
Ricardo Alves Teixeira

Framework for Media Oriented Transport
Systems

Ri
ca

rd
o

Al
ve

s
Te

ixe
ira

dezembro de 2015UM
in

ho
 |

 2
01

5
Fr

am
ew

or
k

fo
r

M
ed

ia
 O

ri
en

te
d

Tr
an

sp
or

t S
ys

te
m

s

Universidade do Minho
Escola de Engenharia

dezembro de 2015

Dissertação de Mestrado
Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em
Engenharia Electrónica Industrial e Computadores

Trabalho efectuado sob a orientação do
Professor Doutor Adriano José da Conceição Tavares

Ricardo Alves Teixeira

Framework for Media Oriented Transport
Systems

Universidade do Minho
Escola de Engenharia

DECLARAÇÃO

Nome ___

Endereço electrónico: _______________________________ Telefone: _______________ / _______________

Número do Bilhete de Identidade: ______________________

Título dissertação:

Orientador(es):

Ano de conclusão: ___________

Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Arquitetura

Nos exemplares das teses de doutoramento ou de mestrado ou de outros trabalhos entregues para prestação

de provas públicas nas universidades ou outros estabelecimentos de ensino, e dos quais é obrigatoriamente

enviado um exemplar para depósito legal na Biblioteca Nacional e, pelo menos outro para a biblioteca da

universidade respectiva, deve constar uma das seguintes declarações:

1. É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS DE

INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE;

2. É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE/TRABALHO (indicar, caso tal seja necessário,

nº máximo de páginas, ilustrações, gráficos, etc.), APENAS PARA EFEITOS DE INVESTIGAÇÃO, , MEDIANTE

DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE;

3. DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER

PARTE DESTA TESE/TRABALHO

Guimarães, ___/___/______

Assinatura: __

Media Oriented Transport System
MIEEIC Dissertation

Ricardo Teixeira

December, 2015

ii

Contents

1 Introduction 5
1.1 Document organization . 6

2 State of the Art 7
2.1 Controller Area Network . 7
2.2 FlexRay . 8
2.3 MOST - Media Oriented Systems Transport 8

2.3.1 CAN vs FlexRay vs MOST for multimedia oriented appli-
cations . 9

2.4 Transmission Paths . 10
2.4.1 Optical Fiber . 10
2.4.2 Coaxial cable . 11
2.4.3 Twisted-Pair cable . 11
2.4.4 Conclusions . 12

2.5 Node positioning and interconnection 13
2.5.1 Bus Network . 14
2.5.2 Star Network . 15
2.5.3 Ring Network . 16
2.5.4 Mesh Network . 18
2.5.5 Conclusions . 19

2.6 Electronic Design Automation tools 21
2.7 Hardware Description Languages 22
2.8 Standard integration and reuse of processor, system and peripheral

cores . 24
2.8.1 Processor Local Bus . 25
2.8.2 On-Chip Peripheral Bus . 26
2.8.3 Device Control Register Bus 27

2.9 Interrupts . 27

i

2.9.1 Edge-triggered interrupts . 28
2.10 Sequential flow in FPGA . 28
2.11 Audio properties . 29

2.11.1 Stereo . 30
2.11.2 Analog Dolby Surround Pro Logic 31
2.11.3 Analog Dolby Surround Pro Logic II 31
2.11.4 Dolby Digital, AC3 . 31
2.11.5 MPEG-2 . 31
2.11.6 Digital Theatre System (DTS) 32
2.11.7 Logic 7 . 32

3 Hardware Platform 33
3.1 FPGA Technology . 33
3.2 Soft-core Processors . 34

3.2.1 The Microblaze Processor 34
3.3 Hybrid CPU+FPGA platform . 35

4 Communication Protocol Stack 37
4.1 Application Framework . 39

4.1.1 Interface with the Developer 39
4.1.2 Interface with Transport Layer 41
4.1.3 Interface with Media Oriented Components 44

4.2 Transport Layer . 45
4.2.1 Streaming Session Management Unit 46
4.2.2 Node Control Unit . 50
4.2.3 Network Control Unit . 51
4.2.4 Interface with Network Layer 55
4.2.5 Interface with IP Core . 56

4.3 Network Layer . 56
4.3.1 Application Message Exchange Service 57
4.3.2 Media Streaming Control Service 66
4.3.3 Node Synchronization Service 68
4.3.4 Interface with IP Core . 70

4.4 Logical Layer . 71
4.4.1 Signal Modulation and Node synchronism 76
4.4.2 Error handling . 79
4.4.3 Datagram structure . 80

4.5 Stream Service . 81

ii

4.5.1 Interface with external IP Cores 82

5 Case Study 83
5.1 Results . 88

6 Conclusion 103
6.1 Future Work . 106

Bibliography 107

A Building Hybrid CPU+FPGA System via Xilinx EDK 125

B Integration of Custom IP in the Hybrid CPU+FPGA System 131
B.1 Creating peripheral template for custom IP integration 131
B.2 Tailoring peripheral template to accommodate custom IP 135

C Implementation of FSM for controlling datagram reception, trans-
mission and loading to application 147

iii

iv

List of Figures

2.1 Propagation of light in the optical fiber core 10
2.2 Coaxial cable cutaway . 11
2.3 Unshielded Twisted Pair cable cutaway 12
2.4 Node interconnection in a Bus topology 14
2.5 Node interconnection in a Star topology 16
2.6 Node interconnection in a Ring topology 17
2.7 Node interconnection in a Mesh topology 18

4.1 Example of network oriented for media applications 37
4.2 Network communication protocol - API for the developer 39
4.3 Overview of a real case scenario . 40
4.4 UML Class diagram concerning API for the developer 40
4.5 Workflow for assigning addresses to devices on the network 42
4.6 Querying implemented object in each Network Node 43
4.7 Establishing and terminating streaming connections 44
4.8 Example of interface between Object and corresponding peripheral . 46
4.9 Transport Layer entities . 47
4.10 UML Class Diagram for Transport Layer 48
4.11 Streaming Session Management Unit Software Architecture 49
4.12 Node Control Unit controlling the node’s mode of operation 50
4.13 UML class diagram of the Node Control Unit Object 51
4.14 Controlling the state of the bypass mechanism 51
4.15 Network Control Unit effects on the Network Nodes and the Sys-

tem’s Network . 52
4.16 Network Control Unit Software Architecture 53
4.17 Network Layer entities . 57
4.18 UML Class Diagram for Network Layer 58
4.19 Queuing mechanism for inbound and outbound messages 59

v

4.20 Effects of the Application Message Exchange Service in the Logical
Layer . 60

4.21 Application Message Exchange Service Software Architecture 61
4.22 Writing operation in datagram, via PLB registers 62
4.23 Reading inbound data, via PLB . 63
4.24 Executing commands based on received control data 64
4.25 Media Streaming Control Service interaction with Logical Layer . . 67
4.26 Dynamic selection of channels for read/write operations 68
4.27 Node Synchronization Service for ensuring periodic data transfer in

the network . 69
4.28 Network communication protocol - Logical Layer 70
4.29 Network communication protocol - Logical Layer 71
4.30 Logical Layer interaction with Application Message Exchange Service 72
4.31 General overview of dataflow inside the network node 72
4.32 Data treatment by the Network Node, in detail 73
4.33 Finite State Machine for controlling data exchange and processing . 74
4.34 First bit of the frame start delimiter received 77
4.35 Second bit of the frame start delimiter received 78
4.36 Third bit of the frame start delimiter received 78
4.37 Fourth bit of the frame start delimiter received 79
4.38 Control data elements organization in the datagram infrastructure . 81
4.39 Time-sensitive data transport structure 82
4.40 IP-to-IP Core interface, for time-sensitive data transport 82

5.1 Implemented Network Node Internals 84
5.2 Experimental Node interconnection in a Ring topology 85
5.3 System Software Stack . 87
5.4 Node Synchronization Service triggering the transmission of the

datagram . 94
5.5 Frame reception, integrity check and parsing by the Prime Node . . 94
5.6 Propagation of the datagram through the network 97
5.7 Frame reception, integrity check and parsing by the Prime Node . . 97
5.8 Frame reception, integrity check and parsing by the Network Node 3 97
5.9 Frame reception, integrity check and parsing by the Prime Node . . 98
5.10 Inside the interrupt handler for parsing inbound messages 100
5.11 Interrupt handler execution after a message has been sent out to

the network . 101

vi

A.1 Building Hybrid CPU+FPGA System via Xilinx EDK with the help
of the setup wizard . 125

A.2 Building Hybrid CPU+FPGA System via Xilinx EDK - Intercon-
nect Bus solution selection and board specification importation . . . 126

A.3 Building Hybrid CPU+FPGA System via Xilinx EDK - Creation
of a new design from scratch . 126

A.4 Building Hybrid CPU+FPGA System via Xilinx EDK - Board se-
lection . 127

A.5 Building Hybrid CPU+FPGA System via Xilinx EDK based on
single or multiple processors . 127

A.6 Building Hybrid CPU+FPGA System via Xilinx EDK - Processor
configuration . 128

A.7 Building Hybrid CPU+FPGA System via Xilinx EDK - Selecting
peripherals for the application . 129

A.8 Building Hybrid CPU+FPGA System via Xilinx EDK - Processor
cache features . 129

B.1 Creating peripheral template for custom IP integration - Initial menu131
B.2 Creating peripheral template for custom IP integration 132
B.3 Creating peripheral template for custom IP integration locally . . . 132
B.4 Creating peripheral template for custom IP integration - Assigning

a name to the peripheral . 133
B.5 Creating peripheral template for custom IP integration - Intercon-

nect Bus selection . 133
B.6 Creating peripheral template for custom IP integration - allocating

registers for communication between CPU and custom IP core . . . 134
B.7 Creating peripheral template for custom IP integration - PLB ports 134
B.8 Creating peripheral template for custom IP integration - automatic

generation of templates for software drivers and HDL source code . 135
B.9 Creating peripheral template for custom IP integration - mapping

newly created peripheral . 135
B.10 File to which custom IP’s source code is inserted 136
B.11 Custom IP’s I/O ports to communicate with the rest of the system

design . 136
B.12 Instantiation of the custom IP’s module 137
B.13 Peripheral’s top level design file . 138

vii

B.14 Allowing custom IP’s I/O ports to interact with the exterior of the
PLB infrastructure . 138

B.15 Allowing custom IP’s I/O ports to interact with the exterior of the
PLB infrastructure . 139

B.16 Allowing custom IP’s I/O ports to interact with the exterior of the
PLB infrastructure . 140

B.17 Updating peripheral specification 141
B.18 Updating peripheral specification in a previously created local pe-

ripheral . 141
B.19 Inserting the same name of the existing peripheral to be updated . 142
B.20 Confirmation to overwrite the performed changes 142
B.21 Importing HDL source files . 143
B.22 Selecting Peripheral Order Analysis file 144
B.23 Setting peripheral as PLB slave . 144
B.24 Setting up interrupt sensitivity of custom IP ports 145

viii

List of Tables

2.1 In-vehicle network comparison . 9
2.2 Criteria for comparison between transmission paths 13
2.3 Decision table - transmission paths matchup 13
2.4 Criteria for interconnection topology comparison 20
2.5 Decision table for node interconnection topology 21

4.1 List of attributes for Audio Amplifier Object 41
4.2 List of attributes for Disk Player Object 42
4.3 Set of functions for interface with Transport Layer for node man-

agement . 43
4.4 Set of functions for interface with Transport Layer for network man-

agement . 43
4.5 Set of functions for interface with Transport Layer for synchronous

connections management . 45
4.6 Framework available for Transport Layer entities 55
4.7 Interface between Transport and Network Layers, for channel allo-

cation, state and read/write operations 56
4.8 Registers for interaction with the IP Core 56
4.9 My caption . 70
4.10 Registers for controlling the datapath for time-sensitive data 71
4.11 Finite State Machine states description 75
4.12 List of Finite State Machine conditions for triggering state change . 76

5.1 Register values for the test runs . 85
5.2 Structure of the datagram . 86
5.3 Structure and content of the System Management Frame Segment . 86

ix

x

Abstract

The natural evolution of embedded systems resulted in a faster execution of tasks,
increased possibility for including additional features, allied to lower power con-
sumption and benefiting from ever-growing rates of integration as far as silicon is
concerned. The automotive industry is not an exception with regards to the inte-
gration of technology for a vast arrays of applications in systems which vary from
entertainment of infotainment to systems related to vehicle safety and stability
such as driver assists. The existence of diverse independent systems in modern
cars, combined with the necessity of centralizing the user interface, simplifying the
operation of the system and minimizing the user’s intervention, help to promote
the comfort and reduce the likelihood of distractions taking place while driving.
Modern communication oriented network standards, e.g. MOST or FlexRay, en-
able information compatibility when exchanged between systems communicating
over different protocols. Moreover, the coexistence of packet, control and time-
sensitive information are ensured within timing requirements, providing a reliable
QoS (Quality of Service) and by making use of a single physical transmission mean.
Synchronized multimedia data (e.g. synchronized video and audio transmission)
are example of this kind of (time-sensitive) information.

This dissertation proposes a framework for design and development of network
distributed applications in the field of automotive infotainment, compliant with
the industry standards and using FPGA technology in order to ensure the system
requirements satisfaction and promote IP Core re-utilization.

1

2

Resumo

A evolução natural dos sistemas embebidos traduziu-se numa maior rapidez na ex-
ecução de tarefas, a possibilidade de incluir mais funcionalidades, aliado a menores
consumos energéticos e beneficiando de crescentes e elevadas taxas de integração
ao nível de silício. A indústria automóvel não é excepção no que diz respeito à
integração de tecnologia para as mais variadas aplicações, com ou sem tolerân-
cia à falha, em sistemas que vão desde entretenimento ou infotainment a sis-
temas relacionados com a estabilidade e segurança do veículo, como é exemplo
as driver assists. Existem de vários sistemas independentes nos modernos veículos
automóveis. Estes, combinados com a necessidade de centralização ao nível de
interface com o utilizador, tornam imperativa a simplicidade da operação. Para
tal, requerem a minimizaccão da intervenção do utilizador, promovendo o conforto
e diminuindo a probabilidade de desconcentração durante o exercício de condução.
Os mais modernos standards de redes de comunicação como é exemplo o MOST
ou o FlexRay, permitem a compatibilidade de informação trocada entre sistemas
que comunicam através de distintos protocolos de comunicação. Para além disso,
ainda garantem a coexistência de informação de controlo, informação do entreten-
imento e informação do tipo time-sensitive, onde os requisitos de temporização
devem ser assegurados, mantendo uma qualidade de serviço fiàvel e fazendo uso
de um único meio físico de transmissão. São exemplos deste tipo de informação,
dados síncronos do tipo multimédia (e.g. streaming de àudio e vídeo de forma
sincronizada). Pretende-se desenvolver uma framework para desenvolvimento de
aplicações de rede distribuídas, do tipo infotainment e que beneficia a aplicação de
tecnologias como FPGA, no offloading de computação para este dispositivo, como
meio de garantir a satisfação dos requisitos, e promover a reutilização deste tipo
de sistemas, mantendo o elevado desempenho na troca de dados e promovendo a
portabilidade e a modularidade.

3

4

Chapter 1

Introduction

The growing number of entertainment components supplying and consuming all
kinds of information in the automotive field increased the complexity of intercon-
necting and the control of such components. The final user (driver or passengers)
had and still has the need to operate all the components through different, individ-
ual human machine interfaces. To build a system, each component must have the
capability and ability to communicate with other components in such a way that
the information can be used in real time. The infotainment Head Unit, sometimes
also named system controller should govern all events in all components in such
a way that the user is no longer confronted by the complexity of the system, but
that requires considerable effort from the development point of view. Unless an
integrative API is offered, enabling the design of an appropriate software structure
around the logical representation of all components in the system controller. Still,
several challenges in infotainment system design are faced, in order to comply with
the flexibility and the scalability of the different market requirements over different
levels of functionality and/or performance, provided by a unique but still efficient
system architecture.

The FPGA technology closes such gap, as it allows for interfacing hardware in a
more flexible and optimized way. The advantage of such a concept is a scalable
approach providing a number of hardware devices, which can be re-configured by
the FPGA code through the system software, as well as the fact that it promotes
multiple IP Core integration, resulting in modularity and results in a briefer process
of prototyping the system Besides promoting portability (due to its technological
agnosticism), the true parallelism that is inherent to FPGA technology makes it
possible to ensure timing and bandwidth requirements, as well as systemic-level

5

synchronism.

In order to ally the benefits of using FPGA technology and optimized development
effort, employment of CPU+FPGA platform makes it possible to combine the
easier development of applications in software and ensuring the timing bandwidth
requirements of the system, by means of computational offload to FPGA fabric,
being the most time consuming tasks then implemented in RTL. In order to further
improve the development effort, embedded operating systems offer several services
and an abstraction layer for the development of applications.

With this in mind, the idea is to develop a communication protocol and the cor-
responding framework to support the design of media oriented distributed appli-
cations, following the OSI Reference Model, using FPGA technology as a mean
of ensuring the coexistence of both control and time-sensitive data as well as
meeting the performance demands and functional requirements of media oriented
applications, combined with a CPU where software implemented parts of the com-
munication protocol and framework are deployed, in order to ease the design of
the whole system.

1.1 Document organization

The remainder of this document contains, firstly, the State of the Art, where the
essential concepts and definitions to understand the actual work, are explained.
Afterwards, comes the description of the Hardware Platforms used in this project
and the related choices regarding this topic. The stack of the network protocol
is examined and the design of the different parts of the communication protocol
are presented. Following that, the Study Case evaluates the implemented parts
of the project under test and documents the associated results. Moreover, the
Conclusion chapter comprises with considerations about the obtained results and
the lessons learned throughout the process of developing this dissertation. Finally,
improvements that can be done to the showcased system are proposed.

6

Chapter 2

State of the Art

In the past, automotive manufacturers connected electronic devices in vehicles
using point-to-point wiring systems.

Manufacturers began using more and more electronics in vehicles, which resulted
in bulky wire harnesses that were heavy and expensive.

They then replaced dedicated wiring with in-vehicle networks, which reduced
wiring cost, complexity, and weight. Several in-vehicle networks standards have
been emerging, such as CAN (Controller Area Network), FlexRay and MOST
(Media Oriented Systems Transport).

2.1 Controller Area Network

The CAN protocol was quickly adopted by the automotive industry, as a result
of its simplicity, given that every Electronic Control Unit only requires a single
CAN port to be connected to the network, instead of as many digital ports (and
point-to-point connections) as the number of devices to be interconnected. There-
fore, cost and weight are kept to a minimum. Moreover, every appended devices
to the network are able to check the messages, as they are broadcasted within the
whole network. Thus, the addition of new nodes to the CAN network has no im-
pact on the way the network works and the existing nodes exchange information.
The support for defining priorities to more important messages allows uninter-
rupted transmission of higher priority messages, contributing to a greater level of
determinism offered by this network. Besides, not only does this protocol perform

7

message integrity check, but also orders transmission nodes that are transmitting
too many corrupted messages to suspend its communications and disconnect from
the network, so that the correct functioning of the network is assured, in case a
node is malfunctioning.

2.2 FlexRay

For automotive industry to continuously improve safety and performance, reduce
environmental impact and enhance comfort, the speed, reliability and size of data
bandwidth within car’s electronic control units (ECU) is scaling proportionally.
Modern control strategy and safety systems, combining multiple sensors, actu-
ators and ECUs, begin to require synchronization and performance beyond the
existing standards can provide. Coupled with growing bandwidth requirements
with today’s advanced vehicles there is a demand for a next-generation embed-
ded network. The FlexRay protocol is a time-triggered protocol that provides
options for deterministic data that arrives in a predictable time frame (down to
the microsecond) as well as a dynamic event-driven data to handle a large variety
of frames. FlexRay accomplishes this hybrid of core static frames and dynamic
frames with a pre-set communication cycle that provides a pre-defined communi-
cation cycle space for static and dynamic data. In order to guarantee a greater
bandwidth and prevent data collision and consequently data frame corruption,
FlexRay manages multiple nodes with a TDMA (Time Division Multiple Access)
scheme. Every FlexRay node is synchronized to the same clock, and each node
waits for its turn to write on the bus. Because the timing is consistent with a
TDMA scheme, FlexRay is able to guarantee the consistency of data delivery to
nodes on the network, which provides many advantages for systems that depend
on up-to-date data between nodes.

2.3 MOST - Media Oriented Systems Transport

The infotainment sector in cars has developed rapidly within the last few years.
Where an AM/FM tuner was initially sufficient, many vehicles are now equipped
with high-grade sound and navigation systems. This also increases the number of
devices involved - radio, cell phone, CD changer, navigation system, voice opera-
tion and an additional multi-channel amplifier supplement the primary systems.

8

These devices must interact in concert with each other and can only be controlled
via a central operating surface to ensure drivers are not unnecessarily distracted.
The bandwidth of the CAN-Bus, which can only move control signals, but no
audio and video signals, is no longer sufficient for these demands. MOST, Me-
dia Oriented Systems Transport, a communication system with a new, flexible
architecture, used by many different manufacturers, was developed to meet these
demands. It can transmit audio signals synchronously, as in telephones, and is
the most widely used multimedia system in cars today. The MOST system not
only comprises all layers of the Open System Interconnect (OSI) Reference Model
for communication and computer network design, but also standardizes the inter-
faces with the applications (e.g., an AM/FM tuner), which are defined as function
blocks, enabling the developer to design multi-media systems on a relatively high
abstraction level.

2.3.1 CAN vs FlexRay vs MOST for multimedia oriented
applications

Even though protocols such as CAN and FlexRay present high-reliability in terms
of data transmission as well as determinism, other requirements must be met in
order to support modern distributed infotainment applications. The Table 2.1
puts the CAN, FlexRay and MOST networks into comparison, in terms of peak
bandwidth, coupled with a few examples about typical application in which each
protocol is employed.

Table 2.1: In-vehicle network comparison

CAN FlexRay MOST150
Maximum
Bandwidth 1 Mbit/s 10 Mbit/s 150 Mbit/s

Typical
Applications

Powertrain (Engine,
Transmission, ABS)

High-Performance
Powertrain,
Safety
(Drive-by-wire,
active suspension,
adaptive cruise
control)

Distributed
infotainment
systems

It can be concluded that the MOST standard is the most suitable protocol for
multimedia transmission not only due to the higher peak bandwidth, but also be-

9

cause it grants coexistence between time-sensitive (e.g., synchronized video and
audio streaming) and control-information, due to the data frame structure. Be-
sides, networks with distinct protocols, such as CAN, FlexRay or Ethernet, can
be integrated by means of gateways in a MOST network, consequently providing
support for networks inter-communication.

2.4 Transmission Paths

In-vehicle network signals are subject to Radio Frequency and/or Electromagnetic
interferences, which are known to compromise its integrity. This section will focus
on solutions that overcome such issues, such as Optical Fiber, Coaxial and Twisted-
Pair cable.

2.4.1 Optical Fiber

Optical fibers are utilized more and more frequently for applications with a high
data rate due to increasing EMC requirements (Electromagnetic Compatibility).
Transmission lines with optical fibers do not cause any interference radiation and
are insensitive to electromagnetic interference irradiation (Electromagnetic Inter-
ference, EMI). In contrast to shielded electric data lines, optical fibers are, more-
over, lighter and more flexible and can thus be handled more easily. Furthermore,
optical fiber provides far greater bandwidth than copper and has standardized
performance up to 10Gbps, being the modulation frequency of the transceivers
the only limiting factor. The extra cost of the optical transceivers and the higher
costs of equipment for testing/diagnosing optical fiber based circuits is however a
negative aspect, comparing to the electrical transmission paths.

Acceptance
cone

Cladding

Cladding

Core

Figure 2.1: Propagation of light in the optical fiber core

10

2.4.2 Coaxial cable

Coaxial cable conducts electrical signal using an inner conductor (usually a solid
copper, stranded copper or copper plated steel wire) surrounded by an insulating
layer and all enclosed by a shield, typically one to four layers of woven metallic
braid and metallic tape. The cable is protected by an outer insulating jacket.
Normally, the shield is kept at ground potential and a voltage is applied to the
center conductor to carry electrical signals. The advantage of coaxial design is that
electric and magnetic fields are confined to the dielectric with little leakage outside
the shield. Conversely, electric and magnetic fields outside the cable are largely
kept from causing interference to signals inside the cable. Larger diameter cables
and cables with multiple shields have less leakage. This property makes coaxial
cable a good choice for carrying weak signals that cannot tolerate interference
from the environment or for higher electrical signals that must not be allowed to
radiate or couple into adjacent structures or circuits. Coaxial cable is used as
a transmission line for radio frequency signals. Its applications include feedlines
connecting radio transmitters and receivers with their antennas, computer network
(Internet) connections, and distributing cable television signals.

plastic jacket

dielectric insulator

metallic shield

centre core

Figure 2.2: Coaxial cable cutaway

2.4.3 Twisted-Pair cable

Low-voltage differential signaling, or LVDS, also known as TIA/EIA-644, is a
technical standard that specifies electrical characteristics of a differential, serial
communications protocol. LVDS operates at low power and can run at very high

11

speeds using inexpensive twisted-pair copper cables. LVDS was introduced in
1994, and has become popular in products such as LCD-TVs, automotive info-
tainment systems, industrial cameras and machine vision, notebook and tablet
computers, and communications systems. The typical applications are high-speed
video, graphics, video camera data transfers, and general purpose computer buses.
LVDS is a differential signaling system, meaning that it transmits information as
the difference between the voltages on a pair of wires; the two wire voltages are
compared at the receiver. As long as there is tight electric- and magnetic-field
coupling between the two wires, LVDS reduces the generation of electromagnetic
noise. This noise reduction is due to the equal and opposite current flow in the two
wires creating equal and opposite electromagnetic fields that tend to cancel each
other. In addition, the tightly coupled transmission wires will reduce susceptibil-
ity to electromagnetic noise interference because the noise will equally affect each
wire and appear as a common-mode noise. The LVDS receiver is unaffected by
common mode noise because it senses the differential voltage, which is not affected
by common mode voltage changes.

conductor
insulation
pair
sheath

UTP

Figure 2.3: Unshielded Twisted Pair cable cutaway

2.4.4 Conclusions

Taking into account the increasing Electromagnetic Interference which in-vehicular
networks are subject to and the increasing bandwidth requirements due to the
growing integration of devices, specially as far as multimedia systems are con-
cerned, optical fiber is the most suitable solution from a performance vs cost

12

Table 2.2: Criteria for comparison between transmission paths

Criteria Description

Cost Cost of the transmission path
and corresponding transceivers

Reliability Durability and reliable data transmission
under environments with high EMI and RFI

Weight Weight of the wiring loom

Ease of assembly/handling Robustness of the cabling and capability to
be mounted in tight spaces

Table 2.3: Decision table - transmission paths matchup

Criteria Optical Fiber Coaxial Cable UTP Cable
Cost 4 4 5

Reliability 5 4 3
Weight 5 3 4

Ease of assembly/handling 4 4 5
Total Score 18 15 17

standpoint, not to mention the material’s lighter weight, as described in the deci-
sion table, 2.2 and 2.3

However, with regards with this dissertation, as the project is developed in a
laboratory where interferences are less likely to occur and due to time and cost
constraints, the employment of the LVDS technique with Unshielded Twisted Pair
Cables provides a reliable data transfer under these circumstances.

2.5 Node positioning and interconnection

The Physical Layer defines the structure of interconnected devices, that is, the
positioning of the nodes in the network, the cabling layout and the employed type
of cabling. This chapter is dedicated to the exploration of an array of network
physical topologies, followed by the selection of the most suitable topology for the
system that is to be developed, according to the trade-offs each method offers.

Moreover, considerations will be drawn about transmission paths which ensure
fast and reliable data exchange under environments where Radio-Frequency and
Electromagnetic interferences are prone to occur, as is the case with vehicles. Af-
terwards, comes the choice of the most convenient solution that meets the system’s
requirements and constraints. In this section, the main aspects of well-known net-

13

work topologies are meant to be analysed, having special attention to how far
scalability goes while still ensuring the timing and bandwidth requirements as well
as implications of the resulting wiring loom and if it is appropriate to reliably
transport time-sensitive data. The topologies to be studied are:

• Bus Network

• Star Network

• Ring Network

• Mesh Network

2.5.1 Bus Network

In a Bus Network, the devices are attached to a shared communication line, also
known as backbone, which has signal terminators at its ends in order to prevent
the data to be reflected back, thus causing collisions.

A host exists for network management purposes, which similarly to all the inter-
connected nodes, receives all the network traffic and has the same transmission
priority.

The definition of a node as a Bus Master or the employment of a Media Access
Control technology, such as Carrier Sense Multiple Access (CSMA) handle data
collisions, in case multiple nodes simultaneously transmit data.

Unless the shared communication line fails, the normal operation of the devices is
not compromised upon failure of a node in the network.

The figure 2.4 illustrates the connection of the nodes to the backbone.

Shared communica�on line

Figure 2.4: Node interconnection in a Bus topology

Even though the Bus Network offers the following advantages:

14

• The process of installation of a new node in the network is simple

• Requires less cable length than a Star Network Topology, thus resulting in
lower costs and less weight of the wiring loom

There are also some limitations to take into consideration:

• A break in the main cable, which is a difficult problem to identify, may lead
to a failure in the operation of the whole system

• The available bandwidth is reduced as more devices are attached to the
network, which is not ideal for large networks

• Data collisions may be more frequent as more nodes are interconnected by
means of this topology, consequently resulting in determinism not to be
verified and possible failure to meet the timing requirements, which is not
acceptable as the system involves the transport of time-sensitive data

2.5.2 Star Network

A Star Network is composed by a central node to which all other nodes are con-
nected. The Central Node is responsible for rebroadcasting an incoming message
to all the nodes in the network. If the Central Node is passive, it rebroadcasts the
message to all the existing nodes in the network, including the echo to the node
the incoming message came from. Therefore the node from which the message
originated from, must have mechanisms that identify and handle the echoes. If
however, the Central Node is active, it can prevent echo messages to be sent to
the corresponding peripheral node.

The figure 2.5 illustrates the interconnection of the nodes by means of the Central
Node.

The following advantages from this topology are outlined in the following topics:

• The normal operation of the nodes may not be affected if one leaf node fails
or unless the central node functions abnormally

• The bandwidth and the delay in the transmission to any leaf node is un-
changed as more nodes are attached to the network, as long as the capacity
of the Central Node is not exceeded

15

Central Node

Figure 2.5: Node interconnection in a Star topology

• Centralization is beneficial as it enables easier traffic analysis and the detec-
tion of eventual malfunctions

However, there are drawbacks that should be taken into consideration:

• The number of nodes attached to the network is limited by the capacity of
the central node, which disfavours scalability, not to mention the increasing
costs as more capable central nodes are required

• More cable length is required, compared to Bus or Ring networks, thus re-
sulting in greater expenses in terms of costs and weight (of the wiring loom)

• The communication relies on the central node, which is a single point of
failure that can compromise the whole system

2.5.3 Ring Network

With regards to the Ring Network topology, each node is connected to two other
nodes by means of a single pathway, resulting in a circular network structure
through which data travels unidirectionally. All nodes have the same transmission
priority, provided that the data has to pass through each one, as it travels around
the ring. The figure 2.6 illustrates the connection of the nodes in a ring topology.

16

Figure 2.6: Node interconnection in a Ring topology

Advantages are explained in the following topics:

• The process of installation of a new node and reconfiguration of a new node
is easy, given that it only requires moving one connection between two nodes.

• Under heavy network load, the performance degradation is fewer than on
the Bus Network topology.

• Every node has access to the token and opportunity to transmit, coupled
with the impossibility for data collisions to occur

• The system’s integrity does not depend on solely one node (as is the case
with the Star Network topology, which requires a central node)

• Faults in the system, that is, ring breaks, are easy to spot provided that a
single pathway interconnects two nodes

• Adding an extra node requires only one extra cable, resulting in little extra
weight added

As disadvantages:

• The procedures to start-up and shut down are more complex than with the
Start network topology

17

• The communication delay increases with the number of nodes appended to
the network

• One malfunctioning node may interrupt the communications, unless a bypass
is integrated in each device, enabling data to proceed to the next nodes

2.5.4 Mesh Network

In this type of topology, a point-to-point connection exists between each pair of
nodes in the system, except if it is about a Partial Mesh. If a failure occurs in
any of the transmission paths, self healing mechanisms reconfigure the network,
establishing alternative paths to ensure data reaches the destination. The figure 2.7
illustrates the connection of the nodes in a mesh topology. A strong point of this

Figure 2.7: Node interconnection in a Mesh topology

network topology is the reliability, because redundant paths may exist. However,
the amount of cabling required, and consequently the cost and weight are way
higher compared to the aforementioned network topologies.

18

2.5.5 Conclusions

It is now known any of the aforementioned network topologies have at least one
weak spot that can render a system unable to be fail safe. Even though the Mesh
Network topology, with its self healing mechanisms, presents less risks of leading
a system to operate abnormally, not only the choice of this topology would have
an huge impact in terms of costs, but also on weight, as a result of the amount
of cabling required increases exponentially as more devices are integrated in the
network.

The Bus Network would be a great alternative, as it covers some of the disadvan-
tages of the Mesh Network topology, however, as more devices are attached to the
network, the bandwidth is affected negatively, thus limiting the dimension of a sys-
tem as far as scalability is concerned. We are left with two contenders: Ring and
Star topologies. Although the Star network topology provides less node-to-node
delay than the Ring Network, the use of a Central Node is a limiting characteristic
from a system scalability standpoint.

However, the delay each node provokes in the Ring Network topology may be
drastically reduced by means of CPU offloading/Hardware Acceleration of parts
of the system’s application using FPGA technology, consequently allowing the
timing requirements to be ensured. Besides, although the Ring network topology
requires a more complex process in order to initialize the system, this is not a
critical aspect, as it does not affect the post system setup phase. On top of that,
the amount of cabling required is fewer, which comes as a point in favor of the Ring
topology, provided that weight saving is an important aspect in the automotive
industry, not to mention budget control.

To conclude, the Ring Network topology offers the best trade-off and shall be the
chosen one.

The table 2.4 contains the criteria that were taken into consideration for choosing
the most adequate topology for the system to be worked on.

19

Table 2.4: Criteria for interconnection topology comparison

Criteria Description

Performance
Degradation

Reduction of available bandwidth
as more nodes are attached to the
network

Wiring Loom Required wiring loom to
interconnect nodes

Node Complexity
Development effort to integrate
the features to interact with the
network

Reliability

How the system’s integrity is
compromised, in an event of a
failure in a node or transmission
path

20

Table 2.5: Decision table for node interconnection topology

Criteria Star
Topology

Bus
Topology

Ring
Topology

Mesh
Topology

Performance
Degradation 5 4 5 3

Wiring Loom 3 5 4 2
Node Complexity 3 4 5 3

Reliability 5 3 4 5
Score 16 16 18 13

Afterwards, the table 2.5 consists of a decision matrix, where a score is assigned to
each topology, with regards to each criteria, according to what was studied in the
previous subsections. The score varies between 0 and 5, meaning the punctuation
of 5, the fact that the topology performs better than all other in a given aspect. If
more than one topologies perform similarly, both get the same points, otherwise a
score the immediately inferior value is assigned.

2.6 Electronic Design Automation tools

Digital circuit design has evolved rapidly over the last 25 years. The earliest digital
circuits were designed with vacuum tubes and transistors. Integrated circuits
were then invented where logic gates were placed on a single chip. The first
integrated circuit (IC) chips were SSI (Small Scale Integration) chips where the
gate count was very small. As technologies became sophisticated, designers were
able to place circuits with hundreds of gates on a chip. These chips were called
MSI (Medium Scale Integration) chips. With the advent of LSI (Large Scale
Integration), designers could put thousands of gates on a single chip. At this point,
design processes started getting very complicated, and designers felt the need to
automate these processes. Electronic Design Automation (EDA) techniques began
to evolve. Chip designers began to use circuit and logic simulation techniques to
verify the functionality of building blocks of the order of about 100 transistors.
The circuits were still tested on the breadboard, and the layout was done on paper
or by hand on a graphic computer terminal.

With the appearance of VLSI (Very Large Scale Integration) technology, designers
could design single chips with more than 100,000 transistors. As a result of the
complexity of these circuits, it was not possible to verify these circuits on a bread-

21

board. Computer- aided techniques became critical for verification and design of
VLSI digital circuits. Computer programs to do automatic placement and routing
of circuit layouts also became popular. The designers were now building gate-level
digital circuits manually on graphic terminals. They would build small building
blocks and then derive higher-level blocks from them. This process would continue
until they had built the top-level block. Logic simulators came into existence to
verify the functionality of these circuits before they were fabricated on chip.

As designs got larger and more complex, logic simulation assumed an important
role in the design process. Designers could iron out functional bugs in the archi-
tecture before the chip was designed further.

2.7 Hardware Description Languages

For a long time, programming languages such as FORTRAN, Pascal, and C were
being used to describe computer programs that were sequential in nature. Sim-
ilarly, in the digital design field, designers felt the need for a standard language
to describe digital circuits. Thus, Hardware Description Languages (HDLs) came
into existence, allowing the designers to model the concurrency of processes found
in hardware elements. Hardware description languages such as Verilog HDL and
VHDL became widely used, being Verilog HDL originated in 1983 at Gateway
Design Automation and VHDL developed under contract from DARPA.

Even though HDLs were popular for logic verification, designers had to manually
translate the HDL-based design into a schematic circuit with interconnections
between gates. The release of logic synthesis tools in the late 1980s changed the
design methodology radically. Digital circuits could be described at a register
transfer level (RTL) by use of an HDL. Thus, the designer had to specify how the
data flows between registers and how the design processes the data. The details
of gates and their interconnections to implement the circuit were automatically
extracted by logic synthesis tools from the RTL description.

Thus, logic synthesis pushed the HDLs into the forefront of digital design. De-
signers no longer had to manually place gates to build digital circuits. They could
describe complex circuits at an abstract level in terms of functionality and data
flow by designing those circuits in HDLs. Logic synthesis tools would implement
the specified functionality in terms of gates and gate interconnections.

22

HDLs also began to be used for system-level design. HDLs were used for simulation
of system boards, interconnect buses, FPGAs (Field Programmable Gate Arrays),
and PALs (Programmable Array Logic). A common approach is to design each IC
chip, using an HDL, and then verify system functionality via simulation.

Today, Verilog HDL is an accepted IEEE standard. In 1995, the original standard
IEEE 1364-1995 was approved. IEEE 1364-2001 is the latest Verilog HDL standard
that made significant improvements to the original standard.

HDLs have many advantages compared to traditional schematic-based design.

• Designs can be described at a very abstract level by use of HDLs. Designers
can write their RTL description without choosing a specific fabrication tech-
nology. Logic synthesis tools can automatically convert the design to any
fabrication technology. If a new technology emerges, designers do not need
to redesign their circuit. They simply input the RTL description to the logic
synthesis tool and create a new gate-level netlist, using the new fabrication
technology. The logic synthesis tool will optimize the circuit in area and
timing for the new technology.

• By describing designs in HDLs, functional verification of the design can be
done early in the design cycle. Since designers work at the RTL level, they
can optimize and modify the RTL description until it meets the desired
functionality. Most design bugs are eliminated at this point. This cuts down
design cycle time significantly because the probability of hitting a functional
bug at a later time in the gate-level netlist or physical layout is minimized.

• Designing with HDLs is analogous to computer programming. This also pro-
vides a concise representation of the design, compared to gate-level schemat-
ics. Gate-level schematics are almost incomprehensible for very complex
designs.

With rapidly increasing complexities of digital circuits and increasingly sophisti-
cated EDA tools, HDLs are now the dominant method for large digital designs.

The speed and complexity of digital circuits have increased rapidly. Designers have
responded by designing at higher levels of abstraction. Designers have to think
only in terms of functionality. EDA tools take care of the implementation details.
With designer assistance, EDA tools have become sophisticated enough to achieve
a close-to-optimum implementation.

23

Behavioral synthesis allowed engineers to design directly in terms of algorithms
and the behavior of the circuit, and then use EDA tools to do the translation
and optimization in each phase of the design. However, behavioral synthesis did
not gain widespread acceptance. Today, RTL design continues to be very popular.
Verilog HDL is also being constantly enhanced to meet the needs of new verification
methodologies.

New verification languages have also gained rapid acceptance. These languages
combine the parallelism and hardware constructs from HDLs with the object ori-
ented nature of C++. These languages also provide support for automatic stimulus
creation, checking, and coverage. However, these languages do not replace Verilog
HDL. They simply boost the productivity of the verification process. Verilog HDL
is still needed to describe the design.

For very high-speed and timing-critical circuits like microprocessors, the gate-level
netlist provided by logic synthesis tools is not optimal. In such cases, designers
often mix gate-level description directly into the RTL description to achieve opti-
mum results. This practice is opposite to the high-level design paradigm, yet it is
frequently used for high- speed designs because designers need to meet strict tim-
ing requirements out of circuits, and EDA tools sometimes prove to be insufficient
to achieve the desired results, even though these are always evolving.

2.8 Standard integration and reuse of processor,
system and peripheral cores

System-on-a-chip (SoC) and ASIC silicon densities now support system-level im-
plementations. The buses to link processors, memory, peripherals, and special
functions are necessary. On-chip multilevel bus systems have emerged to meet
these needs. One is the CoreConnect on-chip bus system from IBM Microelec-
tronics. Originally designed to support PowerPC cores for IBM ASICs, this bus
system now handles other processors and can be licensed for deployment.

CoreConnect is an on-chip silicon bus bundle for ASIC or FPGA designs. It con-
sists of a three-level system: the processor local bus (PLB), the on-chip peripheral
bus (OPB), and the device control register (DCR) bus. The first bus, the PLB,
connects the processor to high-performance peripherals, such as memory, DMA
controllers, and fast devices. Bridged to the PLB, the OPB supports the slower-

24

speed peripherals. The third bus, the DCR, is a separate control bus that links to
all of the devices, controllers, and bridges. It provides a separate path to set and
monitor the individual control registers.

2.8.1 Processor Local Bus

The PLB is the main on-chip system bus. It links the processor with on-chip
memory, memory controllers, and other high-speed peripherals, including DMA
controllers. It’s a synchronous, multimaster, arbitrated bus. For higher through-
put, it supports concurrent Reads and Writes, even for the same master. As a
result, each master has a single 32-bit address bus plus separate Read and Write
buses, which can be implemented as 32, 64, and 128 bits wide. The design even
allows 256-bit-wide data buses.

Also, the PLB supports pipelined addressing, enabling masters to re-quest bus
access while the current transaction(s) are executing. It implements four priority
levels of bus access. Plus, masters can lock the bus for atomic operations, keeping
out any other master until they have completed the locked transaction(s). Trans-
action address cycles have three phases; request, transfer, and acknowledge. Data
cycles have two phases; transfer and acknowledge. The acknowledge phase can oc-
cur in the trailing portion of the same clock for the transfer phase of a single-clock
data transfer.

The centerpiece of the PLB bus is the PLB macro, which includes the arbiter
and bus multiplexer switch. Each bus master connects its arbitration signals, bus
control signals, address bus, and Read and Write data buses to the arbiter, which
functions like a giant multiplexer. Concurrently, the PLB can support a Read and
a Write through its multiplexer. It only presents one master’s address bus at a
time, though, starting one transaction at a time. The arbiter supports up to 16
masters, with no logical restrictions on the number of slave devices.

The PLB implements an interesting variation of a split-transaction and a forward
split-transaction. The traditional split-transaction separates the master request
from the slave response. This is invaluable for making Reads effective, giving the
device time to get its data ready to transfer. In contrast, CoreConnect’s PLB
permits masters to make early requests to the slave before the bus is allocated to
them. This early warning enables the addressed device to set up before the bus is
allocated to the master’s request.

25

The PLB supports both fixed- and variable-length bursts. The fixed-length bursts
are defined by a 3-bit field in the transaction request. Variable-length transactions
are controlled by the master bus control signals.

Address pipelining also enables the bus to start a new transaction before the
current transaction completes. This means that a Read or a Write can be started
during a Write or a Read transaction in a master. The new transaction might be
for the existing master or another master.

For larger systems with multiple CoreConnect PLB buses, IBM has provided two
crossbar switches. These switch cores let designers link multiple on-chip PLBs
through a central clearinghouse switch.

2.8.2 On-Chip Peripheral Bus

Designed to support slower peripherals, the OPB is implemented as a straightfor-
ward multimaster, arbitrated bus. It’s a synchronous bus with a common clock,
but its devices can run with slower clocks, as long as all of the clocks’ rising edges
are in sync with the rising edge of the main clock. This bus uses a distributed
multiplexer implementation.

The OPB implements a 32-bit address bus and a separate 32-bit data bus. Trans-
action widths can be full-word, half-word, or byte-size. The bus supports 8-, 16-,
and 32-bit wide device interfaces (aligned on the left-most byte). Data transactions
can take a single cycle (for matched clocks), and burst operations are supported.

The bus masters compete for the bus via the arbiter. Each master connects directly
to the arbiter via its Mn_request (bus request), Mn_busLock (bus lock), and
OPB_MnGrant (bus grant) signals. A master may request to lock the bus, holding
it until the bus is released.

OPB consists of two multiplexer-based buses: the OPB address bus (OPB_ABus)
and the OPB data bus (OPB_Dbus). The address bus gates the selected master’s
address bus to the devices, and through "AND" and "OR" gating, the data bus
picks up the selected master’s data bus (Mn_Dbus) for a Write or the addressed
slave’s data bus (SIO_DBus) for a Read.

Each clocked data transfer includes a transfer-acknowledge signal from the slave
device indicating completion of the data transfer. If the slave device can’t complete

26

the data transfer or accept the transfer request, it can assert an error-acknowledge
signal, Sin_errAck ("Ored" to create OPB_errAck, the OPB error acknowledge).
The OPB supports built-in DMA peripheral controllers with a special DMA chan-
nel. The DMA channel arbitrates for control of the PLB like a master.

2.8.3 Device Control Register Bus

The DCR bus provides an alternative path to the system for setting the individual
device control registers. With it, the host CPU can set up the device-control-
register sets without loading down the main PLB. This bus has a single master,
the CPU interface, which can Read or Write to the individual device control reg-
isters. The bus employs a ring implementation to connect the CPU interface to
the devices, which are addressed via a 10-bit address bus. A separate 32-bit data
bus transfers register data. (On-chip silicon is cheap.)

This is a synchronous bus. The individual devices can run at a slower clock rate
than the bus clock, but the rising edge of the device clocks must correspond to
that of the faster DCR bus clock. The CPU, the master, connects to each slave
device with its address bus, data bus, and control signals (dcrWrite, dcrRead). The
output bus of the slave devices connects to the CPU interface via a multiplexer
"OR" function. The addressed device simultaneously signals receipt of a Read
transaction and the end of a Write transaction. Bursts aren’t supported by this
bus. Each transaction takes a minimum of three cycles (more with slower device
clocks).

2.9 Interrupts

An interrupt is a signal to the processor emitted by hardware or software indicating
an event that needs immediate attention. An interrupt alerts the processor to a
high-priority condition requiring the interruption of the current code the processor
is executing. The processor responds by suspending its current activities, saving its
state, and executing a function called an interrupt handler (or an interrupt service
routine, ISR) to deal with the event. This interruption is temporary, and, after
the interrupt handler finishes, the processor resumes normal activities.[1] There
are two types of interrupts: hardware interrupts and software interrupts.

27

Hardware interrupts are used by devices to communicate that they require atten-
tion from the operating system.[2] Internally, hardware interrupts are implemented
using electronic alerting signals that are sent to the processor from an external de-
vice, which is either a part of the computer itself, such as a disk controller, or an
external peripheral.

2.9.1 Edge-triggered interrupts

An edge-triggered interrupt is an interrupt signalled by a level transition on the
interrupt line, either a falling edge (high to low) or a rising edge (low to high). A
device, wishing to signal an interrupt, drives a pulse onto the line and then releases
the line to its inactive state. If the pulse is too short to be detected by polled I/O
then special hardware may be required to detect the edge.

2.10 Sequential flow in FPGA

Even though FPGAs are able to perform pure parallel tasks, contrary to multi-
threading in single core CPUs, where part of each tasks is executed one at a time,
assuming they are assigned the same priority. FPGAs are often called upon to
perform sequence and control-based actions such as implementing a simple com-
munication protocol. For a designer, the best way to address these actions and
sequences is by using a state machine. State machines are logical constructs that
transition among a finite number of states. A state machine will be in only one
state at a particular point in time. It will, however, move between states depending
upon a number of triggers.

Theoretically, state machines are divided into two basic classes (Moore and Mealy)
that differ only in how they generate the state machine outputs. In a Moore type,
the state machine outputs are a function of the present state only. A classic
example is a counter. In a Mealy state machine, the outputs are a function of the
present state and inputs.

28

2.11 Audio properties

Digital audio (including digitized speech and music) has significantly lower band-
width requirements than video. Digital audio, however, has its own unique proper-
ties that must be considered when designing multimedia network applications. To
understand these properties, let’s first consider how analog audio (which humans
and musical instruments generate) is converted to a digital signal:

• The analog audio signal is sampled at some fixed rate, for example, at 8,000
samples per second. The value of each sample is an arbitrary real number.

• Each of the samples is then rounded to one of a finite number of values. This
operation is referred to as quantization. The number of such finite values
- called quantization values - is typically a power of two, for example, 256
quantization values.

• Each of the quantization values is represented by a fixed number of bits. For
example, if there are 256 quantization values, then each value - and hence
each audio sample - is represented by one byte. The bit representations of all
the samples are then concatenated together to form the digital representation
of the signal. As an example, if an analog audio signal is sampled at 8,000
samples per second and each sample is quantized and represented by 8 bits,
then the resulting digital signal will have a rate of 64,000 bits per second. For
playback through audio speakers, the digital signal can then be converted
back - that is, decoded - to an analog signal. However, the decoded analog
signal is only an approximation of the original signal, and the sound quality
may be noticeably degraded (for example, high-frequency sounds may be
missing in the decoded signal). By increasing the sampling rate and the
number of quantization values, the decoded signal can better approximate
the original analog signal. Thus (as with video), there is a trade-off between
the quality of the decoded signal and the bit-rate and storage requirements
of the digital signal.

The basic encoding technique that we just described is called pulse code mod-
ulation (PCM). Speech encoding often uses PCM, with a sampling rate of 8,000
samples per second and 8 bits per sample, resulting in a rate of 64 kbps. The audio
compact disk (CD) also uses PCM, with a sampling rate of 44,100 samples per
second with 16 bits per sample; this gives a rate of 705.6 kbps for mono and 1.411
Mbps for stereo. PCM-encoded speech and music, however, are rarely used in the

29

Internet. Instead, as with video, compression techniques are used to reduce the bit
rates of the stream. Human speech can be compressed to less than 10 kbps and
still be intelligible. A popular compression technique for near CD-quality stereo
music is MPEG 1 layer 3, more commonly known as MP3. MP3 encoders can
compress to many different rates; 128 kbps is the most common encoding rate and
produces very little sound degradation. A related standard is Advanced Audio
Coding (AAC), which has been popularized by Apple. As with video, multiple
versions of a prerecorded audio stream can be created, each at a different bit rate.
Although audio bit rates are generally much less than those of video, users are
generally much more sensitive to audio glitches than video glitches. Consider, for
example, a video conference taking place over the Internet. If, from time to time,
the video signal is lost for a few seconds, the video conference can likely proceed
without too much user frustration. If, however, the audio signal is frequently lost,
the users may have to terminate the session.

A multimedia system in a vehicle must be able to read the different storage media
and their coding formats. In addition, the different transmission formats of digital
audio broadcasting and digital video broadcasting must be identified. Depending
on the equipment variant, high transmission rates may be generated, which must
be processed by the system. In contrast to the vast majority of other bus systems
coming from different application areas, this system has been designed for Mul-
timedia Data Transport throughout a system, as its name already indicates. In
contrast to home systems, the car requires a multi source / multi sink environ-
ment, where multiple audio and video sinks, amplifiers, headphones and multiple
displays are operated at the same time. There is a great variety of transmission
formats in the audio field. In addition to stereo reproduction, different surround
formats are relevant for the use in vehicles and are often employed in professional
systems. The following is a rough overview:

2.11.1 Stereo

The uncompressed signal has a data rate of 1.4 Mbit/s at a sampling rate of 44.1
kHz and a 16-bit resolution. The most widely used compression rate is 128 kBit/s
for MP3.

30

2.11.2 Analog Dolby Surround Pro Logic

This system consists of the channels front right, front center (center speaker for
voices), front left, and rear left, rear right as one channel. The surround channel
is applied to the two rear speakers and is time-delayed with regard to the front
channels and band-limited to 100 to 7,000 Hz. The center speaker positions the
voices to the center, which, in a car, makes localization rather independent of the
listening position.

2.11.3 Analog Dolby Surround Pro Logic II

The Dolby Surround Pro Logic II enhances the Pro Logic to a 5.1 system by incor-
porating two separate surround channels without band limitation, and a subwoofer
channel. 18.5 Audio and Video Transmission Formats 299

2.11.4 Dolby Digital, AC3

AC3 comprises five separate channels without band limitation and a separate sub-
woofer channel (Low Frequency Effect, LFE) limited to 120 Hz. At a sampling
frequency of 48 kHz and a 16-bit resolution, transmission rates of 384 to 448 kbit/s
accrue for the data which have a lossy compression ratio of 10:1. For two-channel
stereo, the data rate is reduced to 192 kBit/s. Whereas MPEG-2 is the DVD
standard in the video field, AC3 is the DVD standard in the audio field. MPEG-2
can only be used on a DVD as an additional audio coding format.

2.11.5 MPEG-2

MPEG-2 is a coding standard which can also be found on a DVD for audio signals,
in addition to AC3. The data rate for six channels is about 400 kbit/s. MPEG-2
AAC (Advanced Audio Coding) is an enhancement which manages with half the
data rate for the same quality as MPEG-2 and admits the coding of up to 48 audio
channels, 16 subwoofer channels and 16 commentary channel. MPEG-2 is used as
a standard in digital TV d(DVD satellite, DVD cable, DVD terrestrial). In Japan,
MPEG-2 has been used as the exclusive sound format for all digital broadcasting
systems since the beginning of the year 2000.

31

2.11.6 Digital Theatre System (DTS)

DTS is also a 5.1 system. Compared to AC3 it is distinguished by a better sound
quality and increased dynamics. DTS has considerably less data compression and
works with 1.536 Mbit/s for surround coding.

2.11.7 Logic 7

The 7.1 surround system developed by Lexicon controls the eight independent
channels either digitally or develops a corresponding control from a stereo signal
on the basis of a matrix decoding. It is thus possible to simulate the surround
impression and achieve a very good ambient sound reproduction. A 5.1 source
signal is enhanced to 7.1. Logic 7 is often used as professional system in vehicles.

32

Chapter 3

Hardware Platform

This chapter focuses on the description of the hardware platform that will sup-
port the development of the system, comprising FPGA technology, methods to
accelerate the design flow and how they fit into the process of the development of
this project. Moreover, considerations on the Physical and Logical Layers of the
communication protocol to be developed are also outlined.

3.1 FPGA Technology

Conventional approaches to implementing communication protocol devices have
disadvantages, such as, regarding their flexibility, scalability, performance, usabil-
ity and/or their cost/performance ratio. Thus it makes sense to look for alterna-
tives, such as the use of FPGA technology, which analysing the market demands,
is the most natural choice.

The FPGA is structured in logic elements which, on the one hand, can be used for
directly implementing specific functionality and, on the other hand, also support
the loading of individual IP Cores providing pre-engineered functionality. These
IP Cores can be "wired together" to provide the overall functionality of an FPGA.
For an FPGA, IP Cores are available from different sources, including FPGA
manufacturers and various service providers. Plus, they also can be developed
individually to meet specific needs.

33

3.2 Soft-core Processors

One type of IP Core provided by FPGA manufacturers is the processor IP Core.
It allows the execution of individual programs as in a standard processor. Modern
FPGA architectures in addition include an System-on-a-Chip (SoC) hard processor
system, providing the ultimate combination of hardened intellectual property (IP)
for performance and power savings with the flexibility of programmable logic.

A major advantage of this approach is that, based on these individually available
IP Cores, a specific set of hardware and software can be loaded into an FPGA to
deliver the desired functionality. Embedded processors and hardware acceleration
offer the flexibility, performance, and cost effectiveness in a development flow that
is familiar to software developers. A DSP designer can combine a software design
flow along with hardware acceleration. In this flow, the software developer first
profiles C code and identifies the functions that are the most performance-intensive.
These device features provide very high DSP capability in FPGAs compared to
standalone DSP processors. Using FPGAs, DSP designers can customize their
hardware for optimal implementation of their applications. All in all, the FPGA
offers an additional level of flexibility unknown in other electronic components.
For implementing a communication protocol oriented device, a hardware part (in-
terface with the network) as well as a software part (protocol stack) is required.

3.2.1 The Microblaze Processor

As a full-featured, FPGA optimized 32-bit Reduced Instruction Set Computer
(RISC) soft processor, Microblaze meet requirements for diverse applications such
as industrial, medical, automotive, consumer, and communication infrastructure
markets among others. MicroBlaze is a highly configurable and easy to use pro-
cessor and can be used across FPGAs and All Programmable (AP) SoC families.

MicroBlaze is highly configurable IP core supporting various configuration options.
With highly flexible and configurable core, there is the chance to implement vir-
tually any processor use case, from a very-small-footprint state machine or micro
controller to a high-performance, compute-intensive microprocessor-based system
running an operating system.

34

3.3 Hybrid CPU+FPGA platform

The FPGA technology provides a great flexibility on the integration of various
peripherals and promotes systems scalability through the reconfiguration of the
involved components, as well as the reutilization of Intellectual Property cores.
It also fosters portability, celerity in the prototyping process and modularity, due
to its technological agnosticism. The employment of FPGA technology for com-
putation offloading purposes, enables the fulfilment of both bandwidth and time
requirements.

With this understanding of the fundamental FPGA components, you can clearly
see the advantage of implementing your logic in hardware circuitry: you can re-
alize improvements in execution speed, reliability, and flexibility. However, you
face trade-offs using only an FPGA for the processing and I/O connectivity in
your system. FPGAs do not have the driver ecosystem and code/IP base that
microprocessor architectures and Operating Systems do. In addition, micropro-
cessors coupled with Operating Systems provide the foundation for file structures
and communication to peripherals used for many, often essential, tasks such as
logging data to disk.

Embedded processors and hardware acceleration, however, offer the flexibility, per-
formance, and cost effectiveness in a development flow that is familiar to software
developers. A DSP designer can combine a software design flow along with hard-
ware acceleration. In this flow, the software developer first profiles C code and
identifies the functions that are the most performance-intensive.

As a result, a hybrid architecture, sometimes called a heterogeneous architecture,
should be the most suitable approach for a optimized development of the proposed
system, granting at the same time, the compliance with its specification, specially
as far as performance, timing requirements and determinism are concerned.

35

36

Chapter 4

Communication Protocol Stack

The system is supposed to support a wide array of multimedia applications, which
means, not only should the system be able to meet the timing requirements im-
posed by, for example, audio properties but also it should provide effortless inte-
gration of different combinations of modules which altogether form a multimedia
system. Therefore, building a single generic multimedia device that would im-
plement all the features that can possibly be integrated in a vehicle, would be
non-sense from a scalability point of view, given the increasingly complexity that
would have to be dealt with. So, the optimal approach would be to go for a
distributed application system. In a distributed system, components located on
networked devices communicate and coordinate their actions by exchanging mes-
sages which contain commands to be processed. The components interact with
each other in order to achieve a common goal, as exemplified in the figure 4.1.

Figure 4.1: Example of network oriented for media applications

37

Besides meeting the previously stated timing requirements, as the system consists
of a network where nodes communicate with each other, it should also have mech-
anisms to coordinate the way communication is carried on and, as importantly,
the ability to properly configuring each device before it can initiate the exchange
of data with the other ones as well as dealing with failures in such a way that
all the devices but the ones that have failed, continue their normal operation. A
conclusion that can be drawn is that the system will result in the combination
of two components: the synchronous component, for time-sensitive data, such as
audio, to be consistently delivered on time to the designated destination; the asyn-
chronous component, which is reserved for the system’s administration and mode
of operation control purposes. Both of these components are going to be explored,
so as to build a proposal of a system that would be suitable for a wide range of
multimedia applications, many of which found in the automotive industry.

Provided that implementing the whole system in RTL is very demanding from a
development effort standpoint, comes the necessity to implement most of the parts
of the application in software and taking advantage of the abstraction layer and
services an operating system boasts. Then, for parts of the application that are
required to be offloaded from the CPU, for timing requirements ensuring purposes
or because FPGA technology’s additional flexibility as far as hardware customiza-
tion is concerned, makes the development of certain parts of the application easier
than by means of software. The right balance between ease of development and
meeting the system’s requirements requires the spot-on establishment of the border
between the parts of the application developed in RTL and in software.

38

4.1 Application Framework

Streaming
Service

Node Control
Unit

Network
Control Unit

Streaming
Session

Management
Unit

Asynchronous
Message

Exchange Service

Media Streaming
Control Service

Node
Synchronization

Service

Logical Layer

Physical Layer

Player/
Speaker
Objects ...

Media
Peripheral
Interface

Bypass

RX TX

Transmission Path

Figure 4.2: Network communication protocol - API for the developer

As a mean of reducing the effort required by the developer, a framework can for
example provide support for an application that consists of a microphone to be
connected to a speaker, by means of the developed communication protocol, as
stated in the figure 4.3.

4.1.1 Interface with the Developer

The following set of functions get the entire system running, being common to all
media oriented devices.

As seen in the diagram 4.4, the play() function causes the signal captured by the
source device to be reproduced by the sink device, whereas the stop() function
interrupts such process.

More specific Objects, to control specific media components are also part of the
framework, providing an abstraction layer the developer to control them. The
table 4.1 shows attributes that typically are concerned with an Audio Amplifier,

39

Speaker

Microphone

Main
Unit

Sink
Device

Source
Device

Prime
Node

Figure 4.3: Overview of a real case scenario

AudioAmplifier

SpeakerLevel: unsigned int

<set N get methods for attributes>

Balance: unsigned int

DynSoundControl: bool
MidTones: unsigned int
BassBoost: unsigned int
Subwoofer: unsigned int

Loudness: bool

Volume: unsigned int

Treble : unsigned int
Fader : unsigned int

Bass: unsigned int

CDPlayer

<set N get methods for attributes>

Next Track: unsigned int

Deck Status: unsigned int
Time Position: unsigned int
Track Position: unsigned int

Deck Event: unsigned int

Repeat Mode: bool

Audio Disk Info: string

Media Event: unsigned int
Shuffle Mode: bool

audioapp

playER:void
stopER:void

Figure 4.4: UML Class diagram concerning API for the developer

40

Table 4.1: List of attributes for Audio Amplifier Object

Atributes Type Description
Balance Unsigned Int Apply sound bias to left

or right speaker group
Loudness bool Boost low sound frequencies at

low volume
Bass Unsigned Int Adjust bass parameter
Treble Unsigned Int Adjust Treble Parameter
Fader Unsigned Int Apply sound bias to rear

or front speaker group
Volume Unsigned Int Volume level adjustment

Subwoofer Unsigned Int Adjust subwoofer level
BassBoost Unsigned Int Bass boost for headphones
MidTones Unsigned Int Adjust gain for middle frequency sound

DynSoundControl bool Enable speed dependent
volume adjustment

SpeakerLevel Unsigned Int Set sound level to each speaker

to which set and get methods are associated to each one, even though they have
been omitted in this documentation.

Similarly, the table 4.2 contains details about the list attributes for a Disk player
Object, which is also part of the API.

4.1.2 Interface with Transport Layer

As the system is powered on, it initialization is automatically processed by the
Network Control Unit and all the modules it depends on.

The diagram represented in the figure 4.5 shows how addresses are assigned to each
node. The Prime Node triggers the broadcast of a chain of messages, transmitted
from one node to another, following the methodology explained in the previous
subsection.

Having assigned the addresses to each node, messages can now be sent to a specific
node, as its address is now known. One of these is for getting to know what
functions each node has implemented, so that if such routines have to be remotely
called, the system automatically recognizes the address it has to send the command
to, therefore reducing effort required from the developer, with regards to developing
a distributed application. That process is represented in the sequence diagram in

41

Table 4.2: List of attributes for Disk Player Object

Atributes Type Description

Deck Status Unsigned Int Status of the drive
(Play/Pause/Stop/...)

Time Position Unsigned Int Overall time position of the disk
Track Position Unsigned Int Time past beginning of the track
Audio Disk Info string Name and length of the disk

Deck Event Unsigned Int Status monitoring of the drive
(normal, overtemperature, ...)

Media Event Unsigned Int Integrity of the data or reached
end of CD

Shuffle Mode bool Play tracks randomly
Repeat Mode bool Automatically play the disk again
Next Track Unsigned Int Index of the next track to play

Prime
Node

Regular
Node 1

Regular
Node 2

Regular
Node 3

necu.regdev()

necu.regdevret(2)

necu.regdevret(3)

necu.regdevret(4)

Figure 4.5: Workflow for assigning addresses to devices on the network

42

Table 4.3: Set of functions for interface with Transport Layer for node management

Class Members Description
set_prime_node Set node role as Prime Node
set_regular_node Set node role as Regular Node
set_selfaddress Set own address
app_loaded Assert that the application is loaded

and node is ready to enter the network

Table 4.4: Set of functions for interface with Transport Layer for network man-
agement

Class Members Description
regdev Register device in network, assingning an address
queryobj Ask for implemented Objects’ IDs in the nodes

the figure 4.6

Prime
Node

Regular
Node 1

Regular
Node 2

Regular
Node 3

necu.queryobj()

necu.queryobjret()

necu.queryobjret()

necu.queryobj()

necu.queryobjret()

necu.queryobjret()

necu.queryobj()

necu.queryobjret()

necu.queryobjret()

Figure 4.6: Querying implemented object in each Network Node

Following the diagrams 4.5 and 4.6, the tables 4.3 and 4.4 describe the set
of functions that compose the interface between the Application Framework and
Transport Layer, for node and network management purposes, respectively.

Calling the play() function opens a thread so as to proceed with the workflow that
is indicated in the 4.7 diagram. The Streaming Session Management Unit has the
duty of configuring the whole system, that is, all of the involved nodes, prior to
actually allowing the data to be exchanged between the source and sink devices.

The next diagram, in the figure 4.7, showcases how messages should be exchanged

43

in order for synchronous data to be transmitted between a source and sink device,
which requires prior channel allocation and the establishment of a connection,
after questioning how many channels are required for that connection and whether
they are available. This chain of messages is automatically exchanged once the
queryreqchan() method is called. In order to cancel the exchange of data between
two devices, the reverse process as of when it comes to establishing a synchronous
connection, comes into execution, as included in the same diagram.

Prime
Node

Regular
Node 1

Regular
Node 2

Regular
Node 3

ssmu.queryreqchan()

ssmu.queryreqchan()

ssmu.challoc()

ssmu.challoc()

ACK

ACK

ssmu.estcon()

ssmu.estcon()

ACK

ACK

De-establishing connection

ssmu.destcon()

ssmu.destcon()

ACK

ACK

ssmu.chdealloc()

ACK

ssmu.chdealloc()

ACK

Figure 4.7: Establishing and terminating streaming connections

Following the diagram 4.7, the tables 4.5 describe the set of functions that
compose the interface between the Application Framework and Transport Layer,
for synchronous connections (de-)establishment and management purposes.

In order to do the reverse process, which is interrupting the data exchanged be-
tween both source and sink devices, the stop() function requires again the Stream-
ing Session Management Unit to revert back the process that has been done with
the previously stated play() function.

4.1.3 Interface with Media Oriented Components

As stated before, components like an Audio Amplifier or CD Player do not only
require a datapath through which time-sensitive data is exchanged, but also require

44

Table 4.5: Set of functions for interface with Transport Layer for synchronous
connections management

Class Members Description
queryreqchan(int):void Ask how many channels are

required to be allocated
challoc(int):void Allocate required channels

on source/sink device
estcon(int):void Establish connection between

sink and source device
addcon():void Add entry to Active

Connections table
chdealloc(int):void Deallocate required

channels on source/sink device
destcon(int):void De-establish connection between

sink and source device
rmcon():void Remove entry from Active

Connections table

a mean of exchanging information concerning their status or configuration.

With the current system architecture, the Object which is part of the framework
can easily communicate with the corresponding peripheral, bz means of the in-
stantiation of a IP core that implements a standard communication protocol, as is
the case of SPI or I2C. Such IP Core would implement a controller compliant with
the communication protocol to be used, which would then communicate with the
media peripherals by means of the designated transmission path. The figure 4.8
shows an example of such scenario, where a I2C Master Controller is attached to
the Processor Local Bus, which enables the Object embedded in the application
layer, running in the CPU, to communicate with an external media peripheral, so
as to control it.

4.2 Transport Layer

The Transport Layer provides an API for the Application Framework, being com-
posed by the following modules:

• Streaming Session Management Unit, that takes care of all the necessary
procedures concerning seting up the exchange of time-sensitive data.

• Node Control Unit, that is entitled towards controlling the mode of operation

45

CPU

Processor Local Bus

I2C Master
Controller

I2C Slave
Controller

Audio Amplifier
sub-system

Figure 4.8: Example of interface between Object and corresponding peripheral

of the node and handling its own errors.

• Network Control Unit, that is responsible for managing the system as a whole
and dealing with faults that may eventually occur

4.2.1 Streaming Session Management Unit

Before the streaming of data is possible, several steps have to be carried out in or-
der to prepare the system to do so. Such preparation involves the configuration of
the system, the sink(s) and source(s), a routine that can be automated by adding
this feature in the framework this project is about, therefore minimizing the effort
required by the developer as far as designing and implementing an application is
concerned. The first system’s preparation step in order to establish a synchronous
connection is to query the node which will act as a source, with regards to how
many synchronous channels are required to be allocated. After the Streaming Ses-
sion Management Unit is sent back the corresponding answer, there is the need
to check whether the number of required channels are free and can thus be allo-
cated in a further stage in this process. If the aforementioned condition is valid,
the Streaming Session Management Unit then proceeds to triggering the required
routines to allocate the channels in the source and sink devices, by this order,
being the last step the validation of the synchronous connection before data can
be exchange between the sources(s) and sink(s). This stage involves the update of
a table containing information about all the active synchronous connections, the

46

Streaming
Service

Node Control
Unit

Network
Control Unit

Streaming
Session

Management
Unit

Asynchronous
Message

Exchange Service

Media Streaming
Control Service

Node
Synchronization

Service

Logical Layer

Physical Layer

Player/
Speaker
Objects ...

Media
Peripheral
Interface

Bypass

RX TX

Transmission Path

Figure 4.9: Transport Layer entities

47

NCU

update_tableRA:void

objtable:vector<ObjectsList>

clear_tableRA:void
lookup_tableRA:void

<<typedef>>
ObjectsList

devaddress:int
objs:vector<int>

app_loadedRval:boolA:void
set_prime_nodeRA:void

set_self_addressRad:intA:void
set_regular_nodeRA:void

NeCU

shutdownRA:void
shutdown_ackRA:void
regdevRA:void
regdevretRobjs:Xuint32A:void
queryobjretRA:void

NeCU_Prime

queryobjRA:void

NeCU_Regular

queryobjRA:void

ssmu

addconnRA:void
remconnRA:void
clearconlistRA:void
challocRA:void
challocackRA:void
chdeallocRA:void
chdeallocackRA:void
estconnRA:void
estconackRA:void
destconRA:void
destconackRA:void

ssmu_prime

queryreqchanRA:

ssmu_regular

queryreqchanRA:

ConList: vector<ConnectionList>
AllocatedChannels: int

<<typedef>>
ConnectionList

id: int
sinkaddress: int

sourceaddress: int

Figure 4.10: UML Class Diagram for Transport Layer

48

involved source and sink device(s) and which channels are allocated, so as to keep
track of the bandwidth usage, information which is consulted when establishing a
new connection, just as mentioned above. When it comes to closing a synchronous
connection, the corresponding routines must be held in first place at the sink de-
vice(s) and only then on the source devices, so as to avoid the reproduction of
random data (noise) that could be present if the source device was disconnected
in first place. Finally, the table containing information about all the active syn-
chronous connections is updated, by removing the associated connection, which
translates into freeing the previously used bandwidth so that it can be available
again to other synchronous connections eventually bound to be established.

The Streaming Session Management Unit is responsible for Building and removing
synchronous connections.

Before introducing more details on the implementation of this part of the software
application, the figure 4.11 shows the system’s classes, their attributes, operations
(or methods), and the relationships among objects.

ssmu

addconn():void
remconn():void
clearconlist():void
challoc():void
challocack():void
chdealloc():void
chdeallocack():void
estconn():void
estconack():void
destcon():void
destconack():void

ssmu_prime

queryreqchan():

ssmu_regular

queryreqchan():

ConList: vector<ConnectionList>
AllocatedChannels: int

<<typedef>>
ConnectionList

id: int
sinkaddress: int
sourceaddress: int

Figure 4.11: Streaming Session Management Unit Software Architecture

Besides the need to have a list of the currently active connections and how much
and what channels each one are allocated to, methods to establish and de-establish
synchronous connections are required. The body of the queryreqchan() function
is implemented differently in the Prime Node and Regular Node, as in the Prime
Node it is oriented to querying a source device how many channels are required

49

and all the regular node needs to do is replying to such question.

4.2.2 Node Control Unit

The Node Control Unit is responsible for storing the essential data resulting from
the network initialization, that will then be used when messages have to be ex-
changed between the nodes in runtime. The use case diagram presented in the
in the figure 4.12 represents a list of action or event steps, typically defining the
interactions between a role (known in the Unified Modelling Language as an actor)
and a system, to achieve a goal.

Node
Control

Unit

State device address

Enable/Disable data bypass

Figure 4.12: Node Control Unit controlling the node’s mode of operation

Before introducing more details on the implementation of this part of the software
application, the figure 4.13 shows the system’s classes, their attributes, operations
(or methods), and the relationships among objects. The Node Control Unit in-
cludes a table that contains data relative to the address of the registered nodes in
the network and the object implemented in each one. Methods to manipulate the
data in that table are made available, being them the functions update_table()
clear_table() and lookup_table().

Nodes leaving or entering the network after normal system operation has been
established can cause disturbances which may affect the Quality of Service. With
regards to leaving a network, this may not be controllable, as nodes can crash
without prior notice, due to several reasons. However, as for entering the network,
there is the possibility to implement a workflow that all nodes would need to follow.

50

NCU

update_table():void

objtable:vector<ObjectsList>

clear_table():void
lookup_table():void

<<typedef>>
ObjectsList

devaddress:int
objs:vector<int>

app_loaded(val:bool):void
set_prime_node():void

set_self_address(ad:int):void
set_regular_node():void

Figure 4.13: UML class diagram of the Node Control Unit Object

In an effort to minimize disturbances when the system is on duty, network nodes
should not be allowed to enter the network during this phase. Instead, the act
of joining the network should only take place when the system is in configuration
mode, provided that there are no active synchronous connection during this stage,
as can be seen in the figure 4.14. When devices are notified that the system has
entered in configuration mode, their bypass mechanism can be disabled, causing
datagrams to be received and parsed prior to passing them on the the next network
node, rather than solely mirroring the data received in the RX port to the TX port.

S0

Bypass Closed

S1

Bypass Open

SCM && APPLD

Watchdog Timeout

1

Acronyms:
APPLD: Application Loaded
SCM: System Configuration Mode

Figure 4.14: Controlling the state of the bypass mechanism

4.2.3 Network Control Unit

The Network Control Unit plays a role in the System Initialization and Fault
detection and handling. The use case diagram in the figure 4.15 represents a list

51

of action or event steps, typically defining the interactions between a role (known
in the Unified Modelling Language as an actor) and a system, to achieve a goal.

Network
Control

Unit

Assign device addresses

Query supported
Object IDs

(Re)start network

Shutdown the system

Figure 4.15: Network Control Unit effects on the Network Nodes and the System’s
Network

When the system is powered on, a series of steps have to be followed until it is
ready to perform the designated tasks. Firstly, empty frames are emitted by the
Primary Node, which after coming back from the network, validate the integrity
of the transmission path as well as the transceivers embedded in each Network
Interface Controller. Then, addresses are assigned by the Primary Node to all of
the active Secondary Nodes, so that communication between them is possible in
further stages of execution of the system.

Then, the Primary Node sends a message using a broadcast address, so that all
nodes receive it. Contained in that message is the command to call a function
which stores the new network address in a node’s register, according to the value
passed as an argument of such command, by the previous node in the network.

52

After that, such argument is incremented by one, so that the next node receives
as an argument of the aforementioned command, the value of the new address so
that it can carry out the same process of registration, explained previously. After
the message has gone through all the nodes and returns to the Primary Node,
the value passed as an argument which was used to register the other node in the
network, can now be regarded as an indication of how many nodes are registered
in the network, as each of those which got connected, have incremented the field
of the message corresponding to the next free network address by one.

Finally, the Network Control Unit is responsible for gathering the required infor-
mation regarding which Distributed Objects are implemented in each device and
deliver it to the Node Control Unit.

The figure 4.16 shows the system’s classes, their attributes, operations (or meth-
ods), and the relationships among objects. Depending on whether the Node has

NeCU

shutdown():void
shutdown_ack():void
regdev():void
regdevret(objs:Xuint32):void
queryobjret():void

NeCU_Prime

queryobj():void

NeCU_Regular

queryobj():void

Figure 4.16: Network Control Unit Software Architecture

the role of Prime Node or a Regular Node associated, the body of the function
queryobj() is different, as the Prime Node must register itself and disclose details
about the objects implemented in it, before proceeding to the registration and
querying the remaining nodes about the same details.

53

Due to several factors, nodes can suffer glitches or a major fault that prevents
them to function properly. Unless potential issues are predicted and the necessary
solutions are found during the process of development of the node, side effects can
affect the entire network on the event of the failure of one node. To name a few
examples, it can be the messages being held by a malfunctioning node, rendering
the following devices to be unable to receive them, or the continuous corruption
of the data to be spread through the entire network or even the successive trans-
mission of random messages that may happen to change the configuration of any
device in the network. These scenarios can easily affect the system’s integrity and
result in consequences way beyond a simply bad Quality of Service. Thus, when
a node shows signs of abnormal operation, it must leave the network. Internally,
mechanism have to be implemented in order to trigger such action, being a watch-
dog timer one possible solution to deal with this. If the watchdog timer is not
reset within a certain period, it will assume that the system is not responding
and will then reset it. Resetting the device will cause a digital bypass mechanism,
implemented in RTL, to be activated, so that messages continue to travel around
the network, without being read or manipulated by the device in question. The
device continues in this disabled mode of operation until and only if it is ready
to get back to normal operation and also solely up until the whole network en-
ters in configuration mode, when devices are (re-)registered in the network with
an unique address. When this event occurs, the bypass mechanism is disabled so
that communications be resumed by the affected node(s). The network control
units continuously monitors the status of the system, thus being able to detect
unresponsive nodes. The lack of response by the nodes can be due to a defective
transmission line, which causes the data frame not to complete its travel around
the network and consequently resulting in triggering a timeout event, to signalize
the anomaly. Another factor can be a problem within a node which caused it
to shutdown or reset, which makes it unable to return to the network until the
system is in Configuration Mode. Therefore, no acknowledgements will be sent
back to the source node, if required. When that occurs, the sender node will retry
the transmission of the same message until it reaches the limit of retries, which is
the indicator of an unresponsive node. Having detected the fault, the system will
restart, going through the same procedures as when it is powered on. This way,
nodes that crashed due to a glitch may re-enter the network and nodes which are
defective will be kept out of the network (because they are unable to receive any
messages), thus preventing the occurrence of side-effects that can compromise the
system’s integrity.

54

Table 4.6: Framework available for Transport Layer entities

Class members Description
gettarad():Xuint32 Get target address value
getsrcad():Xuint32 Get source address value
getfblockid():Xuint32 Get Object ID value
getinstid():Xuint32 Get Instance ID value
getfktid():Xuint32 Get Action ID value
getoptype():Xuint32 Get Action Type
getctdata():Xuint32 Get message parameters
settarad():void Set target address value
setsrcad():voidXuint32 Set source address value
setfblockid():void Set Object ID value
setinstid():void Set Instance ID value
setfktid():void Set Action ID value
setoptype():void Set Action Type
setctdata():void Set message parameters
pushfr():void Queue message to send

4.2.4 Interface with Network Layer

Both Network Control Unit and Streaming Session Management Unit require the
Application Message Exchange Service in order to communicate with the remaining
network nodes, so that the system can be initialized and so that communication
is possible with other node in order to configure them prior to establishing a
synchronous connection, respectively. The table 4.6 explains which functions of
the Application Message Exchange Service, situated in the underlying layer are
available to the Transport Layer entitites.

The Streaming Session Management Unit also requires the Media Streaming Con-
trol Service (explained later in this document), so that the involved sources and
sinks can be internally configured, based on the instructions sent by the Prime
Node, in terms of channel allocation, type of operation (read/write) and en-
abling/disabling them. For that, the set of functions represented in the table
4.7 act as an interface between the Transport and Network level, with regards to
this subject.

55

Table 4.7: Interface between Transport and Network Layers, for channel allocation,
state and read/write operations

Atributes Description
alloc_channels(mask:Xuint32):void Apply channel allocation mask
en_channels(mask:Xuint32):void Apply channel enable/disable mask
rw_channels(mask:Xuint32):void Apply channel R/W operation mask

Table 4.8: Registers for interaction with the IP Core

Register Address Register Index Description

3

3:0 Address of the node itself
4 Node acting as Prime

or Regular Node
5 Application is loaded

(node can enter the network)
6 Network is in configuration mode
7 Flag to shutdown the system

4.2.5 Interface with IP Core

The Node Control Unit interacts with the IP Core, so as to set its address based
on the initial setup of the network and to control when the device should enter
the network, shutdown or so as to notify the Prime Node that the network should
change its mode of operation in configuration mode, whether any node detects
there has been a network node that stopped responding or problems in the trans-
mission path disable the communication between all nodes, as summed up in the
table 4.8.

4.3 Network Layer

The Network layer provides an abstraction layer for the implementation of the
Transport Layer, in the following aspects:

• The exchange of messages with the Network, via its underlying layers, and
handling of ACKs which is carried by the Application Message Exchange
Service

• The control of the mode of operation of the time-sensitive routing datapath,
done by the Media Streaming Control Service

56

• The periodic transmission of datagrams, carried out by the Node Synchro-
nization Service, running in the Prime Node

Streaming
Service

Node Control
Unit

Network
Control Unit

Streaming
Session

Management
Unit

Asynchronous
Message

Exchange Service

Media Streaming
Control Service

Node
Synchronization

Service

Logical Layer

Physical Layer

Player/
Speaker
Objects ...

Media
Peripheral
Interface

Bypass

RX TX

Transmission Path

Figure 4.17: Network Layer entities

4.3.1 Application Message Exchange Service

In order to avoid unnecessary network congestion when trying to deliver a message
to a busy node, which is for example, executing a command, additional mechanism
are required to be implemented. The idea is that the target node captures the as
soon as it is available to be processed, that is, after it has entirely been received
and and validated by the integrity check algorithm. To do so, there is the need to
associate the "ready to process the message" flag to an interrupt, which will cause
the CPU to suspend the current code execution in order to perform the Interrupt
Service Routine. Such routine stores the message, to be processed when possible.
Situations in which bursts of messages are directed towards a device, should also
be considered, in case processing a command contained in a message takes longer

57

ams

sq: queue<cqueue>

ams()
~ams()

setmyad(ad:Xuint32):void
getmyad():Xuint32
setctdata():void
setctdata():void

setinstid():void

setoptype():void

parse():void
gen():void

setsrcad():voidXuint32

pass():void

getfblockid():Xuint32

setfktid():void

setfblockid():void

settarad():void

nack_msg():void
checkpendmsg():void

getoptype():Xuint32
getctdata():Xuint32

getfktid():Xuint32
getinstid():Xuint32

getsrcad():Xuint32
gettarad():Xuint32

dispatch():void

pushfr():void

tr: cqueue
ts: cqueue
rq: queue<cqueue>

<<typedef>>
cqueue

tarad:Xuint32
srcad:Xuint32

myad:Xuint32

fblockid:Xuint32
instid:Xuint32
fktid:Xuint32
optype:Xuint32
ctdata:Xuint32

mscs

alloc_channels(mask:Xuint32):void
en_channels(mask:Xuint32):void
rw_channels(mask:Xuint32):void

Figure 4.18: UML Class Diagram for Network Layer

than the period of arrival of new messages. Thus, it is required to implement a
FIFO which acts as a storage facility for incoming messages, until the processor
executes them, one at a time. Once one command is processed, it is removed from
the top of the queue, so that the next command, if it exists, is also executed. When
it comes to sending messages, each node only has a well-defined window of time in
order to send a message, also one at a time. In an effort to ease the development
of the objects that compose the Application Layer, so that the developer does not
have to worry about the having to wait for the window of time to send one message
after another, a FIFO for outbound message is also embedded in the Asynchronous
Message Exchange Service, which acts as a temporary storage compartments for
messages to be transmitted. When there is a free slot in the designated field of the
data frame, it is filled by the message on the top of the queue. Contrarily to the
FIFO for incoming messages, this one requires certain conditions with regards to
popping a message from the front of the queue, after it has been sent out to the
network. That will be explored in the next subsection. The figure 4.19 shows the
storage of inbound messages in a queue, for further processing and the deployment
of outbound messages to the datagram, to then be sent out to the network.

58

Network Node

Asynchronous Message Exchange Service

Physical Layer

BypassRX TX

Transmission Path

System Management
Frame Segment

1 2

Queued messages for processing

RX Queue

Queued messages to transmit

TX Queue

...

...

...

Figure 4.19: Queuing mechanism for inbound and outbound messages

59

The Asynchronous Message Exchange Service is responsible for dealing with Trans-
mission Acknowledgement and also features the tasks concerning Message Queuing.
The use case diagram included in the figure 4.20 represents a list of action or event
steps, typically defining the interactions between a role and a system, to achieve
a goal.

Application
Message
Service

Write data to the frame

Read data from the frame

Figure 4.20: Effects of the Application Message Exchange Service in the Logical
Layer

Before introducing more details on the implementation of this part of the software
application, the figure 4.21 shows the system’s classes, their attributes, operations
(or methods), and the relationships among objects. The AMS class is comprised
by the set and get methods responsible for storing the information received from
the network, to be processed in a further stage, as well as the data to be sent
out to the network when the opportunity arises, which can either be generated
spontaneously by the application or be regarded as a response to a previously
received message. The exchange of data with the network is done by the parse
and gen function, which will be detailed later in this section.

The gen function verifies whether there are pending messages to be sent by the
application to the network. If so, it proceeds to writing such information into the
hardware implemented registers, which will then be forwarded to the network as
soon as there is a free spot for them in the data frame. After that there is an
indication that such frame has been sent out to the network with success or that it
has been received by the addressee node, who returned an acknowledgement, that
message is popped from the TX FIFO. Following that, if there is another pending
message to be the hardware implemented registers are updated with the new data,

60

ams

sq: queue<cqueue>

ams()
~ams()

setmyad(ad:Xuint32):void
getmyad():Xuint32
setctdata():void
setctdata():void

setinstid():void

setoptype():void

parse():void
gen():void

setsrcad():voidXuint32

pass():void

getfblockid():Xuint32

setfktid():void

setfblockid():void

settarad():void

nack_msg():void
checkpendmsg():void

getoptype():Xuint32
getctdata():Xuint32

getfktid():Xuint32
getinstid():Xuint32

getsrcad():Xuint32
gettarad():Xuint32

dispatch():void

pushfr():void

tr: cqueue
ts: cqueue
rq: queue<cqueue>

<<typedef>>
cqueue

tarad:Xuint32
srcad:Xuint32

myad:Xuint32

fblockid:Xuint32
instid:Xuint32
fktid:Xuint32
optype:Xuint32
ctdata:Xuint32

Figure 4.21: Application Message Exchange Service Software Architecture

61

otherwise the value of 0 to all fields is assigned. The figure 4.22 illustrates the
workflow in order to write data from the CPU to the datagram by means of the
PLB. All fields of the datagram are filled prior to the order to proceed with eh
transmission of the data to be issued

sq.empty()

No

regs[0] = (this->sq.front().srcad & 0X0F00000);
regs[0] |= (this->sq.front().tarad & 0xF0000000);
regs[0] |= (this->sq.front().instid & 0x00F00000);

regs[0] |= (this->sq.front().fblockid & 0x000FF000);
regs[0] |= (this->sq.front().fktid & 0x00000FF0);

regs[0] |= (this->sq.front().optype & 0x0000000F);
regs[1] = this->sq.front().ctdata;

RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR, RTPLB_SLV_REG6_OFFSET,
regs[0]);

RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR, RTPLB_SLV_REG7_OFFSET,
regs[1]);

this->pass();

RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR,
RTPLB_SLV_REG6_OFFSET, 0);

RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR,
RTPLB_SLV_REG7_OFFSET, 0);

this->pass();

Yes

Figure 4.22: Writing operation in datagram, via PLB registers

As per the figure 4.23, the parse function is part of an interrupt handler, executed
as soon as a new message directed towards the node in question arrives. Such
information is stored in the RX FIFO to then be processed by the corresponding
application part. It also checks whether the received message is an acknowledge-
ment to a previously sent message. If so, this means that message has successfully
arrived at the destination, so it does no longer need to be re-sent. In that case, such
message is deleted from the TX FIFO. Then, the previously stated gen function
is called, so that the message exchange workflow is carried out.

Accordingly to the figure 4.24, the dispatch function checks whether there are
messages (that contain commands) stored in the RX FIFO. In case this condition
is valid, the member of an object specified in the message needs to be executed.
In order to achieve that, a callback function associated to this particular object is
called by means of a function pointer array, being the index of the array, that is,
the actual pointer of the callback function to be called specified in the Object field
of the received message. Having entered in that function, a the same procedure
is used as for calling the specified method of the aforementioned object. Having
completed the execution of that command, the RX FIFO is updated, by popping
the message in the head of the queue, so that the next message awaiting to be

62

regs[0] = RTPLB_mReadReg(XPAR_RTPLB_0_BASEADDR,
RTPLB_SLV_REG6_OFFSET);

regs[1] = RTPLB_mReadReg(XPAR_RTPLB_0_BASEADDR,
RTPLB_SLV_REG7_OFFSET);

tr.tarad = (regs[0] & 0xF0000000);
tr.srcad = (regs[0] & 0X0F00000);

tr.instid = (regs[0] & 0x00F00000);
tr.fblockid = (regs[0] & 0x000FF000);

tr.fktid = (regs[0] & 0x00000FF0);
tr.optype = (regs[0] & 0x0000000F);

tr.ctdata = regs[1];

pthread_mutex_lock (mutex_r);
this->rq.push(tr);

rq.front().fblockid == sq.front().fblockid) &
((rq.front().fktid - rq.front().optype) == sq.front().fktid)

sq.empty()

Yes

sq.pop();

No

this->gen();
pthread_mutex_unlock (mutex_r);

No

Figure 4.23: Reading inbound data, via PLB

63

executed (if it exists), is also processed.

rq.empty()

No

pthread_mutex_lock (mutex_r);
rq.pop();

pthread_mutex_unlock (mutex_r);

callfb[rq.front().fblockid]();

Yes

Figure 4.24: Executing commands based on received control data

The advantage of employing the combination of callback functions and its pointers,
over the usage of a switch case condition, is that for a large number of available
objects and methods to be called, the time spent to call an object and then a
method via the implemented solution is the same, no matter the index of the
object and method to be executed. With the switch case methodology, the system
would be required to successively check, one by one, the ID of the object and
method to be called, until it matched the ID included in the message. This could

64

take a variable amount of time (which would be not less than the combined callback
function and function pointer methodology), depending on their ID. If it was 0, it
would take only one iteration to get to the desired object and another one to call
the method. However, if the ID was n, it would take 2n iterations for the desired
method of an object to be called. The longer time to get commands to begin its
execution would be superior which, as a consequence, could get the RX FIFO to
reach its maximum capacity, in case long bursts of messages were to be sent to a
node and the number of received message within a time frame would outperform
the capacity for the node to process them. The switch case based solution would
also induce indeterminism in this part of the system, although the execution time
of this part of the system does not affect the timings at which messages are received
and sent out to the network, as a result of the overall well-designed system.

As far as transmission acknowledgement is concerned, two events require the re-
transmission of a segment. First, a segment may be damaged in transit but nev-
ertheless arrive at its destination. If a checksum is included with the segment,
the receiving transport entity can detect the error and discard the segment. The
second contingency is that a segment fails to arrive. In either case, the sending
transport entity does not know that the segment transmission was unsuccessful.
To cover this contingency, a positive acknowledgement scheme is used. In our case,
messages may not require an acknowledgement, and thus the message is removed
from the outbound message FIFO as soon as the flag that signals the frame has
successfully been sent out to the network. Additionally, in case a message requires
an acknowledgement, two types are available: a simple acknowledgement and one
coupled with a return value, which can be regarded as a parameter containing
relevant information to the execution of a chain of commands that depend on the
return value of the previously executed action. In order to distinguish between the
three aforementioned possibilities, a field in the frame is reserved to accommodate
the following values:

• 0, for messages which require no acknowledgement to be sent back

• 1, for messages which require a simple acknowledgement to be sent back

• 2, for messages which require an acknowledgement and a return value to be
sent back to the sending transport entity

If a segment does not arrive successfully, no acknowledgement will be issued and
a retransmission is in order. To cope with this situation, there must be a timer

65

associated with each segment as it is sent. If the timer expires before the segment
is acknowledged, the sender must retransmit. So the addition of a timer solves that
problem. Next problem: At what value should the timer be set? Two strategies
suggest themselves. A fixed timer value could be used, based on an understanding
of the network’s typical behaviour. This suffers from an inability to respond to
changing network conditions. If the value is too small, there will be many un-
necessary retransmissions, wasting network capacity. If the value is too large, the
protocol will be sluggish in responding to a lost segment. The timer should be
set at a value a bit longer than the round trip time (send segment, receive ACK).
Of course, this delay is variable even under constant network load. Worse, the
statistics of the delay will vary with changing network conditions. An adaptive
scheme has its own problems. Suppose that the transport entity keeps track of
the time taken to acknowledge data segments and sets its retransmission timer
based on the average of the observed delays.This value cannot be trusted for three
reasons:

• The peer transport entity may not acknowledge a segment immediately. Re-
call that we gave it the privilege of cumulative acknowledgements.

• If a segment has been retransmitted, the sender cannot know whether the
received acknowledgement is a response to the initial transmission or the
retransmission.

• Network conditions may change suddenly.

Each of these problems is a cause for some further tweaking of the transport
algorithm, but the problem admits of no complete solution. There will always be
some uncertainty concerning the best value for the retransmission timer.

4.3.2 Media Streaming Control Service

The Media Streaming Control Service acts as an intermediary between the hard-
ware implemented part and the software application, being in charge of the Data
routing, according to the instructions issued by the Streaming Session Manage-
ment Unit. The use case diagram found in the figure 4.25 represents a list of
action or event steps, typically defining the interactions between a role and a
system, to achieve a goal. This service performs enabling/disabling and alloca-
tion/deallocation of channels, that is, segments of the data frame which belong

66

Media
Streaming

Control
Service

Allocate bandwidth
for streaming connections

Deallocate bandwidth used
by streaming bandwidths

(Un)mute streaming
connections

Figure 4.25: Media Streaming Control Service interaction with Logical Layer

to the synchronous component of the system, by providing an abstraction layer
in write operations to registers via the Processor Local Bus. The actual datapath
through which synchronous data flows, has its mode of operation controlled by the
values written to these registers, according to the desired effect.

Depending on the usage of channels by other sink-source sets at a particular mo-
ment, data exchange by a particular set of sink-source devices can take place using,
for example, the channel 0 at one time, and the channel 1 or 2 or 3 (...) or n (where
n is the maximum number of channels supported by the system) at another time.
This means the node must be able to internally pick up any of the channel(s) and
perform a write or read operation on the corresponding one(s) (depending whether
it is a source or sink device, respectively). To do so, the datapath of the node must
have a configurable routing mechanism, to enable the aforementioned operations
to be carried out.

Streaming connections are established between the devices as needed and usually
stay active as required. Nevertheless, there are perturbations that might lead
to disturbances in the network and to unwanted audible or visible effects. The
built-in intelligent muting of the node allows to automatically mute sink socket
connections to prevent the application from receiving corrupted streaming data.
Intelligent muting is triggered when the system enters in Configuration Mode.

67

Channel 1
(16 bits)

Channel 2
(16 bits)

Channel 3
(16 bits)

Channel 4
(16 bits)

Channel 5
(16 bits)

Channel 6
(16 bits)

Channel 7
(16 bits)

Channel 8
(16 bits)

Media Streaming
Frame Segment

System Management
Frame Segment

Preamble

Channel
Select

Channel
Enable

Channel R/W

16-bit Media Peripheral Register

EN
B

EN
B

Figure 4.26: Dynamic selection of channels for read/write operations

This is due to the detection of a malfunctioning device that left the network and
thus does not respond to messages directed towards it or due to a defective part
in the transmission path that prevents the data frame from travelling for one end
to the other of the network and back to the origin.

4.3.3 Node Synchronization Service

The Node Synchronization Service integrates the essential functionalities to ensure
the Periodic time-sensitive data exchange, as required by the system’s synchronous
component. The use case diagram illustrated in the figure 4.27 represents a list
of action or event steps, typically defining the interactions between a role and a
system, to achieve a goal.

The Node Synchronization consists essentially on a timer, that runs on the Prime
Node only and triggers the transmission of data to the network in a well-defined
period, which in our case is imposed by the timing requirements of the synchronous
component of the system. Provided that the recommended sampling frequency of
an audio signal is of 48 kHz, the period at which the data frame has to start its cycle
around the network is of 20.8 micro seconds. The CPU application is in charge

68

Node
Synchronization

Service

Trigger transmission
of data to the network

Figure 4.27: Node Synchronization Service for ensuring periodic data transfer in
the network

of enabling or disabling Node Synchronization Service on-the-fly, depending on
whether the node takes the role of a Prime Node or a Regular Node, respectively.

As this is a point to multi-point data flow system (i.e., the streaming data has
a source and any desired number of sinks), all devices share a common system
clock pulse derived from the data stream. They are thus in phase with each
other and can transmit all data synchronously, which makes any mechanisms for
signal buffering and signal processing redundant. The system clock is generated
by the embedded Node Synchronization Service, which is integrated in one of the
nodes (the Primary Node). In a vehicle, it is usually located in the head unit
of the infotainment system. All other nodes are synchronized onto this system
clock pulse by means by means of the detection of the preamble. As soon as
the sequence of bits 1010 is detected (that is, the preamble), the secondary node
configures itself in order to capture the next bit of the data frame at its next clock
transition, positive or negative edge, depending on whether when the preamble
was detected, the node’s main clock level was high or low.

When the Primary Node receives the frame again when it has travelled around the
ring, it reclaims the signals by the same method and subsequently generates the
next frame.

69

Table 4.9: My caption

Register Address Register Index Description
4 31:0 Network-to-application data
5 31:0 Network-to-application data
6 31:0 Application-to-network data
7 31:0 Application-to-network data
8 0 Send data to the network

4.3.4 Interface with IP Core

Prior to triggering the chain of periodically sent data frame across the network,
the Node Control Unit must assert that the current node acts as a Prime Node
and that the Application has started and is ready to exchange messages. Having
ensured these conditions, the Node Synchronization Service periodically send a
pulse via the "Send Frame" net, therefore releasing the datagram to the network,
as detailed in the block diagram 4.28.

Node
Synchronization

Service
Node Control Unit Logical LayerPrime Node Send Frame

App Loaded

Figure 4.28: Network communication protocol - Logical Layer

The interface between the SW part of the Application Message Exchange Service
and the HW implemented design, relies on the Processor Local Bus, used to read
and write from and to registers, respectively. Besides the flag that is used to
trigger the the sending process of the data to the network, the remaining registers
comprised in the table 4.9 are data structures that hold the actual content of
control messages, that is, the System Management Frame Segment.

In order to control the read/write operation on the allocated channels, the Media
Streaming Control Service makes use of registers that are manipulated by the
application by means of the Processor Local Bus, that are described in the table
4.10. To each bit of the each register, corresponds a channel, from 7 to 0, which
matches the each of Register’s Index.

70

Table 4.10: Registers for controlling the datapath for time-sensitive data

Register Address Register Index Description
0 7:0 Synchronous channel allocation
1 7:0 R/W Operation on

selected channel
2 7:0 Enable/Disable Write

Operation on channel

4.4 Logical Layer

Streaming
Service

Node Control
Unit

Network
Control Unit

Streaming
Session

Management
Unit

Asynchronous
Message

Exchange Service

Media Streaming
Control Service

Node
Synchronization

Service

Logical Layer

Physical Layer

Player/
Speaker
Objects ...

Media
Peripheral
Interface

Bypass

RX TX

Transmission Path

Figure 4.29: Network communication protocol - Logical Layer

The Logical Layer defines the data format this interconnected system adopted,
where details about how nodes connects/disconnects from the network, as well as
the methodology to synchronize it with the incoming data are exposed. After that,
information concerning the node addressing scheme and error handling procedures
is provided. The use case diagram included in the figure 4.30 represents a list of
action or event steps, typically defining the interactions between a role (known in
the Unified Modelling Language as an actor) and a system, to achieve a goal.

The following dataflow diagram, included in the figure figure 4.31, comprises the
various steps involved in the process of receiving and transmitting data and how it
is processed depending on whether it is asynchronous or synchronous data. It can

71

Logical Layer

Advise new data has arrived

Advise data has been sent
out to the network

Figure 4.30: Logical Layer interaction with Application Message Exchange Service

be noted that synchronous data does not go through all the layers off the network
protocol, whereas asynchronous information does. Instead, it is sent directly to the
media peripheral, as information of this nature has tighter timing requirements.

Network

Signal representation
of the protocol

frame
Frame

Reception
Module

Temporary
inbound data

storage
Frame content

Frame Integrity
Check

System Management
Frame Segment

Temporary
outbound data

storage

Return
Information

Media
Peripheral

(Sink)

Media Streaming
Frame Segment

Media
Peripheral
(Source)

Media Streaming
Frame Segment

Execute
Command

Frame
Transmission

Module

Frame Content
Signal representation

of the protocol
frame

Generate Frame
Check Sequence

Figure 4.31: General overview of dataflow inside the network node

To complement the previously stated information, the flowchart represented in the
figure 4.32 describes that asynchronous messages are sent out to the network if
the corresponding frame segment is vacant, otherwise overwriting data may and
would cause messages to fail to reach the destination, specially for those which do
not require an acknowledgement to be sent back to the sender node, rendering the
transmission of a repeated message not to be sent towards the destination.

To control the mode of operation of the node accordingly to the information dis-

72

Receive Frame

Message to
this node?

Store Command in
the Queue for

processing
Yes

Active Streaming
Connection?

Node configured as
Source or Sink?

Clear SMFS

Yes

Write data to
channel(s) of the

MSFS

Source

Read data from
channel(s) of the

MSFS
Sink

No

Write message to
SMFS

SMFS Vacant?

Asynchronous Message
Queued to Send?

Yes

Yes

Ignore message

No

No

Frame with errors?

Ignore Message.
Clear SMFS

Yes

No

Acronyms:
SMFS – System Management Frame Segment

MSFS – Media Streaming Frame Segment

1 2

3

4

1 2

3

4

Generate Frame
Check Sequence and

send frame to the
next node

Figure 4.32: Data treatment by the Network Node, in detail

closed in the previous diagrams, the following state machine, graphically repre-
sented in the figure 4.33, was implemented in order to start receiving the data
after the frame start delimiter (also known as preamble) is detected, followed by
the validation of the received data, after ensuring it is not corrupt, by running a
the CRC-32 error detection algorithm. After that, it is shown how to proceed in
order to send the information back to the network, after having been processed by
the CPU.

The table 4.11 describes the meaning of each state of the state machine.

73

0: Waiting
for Preamble

1: Receiving
FramePreamble

2: CRC Check

Frame Received

3: Send frame
to network

4: Send data
to CPU

5: Generate FCS

1

!FrameOK &&
CRCDone

Frame Sent

Ready to Send &
!Primary Node

CRC Done
FrameOK && CRCDone

Do Transfer

Primary Node & Ready to Send

Figure 4.33: Finite State Machine for controlling data exchange and processing

74

Table 4.11: Finite State Machine states description

State
Designation State Description

0: Waiting
for Preamble

Detection of the
frame start delimiter

1: Receiving
Frame

Stores the content of
the frame, bit by bit,
using a deserializer

2: CRC Check Ensure received
data is not corrupt

4: Send Data
to CPU

Transmit data to CPU for
processing, if it is directed
to the node in question.
Otherwise pass it on to
the next node

5: Generate FCS
Determine Frame Check
Sequence for future frame
integrity validation

3: Send frame
to network

Transmit data to network
via a serializer

75

To complement the information present on the table 4.11, the table 4.12 contains
information regarding the meaning the triggers that cause the machine, illustrated
in the figure 4.33, to change its state.

Table 4.12: List of Finite State Machine conditions for triggering state change

Condition
Designation Condition Description

Preamble The start delimiter
has been detected

Do Transfer
Prime Node sends the
first frame after system
power-up

Send Frame
Node Synchronization
Service triggers the
transmission of the frame

Frame Received All bits of the frame
have been captured

FrameOK The received data is
valid (no corruption)

CRCDone Frame integrity
check is complete

/FrameOK Received data
is corrupt

Ready to Send Data has been loaded
into/from the CPU

/Prime Node The node has the
role of Regular Node

CRCDone FCS generation is
complete

Prime Node The node has the
role of Prime Node

Frame Sent
All data has been
transmitted to the
network

4.4.1 Signal Modulation and Node synchronism

As the interconnected devices exchange bits of the data frame one by one, with
resort to a serializer. The period of the internal clock marks the interval of time
at which each bit of the data frame departs from the source device. The reverse
process, by means of a de-serializer, is carried on when it comes to receive each bit
of the data frame.

76

As the system is composed by independent devices, this means phase shifts may
be observed between the main clocks of each device. Provided that there is not
a dedicated line to carry a clock signal which all nodes are synchronized with,
another method has to be employed so that the datagrams are received, regardless
of the aforementioned phase shifts.

One solution consists of sending a preamble prior to the actual information in-
cluded in the data frame. The preamble consists of a set of alternating bits that
signalizes the arrival of a new frame, so that the addressee device can calibrate
itself in order to receive the sequence of bits flawlessly. In this case, the preamble
is a set of 4 bits with the hexadecimal value of 0xAA, or 1010 in a binary base.
Firstly, the node detects a rising edge transition, as the first bit, with the logic
value of 1, of the frame start delimiter arrives, as can be seen in the figure 4.34.

Network Node

Physical Layer

Bypass

RX TX

Transmission Path

1

...

......

Figure 4.34: First bit of the frame start delimiter received

After that, on the next clock cycle the second bit, with the logic value of 0, presents
itself at the RX Port of the node (figure 4.35).

Then, on the subsequent clock cycle, the bit with logic value of 1 arrives at the
RX Port (figure 4.36).

Finally, a falling edge transition is detected at the RX Port of the node, as a result
of the arrival of the 4th bit of the frame start delimiter (figure 4.36). By this
time, the level of the device’s internal clock is checked. If its level is HIGH, the
following bits of the data frame will be captured at each negative transition of the

77

Network Node

Physical Layer

Bypass

RX TX

Transmission Path

1 0

...

......

Figure 4.35: Second bit of the frame start delimiter received

Network Node

Physical Layer

Bypass

RX TX

Transmission Path

1 0 1

...

......

Figure 4.36: Third bit of the frame start delimiter received

78

device’s internal clock. Otherwise, they are captured at each positive transition of
the device’s internal clock. This ensures that each bit is captured within a phase
shift of up to 180 degrees from the exact time each bit of the data frame arrived
at the RX port of the device.

Network Node

Physical Layer

Bypass

RX TX

Transmission Path

1 0 1 0

...

......

Figure 4.37: Fourth bit of the frame start delimiter received

4.4.2 Error handling

Data corruption may occur during the process of data transmission between inter-
connected devices, rendering such information unable to be processed. So, error-
detection algorithms, such as Cyclic Redundancy Check (CRC), have been devel-
oped in order to determine if a received datagram is consistent with the one sent
by the source device. Besides the datagram which contains data to be effectively
processed by a node, a set of bits is included in the frame, which is known as the
Frame Check Sequence. This contains the result of the error-detection algorithm
executed in the source device, prior to the transmission of the frame. After the
data reaches the destination, the same algorithm is executed in order to validate
the integrity of the received data.

As far as the documented project is concerned, the CRC-32 variant will be used.
It requires a 33-bit Frame Check Sequence to be appended to the datagram, form-
ing the actual data frame. In terms of computation of this value for big endian
datagram, it is performed as follows:

79

• The datagram, which can be called the quotient is appended a set of 32
Least Significant Bits with the value of zero, which will hold the value of the
remainder.

• The 33 Most Significant Bits of the datagram are selected and a XOR oper-
ation with the CRC-32 Polynomial is performed if the Most Significant Bit
has the value of one, followed by a shift of the datagram to the left. If its
value is zero, the datagram is shifted to the left instead of a XOR operation
with CRC-32 Polynomial taking place.

• This process is successively repeated until the value of the quotient is zero.
The value of the remainder is included in the Frame Check Segment of the
frame to be sent to another device.

After the frame is received by the addressee device, the same process is held. Upon
its completion, the frame is considered as valid if the remainder equals zero.

4.4.3 Datagram structure

Packet switching is a digital networking communications method that groups all
transmitted data into suitably sized blocks, called packets, that are transmitted via
a medium that may be shared by multiple simultaneous communication sessions.
Packet switching increases network efficiency, robustness and enables technological
convergence of many applications operating on the same network.

Packets are composed of a header and payload. Information in the header is used
by networking hardware to direct the packet to its destination where the pay-
load is extracted and used by application software. Speaking of the asynchronous
component, the essential information the header has to contain is the following:

• Addressee Node: node’s address to which the message is directed to

• Sender Node: node’s address from which the message origins from

In the payload segment, that holds the effective data is to control the system’s
functioning, the

• Instance ID: ID of the node’s module to be accessed

• Object ID: ID of the commands container to be accessed

80

• Action ID: ID of the command to be executed

• Action Type: specify whether a ACK or a ACK + data has to be returned
to the Sender Node

• Parameter Field: parameters required for the execution of certain commands

• Frame Check Sequence: set of bits supplied to the error detection algorithm,
such as CRC-32, to determine whether the received data is valid or the
frame is corrupt. This stage has to be performed before the data is parsed
by the node, thus preventing incorrect data to be processed and consequently
misoperation of the device and possibly of the system.

A graphical representation of on the composition of the Control Data Segment of
the datagram can be seen in the figure 4.38

Media Streaming
Frame Segment

System Management
Frame Segment

Addressee
Node

Sender Node Object ID Instance ID
Frame Check

Sequence
Parameter

Field
Action ID Action Type

Preamble

Figure 4.38: Control data elements organization in the datagram infrastructure

In order to support the simultaneous transfer of multiple audio signals, the syn-
chronous segment can be sub-divided into a number of channels. Depending on
the bandwidth an audio signal occupies, one or more channels can be reserved for
that particular signal. That range of channels shall be exclusively performed a
write operation by one source device and a read operation by one sink device. If
another audio signal has to be simultaneously transmitted by an independent set
of source-sink devices, an array of 1 to n still unused channels (depending on the
signal’s bandwidth) is allocated, as long as there are enough available channels.

4.5 Stream Service

The time-sensitive data follows a different path than the data meant to control/-
manage the mode of operation of the system, which would add up overhead as
far as transmitting data inside the node is concerned. The Stream Service acts as

81

Channel 1
(16 bits)

Channel 2
(16 bits)

Channel 3
(16 bits)

Channel 4
(16 bits)

Channel 5
(16 bits)

Channel 6
(16 bits)

Channel 7
(16 bits)

Channel 8
(16 bits)

Media Streaming
Frame Segment

System Management
Frame Segment

Preamble

Figure 4.39: Time-sensitive data transport structure

an interface between the Logical Layer and the media peripheral, being comprised
of an exclusive path through which data contained in the synchronous channels
is selected, based on the channel allocation and R/W configuration (carried ou
by the Streaming Session Management Unit) and then exchanged with the media
peripheral that is, the external IP Core.

4.5.1 Interface with external IP Cores

With regards to the specification of the Stream Service, a bi-directional port, with
a width of 16 bits, the resolution of each synchronous channel, as defined in the
datagram structure, is available to be connected to a media peripheral, such as
the AC97 Codec, as represented in the diagram 4.40.

Stream Service AC97 CodecLogical Layer
Speaker/

Microphone

Figure 4.40: IP-to-IP Core interface, for time-sensitive data transport

82

Chapter 5

Case Study

The node requires additional peripherals besides the CPU in order to do its job.
The Network Interface Controller consists on the custom IP that has been devel-
oped, implements the Physical and Logical layer as well as part of the services.
The Node Synchronization Services, Asynchronous Message Exchange Service and
the Media Streaming Control Service define the border between the hardware and
software implemented parts. To enable both parts to communicate, a shared bus
interconnects the CPU, the Random Access Memory as well as all of the required
peripherals, such as the previously stated custom IP and the interrupt controller.
The interrupt controller is intended to trigger the execution of routines immedi-
ately after the a rising edge transition on the signals rp and ft. These respectively
advise that a new datagram has arrived to the node, who is the addressee of the
message, so that it stores the data to be processed later on; and that the data
has successfully been sent out to the network. In case such data does not require
an acknowledgement to be sent back, it is deleted from the TX queue, as its de-
livery has been deemed complete. On the software application side, part of the
aforementioned services and the units supposed to manage the system’ mode of
operation are executed in a Microblaze CPU. The node architecture can be seen
in the figure 5.1

In order to put the unit under test, it has been instantiated on the same FPGA
chip as two other independent devices. These implement solely the Physical and
Logical Layer and are just responsible for forwarding the message to the next node,
which results in a virtual loop back of the data transmitted by the unit under test,
moments before. The entities involved in the integration tests are interconnected
by means of a Ring topology, to emulate a real case scenario, just as the system

83

Network
Network
Interface
Controller

Microblaze
CPU

AC97
Codec RAM

Controller

Interrupt
Controller

ftrprp – New data has arrived
and is ready to be read
and processed by the
CPU
ft – data has successfully
departed from the
Network Node

PLB

Figure 5.1: Implemented Network Node Internals

has been designed to.

A graphical representation of the distributed system can be seen in the figure 5.2.

The following registers, contained in the table 5.1, were assigned a value so that
the desired output, described in the next section, can be achieved.

In order to provide a better view of what is written in the last two field of the table
5.1, the table 5.2 provides details regarding the datagram structure and the table
5.3, contains the values that are written in the datagram and that correspond to
the last two items of the table 5.1.

So as to provide a considerable margin for further development stages of the sys-
tem, it supports:

• Up to 16 nodes attached to the network, as 4 bits hold the address value of
each node

• Up to 256 instances of sub-modules per node, provided that 8 bits hold the
value of the Instance ID

• Up to 256 objects per instance, provided that 8 bits hold the value of the
Object ID

84

Development Board 1

Network
Interface
Controller

Network
Interface
Controller

Network
Interface
Controller

Microblaze
CPU

AC97
Codec RAM

Controller

Interrupt
Controller

ftrp

PLB

Figure 5.2: Experimental Node interconnection in a Ring topology

Table 5.1: Register values for the test runs

Register
Address

Register
Index Description Value

3

3:0 Address of the node itself 4’h1

4 Node acting as Prime
or Regular Node 1’b1

5 Application is loaded
(node can enter the network) 1’b1

6 Network is in
configuration mode 1’b0

7 Flag to shutdown
the system 1’b0

31:0 Application-to-network data *
7 31:0 Application-to-network data *

85

Table 5.2: Structure of the datagram

Index Range Description
255:252 Frame Start Delimiter
251:250 Not Used
249 System Shutdown Flag
248 System in Configuration Mode flag

247:179 System Management Frame Segment
178:160 Not Used
159:32 Media Streaming Frame Segment
31:0 Frame Check Sequence

Table 5.3: Structure and content of the System Management Frame Segment

Index
Range Description Value

247:244 Addressee Node 1
243:240 Sender Node 1
239:232 Instance ID 0
231:224 Object ID 0
223:214 Action ID 0
213:212 Action Type 0
211:179 Parameter Field 0

• Up to 1024 function per Object, given that 10 bits hold the value of the
Action ID

The platform includes a minimal operating system (called Xilkernel), that sup-
ports POSIX threads, thread synchronization and Inter Process Communication
mechanisms, and interrupt handling. This provides an abstraction layer to deal
with interrupts, due to the way the system was designed to. Moreover, to cope
with increasingly complexity of the application, as more features are added, the
thread support allows the application to be divided into various, simpler tasks,
which makes it possible for the system to be scalable, without increasing the de-
mand for the developer to adapt the whole application, as would be the case if
the system was to be developed with a sequential based coding. The board sup-
port package then provides the necessary means (such as drivers) for the kernel to
communicate with the hardware, as detailed in the diagram 5.3

86

User Application

System Call
Handler

Scheduler
Interrupt and

Exception
Handling

Software Timers
Thread

Management
Semaphores

Message Queue Shared Memory
Dynamic Buffer
Management

Board Support Package

Hardware

Figure 5.3: System Software Stack

87

5.1 Results

Firstly, the platform has to be initialized as well as the kernel. The source code
excerpt 5.1 shows how such process is carried out.

Meanwhile, a static thread is also launched, which calls a callback function, called
init() which is responsible for actually enabling the interrupts and initializing the
interrupt handler’s pointers, as well as launching a thread that is meant to process
the commands contained in the datagram that arrive at the node.

Listing 5.1: Platform and kernel initilization

int main ()
{

in i t_p la t fo rm () ;

/∗ I n i t i a l i z e x i l k e r n e l ∗/
x i l k e r n e l_ i n i t () ;

/∗ add a thread to be launched once x i l k e r n e l s t a r t s ∗/
xmk_add_static_thread (i n i t , 0) ;

/∗ s t a r t x i l k e r n e l − does not re turn con t r o l ∗/
x i l k e r n e l_ s t a r t () ;

/∗ Never reached ∗/
cleanup_platform () ;

return 0 ;
}

The code excerpts 5.2 and 5.3, respectively show implementation details of both
interrupt and thread setup.

Listing 5.2: Interrupt Setup

void i n t s e tup ()
{

XIntc_RegisterHandler (XPAR_XPS_INTC_0_BASEADDR,
XPAR_XPS_INTC_0_RTPLB_0_RP_INTR,

88

(XInterruptHandler)
InboundMsgHandler , (
void∗) 0) ;

XIntc_RegisterHandler (XPAR_XPS_INTC_0_BASEADDR,
XPAR_XPS_INTC_0_RTPLB_0_FT_INTR,

(XInterruptHandler)
OutboundMsgHandler , (
void∗) 0) ;

XIntc_EnableIntr (XPAR_XPS_INTC_0_BASEADDR,
XPAR_RTPLB_0_FT_MASK | XPAR_RTPLB_0_RP_MASK) ;

XIntc_MasterEnable (XPAR_XPS_INTC_0_BASEADDR) ;

microb laze_enable_inter rupts () ;

}

Listing 5.3: Application thread setup

void ∗ i n i t (void ∗arg)
{

pthread_t worker [2] ;
pthread_attr_t a t t r ;
int ret , ∗ r e su l t , a rgs ;
pthread_attr_in i t (&a t t r) ;
pthread_attr_setdetachstate (&attr ,

PTHREAD_CREATE_JOINABLE) ;

r e t = pthread_create(&worker [0] , &att r , cmd_dispatcher
, NULL) ;

i f (r e t != 0) {
x i l_p r i n t f (" X i l k e r n e l ␣Demo : ␣ERROR␣ launching ␣

worker ␣ thread " \
" . \ r \n ") ;

}
i n t s e tup () ;
r e t = pthread_join (worker [0] , (void∗∗) r e s u l t) ;

89

return 0 ;
}

The command dispatcher implementation is also showcased in the code excerpt
5.4. If there is an incoming message waiting to be processed, it checks whether
that was an acknowledgement of a previously sent message. If so, such message
does not need to be re-sent anymore, so it is popped from the TX queue. After
that, the actual command contained in the message is executed, after completion
of which, it is popped form the RX FIFO, so that the next message, if it exists,
can be processed.

Listing 5.4: Command dispatcher implementation

void ams : : d i spatch () {
int running = 1 ;
Xuint32 conf = ((1 << 31) | (3 << 26)) ;

RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR,
RTPLB_SLV_REG3_OFFSET, conf) ;

while (running)
{

i f (! rq . empty ())
{

pthread_mutex_lock (mutex_r) ;
i f ((rq . f r on t () . f b l o c k i d == sq . f r on t

() . f b l o c k i d)
& ((rq . f r on t () .

f k t i d − rq . f r on t
() . optype) == sq
. f r on t () . f k t i d))

{
i f (! sq . empty ())
{
sq . pop () ;
}

}
pthread_mutex_unlock (mutex_r) ;
c a l l f b [rq . f r on t () . f b l o c k i d] () ;

90

pthread_mutex_lock (mutex_r) ;
rq . pop () ;
pthread_mutex_unlock (mutex_r) ;

}
else
{

s l e e p (1) ;
}

}
}

Additionally, the code excerpts 5.5 and 5.6 provide details on the implementation
of the Interrupt Service Routine for storing the incoming messages and the routine
to generate a new message to be sent out to the network, respectively.

Listing 5.5: ISR for storing incoming messages

void ams : : parse () {
Xuint32 r eg s [NO_CTR_REG] ;
r eg s [0] = RTPLB_mReadReg(XPAR_RTPLB_0_BASEADDR,

RTPLB_SLV_REG6_OFFSET) ;
r eg s [1] = RTPLB_mReadReg(XPAR_RTPLB_0_BASEADDR,

RTPLB_SLV_REG7_OFFSET) ;
t r . tarad = (r eg s [0] & 0xF0000000) ;
t r . s rcad = (r eg s [0] & 0X0F00000) ;
t r . i n s t i d = (r eg s [0] & 0x00F00000) ;
t r . f b l o c k i d = (r eg s [0] & 0x000FF000) ;
t r . f k t i d = (r eg s [0] & 0x00000FF0) ;
t r . optype = (r eg s [0] & 0x0000000F) ;
t r . c tdata = reg s [1] ;
pthread_mutex_lock (mutex_r) ;
this−>rq . push (t r) ;
i f ((rq . f r on t () . f b l o c k i d == sq . f r on t () . f b l o c k i d)

& ((rq . f r on t () .
f k t i d − rq . f r on t
() . optype) == sq
. f r on t () . f k t i d))

{

91

i f (! sq . empty ())
{
sq . pop () ;
}

}
this−>gen () ;
pthread_mutex_unlock (mutex_r) ;

}

Listing 5.6: Routine to generate new message to be transmitted

void ams : : gen () {
Xuint32 r eg s [NO_CTR_REG] ;
i f (! sq . empty ()) {

r eg s [0] = (this−>sq . f r on t () . s rcad & 0
X0F00000) ;

r eg s [0] |= (this−>sq . f r on t () . tarad & 0
xF0000000) ;

r eg s [0] |= (this−>sq . f r on t () . i n s t i d & 0
x00F00000) ;

r eg s [0] |= (this−>sq . f r on t () . f b l o c k i d & 0
x000FF000) ;

r eg s [0] |= (this−>sq . f r on t () . f k t i d & 0
x00000FF0) ;

r eg s [0] |= (this−>sq . f r on t () . optype & 0
x0000000F) ;

r eg s [1] = this−>sq . f r on t () . c tdata ;
RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR,

RTPLB_SLV_REG6_OFFSET, r eg s [0]) ;
RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR,

RTPLB_SLV_REG7_OFFSET, r eg s [1]) ;
this−>pass () ;

}
else {

RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR,
RTPLB_SLV_REG6_OFFSET, 0) ;

RTPLB_mWriteReg(XPAR_RTPLB_0_BASEADDR,
RTPLB_SLV_REG7_OFFSET, 0) ;

92

this−>pass () ;
}

}

Then, the Prime Node, aliased Network Node 1 in the figure 5.2, takes the initia-
tive to send the first frame, as it implement has the Node Synchronization Service
enabled, HDL implementation of which is exposed in the listing 5.7.

Listing 5.7: Node Synchronization Service RTL implementation

module tmaster (input c lk , input r s t , input mode , input
enable , output dt) ;

reg [1 2 : 0] count ;
assign dt = (count == 4015) ? 1 : 0 ;
always @ (posedge c l k or posedge r s t)
begin

i f (r s t)
begin

count <= 0 ;
end
else
begin

i f ((mode == 1) && (enable == 1))
begin

i f (count <= 4015)
begin

count <= count + 1 ;
end
else
begin

count <= 0 ;
end

end
end

end
endmodule

In the figure 5.4, as the Prime Node goes into state no. 3, the Network Node 2

93

switches from state 0 to state 1, after detecting the frame start delimiter.

Figure 5.4: Node Synchronization Service triggering the transmission of the data-
gram

In order to provide a better understanding of the figure 5.4, the diagram 5.5
shows the state in which the FSM for handling the datagram is. The instants t1
to t3 indicate the sequence at which the state changes, to match the corresponding
figure 5.4.

0: Waiting
for Preamble

1: Receiving
FramePreamble

2: CRC Check

Frame Received

3: Send frame
to network

4: Send data
to CPU

5: Generate FCS

1

!FrameOK&&
CRCDone

Frame Sent

Ready to Send &
!Primary Node

CRC Done
FrameOK&& CRCDone

Do Transfer

Primary Node & Ready to Send

0: Waiting
for Preamble

1: Receiving
FramePreamble

2: CRC Check

Frame Received

3: Send frame
to network

4: Send data
to CPU

5: Generate FCS

1

!FrameOK&&
CRCDone

Frame Sent

Ready to Send &
!Primary Node

CRC Done
FrameOK&& CRCDone

Do Transfer

Primary Node & Ready to Send

t1

t1

t2

t3

Figure 5.5: Frame reception, integrity check and parsing by the Prime Node

As shown in the listing 5.8, the HDL source code that implements the serializer,
intended to sending bit-by-bit, the content of the datagram, is aligned with the
de-serializer RTL implementation (presented in the listing 5.9), which has the
function of capturing the content of the datagram, also bit-by-bit.

Listing 5.8: Serializer RTL implementation

//Send Frame
wire c l r t = (f h s t == ‘FHS0) ? 1 : 0 ;
reg [1 1 : 0] i t e r a t o r s ;
wire txc lken = (f h s t == ‘FHS3) ? 1 : 0 ;
wire t x c l k = txc lken & c lk ;
wire r s c l s = r s t | | c l r t ;

94

always @ (posedge t x c l k or posedge r s c l s)
begin

i f (r s c l s)
begin

f t <= 0 ;
i t e r a t o r s <= ‘FS ;
tx <= 0 ;

end
else
begin

i f (f h s t == ‘FHS3)
begin

tx <= tframe [i t e r a t o r s] ;
i f (i t e r a t o r s == 0)
begin

f t <= 1 ;
end
else
begin

i t e r a t o r s <= i t e r a t o r s − 1 ;
end

end
else
begin

f t <= 0 ;
i t e r a t o r s <= ‘FS ;
tx <= 0 ;

end
end

end
//End Send Frame

Listing 5.9: Deserializer RTL implementation

//Frame Reception
wire c l r r = (f h s t == ‘FHS0) ? 1 : 0 ;
reg [1 1 : 0] i t e r a t o r r ;

95

wire r s c l r = r s t | | c l r r ;

always @ (negedge r x c l k or posedge r s c l r)
begin

i f (r s c l r)
begin

r frame <= 0 ;
i t e r a t o r r <= ‘FS−4;
f r <= 0 ;

end
else
begin

i f (i t e r a t o r r >= 1)
begin

r frame [i t e r a t o r r] <= rx ;
i t e r a t o r r <= i t e r a t o r r − 1 ;

end
else i f (i t e r a t o r r == 0)
begin

r frame [i t e r a t o r r] <= rx ;
rframe [‘FS : ‘FS−3] <= 4 ’ b1010 ;
f r <= 1 ;

end
end

end
//End Frame Reception

As can bee seen in the figure 5.6, having captured all the bits of the frame, it then
goes into state 2, to make sure data is not corrupt. If that is the case, its state is
changed to the state no. 4, where the actual processing of the frame is supposed
to be carried out. As the Network Node 2 (and 3) are there just in order to act as
a loopback mechanism, the received data is forwarded to the next node.

In order to provide a better understanding of the figure 5.6, the diagram 5.7
shows the state in which the FSM for handling the datagram is. The instants t1
to t4 indicate the sequence at which the state changes, to match the corresponding
figure 5.6.

96

Figure 5.6: Propagation of the datagram through the network

0: Waiting
for Preamble

1: Receiving
FramePreamble

2: CRC Check

Frame Received

3: Send frame
to network

4: Send data
to CPU

5: Generate FCS

1

!FrameOK&&
CRCDone

Frame Sent

Ready to Send &
!Primary Node

CRC Done
FrameOK&& CRCDone

Do Transfer

Primary Node & Ready to Send

0: Waiting
for Preamble

1: Receiving
FramePreamble

2: CRC Check

Frame Received

3: Send frame
to network

4: Send data
to CPU

5: Generate FCS

1

!FrameOK&&
CRCDone

Frame Sent

Ready to Send &
!Primary Node

CRC Done
FrameOK&& CRCDone

Do Transfer

Primary Node & Ready to Send

t1

t1

t2

t3

Figure 5.7: Frame reception, integrity check and parsing by the Prime Node

The network node’s state becomes number 3, when data starts being sent out to
the network, in this case to the Network Node 3, which behaves the same way as
described in the previous paragraph.

Then, the Prime Node receives back the data frame, which by now has completed
one cycle through the entire network as show in the figure 5.8.

Figure 5.8: Frame reception, integrity check and parsing by the Network Node 3

In order to provide a better understanding of the figure 5.8, the diagram 5.9
shows the state in which the FSM for handling the datagram is. The instants t1
to t3 indicate the sequence at which the state changes, to match the corresponding
figure 5.8.

The same applies when it comes to the Network Node 1 receiving the data directed
towards it, except in state no. 4, the fact that the rp signal transits from logic

97

0: Waiting
for Preamble

1: Receiving
FramePreamble

2: CRC Check

Frame Received

3: Send frame
to network

4: Send data
to CPU

5: Generate FCS

1

!FrameOK&&
CRCDone

Frame Sent

Ready to Send &
!Primary Node

CRC Done
FrameOK&& CRCDone

Do Transfer

Primary Node & Ready to Send

0: Waiting
for Preamble

1: Receiving
FramePreamble

2: CRC Check

Frame Received

3: Send frame
to network

4: Send data
to CPU

5: Generate FCS

1

!FrameOK&&
CRCDone

Frame Sent

Ready to Send &
!Primary Node

CRC Done
FrameOK&& CRCDone

Do Transfer

Primary Node & Ready to Send

t1

t2

t3

t4

t2

t3

Figure 5.9: Frame reception, integrity check and parsing by the Prime Node

value 0 to 1, triggers an interrupt, causing the CPU to enter in the corresponding
interrupt handler, as per the figure 5.10.

Triggering the interrupt requires that the datagram is directed towards the node in
question, which is determined by the mention of its own address or the broadcast
address in the "addressee" field of the data frame, otherwise the data is immediately
passed on to the next node, as shown in the excerpt of code, included in the code
excerpt 5.10.

Listing 5.10: Address matching verification prior to forwarding data for processing

‘FHS4 :
begin
i f (r frame [2 4 7 : 1 6 0] != 0)
begin

i f ((r frame [2 4 7 : 2 4 4] == address) | | (r frame [2 4 7 : 2 4 4]
== 4 ’ b1111))

begin
//Parse rframe
rp <= 1 ;
//End Parse rframe
i f (r s == 1)
begin

t frame [‘FS : ‘FS−3] <= 4 ’ b1010 ; //
preamble

t frame [‘FS −4:0] <= sframe [‘FS

98

−4 : 0] ;
f h s t <= ‘FHS5 ;

end
end
else
begin

t frame [‘FS : 0] <= rframe [‘FS : 0] ;
i f (master == 1)

begin
f h s t <= ‘FHS0 ;

end
else
begin

f h s t <= ‘FHS3 ;
end

end
end
else
begin

rp <= 1 ;
i f (r s == 1)
begin

t frame [‘FS : ‘FS−3] <= 4 ’ b1010 ; // preamble
t frame [‘FS −4:0] <= sframe [‘FS −4 : 0] ;
f h s t <= ‘FHS5 ;

end
end
end

At this stage the frame is stored in the RX Queue.

99

Figure 5.10: Inside the interrupt handler for parsing inbound messages

100

After that, after the Node Synchronization Service triggers the transmission of a
new frame to the network and that process is complete, the ft signal changes its
value from 0 to 1, causing an interrupt and its handler to be executed, as seen in
the figure 5.11. The same process as described previously is repeated until system
power-off.

Figure 5.11: Interrupt handler execution after a message has been sent out to the
network

101

102

Chapter 6

Conclusion

The work involved in this project taught several lessons regarding not only about
its subject, but also concerning how it has been done and the employed techniques
to achieve the presented results. Consisting the work done on a implementation
of several layers of a communication protocol, it is clear that FPGA technology
has many aspects to be taken advantage of. First and foremost, the portability
of the RTL language, which allows the same exact implementation to be deployed
to different boards, as long as the design constraints are adapted appropriately to
match the board’s internal structure and considering that the chip has enough logic
elements to perform the designated tasks. Additionally, as during the project de-
velopment, many specification changes in any of the communication protocol layers
might lead to minor/major changes in the other ones, the implemented hardware
can easily be reconfigured, by means of changing the corresponding parts of the
code. This results in a way higher flexibility when compared to microcontrollers
that offers pre-implemented and static hardware modules, which can not be en-
tirely customized to meet the applications needs, in any other way rather than
by allowing the developer to control its mode of operation by manipulating val-
ues in configuration registers that might be made available for that effect. Still,
it might end up being more limiting in some cases, thus demanding increasingly
development effort, comparing to a FPGA technology based solution.

Following the work that has been done in this project, even though it would be
feasible, the amount of required effort in order to develop all of the proposed items
solely in RTL would be very high. The solution to tackle this is to find a balance
between making the most of the aforementioned FPGA capabilities and also the
greater simplicity brought by development in software. Thus, the ability to bring

103

up an hybrid platform, which incorporates hardware and software implemented
parts and the necessary means for both parts to communicate between each other in
a totally customized way, as the developer desires, leads to a briefer time-to-market
while still leaving open the possibility to make the most of the previously stated
FPGA technology advantages, not to mention the ability to execute processes in a
pure parallel way and as the datapath and its control unit can be fully customized
to perform an specific task, it allows for a more optimized circuit than those of
general purpose CPUs, the execution time of routines can be drastically reduced.
This is also why many times it is convenient to make use of custom RTL circuits
for CPU offloading purposes, in order to meet strict application time requirements,
which in case of this project, it is critical to ensure they are respected, as well as
the existence of determinism.

Now, speaking of the communication protocol itself, the complexity that is involved
makes up for a strong reason to split the problem into various smaller parts and
then carry out with finding the solution to each of these, one at a time. So, it is
important to divide the protocol into various layers, each of which implements a
small subset of routines that altogether contribute towards the system to perform
what is was designed to. As is the case of this project, it is also relevant to outline
the need to take into consideration, right from the beginning of its development,
that the coexistence of synchronous and asynchronous data has to be ensured.
They have to be combined in such a way that all the necessary support to control
the system is provided and the time-sensitive data is transported in an efficient
way, so that its imposed time requirements are met. This lead to two distinct sets
of layers of the communication protocol, one for the asynchronous control data
to be treated which is more extensive and longer lasting process; and the other
for synchronous data to be processed, which must be as optimized as possible for
performance, so that such data does not go through as many delays until it reaches
its destination. This affects all the protocol’s layers overlying and including the
Logical Layer, which must be tailored to obey to that distinguished treatment of
both kinds of data. The Physical Layer is also not exempt of being appropriately
set, provided that it could otherwise be a possible bottleneck that would affect
both the system’s performance and scalability metrics, mainly because multimedia
application demand ever increasingly bandwidth and timing requirements.

Finally, this project contributed significantly to get in-depth knowledge on how
communication protocols work and how they are actually implemented, in practice.
The acquired knowledge applies not only to the specific kind of communication

104

protocol that has been developed but also to it acts as a strong base to understand
how other communication protocols work, provided that as is the case of the
developed project, most of the communication protocols are based in a Reference
Model, such as the OSI Model, which might grant some similarities in at least part
of each existing communication protocol, nowadays.

105

6.1 Future Work

Having developed the foundations of this system, there are always improvements
to be done and also further work in order to be able to make the system fully
functional and ready to be applied in a real life scenario.

For that effect, the first step would be to complete the implementation of the ap-
plication layer, provided that it has only reached the design phase. Considering
that the idea would be to reproduce an audio signal, the integration of the AC97
Codec (which is a COTS) with the already implemented parts would be required.
Then, the deployment of the implemented project to various boards and its in-
terconnection, with for example, a coaxial cable would already make this system
eligible for use in a real life environment. However, note that the boards to have
the application deployed as well as its accessories must be compliant the kind of
environments they would be subject to. For example, if the idea would be to ap-
ply it to a vehicular infotainment system, the components should be Automotive
Grade.

In order to further enrich the system, in terms of features, it would be convenient
to get an Embedded Linux Distribution to be properly configured and deployed to
the boards, having as pros the fact that the services the Linux Operation System
offer, would enable the easier development of multimedia applications, by reusing
existing open source modules rather than developing applications from the ground
up.

Finally, in order to reduce costs, specially regarding the boards to be used, cheaper
alternatives can be found, where there is the possibility to easily deploy the HW
implemented parts, given the technological agnosticism of the FPGA technology,
being the only aspect that would require additional effort, the configuration of the
communication mean between the FPGA and the CPU, if the replacement board
does not support the same one as the boards to be replaced. In addition, the HW
design constraints are very likely to the required to be changed, provided that
pin assignment of the required components may differ from board to board, even
if based in the same FPGA family. However, the effort required for this task is
negligible, when compared to the aforementioned ones.

106

Bibliography

[1] “Meshdynamics : Highest performance Voice, Video and Data Outdoors.”

[2] J. Abbate, Inventing the Internet. MIT Press, 2000.

[3] G. P. Agrawal, Fiber-optic communication systems. New York: John Wiley
& Sons, 2002.

[4] ——, Fiber-Optic Communication Systems. Hoboken, NJ, USA: John
Wiley & Sons, Inc., oct 2010. [Online]. Available: http://doi.wiley.com/10.
1002/9780470918524

[5] Z. Al Mosheky, P. J. Melling, and M. A. Thomson, “In situ real-time mon-
itoring of a fermentation reaction using a fiber-optic FT-IR probe,” Spec-
troscopy, vol. 16, no. 6, 2001.

[6] G. Alarcia and S. Herrera, C.T.N.E.’s PACKET SWITCHING NETWORK.
ITS APPLICATIONS, 1974. [Online]. Available: http://rogerdmoore.ca/
PS/CTNEA/CTA.html

[7] M. S. Alfiad, “111 Gb/s POLMUX-RZ-DQPSK Transmission over 1140 km
of SSMF with 10.7 Gb/s NRZ-OOK Neighbours,” Proceedings ECOC 2008,
2008.

[8] V. Alwayn, Splicing. Cisco Systems, 2004. [Online]. Available: http://
www.ciscopress.com/articles/article.asp?p=170740{&}seqNum=9{&}rl=1

[9] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison-Wesley, 2000.

[10] P. C. Archibald, “<title>Scattering from Infrared Missile Domes</title>,”
Optical Engineering, vol. 17, no. 6, p. 176647, dec 1978. [Online].
Available: http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=
10.1117/12.7972298

107

http://doi.wiley.com/10.1002/9780470918524
http://doi.wiley.com/10.1002/9780470918524
http://rogerdmoore.ca/PS/CTNEA/CTA.html
http://rogerdmoore.ca/PS/CTNEA/CTA.html
http://www.ciscopress.com/articles/article.asp?p=170740{&}seqNum=9{&}rl=1
http://www.ciscopress.com/articles/article.asp?p=170740{&}seqNum=9{&}rl=1
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/12.7972298
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/12.7972298

[11] S. Arora and B. Barak, Computational Complexity - A Modern Approach.
Cambridge, 2009.

[12] P. Ashwood-Smith, Shortest Path Bridging IEEE 802.1aq Overview.
Huawei, 2011.

[13] ——, Shortest Path Bridging IEEE 802.1aq Overview. Huawei, 2011.

[14] ——, “Shortest Path Bridging IEEE 802.1aq Overview,” 2011.

[15] R. M. Atkins, P. G. Simpkins, and A. D. Yablon, “Track of a fiber fuse: a
Rayleigh instability in optical waveguides,” Optics Letters, vol. 28, no. 12, p.
974, jun 2003. [Online]. Available: http://ol.osa.org/abstract.cfm?id=72607

[16] H. Attiya and Welch, Distributed Computing: Fundamentals, Simulations,
and Advanced Topics. Wiley-Interscience, 2004.

[17] A. Bache and Y. Matras, Fundamental Choices in the Development of RCP,
the Experimental Packet-Switching Data Transmission Service of the French
PTT, 1976. [Online]. Available: http://rogerdmoore.ca/PS/RCPBAC/RB.
html

[18] A. Bache, B. Long, H. Layec, L. Guillou, and Y. Matras, RCP,
the Experimental Packet-Switched Data Transmission Service of the French
PTT: History, Connections, Control, 1976. [Online]. Available: http:
//rogerdmoore.ca/PS/RCPHCC/RH.html

[19] P. Baran, RAND Paper P-2626, 1962. [Online]. Available: http:
//www.rand.org/pubs/papers/P2626/

[20] G. Bartenev, “The structure and strength of glass fibers,” Journal of
Non-Crystalline Solids, vol. 1, no. 1, pp. 69–90, dec 1968. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/0022309368900070

[21] R. J. Bates, Optical Switching and Networking Handbook. New York:
McGraw-Hill, 2001.

[22] A. G. Bell, “On the Production and Reproduction of Sound by Light,” Amer-
ican Journal of Science, Third Series, vol. XX, no. 118, pp. 305 – 324, 1880.

[23] A. D. Birrell, R. Levin, M. D. Schroeder, and R. M. Needham,
“Grapevine: an exercise in distributed computing,” Communications of

108

http://ol.osa.org/abstract.cfm?id=72607
http://rogerdmoore.ca/PS/RCPBAC/RB.html
http://rogerdmoore.ca/PS/RCPBAC/RB.html
http://rogerdmoore.ca/PS/RCPHCC/RH.html
http://rogerdmoore.ca/PS/RCPHCC/RH.html
http://www.rand.org/pubs/papers/P2626/
http://www.rand.org/pubs/papers/P2626/
http://linkinghub.elsevier.com/retrieve/pii/0022309368900070

the ACM, vol. 25, no. 4, pp. 260–274, apr 1982. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=358468.358487

[24] D. Boggs, J. Shoch, E. Taft, and R. Metcalfe, “Pup: An Internetwork
Architecture,” IEEE Transactions on Communications, vol. 28, no. 4, pp.
612–624, apr 1980. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1094684

[25] T. Boutell and G. Randers-Pehrson, PNG (Portable Network Graphics)
Specification, Version 1.2. Libpng.org, 1998. [Online]. Available: http:
//www.libpng.org/pub/png/spec/1.2/PNG-Structure.html

[26] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang,
A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular
momentum mode division multiplexing in fibers.” Science (New York,
N.Y.), vol. 340, no. 6140, pp. 1545–8, jun 2013. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/23812709

[27] K. Brayer, “Evaluation of 32 Degree Polynomials in Error Detection
on the SATIN IV Autovon Error Patterns,” 1975. [Online]. Available:
http://www.dtic.mil/srch/doc?collection=t3{&}id=ADA014825

[28] K. Brayer and J. L. Hammond, Evaluation of error detection polynomial
performance on the AUTOVON channel. New York: Institute of Electrical
and Electronics Engineers, 1975.

[29] R. D. Bright and M. A. Smith, EXPERIMENTAL PACKET SWITCHING
PROJECT OF THE UK POST OFFICE. Sussex, United Kingdom:
Noordhoff International Publishing, 1973. [Online]. Available: http:
//rogerdmoore.ca/PS/EPSSB.html

[30] M. J. V. D. Burgt, Coaxial Cables and Applications. Belden.

[31] D. Burnett and H. Sethi, “Packet switching at philips research laboratories,”
Computer Networks (1976), vol. 1, no. 6, pp. 341–348, nov 1977. [Online].
Available: http://rogerdmoore.ca/PS/NPLPh/PhilipsA.html

[32] M. Cagalj, I. Aad, S. Ganeriwal, and J.-P. Hubaux, On selfish behavior in
CSMA/CA networks, 2005. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs{_}all.jsp?arnumber=1498536

109

http://portal.acm.org/citation.cfm?doid=358468.358487
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1094684
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1094684
http://www.libpng.org/pub/png/spec/1.2/PNG-Structure.html
http://www.libpng.org/pub/png/spec/1.2/PNG-Structure.html
http://www.ncbi.nlm.nih.gov/pubmed/23812709
http://www.dtic.mil/srch/doc?collection=t3{&}id=ADA014825
http://rogerdmoore.ca/PS/EPSSB.html
http://rogerdmoore.ca/PS/EPSSB.html
http://rogerdmoore.ca/PS/NPLPh/PhilipsA.html
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1498536
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1498536

[33] N. Cam-Winget, R. Housley, D. Wagner, and J. Walker, “Security flaws in
802.11 data link protocols,” Communications of the ACM, vol. 46, no. 5,
p. 35, may 2003. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=769800.769823

[34] M. K. Carson, Alexander Graham Bell: Giving Voice To The World.
New York: Sterling Publishing, 2007. [Online]. Available: http:
//books.google.com/books?id=a46ivzJ1yboC

[35] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic
redundancy-check codes with 24 and 32 parity bits,” IEEE Transactions on
Communications, vol. 41, no. 6, pp. 883–892, jun 1993. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=231911

[36] T. Chakravarty, Performance of Cyclic Redundancy Codes for Embedded
Networks. Pittsburgh: Carnegie Mellon University, 2001.

[37] M. Chandy, Parallel Program Design.

[38] M. Chiang and M. Yang, “Towards Network X-ities From a Topological Point
of View: Evolvability and Scalability,” Proc. 42nd Allerton Conference, 2004.

[39] ——, “Towards Network X-ities From a Topological Point of View: Evolv-
ability and Scalability,” Proc. 42nd Allerton Conference, 2004.

[40] G. Chretien, W. Konig, and J. Rech, The SITA Network. Sussex, United
Kingdom: Noordhoff International Publishing, 1973. [Online]. Available:
http://rogerdmoore.ca/PS/SITAB.html

[41] R. Cole and U. Vishkin, “Deterministic coin tossing with applications to
optimal parallel list ranking,” Information and Control, vol. 70, no. 1,
pp. 32–53, jul 1986. [Online]. Available: http://linkinghub.elsevier.com/
retrieve/pii/S0019995886800237

[42] D. Comer, “The computer science research network CSNET: a history
and status report,” Communications of the ACM, vol. 26, no. 10, pp.
747–753, oct 1983. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=358413.358423

[43] A. committee PRQC, “mesh topology.” [Online]. Available: http:
//www.atis.org/glossary/definition.aspx?id=3516

110

http://portal.acm.org/citation.cfm?doid=769800.769823
http://portal.acm.org/citation.cfm?doid=769800.769823
http://books.google.com/books?id=a46ivzJ1yboC
http://books.google.com/books?id=a46ivzJ1yboC
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=231911
http://rogerdmoore.ca/PS/SITAB.html
http://linkinghub.elsevier.com/retrieve/pii/S0019995886800237
http://linkinghub.elsevier.com/retrieve/pii/S0019995886800237
http://portal.acm.org/citation.cfm?doid=358413.358423
http://portal.acm.org/citation.cfm?doid=358413.358423
http://www.atis.org/glossary/definition.aspx?id=3516
http://www.atis.org/glossary/definition.aspx?id=3516

[44] G. Cook, Catalogue of parametrised CRC algorithms, 2012. [Online].
Available: http://reveng.sourceforge.net/crc-catalogue/all.htm

[45] J. Corbet, Receive packet steering. LWN.net, 2009. [Online]. Available:
https://lwn.net/Articles/362339/

[46] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.
MIT Press, 1990.

[47] G. Coulouris, Distributed Systems: Concepts and Design (5th Edition).
Addison-Wesley, 2011.

[48] G. Coulouris, G. Blair, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design (5th Edition). Boston: Addison-Wesley, 2011.

[49] L. Cuenca, A PUBLIC PACKET SWITCHING DATA COMMUNICA-
TIONS NETWORK: EIGHT YEARS OF OPERATING EXPERIENCE.
IEEE, 1980. [Online]. Available: http://rogerdmoore.ca/PS/CTNEC1.html

[50] A. B. D. Allan, E. D. Fedyk, E. P. Ashwood-Smith, and P. Unbehagen, IS-IS
Extensions Supporting IEEE 802.1aq. IETF, 2012. [Online]. Available: http:
//www.ietf.org/mail-archive/web/ietf-announce/current/msg10166.html

[51] D. W. Davies, Oral History 189: D. W. Davies interviewed by Martin
Campbell-Kelly at the National Physical Laboratory. Charles Babbage
Institute University of Minnesota, Minneapolis, 1986. [Online]. Available:
http://conservancy.umn.edu/handle/107241

[52] T. S. Design, “Xilinx EDK Tutorial,” pp. 1–12, 2013.

[53] R. Després, RCP, THE EXPERIMENTAL PACKET-SWITCHED DATA
TRANSMISSION SERVICE OF THE FRENCH PTT, 1974. [Online]. Avail-
able: http://rogerdmoore.ca/PS/RCPDEP/RD.html

[54] S. Diego, “Bridging MOST to IEEE Standards,” no. July, 2012.

[55] S. Dolev, Self-Stabilization. MIT Press, 2000.

[56] J. Duffy, Largest Illinois healthcare system uproots Cisco to
build $40M private cloud. PC Advisor, 2012. [On-
line]. Available: http://www.pcadvisor.co.uk/news/internet/3357242/
largest-illinois-healthcare-system-uproots-cisco-build-40m-private-cloud/

111

http://reveng.sourceforge.net/crc-catalogue/all.htm
https://lwn.net/Articles/362339/
http://rogerdmoore.ca/PS/CTNEC1.html
http://www.ietf.org/mail-archive/web/ietf-announce/current/msg10166.html
http://www.ietf.org/mail-archive/web/ietf-announce/current/msg10166.html
http://conservancy.umn.edu/handle/107241
http://rogerdmoore.ca/PS/RCPDEP/RD.html
http://www.pcadvisor.co.uk/news/internet/3357242/largest-illinois-healthcare-system-uproots-cisco-build-40m-private-cloud/
http://www.pcadvisor.co.uk/news/internet/3357242/largest-illinois-healthcare-system-uproots-cisco-build-40m-private-cloud/

[57] H. J. R. Dutton, “Understanding Optical Communications,” International
Technical Support Organisation, vol. 1, pp. 1–638, 1998.

[58] J. Edge, Receive flow steering. LWN.net, 2010. [Online]. Available:
https://lwn.net/Articles/382428/

[59] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems. Addison-
Wesley, 2000.

[60] W. C. Elmore and M. A. Heald, Physics of Waves, 1969.

[61] S. Ely and D. Wright, L.F. Radio-Data: specification of BBC experimen-
tal transmissions 1982. Research Department, Engineering Division, The
British Broadcasting Corporation, 1982.

[62] G. C. Ewing, Reverse-Engineering a CRC Algorithm. Christchurch:
University of Canterbury, 2010. [Online]. Available: http://www.cosc.
canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html

[63] J. Faber, Java Distributed Computing. O’Reilly, 1998. [Online]. Available:
http://docstore.mik.ua/orelly/java-ent/dist/index.htm

[64] K. Features, “Why Use a,” pp. 1–52, 2011.

[65] W. Feldenkirchen, Werner von Siemens - Inventor and International En-
trepreneur, 1994.

[66] M. Feldman, “National LambdaRail Opens for Business,” HPCwire,
2008. [Online]. Available: http://www.hpcwire.com/hpcwire/2008-10-28/
national{_}lambdarail{_}opens{_}for{_}business.html

[67] J. G. Fletcher, Principles of Design in the Octopus Computer network, 1975.
[Online]. Available: http://portal.acm.org/citation.cfm?id=810357

[68] K. Francis, “Fiber Have You Seen The Light ?” 2012.

[69] R. Freeman, C. I. Constru, T. Espec, and O. Fpgas, “Fundamentos da tec-
nologia FPGA Visão geral,” pp. 1–3, 2013.

[70] T. L. Friedman, The World is Flat. Picador, 2007.

[71] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A Distributed Algorithm
for Minimum-Weight Spanning Trees,” ACM Transactions on Programming

112

https://lwn.net/Articles/382428/
http://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html
http://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html
http://docstore.mik.ua/orelly/java-ent/dist/index.htm
http://www.hpcwire.com/hpcwire/2008-10-28/national{_}lambdarail{_}opens{_}for{_}business.html
http://www.hpcwire.com/hpcwire/2008-10-28/national{_}lambdarail{_}opens{_}for{_}business.html
http://portal.acm.org/citation.cfm?id=810357

Languages and Systems, vol. 5, no. 1, pp. 66–77, jan 1983. [Online].
Available: http://portal.acm.org/citation.cfm?doid=357195.357200

[72] W. Gambling, “The rise and rise of optical fibers,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 6, no. 6, pp. 1084–1093, nov 2000.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=902157

[73] B. M. Gammel, Matpack documentation: Crypto - Codes. Matpack.de, 2005.
[Online]. Available: http://www.matpack.de/index.html{#}DOWNLOAD

[74] V. K. Garg, Elements of Distributed Computing. Wiley-IEEE Press, 2002.

[75] P. Geremia, “Cyclic redundancy check computation: an implementation us-
ing the TMS320C54x,” no. SPRA530, 1999.

[76] R. Ghaemi, A. Milani Fard, M. Sadeghizadeh, and H. Tabatabaee, “Evo-
lutionary Query Optimization for Heterogeneous Distributed Database Sys-
tems,” World Academy of Science, Engineering and Technology, no. 19, pp.
43 – 49, 2008.

[77] S. Ghosh, Distributed Systems - An Algorithmic Approach. Chapman &
Hall/CRC, 2007.

[78] G. S. Glaesemann, “Advancements in Mechanical Strength and Reliability
of Optical Fibers,” Proc. SPIE, vol. CR73, 1999. [Online]. Available:
http://www.corning.com/WorkArea/downloadasset.aspx?id=7783

[79] A. P. Glover, “Application Note : Embedded Hardware Systems Using and
Creating Interrupt-Based,” vol. 778, pp. 1–37, 2005.

[80] B. Godfrey, A primer on distributed computing, 2002. [Online]. Available:
http://www.bacchae.co.uk/docs/dist.html

[81] A. Govind, Nonlinear Fiber Optics, Fifth Edition.

[82] J. Gowar, Optical communication systems. Hempstead, UK: Prentice-Hall,
1993.

[83] D. Groth and T. Skandier, Network+ Study Guide, Fourth Edition’. Sybex,
Inc., 2005.

[84] ——, Network+ Study Guide, Fourth Edition’. Sybex, Inc., 2005.

113

http://portal.acm.org/citation.cfm?doid=357195.357200
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=902157
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=902157
http://www.matpack.de/index.html{#}DOWNLOAD
http://www.corning.com/WorkArea/downloadasset.aspx?id=7783
http://www.bacchae.co.uk/docs/dist.html

[85] A.-R. Haarala, Libraries as key players at the local level. [Online]. Avail-
able: http://edoc.hu-berlin.de/conferences/eunis2001/e/Haarala/HTML/
haarala-ch2.html

[86] P. Halvorsen, T. Plagemann, and V. Goebel, “Improving the I/O perfor-
mance of intermediate multimedia storage nodes,” {ACM}/{S}pringer Mul-
timedia Systems, vol. 9, no. 1, pp. 56–67, 2003.

[87] H. Hamilton, Distributed Algorithms. [Online]. Available: http://www2.cs.
uregina.ca/{~}hamilton/courses/330/notes/distributed/distributed.html

[88] J. Hammond, Joseph L., J. E. Brown, and S.-S. Liu, “Development of a
Transmission Error Model and an Error Control Model,” Unknown, vol. 76,
1975.

[89] J. Hecht, City of Light, The Story of Fiber Optics. New York: Oxford
University Press, 1999. [Online]. Available: http://books.google.com/?id=
4oMu7RbGpqUC{&}pg=PA114

[90] ——, Understanding Fiber Optics. Prentice Hall, 2002.

[91] T. Herbert and W. de Bruijn, Documentation/networking/scaling.txt.
kernel.org, 2014. [Online]. Available: https://www.kernel.org/doc/
Documentation/networking/scaling.txt

[92] M. P. Herlihy and N. N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[93] B. Hitz, “Origin of ’fiber fuse’ is revealed,” Photonics Spectra, 2003.
[Online]. Available: http://www.photonics.com/Article.aspx?AID=16745

[94] H. H. HOPKINS and N. S. KAPANY, “A Flexible Fibrescope, using
Static Scanning,” Nature, vol. 173, no. 4392, pp. 39–41, jan 1954. [Online].
Available: http://www.nature.com/doifinder/10.1038/173039b0

[95] J. D. Jackson, Classical Electrodynamics. New York: John Wiley & Sons,
Inc., 1962.

[96] J. Jang, C. Kim, and Y. Yu, “A Study on the MOST150/Ethernet Gateway
of In-Vehicle Network,” Ijcsns, vol. 10, no. 9, pp. 62–65, 2010. [Online].
Available: http://paper.ijcsns.org/07{_}book/201009/20100910.pdf

114

http://edoc.hu-berlin.de/conferences/eunis2001/e/Haarala/HTML/haarala-ch2.html
http://edoc.hu-berlin.de/conferences/eunis2001/e/Haarala/HTML/haarala-ch2.html
http://www2.cs.uregina.ca/{~}hamilton/courses/330/notes/distributed/distributed.html
http://www2.cs.uregina.ca/{~}hamilton/courses/330/notes/distributed/distributed.html
http://books.google.com/?id=4oMu7RbGpqUC{&}pg=PA114
http://books.google.com/?id=4oMu7RbGpqUC{&}pg=PA114
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
http://www.photonics.com/Article.aspx?AID=16745
http://www.nature.com/doifinder/10.1038/173039b0
http://paper.ijcsns.org/07{_}book/201009/20100910.pdf

[97] D. T. Jones, “An Improved 64-bit Cyclic Redundancy Check for Protein
Sequences.”

[98] U. G. June, “Virtex-5 FPGA Packaging and Pinout Specification,” vol. 195,
pp. 1–416, 2012.

[99] M. Kabir, “Network Architecture of a Modern Automotive Infotainment
System,” Advances in Automobile Engineering, vol. 01, no. 03, pp. 1–5,
2012. [Online]. Available: http://www.omicsgroup.org/journals/2167-7670/
2167-7670-1-101.digital/2167-7670-1-101.html

[100] M. Karabulut, E. Melnik, R. Stefan, G. Marasinghe, C. Ray, C. Kurkjian,
and D. Day, “Mechanical and structural properties of phosphate
glasses,” Journal of Non-Crystalline Solids, vol. 288, no. 1-3, pp. 8–17,
aug 2001. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0022309301006159

[101] I. Keidar, “ACM SIGACT news distributed computing column 32,” ACM
SIGACT News, vol. 39, no. 4, p. 53, nov 2008. [Online]. Available:
http://webee.technion.ac.il/{~}idish/sigactNews/{#}column32

[102] P. T. Kirstein, A SURVEY OF PRESENT AND PLANNED GENERAL
PURPOSE EUROPEAN DATA AND COMPUTER NETWORKS. Sussex,
United Kingdom: Noordhoff International Publishing, 1973. [Online].
Available: http://rogerdmoore.ca/PS/Kirs1973/Ki.html{#}GEISCO

[103] G. M. Kizer, Microwave communication. Iowa State University
Press, 1990. [Online]. Available: http://books.google.co.uk/books?id=
T2fI766k2R0C{&}pg=PA312

[104] G. Knott and N. Waites, BTEC Nationals for IT Practitioners. Brancepeth
Computer Publications, 2002.

[105] P. Koopman, “32-bit cyclic redundancy codes for Internet applications,” in
Proceedings International Conference on Dependable Systems and Networks.
IEEE Comput. Soc, 2002, pp. 459–468. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1028931

[106] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks,” in International Conference
on Dependable Systems and Networks, 2004. IEEE, 2004, pp. 145–154.

115

http://www.omicsgroup.org/journals/2167-7670/2167-7670-1-101.digital/2167-7670-1-101.html
http://www.omicsgroup.org/journals/2167-7670/2167-7670-1-101.digital/2167-7670-1-101.html
http://linkinghub.elsevier.com/retrieve/pii/S0022309301006159
http://linkinghub.elsevier.com/retrieve/pii/S0022309301006159
http://webee.technion.ac.il/{~}idish/sigactNews/{#}column 32
http://rogerdmoore.ca/PS/Kirs1973/Ki.html{#}GEISCO
http://books.google.co.uk/books?id=T2fI766k2R0C{&}pg=PA312
http://books.google.co.uk/books?id=T2fI766k2R0C{&}pg=PA312
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1028931
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1028931

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1311885

[107] P. Koopman, Blog: Checksum and CRC Central.

[108] P. Koopman, K. Driscoll, and B. Hall, Cyclic Redundancy Code and Check-
sum Algorithms to Ensure Critical Data Integrity. Federal Aviation Admin-
istration, 2015.

[109] E. Korach, S. Kutten, and S. Moran, “A modular technique for the design
of efficient distributed leader finding algorithms,” ACM Transactions on
Programming Languages and Systems, vol. 12, no. 1, pp. 84–101, jan 1990.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=77606.77610

[110] G. Kostovski, P. R. Stoddart, and A. Mitchell, “The Optical Fiber
Tip: An Inherently Light-Coupled Microscopic Platform for Micro- and
Nanotechnologies,” Advanced Materials, vol. 26, no. 23, pp. 3798–3820, jun
2014. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24599822

[111] M. B. Kounavis, A Systematic Approach to Building High Performance,
Software-based, CRC generators. Intel, 2005.

[112] D. Kouznetsov and J. Moloney, “Highly efficient, high-gain, short-length,
and power-scalable incoherent diode slab-pumped fiber amplifier/laser,”
IEEE Journal of Quantum Electronics, vol. 39, no. 11, pp. 1452–1461, nov
2003. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1242365

[113] C. R. Kurkjian, P. G. Simpkins, and D. Inniss, “Strength, Degradation,
and Coating of Silica Lightguides,” Journal of the American Ceramic
Society, vol. 76, no. 5, pp. 1106–1112, may 1993. [Online]. Available:
http://doi.wiley.com/10.1111/j.1151-2916.1993.tb03727.x

[114] C. R. Kurkjian, O. S. Gebizlioglu, and I. Camlibel, “<title>Strength
variations in silica fibers</title>,” in Proceedings of SPIE, M. J.
Matthewson, Ed., vol. 3848, dec 1999, pp. 77–86. [Online]. Available:
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=909071

[115] C. Kurkjian, “Mechanical stability of oxide glasses,” Journal of Non-
Crystalline Solids, vol. 102, no. 1-3, pp. 71–81, jun 1988. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/0022309388901147

116

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1311885
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1311885
http://portal.acm.org/citation.cfm?doid=77606.77610
http://www.ncbi.nlm.nih.gov/pubmed/24599822
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1242365
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1242365
http://doi.wiley.com/10.1111/j.1151-2916.1993.tb03727.x
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=909071
http://linkinghub.elsevier.com/retrieve/pii/0022309388901147

[116] ——, “Mechanical properties of phosphate glasses,” Journal of Non-
Crystalline Solids, vol. 263-264, pp. 207–212, mar 2000. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0022309399006377

[117] C. Kurkjian, J. Krause, and M. Matthewson, “Strength and fatigue of
silica optical fibers,” Journal of Lightwave Technology, vol. 7, no. 9, pp.
1360–1370, 1989. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=50715

[118] J. F. Kurose and K. W. Ross, COMPUTER NETWORKING A Top-Down
Approach.

[119] L. Lavandera, ARCHITECTURE, PROTOCOLS AND PERFORMANCE
OF RETD. IEEE, 1980. [Online]. Available: http://rogerdmoore.ca/PS/
RETDB.html

[120] B. Lee, “Review of the present status of optical fiber sensors,” Optical
Fiber Technology, vol. 9, no. 2, pp. 57–79, apr 2003. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1068520002005278

[121] M. M. Lee, C. V. Cryan, J. M. Roth, and T. G. Ulmer, “The Fiber Fuse
Phenomenon in Polarization-Maintaining Fibers at 1.55 µm,” Conference on
Lasers and Electro-Optics/Quantum Electronics and Laser Science Confer-
ence and Photonic Applications Systems Technologies, 2006.

[122] Y.-J. Lee, Y.-H. Park, S.-W. Sok, H.-Y. Kim, and C.-H. Lee,
“Fast-path I/O architecture for high performance streaming server,”
Middleware 2011, vol. 50, no. 2, pp. 99–120, 2008. [Online]. Available:
http://www.springerlink.com/index/10.1007/s11227-008-0254-5

[123] P. Lind and M. Alm, “A Database-Centric Virtual Chemistry System,”
Journal of Chemical Information and Modeling, vol. 46, no. 3, pp. 1034–
1039, may 2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/
16711722

[124] N. Linial, “Locality in Distributed Graph Algorithms,” SIAM Journal on
Computing, vol. 21, no. 1, pp. 193–201, feb 1992. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/0221015

[125] T. Lorenz, “Advanced Gateways in Automotive Applications,” Elektrotechnik
und Informatik der Technische Universität Berlin, 2008.

117

http://linkinghub.elsevier.com/retrieve/pii/S0022309399006377
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=50715
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=50715
http://rogerdmoore.ca/PS/RETDB.html
http://rogerdmoore.ca/PS/RETDB.html
http://linkinghub.elsevier.com/retrieve/pii/S1068520002005278
http://www.springerlink.com/index/10.1007/s11227-008-0254-5
http://www.ncbi.nlm.nih.gov/pubmed/16711722
http://www.ncbi.nlm.nih.gov/pubmed/16711722
http://epubs.siam.org/doi/abs/10.1137/0221015

[126] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[127] N. Mandayam, G. Editor, S. Wicker, J. Walrand, T. Basar, J. Huang, and
D. Palomar, “Game Theory in Communication Systems [Guest Editorial],”
IEEE Journal on Selected Areas in Communications, vol. 26, no. 7, pp.
1042–1046, sep 2008. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4604730

[128] C. C. Martel, J. M. Cunningham, and M. S. Grushcow, THE BNR
NETWORK: A CANADIAN EXPERIENCE WITH PACKET SWITCH-
ING TECHNOLOGY. [Online]. Available: http://rogerdmoore.ca/PS/
BNR/BNRnet.html

[129] P. Melling and M. Thomson, “Reaction monitoring in small reactors and
tight spaces,” American Laboratory News, 2002.

[130] P. J. Melling and M. Thomson, Fiber-optic probes for mid-infrared spectrom-
etry. Wiley, 2002.

[131] S. Mendicino, Octopus: The Lawrence Radiation Laboratory Network, 1970.
[Online]. Available: http://www.rogerdmoore.ca/PS/OCTOA/OCTO.html

[132] S. F. Mendicino, “1970 OCTOPUS: THE LAWRENCE RADIATION
LABORATORY NETWORK,” COMPUTER NETWORKS, pp. 95 – 100,
1972. [Online]. Available: http://rogerdmoore.ca/PS/OCTOA/OCTO.html

[133] T. Microblaze and S. Kit, “Module 3 : Adding Custom IP to an Embedded
System to an Embedded System.”

[134] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock
in an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, aug 1997. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=263335

[135] P. J. Nahin, Oliver Heaviside: The Life, Work, and Times of an Electrical
Genius of the Victorian Age, 2002.

[136] M. Naor and L. Stockmeyer, “What Can be Computed Locally?” SIAM
Journal on Computing, vol. 24, no. 6, pp. 1259–1277, dec 1995. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/S0097539793254571

118

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4604730
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4604730
http://rogerdmoore.ca/PS/BNR/BNRnet.html
http://rogerdmoore.ca/PS/BNR/BNRnet.html
http://www.rogerdmoore.ca/PS/OCTOA/OCTO.html
http://rogerdmoore.ca/PS/OCTOA/OCTO.html
http://portal.acm.org/citation.cfm?id=263335
http://portal.acm.org/citation.cfm?id=263335
http://epubs.siam.org/doi/abs/10.1137/S0097539793254571

[137] S.-M. F. Nee, L. F. Johnson, M. B. Moran, J. M. Pentony, S. M.
Daigneault, D. C. Tran, K. W. Billman, and S. Siahatgar, “<title>Optical
and surface properties of oxyfluoride glass</title>,” in Proceedings of
SPIE, A. J. Marker III and E. G. Arthurs, Eds., vol. 4102, oct 2000,
pp. 122–133. [Online]. Available: http://proceedings.spiedigitallibrary.org/
proceeding.aspx?articleid=916530

[138] L. Network and B. Communication, “Controller Area Network (CAN)
Overview,” pp. 2–6, 2014.

[139] J.-i. Nishizawa and Suto, Terahertz wave generation and light amplification
using Raman effect. New Delhi, India: Narosa Publishing House, 2004.
[Online]. Available: http://books.google.com/?id=2NTpSnfhResC{&}pg=
PA27

[140] T. Olzak, Protect your network against fiber hacks. CNET, 2007. [Online].
Available: http://blogs.techrepublic.com.com/security/?p=222

[141] F. Optics and S. Solutions, “White Paper Connecting it all together - Fiber
Optics in Security & Surveillance.”

[142] M. Oriented and S. Transport, MOST ToGo Architecture and Implementa-
tion User ’ s Guide Supporting MOST Networks, 2014, no. May.

[143] H. W. Ott, Noise Reduction Techniques in Electronic Systems, 1976.

[144] C. H. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

[145] W. Paper, “Fiber or Coaxial : Which one is best for your business ?” 2016.

[146] R. Paschotta, Fibers. RP Photonics. [Online]. Available: https:
//www.rp-photonics.com/fibers.html

[147] ——, Brillouin Scattering. RP Photonics. [Online]. Available: https:
//www.rp-photonics.com/brillouin{_}scattering.html

[148] ——, Tutorial on Passive Fiber optics. RP Photonics. [Online]. Available:
https://www.rp-photonics.com/passive{_}fiber{_}optics.html

[149] D. Pearson and D. Wilkin, Some Design Aspects of a public packet switching
network, 1974. [Online]. Available: http://rogerdmoore.ca/PS/EPSSFer/
EF.html

119

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=916530
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=916530
http://books.google.com/?id=2NTpSnfhResC{&}pg=PA27
http://books.google.com/?id=2NTpSnfhResC{&}pg=PA27
http://blogs.techrepublic.com.com/security/?p=222
https://www.rp-photonics.com/fibers.html
https://www.rp-photonics.com/fibers.html
https://www.rp-photonics.com/brillouin{_}scattering.html
https://www.rp-photonics.com/brillouin{_}scattering.html
https://www.rp-photonics.com/passive{_}fiber{_}optics.html
http://rogerdmoore.ca/PS/EPSSFer/EF.html
http://rogerdmoore.ca/PS/EPSSFer/EF.html

[150] D. L. Pehrson, AN ENGINEERING VIEW OF THE LRL OCTO-
PUS COMPUTER NETWORK, 1970. [Online]. Available: http:
//www.computer-history.info/Page4.dir/pages/Octopus.dir/index.html

[151] D. Peleg, Distributed Computing: A Locality-Sensitive Approach. SIAM,
2000. [Online]. Available: http://www.ec-securehost.com/SIAM/DT05.html

[152] J. Pelkey, Entrepreneurial Capitalism and Innovation: A His-
tory of Computer Communications 1968-1988. [Online]. Avail-
able: http://www.historyofcomputercommunications.info/Book/6/6.
3-CYCLADESNetworkLouisPouzin1-72.html

[153] A. Perez, “Byte-Wise CRC Calculations,” IEEE Micro, vol. 3, no. 3,
pp. 40–50, jun 1983. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4070930

[154] I. Peter, Ian Peter’s History of the Internet, 2004. [Online]. Available:
http://www.nethistory.info/HistoryoftheInternet/

[155] W. Peterson and D. Brown, “Cyclic Codes for Error Detection,” Proceedings
of the IRE, vol. 49, no. 1, pp. 228–235, jan 1961. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4066263

[156] T. Plagemann, V. Goebel, P. Halvorsen, and O. Anshus, “Operating system
support for multimedia systems,” Computer Communications, vol. 23,
no. 3, pp. 267–289, 2000. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0140366499001802

[157] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Section 22.4 Cyclic
Redundancy and Other Checksums. New York: Cambridge University
Press, 2007. [Online]. Available: http://apps.nrbook.com/empanel/index.
html{#}pg=1168

[158] B. A. Proctor, I. Whitney, and J. W. Johnson, “The Strength of
Fused Silica,” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 297, no. 1451, pp. 534–557, mar 1967.
[Online]. Available: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/
rspa.1967.0085

[159] T. Ramabadran and S. Gaitonde, “A tutorial on CRC computations,”
IEEE Micro, vol. 8, no. 4, pp. 62–75, aug 1988. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7773

120

http://www.computer-history.info/Page4.dir/pages/Octopus.dir/index.html
http://www.computer-history.info/Page4.dir/pages/Octopus.dir/index.html
http://www.ec-securehost.com/SIAM/DT05.html
http://www.historyofcomputercommunications.info/Book/6/6.3-CYCLADESNetworkLouisPouzin1-72.html
http://www.historyofcomputercommunications.info/Book/6/6.3-CYCLADESNetworkLouisPouzin1-72.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4070930
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4070930
http://www.nethistory.info/History of the Internet/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4066263
http://www.sciencedirect.com/science/article/pii/S0140366499001802
http://www.sciencedirect.com/science/article/pii/S0140366499001802
http://apps.nrbook.com/empanel/index.html{#}pg=1168
http://apps.nrbook.com/empanel/index.html{#}pg=1168
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1967.0085
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1967.0085
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7773

[160] P. N. Recommended and N. Designs, “Connecting Customized IP to the
MicroBlaze Soft Processor Using the Fast Simplex Link (FSL) Channel,”
Intellectual Property, vol. 529, pp. 1–12, 2004.

[161] A. Rehmann and J. D. Mestre, “Air Ground Data Link VHF Airline Commu-
nications and Reporting System (ACARS) Preliminary Test Report,” 1995.

[162] A. Richardson, WCDMA Handbook. Cambridge, UK:
Cambridge University Press, 2005. [Online]. Avail-
able: http://books.google.co.uk/books?id=yN5lve5L4vwC{&}lpg=
PA223{&}dq={&}pg=PA223{#}v=onepage{&}q{&}f=false

[163] T. Ritter, “The Great CRC Mystery,” Dr. Dobb’s Journal, vol. 11, no. 2,
pp. 26 – 34, 1986. [Online]. Available: http://www.ciphersbyritter.com/
ARTS/CRCMYST.HTM

[164] J. Robert Lee Lounsbury, “OPTIMUM ANTENNA CONFIGURATION
FORMAXIMIZING ACCESS POINT RANGE OF AN IEEE 802.11 WIRE-
LESS MESH NETWORK IN SUPPORT OF MULTIMISSION OPER-
ATIONS RELATIVE TO HASTILY FORMED SCALABLE DEPLOY-
MENTS.”

[165] ——, “Optimum Antenna Configuration for Maximizing Access Point Range
of an IEEE 802.11 Wireless Mesh Network in Support of Multimission Op-
erations Relative to Hastily Formed Scalable Deployments,” 2007.

[166] ——, “Optimum Antenna Configuration for Maximizing Access Point Range
of an IEEE 802.11 Wireless Mesh Network in Support of Multimission Op-
erations Relative to Hastily Formed Scalable Deployments,” 2007.

[167] L. G. Roberts and B. D. Wessler, “Computer network development
to achieve resource sharing,” in Proceedings of the May 5-7, 1970,
spring joint computer conference on - AFIPS ’70 (Spring). New York,
New York, USA: ACM Press, 1970, p. 543. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1476936.1477020

[168] A. Rubini, G. Kroah-Hartman, and J. Corbet, Linux Device Drivers, Third
Edition, Chapter 10. Interrupt Handling. O’Reilly Media, 2005.

[169] P. Russell, “Photonic crystal fibers.” Science (New York, N.Y.), vol.
299, no. 5605, pp. 358–62, jan 2003. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/12532007

121

http://books.google.co.uk/books?id=yN5lve5L4vwC{&}lpg=PA223{&}dq={&}pg=PA223{#}v=onepage{&}q{&}f=false
http://books.google.co.uk/books?id=yN5lve5L4vwC{&}lpg=PA223{&}dq={&}pg=PA223{#}v=onepage{&}q{&}f=false
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM
http://portal.acm.org/citation.cfm?doid=1476936.1477020
http://www.ncbi.nlm.nih.gov/pubmed/12532007
http://www.ncbi.nlm.nih.gov/pubmed/12532007

[170] G. Sasaki, K. Sivarajan, and R. Ramaswami, Optical Networks: A Practical
Perspective. Morgan Kaufmann, 2009.

[171] R. A. Scantlebury and P. Wilkinson, The National Physical Laboratory
Data Communications Network, 1974. [Online]. Available: http://www.
rogerdmoore.ca/PS/NPLPh/NPL1974A.html

[172] S. Schmechtig and J. Kjelsbak, “FlexRay - The Hardware View FlexRay -
The Hardware View,” no. February, 2006.

[173] M. Schwartz, R. Boorstyn, and R. Pickholtz, “Terminal-oriented computer-
communication networks,” Proceedings of the IEEE, vol. 60, no. 11, pp.
1408–1423, 1972. [Online]. Available: http://rogerdmoore.ca/PS/TONET/
TON.html{#}GEISCO

[174] J. M. Senior and M. Y. Jamro, Optical fiber communications: principles
and practice. Pearson Education, 2009. [Online]. Available: http:
//cds.cern.ch/record/1493478

[175] K. Seo, “Evaluation of high-power endurance in optical fiber links,” Fu-
rukawa Review, no. 24, pp. 17 – 22, 2003.

[176] Z. Shi, C. Beard, and K. Mitchell, Competition, cooperation, and
optimization in Multi-Hop CSMA networks, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2069084

[177] A. Skontorp, “<title>Nonlinear mechanical properties of silica-based
optical fibers</title>,” in Proceedings of SPIE, P. F. Gobin and C. M.
Friend, Eds., vol. 4073, aug 2000, pp. 278–289. [Online]. Available:
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=910705

[178] L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide
glasses,” physica status solidi (c), vol. 2, no. 1, pp. 15–24, jan 2005. [Online].
Available: http://doi.wiley.com/10.1002/pssc.200460102

[179] R. G. Smith, “Optical power handling capacity of low loss optical fibers
as determined by stimulated Raman and brillouin scattering.” Applied
optics, vol. 11, no. 11, pp. 2489–94, nov 1972. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20119362

[180] P. Specification, C. Specifics, R. Used, and D. T. Requirements, “LogiCORE
IP Fast Simplex,” pp. 1–9, 2011.

122

http://www.rogerdmoore.ca/PS/NPLPh/NPL1974A.html
http://www.rogerdmoore.ca/PS/NPLPh/NPL1974A.html
http://rogerdmoore.ca/PS/TONET/TON.html{#}GEISCO
http://rogerdmoore.ca/PS/TONET/TON.html{#}GEISCO
http://cds.cern.ch/record/1493478
http://cds.cern.ch/record/1493478
http://dl.acm.org/citation.cfm?id=2069084
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=910705
http://doi.wiley.com/10.1002/pssc.200460102
http://www.ncbi.nlm.nih.gov/pubmed/20119362

[181] W. Stallings, Data and computer communications, 1997. [Online]. Avail-
able: http://tinnakorn.cs.rmu.ac.th/Courses/DataCommNetwork/Book/
DataAndComputerCommunications8E.pdf

[182] B. Stewart, Paul Baran Invents Packet Switching, 2000. [Online]. Available:
http://www.livinginternet.com/i/ii{_}rand.htm

[183] M. Stigge, W. Müller, H. Plötz, and J.-P. Redlich, “Reversing CRC - Theory
and Practice,” 2006.

[184] T. Strang, “Multimedia Protocols.”

[185] R. Sundstrom and G. Schultz, 1980 SNA’S First Six Years: 1974-1980,
1980. [Online]. Available: http://rogerdmoore.ca/PS/SNA6Y/SNA6.html

[186] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, Fifth Edition,
2011.

[187] S. Taylor and J. Metzler, Vint Cerf on why TCP/IP was so long in coming,
2008. [Online]. Available: http://www.networkworld.com/newsletters/
frame/2008/0128wan1.html

[188] T. Teachout, The New-Media Crisis of 1949. Wall Street
Journal. [Online]. Available: http://www.wsj.com/news/articles/
SB10001424052970204683204574357332713730174

[189] G. Tel, Introduction to Distributed Algorithms. Cambridge University Press,
1994.

[190] P. Thaler, “16-bit CRC polynomial selection,” 2003.

[191] K. Tomaru, S. Yamaguchi, and T. Kato, A Private Packet Network and
Its Application in A Worldwide Integrated Communication Network, 1980.
[Online]. Available: http://rogerdmoore.ca/PS/HIPA/HIA.html

[192] D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers:
A review,” Journal of Lightwave Technology, vol. 2, no. 5, pp. 566–586,
1984. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1073661

[193] L. R. W. TYMES, TYMNET - A terminal oriented communication network.
[Online]. Available: http://rogerdmoore.ca/PS/TYMNET/TY.html

123

http://tinnakorn.cs.rmu.ac.th/Courses/DataCommNetwork/Book/DataAndComputerCommunications8E.pdf
http://tinnakorn.cs.rmu.ac.th/Courses/DataCommNetwork/Book/DataAndComputerCommunications8E.pdf
http://www.livinginternet.com/i/ii{_}rand.htm
http://rogerdmoore.ca/PS/SNA6Y/SNA6.html
http://www.networkworld.com/newsletters/frame/2008/0128wan1.html
http://www.networkworld.com/newsletters/frame/2008/0128wan1.html
http://www.wsj.com/news/articles/SB10001424052970204683204574357332713730174
http://www.wsj.com/news/articles/SB10001424052970204683204574357332713730174
http://rogerdmoore.ca/PS/HIPA/HIA.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1073661
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1073661
http://rogerdmoore.ca/PS/TYMNET/TY.html

[194] ——, “Routing and Flow Control in TYMNET,” IEEE TRANSACTIONS
ON COMMUNICATIONS, vol. COM-29, no. 4, pp. 392 – 98, 1981. [Online].
Available: http://www.rogerdmoore.ca/PS/TYMFlow/TF.html

[195] J. Tyndall, Total Reflexion, 1870. [Online]. Available: http://www.archive.
org/details/notesofcourseofn00tyndrich

[196] ——, Six Lectures on Light, 1873. [Online]. Available: http://www.archive.
org/details/sixlecturesonlig00tynduoft

[197] D. Type and P. Date, “FlexRay Automotive Communication Bus Overview,”
Exchange Organizational Behavior Teaching Journal, pp. 1–7, 2009.

[198] J. WELLS, “Hair light guide,” Nature, vol. 338, no. 6210, pp. 23–23, mar
1989. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/2918918

[199] E. A. e. Williams, National Association of Broadcasters Engineering Hand-
book (Tenth Edition). Taylor & Francis, 2007.

[200] R. N. Williams, A Painless Guide to CRC Error Detection Algorithms
V3.0, 1996. [Online]. Available: http://www.repairfaq.org/filipg/LINK/
F{_}crc{_}v3.html

[201] Xilinx, “Custom Peripheral Design Guide,” 2008.

[202] ——, “L507 Evaluation Evaluation Platform Platform User Guide,” vol. 347,
pp. 1–60, 2009.

[203] I. Xilinx, “Xilinx UG190 Virtex-5 FPGA User Guide,” 6.375, vol. 190,
pp. 1–385, 2012. [Online]. Available: http://www.xilinx.com/support/
documentation/user{_}guides/ug190.pdf

[204] Xilinx Inc., “Xilkernel,” Xilinx int., Application Note, pp. 1–56, 2006.
[Online]. Available: http://www.xilinx.com/ise/embedded/edk91i{_}docs/
xilkernel{_}v3{_}00{_}a.pdf

124

http://www.rogerdmoore.ca/PS/TYMFlow/TF.html
http://www.archive.org/details/notesofcourseofn00tyndrich
http://www.archive.org/details/notesofcourseofn00tyndrich
http://www.archive.org/details/sixlecturesonlig00tynduoft
http://www.archive.org/details/sixlecturesonlig00tynduoft
http://www.ncbi.nlm.nih.gov/pubmed/2918918
http://www.repairfaq.org/filipg/LINK/F{_}crc{_}v3.html
http://www.repairfaq.org/filipg/LINK/F{_}crc{_}v3.html
http://www.xilinx.com/support/documentation/user{_}guides/ug190.pdf
http://www.xilinx.com/support/documentation/user{_}guides/ug190.pdf
http://www.xilinx.com/ise/embedded/edk91i{_}docs/xilkernel{_}v3{_}00{_}a.pdf
http://www.xilinx.com/ise/embedded/edk91i{_}docs/xilkernel{_}v3{_}00{_}a.pdf

Appendix A

Building Hybrid CPU+FPGA
System via Xilinx EDK

This guide is meant for the Xilinx ISE 13.2 Design Suite, being Xilinx XUPV5-
LX110T the board used, explaining how to setup the EDA to build a Hybrid
CPU+FPGA system, based on the PLB, to enable communication between the
CPU and the RTL implemented IP Cores. Having started the Xilinx Platform
Studio, proceed to call the Base System Builder wizard.

Figure A.1: Building Hybrid CPU+FPGA System via Xilinx EDK with the help
of the setup wizard

After that, select the PLB System Interconnect type and make sure to include the

125

EDK-XUPV5-LX110T-Pack specific configuration file, so that the tool can recog-
nize the board and generate the System accordingly to the board’s specifications.

Figure A.2: Building Hybrid CPU+FPGA System via Xilinx EDK - Interconnect
Bus solution selection and board specification importation

Then, the choice to create a new design is done.

Figure A.3: Building Hybrid CPU+FPGA System via Xilinx EDK - Creation of
a new design from scratch

The proper board has to be selected.

126

Figure A.4: Building Hybrid CPU+FPGA System via Xilinx EDK - Board selec-
tion

Furthermore, in this case, a single processor is going to be part of the solution to
be built.

Figure A.5: Building Hybrid CPU+FPGA System via Xilinx EDK based on single
or multiple processors

127

The following CPU configuration is to be selected.

Figure A.6: Building Hybrid CPU+FPGA System via Xilinx EDK - Processor
configuration

Then, extra peripherals can be added to the solution and those who are not rele-
vant for the application can be removed, so as to save the usage of FPGA’s logic
elements.

In this case, it is not relevant to enable the microprocessors cache, therefore, both
options of the menu in the figure A.8 are left disabled.

After the last step, the EDA tool is configured to generate an Hybrid CPU +
FPGA for this board.

128

Figure A.7: Building Hybrid CPU+FPGA System via Xilinx EDK - Selecting
peripherals for the application

Figure A.8: Building Hybrid CPU+FPGA System via Xilinx EDK - Processor
cache features

129

130

Appendix B

Integration of Custom IP in the
Hybrid CPU+FPGA System

B.1 Creating peripheral template for custom IP
integration

The Xilinx Platform Studio also helps the integration of custom IPs in the gener-
ated design. The wizard represented in the figure B.1 must be performed as per
the instructions included in this chapter, in order to get the desired effect.

Figure B.1: Creating peripheral template for custom IP integration - Initial menu

131

Firstly, the aim is to create a template compliant with the system design that has
been generated in the previous chapter, that will be tailored in order to accommo-
date the custom IP to be integrated in the design.

Figure B.2: Creating peripheral template for custom IP integration

In this case, the choice is to add the peripheral to a local XPS project.

Figure B.3: Creating peripheral template for custom IP integration locally

After that, a name is assigned to the IP to be integrated.

And the Interconnect Interface is selected, which in this case will be the PLB.

132

Figure B.4: Creating peripheral template for custom IP integration - Assigning a
name to the peripheral

Figure B.5: Creating peripheral template for custom IP integration - Interconnect
Bus selection

133

The custom IP and the software application, run in the CPU, communicate with
each other by means of registers. A number of them can be selected according to
the user’s needs.

Figure B.6: Creating peripheral template for custom IP integration - allocating
registers for communication between CPU and custom IP core

In this case, the pre-selected PLB ports are enough for this application.

Figure B.7: Creating peripheral template for custom IP integration - PLB ports

Provided that the custom IP was developed in Verilog and the automatic gener-
ation of drivers to access the PLB registers is desired, the configuration shown in

134

the figure B.8 is selected.

Figure B.8: Creating peripheral template for custom IP integration - automatic
generation of templates for software drivers and HDL source code

Finally, the peripheral template is created and shall be instantiated in the RTL
design, by means of assigning the range of memory addresses the register are going
to be allocated in.

Figure B.9: Creating peripheral template for custom IP integration - mapping
newly created peripheral

B.2 Tailoring peripheral template to accommo-
date custom IP

Part of the previous steps, the file user_logic.v has been generated in the directory
under which the project was saved.

135

Figure B.10: File to which custom IP’s source code is inserted

Shall the custom IP contain input and output ports that need to interact with the
exterior of the PLB infrastructure, such ports can be declared in the header of the
top module called user_logic.

Figure B.11: Custom IP’s I/O ports to communicate with the rest of the system
design

136

Inside that module, the custom IP module can be instantiated - in this case the
module called device, of which its instance is aliased as nic. Note that in the same
source file, the RTL code of the actual custom IP must be present.

Figure B.12: Instantiation of the custom IP’s module

In a separate file, also generated by the EDA tool, the same procedures have to
be done in case a custom IP contain input and output ports that need to interact
with the exterior of the PLB infrastructure, as indicated in the figures B.13, B.14
and B.15.

137

Figure B.13: Peripheral’s top level design file

Figure B.14: Allowing custom IP’s I/O ports to interact with the exterior of the
PLB infrastructure

138

Figure B.15: Allowing custom IP’s I/O ports to interact with the exterior of the
PLB infrastructure

139

Figure B.16: Allowing custom IP’s I/O ports to interact with the exterior of the
PLB infrastructure

140

Having edited the source files, the Xilinx Platform Studio tool’s information needs
to be refreshed, as the peripheral template has been changed as a result of the
tailoring process that has been carried out.

Figure B.17: Updating peripheral specification

Similarly to the process of creating a peripheral template, the importation of the
updated peripheral is meant to be stored locally.

Figure B.18: Updating peripheral specification in a previously created local pe-
ripheral

Besides that, the name of the peripheral must match the one that has been created
in preceding steps.

141

Figure B.19: Inserting the same name of the existing peripheral to be updated

Provided that the name of the peripheral matches the one of the previously created
model, one should confirm to overwrite the changes done in the meantime.

Figure B.20: Confirmation to overwrite the performed changes

In this case, only the source files need to be imported.

142

Figure B.21: Importing HDL source files

143

A file with the PAO extension, that also has been generated by the EDA tool and
that corresponds to the current peripheral, need to be located and selected, so that
the wizard can continue the process of updating the specification of the peripheral
that holds the custom IP.

Figure B.22: Selecting Peripheral Order Analysis file

After that, the peripheral acts as a PLB slave, so the choice needs to be done
accordingly.

Figure B.23: Setting peripheral as PLB slave

The list of I/O ports that interact with the outside part of the PLB infrastructure

144

are listed in the wizard, as per the figure B.24. In case output ports of that
peripheral are linked with an interrupt controller, its interrupt sensitivity can be
selected. In this case, the signal’s rising edge sensitivity is selected.

Figure B.24: Setting up interrupt sensitivity of custom IP ports

Finally, upon the wizard’s steps completion, the custom IP has been imported into
the overall system design. Having connected the custom IP’s I/O ports accordingly
to project’s specification, requesting the Xilinx Platform Studio tool to generate
the logic of the Hybrid CPU + FPGA platform, prior to developing the software
application to be executed on the CPU side, the whole platform configuration is
ready to be deployed to the designated board.

145

146

Appendix C

Implementation of FSM for
controlling datagram reception,
transmission and loading to
application

//Frame Handling FSM
reg [2 : 0] f h s t ;
reg pd ;
reg crcdone ;
reg frameok ;
reg [3 1 : 0] f c s ;
reg f r ;
reg dt ;
reg td ;
wire [‘FS : 0] s frame ;
reg [‘FS : 0] r frame ;

assign s frame [2 4 9] = shutdown ;
assign s frame [2 4 8] = confmode ;
assign s frame [2 4 7 : 1 6 0] = {adatai , 0 } ;

assign powero f f = rframe [2 4 9] ;
assign adatao = rframe [2 4 7 : 1 6 8] ;

147

always @ (posedge c l k or posedge r s t)
begin
i f (r s t)

begin
dt <= 0 ;

end
else
begin

i f (dtr == 1)
begin

dt <= 1 ;
end
else i f (td)
begin

dt <= 0 ;
end

end
end
always @ (posedge c l k or posedge r s t)
begin

i f (r s t)
begin

f h s t <= 0 ;
rp <= 0 ;
td <= 0 ;

end
else

begin
case (f h s t)

‘FHS0 :
begin

i f (pd)
begin

f h s t <= ‘FHS1 ;
rp <= 0 ;

148

end
else i f (dt)
begin

t frame [‘FS : ‘FS−3] <= 4 ’ b1010 ; //
preamble

t frame [‘FS −4:0] <= sframe [‘FS
−4 : 0] ;

f h s t <= ‘FHS3 ;
td <= 1 ;

end
end

‘FHS1 :
begin

i f (f r == 1)
begin

f h s t <= ‘FHS2 ;
end

end

‘FHS2 :
begin

i f ((frameok == 1) && (crcdone == 1))
begin

f h s t <= ‘FHS4 ;
end
else i f ((frameok == 0) && (crcdone == 1))
begin

t frame [‘FS : 1 6 0] <= 0 ;
f h s t <= ‘FHS3 ;

end
end

‘FHS3 :
begin

i f (f t == 1)
begin

149

f h s t <= ‘FHS0 ;
end

end

‘FHS4 :
begin
i f (r frame [2 4 7 : 1 6 0] != 0)
begin

i f ((r frame [2 4 7 : 2 4 4] == address) | | (r frame [2 4 7 : 2 4 4]
== 4 ’ b1111))

begin
//Parse rframe
rp <= 1 ;
//End Parse rframe
i f (r s == 1)
begin
t frame [‘FS : ‘FS−3] <= 4 ’ b1010 ; // preamble
t frame [‘FS −4:0] <= sframe [‘FS −4 : 0] ;
f h s t <= ‘FHS5 ;
end

end
else
begin

t frame [‘FS : 0] <= rframe [‘FS : 0] ;
i f (master == 1)
begin

f h s t <= ‘FHS0 ;
end
else
begin

f h s t <= ‘FHS3 ;
end

end
end
else
begin

rp <= 1 ;

150

i f (r s == 1)
begin

t frame [‘FS : ‘FS−3] <= 4 ’ b1010 ; // preamble
t frame [‘FS −4:0] <= sframe [‘FS −4 : 0] ;
f h s t <= ‘FHS5 ;

end
end
end

‘FHS5 :
begin
td <= 0 ;
i f (crcdone == 1)
begin

i f (master == 1)
begin

t frame [3 1 : 0] <= f c s [3 1 : 0] ;
f h s t <= ‘FHS0 ;

end
else
begin

t frame [3 1 : 0] <= f c s [3 1 : 0] ;
f h s t <= ‘FHS3 ;

end
end
end

endcase
end
end
//End Frame Handling FSM

151

	1 Introduction
	1.1 Document organization

	2 State of the Art
	2.1 Controller Area Network
	2.2 FlexRay
	2.3 MOST - Media Oriented Systems Transport
	2.3.1 CAN vs FlexRay vs MOST for multimedia oriented applications

	2.4 Transmission Paths
	2.4.1 Optical Fiber
	2.4.2 Coaxial cable
	2.4.3 Twisted-Pair cable
	2.4.4 Conclusions

	2.5 Node positioning and interconnection
	2.5.1 Bus Network
	2.5.2 Star Network
	2.5.3 Ring Network
	2.5.4 Mesh Network
	2.5.5 Conclusions

	2.6 Electronic Design Automation tools
	2.7 Hardware Description Languages
	2.8 Standard integration and reuse of processor, system and peripheral cores
	2.8.1 Processor Local Bus
	2.8.2 On-Chip Peripheral Bus
	2.8.3 Device Control Register Bus

	2.9 Interrupts
	2.9.1 Edge-triggered interrupts

	2.10 Sequential flow in FPGA
	2.11 Audio properties
	2.11.1 Stereo
	2.11.2 Analog Dolby Surround Pro Logic
	2.11.3 Analog Dolby Surround Pro Logic II
	2.11.4 Dolby Digital, AC3
	2.11.5 MPEG-2
	2.11.6 Digital Theatre System (DTS)
	2.11.7 Logic 7

	3 Hardware Platform
	3.1 FPGA Technology
	3.2 Soft-core Processors
	3.2.1 The Microblaze Processor

	3.3 Hybrid CPU+FPGA platform

	4 Communication Protocol Stack
	4.1 Application Framework
	4.1.1 Interface with the Developer
	4.1.2 Interface with Transport Layer
	4.1.3 Interface with Media Oriented Components

	4.2 Transport Layer
	4.2.1 Streaming Session Management Unit
	4.2.2 Node Control Unit
	4.2.3 Network Control Unit
	4.2.4 Interface with Network Layer
	4.2.5 Interface with IP Core

	4.3 Network Layer
	4.3.1 Application Message Exchange Service
	4.3.2 Media Streaming Control Service
	4.3.3 Node Synchronization Service
	4.3.4 Interface with IP Core

	4.4 Logical Layer
	4.4.1 Signal Modulation and Node synchronism
	4.4.2 Error handling
	4.4.3 Datagram structure

	4.5 Stream Service
	4.5.1 Interface with external IP Cores

	5 Case Study
	5.1 Results

	6 Conclusion
	6.1 Future Work

	Bibliography
	A Building Hybrid CPU+FPGA System via Xilinx EDK
	B Integration of Custom IP in the Hybrid CPU+FPGA System
	B.1 Creating peripheral template for custom IP integration
	B.2 Tailoring peripheral template to accommodate custom IP

	C Implementation of FSM for controlling datagram reception, transmission and loading to application

