 2008b; Yoshitake et al., 2010).

Interestingly, the molecular analysis of the BSCs, collected from differ-

ent sites at Svalbard and Livingston Island, revealed similar overall composi-

tions and abundance on high taxonomic levels (Figure 3a/b). We argue that

the BSCs, collected for this study, were all in a late successional stage, with

Bryophyta to be one of the most abundant eukaryotic taxa, which is typical

for cold deserts (Belnap, 2006). Furthermore, we detected a high abundance

of Cyanobacteria which are generally regarded as the pioneers which form the

basis for BSC development by stabilizing the soil (Belnap, 2006; Gundlapally

and Garcia-Pichel, 2006). However, on lower levels the communities show tax-

onomic variation, e.g. Zygnematophyceae were only present in BG and NÅ,

while Trebouxiophyceae were found in all samples (Figure 4). These differences

may be explained by the varying microhabitat features that different organ-

isms or taxonomic groups require (Fierer, 2017). For example, Cyanobacteria

and algae often colonize the lower surface of quartz pebbles in deserts due to
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the condense water, that accumulates there, as well as the enhanced protection

against radiation (Belnap et al., 2001a).

When comparing the different biodiversity indices for Eukaryota and Proka-

ryota of the analyzed BSC samples, the diversity of Prokaryota appeared to

be generally higher (Figure 2). Uyaguari-Diaz et al. (2016) compared different

watersheds in British-Columbia assessing the biodiversity of the microbial com-

munities. They calculated the Simpson index for the eukaryotic community,

based on the markers 18S and the internal transcribed spacer, and prokaryotic

diversity based on 16S and chaperonin-60. Astonishingly, the average index

is approximately the same for both eukaryotic markers but the prokaryotic

index for 16S is lower and for chaperonin-60 higher than the eukaryotic ones.

Regarding amplicon length, the eukaryotic targets are the same, while the 16S

target is shorter and the chaperonin-60 is longer than 18S and the internal

transcribed spacer. Accordingly, the prokaryotic amplicon, used in our study,

was longer than the eukaryotic sequence. If amplicon length influences diver-

sity estimates, this observation could explain the higher prokaryotic indices.

Moreover, the variability of the target region is also important as amplicons are

clustered into OTUs based on global sequence similarity (Forster et al., 2016).

Furthermore, the differences in cell size and evolutionary age between prokary-

otes and eukaryotes could be responsible for these observations (Cooper, 2000).

The biodiversity in these communities is highly dependent on climate,

chemical properties of the soil etc. (Belnap et al., 2001b). Borchhardt et al.

(2017a) verified the influence of precipitation on microalgal communities at

Svalbard which was also detected for the prokaryotic and eukaryotic com-

munities in this study. Precipitation and water availability are key factors

that affect microbiotas in a more quantitative than qualitative manner (Cruz-

Martínez et al., 2012; Hoffmann, 1989; Thomas et al., 2008c; Zhang et al.,

2016). In the Arctic, water availability is changing drastically throughout the

season (Thomas et al., 2008b). In winter, most water is frozen and cannot

be utilized by terrestrial organisms, while liquid water becomes available in

summer as rain or meltwater runoffs (Thomas et al., 2008b). Thus, the sole
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influence of precipitation is arguable. Additionally, the impact of carbon, nitro-

gen, sulfur and phosphorous content on the community composition of BSCs

was confirmed. Previous studies confirmed the influence of these parameters

on soil biocoenoses, while the ratio between carbon and nitrogen might also

have an effect (Cong et al., 2015; Zarraonaindia et al., 2015). On the contrary,

BSC organisms will also affect the elemental composition of the adjacent soil

(Brankatschk et al., 2013; Evans and Lange, 2001). For example, Cyanobacte-

ria fix nitrogen which will be either used by other organisms or deposited in

the soil (Hoffmann, 1989).

4.6.2 Eukaryotic algae and Cyanobacteria

Eukaryotic algae often occur later during BSC development and in association

with bryophytes, due to their high water-holding capacity, while Cyanobacteria

often act as initial ecosystem engineers (Büdel et al., 2016). Thus, the domi-

nance of Bryophyta in the collected BSCs may explain the presence and high

diversity of eukaryotic algae. All taxonomic groups, typical for BSCs, were

detected: Klebsormidiophyceae, Zygnematophyceae, Chlorophyceae, Treboux-

iophyceae, Ulvophyceae, Dinophyceae, Chrysophyceae, Diatomea, Eustigmato-

phyceae and Xanthophyceae (Büdel et al., 2016; Karsten and Holzinger, 2014).

When looking at individual samples, the occurrence of algal and cyanobacterial

genera mostly differed from isolate to isolate. However, we found Chloromonas

(Chlorophyceae), Coccomyxa, Elliptochloris (Trebouxiophyceae), Spumella (Chry-

sophyceae) and Nostoc (Cyanobacteria) to be present in all BSC. The genus

Chloromonas is often associated with polar BSCs and contains certain snow

alga species, e.g. Chloromonas brevispina (Büdel et al., 2016; Hoham, 1975;

Pushkareva et al., 2016; Raymond, 2014). Coccomyxa, on the other hand, is

a ubiquitous and versatile alga that can occur both terrestrial and planktonic

(Darienko et al., 2015; Ettl and Gärtner, 2014). The green alga Elliptochloris

commonly occupies cold terrestrial habitats and is a potential phycobiont for

lichens (Borchhardt et al., 2017a; Ettl and Gärtner, 2014; Pushkareva et al.,

2016). For the first time, we report the presence of the chrysophyte Spumella
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in polar BSCs. Spumella is a nanoflagellate which can be found in marine,

freshwater and terrestrial habitats (Stoeck et al., 2008). These mixotrophs

are often bacterivorous and link bacterial production to higher trophic levels

(Boenigk et al., 2005). The cyanobacterial genus Nostoc is commonly associ-

ated with BSCs but may also occupy freshwater environments (Dojani et al.,

2014; Pushkareva et al., 2016; Rippka et al., 1979). Previous studies con-

firm that Nostoc also colonizes soils in the Arctic and Antarctica (Pushkareva

et al., 2016; Zidarova, 2008). Overall, eukaryotic algae and Cyanobacteria are

important primary producers and form the nutritional basis for heterotrophic

organisms (Ettl and Gärtner, 2014; Nweze, 2009). Moreover, they enhance the

growth and development of other autotrophs as well as heterotrophs (Belnap

and Lange, 2001; Metting, 1981). A number of Cyanobacteria, e.g. Nostoc

and Oscillatoria, possess the ability to fix dinitrogen from the air and make it

subsequently available to other organisms in the BSCs (Metting, 1981). Fur-

thermore, certain algae and Cyanobacteria, which are able to synthesize photo-

protective pigments, are crucial for protection against excessive light and ultra-

violet radiation (Belnap and Lange, 2001; Karsten and Holzinger, 2014). These

organisms form an âĂĲumbrellaâĂİ on top of the BSC and, thus, shade other

species without sunscreen pigmentation (Belnap and Lange, 2001; Karsten and

Holzinger, 2014). The formation of the crust matrix is carried out by filamen-

tous and mucilage-producing genera within the Klebsormidiophyceae, Zygne-

matophyceae and Cyanobacteria by glueing soil particles together (Belnap,

2006; Büdel, 2005; Büdel et al., 2016). This process increases soil stability and

makes it less prone to wind and water erosion (Evans and Johansen, 1999).

Some algal and cyanobacterial taxa establish symbioses with fungi to form

lichens (Büdel et al., 2016; Ruprecht et al., 2014). A typical photobiont is the

green alga Trebouxia which was detected in all samples except NÅ (Ruprecht

et al., 2014). On the other hand, the fungal genera Elasticomyces and Lecio-

physma were detected in the samples BG and ED (data not shown) which are

potential mycobionts (Selbmann et al., 2008; Wedin et al., 2009).
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4.6.3 Activity patterns

Differences in the relative abundance of rDNA and rRNA in environmental

samples are caused by various factors (Blazewicz et al., 2013; Charvet et al.,

2012; Hansen et al., 2007). DNA based approaches will detect active and

dormant organisms but dead as well (Hansen et al., 2007). Additionally, ex-

tracellular DNA is well preserved in polar ecosystems, due to the low tem-

peratures, leading to an overestimate in biodiversity (Charvet et al., 2012;

Nielsen et al., 2007). The relative abundance of rRNA, on the other hand, can

be regarded as potential metabolic activity meaning the potential to perform

protein synthesis (Blazewicz et al., 2013). The comparison between rDNA and

rRNA abundances might be used as a measure for passive vs. active diversity

(Blazewicz et al., 2013). However, certain limitations have to be considered,

e.g. varying rDNA copy numbers across different taxa (Blazewicz et al., 2013;

Prokopowich et al., 2003; Zhu et al., 2005).

RNA derived amplicons were prepared for JC and NÅ using both the eu-

karyotic and the prokaryotic marker. More unique OTUs were detected for the

rRNA than the rDNA based datasets suggesting a higher diversity. Lanzén

et al. (2013) calculated the OTU richness, based on rDNA and rRNA abun-

dance, for two soda lakes at different depths and observed varying ratios for

rDNA:rRNA. Thus, no general assumption regarding present and active OTU

diversity can be made. Regarding the Shannon and Inverse Simpson indices,

significant differences between the DNA and RNA derived libraries could be de-

termined solely for NÅ. Curiously, the eukaryotic indices of the RNA derived

dataset were significantly higher, while the prokaryotic indices were signifi-

cantly lower. These observations are probably linked to seasonality. These

seasonal changes in microbiota were reported both for prokaryotic and eukary-

otic soil communities (Bass and Bischoff, 2001; Davey, 1991; Lara et al., 2011;

Lipson and Schmidt, 2004). Davey (1991) studied the periodicity of microal-

gae and Cyanobacteria on Antarctic fellfield soils and found Phormidium and

Pinnularia to be dominant for most of the year while, Zygnema and Ulothrix

occurred only during austral summer.
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Significant changes in rDNA to rRNA abundance were determined within

the prokaryotic and eukaryotic communities in sample NÅ. The Amoebozoa

Copromyxa exhibited a higher rRNA than rDNA abundance indicating that

it is active probably due to the milder conditions during the summer at Sval-

bard. Seasonal patterns have been previously described for other Tubulinea by

Mansano et al. (2013). Bryophyta, on the other hand, were less abundant in the

RNA derived set of amplicons. As the samples were collected in August 2014,

bryophytes should be active and growing because temperatures are above 0◦C

and, thus, liquid water is available (Førland et al., 2011; Prestø et al., 2014).

However, the fact that samples were collected during growing season and the

lower abundance of rRNA are not contradictory as Bryophyta exhibit growth

and photosynthetic activity mostly at the apex and older annual segments

are less active or even inactive (Clymo and Hayward, 1982; Longton, 1988).

Hence, older segments are likely to contain less rRNA compared to rDNA and

only the shoot tip features increased rRNA levels. Archigregarinorida also

appeared to be less abundant in the RNA based dataset. The taxon is para-

sitic, occurs in aquatic and terrestrial habitats and can form cyst if exposed

to unfavorable conditions (Rueckert et al., 2011). The reduced rRNA content

compared to the rDNA suggests that the alveolates are in a resting stage. In

contrast, the cercozoan taxon Euglyphida exhibited an increased abundance in

rRNA. These findings indicate that the soil is not dried out as the bacteriv-

orous amoeba strongly reacts to drought with reduced abundance (Harder

et al., 2016). The same holds true for Cyanobacteria, e.g. Nostoc, which also

exhibited a higher abundance in the RNA derived dataset. Elster et al. (2012)

found Arctic Nostoc colonies to be photosynthetically active throughout the

summer with no significant changes in the monitored physiological parameters

despite the fluctuating water supply. Hence, the Cyanobacteria occurring in

the BSC were metabolically active as we detected a higher rRNA than rDNA

abundance. The taxon Bdellovibrionaceae also exhibited increased levels of

rRNA. These organisms occupy both aquatic and terrestrial habitats and prey

on other bacteria which is also assumed for Clade OM27 (Orsi et al., 2016;
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Pineiro et al., 2004). Little is known about Clade OM27, thus, it is difficult to

draw a conclusion regarding their ecology. Similarly, SPOTSOCT00m83 was

more abundant in the RNA derived set of amplicons. However, ecological data

on this taxon is rare. Yun et al. (2016) confirmed that SPOTSOCT00m83 can

be found in soil. Another soil-dwelling taxon are the Alcaligenaceae which are

quite diverse (Ghosh et al., 2011). The taxon showed lower rRNA to rDNA

abundance which indicates suboptimal growth conditions at the time of sam-

pling. Chthoniobacterales were also less abundant in the RNA derived dataset.

Yun et al. (2016) found that Chthoniobacterales prefer more acidic soils (mean

pH 5.59) compared to the pH at NÅ (6.3) (Borchhardt et al., 2017a).

4.6.4 Ecological Interactions

Co-occurrence patterns of different taxa or taxonomic modules enable an iden-

tification of ecological interactions between organisms, especially organisms

that are poorly understood due to difficulties in cultivation (Stewart, 2012;

Williams et al., 2014). Moreover, these patterns can be used to identify func-

tional and ecological traits, and draw conclusions on the life-history strategies

of the organisms (Williams et al., 2014). However, the unavailability of eco-

logical data for certain taxonomic groups limits the interpretation to certain

modules.

Several bacterial orders contributing to the sulfur cycle, one of the most

important cycles linked to the carbon cycle, co-occur in the sampled BSCs

(Zavarzin, 2010). Sulfate-reducing bacteria, such as Desulfurellales and Desul-

furomonadales, form H2S either by incomplete oxidation of organic acids or

complete oxidation of unfermentable compounds produced by fermentation

(Kleindienst et al., 2014; Timmers et al., 2015; Zavarzin, 2010). Reduced

sulfur compounds (H2S, sulfide, sulfite), on the other hand, are oxidized by,

e.g., either the strictly anaerobic Chlorobiales or Ignavibacteriales (Gregersen

et al., 2011; Iino et al., 2010; Ontiveros-Valencia et al., 2014; Zavarzin, 2010).

The aforementioned bacterial orders co-occur within cluster I and are directly

linked within the network underlining their collective participation in the sulfur
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cycle. The cyanobacterial taxon Microchaetaceae is heterocystous and, thus,

contributes to the nitrogen cycle by nitrogen fixation which is indirectly cou-

pled to the sulfur cycle (Hauer et al., 2014; Hoffmann, 1989; Zavarzin, 2010).

Furthermore, Microchaetaceae and the sulfur metabolising bacteria are linked

to the cyanobacterial taxa Chroococales and Gloeobacterales, the stramenopile

class Eustigmatophyceae and the bryophyte class Polytrichopsida which all con-

tribute to the carbon fixation by oxygenous photosynthesis (Hoffmann, 1989;

Zavarzin, 2010). The organic carbon cycle links all elemental cycles together

and, thus, is of major importance (Zavarzin, 2010). Cluster I also contains a

connection between Polytrichopsida and Arboramoeba. Davidova et al. (2016)

described the association of testate amoeba with terrestrial bryophytes due to

their ability to store water. This might be also true for Arboramoeba which co-

occurred with the bryophyte class Polytrichopsida within the analyzed BSCs.

Cluster V contains the algal classes Chlorophyceae, Klebsormidiophyceae, Tre-

bouxiophyceae and Xanthophyceae which were found to be co-occurring in the

Arctic and Antarctic BSCs. All of these microalgae are capable of photosyn-

thesis which might cluster them together due to the link to the carbon cycle

(de Morais et al., 2015; Zavarzin, 2010). However, another possible explana-

tion might be their ability of synthesizing antibiotic, antiviral and antifungal

secondary metabolites of which these organisms mutually benefit (de Morais

et al., 2015; Sahayaraj et al., 2014). Nevertheless, co-occurrences can also

depend on environmental factors and known biological interactions might be

missing due to the parameters chosen in the analysis (Coutinho et al., 2015;

Williams et al., 2014).

4.7 Conclusion

BSCs are key components of polar ecosystems that possess a huge diversity of

different autotrophic, heterotrophic and saprotrophic organisms. Thus, these

biocoenoses can be regarded as oases in polar deserts. This comprehensive

survey shed light on the prokaryotic and eukaryotic diversity of different BSCs
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collected from the Arctic Svalbard and Livingston Island which is part of the

Antarctic Peninsula Region. Overall, the polar BSCs are dominated by pho-

toautotrophs such as eukaryotic algae, Cyanobacteria, lichens and bryophytes.

Nevertheless, a plethora of heterotrophic and saprotrophic, aerobic and anaer-

obic organisms was found alongside those primary producers. BSCs are indeed

amalgamations of eukaryotic algae, lichens, bryophytes, autotrophic and het-

erotrophic bacteria as well as Fungi but also other protists, such as Cercozoa

and Amoebozoa, and Bilateria appear to be important for these communities.

In order to gain further insights into functionality, shotgun metagenomics, -

transcriptomics, -proteomics and metabolomics should be combined. These

integrated results would help to draw a detailed picture of how the organ-

isms interact with each other and annual time series could reveal the seasonal

development of BSCs.
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5.1 Abstract

Desiccation tolerance is commonly regarded as one of the key features for the

colonization of terrestrial habitats by green algae and the evolution of land

plants. Extensive studies, focused mostly on physiology, have been carried

out assessing the desiccation tolerance and resilience of the streptophytic gen-

era Klebsormidium and Zygnema. Here we present transcriptomic analyses of

Zygnema circumcarinatum exposed to desiccation stress. Cultures of Z. cir-

cumcarinatum, grown in liquid medium or on agar plates, were desiccated at

86% relative air humidity until Y(II) ceased. In general, the response to dehy-

dration was much more pronounced in Z. circumcarinatum, cultivated in liquid

medium for one month, compared to filaments grown on agar plates for seven

and twelve months. Cultivation on solid medium enables the alga to accli-

mate to dehydration much better and an increase in desiccation tolerance was

clearly correlated to increased culture age. Moreover, gene expression analysis

revealed that photosynthesis was strongly repressed upon desiccation treat-

ment in the liquid culture while only minor effects were detected in filaments

cultivated on agar plates for seven months. Otherwise, both samples showed

an induction of stress protection mechanisms such as ROS scavenging (Early

light-induced proteins, glutathione metabolism) and DNA repair as well as the

expression of chaperones and aquaporins. Additionally, Z. circumcarinatum,

cultivated in liquid medium, upregulated sucrose synthesizing enzymes and

strongly induced membrane modifications in response to desiccation stress.

These results corroborate the previously described hardening and associated

desiccation tolerance in Zygnema in response to seasonal fluctuations in water

availability.

5.2 Keywords

Desiccation tolerance, gene expression, streptophytic algae, transcriptomics,

Zygnema
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5.3 Abbreviations

ANOVA

BBM

BLAST

CTAB

DTT

ERD

FDR

GO

HSD

KEGG

KO

OTU

PAM

ROS

RuBisCo

UVR

Y(II)

Analysis of variance

Bold’s basal medium

Basic local alignment search tool

Cetyl trimethylammonium bromide

Dithiothreitol

Early-response-to-dehydration protein

False discovery rate

Gene ontology

Honestly significant difference

Kyoto encyclopedia of genes and genomes

KEGG orthology

Operational taxonomic unit

Pulse-amplitude modulated fluorometer

Reactive oxygen species

Ribulose-1,5-bisphosphat-carboxylase/-oxygenase

Ultraviolet radiation

Effective quantum yield of photosystem II

5.4 Introduction

The colonization of terrestrial habitats by plants is accompanied by a number

of abiotic stress factors such as high irradiance and dehydration (Borstlap,

2002; Holzinger and Pichrtová, 2016). Tolerating water stress is crucial for

survival of land plants as well as terrestrial algae and has been addressed ex-

tensively (Borstlap, 2002; Dinakar and Bartels, 2013; Holzinger et al., 2014;

Oliver, 2007). Most land plants are able to actively regulate their water sta-

tus (homoiohydry) but lost the ability to tolerate desiccation. However, the

so-called resurrection plants, such as Craterostigma plantagineum, possess des-

iccation tolerance (poikilohydry; Norwood et al., 2003) and are not able to ac-
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tively regulate their water content (Holzinger and Karsten, 2013). Hence, C.

plantagineum and other resurrection plants were used as models for desicca-

tion stress tolerance (Bartels and Salamini, 2001; Dinakar and Bartels, 2013).

Additionally, other higher plants (Basu et al., 2016; Ma et al., 2015; Oliver

et al., 2011) and mosses were studied to unravel the mechanisms of desiccation

response and resilience (Gao et al., 2015; Shinde et al., 2012).

Over the past years, substantial information about the impact of desicca-

tion stress on streptophytic green algae, including Zygnema spp. and Kleb-

sormidium spp., became available (for summary see Holzinger and Karsten,

2013; Holzinger and Pichrtová, 2016; Karsten and Holzinger, 2014). Kleb-

sormidium generally occupies moist terrestrial habitats (Lokhorst, 1996) while

Zygnema occurs in hydro-terrestrial environments, meaning in or in close vicin-

ity to freshwater bodies or streams (Davey, 1991; Hawes, 1990). Upon decreas-

ing air humidity, water is rapidly lost but these poikilohydric organisms have

the ability to tolerate dehydration in the vegetative state to a certain degree.

However, in Zygnema desiccation tolerance is strongly dependent on the phys-

iological state of the cell. Stress tolerance increases during maturation of the

algae (Herburger et al., 2015; Pichrtová et al., 2014) which is associated with

the transition from vegetative cells to pre-akinetes and akinetes (McLean and

Pessoney, 1971). The maturation process is accompanied by changes in the

fatty acid composition which have recently been studied by Pichrtová et al.

(2016a).

To shed light on the molecular mechanisms of desiccation response and tol-

erance in streptophyte green algae, transcriptomic profiling was performed for

Klebsormidium crenulatum revealing reaction patterns similar to land plants

when exposed to water stress (Holzinger et al., 2014). Dehydration in plants

and algae is linked to a number of defense mechanisms, e.g. protection of

the photosynthetic apparatus by the expression of early light-induced proteins

(ELIPs), synthesis of low-molecular-weight osmolytes to maintain turgor pres-

sure, induction of ROS scavenging and increase of the chaperone transcript

pool (late embryogenesis abundant (LEA) and heat-shock proteins (Hsps))
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(Fernández-Marín et al., 2013; Wang et al., 2004). The above listed defense

systems were also induced in the basal streptophyte alga K. crenulatum upon

harsh desiccation over silica gel as demonstrated by Holzinger et al. (2014).

In contrast to Klebsormidiophyceae, which are located closer to the basis of

the Streptophyta (Becker and Marin, 2009), Zygnematophyceae are the sister

lineage of the land plants (Wickett et al., 2014). This has been proven through

several phylogenetic analyses but is also confirmed by the fact that zygnemato-

phycean algae possess a modified plastid, the ’embryoplast’, which played a

key role in the development of the land plants (de Vries et al., 2016; Ruhfel

et al., 2014; Wodniok et al., 2011; Zhong et al., 2013). Thus, the investigation

of their water stress tolerance on a molecular level is particularly interesting

from an evolutionary point of view. While the dehydration-induced changes in

physiology of Zygnema circumcarinatum and K. crenulatum are similar, with

a drastic reduction of Y(II), the kinetics of water loss are different (Herburger

and Holzinger, 2015; Lajos et al., 2016). Herburger and Holzinger (2015) re-

ported an elevated callose content in the cell walls of K. crenulatum, which

enables shrinkage of the whole cell, compared to Z. circumcarinatum which

forms rigid cellulosic secondary walls. In terms of water loss, Z. circumcarina-

tum reduces the protoplast volume more rapidly compared to Klebsormidium

at a relative air humidity (RH) lower than 85%, however, this observation

was reversed for higher RH (Lajos et al., 2016). To gain deeper insights into

the mechanisms of desiccation tolerance in Z. circumcarinatum and study the

differences to K. crenulatum, transcriptomic analyses were performed on algal

cultures, either grown in liquid medium or on agar plates and, subsequently,

subjected to dehydration. Furthermore, differently matured cultures (one,

seven and twelve months) were used to investigate the influence of culture age,

which is associated with pre-akinete formation in cultures older than seven

months. In contrast to Klebsormidium, the genome of Zygnema has not been

published yet. Thus, transcriptomic data also provide a valuable information

resource and give insights into a plethora of molecular mechanisms.
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Liquid Culture,
1 month (L)

Agar Plate Culture,
1 month (P1)

Agar Plate Culture,
7 months (P2)

Agar Plate Culture,
12 months (P3)

Desiccation Treatment RNA Extraction

Controls

LD, P1D, P2D, P3D

LC, P1C,
P2C, P3C

Figure 1: Experimental Setup. Four different culture conditions were chosen: one

month old culture grown in liquid medium (L), one month old culture grown on solid

medium (P1), seven months old culture grown on solid medium (P2), 12 months

old culture grown on solid medium (P3). Samples were taken as controls and for

desiccation treatment and RNA was extracted subsequently.

5.5 Results

5.5.1 Physiological response to desiccation

All samples were desiccated over KCl and the Y(II) was monitored. An ex-

perimental overview is given in Figure 1. For all samples dehydration stress

was applied until Y(II) dropped to zero. Hence, the physiological state of all

filaments is comparable. The biomass of the liquid culture (L) and the 12

months old agar plates (P3) maintained photosynthesis the longest until ap-

proximately 390 min and 360 min, respectively (Figure 2A/D). Y(II) of the

filaments, cultivated for one month on solid medium (P1), drops first at about

90 min (Figure 2B) while Y(II) of the 7 months old culture (P2) reaches zero at

approximately 220 min (Figure 2C). Table 1 displays the desiccation time and

observed water loss for all samples. When comparing the time required for the

cells cultivated on agar plates to reduce Y(II) to zero, increased age is clearly

correlated (r = 0.98) with a prolonged activity. All three cultures grown on
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agar (P1, P2, P3) are differing significantly in desiccation time (p < 0.001). No

significant difference has been observed between P3 and L, however, P2 and

P1 differ significantly from L. Concerning water loss, no significant differences

were detected between L, P2 and P3. Sample P1 differs significantly in water

content reduction from L (p < 0.001), P2 (p < 0.01) and P3 (p < 0.01).
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Figure 2: Y(II) measured over the course of desiccation for all samples. Each

triplicate was measured three times at different positions of the filter. The bar

indicates standard deviation per replicate while square, triangle and circle indicate

the mean value. The mean of all replicates is displayed in red giving the lower and

upper Gaussian confidence limit in light grey. A) One month old culture grown in

liquid medium (L). B) One month old culture grown on solid medium (P1). C) Seven

months old culture grown on solid medium (P2). D) 12 months old culture grown

on solid medium (P3).
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Table 1: Physiological results of desiccation stress experiment. Desiccation time

means the time that elapsed from the start of the desiccation treatment until Y(II)

dropped to zero. (n=3 if not indicated otherwise, *n=2)

Sample ID Cultivation Desiccation

time [min]

Water loss [%]

L liquid medium, 1

mo

390 ± 26.5 93.7 ± 2

P1 solid medium, 1

mo

90 ± 17.3 81 ± 3.4*

P2 solid medium, 7

mo

223 ± 40.4 92.8 ± 3.2

P3 solid medium, 12

mo

360 ± 26.5 89 ± 0.01

5.5.2 Sequencing outcome and reference library

The triplicates for P3 were pooled for sequencing due to low RNA quantities.

Hence, this group was excluded from analysis of differential gene expression.

Furthermore, one replicate of P2D exhibited a low extraction yield and, thus,

was not sequenced. The sequencing results for all libraries are summarized

in supplementary Table S1. For the reference, which was pooled from all

samples, 13,241 Mbp were obtained, and for all samples a total of 85,721 Mbp

was sequenced.

Figure 3A gives an overview of the bioinformatic pipeline used for raw

read processing, assembly and further analysis. The assembly of the qual-

ity filtered and trimmed reference reads yielded a total of 135,572 contigs

with an N50 of 950 bp, and a smallest and largest contig size of 224 bp and

24,724 bp, respectively. To assess the completeness of the established refer-

ence transcriptome, Benchmarking Universal Single-Copy Orthologs (BUSCO)

were used. As displayed in Figure 3B, we found 76% to be complete, 8% to

be fragmented while only 16% were missing. Compared to a variety of other
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transcriptomes, these values can be regarded as excellent (Simão et al., 2015).

Annotating the assembly against the Swiss-Prot database resulted in 28,427

(21%) hits with an e-value smaller than E-10 (Figure 3C). Moreover, all con-

tigs were tested for homology to amino acid sequences, retrieved from complete

streptophyte and chlorophyte genomes, resulting overall in higher annotation

rates for streptophytic than for chlorophytic sequences (Figure 3D, Figure S2

in the supporting information). For all examined e-values ranging from E-

3 to E-20, all assembled contigs shared most sequences with Physcomitrella

patens and Klebsormidium flaccidum (Figure S2). The homology comparison

of the assembly to all streptophytic and all chlorophytic sequences showed that

our assembly shared 21,262 with both groups while 10,672 and 615 sequences

were exclusively aligned to streptophytic and chlorophytic proteins, respec-

tively (Figure 3D). In order to evaluate the coverage of metabolic networks,

the assigned KO numbers (5.9% of all contigs) were mapped onto the KEGG

metabolic pathways map (ko01100, Supplemental Figure S3). In general, we

observed a very good coverage with the most important pathways (e.g. carbo-

hydrate metabolism, amino acid metabolism, fatty acid metabolism, nucleotide

metabolism, respiration) being complete. The annotation rate for GO terms

was 28% of all contigs.

5.5.3 rRNA analysis

The Z. circumcarinatum culture used in this study was only recently estab-

lished (Herburger et al., 2015). It is unialgal but neither axenic nor character-

ized with respect to possible contamination by heterotrophic eukaryotes. The

rRNA reads, that were filtered out during quality control, were used to investi-

gate the presence of putative contaminations in the algal culture (Supplemen-

tal Figure S4). The largest fraction of all rRNA reads could be annotated as

Zygnema sp. However, a large number of different bacterial rRNA species as

well as a few eukaryotic rRNAs, with most of them mapping to the genus Nae-

gleria sp., was detected. We also observed a large number of putative rRNAs

which could not be annotated at all (up to 20% for P3C). Overall, rRNA reads
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Figure 3: A) Bioinformatic Pipeline. Raw Reads of all samples (controls and

treated) as well as the reference (pool of all samples) were filtered using Trimmomatic,

PRINSEQ and SortMeRNA. The remaining paired-end reads of the reference were

merged, if possible, using COPEread and subsequently assembled with Trinity. The

filtered rRNA reads of the samples were clustered and annotated using USEARCH

and BLAST. The assembly was further quality filtered against a customized database

containg sequences originating from Physcomitrella, Klebsormidium and Naegleria.

After quality assessment with BUSCO and Diamond the contigs were annotated

with Trinotate. The sample reads were mapped onto the contigs using Bowtie2, read

counts were calculated with RSEM and differential gene expression was performed

with edgeR. Finally, GOSeq and clusterProfiler were used for gene set enrichment

analyses. More details on the procedure can be found in the material and methods
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Figure 3 (Continued): section. B) The donut chart displays the results of the

BUSCO analysis which was carried out to assess the completeness of the assem-

bly. The categories complete, duplicated, fragmented and missing are represented

by 310, 408, 78 identified and 160 not identified orthologs, respectively. C) In total,

28,427 contigs of the assembly could be annotated at E-10 while 107,145 could not.

D) Venn-diagram depicting the number of contigs mapping to sequences of selected

Streptophyta (blue), Chlorophyta (turquoise) or both (dark blue) at E-10.

related to Zygnema sp. or with no significant similarity to any organism in

BLAST analyses constituted about 90% of the rRNA except for the P1C and

P1D. For these samples a large contamination with bacterial (up to 40%) and

eukaryotic (Naegleria sp., up to 17%, among others) sequences was observed.

Hence, P1C and P1D were excluded from analyses if not indicated otherwise.

5.5.4 Expression analysis

Differential expression analysis was carried out for control versus desiccated

samples of the liquid culture (LC to LD) and the seven months old solid cul-

ture (P2C to P2D). The analysis was performed without P1C and P1D as well

as P3C and P3D due to high levels of contamination and low RNA extraction

yields, respectively. A total of 2,886 (2.1%) transcripts exhibited differential

expression (FDR less or equal to 0.001) upon desiccation treatment compared

to the corresponding control in at least one of the two group comparisons

(L, P2). For the liquid culture (L), we observed the strongest reaction with

2,494 contigs regulated while only 849 were differentially expressed in group

P2 (Figure 4A, supplementary Table S5). Between 30% and 54% of the upreg-

ulated and downregulated contigs in those groups were successfully annotated.

The largest part of the annotated sequences showed similarities to proteins of

Viridiplantae. Regarding the overlap of genes responsive to desiccation in both

groups, a total of 457 contigs were regulated; 317 were induced while 150 were

repressed (Figure 4B). A total of 2,037 and 392 transcripts exhibited differen-

tial expression solely in group L and P2, respectively. To assess the correlation
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of the replicates of each sample, a principal component analysis was performed

and sample correlations were visualized as a heatmap (Supplementary Figure

S6). We found that the individual replicates cluster closer according to the

sample affiliation than randomly when looking at the first two principal com-

ponents (Figure S6A). The same is true for the Pearson correlation matrix,

where clustering of the associated replicates as well as the controls and treated

samples was observed (Figure S6B).
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Figure 4: A) The total of up- (dark, light blue) and downregulated (dark, light red)

contigs of Z. circumcarinatum under desiccation in group L and P2. Only contigs

with a FDR of less than or equal to 0.001 were considered. All contigs were annotated

against the Swiss-Prot database using BLASTx with an e-value of less than or equal

to E-10. B) Overview of total up- and downregulated contigs of Z. circumcarinatum

upon desiccation in group L and P2. Only contigs with a FDR of less than or equal

to 0.001 were considered. The Venn diagram displays the number of regulated genes

shared between both groups.
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Table 2: Enriched KEGG pathways.

Group Regulation KEGG ID Pathway

L up ko00500 Starch and sucrose metabolism

down ko00195 Photosynthesis

ko00630 Glyoxylate and dicarboxylate

metabolism

5.5.5 Gene set enrichment analyses

In order to identify desiccation related metabolic pathways, a KEGG path-

way enrichment analysis based on KO annotations was performed for the up-

and downregulated transcripts in both analysed groups. A total of 16,910

contigs could be annotated with KO terms. Significantly enriched pathways

were found for the liquid culture dehydration treatment (L). Among upregu-

lated transcripts, we found the "starch and sucrose metabolism" to be enriched

while "photosynthesis" and "glyoxylate and dicarboxylate metabolism" were

enriched in the downregulated contigs (Table 2).

The concept of GO categorization enables the comparison of homologous

genes in different organisms (Ashburner et al., 2000). One or multiple GO

terms, belonging to one of the three root categories, are assigned to each pro-

tein, similar parent categories are grouped and, subsequently, tested for enrich-

ment in one sample compared to another (Ashburner et al., 2000; Young et al.,

Table 3: Outcome of GO enrichment analysis displaying solely root category distri-

bution (CC = "Cellular component", MF = "Molecular function", BP = "Biological

process"). Detailed information is included in supplemental Table S7.

Group Regulation CC MF BP

L up 4 16 60

down 26 31 50

P2 up 8 8 39

down 0 2 4
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2010). For example, the large subunit of RuBisCo was assigned the "biolog-

ical process" photosynthesis, the "molecular function" ribulose-bisphosphate

carboxylase activity and the "cellular component" chloroplast. In our study,

GO terms could be assigned to 26,879 sequences forming the basis for a GO

enrichment analysis. Enriched root categories for each group and directed

regulation are summarized in Table 3 featuring more enriched GO terms for

group L, with 80 and 107 up- and downregulated, respectively, than for group

P2 with 55 and 6 terms up- and downregulated, respectively. Most enriched

GO terms belonged to the root category "biological process" while "molecular

function" and "cellular component" were represented to a lesser extent. In

Figure 5, a network of enriched non-redundant GO terms in up- and downreg-

ulated gene sets is displayed with major categories highlighted in light grey.

Both "photosynthesis" and "stress response" were enriched in up- and down-

regulated contigs while "carbohydrate metabolism", "lipid metabolism" and

"transport" appeared upregulated and "signaling" downregulated. Lists of all

enriched GO terms are included in the supplemental Table S7.

5.5.6 Individual analysis of desiccation responsive genes

Based on gene set enrichment analyses, we studied individual differentially

expressed transcripts responsive to the applied desiccation treatment (Supple-

mental Table S5). Our main focus lies on photosynthesis, carbohydrate and

lipid metabolism, transporter proteins and signaling as well as stress protec-

tion. Selected genes, exhibiting differential expression, and the detected fold

changes (all given in log2 hereinafter) are displayed in Table 4.
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Figure 5: GO Network displaying all enriched categories in both groups L and P2 as

well as A) up- and B) downregulation. The root categories are "Biological Process"

(BP; blue or red), "Molecular Function" (MF; violet or orange) and "Cellular Com-

ponent" (CC; green or yellow). Edges depict shared terms. Highlighted in grey are

selected groups such as photosynthesis, lipid metabolism, transport, carbohydrate

metabolism, stress response and signaling.
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Table 4: Selection of contigs showing differential expression in response to desicca-

tion stress (The complete list can be found in Table S5). Contigs are divided into the

following groups: Photosynthesis and photorespiration, carbohydrate metabolism,

lipid metabolism, transporter proteins, signaling, stress protection. Selected contigs

are displayed with ID, annotation, e-value and fold change (log2 transformed) for

group L and P2.

Contig ID Annotation E-value L P2

Photosynthesis and photorespiration

TR14384|c0_g2 _i1 Photosystem I subunit II 2.18E-85 -3.2 -

TR18990|c0_g9_i1 Photosystem I subunit IV 5.94E-22 -2.7 -4.7

TR1369|c1_g1_i1 Photosystem I subunit III 8.25E-76 -2.5 -

TR59163|c0_g5_i2 Photosystem I subunit V 1.36E-28 -3.0 -

TR21504|c0_g2_i1 Photosystem I subunit VI 8.11E-40 -2.3 -

TR16905|c0_g2_i1 Photosystem I subunit X 1.42E-34 -2.3 -

TR33976|c0_g1_i1 Photosystem II oxygen-

evolving enhancer protein

1

3.57E-135 -3.0 -

TR48275|c1_g1_i1 Photosystem II oxygen-

evolving enhancer protein

3

3.9E-49 -3.4 -

TR20185|c2_g1_i1 Photosystem II 22kDa

protein (PsbS)

1.08E-83 -4.6 -4.1

TR24382|c0_g1_i1 Photosystem II protein

(PsbY)

4.85E-13 -3.4 -

TR71565|c0_g1_i1 Photosystem II protein

(Psb27)

2.46E-36 -2.5 -

TR64030|c0_g1_i1 Light-harvesting

chlorophyll-protein

complex I subunit A4

4.67E-116 -2.9 -

TR37377|c0_g1_i2 Photosystem I light har-

vesting complex protein 5

2E-93 -3.0 -
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Table 4 (Continued).

Contig ID Annotation E-value L P2

TR62754|c5_g48_i1 Photosystem II light har-

vesting complex protein

2.2

5.38E-82 -6.2 -

TR12320|c6_g1_i1 Light-harvesting chloro-

phyll B-binding protein

3

1.83E-96 -3.5 -

TR37376|c0_g1_i2 Light harvesting complex

photosystem II

5.2E-121 -3.8 -3.9

TR25593|c4_g1_i1 Light harvesting complex

of photosystem II 5

1.57E-117 -2.7 -

TR1329|c0_g2_i1 Light harvesting complex

photosystem II subunit 6

3.79E-92 -2.8 -

TR75181|c0_g1_i1 ATPase delta chain 6.28E-52 -2.3 -

TR3752|c0_g5_i1 ATPase subunit b’ 2E-37 -2.7 -4.3

TR4441|c0_g1_i2 Plastocyanin -3.75E-37 -2.5 -

TR31328|c0_g1_i1 Chlorophyllide a oxyge-

nase

0 -2.1 -

TR68443|c0_g1_i3 Magnesium chelatase sub-

unit

0 -4.5 -4.4

TR8034|c11_g29_i1 Early light-induced pro-

tein, chloroplastic (ELI)

1.83E-15 - 12.2

TR58021|c0_g5_i1 Early light-induced pro-

tein 1, chloroplastic

(ELIP1)

1.43E-21 3.5 5.2

TR4192|c1_g15_i1 High molecular mass

early light-inducible

protein, chloroplastic

(HV58)

1.86E-21 5.2 4.3

TR4440|c0_g2_i1 Low molecular mass early

light-inducible protein,

chloroplastic (HV60)

4.1E-16 -3.4 -
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Table 4 (Continued).

Contig ID Annotation E-value L P2

TR73556|c0_g9_i2 (S)-2-Hydroxy-acid oxi-

dase

0 -2.5 -3.5

TR29652|c0_g1_i1 Serine-glyoxylate

transaminase

0 -3.4 -3.6

TR68913|c1_g1_i2 Glycine dehydrogenase 0 -2.6 -4.2

TR54933|c0_g2_i1 Glutamate-glyoxylate

aminotransferase

0 -3.0 -

TR48225|c1_g1_i1 Glycerate dehydrogenase 0 -3.5 -

Carbohydrate metabolism

TR23256|c0_g1_i1 Glycogen phosphorylase 0 8.3 -

TR75230|c1_g1_i1 alpha-Amylase 1.95E-175 4.3 -

TR70181|c1_g1_i2 beta-Amylase 0 2.7 -

TR24697|c0_g3_i4 Isoamylase 6.66E-40 2.6 -

TR25586|c0_g1_i1 4-alpha-

Glucanotransferase

1.47E-45 2.2 -

TR45454|c0_g2_i1 Sucrose-phosphatase 6.91E-108 3.6 -

TR61067|c0_g1_i2 Sucrose synthase 0 3.0 -

Lipid metabolism

TR39622|c0_g1_i1 Lysophospholipid acyl-

transferase

4.12E-110 2.0 -

TR53082|c0_g1_i1 Diacylglycerol kinase 2.68E-160 2.0 -

TR16611|c0_g1_i2 alpha-Galactosidase 1.91E-154 2.3 3.5

TR42973|c1_g1_i1 Sulfoquinovosyltransferase 4.73E-12 3.7 -

TR31318|c0_g1_i1 Phospholipase D1/2 0 3.7 -

TR28615|c2_g10_i1 Phosphoethanolamine N-

methyltransferase

5.8E-102 2.9 3.2

TR41908|c1_g1_i4 Phosphatidylserine syn-

thase 2

1.62E-177 - 3.8

TR13652|c0_g1_i13 2-Acylglycerol O-

acyltransferase 1

2.54E-89 - 3.5
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Table 4 (Continued).

Contig ID Annotation E-value L P2

Transporter proteins

TR43432|c0_g2_i2 Probable aquaporin

TIP1-2

8.15E-17 13.3 13.5

TR43432|c0_g3_i1 Aquaporin TIP2-1 2.25E-32 2.9 2.7

TR61568|c0_g2_i1 Aquaporin TIP2-3 2.22E-33 4.1 -

TR34049|c0_g1_i2 Plastidic glucose trans-

porter 2

2.02E-138 4.2 3.6

TR23238|c0_g1_i2 Sucrose transport protein

3

2.09E-147 2.7 -

TR31|c0_g1_i1 Glucose-6-

phosphate/phosphate

translocator 1

1.22E-164 2.1 -

TR40733|c1_g1_i1 Sugar transport protein

13

8.24E-177 5.8 5.5

TR41946|c0_g1_i8 Sugar-transport protein

ERD6-like 16

3.33E-71 9.0 -

Signaling

TR52105|c7_g5_i3 Leucine-rich re-

peat receptor-like

serine/threonine-protein

kinase BAM2

2.56E-18 3.4 -

TR58701|c1_g2_i3 Leucine-rich re-

peat receptor-like

serine/threonine-protein

kinase FLS2

7.92E-65 -5.4 -6.7

TR34848|c0_g2_i1 Calcium-dependent pro-

tein kinase 17

1.25E-81 3.4 -

TR6882|c0_g1_i1 Calcium-dependent pro-

tein kinase 20

5.18E-76 -6.1 -

Stress protection

TR10757|c0_g3_i1 Chaperone protein ClpB1 7.43E-16 3.4 -
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Table 4 (Continued).

Contig ID Annotation E-value L P2

TR35960|c0_g2_i2 Proteasome assembly

chaperone 2

4.89E-28 11.2 -

TR41947|c0_g1_i3 Chaperone protein DnaJ 1.06E-10 3.9 -

TR75210|c0_g1_i2 Molecular chaperone

Hsp31

1.57E-10 2.5 4.2

TR39621|c0_g1_i2 Glutathione S-transferase 4.85E-53 2.9 5.0

TR14048|c0_g1_i1 Peroxisomal catalase 0 3.7 6.7

TR58823|c0_g2_i1 Peroxiredoxin 6.92E-54 2.3 3.4

TR57779|c0_g1_i1 Peptide methionine sul-

foxide reductase

4.35E-79 2.5 3.0

TR35953|c0_g2_i4 (Chloroquine-resistance

transporter)-like trans-

porter 3

7.29E-81 9.0 -

TR50557|c0_g2_i12 Nijmegen breakage syn-

drome 1 protein

3.14E-13 9.5 9.7

TR35997|c1_g1_i8 DNA-damage-

repair/toleration protein

1.42E-42 3.0 -

TR49464|c0_g1_i1 Late embryogenesis abun-

dant protein 4 (LEA4;

AT3G53040)

8 .1E-19 5.1 3.6

TR39628|c0_g2_i1 Late embryogenesis abun-

dant protein 4 (LEA4;

AT2G18340)

4.6E-24 5.0 -

TR69744|c2_g23_i1 Late embryogenesis abun-

dant protein 4 (LEA4;

AT4G36600)

1.1E-14 5.3 3.4

TR60896|c0_g1_i1 Late embryogenesis abun-

dant protein 5 (LEA5;

AT2G40170)

6.5E-27 - 9.8

160



CHAPTER 5. PAPER IV 5.5. RESULTS

Photosynthesis and photorespiration

Transcriptomic analysis of photosynthetic processes revealed a strong down-

regulation of components of both PSs in group L. A repression of transcripts

encoding parts of PS I and PS II with fold changes of -2.3 to -3.4 was observed.

The strongest downregulated transcript was the PS II 22kDa protein (PsbS)

with a fold change of -4.6. In group P2, only PS I subunit IV and PS II 22kDa

protein exhibited fold changes of -4.7 and -4.1, respectively. Furthermore,

several contigs coding for light-harvesting complexes as well as some proton

transporting ATPase subunits and plastocyanin, which is part of the electron

transport chain, were downregulated in group L. Detected fold changes lay in

the range of -2.3 to -3.8 while the PS II light harvesting complex protein 2.2

displayed a rather strong repression of -6.2. In addition, the putative chloro-

phyllide a oxygenase and the magnesium chelatase subunit, which are both part

of the chlorophyll metabolism, were repressed 2.1- and 4.5-fold, respectively. In

contrast, group P2 exhibited a weaker downregulation. Upon desiccation, the

light harvesting complex PS II, ATPase subunit b’ and magnesium chelatase

subunit were repressed 3.9-, 4.3- and 4.4-fold, respectively. Rather striking is

the plethora of ELIPs that showed differential expression during dehydration.

Desiccation of the liquid culture caused the transcription level of ELIP1 and

the chloroplastic high molecular mass ELIP to increase while the chloroplastic

low molecular mass ELIP was repressed. The solid culture of Z. circumcarina-

tum (P2) showed an upregulation of the chloroplastic ELIP (ELI), ELIP1 and

the chloroplastic high molecular mass ELIP. The chloroplastic high molecular

mass ELIP exhibits the strongest induction with a fold change of 12.2.

Desiccation also caused a repression of enzymes involved in photorespi-

ration in both comparisons. The transcript pools of the (S)-2-hydroxy-acid

oxidase, serine-glyoxylate transaminase and glycine dehydrogenase showed a

decline for L and P2 while group L also exhibits a downregulation of glutamate-

glyoxylate aminotransferase and glycerate dehydrogenase. The detected fold

changes ranged from -2.5 to -4.2.
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Carbohydrate metabolism

Starch degradation and sucrose formation were induced during dehydration

in group L while group P2 shows only minor effects. A variety of starch

consuming enzymes were upregulated such as glycogen phosphorylase, alpha-

and beta-amylase, isoamylase, 4-alpha-glucanotransferase as well as the su-

crose synthesizing enzymes sucrose-phosphatase and sucrose-synthase. The

strongest induction was observed for glycogen phosphorylase with an 8.3-fold

upregulation while the others exhibit fold changes between 2.2 and 4.3.

Lipid metabolism

Investigating both the glycerolipid and glycerophospholipid metabolism, an

enhanced gene expression of certain enzymes was found. Group L showed

an increased transcript level for the lysophospholipid acyltransferase, dia-

cylglycerol kinase, alpha-galactosidase, sulfoquinovosyltransferase, phospho-

ethanolamine N-methyltransferase and phospholipase D1/2. The response of

group P2 was less pronounced with an upregulation of alpha-galactosidase,

phosphoethanolamine N-methyltransferase, phosphatidylserine synthase 2 and

2-acylglycerol O-acyltransferase 1. Transcript levels were increased between 2-

and 3.8-fold.

Transporter and signaling

The upregulation of the contig TR43432|c0_g2_i2, which was annotated to

be an aquaporin (AQP) of type TIP (tonoplast intrinsic protein), was most

pronounced considering all differentially expressed transcripts. Additionally,

TIP2-1 in both groups L and P2 was enhanced and TIP2-3 only in group L.

Moreover, the expression of various putative sugar transporters (plastidic glu-

cose transporter 2, sucrose transport protein 3, glucose-6-phosphate/phosphate

translocator 1, sugar transport protein 13, sugar-transport protein ERD6-like

16) was strongly induced in the liquid sample and to a lesser extent also in

group P2. The sugar-transport protein ERD6-like 16 exhibited a fold-change
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of 9 while the induction of other sugar transport proteins lay in the range of

2.1- to 5.8-fold. A complex regulation of signaling pathways in group L was

identified. Mainly transcripts, which were showing similarities to the family of

serine/threonine-protein kinases but also other kinases and transcription fac-

tors, were differentially expressed. Leucine-rich repeat receptor and receptor-

like serine/threonine-protein kinases and calcium-dependent protein kinases

(CPK), such as the leucine-rich repeat receptor-like serine/threonine-protein

kinases BAM2 and FLS2 as well as the calcium-dependent protein kinases 17

and 20, were the most prominent transcripts. Overall, more signaling related

contigs were repressed than upregulated.

Stress response

An upregulation of other stress protection associated genes was discovered.

Chaperone and Hsp encoding genes, such as the chaperone protein ClpB1,

proteasome assembly chaperone 2, the chaperone protein DnaJ and the molec-

ular chaperone Hsp31, appeared to be highly transcribed during desiccation,

primarily in group L, while genes involved in ROS scavenging, such as the

glutathione-S-transferase, peroxisomal catalase, peroxiredoxin, peptide me-

thionine sulfoxide reductase, and (chloroquine-resistance transporter)-like trans-

porter 3, were induced in both groups. For the desiccated liquid culture,

the proteasome assembly chaperone 2 exhibits the largest change of 11.2-fold.

Transcripts similar to the Nijmegen breakage syndrome 1 protein and DNA-

damage-repair/toleration protein, both involved DNA repair, also showed an

enhanced expression. Astonishingly, the Nijmegen breakage syndrome 1 pro-

tein was upregulated 9.5- and 9.7-fold in group L and P2, respectively. Fur-

thermore, a large number of LEA proteins showed high induction, consisting

only of LEA4 proteins in group L while group P2 showed the upregulation of

both LEA4 and LEA5 proteins. The LEA5 gene exhibited an 9.8-fold increase

in expression. The BLAST analysis of several Chlorophyta and Streptophyta

(Figure 6) reveals LEA group distribution among Viridiplantae species. We ob-

served that all studied streptophyte genomes contained at least LEA proteins
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from group LEA2, LEA4 and LEA5 while chlorophytes mostly only possessed

LEA2 proteins with some exceptions (in our example, D. salina). Overall,

photosynthesis appears to be repressed in group L while several ELIPs are

upregulated in both groups. Desiccation stress also causes an upregulation

of transcripts involved in the lipid metabolism and transport in L and P2.

Furthermore, group L exhibits an induction of the carbohydrate metabolism.

Both groups increase the transcript pool of ROS scavenging and chaperone

proteins.

5.6 Discussion

5.6.1 Photosynthesis and photorespiration

Dehydration has an extremely negative influence on photosynthesis as water is

crucial for structural integrity and functionality of the algal cell and also acts

as an electron donor in the electron transport chain (Fernández-Marín et al.,

2013). Herburger et al. (2015) observed a complete loss of photosynthetic ac-

tivity in Z. circumcarinatum during prolonged desiccation. However, older

cultures appeared to be more tolerant towards dehydration as photosynthe-

sis was maintained longer compared to younger cells (Herburger et al., 2015).

These findings are in agreement with our observations for Z. circumcarinatum

cultivated on agar (Figure 2B-D). Culture P1 abandoned photosynthetic activ-

ity first, then the effective quantum yield of P2 dropped while P3 resisted the

longest. According to Herburger et al. (2015), this increased tolerance is likely

caused by the formation of pre-akinetes which can be regarded as a stress toler-

ant resting stage (Pichrtová et al., 2016b). Typical features of pre-akinetes are

hardened cell walls, accumulation of starch and lipid bodies in the cytoplasm

as well as reduced growth and physiological activity (Herburger et al., 2015;

Pichrtová et al., 2016b). Compared to the agar cultures, filaments grown in

liquid medium appeared to maintain photosynthesis as long as P3. However,

this effect is clearly linked to the clinging water which could not completely
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Figure 6: LEA proteins found in A. thaliana and described by Hundertmark and

Hincha (2008). Annotations were retrieved from Phytozome v11.0 for A. thaliana, C.

reinhardtii, C. subellipsoidea, D. salina, M. polymorpha, P. patens and S. moellen-

dorffii. The same is true for the transcripts of O. sativa which were annotated using

diamond BLASTx with E-9. The transcripts of Chlorella sp. NC64A, K. crenu-

latum and K. flaccidum were downloaded from the JGI Genome Portal, Holzinger

et al. (2014) and the Klebsormidium flaccidum genome project, respectively, and

processed accordingly. Points indicate streptophytes while squares stand for chloro-

phytes. Solid and hollow symbols represent sequences derived from genomes or only

transcriptomes, respectively.
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removed by blotting. During the desiccation treatment, the excess water had

to evaporate before the algal biomass could be desiccated effectively.

The dehydration of Z. circumcarinatum, cultivated in liquid medium for

one month, led to a strong repression of transcripts encoding components of

PS I and II as well as light-harvesting proteins indicating photoinhibition. In

contrast, K. crenulatum (Holzinger et al., 2014) showed an upregulation of

genes related to photosynthesis in response to desiccation. Holzinger et al.

(2014) suggest that this mechanism serves as a preparation to rapidly resume

photosynthesis upon rehydration. Similar results were obtained for Trebouxia

gelatinosa (Carniel et al., 2016). However, Carniel et al. (2016) compared a

couple of different transcriptomic studies on desiccation of Viriplantae detect-

ing a repression of photosynthetic transcripts in Syntrichya ruralis (desiccation

tolerant moss), C. plantagineum (resurrection plant), Haberlea rhodopensis

(resurrection plant) and Xerophyta humilis (resurrection plant). Moreover, the

resurrection plantMyrothamnus flabellifolia also exhibited a downregulation of

photosynthesis genes when desiccated (Ma et al., 2015). Surprisingly, mainly

genes, encoding parts of PS I and II, the electron transport chain and the ATP

synthase, were repressed in Myrothamnus flabellifolia (Ma et al., 2015). This

is also true for Z. circumcarinatum, as demonstrated in the present study. Ma

et al. (2015) argue that thereby excitation energy and, thus, ROS production

likely are reduced. Moreover, the level of transcripts, involved in chlorophyll

biosynthesis, decreased. Similar findings were obtained for desiccated Vitis

vinifera (grapevine) leaves (Salman et al., 2016) and salt stressed Oryza sativa

(rice) seedlings (Turan and Tripathy, 2015). The observed impairment of the

chlorophyll biosynthesis is probably occurring to avoid ROS formation (Far-

rant et al., 2003). As an additional protection, the expression of ELIPs was

enhanced in group L and P2. ELIPs are photoprotectants and belong to the

chlorophyll a/b-binding (CAB) superfamily, respond to abiotic stress, mainly

to high light and UVR, and are located in the thylakoid membrane (Hayami

et al., 2015; Hutin et al., 2003; Norén et al., 2003). Similar reactions were

observed for other green algae, for example, Chlamydomonas reinhardtii and
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Dunaliella bardawil, both of which increased the ELIP transcript pool in re-

sponse to high light stress which is also common for various higher plants such

as Arabidopsis (Lers et al., 1991; Teramoto et al., 2004). Less studies have

been dedicated to the relationship of cold stress and ELIP expression in algae.

Król et al. (1997) reported an induction of ELIPs in Dunaliella salina when

exposed to low temperatures. Spirogyra varians (Zygnematales) also exhibits

an accumulation of ELIP-like transcripts when cultivated at 4◦C (Han and

Kim, 2013). Nevertheless, the accumulation of ELIPs is also commonly as-

sociated with desiccation stress (Dinakar and Bartels, 2013; Ma et al., 2015;

Zeng et al., 2002). These proteins protect the thylakoid membranes against

photooxidative damage by scavenging free chlorophyll molecules and act as

sinks for excitation energy (Heddad et al., 2012; Zeng et al., 2002). Paradoxi-

cally, some contigs of Zygnema, exhibiting similarities to ELIPs, are negatively

regulated. However, Holzinger et al. (2014) also found a complex regulation

of ELIP-related transcripts for K. crenulatum hinting at a multigenetic family

with several ELIPs being responsive to desiccation stress (Hutin et al., 2003;

Marraccini et al., 2012; Zeng et al., 2002).

A decrease in photorespiratory transcripts upon desiccation was detected of

both groups of Z. circumcarinatum suggesting a repression of photorespiration.

In contrast, photorespiration can function as a protection of the photosynthetic

apparatus against photoinhibition (Wingler et al., 1999). Especially, during

drought stress when carbon dioxide fixation and, thus, the consumption of

electrons is reduced (Wingler et al., 1999). However, protection of the PSs

by photorespiration is not essential during desiccation (Wingler et al., 2000)

Furthermore, dehydration is reported to reduce photorespiratory activity in

plants which may be caused by the decreased photosynthetic activity (Levitt,

1980).

5.6.2 Carbohydrate metabolism

A common protective mechanism against water stress is the accumulation of

low-molecular-weight osmolytes which can be sugars, polyols and proteins (Di-
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nakar and Bartels, 2013; Fernández-Marín et al., 2013; Hincha et al., 1996;

Holzinger and Pichrtová, 2016; Ma et al., 2015). By increasing the amount

of osmoprotectants in the cell, a negative osmotic potential is achieved, mem-

branes are stabilized and protein protection is enhanced (Bisson and Kirst,

1995). Nagao et al. (2008) found that K. flaccidum accumulates the osmolyte

sucrose during cold acclimation which contributes to a higher freezing toler-

ance. Moreover, the alga Chlorella vulgaris exhibits an increase in sucrose

and raffinose content in response to cold shock treatment (Salerno and Pontis,

1989). However, sucrose is also typically formed upon desiccation stress in

plants and algae (Cruz de Carvalho et al., 2014; Dinakar and Bartels, 2013;

Holzinger and Pichrtová, 2016; Ramanjulu and Bartels, 2002; Sadowsky et al.,

2016). Sadowsky et al. (2016) reported increased sucrose levels in an Antarctic

Trebouxia strain to counteract desiccation. Our data indicate a metabolic shift

towards sucrose as starch degrading as well as sucrose biosynthetic enzymes

were upregulated in dehydrated filaments. The KEGG enrichment analysis

also clearly indicated an enhancement of the "starch and sucrose metabolism".

A similar strategy is pursued by K. crenulatum inducing transcripts encoding

sucrose synthase and the sucrose phosphate synthase (Holzinger et al., 2014).

The authors suggest that raffinose family oligosaccharides also function as os-

moprotectants because several enzymes, belonging to the galactinol/raffinose

metabolism, exhibited a higher expression in desiccated cells (Holzinger et al.,

2014). Z. circumcarinatum did not show this expression pattern in response

to water stress. However, the sucrose phosphate synthase of Z. cirumcari-

natum contains a conserved phosphorylation site (results not shown) which

is typically found in angiosperms and known to become modified upon os-

motic stress (Winter and Huber, 2000). Hence, the sucrose metabolism of Z.

circumcarinatum is most likely not only regulated by transcription but also

posttranslational modifications.

Callose is an important polysaccharide found to be involved in response

to different abiotic stress factors, e.g. in drought stress in plants, such as

Gossypium hirsutum L. (cotton; McNairn, 1972), but also algae such as K.
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crenulatum (Herburger and Holzinger, 2015). Complementary, the desicca-

tion transcriptome of Klebsormidium revealed an upregulation of the callose

synthase complex confirming the significance of this carbohydrate during de-

hydration events (Holzinger et al., 2014). Albeit the occurrence of this enzyme

in the Zygnema transcriptome no differential expression was detected. These

results are in agreement with Herburger and Holzinger (2015) who reported a

stable callose content throughout desiccation for 2.5 h. As the callose synthase

is located in the plasma membrane and the protoplast is retracting from the

cell wall upon dehydration callose incorporation is prevented (Herburger and

Holzinger, 2015).

5.6.3 Lipid metabolism and membranes

The fact, that low temperatures, dehydration etc. initially target biomem-

branes, highlights the importance of membrane modification upon water stress

to preserve integrity and fluidity (Dinakar and Bartels, 2013; Holzinger et al.,

2014; Perlikowski et al., 2016; Valledor et al., 2013). For example, decreased

temperatures cause membrane modifications in the green alga C. reinhardtii

(Valledor et al., 2013; Wang et al., 2017). Gasulla et al. (2013) observed sim-

ilar tendencies in C. plantagineum induced by desiccation treatment. Mono-

galactosyldiacylglycerol was removed from the thylakoid membranes and either

transformed to digalactosyldiacylglycerol or hydrolyzed to form diacylglycerol

(Gasulla et al., 2013). In contrast, our results indicate the conversion from di-

galactosyldiacylglycerol to monogalactosyldiacylglycerol to be amplified as the

putative alpha-galactosidase is upregulated in group L. However, parts of the

glycero- and glycerophospholipid metabolism are enhanced during desiccation

suggesting other membrane modifications. Similarly, the lichen phycobiont

Asterochloris erici exhibited elevated levels of phosphatidic acid upon desic-

cation indicating that phospholipase D is involved in stress protection mecha-

nisms (Gasulla et al., 2016). Z. circumcarinatum induced phospholipase D1/2

during dehydration stress confirming that phospholipase D1/2 is part of the

stress response.
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5.6.4 Transporter proteins and signaling

Major intrinsic proteins (MIPs), or AQPs, establish channels for passive trans-

portation of small uncharged substances, such as water or glycerol, across the

membrane (Anderberg et al., 2011, 2012; Barkla et al., 1999). AQPs in em-

bryophytes comprise seven groups: GlpF-like intrinsic proteins (GIPs), hybrid

intrinsic proteins (HIPs), X intrinsic proteins (XIPs), small basic intrinsic pro-

teins (SIPs), nodulin-26 like intrinsic proteins (NIPs), plasma membrane in-

trinsic proteins (PIPs) and TIPs (Danielson and Johanson, 2008). Anderberg

et al. (2011) studied different chlorophytes and found AQPs of these groups

only in Trebouxiophyceae (PIP, GIP). Z. circumcarinatum, a charophyte alga,

is more closely related to land plants and expresses TIPs, NIPs and SIPs while

only TIPs appeared to play an important role in desiccation. Both groups,

L and P2, showed a strong induction of TIPs during water stress which was

also observed for other AQPs in the plants Arabidopsis thaliana and C. plan-

tagineum (Dinakar and Bartels, 2013; Ramanjulu and Bartels, 2002) as well

as the alga T. gelatinosa (Carniel et al., 2016). Carniel et al. (2016) argue

that AQPs are protection against damage during rehydration by increasing

the permeability of biomembranes to water.

As mentioned above, the formation of sugars and other osmolytes is in-

creased during water stress, however, these molecules also need to be dis-

tributed within the cell (Jarzyniak and Jasinski, 2014). Thus, desiccation tol-

erance is dependent on sugar transportation within the cell. Liu et al. (2016)

reported an increased drought tolerance in A. thaliana associated with the

expression of the hexose facilitator AtSWEET4. Similar results, indicating

desiccation induced expression of sugar transporters, were obtained analyzing

Caragana korshinskii (leguminous shrub; Liu et al., 2016) and Saccharum spp.

(sugar cane; Zhang et al., 2016).

The signaling in plants during desiccation generally involves several hor-

mones such as abscisic acid, cytokinin and ethylene (Campo et al., 2014;

Holzinger and Becker, 2015; van de Poel et al., 2016; Zhou et al., 2014) as

well as calcium-dependent and serine/threonine-protein kinases (Campo et al.,
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2014; Ramanjulu and Bartels, 2002). Especially abscisic acid plays a major

role in the desiccation stress response linking host and plastid signaling which

is considered a key step in the land plant evolution (de Vries et al., 2016). In

contrast to K. crenulatum (Holzinger and Becker, 2015), the up-regulation of

hormone specific signaling transcripts was not evident in Zygnema. However,

we found an intricate expression pattern of threonine/serine- and calcium-

dependent protein kinases in response to dehydration in Z. circumcarinatum.

Other studies obtained desiccation induced signaling networks with similar

complexity, e.g. for K. crenulatum and V. vinifera (Holzinger et al., 2014;

Salman et al., 2016).

5.6.5 Stress protection

The formation of ROS, occurring during different abiotic stress conditions,

is extremely harmful making ROS scavenging crucial for cell survival (e.g.

Cruz de Carvalho, 2008; Cruz de Carvalho et al., 2012; Dong et al., 2016;

Han et al., 2012; Heinrich et al., 2016; Kranner et al., 2005). For exam-

ple, high light stress triggers the expression of ROS scavenging enzymes in

the green alga C. reinhardtii and the marine diatom Thalasiosira pseudonana

(Dong et al., 2016; Erickson et al., 2015). Similarly, the dinoflagellate Sym-

biodinium involves a number of ROS defense proteins and antioxidants when

exposed to heat stress (Gierz et al., 2017). The same holds true for cold

stress which induces the accumulation of antioxidants in S. varians to coun-

teract ROS formation (Han et al., 2012). Our data suggests ROS generation

upon desiccation as Z. circumcarinatum expresses a multitude of enzymes re-

lated to ROS protection: the glutathione-S-transferase conjugates glutathione

(GSH) to hydrophobic molecules (Rezaei et al., 2013), the peroxisomal cata-

lase acts directly on ROS (Gorrini et al., 2013), peroxiredoxin catalyzes the

reduction of peroxides (Dayer et al., 2008), the peptide methionine sulfoxide

reductase reduces methionine sulfoxide back to methionine (Weissbach et al.,

2002) and (chloroquine-resistance transporter)-like transporter 3 transports

GSH (Noctor et al., 2011). Interestingly, the induction of the glutathione-S-
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transferase, peroxisomal catalase, peroxiredoxin and peptide methionine sul-

foxide reductase was higher in group P2 than L suggesting a more pronounced

ROS stress response of filaments grown on agar plates than filaments from a

liquid cultivation. An upregulation of peroxiredoxin and the peptide methio-

nine sulfoxide reductase was also detected in T. pseudonana exposed to high

light stress (Dong et al., 2016). Hence, both enzymes are certainly involved

in a general ROS coping mechanism. Moreover, group L strongly increases

the transcript pool of the (chloroquine-resistance transporter)-like transporter

3. These transporter proteins play a major role in GSH homeostasis in A.

thaliana as they connect the plastid and the cytosolic thiol pool (Maughan

et al., 2010). Thus, (chloroquine-resistance transporter)-like transporters are

essential to counteract ROS stress (Maughan et al., 2010). Furthermore, DNA

damage, which is also linked to ROS formation (Cruz de Carvalho, 2008; Hein-

rich et al., 2015), was addressed by a strong upregulation of repair enzymes in

desiccation stressed Z. circumcarinatum. For example, the Nijmegen break-

age syndrome 1 protein was highly induced with fold changes of 9.5 and 9.7

in group L and P2, respectively, suggesting a higher risk of DNA damages

associated with desiccation (Akutsu et al., 2007; Cruz de Carvalho, 2008).

Abiotic stress generally leads to aggregation and conformational changes

in protein which is lethal to the cell (Wang et al., 2004). In response, plants

and algae express chaperones and Hsps which are assisting the refolding of

proteins and protect them from aggregation (Al-Whaibi, 2011; Mitra et al.,

2013; Schulz-Raffelt et al., 2007; van de Poel et al., 2016; Wang et al., 2004).

For example, C. reinhardtii raises the transcription level of Hsp90A when heat

shocked at 40◦C (Schulz-Raffelt et al., 2007). Kobayashi et al. (2014) found

an increased expression of small Hsps in the red alga Cyanidioschyzon merolae

and C. reinhardtii in response to heat stress. Heinrich et al. (2012b) and Dong

et al. (2016) reported that the brown macroalga Saccharina latissima and the

diatom T. pseudonana, respectively, induce various chaperones and Hsps when

treated with high light intensities. Similarily, cold stress triggers the expres-

sion of two chaperones in the Antarctic diatom Chaetoceros neogracile (Park
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et al., 2007). The same holds true for desiccation which causes an increased

expression of certain chaperones and Hsps in Selaginella lepidophylla (lyco-

phyte, Carniel et al., 2016), Physcomitrella patens (moss, Wang et al., 2009),

Pyropia orbicularis (red alga, López-Cristoffanini et al., 2015) and Asterochlo-

ris erici (green alga, Gasulla et al., 2013). Z. circumcarinatum showed an

induction of chaperones and Hsps as well, which is probably a preparation

for protein refolding upon rehydration (Carniel et al., 2016). Clp proteins

are chaperones capable of refolding protein complexes and are induced in re-

sponse to various stress factors (Lee et al., 2006). In O. sativa, a number

of Clp proteins showed an increased transcription during drought stress (Hu

et al., 2009) while the cytosolic chaperone ClpB1 of A. thaliana is involved in

chloroplast development and acclimation to increased temperatures (Lee et al.,

2006). However, Z. circumcarinatum probably raised the transcription level of

the chaperone ClpB1 in response to desiccation stress to enable remodeling of

aggregated and misfolded proteins. Another important group of stress induced

proteins are the co-chaperones DnaJ (Wang et al., 2014). Wang et al. (2014)

reported an increase in drought tolerance in transgenic tobacco resulting from

an overexpression of the chloroplast-targeted chaperone DnaJ. Furthermore,

an induction of DnaJ in Saccharum in response to desiccation was demon-

strated by de Andrade et al. (2015). The applied desiccation treatment caused

Z. circumcarinatum to induce the co-chaperone as part of its stress response.

Interestingly, DnaJ expression is also triggered by high light exposure in S.

latissimi and T. pseudonana (Dong et al., 2016; Heinrich et al., 2012b). Fur-

thermore, our data shows an upregulation of the transcription factor Hsp31

upon water stress which is in agreement with the findings in O. sativa by Wang

et al. (2011). Another important component of the protein quality control

are proteasomes which selectively eliminate dysfunctional proteins (Hanssum

et al., 2014). In response to changing conditions and environmental stress, the

demand of proteasomes increases immensely forcing the cell to increase the

proteasome pool (Hanssum et al., 2014). The assembly process is promoted

by proteasome assembly chaperones such as proteasome assembly chaperone
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2 (Le Tallec et al., 2007). The desiccated filaments of Z. circumcarinatum

will most likely accumulate a number of misfolded proteins which need to be

degraded. To be able to assemble proteasomes, the alga requires adequate

chaperones. Additionally, a number of putative LEA proteins are upregulated.

LEA proteins are proposed as water stress specific chaperones (Goyal et al.,

2005; Hatanaka et al., 2014; Shinde et al., 2012) which can be grouped de-

pending on their sequence motifs/patterns (Hundertmark and Hincha, 2008).

The drought induced expression of LEA proteins has been already reported for

several species, e.g. M. flabellifolia (Ma et al., 2015), P. patens (Shinde et al.,

2012) and K. crenulatum (Holzinger et al., 2014), confirming our findings. An

interesting aspect is the distribution of these chaperones across Viridiplantae

which reveals evolutionary relationships of the different subfamilies. Based on

the classification by Hundertmark and Hincha (2008), the Z. circumcarinatum

transcriptome covered sequences belonging to LEA4 and LEA5 (Figure 6).

LEA4 is likely the group, which emerged first, as it shows the biggest diversity

of all and is present in all investigated algae and plants except D. salina. LEA5

was probably also emerging early because it was found in all streptophyta and

C. reinhardtii. All analyzed streptophyta genomes featured LEA2 proteins but

this group is missing in Z. circumcarinatum. The absence of LEA2 is likely

linked to the missing induction in response to any condition tested. Finally, the

LEA protein group SMP probably evolved during the development of mosses

from streptophytic green algae as all embryophyta possess these proteins.

5.6.6 Conclusion

In this study, the molecular response of the conjugating green alga Z. cir-

cumcarinatum to desiccation stress was investigated using differential gene

expression analysis. To assess the effect of hardening, the impact of dehydra-

tion on a young liquid culture and a seven months old agar culture of Zygnema

was analyzed. Our results found a 3-fold stronger transcriptional response of

filaments grown in liquid medium compared to older filaments cultivated on

agar. These findings are a clear indication of a pre-acclimation to low water
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availability of the algal culture grown on agar for seven months. In agreement

with earlier observations, photosynthesis related genes are highly repressed in

group L while the response of group P2 is much less pronounced. Furthermore,

water withdrawal causes membrane modifications and the expression of sev-

eral transporters such as aquaporins and carbohydrate transporter proteins.

Desiccation also induces the accumulation of sucrose, a common osmolyte, to

counteract the rapid loss of water. Finally, a number of stress related molecules

are produced, e.g. ELIPs, chaperones such as LEA proteins, proteins involved

in ROS scavenging and DNA repair proteins. Overall, we conclude that cul-

ture age and conditions highly influence the physiological state of the algal

filaments and the acclimation to water stress. However, it is difficult to mimic

natural conditions in a laboratory environment as natural habitats are influ-

enced by stochastic parameters such as weather and soil quality. Thus, future

experiments shall include the transcriptomic analysis of field samples collected

in different seasons with different water availability.

5.7 Material and methods

5.7.1 Algal strain and cultivation

Zygnema sp. (SAG 2419), previously isolated from a sandy shore near the

river Saalach in Salzburg, Austria, was used for the experiments. The alga

was either cultivated for one month in liquid Waris-H medium (McFadden

and Melkonian, 1986) or on 1.5% agar plates, containing BBM medium, as

previously described by Herburger et al. (2015). The algal strain clusters

in phylogenetic analysis close to Zygnema circumcarinatum (Herburger and

Holzinger, 2015), thus, we use this species name in the present study. However,

an unambiguous morphological determination of the species was not possible

as zygospores were not detected.
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5.7.2 Desiccation experiment

Four different cultures of Z. circumcarinatum were prepared: a one month old

liquid culture (L) and one month (P1), seven months (P2) and twelve months

old cultures (P3) grown on agar plates (solid medium; Figure 1). The liquid

culture of Z. circumcarinatum was harvested by centrifugation (300 xg) and

blotted onto cellulose membrane filters (pore size 0.45 mm, Sigma Aldrich, St.

Louis, MO, USA) while the biomass, grown on agar plates, was transferred

directly to the filters without any blotting. The triplicates of all samples were

placed into separate desiccation chambers, which were previously described

(Karsten et al., 2014), and desiccated over a saturated KCl solution at a RH of

approximately 86% according to Pichrtová et al. (2014). Y(II) was monitored

during the desiccation event, using a portable PAM (Model 2500, Heinz Walz,

Effeltrich, Germany), and samples were taken when Y(II) reached zero. The

water loss of the biomass was determined prior to and after incubation in

the desiccation chamber. The reduction of the water content was determined

according to the following formula:

Reduction [%] = 100− Desiccated biomass
Fresh biomass

· 100

Both for Y(II) and water loss, differences between each group were assessed in

R by a one-way ANOVA (p < 0.01) followed by Tukey’s post-hoc test (HSD, p

< 0.01). Correlation coefficients were calculated according to Pearson (1895).

5.7.3 RNA isolation and sequencing

Extraction of RNA was performed as previously described by Holzinger et al.

(2014) with some modifications. Six filters from each cultivation (L, P1, P2,

P3), containing either control samples (C, n = 3) or samples, subjected to

desiccation (D, n = 3), were treated with 450 μl of LifeGuardTM Soil Preserva-

tion solution (MO BIO Laboratories, Carlsbad, CA USA) and frozen in liquid

nitrogen. Subsequently, 2% CTAB buffer (in 100 mM Tris, 50 mM EDTA,

pH=8) was added and the samples were ground in a mortar as previously de-

scribed by Heinrich et al. (2012a). Furthermore, 20 μl DTT were added to the
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mixture followed by a centrifugation step. The supernatant was mixed with

ethanol and, finally, RNA was extracted using the peqGold Plant RNA Kit

(peqlab/VWR International, Erlangen, Germany) according to the manufac-

turer’s instructions. RNA samples were further purified as described by Rippin

et al. (2016). After DNase I treatment (Thermo Fisher Scientific, Waltham,

MA, USA), the RNeasy MinElute Cleanup kit (Qiagen, Hilden, Germany) was

utilized for concentration and clean-up. After assessing RNA quantity using

the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham,

MA, USA) the RNA content of one replicate of P2D and all replicates of P3C

and P3D, was insufficient for sequencing. Thus, the P2D replicate was ex-

cluded and the triplicates of each of the samples P3C and P3D were pooled

in equal amounts. Finally, a reference was pooled from all samples in equal

amounts.

After RNA quality control with the Bioanalyzer 2100 (Agilent Technolo-

gies, Santa Clara, CA, USA), two expression libraries for the reference and one

for each of the sample replicates and the two triplicate pools were prepared by

Eurofins Genomics (Ebersberg, Germany). Furthermore, mRNA was enriched

using oligo-(dT) beads followed by fragmentation, random-primed cDNA syn-

thesis and Illumina compatible adaptor ligation. The two normalized reference

libraries were sequenced on one lane of an Illumina MiSeq, 300 bp paired end

mode, and all sample libraries together on three different lanes of an Illumina

HiSeq 2500, 125 bp single mode, using the MiSeq Control Software 2.5.0.5 or

HiSeq Control Software 2.2.38, RTA 1.18.54 or RT 1.18.61 and bcl2fastq-1.8.4

(Illumina, San Diego, CA, USA).

5.7.4 Bioinformatic analyses

Raw reads of the reference were first quality trimmed and filtered using Trim-

momatic 0.35 (Bolger et al., 2014) and PRINSEQ lite 0.20.4 (Schmieder and

Edwards, 2011). Subsequently, rRNA sequence reads were separated by Sort-

MeRNA 2.1 (Kopylova et al., 2012) employing the SILVA SSU NR Ref 119

and LSU Ref 119. Before assembly, COPEread (Liu et al., 2012) was uti-
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lized to stitch overlapping reads together. The assembly of the reference

was done with Trinity 2.0.6 (Grabherr et al., 2011) and the quality was as-

sessed with scripts from the Trinity package and BUSCO plants 1.1b (Simão

et al., 2015). An additional quality filtering step was carried out annotating

all contigs with Diamond 0.8.24 (Buchfink et al., 2015) against a custom-made

database which contained the protein sequences of Physcomitrella patens (Phy-

tozome database version 12), Klebsormidium flaccidum (Hori et al., 2014) and

Naegleria gruberi (Fritz-Laylin et al., 2010). Contigs scoring an e-value higher

than E-20 against N. gruberi were removed. Control and treatment reads

were subjected to trimming with Trimmomatic 0.35, rRNA filtering with Sort-

MeRNA 2.1 and were subsequently mapped to the reference assembly using

Bowtie2 2.2.9 (Langmead and Salzberg, 2012) estimating the abundance with

RSEM (Li and Dewey, 2011). For differential gene expression analysis, the

R package edgeR (Robinson et al., 2010) was employed, analyzing LC, LD,

P2C and P2D and proceeding only with differentially expressed genes pos-

sessing an FDR (Benjamini and Hochberg, 1995) smaller than 0.001 and a

fold change of at least 4. Contig annotation was performed with the Trino-

tate pipeline 3.0.0 (http://trinotate.github.io/), including TransDecoder 2.1

(http://transdecoder.github.io/), NCBI BLAST+ 2.3.0 (Altschul et al., 1990),

HMMER 3.1b (Finn et al., 2011), SignalP 4.1 (Petersen et al., 2011), TMHMM

2.0c (Krogh et al., 2001), RNAmmer 1.2 (Lagesen et al., 2007) as well as the

databases Swiss-Prot and PFAM 3.1b2. The e-value cutoff was set to E-10.

Two gene set enrichment analyses were carried out in R, GO term enrich-

ment with GoSeq 1.26.0 (Young et al., 2010) and KEGG pathway enrichment

with clusterProfiler 3.2.11 (Yu et al., 2012), setting the FDR in both cases

to 0.001. Diamond 0.8.24 was used for annotations against the Phytozome

database version 12 and the Chlorella sp. NC64A genome (Blanc et al., 2010),

the Klebsormidium crenulatum transcriptome (Holzinger et al., 2014) and the

Klebsormidium flaccidum genome. Filtered rRNA reads were clustered into

OTUs utilizing USEARCH 5.2.2 (Edgar, 2013) and annotated against the Silva

SSU database 123.1 by feeding them into the QIIME 1.9.1 (Caporaso et al.,
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2010) script assign_taxonomy.py (e-value cutoff E-6). All raw reads and as-

sembled contigs were submitted to the SRA database (SRP117803) and will

become available upon publication of the study.
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Chapter 6

Discussion

The work presented here contributes greatly to the understanding of terrestrial

ecosystems in polar deserts and alpine regions. BSC communities cover most

of the ground in these environments and occupy important ecological functions

(Borchhardt et al., 2017a,b; Williams et al., 2017). However, climate change

is a major threat to these communities and, thus, to the whole ecosystem

(Colesie et al., 2014; Frey et al., 2013; Pushkareva et al., 2016). In order to

predict future scenarios, BSCs need to be studied in more detail, especially

in the context of changing environmental conditions, disturbance and climate

change induced succession (Bowker et al., 2014; Frey et al., 2013).

This thesis comprises results from methodology to biodiversity, ecofunc-

tionality and response patterns of BSCs to abiotic stress. The main focus

is on terrestrial microalgae and Cyanobacteria, inhabiting the crust, but the

broader biodiversity was also assessed using molecular techniques. At first,

different protocols were tested and compared in terms of suitability for the

isolation of high-quality nucleic acids, which form the basis for any molecu-

lar study. Within the project, the biodiversity of different BSCs, collected

from the Arctic and Antarctica, was analyzed using metatranscriptomics and

metabarcoding. Subsequently, those results were compared to microalgae and

Cyanobacteria identified based on morphology by Borchhardt et al. (2017a)

and Jung et al. (in preparation). The results retrieved from the biodiver-

sity survey were also used to conclude on ecological functions. Finally, an
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alpine isolate of Zygnema circumcarinatum, a hydro-terrestrial, mat-forming

alga, was exposed to harsh desiccation stress and the response pattern was

monitored using transcriptomics.

6.1 Methodology

Studying the ecology of BSCs with classical cultivation based approaches has

serious limitations as most microorganisms cannot be cultured (Chandra and

Yadav, 2015; Van Elsas et al., 2014; Wang et al., 2012). However, this mi-

crobial dark matter can still be analyzed by omitting the cultivation step and

using molecular techniques directly on environmental samples (Filée et al.,

2005; Van Elsas et al., 2014). The basis for a successful molecular analysis,

e.g. metagenomics, -transcriptomics or -proteomics, are pure and high-quality

biomolecules (Chen et al., 2009; Heinrich, 2018; Renella et al., 2014; Sánchez

et al., 2016; Van Elsas et al., 2014). Due to the chemical properties of soil,

the extraction of appropriate amount of high-grade DNA, RNA and proteins

for metagenomics, -transcriptomics and -proteomics, respectively, is rendered

difficult (Chandra and Yadav, 2015; Chen et al., 2009; Renella et al., 2014;

Van Elsas et al., 2014; Wang et al., 2012).

Soil can contain high amounts of humic substances, yellow to dark brown

colored compounds which are formed during the breakdown of organic mate-

rial (Chandra and Yadav, 2015; Wang et al., 2012). Humics can be divided

into three groups: humic acids, which are only soluble in alkali, fulvic acids

which are soluble at any pH and humin, which is insoluble (Chandra and

Yadav, 2015; Wang et al., 2012). Fulvic acids are polymerase chain reaction

(PCR) inhibitors, while humic acids interfere with almost all molecular meth-

ods such as enzymatic reactions (e.g. restriction enzymes), PCR reactions,

transformation, nucleic acid measurements and hybridizations (Chandra and

Yadav, 2015; Van Elsas et al., 2014; Wang et al., 2012). Unfortunately, humic

and fulvic acids possess properties similar to nucleic acids and are coextracted

during DNA and RNA extraction (Chandra and Yadav, 2015; Wang et al.,
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2012). Hence, extraction protocols need to be adapted and optimized to re-

duce the amount of these polyelectrolytes or even remove them (Chandra and

Yadav, 2015; Van Elsas et al., 2014; Wang et al., 2012). In Chapter 2, three

different approaches to extract RNA were tested on four different BSC sam-

ples: an extraction using a self-prepared buffer with cetyl trimethylammonium

bromide (CTAB) and polyvinylpolypyrrolidone (PVPP) and two commercial

kits. The results indicate that the CTAB containing buffer performed better

than the commercial kits in terms of reliability. Furthermore, the protocol is

cheaper than the kits and the nucleic acids show no degradation. CTAB and

PVPP are both known to chelate humic substances which helps to remove

them during the extraction (Chandra and Yadav, 2015; Subbiah and Mishra,

2008). Another advantage of this CTAB protocol is the scalability. Commer-

cial kits usually allow only small sample amounts and soil samples generally

yield only small amounts of RNA (Van Elsas et al., 2014; Wang et al., 2012).

Moreover, the extensive purification necessary to remove humic substances fur-

ther decreases the yield (Wang et al., 2012). By processing a larger amount of

sample it is easier to obtain the quantity of RNA required for NGS technolo-

gies (Wang et al., 2012). The CTAB based protocol provides another benefit

as in addition to RNA, DNA is extracted which can be purified and used for

metabarcoding or metagenomic approaches.

The extracted and purified nucleic acids are either used in shotgun metage-

nomics and metatranscriptomics or as a template for amplicon sequencing

(Urich et al., 2008, 2014; Zimmermann et al., 2015). All three of these tech-

niques are able to provide information about the biodiversity in the sample and

often yield higher taxon numbers than classical morphology based methodolo-

gies (Hultman et al., 2015; Zimmermann et al., 2015). The results displayed

and discussed in Chapter 3 and Chapter 4 confirm this assumption. Neverthe-

less, these methods also exhibit certain pitfalls (Taberlet et al., 2012).

Metabarcoding is limited in a sense that different barcodes have to be used

for different groups, e.g. Archaea, Bacteria and different phyla within the

eukaryotes (Taberlet et al., 2012). Hence, the relative abundance cannot be
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compared across different groups (Taberlet et al., 2012). Designing primers

fitting the marker gene is complicated and primers tend to be biased towards

certain taxa (Taberlet et al., 2012). Furthermore, the PCR can cause substi-

tutions, insertions deletions and even chimera formation during amplification

(Cline et al., 1996; Van Elsas et al., 2014). Similarly, sequencing can introduce

errors which also holds true for metatranscriptomics and -genomics (Glenn,

2011). Errors introduced during PCR and sequencing, that cause overestima-

tion and spurious OTUs, can be minimized by using a mock community as

described in Chapter 4. Finally, the identification of the sequence is depen-

dent on the eligibility of the chosen barcode(s) and the reference database used

(Taberlet et al., 2012). These databases, e.g. SILVA and PR2 database, need

to contain high-quality references that are taxonomically verified and curated

(Guillou et al., 2013; Quast et al., 2013; Taberlet et al., 2012).

Many of the above mentioned problems, such as PCR and primer bias,

can be avoided using metagenomics and -transcriptomics since the total DNA

or RNA, respectively, are sequenced (Urich et al., 2008). In addition to in-

sights into biodiversity, these techniques also provide information about the

functionality of the community (Urich et al., 2008). When comparing the re-

sults from Chapter 3 and 4, the algal and cyanobacterial genus richness within

the same BSC sample is higher for the metatranscriptomic approach than for

the metabarcoding one. This can be explained by the longer sequences in

the metatranscriptome (assembled 16S and 18S rRNA gene) compared to the

barcode (16S rRNA gene V3-V4 region; 18S rRNA gene V4 region). Longer

sequences and, thus, more information give a better taxonomic resolution (Wu

et al., 2015).

A major drawback of molecular identification of organisms in environmental

samples is that once the sample is processed the organisms cannot be studied

further. Culture isolates, on the other side, allow researchers to analyze organ-

isms’ physiology and response mechanisms to biotic and abiotic stress (Iñiguez

et al., 2017). The combination of physiological measurements and transcrip-

tomic analysis is a powerful approach to shed light on the underlying cellular
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processes involved in counteracting stressors such as radiation or desiccation

(Holzinger et al., 2014; Iñiguez et al., 2017). In Chapter 5, the molecular

response of Zygnema circumcarinatum to desiccation was studied which re-

vealed adaptive strategies in terms of resilience and acclimation. However,

this methodology completely neglects the interactions with other organisms

which might associate with the streptophyte (Chi et al., 2017; Poonguzhali

et al., 2007; Williams, 2007).

6.2 Biodiversity

BSCs are complex communities which accommodate a number of micro- and

macroorganisms leading an either autotrophic, heterotrophic or saprotrophic

lifestyle (Belnap et al., 2001a, 2016; Darby and Neher, 2016). The autotrophic

fraction of BSCs include Cyanobacteria, eukaryotic microalgae, bryophytes

and lichens which are the main primary producers in arid and semi-arid regions

(Andersen, 1992; Kallio and Kärenlampi, 1975; Prestø et al., 2014; Whitton

and Potts, 2012). These organisms are highly diverse and may occupy addi-

tional ecological functions that will be discussed in the following paragraphs.

The molecular analyses in Chapter 3 and Chapter 4 revealed that Cyanobac-

teria are present in all sampled BSCs. However, the degree of diversity differs

among the communities with the sample from Ny-Ålesund, Svalbard, exhibit-

ing the highest genus richness and the sample from Breinosa Gruve 7, Svalbard,

the lowest. Surprisingly, the genus Microcoleus was only found in two BSCs,

although it is commonly regarded as a keystone species in the development of

biocrusts (Couradeau et al., 2016). The absence of Microcoleus could be due

to successional shifts as previously reported by Couradeau et al. (2016). The

cyanobacterium typically initiates crust formation and may later be replaced

by other organisms (Couradeau et al., 2016). Metabarcoding (Chapter 4) re-

vealed a high relative abundance of bryophytes indicating a late developmental

stage of the crusts (Belnap, 2006; Garcia-Pichel et al., 2016). Another explana-

tion might be that Microcoleus does not play major role in biocrust formation

203



6.2. BIODIVERSITY CHAPTER 6. DISCUSSION

in polar ecosystems and is substituted by Nostoc, another BSC engineer that

appears to be more abundant in both Polar Regions compared to Microcoleus

(Büdel et al., 2016; Matuła et al., 2007; Pushkareva et al., 2016; Zidarova,

2008). This hypothesis is supported by the fact that species of Nostoc were

found in all biocrusts analyzed in Chapter 3 and Chapter 4. The genus is ubiq-

uitously distributed and capable of forming heterocysts and, therefore, fixing

nitrogen (Büdel et al., 2016). Four out of five samples contained the genera

Leptolyngbya and Phormidium, typical representatives of polar Cyanobacteria

(Matuła et al., 2007; Pushkareva et al., 2016; Zidarova, 2008). Both organisms

have been reported to synthesize EPS which can enhance crust development

and protect the soil surface against erosion (Büdel et al., 2016; De Philippis

et al., 2005; Vicente-García et al., 2004).

Streptophytic algae belonging to the taxa Klebsormidiophyceae and Zygne-

matophyceae are commonly associated with BSCs (Büdel et al., 2016). Espe-

cially, the genus Klebsormidium (Klebsormidiophyceae) is often found in crust

communities in both the Arctic and Antarctica (Borchhardt et al., 2017b;

Büdel et al., 2016; Pushkareva et al., 2016; Zidarova, 2008). The results of the

metatranscriptomic analysis (Chapter 3) and the amplicon sequencing (Chap-

ter 4) confirm that Klebsormidium is present in four out of five BSCs. This

filamentous alga is involved in crust formation by weaving through the soil and,

thus, stabilizing it (Büdel et al., 2016). Other filamentous streptophytes iden-

tified in Chapter 3 are Zygnema and Mougeotia (Zygnematophyceae; results

not shown) (Herburger et al., 2014; Pichrtová et al., 2013). The former was

earlier isolated from alpine and polar habitats and identified in both an Arctic

and an Antarctic BSC that were analyzed in Chapter 3 (Herburger et al., 2014;

Pichrtová et al., 2013; Zidarova, 2008). Zygnema is able to produce phenolics

in response to UVR stress, often beneficial to other, more sensitive organisms

within the biocrust (Belnap and Lange, 2001; Pichrtová et al., 2013). Other

zygnematophycean algae that could be detected with the molecular techniques

were Cosmarium, Cylindrocystis, Netrium and Penium. These genera are likely

contributing to the crust stabilization as they are known to form biofilms and
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excrete mucilage (Büdel et al., 2016; Domozych, 2014; Kiemle et al., 2007). For

the streptophytes Cosmarium and Cylindrocystis, previous records exist that

confirm their presence in terrestrial habitats in both Polar Regions, which

is in agreement with our results (Pushkareva et al., 2016; Zidarova, 2008).

The Chlorophyceae found in biocrusts are mostly unicellular and comprise the

biggest biodiversity among BSC algae (Büdel et al., 2016). A similar trend

was observed for the metatranscriptomic analysis (Chapter 3) showing that

Chlorophyceae possessed the highest genus richness among eukaryotic algae.

In contrast, metabarcoding (Chapter 4) revealed a moderate biodiversity for

Chlorophyceae suggesting that Chlorophyceae are indeed diverse but probably

only present in low abundances. At least four out of five samples contained

the genera Bracteacoccus, Chlamydomonas and Chloromonas which have pre-

viously been reported for terrestrial habitats in the Polar Regions (Borchhardt

et al., 2017b; Matuła et al., 2007; Pushkareva et al., 2016). The trebouxio-

phyceaen algae Coccomyxa, Dictyochloropsis, Elliptochloris and Leptosira, that

could be identified in all samples by means of metatranscriptomics (Chapter 3)

and metabarcoding (Chapter 4), are also commonly associated with polar BSC

communities (Borchhardt et al., 2017b; Matuła et al., 2007; Pushkareva et al.,

2016). Furthermore, the genera Asterochloris, Chloroidium and Trebouxia, typ-

ical lichen photobionts, were found in some of the sampled BSCs and, there-

fore, could indicate the presence of lichens (Büdel et al., 2016). Astonishingly,

the molecular analysis indicated that the chrysophyte Spumella inhabited all

isolated biocrusts. Spumella is an ubiquitously distributed nanoflagellate that

can be either autotrophic or heterotrophic (Boenigk et al., 2005; Stoeck et al.,

2008). Mixotrophy gives an competitive advantage in low-light and dark envi-

ronments helping the protist to survive the polar night (McMinn and Martin,

2013). The second most diverse group of BSC algae are diatoms (Büdel et al.,

2016). All samples contained at least one genus, however, the biocrust isolated

from Ny-Ålesund exhibited the highest genus richness (Chapter 4). Pinnularia,

a genus commonly associated with polar BSCs, was found in four out of five

samples (Borchhardt et al., 2017b; Bowker et al., 2016; Zidarova, 2008). Rep-
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resentatives of the algal classes Eustigmatophyceae and Xanthophyceae have

previously been found in polar soils (Borchhardt et al., 2017b; Büdel et al.,

2016; Matuła et al., 2007; Pushkareva et al., 2016; Zidarova, 2008). Typical

genera are Eustigmatos (Eustigmatophyceae), Botrydiopsis, and Heterococcus

(Xanthophyceae), all of which were present in the amplicon dataset (Chapter

4) (Büdel et al., 2016).

In general, all of the BSC isolates showed a dominance of bryophytes

(Chapter 4) indicating that all samples were in a late successional stage (Garcia-

Pichel et al., 2016; Lan et al., 2013). Apart from primary production, mosses

also stabilize the soil surface, increase water infiltration and present microhab-

itats for other BSC microorganisms (Seppelt et al., 2016). Among Bryophyta,

the three genera Brachythecium, Pohlia and Andreae showed the highest rel-

ative abundance in the eukaryotic community. These mosses have previously

been observed in the both Polar Regions (Engelskjøn, 1987; Prestø et al.,

2014; Putzke et al., 2015; Putzke and Pereira, 2001). The genus Andreae,

for instance, has been found to form associations with the lichen Usnea in

Antarctica (Putzke and Pereira, 2001).

The molecular dataset in Chapter 4 also detected a number of OTUs be-

longing to Fungi, non-cyanobacterial prokaryotes and microfaunal organisms.

Apart from non-lichenized Fungi, the genera Elasticomyces and Leciophysma,

potential mycobionts, were found in the analyzed Arctic isolates (Selbmann

et al., 2008; Wedin et al., 2009). The most dominant prokaryotic phyla, be-

sides Cyanobacteria, were Acidobacteria, Actinobacteria, Bacteroidetes, Gem-

matimonadetes, Proteobacteria and Verrucomicrobia. Acidobacteria and Bac-

teroidetes, for instance, are able to produce EPS which support the adhesion

of soil particles (Gundlapally and Garcia-Pichel, 2006; Kielak et al., 2016).

Interestingly, the metabarcoding dataset also contained a diverse microfauna,

e.g. the tardigrade Isohypsibius was present in the isolate from Ny-Ålesund.

This particular BSC was rich in bryophytes, a typical habitat of Isohypsibius

(Manicardi, 1989). Generally, tardigrades are extremophiles, able to withstand

extreme temperatures and high levels radiation (Sloan et al., 2017). Hence,

206



CHAPTER 6. DISCUSSION 6.3. ABIOTIC STRESSORS

these organisms are well equipped for the survival in hostile environments such

as the Arctic and Antarctica.

Overall, the generated datasets give new insights into polar biocrusts as the

community was studied as a whole for the first time. Despite the disadvantages,

molecular surveys reveal a bigger part of the BSC diversity than cultivation

based approaches. Furthermore, the newly established sequences are a valuable

resource for future endeavors.

6.3 Abiotic stressors

Polar and alpine climate zones exhibit a number of extreme conditions forc-

ing all life forms to adapt in order to survive (Martin, 2001; Thomas et al.,

2008). Terrestrial organisms, such as BSC communities, have to cope with low

temperatures, temporary to permanent snow and ice cover, occasionally ele-

vated levels of radiation, high seasonality and low water availability leading to

desiccation (Belnap et al., 2016; Martin, 2001; Thomas et al., 2008). In the fol-

lowing section, adaptive strategies of photoautotrophs, mainly to desiccation,

will be discussed and contextualized.

In Chapter 5, the desiccation tolerance of the streptophytic alga Zygnema

circumcarinatum, isolated from the shore of the river Salaach in the Alps, was

assessed using transcriptomics. Prolonged desiccation stress caused a decrease

of the effective quantum yield of photosystem II, an effect that has been ob-

served in Entransia, Hormidiella and Klebsormidium (Klebsormidiophyceae,

Streptophyta) (Herburger et al., 2016; Holzinger et al., 2014). In general,

photosynthesis is prone to interference caused by abiotic factors such as cold

stress, high radiation and dehydration (Fernández-Marín et al., 2013; Hein-

rich et al., 2015; Mao et al., 2017). Low temperatures and high UVR can

inhibit CO2 assimilation and increase the formation of ROS (Heinrich et al.,

2015; Mao et al., 2017). The phaeophyte Saccharina latissima, for instance

responds with an increased expression of photosynthetic components to coun-

teract high light and UVR (Heinrich et al., 2015). Similarly, Klebsormidium
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crenulatum reacts with an upregulation of genes involved in photosynthesis

when exposed to desiccation (Holzinger et al., 2014). In contrast, Zygnema

reduces the transcript pool of photosynthetic modules such as photosystem I

and II as well as the light-harvesting complexes (Chapter 5). The resurrection

plant Myrothamnus flabellifolia uses the same mechanism, probably to reduce

excitation energy and the associated ROS production (Ma et al., 2015). Fur-

thermore, the plant induces the expression of ELIPs when desiccated (Ma

et al., 2015). These proteins are photoprotectants that are mainly upregulated

in response to high light and UVR stress (Norén et al., 2003). For example,

the chlorophytes Chlamydomonas reinhardtii and Dunaliella bardawil exhib-

ited an accumulation of ELIPs when light stressed (Lers et al., 1991; Teramoto

et al., 2004). Han and Kim (2013) exposed the streptophyte Spirogyra varians

to low temperatures and observed a similar reaction. Since desiccation affects

the photosynthetic apparatus negatively, it is not surprising that Zygnema also

induces the expression of ELIPs (Chapter 5).

Upon desiccation, Z. circumcarinatum showed an upregulation of tran-

scripts involved in sucrose production. Carbohydrates, such as sucrose and

trehalose, are commonly synthesized as osmolytes to counteract water stress

(Alpert, 2005; Fernández-Marín et al., 2013; Potts, 1994). The accumula-

tion of osmoprotectants generates a negative osmotic potential and enhances

membrane stabilisation and protein protection (Bisson and Kirst, 1995). The

Antarctic chlorophyte Trebouxia, for example, exhibited increased sucrose con-

centrations in response to desiccation stress (Sadowsky et al., 2016). Holzinger

et al. (2014) studied the transcriptomic response of K. crenulatum to water de-

privation and observed, similarly to Zygnema, an induction of sucrose forming

enzymes. Sucrose is also accumulated at low temperatures by the green algae

Klebsormidium flaccidum and Chlorella vulgaris because of its cryoprotectant

properties (Nagao et al., 2008; Rütten and Santarius, 1992; Salerno and Pontis,

1989).

Biological membranes are prone to stressors such as low temperature, in-

creased radiation and drought as they alter membrane fluidity and integrity
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(Al-Rashed et al., 2016; Hernando et al., 2005; Jung et al., 2014; Park et al.,

1997; Perlikowski et al., 2016; Tsuji, 2016). Cold stress, for instance, induces

membrane modifications in the chlorophyte C. reinhardtii (Valledor et al.,

2013; Wang et al., 2017). Al-Rashed et al. (2016) observed that UVR causes

lipid perioxidation in the cyanobacterium Spirulina platensis leading to mem-

brane damage. The cyanobacterium Nostoc increases the amount of unsatu-

rated fatty acids in its cytoplasmic membrane to protect it from desiccation

(Potts, 1994). Holzinger et al. (2014) found that desiccation treatment causes

an upregulation of genes involved in lipid metabolism in the green alga K.

crenulatum, probably as a way to change the membrane composition. A sim-

ilar reaction was detected for Z. circumcarinatum suggesting that desiccation

causes a restructuring of the biomembranes (Chapter 5). Furthermore, a strong

induction of aquaporins, channels for passive transportation of small uncharged

molecules, was observed (Anderberg et al., 2011). Carniel et al. (2016) detected

the same pattern in the chlorophyte Trebouxia gelatinosa and theorizes that

these channels increase the permeability of membranes to protect them from

damage upon rehydration.

Zygnema increases the transcript pool of enzymes involved in the protection

against ROS when desiccated. Similarly, the alga T. gelatinosa induces ROS

scavenging enzymes to counteract water deprivation (Carniel et al., 2016).

The occurrence of ROS is linked to different abiotic stressors such as cold,

high light as well as drought, and is extremely harmful to the cell as they

cause biomolecules to denature (Cruz de Carvalho, 2008; Cruz de Carvalho

et al., 2012; Dong et al., 2016; Han et al., 2012; Heinrich et al., 2015; Rajeev

et al., 2013). As a protection mechanism against elevated levels of irradiance,

the algae C. reinhardtii and S. latissima express scavengers that render these

toxic radicals harmless (Erickson et al., 2015; Heinrich et al., 2012). The same

holds true for S. varians when exposed to low temperatures (Han et al., 2012).

ROS may also introduce modifications to the DNA, forcing the organism to

protect it and/or counteract these effects (Cruz de Carvalho, 2008; Heinrich
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et al., 2015). Upon desiccation, Zygnema exhibits a strong upregulation of

DNA repair enzymes.

Chaperones, such as HSPs, play an important role in the protection and

refolding of proteins during abiotic stress (Al-Whaibi, 2011; van de Poel et al.,

2016; Wang et al., 2004). For instance, treatment with high irradiance causes

the induction of various chaperones and HSPs in the kelp S. latissima and the

diatom Thalassiosira pseudonana (Dong et al., 2016; Heinrich et al., 2012).

The same holds true for the diatom Chaetoceros neogracile when exposed to

low temperatures, as shown previously by Park et al. (2007). Moreover, the

moss Physcomitrella patens and the microalga Asterochloris erici exhibit an in-

creased expression of chaperones upon desiccation (Gasulla et al., 2013; Wang

et al., 2009a). This increase in chaperone and HSP transcripts was also ob-

served for Z. circumcarinatum, probably to enable remodeling of aggregated

and misfolded proteins (Chapter 5). Additionally, the expression of several

LEA proteins, which are typically associated with dehydration, was induced

(Alpert, 2005; Goyal et al., 2005; Shinde et al., 2012). The streptophyte K.

crenulatum also increases the expression of these chaperones when desiccated

(Holzinger et al., 2014).

The desiccation transcriptome of Zygnema circumcarinatum provides an

important sequence reference for studying the evolution of land plants as

Zygnematophyceae are their sister lineage. Moreover, the datasets shed light

on the molecular mechanisms underlying the ecophysiological plasticity of

streptophytic green algae, especially in response to seasonal fluctuations of

water availability.

6.4 Conclusion

BSCs are complex microecosystems and key players in polar and alpine en-

vironments. These agglomerations of different autotrophic, heterotrophic and

saprotrophic micro- and macroorganisms are highly diverse and fulfill impor-

tant ecological functions, e.g. primary production, nitrogen fixation and pro-
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tection against erosion. To fully comprehend their biodiversity and the interac-

tions between the different parts of these communities, reliable methodologies

need to be available allowing to study BSCs in full depth. Molecular meth-

ods show great potential due to the fact that they circumvent cultivation of

individual organisms. However, they depend on various factors, such as the

availability of high-quality biomolecules (e.g. DNA and RNA), among others.

During the course of this project, a nucleic acid extraction protocol, based on a

CTAB containing buffer, has proven to be the most successful and was there-

fore used for all studies. Biodiversity assessment was carried out by means

of metabarcoding and metatranscriptomics. The comparison with morpho-

logical data revealed that the integration of cultivation based and molecular

approaches produces a more comprehensive picture. Furthermore, cultiva-

tion enables researchers to investigate individual BSC organisms in terms of

growth, physiology and stress response patterns. Desiccation, especially, is a

major stress factor that BSCs colonizing arid and semi-arid ecosystems are

exposed to. Cell-biological and physiological studies combined with transcrip-

tomics are able to shed light on molecular patterns and deliver explanations for

adaptive mechanisms. In general, the integration of modern omic techniques

with ecological and physiological methods is an essential step for future BSC

research.
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Summary

The Polar Regions and alpine zones are extremely hostile environments due to

prevailing low temperatures, high levels of solar radiation and extreme season-

ality. Water is almost exclusively present as ice and snow, thus, unavailable

for organisms. These conditions restrict the vegetational cover to be sparse or

completely absent. However, the soil surface is not barren but mostly covered

by biological soil crusts (BSCs). These crusts are complex aggregations of

different organisms, such as Cyanobacteria and other prokaryotes, eukaryotic

microalgae, bryophytes, Fungi, lichens and a versatile microfauna, occurring

in varying portions. Biocrusts are integral parts of cold ecosystems as they

contribute extensively to primary production and nitrogen fixation. Further-

more, BSCs are important ecosystem engineers that prevent soil loss, change

hydrological patterns, albedo, and increase soil fertility. Global change is a

major threat to these communities as it leads to alterations in biodiversity

amplified by an invasion of non-indigenous species. Hence, studying and mon-

itoring BSCs is essential to recognize shifts in community structures early on

and predict future scenarios.

Reliable methodologies are the basis for sound results and conclusions.

Extracting nucleic acids from BSC samples successfully is highly dependent on,

for instance, soil properties. Soil often contains high amounts of humics, which

can interfere with enzymatic reactions and should be removed. In this thesis,

it was found that an extraction method based on a cetyl trimethylammonium

bromide performed superior to commercial kits. All BSC isolates processed

with this protocol yielded high-quality nucleic acids. Thus, this procedure and

variations of it were used in the course of this project.
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Biodiversity assessment is crucial to unravel the complexity of communities

such as biocrusts. However, cultivating and examining individual organisms

has several limitations and will only reveal a small fraction of the actual bio-

diversity. Molecular methods may overcome these limitations to a certain

degree as total DNA or RNA is extracted from the sample and analyzed. In

this thesis, five different BSCs were studied, four from Svalbard, Norway, in the

Arctic and one from Livingston Island, a part of the Antarctic Peninsula. All

five BSCs were in a late successional stage with bryophytes being most dom-

inant. Moreover, Cyanobacteria exhibited a high relative abundance, while

microalgae appeared to be diverse but only present at a low relative abun-

dance. The genera Chloromonas (Chlorophyceae), Coccomyxa, Dictyochlorop-

sis, Elliptochloris, Leptosira (Trebouxiophyceae), Spumella (Chrysophyceae)

and Nostoc (Cyanobacteria) were detected in all samples suggesting an ubiq-

uitous distribution. Especially, Nostoc may be an important keystone species

in Polar Regions which may be further investigated in future studies. Fur-

thermore, the presence of sulfur Bacteria indicates that BSCs are involved in

sulfur cycling. Overall, the combination of cultivation based and molecular

approaches provides a more comprehensive picture of BSC communities.

As mentioned above, BSC organisms have to cope with extreme conditions

such as water scarcity, which can cause desiccation. The ability to tolerate

water deprivation and adapt to it was studied in an alpine strain of Zygnema

circumcarinatum (Zygnematophyceae). Similar to land plants, Zygnema in-

creases the transcript pool of early light-induced proteins, aquaporins, reactive

oxygen species scavengers and chaperones such as late embryogenesis abundant

proteins. Additionally, transcriptional changes in the carbohydrate and lipid

metabolism suggest accumulation of sucrose and membrane modifications, re-

spectively.

In conclusion, the integration of physiological, cell-biological and omic ap-

proaches is a promising way to get extensive insights into the biodiversity and

ecology of biological soil crusts. The outcome can be merged to shed light on
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present community patterns and functionality, and help to generate predictions

models for future developments.
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Zusammenfassung

Die Polargebiete und Bergregionen sind außerordentlich unwirtliche Habitate,

die durch niedrige Temperaturen und starke Sonneneinstrahlung geprägt und

extremen saisonalen Schwankungen unterworfen sind. Da Wasser fast auss-

chließlich in festem Aggregatzustand vorliegt, ist es für die vorkommenden

Organismen kaum oder gar nicht verfügbar. Diese Umstände bedingen, dass

höhere Pflanzen größtenteils abwesend sind. Allerdings ist der Boden nicht

kahl, sondern zu einem hohen Prozentsatz mit biologischen Bodenkrusten

(BBK) bedeckt. BBK sind komplexe Zusammenschlüsse aus verschiedenen

Organismen, wie Cyanobakterien und anderen Prokaryoten, eukaryotischen

Mikroalgen, Bryophyten, Pilzen, Flechten sowie einer vielseitigen Mikrofauna.

In kalten Ökosystemen sind Biokrusten ein integraler Bestandteil, da sie sowohl

zur Primärproduktion als auch zur Stickstofffixierung beitragen. Zusätzlich

formen BBK die Lebensräume, die sie besiedeln, indem sie den Bodenabtrag

minimieren, das hydrologische Profil und das Lichtrückstrahlvermögen verän-

dern und die Produktivität der Böden steigern. Klimaveränderungen sind eine

ernstzunehmende Bedrohung für diese Gemeinschaften. Durch Veränderungen

der Temperatur, der Niederschlagsmenge und -frequenz können gebietsfremde

Arten in diese Lebensräume vordringen, was Verschiebungen in Biodiversität

und Abundanz zur Folge hat. Daher wurden im Rahmen dieses Projektes BBK

untersucht und damit eine Grundlage geschaffen, um Veränderungen frühzeitig

zu erkennen und zukünftige Entwicklungen vorhersagen zu können.

Reproduzierbare und effiziente Methoden sind die Voraussetzung, um ver-

lässliche Aussagen über die Artenzusammensetzung und Funktion von Bo-

denkrusten zu erzielen. Das erfolgreiche Extrahieren von Nukleinsäuren aus
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BBK-Proben wird von bestimmten Bodeneigenschaften erschwert. Erdproben

können große Mengen Huminstoffe enthalten, welche ähnliche chemische Eigen-

schaften wie Nukleinsäuren haben. Diese stören enzymatische Reaktionen und

sollten entfernt werden. Das in der Arbeit vorgestellte auf Cetyltrimethylam-

moniumbromid basierende Protokoll erzielte im Vergleich zu den kommerziell

erhältlichen Kits die besten Ergebnisse. Mit Hilfe dieses Protokolls konnten

aus allen untersuchten BBK qualitativ hochwertige Nukleinsäuren gewonnen

werden. Daher wurde dieses Verfahren mit einigen Variationen im weiteren

Verlauf des Projektes verwendet.

Biodiversitätsuntersuchungen sind unabdingbar um komplexe Gemeinschaf-

ten wie Biokrusten zu analysieren. Klassischerweise werden Einzelorganismen

isoliert, kultiviert und anschließend bestimmt. Diese Methode hat mehrere

Nachteile, wie beispielsweise die Kultivierbarkeit von Organismen, und kann

nur einen geringen Teil der eigentlichen Vielfalt enthüllen. Im Rahmen dieses

Projektes wurden molekulare Methoden zur Bestimmung der Biodiversität ver-

wendet. Dafür wurde die Gesamt-DNA oder -RNA einer Probe extrahiert

und untersucht, was die Anzahl der identifizierten Organismen signifikant

erhöht verglichen mit klassichen Methoden. Fünf verschiedene BBK wur-

den analysiert, vier vom arktischen Spitzbergen, Norwegen, und eine von

der Insel Livingston, welche zur antarktischen Halbinsel gehört. Alle fünf

untersuchten Biokrusten befanden sich in einer späten Entwicklungsphase,

was durch die Dominanz der Bryophyten belegt wird. Auch Cyanobakte-

rien zeigten eine besonders hohe relative Abundanz, wohingegen Mikroalgen

eine hohe Diversität zeigten, aber nur eine geringe relative Abundanz. Die

Gattungen Chloromonas (Chlorophyceae), Coccomyxa, Dictyochloropsis, Ellip-

tochloris, Leptosira (Trebouxiophyceae), Spumella (Chrysophyceae) und Nos-

toc (Cyanobakterien) konnten in allen Proben nachgewiesen werden, was auf

eine ubiquitäre Verbreitung schließen lässt. Besonders Nostoc könnte eine

Schlüsselrolle für BBK in den Polargebieten spielen, was in kommenden Stu-

dien untersucht werden sollte. Außerdem ließen sich Schwefelbakterien nach-

weisen. Daher liegt die Vermutung nahe, dass BBK am Schwefelkreislauf
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beteiligt sind. Als Fazit aus diesem Teil lässt sich festhalten, dass eine Kom-

bination von Kultivierung und molekularen Techniken ein umfassenderes Bild

von Biokrusten ergibt.

Wie bereits erwähnt müssen Organismen, die in BBK vorkommen, mit

extremen Bedingungen zurechtkommen, wie z.B. Wasserknappheit, welche zu

Austrocknung führen kann. Ein alpiner Stamm von Zygnema circumcarina-

tum (Zygnematophyceae) wurde einem Trockenstressexperiment unterzogen,

um die Mechanismen zu identifizieren, die streptophytischen Grünalgen er-

lauben, Wasserentzug zu tolerieren und sich daran anzupassen. Es wurde

gezeigt, dass Zygnema, ähnlich wie Land-pflanzen, die Transkriptanzahl von

ELI*-Proteinen, Aquaporinen, Enzymen, die an dem Abbau von Radikalen

beteiligt sind, und Chaperonen, wie z.B. den LEA**-Proteinen, erhöht. Zusät-

zlich konnten transkriptionelle Veränderungen im Zucker- und Lipidstoffwech-

sel gemessen werden, die auf eine Anreicherung von Saccharose und Membran-

modifikationen hinweisen.

Als erweitertet Fazit ergibt sich, dass das Kombinieren von physiologis-

chen und zellbiologischen Methoden sowie Omic-Techniken tiefe Einblicke in

die Biodiversität und Ökologie von biologischen Bodenkrusten ermöglicht. Die

Ergebnisse dieser Arbeit erlauben Rückschlüsse auf die gegenwärtigen Gemein-

schaftsstrukturen und Funktionalität der BBK. Außerdem helfen sie dabei

Modelle zu entwickeln, die Prognosen in Bezug auf zukünftige Entwicklun-

gen zulassen.

*Early light-induced

**Late embryogenesis abundant
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