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Kurzzusammenfassung

Diese Dissertation umfasst Arbeiten zu verschiedenen Themen aus der The-
orie der Modulformen und ganzzahligen Partitionen. Als erstes greifen wir Ra-
manujans ursprüngliche Definition einer Mock-Thetafunktion auf. Wir lösen das
allgemeine Problem, Ramanujans Definition explizit zu verstehen, für die uni-
verselle Mock-Thetafunktion g3 und beantworten damit eine Frage von Rhoades.
Danach analysieren wir eine neue spt-Funktion und ihre Crankfunktion. Wir un-
tersuchen asymptotische Aspekte dieser Crankfunktion und beweisen eine Ver-
mutung über die Positivität des Cranks. Weiter untersuchen wir ein Muster für
das Vorzeichen des Cranks und erhalten lineare Kongruenzen der spt-Funktion
durch ihre Mockmodularität. Schließlich leiten wir eine asymptotische Formel
für sogenannte odd-even Partitionen her, deren Erzeugendenfunktion in Ra-
manujans Identitäten vorkommt. Wir untersuchen auch ihre entsprechenden
Überpartitionen, die odd-even Überpartitionen.
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Abstract

This thesis contains research articles on various topics in the theory of mod-
ular forms and integer partitions. First we revisit Ramanujan’s original defini-
tion of a mock theta function. We solve the general problem of understanding
Ramanujan’s definition explicitly for the universal mock theta function g3, an-
swering a question of Rhoades. After that we study a new spt function and its
crank function. We investigate asymptotic aspects of this crank function and
confirm a positivity conjecture of the crank. We further analyze a sign pattern
of the crank and obtain linear congruences of the spt function via its mock
modularity. Finally we provide the asymptotic formula for so-called odd-even
partitions whose generating function appears in Ramanujan’s identities. We
also study their overpartition analogue odd-even overpartitions.
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I

Introduction
Modular forms play a significant role in modern number theory as well as

a number of other areas, such as arithmetic geometry, representation theory,
mathematical physics, and combinatorics. In particular, modular forms are
closely related to the theory of integer partitions. In this chapter, we aim to
introduce preliminary definitions and give an overview of this thesis.

I.1 Harmonic Maass forms and Mock Theta
functions

I.1.1 Harmonic Maass forms

Harmonic Maass forms, introduced by Brunier and Funke [18], are a natural
extension of modular forms. Before discussing harmonic Maass forms, we first
set some notation. Throughout, we let τ = x + iy ∈ H, where x, y ∈ R and
H := {τ = x + iy ∈ C | y > 0} the complex upper half-plane, and k ∈ 1

2
Z. Let

for N ∈ N

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
be the Hecke congruence subgroup of lever N . We further define the weight k
hyperbolic Laplacian operator ∆k by

∆k := −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
,

and for odd integer d set

εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

Following [17, Definition 4.2], we may now define harmonic Maass forms of
weights k.

8



I.1.1. HARMONIC MAASS FORMS 9

Definition I.1. A smooth function f : H → C is called a weight k harmonic
Maass form with Nubentypus character χ on a subgroup Γ ⊂ Γ0(N) for some
N ∈ N, where 4 | N if k ∈ 1

2
Z \ Z, if it satisfies the following three conditions:

(1) For all ( a bc d ) ∈ Γ and all τ ∈ H, we have

f

(
aτ + b

cτ + d

)
=

{
χ(d)(cτ + d)kf(τ) if k ∈ Z,(
c
d

)
ε−2kd χ(d)(cτ + d)kf(τ) if k ∈ 1

2
Z \ Z.

Here
(
c
d

)
denotes the extended Legendre symbol, and √ is the principal

branch of the holomorphic square root.

(2) We have that ∆k(f) = 0.

(3) There is a polynomial Pf (τ) ∈ C [q−1] such that

f(τ)− Pf (τ) = O
(
e−εy

)
as y →∞ for some ε > 0. Analogous conditions are required at all cusps.

Remark I.2. Bruinier and Funke [18] also studied vector-valued harmonic Maass
forms, which include the scalar-valued forms defined above. In this case, Def-
inition I.1 can be generalized to other finite index subgroups of SL2(Z) in the
obvious way.

Harmonic Maass forms have Fourier expansions of the form

f(τ) =
∑

n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

where throughout q := e2πiτ and Γ(s, x) is the incomplete gamma function
defined as

Γ(s, x) :=

∫ ∞
x

e−tts−1dt.

We refer to
f+(τ) :=

∑
n�−∞

c+f (n)qn

as the holomorphic part of f(τ), and

f−(τ) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn

the non-holomorphic part of f(τ). Note that in particular weakly holomorphic
modular forms are harmonic Maass forms with f−(τ) = 0.
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I.1.2 Mock modular forms

Now we turn to mock theta functions, more generally mock modular forms.
Mock theta functions were introduced by Ramanujan by means of examples
(see Section II.1 below for detail). In the decades after Ramanujan’s death,
a theoretical framework for them did not arrive until Zwegers discovered the
connection between these functions and modular forms in his Ph.D. thesis [47].
While mock theta functions are holomorphic but not modular, they may be
“completed" to harmonic Maass forms by adding additional non-holomorphic
terms. Before giving a precise definition of mock modular forms, we first define
the differential operator for κ ∈ 1

2
Z

ξκ := 2iyκ
∂

∂τ
,

where ∂
∂τ

:= 1
2
( ∂
∂x

+ i ∂
∂y

). From a proposition of Bruinier and Funke [18, Propo-
sition 3.2], who originally introduced a notion of harmonic Maass forms, we
have a surjective map for k ∈ 1

2
Z \ {1}

ξ2−k : H2−k (Γ0(N))→ Sk (Γ0(N)) ,

where Hk(Γ0(N)) (resp. Sk(Γ0(N))) denotes the space of weight k harmonic
Maass forms (resp. cusp forms) on Γ0(N). Moreover, assuming the notation
above, we have that for f(τ) ∈ H2−k(Γ0(N))

ξ2−k (f(τ)) = ξ2−k
(
f−(τ)

)
= −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn ∈ Sk (Γ0(N)) .

(I.1.1)
We now may give the following definition from [17, Definition 5.16], which is
due to Zagier.

Definition I.3. Let f be a harmonic Maass form of weight 2− k.

(1) A mock modular form of weight 2− k is the holomorphic part f+ of f for
which f− is nontrivial.

(2) For f ∈ H2−k(Γ0(N)), we refer to the cusp form (I.1.1) as the shadow of
the mock modular form f+.

(3) A mock theta function is a mock modular form of weight 1
2
or 3

2
whose

shadow is a linear combination of unary theta functions.
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Remark I.4. Suppose the mock modular form f+ has shadow g(τ) =
∑∞

n=1 cg(n)qn

in Definition I.3 (2). Then the non-holomorphic part f− can be written as a
period integral

f−(τ) = 21−ki

∫ i∞

−τ

g∗(z)

(−i(z + τ))2−k
dz,

where g∗(τ) := g(−τ) =
∑∞

n=1 cg(n)qn.

I.2 The basics of partitions
Partitions, also called integer partitions, were considered by Leibniz for

the first time in a letter to Bernoulli from 1674 [35]. Several decades later,
many beautiful partition theorems were proved by Euler [22, 23]. Besides Eu-
ler, a number of mathematicians such as Gauss, Hardy, Jacobi, Littlewood,
Rademacher, Ramanujan, Schur, Sylvester, and Andrews have contributed to
the development of the theory of partitions.

A partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. For instance, there are 5 partitions of 4 :

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Let p(n) denote the number of partitions of n. For n = 4, we have p(4) = 5.
The generating function of p(n) is given by

1 +
∞∑
n=1

p(n)qn =
∞∏
k=1

1

1− qk
=

q
1
24

η(τ)
,

where

η(τ) := q
1
24

∞∏
k=1

(
1− qk

)
is Dedekind’s η-function, a weight 1

2
modular form.

I.2.1 Asymptotics

An asymptotic formula for p(n) was first studied by Hardy and Ramanujan
[30] in 1918. They showed that

p(n) ∼ 1

4
√

3n
eπ
√

2n
3
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as n → ∞. Hardy and Ramanujan also obtained an asymptotic expansion for
p(n) by using so-called Circle Method. This expansion is surprisingly accurate.
For example, the first eight terms of the expansion give the correct value of
p(200) = 3972999029388. Two decades later, Rademacher [38] improved the
Hardy and Ramanujan’s method to find a convergent series expansion for p(n).
That is

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k

 d

dx

sinh
(
π
k

√
2
3

(
x− 1

24

))√
x− 1

24


x=n

.

Here, Ak(n) is the Kloosterman sum defined by

Ak(n) :=
∑

h (mod k)
(h,k)=1

ωh,ke
−2πinh

k ,

where ωh,k is a 24th root of unity, and (h, k) denotes the greatest common
divisor of h and k.

I.2.2 Congruences

Ramanujan’s another remarkable discovery is partition congruences [39, 40]:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

where n is any nonnegative integer. However, Ramanujan’s original proofs
for the congruences above are based on q-series identities and do not give a
combinatorial understanding of them. In order to provide a combinatorial proof
for the Ramanujan’s congruences, Dyson [21] defined the rank of a partition to
be the largest part of the partition minus the number of parts. He also defined
N(m, t, n) to be the number of partitions of n with rank congruent to m modulo
t and conjectured that

N(m, 5, 5n+ 4) =
1

5
p(5n+ 4)

for m ∈ N0, 0 ≤ m ≤ 4, and

N(m, 7, 7n+ 5) =
1

7
p(7n+ 5)
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for m ∈ N0, 0 ≤ m ≤ 6. Ten years later, this was proved by Atkin and
Swinnerton-Dyer [10].

However, a short computation reveals that Dyson’s rank does not explain
the congruence modulo 11. Naturally, Dyson postulated that there exists an-
other statistic which can divide the partitions of 5n + 4, 7n + 5, and 11n + 6
into 5,7, and 11 groups respectively in equal size, and thus prove the congru-
ences combinatorially. He called it the “crank”. In 1988, Andrews and Garvan
[4, 26] formulated the definition of the crank and therefore confirmed Dyson’s
conjecture. For a partition λ, let o(λ) denote the number of ones in λ and µ(λ)
denote the number of parts larger than o(λ). Then the crank of λ is defined by

crank(λ) :=

{
largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0.

Remark I.5. Partition rank and crank functions are particularly interesting ob-
jects in many aspects. For example, the rank generating function is essentially
a mock theta function, i.e., the holomorphic part of a weight 1

2
harmonic Maass

forms, which was proven by Bringmann and Ono [15], while the crank generat-
ing function is a modular form, up to a q-power.

I.3 Scope of this thesis
This thesis is cumulative and contains research in various areas related to

integer partitions and modular forms, in particular mock theta functions. In
the following, we give the motivation of the research projects contained in this
thesis as well as a brief description of results.

I.3.1 Radial limits of the universal mock theta function
g3

Although a number of studies had been done on mock theta functions from
the modern point of view, for several decades no one had indeed proven that any
of Ramanujan’s mock theta functions satisfy his own definition (See Definition
II.1 below). Here we revisit his original definition and claims.

In his famous 1920 deathbed letter to Hardy [11, p. 220–224], Ramanujan
introduced a notion of a mock theta function and offered 17 examples. He then
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claimed about the behavior of these functions near roots of unity. In particular,
for the mock theta function

f(q) := 1 +
q

(1 + q)2
+

q4

(1 + q)2 (1 + q2)2
+

q9

(1 + q)2 (1 + q2)2 (1 + q3)2
+ · · · ,

he claimed that as q approaches a primitive even orde 2k root of unity,

f(q)− (−1)k(1− q)
(
1− q3

) (
1− q5

)
· · ·
(
1− 2q + 2q4 − · · ·

)
= O(1). (I.3.1)

This claim was proven later by Watson [42]. Moreover, Folsom, Ono, and
Rhoades [25] gave a closed formula for (I.3.1). Recently, Griffin, Ono, and
Rolen [29] proved that all of Ramanujan’s examples satisfy his own definition
in an abstract sense. However, this does not give explicit expressions for the
radial limits. In order to address this problem, Rhoades [41] asked a question
regarding the universal mock theta functions g2 and g3, a more general family
introduced by Gordon and McIntosh [28]. More precisely, he suggested to find
explicit formulas for radial limits of g2 and g3, as every mock theta function can
be written as specializations of g2 and g3 and modular forms.

The work presented in Chapter II is joint work with Steffen Löbrich and
confirms Rhoades’ question (see Question II.2 below). In fact, Bringmann and
Rolen [16] recently found an explicit algorithm to write any specializations of g2.
We treat the case of g3, generalizing radial limit results for the rank generating
function of Folsom, Ono, and Rhoades [25]. Moreover, as a side product, we
obtained in Theorem II.5 a generalization of [25, Theorem 1.2] and also non-
trivial identities for roots of unity due to the uniqueness of the radial limits
(e.g. Corollary II.13 below).

I.3.2 On spt-crank-type functions

Partition-theoretic interpretations of various functions and identities have
been intensively studied for many decades. One of the most notable achieve-
ments of this area is the Mock Theta Conjectures of Andrews and Garvan [5].
Using the rank of a partition, they showed that proving ten identities for Ra-
manujan’s fifth order mock theta functions is equivalent to the proofs of just two
identities. These identities, called Mock Theta Conjectures, were first proved by
Hickerson [31]. Recently Andrews, Dixit, and Yee [9] found a partition-theoretic
interpretation for Ramanujan’s third order mock theta function ω(q). That is

∞∑
n=1

pω(n)qn = qω(q),
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where pω(n) denotes the number of partitions of a positive integer n such that
all odd parts are smaller than twice the smallest part. For example, there are
4 such partitions of 4 :

4, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Andrews, Dixit, and Yee [9] also studied the smallest parts function for the
partitions enumerated by pω(n). The smallest parts function spt(n), introduced
by Andrews [7], counts the total number of appearances of the smallest parts
in all partitions of n. Likewise, let sptω(n) denote the total number of smallest
parts in the partitions enumerated by pω(n). Recall the partitions counted by
pω(4). Here we mark the smallest parts with a circle:

4 , 2 + 2 , 2 + 1 + 1 , 1 + 1 + 1 + 1 .

Therefore, we have sptω(4) = 9. By using q-series identities, Andrews, Dixit,
and Yee [9] further showed the congruences

sptω(5n+ 3) ≡ (mod 5),

sptω(10n+ 7) ≡ (mod 5),

sptω(10n+ 9) ≡ (mod 5).

Chapter III is joint work with Byungchan Kim and concerns the function
sptω(n). We establish the mock modularity of sptω(n), and thus obtain infinitely
many linear congruences for sptω(n) in Theorem III.4. We also investigate its
crank function introduced by Garvan and Jennings-Shaffer [27], which explains
the first congruence for sptω(n) above. We apply Wright’s Circle Method [43] to
obtain the asymptotic formula for the crank in Theorem III.1 as well as its sign
pattern in Theorem III.3. In doing so, we affirm Garvan and Jennings-Shaffer’s
positivity conjecture on the crank.

I.3.3 Asymptotic behavior of Odd-Even partitions

Besides mock theta functions, another main research area of Ramanujan’s
work is q-hypergeometric series. Indeed this fact became known thanks to
Andrews’ discovery of Ramanujan’s lost notebook [2, 8]. After this discov-
ery, there have been a number of studies on Ramanujan’s identities involving
q-hypergeometric series. The q-hypergeometric series, also known as basic hy-
pergeometric series, are defined for non-negative integers r, s by

rΦs

[
a1, a2, . . . ar
b1, b2, . . . bs

; q, z

]
:=

∞∑
n=0

(a1, a2, . . . , ar)n
(b1, b2, . . . , bs)n

(
(−1)nq(

n
2)
)1+s−r

zn,
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where

(a1, a2, . . . , a`)n = (a1, a2, . . . , a`; q)n := (a1)n (a2)n · · · (a`)n ,

and

(a)n = (a; q)n :=
n∏
k=1

(1− aqk−1),

for n ∈ N0 ∪ {∞}.

Andrews [3] looked into a certain q-hypergeometric series

∞∑
n=0

q
n(n+1)

2

(q2; q2)n
,

which apprears in Ramanujan’s identities. In Ramanujan’s lost notebook, there
are several formulas involving this function, but they are not as simple as the
identities with other similar shape of functions (see Section IV.1 for details).
Nonetheless, Andrews found out that this function possesses combinatorial in-
formation, namely this function is the generating function for odd-even parti-
tions.

In Chapter IV, we analyze odd-even partitions asymptotically. After that
we continue by studying their overpartition analogue odd-even overpartitions.
Odd-even overpartitions were first consider by Lovejoy [36], and their generating
function is given as a mixed mock modular form. The precise definitions and
results are given in Section .



II

Radial Limits of the Universal Mock Theta
Function g3

This chapter is based on a manuscript to be published in Proceedings of the
American Mathematical Society and is joint work with Steffen Löbrich [32].

II.1 Introduction
In his last letter to Hardy, Ramanujan provided 17 examples for what he

called a “mock theta function”. These are given by q-hypergeometric series
that have the same growth behavior as classical modular forms as one radially
approaches roots of unity from inside the unit disc. However, he conjectured
that one single modular form is not enough to cut out all the poles at roots of
unity. More precisely, Ramanujan defined mock theta functions as follows (cf.
[AH91], p.63).

Definition II.1 (Ramanujan). A mock theta function is a function F (q), de-
fined by a q-series which converges for |q| < 1, satisfying the following condi-
tions:

(i) There are infinitely many roots of unity ζ such that F (q) grows exponen-
tially as q approaches ζ radially from inside the unit disc.

(ii) For every root of unity ζ, there exists a weakly holomorphic modular form
Mζ(q) and a rational number α, such that F (q)− qαMζ(q) is bounded as
q approaches ζ radially from inside the unit disc.

(iii) There does not exist a single weakly holomorphic modular formM(q) and
a rational number α, such that for every root of unity ζ, the difference
F (q)− qαM(q) is bounded as q approaches ζ radially from inside the unit
disc.

Griffin, Ono, and Rolen [GOR13] proved that all of Ramanujan’s exam-
ples satisfy Definition II.1. Rhoades [Rho13] asked if one can choose the set

17
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{Mζ(q)}ζ to be finite and can also give explicit expressions for the radial limits
in (ii). In particular, he asked this for certain specializations of the universal
mock theta functions g2(x, q) and g3(x, q), since every mock theta function can
be expressed as a linear combination of such specializations, up to a rational
q-powers, and modular forms. The problem has been solved for special mock
theta functions before: Folsom, Ono, and Rhoades gave a closed expression for
the radial limits of Ramanujan’s third order mock theta function f (Theorem
1.1 of [FOR13]) as well as a partial answer for Rhoades’ question for certain
specializations of g3 (Theorem 1.2 of [FOR13], see also Remark II.7). Moreover,
in [BKLMR], the radial limits of Ramanujan’s fifth order mock theta functions
were computed using bilateral series.

Bringmann and Rolen [BR15] gave a positive answer to Rhoades’ question
for specializations of the even order universal mock theta function g2, i.e., func-
tions of the form F (q) = g2(ζ

a
b q

A, qB) for a, b, A,B ∈ N. Linear combinations
of such functions and modular forms comprise all of Ramanujan’s mock theta
functions up to rational q-powers. They showed that at most four modular
forms (including the form identically equal to 0) are needed for such F to keep
the radial limits bounded. For this they used a bilateral series identity for g2
found by Mortenson [Mor16] together with a careful analysis of zeros and poles
of g2 for case-by-case estimates. In this paper, we study the odd order universal
mock theta function g3, defined as

g3(x, q) :=
∑
n≥1

qn(n−1)

(x, q/x; q)n

(see Section 3 for a definition of the q-Pochhammer symbols (a1, . . . , am; q)n).
Throughout ζhk := e2πi

h
k . In this case, Rhoades’ question for g3 can be stated as

follows:

Question II.2 (Rhoades [Rho13], §3, 3.4.). For every a, b, A,B ∈ N with
(a, b) = 1, can one find for every k, h ∈ N with (k, h) = 1 a weakly holo-
morphic modular form Mk,h(q) satisfying (ii) of Definition II.1, such that the
set {Mk,h}k,h is finite, and explicitly compute the radial limits

Qa,b,A,B,h,k := lim
q→ζkk

(
g3
(
ζab q

A, qB
)
−Mk,h(q)

)
?

Remark II.3. Note that while for every root of unity ζhk one can choose a lot
of modular forms Mk,h(q) matching condition (ii) of Definition II.1, Choi, Lim,
and Rhoades [CLR16] showed that the expressions Qa,b,A,B,h,k are uniquely de-
termined. Moreover, they proved that for every a, b, A,B ∈ N, the function
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f : Q → C, f(h
k
) = Qa,b,A,B,h,k, is a quantum modular form of weight 1

2
whose

cocycles extend to a real analytic function on R, except possibly at one point
(for an introduction to quantum modular forms, see [Zag10]). Bringmann and
Rolen constructed such quantum modular forms in a different guise in [BR16].

A positive answer to Question II.2 follows from the work of Bringmann
and Rolen on g2 [BR15], since g3 can be expressed in terms of g2 (cf. [GM12],
eq. (6.1)). However, this relation is quite involved, so finding suitable modular
forms and computing the radial limits in the g3-case can be laborious with this
method. We affirm Rhoades’ question for most of the choices for the parame-
ters a, b, A,B, h, k directly by constructing the set {Mk,h}k,h and giving explicit
expressions for the radial limits. For this we need an identity analogous to
Mortenson’s ([Mor16], Corollary 5.2.) as well as a relation between certain g3-
values by Kang ([Kan09], Theorem 1.3). In doing so, we generalize Theorem 1.2
of [FOR13] and find a different proof for it. We also obtain non-trivial identities
for roots of unity as a side product. However, for a few special choices of the
parameters, we could not find a direct answer.

The paper is organized as follows: In Section 2 we will state our results ex-
plicitly. For this we have to distinguish several cases depending on the behavior
of g3 at the root of unity in question. In Section 3 we recall some definitions
and identities needed for the proofs, which will be given in Section 4.
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II.2 Statement of Results
Remark II.4. Throughout this paper we slightly abuse the term “modular form”.
To be precise, we mean by a modular form a weakly holomorphic modular form
(with respect to the τ -variable) of weight 1

2
for some congruence subgroup and

some multiplier, up to multiplication by a rational q-power.

There are several methods to determine the modular forms Mk,h(q) and
compute the radial limits, depending on the behavior of g3 at the chosen root of
unity. The most straightforward case is when the sum defining g3 converges ab-
solutely in the radial limit. In this case, we can choose Mk,h(q) to be identically
zero. If the sum does not converge, some summands can have poles arising from
zeros in the denominator. Since there are no zeros in the numerator and the
summands have increasing pole order, there is no way for the poles to cancel
out (cf. Section 3 in [BR15]). If neither of these cases occur, further analysis is
required.

First, we consider the case where a pole occurs in the summands of g3. Here
we need a bilateral series identity for g3 (see Proposition II.16 below). Let
a, b, A,B, k ∈ N with b, k > 0 and (a, b) = 1. For g3(ζab ζAhk e−At, ζBhk e−Bt) to be
well-defined for every t > 0, we assume that B - A whenever b = 1. Now we set
k′ := k

(k,B)
, B′ := B

(k,B)
, and

Qa,b,A,B :=

{
h

k
∈ Q : b|k and (k,B)

∣∣∣∣ (akb + Ah

)}
.

As in [BR15], Section 3, this is the set for which some summands of g3 have poles.
All limits in this paper are to be understood as radial limits from within the unit
disc. To be precise, we will denote by limq→ζ F (q) the limit limt→0+ F (ζe−t) for
ζ a root of unity and F a function on the unit disc. The Jacobi triple product
j(x, q) := (x, q/x, q; q)∞ is defined in Section 3.

Theorem II.5. If h
k
∈ Qa,b,A,B, then

lim
q→ζkh

g3 (ζab qA, qB)−
(
qB; qB

)2
∞ j
(
q
B
2 , qB

)2
ζab q

Aj
(
ζab q

A+B
2 , qB

)2
j (ζab q

A, qB)


= −ζ−ab ζ−hAk + ζ−2ab ζ−2hAk

k′∑
n=1

(
ζ−ab ζ

h(B−A)
k ; ζhBk

)
n−1

(
ζab ζ

hA
k ; ζhBk

)
n
ζhBnk .



II.2. STATEMENT OF RESULTS 21

Here in the expression q
B
2 the choice of the possibly implied square root does not

matter.

Remark II.6. In fact, more is true: The right hand side, if one replaces ζhk by
ζhk e
−t, is not just the limit, but an asymptotic expansion of the left hand side

as t→ 0+. The same holds for the other theorems below.

Remark II.7. Setting A = 0 and B = 1, we obtain the same radial limits as
Folsom, Ono, and Rhoades in [FOR13], Theorem 1.2. However, the modular
form we subtracted on the left hand side is different (see also Remark II.17).

Next, we treat the case where g3 can be computed directly as an absolutely
convergent geometric series. For x ∈ R, let {x} denote the unique number in
[0, 1) with x− {x} ∈ Z.

Theorem II.8. If h
k
/∈ Qa,b,A,B and {k′(a

b
+ Ah

k
)} ∈ (1

6
, 5
6
), then

lim
q→ζkh

g3
(
ζab q

A, qB
)

=
1

1− 1

2−2 cos(2πk′(ab+
Ah
k ))

k′∑
j=1

ζ
hBj(j−1)
k(

ζab ζ
hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
j

.

Now we need the following beautiful identity of Kang ([Kan09], Theorem
1.3.)

g3(x, q) + g3 (ζ3x, q) + g3
(
ζ23x, q

)
=

3i (q3; q3)
3
∞

(q)∞j (x3, q3)
. (II.2.1)

If the two shifted values on the left hand side of (II.2.1) converge, we can
subtract the modular form on right hand side to obtain a bounded radial limit.
This is only possible if k′ is not divisible by 3.

Theorem II.9. Assume that h
k
/∈ Qa,b,A,B, {k′(ab + Ah

k
)} ∈ [0, 1

6
) ∪ (5

6
, 1) and

3 - k′. Then we have

lim
q→ζkh

(
g3
(
ζab q

A, qB
)
−

3i
(
q3B; q3B

)3
∞

(qB; qB)∞ j (ζ3ab q
3A, q3B)

)

= −
2∑
`=1

1

1− 1

2−2 cos(2πk′(ab+
Ah
k

+ `
3))

k′∑
j=1

ζ
hBj(j−1)
k(

ζ`3ζ
a
b ζ

hA
k , ζ2`3 ζ

−a
b ζ

h(B−A)
k ; ζhBk

)
j

.

If 3|k′ and g3(x, q) diverges, then also the other two summands in the left
hand side of (II.2.1) diverge.
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Remark II.10. In trying to treat the case 3|k′ and {k′(a
b

+ Ah
k

)} /∈ {1
6
, 5
6
}, we

first found a naive formula for the radial limits, which does not seem to be true
in general due to convergence issues. However, if we additionally require the
assumptions of Theorem II.5 to be true, then numerical computations surpris-
ingly suggest the naive formula and the expression in Theorem II.5 to be equal
in this overlap case. This leads us to the following conjecture.

Conjecture II.11. Let x, q be roots of unity with (x, q/x; q)∞ = 0 such that q is
a primitive root of unity of order 3k and x3k is not a primitive sixth order root
of unity. Then we have

1

1− x3k + x6k

k∑
j=1

(−1)jx3j−2q−
(3j+1)j

2

(
q
(
1 + x3kqk

)
+ x

(
1 + x3kq2k

))
= −x−1 + x−2

3k∑
j=1

(q/x; q)j−1 (x; q)jq
j.

We challenge the interested reader to find a proof for this identity.

Example II.12. Up to a prefactor, all of Ramanujan’s fifth order mock theta
functions studied in [BKLMR] can be expressed as the sum of a specialization
of g3 with a

b
∈ 1

5
Z and B = 5 or 10, and a modular form. In these cases, we

have k′
(
a
b

+ Ah
k

)
= Ah

(k,B)
∈ 1

10
Z, so at least one of the above Theorems will

apply. However, our expressions for the radial limits are different from those
in [BKLMR]. Comparing the results and using the uniqueness of the radial
limits yields many curious corollaries. We give one example of such an identity.
The fifth order mock theta function f0(q) can be written as −2q2g3(q

2, q10)
plus a modular form. Here we have (a, b, A,B) = (0, 1, 2, 10) with Q0,1,2,10 :={
h
k
∈ Q : (k, 10)|2h

}
. Let now k be a positive even integer with 5 - k, so that

(k, 10) = 2|2h for every h. Then we have h
k
∈ Q0,1,2,10 and we can apply

Theorem II.5. On the other hand, for even k, we can also apply the first
equation of [BKLMR], Theorem 1.1. (a) to compute the radial limit. Therefore
we obtain the following corollary.

Corollary II.13. Let k ∈ N with (k, 10) = 2 and ζ a root of unity of order k.
Then we have

2− 2ζ−2
k/2∑
n=1

(
ζ8; ζ10

)
n−1

(
ζ2; ζ10

)
n
ζ10n = −2

k−1∑
n=0

ζ(n+1)(n+2)/2(−ζ; ζ)n.

.
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We obtain similar equations for the other cases of [BKLMR], Theorems
1.1. and 1.2. It would be interesting to find a direct explanation for all of these
identities.

II.3 Definitions and Useful Formulas
First we fix some notation. For a non-zero complex number q in the open

unit disc, n ∈ N0 ∪ {∞} and a ∈ C, the q-Pochhammer symbol is given by

(a)n := (a; q)n :=
n−1∏
j=0

(
1− aqj

)
and we abbreviate

(a1, . . . , am; q)n :=
m∏
j=1

(aj; q)n .

We further define the Jacobi triple product as

j(x, q) := (x, q/x, q; q)∞ .

Now we show that the infinite products we subtracted in Theorems II.5 and
II.9 are indeed modular forms.

Lemma II.14. For every n ∈ N, ζ a root of unity, and α ∈ Q, the functions
(qn)∞ and j(ζqα, qn) are modular forms in the sense of Remark II.4. In partic-
ular, the infinite products on the left hand-sides of Theorems II.5 and II.9 are
modular forms in this sense.

Proof. First we have
(q)∞ = q−

1
24η(q),

where η is the Dedekind eta-function, which is a modular form of weight 1
2
.

Furthermore, the well-known Jacobi triple product identity states that

j(x, q) = ix
1
2 q−

1
8ϑ(x, q),

where ϑ is the Jacobi theta-function, defined by

ϑ(x, q) :=
∑

n∈ 1
2
+Z

(−x)nq
n2

2 ,

which is a Jacobi form of weight and index 1
2
. This implies that ϑ(ζqα, q) is a

modular form of weight 1
2
for every root of unity ζ and α ∈ Q. Since replacing

q by qn only changes the congruence subgroup, we obtain the statement.
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We next define the Appell-Lerch sum

m(x, q, z) :=
1

j(z, q)

∑
n∈Z

(−z)nq
n(n−1)

2

1− xzqn−1
.

We have the following shifting property in the third argument (see [Zwe02], Pro-
postion 1.4, (7), using a different notation, or [Mor16], Propostion 1.1, (1.4d)):

m(x, q, z)−m(x, q, w) =
w(q)3∞j (z/w, q) j(xzw, q)

j(z, q)j(w, q)j(xz, q)j(xw, q)
. (II.3.1)

Moreover, we set

g̃(x, q) := −x
∑
n≥0

qn
2

(x)n+1(q/x)n
.

The tail sum for g̃ is defined as

g̃t(x, q) := −x
∑
n<0

qn
2

(x)n+1(q/x)n
.

We want to express g̃t as a sum over positive integers. For this, we use the
well-known identity

(a)−n = − q
n(n+1)

2

an(q/a)n

for a ∈ C and n ∈ N, to write

g̃t(x, q) =
∑
n≥1

(q/x)n−1(x)nq
n. (II.3.2)

Remark II.15. Note that R(x, q) = (1−x)(1 +xg3(x, q)) is Dyson’s rank gener-
ating function and U(x, q) = (1 − x)−1g̃t(x, q) is the generating function for
strongly unimodal sequences. These are exactly the functions occurring in
[FOR13], Theorem 1.2.

Now we need the following relation between g3 and g̃, which can be found
in [BFR12], Theorem 3.1.

g3(x, q) = −x−1
(
1 + x−1g̃(x, q)

)
. (II.3.3)

We also require the following identity from the lost notebook, which has
already been used in [FOR13] to prove their related Theorem 1.2.
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Proposition II.16. [see [AB09], Entry 3.4.7 or [Mor16], Proposition 1.3] For
a, b ∈ C\{0}, we have

∞∑
n=0

a−n−1b−n

(−1/a)n+1(−q/b)n
qn

2

+
∞∑
n=1

(−aq)n−1(−b)nqn

=
(−aq)∞j(−b, q)
b(q,−q/b; q)∞

m(a/b, q,−b).

Plugging in a = −x−1 and b = −x, we obtain a nice bilateral series identity
for g̃:

g̃(x, q) + g̃t(x, q) = −j(x, q)
x(q)∞

m
(
x−2, q, x

)
. (II.3.4)

Remark II.17. Note that (II.3.4) is equivalent to Equation (3) of [Zud15]. Zudilin
asked if one can relate the right hand side asymptotically to the Andrews-
Garvan crank function C(x, q), in order to obtain a simpler proof of Theorem
1.2. of [FOR13]. However, in our approach, we end up with a modular form
different from C(x, q) in Theorem II.5.

We will also need the following functional equation for g3 (cf. [GM12],
eqs. (4.7) and (6.2)):

g3(xq, q) = −x3g3(x, q)− x2 − x. (II.3.5)

Remark II.18. One may also deduce (II.3.4) by applying the heuristic presented
in [Mor16] to g̃ and a functional equation corresponding to (II.3.5).

With the previous results we can express g3 as a sum of g̃t, an Appell-Lerch
sum and a Jacobi form.

Lemma II.19. For every z ∈ C with j(z, q) 6= 0, we have

g3(x, q) = −x−1 + x−2
∑
n≥1

(q/x)n−1(x)nq
n +

j(x, q)

x3(q)∞j(z, q)

∑
n∈Z

(−z)nq
n(n−1)

2

1− x−2zqn−1

+
z(q)∞j (xz−1, q) j (x−1z, )

x3j(z, q)j (x−1, q) j (x−2z, q)
.

Proof. Equations (II.3.3) and (II.3.4) imply

g3(x, q) = −x−1 + x−2
(
g̃t(x, q) +

j(x, q)

x(q)∞
m
(
x−2, q, x

))
.

Now the statement follows by (II.3.2) and (II.3.1).
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If some summands of g3 have a pole, then g̃t becomes a finite sum. The idea
is to choose an appropriate z, such that the Apell-Lerch sum goes to zero in
this case. Now setting z = x

√
q in Proposition II.19 yields

g3(x, q) = −x−1 +x−2
∑
n≥1

(q/x)n−1(x)nq
n+

j(x, q)

x3(q)∞j
(
x
√
q, q
)∑
n∈Z

(−x)nq
n2

2

1− x−1qn− 1
2

+
(q)2∞j

(√
q, q
)2

xj
(
x
√
q, q
)2
j(x, q)

. (II.3.6)

Since we always have j
(
±x√q, q

)
6= 0, the choice of the square root √q does

not matter.

II.4 Case-by-Case Analysis

II.4.1 Poles in the denominators

First we look at poles of g3 arising from zeros in the denominators.

Lemma II.20. The poles in g3(ζab qA, qB) arising from zeros in the denominators
are exactly at the cusps h

k
∈ Qa,b,A,B.

Proof. The statement follows from [BR15], Proposition 3.2, since the summands
of the function g2 examined in [BR15] have exactly the same denominators as
the summands of g3. Moreover, the numerators of the summands of g3 never
vanish.

Proposition II.21. For every h
k
∈ Qa,b,A,B, we have

lim
q→ζkh

j
(
ζab q

A, qB
)

(qB; qB)∞ j
(
ζab q

A+B
2 , qB

)∑
n∈Z

(−1)nζanb q
Bn2

2
+An

1− ζ−ab q(B−A)n−
B
2

= 0.

The proof is completely analogous to the proof of Lemma 4.2 in [BR15],
since j(ζab ζ

h(A+B
2
)

k , ζhBk ) never vanishes if h
k
∈ Qa,b,A,B.

Proof of Theorem II.5. After using Equation (II.3.6) and Proposition II.21, it
remains to show that (

ζ−ab ζ
h(B−A)
k ; ζhBk

)
n−1

(
ζab ζ

hA
k ; ζhBk

)
n
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vanishes for n > k′. We have xqn = 1 for n ∈ N if and only if

ak
b

+ hA+ hBn ≡ 0 (mod k).

For h
k
∈ Qa,b,A,B this equation has a unique solution (mod k′). Thus for some

n0 ∈ {1, . . . , k′} we have xqn0 = 1 and therefore (x)n = 0 for every n > n0.

II.4.2 Convergent geometric series

Now we examine the case when the radial limit of g3 exists as a convergent
sum.

Proof of Theorem II.8. We show that the sum g3(ζ
a
b ζ

hA
k , ζhBk ) converges abso-

lutely in the above case by rearranging terms

g3
(
ζab ζ

hA
k , ζhBk

)
=
∑
n≥1

ζ
hBn(n−1)
k(

ζab ζ
hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
n

=
∑
m≥0

k′∑
j=1

ζ
hB(mk′+j)(mk′+j−1)
k(

ζab ζ
hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
mk′+j

=
∑
m≥0

k′∑
j=1

ζ
hBj(j−1)
k(

ζab ζ
hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)m
k′

(
ζab ζ

hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
j

=
k′∑
j=1

ζ
hBj(j−1)
k(

ζab ζ
hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
j

∑
m≥0

1(
ζab ζ

hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)m
k′

.

The second sum is a geometric series that converges absolutely if and only if∣∣∣(ζab ζhAk , ζ−ab ζ
h(B−A)
k ; ζhBk

)
k′

∣∣∣ > 1.

Now consider the expression (x, q/x; q)k′ for q a primitive k′-th root of unity.
We use the factorization

1− xk′ =
k′−1∏
j=0

(
1− xqj

)
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to obtain

(x, q/x; q)k′ =
k′−1∏
j=0

(
1− xqj

) (
1− x−1qj+1

)
=

k′−1∏
j=0

(
1− xqj

) k′−1∏
j=0

(
1− x−1qj

)
=
(

1− xk′
)(

1− x−k′
)

= 2− 2 Re
(
xk
′
)
.

Setting x = ζab ζ
hA
k , we get

Re
(
xk
′
)

= cos
(
2πk′

(
a
b

+ Ah
k

))
and thus (

ζab ζ
hA
k , ζ−ab ζ

h(B−A)
k ; ζhBk

)
k′

= 2− 2 cos
(
2πk′

(
a
b

+ Ah
k

))
.

Therefore the series converges absolutely if and only if

cos
(
2πk′

(
a
b

+ Ah
k

))
< 1

2
,

or equivalently {
k′
(
a
b

+ Ah
k

)}
∈
(
1
6
, 5
6

)
.

By Abel’s Theorem, the limit of the series equals the radial limit of g3 from
within the unit disc.

II.4.3 Shifting by third roots of unity

Proof of Theorem II.9. We use Kang’s identity (II.2.1). Note that under the
assumptions of Theorem II.9, if a

b
∈ {1

3
, 2
3
}, we always have A 6= 0 and B - A, so

that all three summands of (II.2.1) are well-defined for |x|, |q| < 1. First we show
that h

k
/∈ Q3a+b,3b,A,B ∪ Q3a+2b,3b,A,B, so that the summands of g3(ζ3ζab ζhAk , ζhBk )

and g3(ζ23ζab ζhAk , ζhBk ) have non-vanishing denominators. Here we abuse notation
and write Qa,b,A,B for Q a

(a,b)
, b
(a,b)

,A,B if (a, b) > 1. Suppose that

(B, k)
∣∣∣ akb + Ah+ `k

3

for some ` ∈ {1, 2}. This means that k′(a
b

+ Ah
k

+ `
3
) is an integer. Since k′ is

not divisible by 3, it follows that {k′(a
b

+ Ah
k

)} ∈ {1
3
, 2
3
}, which contradicts our
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assumption.
Since we also have{

k′
(
a
b

+ Ah
k

+ 1
3

)}
,
{
k′
(
a
b

+ Ah
k

+ 2
3

)}
∈
(
1
6
, 5
6

)
,

we see by Theorem II.8 that g3(ζ3ζab ζhAk , ζhBk ) and g3(ζ23ζab ζhAk , ζhBk ) are absolutely
convergent sums. Together with (II.2.1) the statement follows.

II.4.4 Future directions and discussion

Apart from the case where g3(x, q) diverges and k′ is divisible by 3, we are
left with the case where h

k
/∈ Qa,b,A,B and {k′(a

b
+ Ah

k
)} ∈ {1

6
, 5
6
}. Again we set

x = ζab ζ
hA
k and q = ζhBk . Then x is a 6k′-th root of unity of order ±1 (mod 6),

say x = ζ±1+6`
6k′ = ζ±16k′ζ

`
k′ , ` ∈ Z. Notice that since (k′, hB′) = 1, we can always

find an integer n satisfying hB′n ≡ −` (mod k′), meaning that

qn = ζhB
′n

k′ = ζ−`k′ .

By iteratively applying (II.3.5), we can reduce this to the cases x = ζ±16k′ . Also,
by easy computation, we can obtain

g3
(
x−1, q

)
= g3(xq, q) = −x3g3(x, q)− x2 − x.

Because of this identity, it is enough to consider the case x = ζ6k′ . Now we
obtain

q = ζhB
′

k′ = x6hB
′
.

Assume that hB′ ≡ 1 (mod k′), i.e. q = ζk′ = x6. In this case, we can use
the following mock theta “conjecture” (see [GM12], eq. (7.3)):

g3
(
x, x6

)
= − 1

2x
+
x

2
g3
(
x3, x6

)
+

(x2;x2)
4
∞

2x(x;x)2∞ (x6;x6)∞
.

First, we can apply Theorem II.8 to g3(x3, x6), because g3(x3, x6) = g3(ζ2k′ , ζk′)
and k′ · 1

2k′
= 1

2
∈ (1

6
, 5
6
). Thus we have

g3 (ζ2k′ , ζk′) =
4

3

k′∑
j=1

ζ
j(j−1)
k′

(ζ2k′ ; ζk′)
2
j

.

Next, we look at the remaining modular term. It can be easily checked that

(x2;x2)
4
∞

(x;x)2∞ (x6;x6)∞
= (−x;x)4∞(x;x)∞

(
x, x2, x3, x4, x5;x6

)
∞ ,



II.4.4. FUTURE DIRECTIONS AND DISCUSSION 30

which vanishes for x = ζ6k′ .
Combining all of the above, we obtain

lim
q→ζhk

g3
(
ζab q

A, qB
)

= − 1

2ζ6k′
+

2ζ6k′

3

k′∑
j=1

ζ
j(j−1)
k′

(ζ2k′ ; ζk′)
2
j

if h
k
/∈ Qa,b,A,B, k′(ab + Ah

k
) = 1

6
, and hB′ ≡ 1 (mod k′).

If hB′ 6≡ 1 (mod k′), one can use the relation [GM12], eq. (6.1) between g2
and g3 and the results for g2 in [BR15] to compute the modular forms to be
subtracted and the radial limits of g3. Unfortunately, this method is quite labo-
rious and not straightforward. It would be interesting to find direct approach
to these cases.
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III

On spt-crank-type functions
This chapter is based on a manuscript to be published in The Ramanujan

Journal and is joint work with Byungchan Kim [34].

III.1 Introduction
Since Andrews [And08] introduced the spt-function, which counts the total

number of appearance of the smallest part in each integer partition of n, there
have been numerous studies on spt function and its variants. For example, see
[ACK13, AGL13, FO08, Gar10, Gar11, Rol16] to name a few. In particular,
Andrews proves striking congruences:

spt(5n+ 4) ≡ 0 (mod 5),

spt(7n+ 5) ≡ 0 (mod 7),

spt(13n+ 6) ≡ 0 (mod 13).

Motivated from Dyson’s rank [Dys44] and Andrews and Garvan’s crank [AG88]
which explain Ramanujan’s famous partition congruences, Andrews, Garvan,
and Liang [AGL13] introduced an spt-crank which explains the modulo 5 and
modulo 7 congruences of the spt function.

More recently, Andrews, Dixit, and Yee [ADY15] introduced a new spt func-
tion sptω(n). The partition function pω(n) is defined to be the number of parti-
tions of n such that all odd parts are smaller than twice the smallest part. A new
spt-type function sptω(n) is defined by the total number of appearances of the
smallest part in each partition enumerated by pω(n). Recall that Ramanujan’s
third order mock theta function is

ω(q) :=
∞∑
n=0

q2n
2+2n

(q; q2)2n+1

.

33
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The subscript ω is used in pω because its generating function is essentially ω(q)
[ADY15, Theorem 3.1] :∑

n≥1

pω(n)qn =
∑
n≥1

qn

(1− qn) (qn+1; q)n (q2n+2; q2)∞
= qω(q).

As usual, (a)n := (a; q)n :=
∏n

k=1(1 − aqk−1) for n ∈ N0 ∪ {∞}. In particular,
Andrews, Dixit, and Yee proved the congruence

sptω(5n+ 3) ≡ 0 (mod 5).

On the other hand, motivated by Andrews, Garvan and Liang [AGL13],
Garvan and Jennings-Shaffer [GJS16] introduced many spt-like functions with
corresponding spt-crank-type functions. Garvan and Jennings-Shaffer first find
a proper spt-crank-type function which dissects appropriately, and later de-
fine corresponding spt-type functions which have congruences inherited from
beautiful dissections of crank functions. To introduce new spt-crank-type func-
tions, they investigated Bailey pairs in Slater’s list. In particular, they defined
NC1(m,n) by

∑
n≥0
m∈Z

NC1(m,n)zmqn :=
(q; q2)∞ (q)∞
(z)∞ (z−1)∞

∞∑
n=1

qn(z)n (z−1)n
(q; q2)n (q)n

,

and showed that

NC1(0, 5, 5n+ 3) = NC1(1, 5, 5n+ 3) = · · · = NC1(4, 5, 5n+ 3),

where
NC1(j, 5, n) :=

∑
m∈Z

m≡j (mod 5)

NC1(m,n).

This clearly implies that

sptC1
(5n+ 3) ≡ 0 (mod 5),

where sptC1
(n) :=

∑
m∈ZNC1(m,n). Actually, the generating function for

sptC1
(n) is identical with that of sptω(n), and thus we see that sptC1

(n) =
sptω(n) and NC1(m,n) can be regarded as a crank function for sptω(n).

In this paper, we investigate arithmetic properties of sptω(n) and its crank
function NC1(m,n). The main result is an asymptotic formula for NC1(m,n)
which we derive by using Wright’s Circle Method. Typically, Wright’s Circle



III.1. INTRODUCTION 35

Method is employed only when the generating function has just one dominant
pole. In our case, due to the presence of the factor 1

(q2;q2)∞
in the generating

function (see Section 2 for details), there are two dominant poles, namely q =
±1.

Theorem III.1. As n→∞,

NC1(m,n) ∼ log(2)

4π
√
n
e
π
√
n√
3 .

The following corollary is an immediate result from Theorem III.1 and con-
firms Garvan and Jennings-Shaffer’s positivity conjecture on NC1(m,n) asymp-
totically.

Corollary III.2. For a fixed integer m,

NC1(m,n) > 0,

for large enough integers n.

Bringmann and the second author [BK16] proved that various unimodal
ranks satisfy inequalities of the form u(m,n) > u(m + 1, n) for large enough
integers n. For the spt-crank NC1(m,n), the situation is slightly different.

Theorem III.3. For a fixed nonnegative integer m,

(−1)m+n+1(NC1(m,n)−NC1(m+ 1, n)) > 0,

for large enough integers n.

We also prove a congruence of sptω(n) via the mock modularity of its gen-
erating function.

Theorem III.4. Suppose that p ≥ 5 is a prime, and j,m and n are positive
integers with

(
n
p

)
= −1. If m is sufficiently large, then there are infinitely many

primes Q ≡ −1 (mod 576pj) satisfying

sptω

(
Q3pmn+ 1

12

)
≡ 0 (mod pj).

The rest of paper is organized as follows. In Section 2, we derive the gen-
erating functions for NC1(m,n) and its companion NC5(m,n). In Section 3, we
define an auxiliary function and investigate its asymptotic behavior near and
away from dominant poles. These estimate will play important roles in Section
4, where we employ Wright’s Circle Method to prove Theorem III.1. In Section
5, we prove Theorem III.3. We conclude the paper with the proof of Theorem
III.4 in Section 6.
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III.2 Generating functions and combinatorics
From [GJS16, Proposition 5.1], we know that

SC1(z, q) : =
∑
n≥0
m∈Z

NC1(m,n)zmqn

=
1

(1− z) (1− z−1)
(
R
(
z, q2

)
−
(
q; q2

)
∞C(z, q)

)
,

where R(z, q) and C(z, q) are the generating functions for ordinary partition
ranks and cranks. From the Lambert series expansion of C(z, q) and R(z, q),
we obtain that

SC1(z, q)

=
1

(q2; q2)∞

∞∑
n=1

(−1)n−1

(
qn(n+1)/2 (1 + qn)

(1− zqn) (1− qn/z)
− q3n

2+n (1 + q2n)

(1− zq2n) (1− q2n/z)

)
.

By noting that

1 + qn

(1− zqn)(1− qn/z)
=

1

1− qn

(
1

1− zqn
+

qn/z

1− qn/z

)
,

we deduce that

SC1,m(q) : =
∑
n≥0

NC1(m,n)qn

=
1

(q2; q2)∞

∑
n≥1

(−1)n−1

(
qn(n+1)/2+|m|n

1− qn
− q3n

2+n+2|m|n

1− q2n

)
.

(III.2.1)

Garvan and Jennings-Shaffer [GJS16] also conjectured the positivity ofNC5(m,n),
which is a crank to explain the congruence sptC5

(5n + 3) ≡ 0 (mod 5). They
showed that sptC5

(n) =
∑

m∈ZNC5(m,n) = sptω(n)−spt(n/2), where spt(n/2) =
0 for odd n. As the shape of the generating function is similar to NC1(m,n),
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we also investigate this function. From [GJS16], and after some manipulations,
we find that

SC5,m : =
∑
n≥0

NC5(m,n)qn

=
1

(q2; q2)∞

∑
n≥1

(−1)n−1

(
qn(n+1)/2+|m|n

1− qn
− qn

2+n+2|m|n

1− q2n

)
.

(III.2.2)

III.3 An auxiliary function
The generating functions in the previous section suggest defining

hA,B(q) :=
∑
n≥1

(−1)n
qAn

2+Bn

1− qn
,

where 2A ∈ N and 2B ∈ Z with A + B is a positive integer. The key step
to prove Theorem III.1 is estimating its asymptotic behaviors near dominant
poles, namely q = 1 and q = −1, and away from them.

We start with investigating hA,B(q) near q = 1. Throughout the paper, we
set q = e2πiz with z = x+ iy.

Lemma III.5. For |x| ≤ y, as y → 0+,

hA,B(q) =
log(2)

2πiz
+O(1).

Proof. From the Mittag-Leffler partial fraction decomposition ([BM14, eq. (3.1)]
with corrected signs), for w ∈ C we find that

eπiw

1− e2πiw
=

1

−2πiw
+

1

−2πi

∑
k≥1

(−1)k
(

1

w − k
+

1

w + k

)
. (III.3.1)

Using this, we rewrite hA,B(q) as

hA,B(q) =
∑
n≥1

(−1)n
qAn

2+Bn

1− qn
=
∑
n≥1

(−1)nqAn
2+(B− 1

2)n q
n
2

1− qn

=
∑
n≥1

(−1)nqAn
2+(B− 1

2)n

(
1

−2πinz
+

1

−2πi

∑
k≥1

(−1)k
(

1

nz − k
+

1

nz + k

))

=− 1

2πiz

∑
n≥1

(−1)nn−1qAn
2+(B− 1

2)n



III.3. AN AUXILIARY FUNCTION 38

− 1

2πi

∑
n≥1

(−1)nqAn
2+(B− 1

2)n
∑
k≥1

(−1)k
(

1

nz − k
+

1

nz + k

)
.

We first note that

1

nz − k
+

1

nz + k
=

2nz

n2z2 − k2
= 2nz

(
1

n2z2 − k2
+

1

k2
− 1

k2

)
,

and for |x| ≤ y∑
k≥1

∣∣∣∣ 1

n2z2 − k2
+

1

k2

∣∣∣∣ =
∑
k≥1

∣∣∣∣ n2z2

k2 (n2z2 − k2)

∣∣∣∣ ≤∑
k≥1

2n2y2

k4
≤ 3n2y2.

Therefore, it follows that

hA,B(q) = − 1

2πiz
f1,2A,2B−1(z)− zπ

12i
f−1,2A,2B−1(z)

− z

πi

∑
n≥1

(−1)nnqAn
2+(B− 1

2)nSn(z),

where |Sn(z)| ≤ 3n2y2 and fj,a,b(z) :=
∑∞

n=1(−1)nn−jq
an2+bn

2 . For nonnega-
tive integers j, the asymptotic behavior of fj,a,b(z) is well-known (See [BK16,
KKS14]). By adopting the same technique in [BK16] using Zagier’s asymptotic
expansion [Zag06], we find that f−1,a,b(z) = 1

4
+ O(y) for |x| ≤ y and y → 0+.

Note also that∣∣∣∣∣∑
n≥1

(−1)nnqAn
2+(B− 1

2)nSn(z)

∣∣∣∣∣ ≤ 3y2
∑
n≥1

n3e−2πy(An
2+(B− 1

2)n) � 1.

Since f1,a,b(z) = − log(2) +O(y) for |x| ≤ y and y → 0+, the proof is complete.

Now we turn to investigating hA,B(z) near q = −1.

Lemma III.6. For
∣∣x− 1

2

∣∣ ≤ y and a half-integer B, as y → 0+,

hA,B(q) =
log(2)

4πiτ
+O (1) .

Proof. By setting τ := z − 1
2

= x− 1
2

+ iy and Q := e2πiτ = −q, we derive that

hA,B(q) = hA,B(−Q) =
∑
n≥1

(−1)n
(−Q)An

2+Bn

1− (−Q)n
=
∑
n≥1

(−1)(An+B+1)nQAn2+Bn

1− (−1)nQn
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=
∑
n≥1

(−1)nQ4An2+2Bn

1−Q2n
+ (−1)A+B

∑
n≥1

(−1)nQ4An2−(4A−2B)n+A−B

1 +Q2n−1 ,

provided B is a half-integer. The first sum can be estimated using Lemma III.5,
and thus we need only deal with the second sum.

By setting w = (2n− 1)τ + 1
2
in (III.3.1), we find that

eπi(2n−1)τ i

1 + e2πi(2n−1)τ
=

1

−2πi

1

(2n− 1)τ + 1/2

+
∞∑
k=1

(−1)k

−2πi

(
1

(2n− 1)τ − k + 1/2
+

1

(2n− 1)τ + k + 1/2

)
=
∞∑
k=1

(−1)k

−2πi

(
1

(2n− 1)τ − k + 1/2
− 1

(2n− 1)τ + k − 1/2

)
=
∞∑
k=1

(−1)k

−πi

(
1

(4n− 2)τ − (2k − 1)
− 1

(4n− 2)τ + 2k − 1

)
=
∞∑
k=1

(−1)k

−πi
4k − 2

(4n− 2)2τ 2 − (2k − 1)2
.

Applying this, we have

∑
n≥1

(−1)nQ4An2−(4A−2B)n+A−B

1 +Q2n−1

=
∑
n≥1

(−1)nQ4An2−(4A−2B+1)n+A−B+ 1
2

Qn− 1
2

1 +Q2n−1

=
1

π

∑
n≥1

(−1)nQ4An2−(4A−2B+1)n+A−B+ 1
2

∞∑
k=1

(−1)k
4k − 2

(4n− 2)2τ 2 − (2k − 1)2
.

By decomposing

1

(4n− 2)2τ 2 − (2k − 1)2

=

(
1

(4n− 2)2τ 2 − (2k − 1)2
+

1

(2k − 1)2
− 1

(2k − 1)2

)
and noting that
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∣∣∣∣ 1

(4n− 2)2τ 2 − (2k − 1)2
+

1

(2k − 1)2

∣∣∣∣
=

∣∣∣∣ (4n− 2)2τ 2

(2k − 1)2 ((4n− 2)2τ 2 − (2k − 1)2)

∣∣∣∣ ≤ 2(4n− 2)2y2

(2k − 1)4
,

we conclude that the whole sum is bounded.

Since the term 1
(q2;q2)∞

in (III.2.2) is exponentially small away from the
dominant poles, we do not need a sharp bound for hA,B(z) in this region.

Lemma III.7. For y > 0 with y ≤ |x| ≤ 1
2
− y,

|hA,B(q)| � y−
3
2 .

Proof. A direct calculation reveals that

|hA,B(q)| ≤ 1

1− |q|
∑
n≥1

|q|An2+Bn � 1

y
y−

1
2 .

III.4 Proof of Theorem III.1
In this section, we use Wright’s Circle Method to complete the proof of

Theorem III.1. Before beginning the proof, we first investigate 1
(q2;q2)∞

near
and away from q = ±1. Recall that, from the modular inversion formula for
Dedekind’s eta-function ([Kob84, p. 121, Proposition 14]),

(q; q)∞ =
1√
−iz

e−
πiz
12
− πi

12z

(
1 +O

(
e−

2πi
z

))
. (III.4.1)

Therefore, we find that

1

(q2; q2)∞
=
√
−2iz e

πi
24z +O

(
y

3
2 e

π
24

Im(−1
z )
)

for |x| < y,

1

(Q2;Q2)∞
=
√
−2iτ e

πi
24τ +O

(
y

3
2 e

π
24

Im(−1
τ )
)

for
∣∣∣∣x− 1

2

∣∣∣∣ < y.
(III.4.2)

Now we consider the behavior away from the dominant poles, i.e., in a range
of y ≤ |x| ≤ 1

2
− y. Note that

Log

(
1

(q2; q2)∞

)
= −

∞∑
n=1

Log
(
1− q2n

)
=
∞∑
n=1

∞∑
m=1

q2nm

m
=

∞∑
m=1

q2m

m (1− q2m)
.
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Thus,∣∣∣∣Log

(
1

(q2; q2)∞

)∣∣∣∣ ≤ ∞∑
m=1

|q|2m

m |1− q2m|

≤
∞∑
m=1

|q|2m

m (1− |q|2m)
+
|q|2

|1− q2|
− |q|2

1− |q|2

= Log

(
1

(|q|2; |q|2)∞

)
− |q|2

(
1

1− |q|2
− 1

|1− q2|

)
.
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Plugging z 7→ 2iy into (IV.4.3), we find that

Log

(
1

(|q|2; |q|2)∞

)
=

π

24y
+

1

2
Log(2y) +O(y).

To estimate the other term in (III.4.3), first note that if y ≤ |x| ≤ 1
4
, then

cos(4πy) ≥ cos(4πx). On the other hand, if 1
4
≤ |x| ≤ 1

2
− y, then cos(4πx) ≤

cos(2π − 4πy) = cos(4πy). Thus, for all y ≤ |x| ≤ 1
2
− y, cos(4πx) ≤ cos(4πy).

Therefore,∣∣1− q2∣∣2 = 1− 2e−4πy cos(4πx) + e−8πy ≥ 1− 2e−4πy cos(4πy) + e−8πy.

From the Taylor expansion, we conclude that |1− q2| ≤ 4
√

2πy+O (y2). Since
1− |q|2 = 1− e−4πy = 4πy +O (y2), we arrive at∣∣∣∣ 1

(q2; q2)∞

∣∣∣∣�√
2y exp

[
1

y

(
π

24
− 1

4π

(
1− 1√

2

))]
. (III.4.4)

Now we are ready to prove Theorem III.1.

Proof of Theorem III.1. First, rewrite (III.2.1) in terms of hA,B(q) as follows:

SC1,m(q) =
∑
n≥0

NC1(m,n)qn =
−1

(q2; q2)∞

(
h 1

2
,
1+2|m|

2

(q)− h 3
2
,
1+|m|

2

(
q2
))
.

By Cauchy’s Theorem, we see for y = 1
4
√
3n

that

NC1(m,n) =
1

2πi

∫
C

SC1,m(q)

qn+1
dq =

∫ 1
2

− 1
2

SC1,m

(
e
2πix− π

2
√
3n

)
e
−2πinx+π

√
n

2
√
3 dx

=

∫
|x|≤y

SC1,m

(
e
2πix− π

2
√
3n

)
e
−2πinx+π

√
n

2
√
3 dx
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+

∫
y≤|x|≤ 1

2
−y
SC1,m

(
e
2πix− π

2
√
3n

)
e
−2πinx+π

√
n

2
√
3 dx

+

∫
|x− 1

2 |≤y
SC1,m

(
e
2πix− π

2
√
3n

)
e
−2πinx+π

√
n

2
√
3 dx

=: I1 + I2 + I3,

where C = {|q| = e
− π

2
√
3n}. In this case, the integral I1 contributes the main

term and the integrals I2 and I3 are absorbed in the error term.
To evaluate I1 we first introduce a function Ps(u) which is defined by Wright

[Wri34]. For fixed M > 0 and u ∈ R+

Ps(u) :=
1

2πi

∫ 1+Mi

1−Mi

vseu(v+
1
v )dv.

This functions is rewritten in terms of the I-Bessel function up to an error term.

Lemma III.8 ([Wri34]). As n→∞

Ps(u) = I−s−1(2u) +O (eu) ,

where I` denotes the usual the I-Bessel function of order `.

From Lemma III.5 and (III.4.2), we find that for |x| ≤ 1
4
√
3n

= y as n→∞

SC1,m(q) =
e
πi
24z log(2)

2π
√
−2iz

+O
(
n−

1
4 e

π
24

Im(− 1
z )
)
.

Thus the integral I1 becomes∫
|x|≤ 1

4
√
3n

(
e
πi
24z log(2)

2π
√
−2iz

+O
(
n−

1
4 e

π
24

Im(− 1
z )
))

e
−2πinx+π

√
n

2
√
3 dx.

By making the change of variables v = 1− i4
√

3nx, we arrive at

∫ 1+i

1−i

1

i4
√

3n

e π√n2
√

3v (3n)
1
4 log(2)

π
√

2v
+O

(
n−

1
4 e

π
√
nv

2
√
3

) e
π
√
nv

2
√
3 dv

=
(3n)−

1
4 log(2)

2
√

2
P− 1

2

(
π
√
n

2
√

3

)
+O

(
n−

3
4 e

π
√
n√
3

)
=

(3n)−
1
4 log(2)

2
√

2
I− 3

2

(
π
√
n√
3

)
+O

(
n−

3
4 e

π
√
n√
3

)
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=
log(2)

4π
n−

1
2 e

π
√
n√
3 +O

(
n−

3
4 e

π
√
n√
3

)
,

where we use the asymptotic formula for the I-Bessel function [AAR01, 4.12.7]

I`(x) =
ex√
2πx

+O

(
ex

x
3
2

)
.

Now we consider the integral I2. From the Lemma III.7 and (IV.4.6), for
1

4
√
3n
≤ |x| ≤ 1

2
− 1

4
√
3n
, we have

SC1,m(q)� n
1
2 exp

(
π
√
n

2
√

3
−
√

3n

π

(
1− 1√

2

))
,

as n→∞. Hence, we have

I2 � n
1
2 exp

(
π
√
n√
3
−
√

3n

π

(
1− 1√

2

))
.

Finally, to estimate I3 first we shift x 7→ x̃ + 1
2
(thus τ = x̃ + i π

4
√
3n
), and

rewrite I3 as follows:

I3 =

∫
|x− 1

2 |≤y
SC1,m

(
e2πiz

)
e
−2πinx+π

√
n

2
√
3 dx

= (−1)n
∫
|x̃|≤y

SC1,m

(
e2πiτ

)
e
−2πinx̃+π

√
n

2
√
3 dx̃.

As before, from Lemma III.6 and (III.4.2), we find that for
∣∣x− 1

2

∣∣ = |x̃| ≤ 1
4
√
3n

as n→∞
SC1,m

(
e2πiτ

)
= O

(
y

1
2 e

π
24

Im(−1
τ )
)
.

Thus, we arrive at

I3 �
∫
|x̃|≤ 1

4
√
3n

n−
1
4 e

π
√
n√
3 dx̃� n−

3
4 e

π
√
n√
3 ,

which finishes the proof of Theorem III.1.

By noting that

SC5(q) =
∑
n≥0

NC5(m,n)qn =
−1

(q2; q2)∞

(
h 1

2
,
1+2|m|

2

(q)− h 1
2
,
1+2|m|

2

(q2)
)
,

we can deduce the following asymptotic formula by proceeding in the same way
as before.
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Proposition III.9. As n→∞,

NC5(m,n) ∼ log(2)

4π
√
n
e
π
√
n√
3 .

III.5 Proof of Theorem III.3
In this section, we study crank differences and prove their sign pattern.

From (III.2.1), one easily sees that for a nonnegative integer m

SDC1,m(q) := SC1,m(q)− SC1,m+1(q)

=
1

(q2; q2)∞

∑
n≥1

(−1)n−1
(
q
n(n+1)

2
+mn − qn(3n+1)+2mn

)
.

In [KKS15, Theorem 1.1], the asymptotic behavior of f0,a,b is effectively
given. It implies that for |x| < y as y → 0+,

f0,a,b(z) = −1

2
+
b

8
(−2πiz) +O(y2).

From the above, we easily see that for |x| < y as y → 0+,

SDC1,m(q) = −(1 + 2m)π
√

2i

4
z

3
2 e

πi
24z +O

(
y

5
2 e

π
24

Im(−1
z )
)
.

For asymptotic behavior near q = −1, we set τ = z − 1
2

= x − 1
2

+ iy and
Q = e2πiτ = −q as before. Then, we obtain that

SDC1,m(q)

=
1

(Q2;Q2)∞

(
−f0,4,2(2m+1)(τ) + (−1)mQ−mf0,4,2(2m−1)(τ) + f0,6,2(2m+1)(τ)

)
=
(√
−2iτe

πi
24τ +O

(
y

3
2 e

π
24

Im(−1
τ )
))(

−(−1)m

2
+

(−1)m

2
πiτ +O

(
y2
))

=
(−1)m+1

2

√
−2iτe

πi
24τ +O

(
y

3
2 e

π
24

Im(−1
τ )
)
, (III.5.1)

as y → 0+ for |x − 1
2
| ≤ y. The rest of proof is almost identical to that of

Theorem III.1 except that I3 contributes the main term this time. Since the
other estimates are similar, we only give a brief explanation for the main term.
In this case, I3 becomes

I3 =

∫
|x− 1

2 |≤y
SDC1,m

(
e2πiz

)
e−2πinx+

π
√
3n
6 dx
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= (−1)n
∫
|x̃|≤y

SDC1,m

(
e2πiτ

)
e−2πinx̃+

π
√
3n
6 dx̃.

As before, by setting v = 1− i4
√

3nx̃ and the equation (III.5.1), we find that

I3 ∼
(−1)n+m+1π(3n)−

3
4

4
√

2
P 1

2

(
π
√
n

2
√

3

)
∼ (−1)n+m+1

8
√

3n
e
π
√
n√
3 ,

which completes the proof of Theorem III.3.
Again, we can also think about the differences for NC5(m,n). From (III.2.2)

it follows that

SDC5,m : = SC5,m(q)− SC5,m+1(q)

=
1

(q2; q2)∞

∑
n≥1

(−1)n−1
(
q
n(n+1)

2
+|m|n − qn(n+1)+2|m|n

)
.

By proceeding the same way, we can also conclude that for a fixed nonnegative
integer m,

(−1)n+m+1(NC5(m,n)−NC5(m+ 1, n)) > 0

holds for large enough integers n.

III.6 Modularity and congruences
In this section, we show that the generating function for sptω(n) is a part of

the holomorphic part of a certain weight 3
2
harmonic weak Maass form to prove

the Theorem III.4.
We first note that from [ADY15, Lemma 6.1]

Sω(z) : =
∑
n≥1

sptω(n)qn =
∑
n≥1

qn

(1− qn)2 (qn+1; q)n (q2n+2; q2)∞

=
1

(q2; q2)∞

∑
n≥1

nqn

1− qn
+

1

(q2; q2)∞

∑
n≥1

(−1)n (1 + q2n) qn(3n+1)

(1− q2n)2
.

We also note that

E2(z) := 1− 24
∞∑
n=1

σ1(n)qn = 1− 24
∑
n≥1

nqn

1− qn
,

as usual the Eisenstein series with σ1(n) :=
∑

d|n d, and

R2(z) : =
∑
n≥0

1

2
N2(n)qn
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=
−1

(q; q)∞

∑
n≥1

(−1)n(1 + qn)q
n(3n+1)

2

(1− qn)2
, [And08, eq. (3.4)],

with Nj(n) :=
∑

m∈Zm
jN(m,n) the moments of the rank. By using these, we

rewrite Sω(z) as follows:

Sω(z) =
q

1
12 (1− E2(z))

24η(2z)
−R2(2z), (III.6.1)

where η(z) := q
1
24

∏∞
n=1(1− qn) is Dedekind’s η-function. To state more define

N (z) :=
i

4
√

2π

∫ i∞

−z

η(24z)

(−i(τ + z))
3
2

dτ,

M(z) := q−1Sω(12z)− E2(24z)

24η(24z)
−N (z).

Lemma III.10. The functionM(z) is a harmonic weak Maass form of weight
3
2
on Γ0(576) with Nebentypus character χ12(·) :=

(
12
·

)
.

It is an immediate result from [Bri08, Theorem 1.1] and the basic properties
of E2(z) and η(z). Here N (z) is the non-holomorphic part and supported on
finitely many square classes. Hence, the holomorphic part q−1Sω(12z)− E2(24z)

24η(24z)

is a mock modular form of weight 3
2
and becomes an weakly holomorphic mod-

ular form with appropriate arithmetic progressions which make N (z) vanish.
Theorem III.4 follows from [Tre06, Theorem 1.1] together with the fact that
E2(z) is a p-adic modular form for any prime p.
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IV

Asymptotic behavior of Odd-Even
partitions

This chapter is based on a manuscript to be published in The Electronic
Journal of Combinatorics [33].

IV.1 Introduction and Statement of results
Andrews [And84] considered a certain family of functions and noticed a

mysterious phenomenon. More precisely, Andrews investigated q-series iden-
tities involving hypergeometric functions, for example in particular ([And84],
[And86, eq. (4.10) and (4.12)] and [And88, p. 19 and 104])

1 +
∞∑
n=1

qn

(1− q) (1− q2) · · · (1− qn)
=
∞∏
n=1

1

(1− qn)
,

1 +
∞∑
n=1

q
n(n+1)

2

(1− q) (1− q2) · · · (1− qn)
=
∞∏
n=1

(1 + qn) ,

1 +
∞∑
n=1

qn
2

(1− q) (1− q2) · · · (1− qn)
=
∞∏
n=1

1

(1− q5n−4) (1− q5n−1)
,

1 +
∞∑
n=1

qn

(1− q2) (1− q4) · · · (1− q2n)
=
∞∏
n=1

1

(1− q2n−1)
,

1 +
∞∑
n=1

qn
2

(1− q2) (1− q4) · · · (1− q2n)
=
∞∏
n=1

(
1 + q2n−1

)
,

1 +
∞∑
n=1

q
n(n+1)

2

(1− q2) (1− q4) · · · (1− q2n)
=?, (IV.1.1)

1 +
∞∑
n=1

qn
2

(1− q4) (1− q8) · · · (1− q4n)
=
∞∏
n=1

1

(1 + q2n) (1− q5n−4) (1− q5n−1)
,

(IV.1.2)

49



IV.1. INTRODUCTION AND STATEMENT OF RESULTS 50

1 +
∞∑
n=1

qn(n+2)

(1− q4) (1− q8) · · · (1− q4n)
=
∞∏
n=1

1

(1 + q2n) (1− q5n−3) (1− q5n−2)
.

(IV.1.3)

While the others can be nicely written in terms of infinite product (so that it
turns out that they are modular forms up to q powers), Andrews did not find
any such shape of identities for (IV.1.1). Moreover, Zagier [Zag07, Table 1] de-
termined that (IV.1.1) is not modular. Nonetheless, Andrews [And84] provided
a combinatorial interpretation for this function, namely odd-even partitions.

Recall that a partition of positive integer n is a nowhere increasing sequence
of positive integers whose sum is n. Define a partition function OE(n) by the
number of partitions of n in which the parts alternate in parity starting with
the smallest part odd. In other words, OE(n) counts the number of odd-even
partitions of n. For instance, there are no odd-even partitions of 2 and the
odd-even partitions of 3 are 3 and 2+1. Therefore OE(2) = 0 and OE(3) = 2.
By Andrews’ proof a generating function (in Eulerian form) for the odd-even
partitions is given by

O(q) := 1 +
∞∑
n=1

OE(n)qn =
∞∑
m=0

q
m(m+1)

2

(q2; q2)m
, (IV.1.4)

which is (IV.1.1). Here the q-Pochhammer symbol or q-shifted factorial is de-
fined as (a)n := (a; q)n :=

∏n
j=1(1− aqj−1) for n ∈ N0 ∪ {∞}.

In this paper we investigate the asymptotic behavior of OE(n). In order to
study the asymptotic behavior of the coefficients of a series, one can either use
the Circle Method [HR18, Vau81, Wri34] or apply Ingham’s Tauberian Theorem
[Ing41]. Since O(q) has a pole at every root of unity and it is not easy to find the
bounds for O(q) at every root of unity, it is difficult to use the Circle Method
in our case. Moreover, as OE(n) is not monotonically increasing, we cannot
directly apply Ingham’s Tauberian Theorem to our case either (see Section 2
for more details). Thus, we need to slightly modify our function so that we can
apply Ingham’s Tauberian Theorem.

Theorem IV.1. We have

OE(n) ∼ 1

2
√

5n
3
4

eπ
√

n
5

as n→∞.

We also investigate the asymptotics of odd-even overpartitions, studied by
Lovejoy [Lov08]. Recall that an overpartition of positive interger n is a parti-
tion of n in which the first occurrence (equivalently, the final occurrence) of a
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number may be overlined. An odd-even overpartition is an overpartition with
the smallest part odd and such that the difference between successive parts is
odd if the smaller is nonoverlined and even otherwise. For example, there are
no odd-even overpartitions of 2, the odd-even overpartitions of 3 are 3, 3, 2+1,
and 2 + 1, and the odd-even partitions of 4 are 3 + 1 and 3 + 1. Notice that if
all parts are non-overlined, then we have the odd-even partitions. We denote
OE(n) by the number of odd-even overpartitions of n and define OE(0) := 1.
The generating function is given in [Lov08]

O(q) :=
∞∑
n=0

OE(n)qn =
∞∑
m=0

(−1)mq
m(m+1)

2

(q2; q2)m
= (−q)∞f(q),

where

f(q) :=
∞∑
n=0

qn
2

(−q)2n
(IV.1.5)

is one of Ramanujan’s third order mock theta functions. These functions ap-
peared in Ramanujan’s deathbed letter to Hardy and are now known as the
holomorphic parts of weight 1

2
harmonic Maass forms (see [Zwe02]). We re-

mark that the generating function for the odd-even overpartitions is a mixed
mock modular form, i.e., the product of a modular form and a mock theta func-
tion. From this fact, we can apply Wright’s Circle Method [Wri34] to obtain
the asymptotic formula for OE(n).

Theorem IV.2. We have

OE(n) ∼ 1

3
5
4n

3
4

eπ
√

n
3

as n→∞.

This paper is organized as follows. In Section 2 we study some basic prop-
erties of odd-even partitions and introduce an auxiliary theorem which play
important roles to prove Theorem IV.1. The proof is given in Section 3. We
conclude the paper with the proof of Theorem IV.2 in Section 4.
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IV.2 Preliminaries

IV.2.1 Basic properties of odd-even partitions

First we look into the first few values of the odd-even partition function
OE(n):

n relevant partitions of n OE(n)

1 1 1
2 — 0
3 3, 1+2 2
4 — 0
5 5, 1+4 2
6 1+2+3 1
7 7, 1+6, 3+4 3
8 1+2+5 1
...

...
...

From these values, we see that OE(n) is not monotonically increasing. Nev-
ertheless, OE(n) ≤ OE(n + 2) holds for every n due to the fact that we can
always make an odd-even partition of n + 2 from the one of n by adding 2 to
the largest part. Thus, OE(n) is monotonically increasing for even (odd resp.)
n. This suggests that the appropriate approach to understand the asymptotic
behavior of OE(n) is to split the power series of OE(n) into two parts, one with
even n and the other with odd n, as follows:

O(q) =
∞∑
n=0

OE(n)qn =
∞∑
n=0

OE(2n)q2n +
∞∑
n=0

OE(2n+ 1)q2n+1

=: Oe(q) + Oo(q).

Here, for convenience we define OE(0) := 1. We further split the q hypergeo-
metric series in (IV.1.4) accordingly by considering the parity of powers of q for
each summand. Since the q-Pochhammer symbol (q2; q2)m in the denominator
always produces even powers of q, the parity of powers of q depends only on
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m(m+1)
2

. Note that m(m+1)
2

is even iff m ≡ 0, 3 (mod 4) and odd iff m ≡ 1, 2
(mod 4). Hence

Oe(q) =
∑
m≥0

m≡0,3 (mod 4)

q
m(m+1)

2

(q2; q2)m
, Oo(q) =

∑
m≥0

m≡1,2 (mod 4)

q
m(m+1)

2

(q2; q2)m
.

IV.2.2 Ingham’s Tauberian Theorem

From the asymptotic behavior of a power series, Ingham’s Tauberian Theo-
rem [Ing41] gives an asymptotic formula for its coefficients.

Theorem (Ingham [Ing41]). Let f(q) =
∑

n≥0 a(n)qn be a power series with
weakly increasing nonnegative coefficients and radius of convergence equal to 1.
If there are constants A > 0, λ, α ∈ R such that

f
(
e−ε
)
∼ λεαe

A
ε

as ε→ 0+, then

a(n) ∼ λ

2
√
π

A
α
2
+ 1

4

n
α
2
+ 3

4

e2
√
An

as n→∞.

IV.3 Proof of Theorem IV.1

IV.3.1 Asymptotics for the generating functions

In this section we investigate the asymptotic behavior of the functions Oe(q)
and Oo(q). Throughout the section we set q = e−t. In order to get the asymp-
totic formulas for these functions, we exploit the second proof of [Zag07, Propo-
sition 5]. The idea of the proof is based on the asymptotics of the individual
terms in the series. We first study the asymptotic behavior of the summand and
then sum up the asymptotics. We denote the m-th term in the series (IV.1.4)
by

fm = fm(q) :=
q
m(m+1)

2

(q2; q2)m
.

The sequence (fm)m∈N is unimodal, meaning that fm increases until fm reaches
a maximum value and then decreases. More precisely, for 0 < |q| < 1 the ratio

fm
fm−1

=
qm

1− q2m
(IV.3.1)
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goes to ∞ as m → 0, decreases as m grows, and tends to 0 as m → ∞. To
determine when fm takes the maximum value, we check when the ratio (IV.3.1)
becomes 1. This ratio is equal to 1 exactly for q2m the unique root of the
equation Q

1
2 +Q = 1 in the interval (0, 1), namely Q := 3−

√
5

2
. In other words,

fm approaches the maximum value when q2m is close to Q and m near Log(Q)
2 Log(q)

.
We further note that

Log(Q)

2 Log(q)
→∞, q2m → Q as q → 1−.

Thus, the main contribution occurs when the terms are of the form q2m = Qq−2ν

(or qm = Q
1
2 q−ν) with ν ∈ ν0 + Z satisfying ν = o(m) and ν0 denotes the

fractional part of Log(Q)
2 Log(q)

. In this setting, we evaluate the size of fm. For this, we
use the asymptotic expansion from Zagier [Zag07, p. 53]. Here the dilogarithm
function Li2(z) is defined, for |z| < 1, by

Li2(z) :=
∞∑
n=1

zn

n2
.

Lemma IV.3. Let A,B ∈ R and A > 0. For the unique root R ∈ (0, 1) of the
equation R + RA = 1 and q = e−t with qn = Rq−ν, ν = o(n) as n → ∞, we
have

Log

(
q

1
2
An2+Bn

(q)n

)

=

(
π2

6
− Li2(R)− 1

2
Log(R) Log(1−R)

)
t−1

− 1

2
Log

(
2π

t

)
+ Log

(
RB

√
1−R

)
−
(
A+R− AR

2(1−R)
ν2 −

(
B +

R

2(1−R)

)
ν +

1 +R

24(1−R)

)
t+O

(
t2
)
,

as t→ 0+.

Remark IV.4. In fact, Zagier obtained the asymptotic expansion with arbitrary
many terms. Since we only use the first few terms in this paper, we do not need
to consider the complete expansion.

We set q 7→ q2, A 7→ 1
2
, and B 7→ 1

4
in Lemma IV.3. Thus, R becomes Q

and we have, recalling that Q
1
2 +Q = 1 and Q = 3−

√
5

2
,
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Log

(
q
m(m+1)

2

(q2; q2)m

)
=

(
π2

6
− Li2(Q)−

(
1

2
Log(Q)

)2
)

1

2t

− 1

2
Log

(π
t

)
−
√

5

2

(
ν2 − ν +

1

6

)
t+O

(
t2
)
. (IV.3.2)

Furthermore, we use the special value of the dilogarithm from [Zag07, Section
I.1]

Li2(Q) =
π2

15
−

(
Log

(
1 +
√

5

2

))2

(IV.3.3)

and note that(
1

2
Log (Q)

)2

= (Log(1−Q))2 =
(
Log

(
(1−Q)−1

))2
=

(
Log

(
1 +
√

5

2

))2

.

(IV.3.4)
Combining (IV.3.2), (IV.3.3), and (IV.3.4) gives

Log

(
q
m(m+1)

2

(q2; q2)m

)
=

π2

20t
− 1

2
Log

(π
t

)
−
√

5

2

(
ν2 − ν +

1

6

)
t+O

(
t2
)

= Log (ϕ(ν)) +O
(
t2
)
,

(IV.3.5)

where

ϕ(ν) :=

√
t

π
exp

[
π2

20t
−
√

5

2

(
ν2 − ν +

1

6

)
t

]
.

We additionally define for j ∈ {0, 1, 2, 3}

Sj :=
∑

m≡j (mod 4)

q
m(m+1)

2

(q2; q2)m
, (IV.3.6)

so that we can write

Oe(q) = S0 + S3, Oo(q) = S1 + S2. (IV.3.7)

Theorem IV.5. We have

Oe

(
e−t
)
∼ Oo

(
e−t
)
∼ 1√

2
√

5
e
π2

20t

as t→ 0+.
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Proof. Using (IV.3.5), we can also rewrite Sj in terms of ϕ(ν) as

Sj =
(
1 +O

(
t2
)) ∑

ν≡ν0+j (mod 4)

ϕ(ν). (IV.3.8)

To estimate Sj, we begin by rewriting the sum in ν on the right-hand side of
(IV.3.8) as∑

n∈Z

ϕ(4n+ ν0 + j) =
∑

n∈ 1
2
+Z

ϕ(4n+ α)

=

√
t

π
e
π2

20t

∑
n∈ 1

2
+Z

e−
√
5

2 ((4n+α)2−(4n+α)+ 1
6)t

=

√
t

π
e
π2

20t
−
√
5

2 (α2−α+ 1
6)tϑ

(√
5 (2α− 1) ti

π
− 1

2
;
8
√

5ti

π

)
,

(IV.3.9)

where α := 2 + ν0 + j and the Jacobi Theta function is given for z ∈ C and
τ ∈ H by

ϑ (z; τ) :=
∑

n∈ 1
2
+Z

eπin
2τ+2πin(z+ 1

2).

The modular inversion formula for the Jacobi theta function [Zwe02, Proposi-
tion 1.3 (7)] implies that for a, b ∈ C with Re(a) > 0

ϑ

(
bti

π
− 1

2
;
ati

π

)
= i

√
π

at
e−

π2

at (
bti
π
− 1

2)
2

ϑ

(
b

a
+

πi

2at
;
πi

at

)
=

√
π

at

∑
n∈Z

(−1)ne−
π2

at (n−
bti
π )

2

.

Plugging in a 7→ 8
√

5 and b 7→
√

5(2α − 1) and simplifying the summation
yields that

ϑ

(√
5 (2α− 1) ti

π
− 1

2
;
8
√

5ti

π

)
=

√
π

8
√

5t

∑
n∈Z

(−1)ne
− π2

8
√
5t

(
n−
√
5(2α−1)ti

π

)2

=

√
π

8
√

5t
e
√
5(2α−1)2t

32

1 +O

 ∑
n∈Z\{0}

e
−π

2n2

8
√
5t

 =

√
π

8
√

5t
(1 +O (t)) .

(IV.3.10)
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The last equality comes directly from the fact that, as t→ 0+,

e
√

5(2α−1)2t
32 = 1 +O (t) ,

and ∑
n∈Z\{0}

e
−π

2n2

8
√
5t � e

− π2

8
√
5t .

From (IV.3.8), (IV.3.9), and (IV.3.10), we have for any j ∈ {0, 1, 2, 3}

Sj ∼
1

2
√

2
√

5
e
π2

20t
−
√
5

2 (α2−α+ 1
6)t ∼ 1

2
√

2
√

5
e
π2

20t

as t→ 0+. Recalling (IV.3.7), we obtain the desired result.

Moreover, since O(q) = Oe(q) + Oo(q), we have following Corollary.

Corollary IV.6. We have

O
(
e−t
)
∼

√
2√
5
e
π2

20t

as t→ 0+.

Remark IV.7. One can directly estimate the series O(q) by using the Constant
Term Method, inserting an additional variable to identify the series as the con-
stant term of the product of more familiar number-theoretic functions in a new
variable. (See [Zag07, First proof of Proposition 5] for more details.)
Remark IV.8. McIntosh [McI95] derived the complete asymptotic expansion of
the more general q-series

∞∑
n=0

anqbn
2+cn

(q)n

in full detail using elementary methods (Euler-Maclaurin sum formula). The
asymptotic of O(q) is the case c = 1

4
and q 7→ q2 (hence t 7→ 2t) in the following

formula [McI95, p. 134]

Log

(
∞∑
n=0

q
n2

4
+cn

(q)n

)

=
π2

10t
+ 2cLog

(√
5− 1

2

)
− 1

2
Log

(
5−
√

5

4

)
+

(
4c− 1

40
+
c(2c− 1)

10

√
5

)
t
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− c(2c− 1)

(
1

25
+

4c− 1

150

√
5

)
t2 + c(2c− 1)

(
4c− 1

250
+

2c2 − c+ 3

750

√
5

)
t3

− c(2c− 1)

(
2c2 − c+ 13

3750
− (4c− 1) (12c2 − 6c− 31)

45000

√
5

)
t4 +O

(
t5
)
,

as t→ 0+.

IV.3.2 Applying Ingham’s Tauberian Theorem

Now we are ready to apply Ingham’s Tauberian Theorem to the functions
Oe (e−t) and Oo (e−t). We first deal with the even case. Setting a(n) := OE(2n)
and replacing q by q2 in Theorem IV.2.2 determines the constants

λ =
1√
2
√

5
, α = 0, A =

π2

10
.

We remark that since OE(n) does not satisfy weakly increasing property with
n = 0, we only consider when n ≥ 1. Thus, we have

OE(2n) ∼ 1

2
√

5(2n)
3
4

e2π
√

n
10 .

By letting n 7→ n
2
, we obtain the desired asymptotic formula for OE(n) with

even n, namely

OE(n) ∼ 1

2
√

5n
3
4

eπ
√

n
5 . (IV.3.11)

For odd n, we rewrite the series as

Oo(q) =
∞∑
n=0

OE(2n+ 1)q2n+1 = q
∞∑
n=0

OE(2n+ 1)q2n.

Since by Theorem IV.5

Oo

(
e−t
)

= e−t
∞∑
n=0

OE(2n+ 1)e−2tn ∼ 1√
2
√

5
e
π2

20t ,

we have
∞∑
n=0

OE(2n+ 1)e−2tn ∼ 1√
2
√

5
e
π2

20t .
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Similar to the case of even n, setting a(n) := OE(2n+ 1) and replacing q by q2
yields

OE(2n+ 1) ∼ 1

2
√

5(2n)
3
4

e2π
√

n
10 .

As before we let n 7→ n
2
and thus we have for even n

OE(n+ 1) ∼ 1

2
√

5n
3
4

eπ
√

n
5 . (IV.3.12)

Finally from (IV.3.11) and (IV.3.12) we get the desired asymptotic formula
for OE(n), for every n,

OE(n) ∼ 1

2
√

5n
3
4

eπ
√

n
5

as n→∞.

IV.4 Proof of Theorem IV.2
We follow the same method of the proof of Theorem 4 in [BDLM15]. The

strategy is to estimate the generating function near and away from a dominant
pole, and then apply Wright’s Circle Method. Although the method of proof
is not new, because we are dealing with a different function, the result does
not follow directly from the statement of Theorem 4 in [BDLM15], and thus we
include its proof here. However, the proof is basically the same. Throughout
this section we let q = e2πiτ with τ = x+ iy, where x, y ∈ R.

IV.4.1 Asymptotics of O(q)

Using the Watson’s identity for Ramanujan’s third order mock theta func-
tion f(q) [Wat36]

f(q) =
2

(q)∞

∑
n∈Z

(−1)nq
n(3n+1)

2

1 + qn
,

we rewrite O(q) as

O(q) =
2(−q)∞

(q)∞

∑
n∈Z

(−1)nq
n(3n+1)

2

1 + qn
. (IV.4.1)

From this expression we can see that O(q) has a dominant pole at q = 1.

Theorem IV.9. Let M > 0 be fixed.
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(i) For |x| ≤My, as y → 0+

O(q) =
2
√

2

3
e
πi
24τ +O

(
ye

π
24

Im(−1
τ )
)
.

(ii) For My < |x| ≤ 1/2, as y → 0+

O(q)� 1

y
√

2
exp

[
1

y

(
π

8
− 1

π

(
1− 1√

1 +M2

))]
.

Remark IV.10. One can find M >
√(

12
12−π2

)2 − 1 = 5.543 . . . , so that the
bound in the part (ii) is indeed an error term.

Proof. (i) To estimate the function O(q) near q = 1, we first examine f(q). By
Taylor’s Theorem, we have

f(q) = f(1) +O (|τ |) ,

and from (IV.1.5) we see that

f(1) =
∞∑
n=0

1

4n
=

4

3
.

Thus, we have for |x| ≤My

f(q) =
4

3
+O (y) (IV.4.2)

as y → 0+.
Now we turn to the infinite product (−q)∞ in front of f(q). Recall that,

from the modular inversion formula for Dedekind’s eta-function ([Kob84, p.
121, Proposition 14]),

(q)∞ =
1√
−iτ

e−
πiτ
12
− πi

12τ

(
1 +O

(
e−

2πi
τ

))
. (IV.4.3)

Therefore, we find that

(−q)∞ =
(q2; q2)∞

(q)∞
=

1√
2
e
πi
24τ +O

(
ye

π
24

Im(−1
τ )
)
. (IV.4.4)

Combining (IV.4.2) and (IV.4.4) gives the proof of the part (i).
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(ii) In order to examine O(q) away from q = 1, we first consider the expres-
sion in (IV.4.1). Note that

∑
n∈Z

(−1)nq
n(3n+1)

2

1 + qn
=

1

2
+ 2

∑
n≥1

(−1)nq
n(3n+1)

2

1 + qn

and that, for My < |x| ≤ 1
2
,∣∣∣∣∣∑

n≥1

(−1)nq
n(3n+1)

2

1 + qn

∣∣∣∣∣ ≤ 1

1− |q|
∑
n≥1

|q|
n(3n+1)

2 � 1

y
· y−

1
2 = y−

3
2 .

This implies ∣∣∣∣∣∑
n∈Z

(−1)nq
n(3n+1)

2

1 + qn

∣∣∣∣∣� y−
3
2 . (IV.4.5)

Now it remains to bound the infinity product

(−q)∞
(q)∞

=
(q2; q2)∞

(q)2∞
.

We write this as

Log

(
(q2; q2)∞

(q)2∞

)
=
∑
n≥1

(
Log

(
1− q2n

)
− 2 Log (1− qn)

)
=
∑
n≥1

∑
m≥1

2qnm

m
−
∑
n≥1

∑
m≥1

q2nm

m

=
∑
m≥1

(
2qm

m (1− qm)
− q2m

m (1− q2m)

)
=
∑
m≥1

2q2m−1

(2m− 1) (1− q2m−1)
.

Thus,∣∣∣∣Log

(
(q2; q2)∞

(q)2∞

)∣∣∣∣ ≤∑
m≥1

2|q|2m−1

(2m− 1) |1− q2m−1|

≤
∑
m≥1

2|q|2m−1

(2m− 1) (1− |q|2m−1)
+

2|q|
|1− q|

− 2|q|
1− |q|

= Log

(
(|q|2; |q|2)∞

(|q|)2∞

)
− 2|q|

(
1

1− |q|
− 1

|1− q|

)
.
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From (IV.4.3), we have

(|q|2; |q|2)∞
(|q|)2∞

=

√
y

2
e
π
8y

(
1 +O

(
e−

π
y

))
.

To evaluate the remaining term, we note that for My < |x| ≤ 1
2
, cos(πMy) >

cos(πx). Therefore,

|1− q|2 = 1− 2e−2πy cos(2πx) + e−4πy > 1− 2e−2πy cos(2πMy) + e−4πy.

Using the Taylor expansion around y = 0, we conclude that

|1− q| > 2πy
√

1 +M2 +O
(
y2
)
.

Since 1− |q| = 2πy +O (y2), we arrive at∣∣∣∣(q2; q2)∞(q)2∞

∣∣∣∣�√
y

2
exp

[
1

y

(
π

8
− 1

π

(
1− 1√

1 +M2

))]
. (IV.4.6)

Plugging (IV.4.5) and (IV.4.6) into (IV.4.1) yields the part (ii).

Theorem IV.9 (ii) and Remark IV.10 then immediately reveal the following.

Corollary IV.11. For My < |x| ≤ 1
2
with M >

√(
12

12−π2

)2 − 1, there exists
ε > 0 such that, as y → 0+,

O(q)� 1

y
√

2
e
π
24(Im(−1

τ )−ε).

IV.4.2 Wright’s Circle Method

In this section we complete the proof of Theorem IV.2 by applying Wright’s
Circle Method. By Cauchy’s Theorem, we see, for y = 1

4
√
3n
, that

OE(n) =
1

2πi

∫
C

O(q)

qn+1
dq =

∫ 1
2

− 1
2

O
(
e
2πix− π

2
√
3n

)
e
−2πinx+π

√
n

2
√
3 dx

=

∫
|x|≤My

O
(
e
2πix− π

2
√
3n

)
e
−2πinx+π

√
n

2
√
3 dx

+

∫
My<|x|≤ 1

2

O
(
e
2πix− π

2
√
3n

)
e
−2πinx+π

√
n

2
√
3 dx =: I1 + I2,
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where C = {|q| = e
− π

2
√

3n}. In fact, the integral I1 contributes the main term as
the integral I2 is an error term.

In order to evaluate I1, we introduce a function Ps(u), defined by Wright
[Wri34], for fixed M > 0 and u ∈ R+

Ps(u) :=
1

2πi

∫ 1+Mi

1−Mi

vseu(v+
1
v )dv.

This function is rewritten in terms of the I-Bessel function up to an error term.

Lemma IV.12 ([Wri34]). As n→∞, we have

Ps(u) = I−s−1(2u) +O (eu) ,

where I` denotes the usual the I-Bessel function of order `.

Using Theorem IV.9 (i), we write the integral I1 as

I1 =

∫
|x|≤ M

4
√
3n

(
2
√

2

3
e
πi
24τ +O

(
n−

1
2 e

π
√
n

2
√
3

))
e
−2πinx+π

√
n

2
√
3 dx.

By making the change of variables v = 1− i4
√

3nx, we arrive at

I1 =

∫ 1+Mi

1−Mi

−i
4
√

3n

(
2
√

2

3
e
π
√
n

2
√
3v +O

(
n−

1
2 e

π
√
n

2
√
3

))
e
π
√
nv

2
√
3 dv

=
π
√

2

3
√

3n
P0

(
π
√
n

2
√

3

)
+O

(
n−

3
2 e

π
√
n√
3

)
=

π
√

2

3
√

3n
I−1

(
π
√
n√
3

)
+O

(
n−

3
2 e

π
√
n√
3
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, (IV.4.7)

where we use the asymptotic formula for the I-Bessel function [AAR01, 4.12.7]

I`(x) =
ex√
2πx

+O

(
ex

x
3
2

)
.

Now we turn to the integral I2. From the Corollarly IV.11, we have for
My < |x| ≤ 1

2

I2 �
∫
My<|x|≤ 1

2

2
√

6ne
1
y (

π
24
−ε)e

π
√
n

2
√
3 dx� n

1
2 e

π
√
n√
3
(1−ε)

,

which together with (IV.4.7) completes the proof.
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IV.5 Concluding remarks
The referee has kindly pointed out that in Section 3.1 by the unimodality of

the sequence (fm)m∈N all of the Sj have the same asymptotic expansion since
any differences in the Sj are exponentially small compared to other terms in
their asymptotic expansions. Therefore the asymptotic expansion of each Sj
is equal to the asymptotic expansion of the full q-series multiplied by 1

4
. In

this case it is not necessary to use theta functions for the proof. We refer the
interested reader to [McI95] for details.

The referee has also suggested a interesting discussion. In [McI95] McIntosh
obtained

∞∑
n=0

q
n(n+1)

4

(q)n

=

√
2√
5

exp

{
π2

10
t−1 −

√
5

80
t+

1

200
t2 − 23

√
5

48000
t3 +

103

240000
t4 +O

(
t5
)}

and

∞∑
n=0

qn(n+
1
2)

(q)n
=

√
1√
5

exp

{
π2

15
t−1 +

(
1

48
+

√
5

80

)
t

+
1

200
t2 +

23
√

5

48000
t3 +

103

240000
t4 +O

(
t5
)}

,

as t → 0+. These expansions appear to agree up to sign from the t2 term
onward. If we replace q by q4 in the first series, then in some sense it is in the
middle of the identities (IV.1.2) and (IV.1.3). Watson [Wat36] discussed the
second series, denoted by G1/2(q), in terms of Ramanujan’s concept of ’closed’
and ’unclosed’ asymptotic expansion. This appears to be somewhat related to
the concept of ’modular’ and ’nonmodular’.
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V

Summary and Discussion
In this chapter, we conclude the thesis with a brief overview of the studies

presented in this thesis and some suggestions for future research.

Radial limits of the universal mock theta
function g3

In Chapter II we gave explicit formulas for specializations of g3 by applying
similar arguments from [16]. To be more precise, we determined associated
modular forms Mk,h(q) and obtained explicit expressions for the radial limits
Qa,b,A,B,h,k such that (recall Rhoades’ question II.2)

Qa,b,A,B,h,k := lim
q→ζkk

(
g3
(
ζab q

A, qB
)
−Mk,h(q)

)
.

For this we used case-by-case analysis based on the behavior of g3 at each root
of unity. The case where a pole occurs in the summands of g3 is described in
Theorem II.5, while the case the sum defining g3 converges absolutely in the
radial limit is stated in Theorem II.8. The other cases are discussed in Section
II.4.4 as well as in Theorem II.9 and Conjecture II.11, as further analysis is
required.

Here we recall quantum modular forms introduced by Zagier [46]. A quantum
modular form of weight k, k ∈ 1

2
Z, is a complex-valued function f on Q, such

that for all γ = ( a bc d ) ∈ Γ, a congruence subgroup of SL2(Z), and for multiplier
systems ε(γ) the function hγ(x) : Q \ γ−1{i∞} → C, defined by

hγ(x) := f(x)− ε−1(γ)(cx+ d)−kf

(
ax+ b

cx+ d

)
,

has a suitable property of continuity or analyticity in R. The connection be-
tween quantum modular forms and mock theta functions was considered in [19]
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from a formal point of view. Later, Bringmann and Rolen [16] gave a very large
and explicit family of quantum modular forms by solving Rhoades’ question on
the universal mock theta function g2. Our result further gives another large and
explicit family of quantum modular forms.

Since our methods are restricted to Ramanujan’s mock theta functions,
which all have weight 1

2
, it would be worthwhile to study radial limits of weight

3
2
mock theta functions. An interesting function might be the rank generating

function for overpartitions. Recall that an overpartition is a partition where
the first occurrence of a part may be overlined. The rank of an overpartition is
defined in [20] to be one less than the largest part minus the number of overlined
parts less than the largest part. We let N(m,n) denote the number of overpar-
titions of n with rank m. Lovejoy [36] then showed that the rank generating
function for overpartitions is given by

O(w; q) := 1 +
∞∑
n=1

N(m,n)wmqn =
∞∑
n=0

(−1)nq
n(n+1)

2

(wq, q/w)n
.

Moreover, Bringmann and Lovejoy [12] showed that O(−1; q) is a weight 3
2

mock theta function, while O(w; q) is a mock theta function of weight 1
2
if w is

a primitive root of unity and w 6= ±1. We notice that the function O(w; q) is
surprisingly similar to the universal mock theta function g2 defined by

g2(x, q) :=
∞∑
n=0

(−q)nq
n(n+1)

2

(x, q/x)n+1

.

On spt-crank-type functions
In Chapter III we constructed mock modularity of the new spt function

sptω(n) by which we were able to establish infinitely many linear congruences
of sptω(n) in Theorem III.4. Applying Wright’s Circle Method, we also obtained
the asymptotic formula for its crank function NC1(m,n) in Theorem III.1 and
deduced the sign pattern of the crank in Theorem III.3. As an application, we
proved Garvan and Jennings-Shaffer’s positivity conjecture on the crank asymp-
totically in Corollary III.2.
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The modularity (or mock modularity) of partition-theoretic functions has
many important consequences, for example asymptotics and congruences. In
particular, the partition rank function N(m,n) has a rich history as mentioned
in Section I.2.2 above. Recall the rank of a partition is defined to be the largest
part of the partition minus the number of parts and let N(m,n) denote the
number of partitions of n with rank equal to m. Then we have the generating
function

R(w; q) := 1 +
∑
m∈Z

∞∑
n=1

N(m,n)wmqn = 1 +
∞∑
n=1

qn
2

(wq, q/w)n
.

In particualr,

R(1; q) = 1 +
∞∑
n=1

p(n)qn =
q

1
24

η(τ)
,

R(−1; q) = 1 +
∞∑
n=1

qn
2

(−q)2n
= f(q),

where f(q) is a famous Ramanujan’s third order mock theta function. Further-
more, Bringmann and Ono [15] related this rank generating function R(w; q) to
harmonic Maass forms.

We recall (III.6.1), the generating function for sptω(n) given by

Sω(τ) =
∑
n≥1

sptω(n)qn =
q

1
12 (1− E2(τ))

24η(2τ)
−R2(2τ).

Here Rk(z) is the generating function of ηk(n), a symmetrized k-th moment of
the rank, defined in [6] by

ηk(n) =
∑
m∈Z

(
m+ bk−1

2
c

k

)
N(m,n).

Andrews [7] showed that

spt(n) = np(n)− η2(n).

In another paper [6], he proved more generally that the function ηk(n) enumer-
ates so-called k-marked Durfee symbols. Before explaining k-marked Durfee
symbols, we first recall that the largest square of nodes in the Ferrers graph is
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called the Durfee square. To each partition Andrews associated a Durfee symbol
based on its Ferrers graph and Durfee square. The Durfee symbol consists of
two rows and a subscript. The top row indicates the columns to the right of
the Durfee square, the bottom row indicates the rows below the Durfee square,
and the subscript denotes the side length of the Durfee square. An example of
the Durfee symbol for a partition 4 + 4 + 3 + 2 + 1 of 14 is illustrated below:

· · · ·
· · · ·
· · ·
· ·
·

−→
(

2
2 1

)
3

.

Using k copies of integers denoted by {11, 21, 31 . . . }, {12, 22, 32, . . . }, . . . , and
{1k, 2k, 3k, . . . }, Andrews more generally defined the k-marked Durfee symbols.
Returning to the Dyson’s rank, Andrews also introduced the j-th rank for the
j-th copy of integers {1j, 2j, 3j, . . . , } and deduced the rank generating function
of k-marked Durfee symbols. Let D(m1,m2, . . . ,mk;n) denote the number of
k-marked Durfee symbols arising from partitions of n with j-th rank equal to
mj. Then we have

Rk(x1, x2, . . . , xk; q) :=
∑

m1,...,mk∈Z

∞∑
n=0

D(m1,m2, . . . ,mk;n)xm1
1 xm2

2 · · ·x
mk
k qn

=
∑
m1>0

m2,m3,...,mk≥0

q(m1+···mk)2+(m1+m2+···+mk−1)+(m1+···+mk−2)+···+m1

(x1q, x
−1
1 q)m1(x2q

m1 , x−12 qm1)m2+1

× 1

(x3qm1+m2 , x−13 qm1+m2)m3+1 · · · (xkqm1+···+mk−1 , x−1k qm1+···+mk−1)mk+1

.

As this combinatorial series have numerous interesting properties, for ex-
ample when k = 1 one recovers original Dyson’s rank, there have been many
studies on its modularity [13, 14, 24]. In upcoming work with Amanda Folsom,
Susie Kimport and Holly Swisher, we establish quantum modularity of this se-
ries.
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Asymptotic behavior of Odd-Even partitions
Using various methods, we examined the asymptotic behaviors of odd-even

partitions and overpartitions in Chapter IV. As the odd-even partition function
OE(n) is not monotonically increasing, we first split the generating function for
OE(n) into two series depending on residue classes. This allowed us to apply
Ingham’s Tauberian Theorem. We then estimated each series. For that, we
mimicked the second proof of [44, Proposition 5]. The strategy is to examine
the asymptotic behavior of the summand first and then sum up the asymptotics.

In order to analyze odd-even overpartitions, we used Wright’s Circle Method.
To be more precise, using the Watson’s identity for Ramanujan’s mock theta
function f(q), we rewrote the generating function for odd-even overpartitions
as in (IV.4.1). From that we could easily see that the generating function has
only one dominant pole, namely q = 1, and thus we applied Wright’s Circle
Method to study the Fourier coefficients of the series, the odd-even overparti-
tion function OE(n).

Here we have two remarks regarding the proof of Theorem IV.5. First, one
can estimate Sj, defined in (IV.3.6), without using the Jacobi Theta function
and its modularity properties. More precisely, one can directly apply the Pois-
son summation formula to (IV.3.8), which yields the same results.

Furthermore, by simple observation one can rewrite the functions Oe(q) and
Oo(q) in terms of O(q) without using residue classes,

Oe(q) =
∑
n=0

OE(2n)q2n =
O(q) + O(−q)

2
,

Oo(q) =
∑
n=0

OE(2n+ 1)q2n =
O(q)− O(−q)

2
.

For the asymptotics of O(q), we can directly use the results of McIntosh [37] or
Zagier [44, Proposision 5] as mentioned in Remarks IV.7 and IV.8 above. Now
we turn to O(−q),

O(−q) =
∞∑
n=0

(−q)
n(n+1)

2

((−q)2; (−q)2)n
=
∞∑
n=0

(−1)nq
n(n+1)

2

(q2; q2)n
.

The only difference from O(q) is the term (−1)n in the numerator of the sum-
mand. Due to this additional factor, the sequence of the summands is not
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unimodal anymore. Therefore, we can not apply the same method as what
we used for O(q). Nevertherless, since we know the asymptotics of Oe(q) and
Oo(q) from Theorem IV.5, and O(−q) is just the sum of Oe(q) and Oo(q), we
can deduce the asymptotic formulas for O(−q). In this case, we have to obtain
more main terms than in Theorem IV.5. Thus, for q = e−t we have

∞∑
n=0

(−1)nq
n(n+1)

2

(q2; q2)n
∼ −3t

4

√√
5

2
e
π2

20t

as t→ 0+.

It would be interesting to study the asymptotics behavior of q-hypergeometric
series of the form

∞∑
n=0

qAn
2+Bn

(q)n
,

where A,B ∈ R and A > 0, as q → −1. More generally, an interesting but
challenging problem might be to find the asymptotics of this q-hypergeometric
series as q approaches any root of unity.
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