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Abstract 

Purpose: The so-called Radial Refractive Gradient (RRG) spectacles are lenses 

specifically designed to minimize peripheral hyperopic defocus typically found in 

conventional spectacles. Our goals are: 1) to demonstrate a method to design 

such lenses; and 2) to quantify the exact foveal vision power errors induced by 

them. 

Methods: The design procedure is based on a point-by-point sequential surface 

construction algorithm that designs a front aspheric surface (back surface is 

spherical) to achieve a given overall tangential focal length of the lens. A 

peripheral refraction model was built based on average peripheral refractive 

errors from a set of eyes. We designed four negative lenses with optical 
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powers: -2.5 D, -5 D, -7.5 D and -10 D, so that the tangential focal length of the 

lens matches the retinal conjugate surface. 

Results: The lenses induce very small sagittal power errors in a wide range of 

off-axis field angles (30º), solving the problem of peripheral hyperopic defocus. 

However, such designs introduce non-negligible mean power errors (above 

0.25 D from 7º, 6.8º, 7.1º and 7.8º for the -2.5 D, -5 D, -7.5 D and -10 D lenses, 

respectively) for foveal vision in a rotating eye. 

Conclusion: Our results show the unavoidable errors introduced by RRG 

spectacles when used for dynamic foveal vision. The described method offers 

valuable information towards determining the best trade-off between controlling 

power errors for peripheral and foveal vision. 

Introduction 

With the prevalence of myopia rising dramatically, a global myopia epidemic 

is imminent. As less myopic generations are replaced by younger and more 

myopic generations, the population prevalence of myopia in adults will reach 

this global scenario in no more than two to three decades.1 High myopia is 

associated with permanent visual impairment that increases in a non-linear way 

with the increase in eye elongation,2 making it, along with its associated age-

related blinding pathologic lesions, a threat for a significant part of the future 

generations.3 This takes even more worrying proportions when considering that 

the early onset of myopia, seen in the younger generations, leaves more time 

for progression at higher rates. 

Although the mechanism behind myopia progression is still open to debate, 

evidence based from animal studies suggests that peripheral hyperopic defocus 

exacerbates myopia progression, while inducing myopic peripheral defocus can 

slow myopia progression.4,5 Controversially, other studies suggest that 

hyperopic defocus is more a consequence than a cause of myopia.6 Based on 

the former premise, several methods have been proposed to avoid peripheral 

hyperopic defocus. Some of them rely on the use of orthokeratology,7, 8 rigid9 or 



soft bifocal contact lenses,10 and others in specially designed spectacle lenses 

that have been named Radial Refractive Gradient (RRG) spectacles.11 

Conventionally, single-vision spectacles aim at correcting the refractive error 

at foveal vision with a rotating eye. Thus, the challenge of the optical designer is 

to select the lens surface profiles that reduce the oblique power errors (mean 

power error and astigmatism) for different gaze directions. Following such 

design as target implies that peripheral vision is not controlled, so it is not 

surprising that they introduce some amount of relative peripheral hyperopia.11, 12 

This is the reason why the first RRG spectacles designs were proposed, 

although previous attempts to minimize peripheral power errors in spectacles 

design were focused more on the role of peripheral optics in visual detection, 

rather than on controlling myopia progression.13   

State of the art in RRG designs 

As for current RRG existing designs, most of available information is found in 

patent literature. One of the earliest proposals was that of Smith et al.14 They 

prioritized mean power error correction over oblique astigmatism, particularly by 

locating both the tangential and the sagittal focal surfaces in front of the retina 

or setting the sagittal focal surface at the retina.  

Unavoidably RRG designs may significantly deteriorate the optical quality for 

foveal vision at gaze directions different from the primary line of sight. To avoid 

this problem, a trade-off design philosophy, aim at partially controlling power 

errors for peripheral and foveal vision simultaneously, has been adopted. The 

design idea is to divide the spectacles lens area in two different parts, one with 

a central area around the primary position where the eye is assumed to be 

confined in its rotatory movements, and a peripheral area used by the eye to 

perceive extra-foveal images. The designs following this approach minimize 

refractive power errors for different gaze directions in the central area, and 

peripheral refractive errors, for the eye located at primary position of gaze, in 

the outer area. Following this design idea, Ho et al.15 proposed a variation over 

their previous, already discussed, patent.14 Varnas et al. patents,16-18 which are 

the basis of the so-called MyoLens® by Zeiss, also use this philosophy. Yet 



another proposal, following this idea, was presented by Tabernero et al.,11 

where a central area (6 mm diameter) was designed with constant power, and a 

peripheral area with a varying refractive profile around one dioptre for every 10 

degrees.  

Goals 

Beyond the debate of whether peripheral hyperopia is a cause or a 

consequence of myopia, a serious evaluation of RRG lenses requires a precise 

quantitative understanding of the foveal vision power errors induced by RRG 

spectacles. Unfortunately, not much work has been published on this issue. At 

this respect, a crucial work was that of Atchison,19 who using third-order 

aberration theory found that -4 D and -6 D spherical spectacles can induce up 

to 0.65 D and 1.01 D of tangential error, respectively for 35 degrees of ocular 

rotation. Atchison19 also extended his analysis using ray tracing (with 

commercial software Zemax) over third-order analytical solutions, particularly 

comprising conic surfaces. This is an important point because, as it is well 

known by optical designers, exact generalized ray tracing computations show 

results considerable different to those predicted by third order aberration 

theory.20  

In this work, we continue with Atchison’s attempt introducing an important 

novelty. We first show how to design RRG lenses without restriction to third-

order theory and second, through computer simulations, quantify the exact 

foveal vision power errors induced by such lenses.    

Methods 

RRG spectacle design method  

In the same way that is done in conventional spectacle lens design, the eye 

is reduced to a reference point,21 which means that the image forming elements 

of the eye (cornea and crystalline lens) are not considered. However, whereas 

in foveal vision spectacles design (rotating eye) this reference point is the 

centre of rotation of the eye, in peripheral vison (stationary eye) it is the centre 



of the entrance pupil of the eye,13, 19 or alternatively the nodal point of the eye,22 

which has the advantage of avoiding distortion effects. We chose the entrance 

pupil as the more natural selection in off-axis optical systems analysis.              

Figure 1 represents the geometrical elements involved in spectacle lens 

design for a stationary eye. V denotes the back-vertex point, i.e. the intersection 

of the optical axis with the posterior lens surface. E is the centre of the entrance 

pupil. The sphere whose rotation centre is located at E and whose radius of 

curvature is given by the segment VE is called vertex sphere. For the distance 

from spectacles vertex to the centre of the entrance pupil, we used the value 15 

mm.19 The back vertex focal distance of the lens is denoted by f. The far point 

sphere (vertex point F) is defined as concentric with the vertex sphere and 

having a radius given by the sum of VE and f. The far point sphere is denoted 

by FPS (black curve) in Fig. 1.  

For each off-axis beam of light (incident angle α) there is a point at the vertex 

sphere (A at Fig. 1). At each of these points it is possible to compute a localized 

quadratic wavefront20 or local dioptric matrix23 characterizing the mean power 

and cylinder of the off-axis beam. The art of designing spectacle lenses consists 

of finding lens surfaces that ensure a specific target of these quantities. 

Particularly, if the target is a uniform optical power then each local beam of light 

must perfectly focalize at the corresponding point at far point sphere (B).  



 

Fig. 1. Scheme showing the geometrical parameters used in spectacle lens design for 

a stationary eye. Far point sphere (FPS) and retinal conjugate surface (RCS) are 

depicted with black and red solid lines, respectively. 

To take into account peripheral refraction changes means that the 

focalization target is no longer the far point sphere. Thus, we have to define a 

new surface (it has been coined the retinal conjugate surface22) which considers 

the power error of the myopic eye at different eccentricities. The relative 

peripheral hyperopic error of the eye implies the need for longer (in absolute 

terms) focal lengths; thus, the retinal conjugate surface (RCS) is located farther 

from the spectacles than the far point sphere, as shown in Fig. 1 (red solid line 

and point C).  

Retinal conjugate surface 

 

To characterize the retinal conjugate surface, for our design problem, the 

peripheral refraction change with incident angle α is required. This information 



may be obtained either from an eye model or from empirical data extracted from 

a set of subjects. In this work, we opted for the latter approach.  

Peripheral refraction can be obtained using an open field autorefractor, like 

the Grand Seiko (Grand Seiko Co., Ltd., Hiroshima, Japan). This instrument 

operates on the image size principle in which refraction is linearly related to the 

angular size of the image reflected by the retina. Osuagwu24 studied the validity 

of this approach and concluded that the autorefractor’s peripheral refraction 

measurements are valid for horizontal and vertical field meridians, but not for 

oblique field meridians. 

The clinical data used in this study were obtained from a previous work,25 

where the peripheral refraction data from 55 myopic patients was measured 

along the horizontal field using the Grand Seiko WAM-5500 open field 

autorefractor, but for this work only the mean relative data from the most 

hyperopic horizontal semi-meridian (temporal retina hemifield) were used. The 

relative peripheral refraction, which can be interpreted as the patient’s off-axis 

refraction when compensating for his central refractive error, was obtained by 

subtracting the central refraction from the peripheral refraction, using vector 

form notation (M, J0 and J45).26 After subtracting central refractive error from 

peripheral refraction, J45 vector component becomes of negligible value (along 

the horizontal visual field). These small values arise mainly due to alignment 

problems from the autorefractor, although it can also arise from irregularities in 

the optical components (cornea mainly). Even so, for simplicity we assumed 

that 𝐽0 ≈ √𝐽0 × 𝐽0 + 𝐽45 × 𝐽45, so that the tangential and sagittal power errors 

along the horizontal visual field can be defined as M+J0 and M-J0, respectively.  

 

By applying least squares fitting of overall data with 2th degree polynomials, 

the following equations were obtained and used to describe the difference in 

tangential (ET(α)) and sagittal (ES(α)) power with respect to that at the primary 

line of sight as function of field angle α: 

𝐸𝑇(α) =  −0.00031α2 −  0.028α    (R2  = 0.90)             (1) 

𝐸𝑆(α) =  0.00081α2 −  0.00024α   (R2  = 0.99)             (2) 



Figure 2 shows ET(α) and ES(α) as function of peripheral field angle. 

 

 

Fig. 2. Tangential (ET(α)) and sagittal (ES(α)) relative peripheral power errors 

(from 55 myopic patients) as function of field angle. 

Tangential and sagittal spectacles powers as function of angle were denoted 

by PT(α) and PS (α), respectively. The power differences with respect to primary 

line of sight are ΔPT(α) = PT(α) - P(α=0) and ΔPS(α) = PS(α) - P(α=0). Now, we 

assume that eye peripheral power error correction is achieved by direct addition 

(or subtraction) of peripheral power changes induced by spectacles.13 Thus, 

𝑅𝑇(α) = 𝐸𝑇(α) +  Δ𝑃𝑇(α)                  (3) 

and 

  𝑅𝑆(α) = 𝐸𝑆(α) +  Δ𝑃𝑆(α)                (4),    

where RT(α) and RS(α) are the tangential and sagittal errors of the eye, 

respectively, when spectacles for peripheral correction are used. 

To completely correct the peripheral errors of the eye, it would be necessary 

to cancel both RT(α) and RS(α) in Eq. (3) and (4), a goal which, in principle, 



requires two aspheric surfaces.27 Restricted to designs involving a single 

aspherical surface, either the tangential or the sagittal focus could be 

corrected.28 Nevertheless, to compensate any of the eye’s relative peripheral 

hyperopia only the sagittal relative error needs be cancelled (see figure 2). This 

might be achieved by designing a lens where:  

 

 𝑃𝑆(α) = P(α = 0) −  𝐸𝑆(α)                (5).    

 

However, our design procedure sets the lens surface in order to get a 

specific PT(α).29 Thus, the remaining problem is how to determine PT(α) values 

that satisfy Eq. (5). This can be done if somehow, we relate PT(α) to PS(α). 

To obtain an analytical expression for this relation is probably unattainable 

using a thick aspheric lens. However, it is known that for an ellipsoid of 

revolution, tangential and sagittal powers are related through30: PT = PS
3/ P0

2, 

being P0 the on-axis power at the vertex. Assuming that the power changes of 

the lenses being designed follow approximately the same rule, Eq. (5) can be 

solved for PT (α): 

 𝑃𝑇(α) = P(α = 0) − 
𝐸𝑆(α)3

𝑃(α = 0)2
                (7).    

Finally, the retinal conjugate surface needed for the design is simply the 

inverse of PT(α), as given by Eq. (7). 

 

Optical design procedure 

Conventional ophthalmic lens design is based on finding the optimal 

parameters of a lens surface descriptor through an optimization algorithm that 

minimizes a given merit function. Here, instead, we used a point-by-point 

sequential surface construction algorithm published elsewhere.29 Specifically, 

the algorithm designs a front aspheric surface (back surface is spherical) to 

achieve a given overall tangential focal length of the lens.      

For completeness, we briefly review the major steps of the design procedure: 

1. A paraxial pre-design is selected (lens material, central thickness, and 

apical curvatures of anterior and posterior lens surfaces). 



2. A recurrence algorithm constructs point-by-point the lens front surface 

using quadratic patches as local descriptors. 

3. The front surface constructed as a set of points is fitted (least squares 

solution) to an aspheric surface described by: 

 

𝑧(𝜌) =
𝑐𝜌2

1+√1−(𝑄+1)𝑐2𝜌2
+ ∑ 𝐾𝑖𝜌2𝑖+26

𝑖=1                (8) 

 

where ρ is the radial coordinate, c is the vertex curvature: c=1/R, being R the 

vertex radius of curvature, Q is the conic parameter (Q = -e2), and Ki are the 

higher order coefficients of the aspheric surface. 

Results 

Design examples 

The design analyses were done for a set of four negative lenses with optical 

powers of -2.5 D, -5 D, -7.5 D and -10 D. CR-39 polymer (n=1.498) was chosen 

as the lens material and the central thickness was fixed to 1.6 mm. Base curves 

(instead of simply using the third-order solution) were optimized to obtain best 

values for each power. The designs analysis was done with a maximum of 30º 

of angle of incidence. Although eye rotations can be up to 45º, eye-head 

coordination, in natural conditions, makes eye turn (at final gaze positions) 

larger than 20º very rare.31 

The final geometrical parameters of the lenses are shown in Table 1. 

Additionally, the surface profiles are depicted in Figure 3. Rf  and Rb are the front 

and back radii of curvature, respectively. Qf and Ki are the conic parameter and 

the higher order coefficients of the front surface, respectively. 

 Rf  Rb Qf K1 K2 K3 K4 K5 K6 

-2.5 D 83.00 58.32 1.03E-3 5.57E-6 -1.60E-8 4.18E-11 -0.84E-13 1.09E-16 -0.66E-19 

-5 D 62.25 38.11 1.19E-4 5.15E-6 -0.98E-8 2.02E-11 -0.31E-13 0.30E-16 -0.12E-19 



-7.5 D 55.33 30.02 0.93E-4 4.35E-6 -0.66E-8 0.75E-11 0.10E-13 -0.57E-16 0.66E-19 

-10 D 49.80 24.77 1.73E-4 3.17E-6 -0.24E-8 -1.73E-11 1.15E-13 -2.30E-16 2.30E-19 

Table 1. Design parameters of -2.5 D, -5 D, -7.5 D and -10 D lenses. Rf and Rb units are mm. Ki 

units are mm-(2i+1). Qf is unitless.  

It should be noticed that the lens anterior surface, computed by the point-by-

point recurrence algorithm, was only calculated for a 30º maximum field (lens 

diameter of about 30 millimetres) and without imposing constrains on the edge 

thicknesses and curvatures. Additionally, we point out that the radii of curvature 

slightly differ from the required values to match the nominal paraxial back vertex 

power. This slight discrepancy is a collateral effect of the design procedure and 

its posterior data point fitting. 

 

Fig. 3. Design profiles of lenses given in Table 1. 

Power errors 



PT(α) and PS(α) of designed lenses were computed following a procedure 

described in a previous paper.29 The tangential and sagittal power errors were 

then computed using Eqs. (3) & (4). Figure 4 shows the resulting RT(α) and 

RS(α) as function of field angle. For all designs and evaluated angles (up to 

30º), the eye’s sagittal power errors were strongly compensated, which resulted 

in an RS(α) value contained between -0.187 D and +0.075 D. As expected from 

the relationship between PS and PT described in Eq. (7), tangential power errors 

increase much more rapidly as a function of field angle. 

 

Fig. 4. Tangential (red solid line) and sagittal (blue dashed line) power errors (D) as 

function of field angle (degrees) for designs (a) -2.5 D, (b) -5 D, (c) -7.5 D and (d) -10 

D. Errors are computed for extra-foveal vision in a static eye. 

The same problem applies when the eye rotates behind the lens, with 

tangential power errors increasing more rapidly as function of gaze direction, as 

shown in Figure 5. For this case, instead of the centre of the pupil, the centre of 

rotation of the eye, denoted by R in Figure 1 and located 27 mm behind the 



vertex sphere, was used.  Mean errors are below 0.25 D only up to 7º, 6.8º, 7.1º 

and 7.8º for the -2.5 D, -5 D, -7.5 D and -10 D lenses, respectively.   

The change in power as function of angle is non-linear for both evaluations 

(static and dynamic eye). This phenomenon, typically found in ophthalmic lens 

design32 is caused by the non-linear terms of the generalized Coddington 

equations and the thick nature of real lenses. 

 

Fig. 5. Tangential (red solid line), sagittal (blue dashed line) and mean (black solid line) 

power errors (D) as function of ocular rotation (degrees) for designs (a) -2.5 D, (b) -5 D, 

(c) -7.5 D and (d) -10 D. Errors are computed for foveal vision in a rotating eye.  

 

Discussion 

Our design method is capable of generating lenses that approximately 

compensate the sagittal power errors of the eye in a wide range of off-axis field 

angles (30º), solving the problem of relative peripheral hyperopic defocus of the 



sagittal foci. We note that by heuristically fine tuning of Eq. (7) we could even 

force more negative sagittal power errors. However, due to the relationship 

between sagittal and tangential spectacles powers, approximated in this work 

by Eq. (7), the off-axis astigmatism of the eye increases from about 1.85 D in 

the naked eye up to about 3.0 D at 30º field angle while wearing the lenses. 

Although peripheral resolution acuity perceived by the visual system is limited 

by the exponential decrease in the sampling of cones and increased receptive 

fields size with eccentricity,35 grating detection acuity depends strongly on 

optical blur in the periphery.36 Thus, at peripheral retinal locations, contrast 

sensitivity for detection tasks while wearing the peripheral lenses is expected to 

be better for radially orientated, compared to non-radially orientated, spatial 

frequencies, due to the eye’s uncompensated off-axis tangential error. 

Unavoidably such designs also introduce non-negligible power errors for 

foveal vision when the eye rotates, which reduce visual acuity especially during 

distance viewing and may affect natural eye movement patterns, by diminishing 

the amount of eye rotations and making them more irregular,33 an effect that 

has already been reported in progressive addition lenses (PALs).34 

Finally, we note that the great variability on the peripheral refractive profiles 

between subjects37 could seriously limit the feasibility of RRG spectacles. As 

already warned by Smith et al.,13 designing spectacles for peripheral vision is 

more challenging than for foveal vision, because peripheral vision is more 

sensitive to individual differences between eyes, mainly because of the changes 

in the retinal surface shape. In this work, we designed four negative lenses with 

different back vertex powers that were optimized for retinal conjugate surfaces 

that departed from the same relative peripheral errors, obtained from the 

average sagittal power errors of 55 low and medium myopes (from -0.60 to -

5.80 D; median = -2.27 D). Although high myopes may exhibit higher values of 

relative peripheral hyperopia, due to steeper retinal surface shapes,25 the 

degree of the hypermetropic shift along the horizontal visual field does not 

appear to be much influenced by the amount of foveal myopia beyond about 4 

D,38 which makes our approach reasonable. It should also be noted that 

peripheral refractive errors vary with meridian and the results on which the 



designs were based were for the horizontal meridian.38 One possible strategy to 

guarantee that all meridians are compensated for relative peripheral hyperopia 

would be to define the retinal conjugate surface based on the data of the most 

relative hyperopic meridian. Some authors have also proposed to take into 

account this effect by modifying the equations that estimate the peripheral 

power errors, adding the contributions of the retinal shape through some 

specific models.19 This information could lead to customized design spectacles. 

However, even in this best-scenario, our results show the unavoidable errors 

introduced by RRG designs when used for dynamic foveal vision. 

In summary, our results support the need for a trade-off between controlling 

power errors for peripheral and foveal vision. One solution (already proposed, 

as mentioned in the introduction) is to divide the design in two areas: 1) a 

central area where the design is done using a rotating eye; 2) an outer area 

where the surface designs are the ones obtained by our procedure. The angle 

of incidence that marks the separation between both areas could be determined 

by a threshold value in the tolerable foveal errors; say, for instance, those areas 

below 0.25 D in Fig. 5. Another possibility, which is worth exploring, would be to 

modify our design procedure to include a hybrid metric that simultaneously 

considers both power errors for an off-axis static eye and for a rotating eye, and 

assigns certain weights to each of them.   
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