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Abstract

In this paper we focus on computational aspects associated with poly-
nomial problems in the ring of one-sided quaternionic polynomials. The
complexity and error bounds of quaternion arithmetic are considered and
several evaluation schemes are analyzed from their complexity point of
view. The numerical stability of generalized Horner’s and Goertzel’s
algorithms to evaluate polynomials with quaternion floating-point co-
efficients is addressed. Numerical tests illustrate the behavior of the
algorithms from the point of view of performance and accuracy.

1 Introduction

The processes of factoring and evaluating real or complex polynomials are very important problems and have
received a lot of attention over the years [10, 12, 14]. In the ring of quaternionic polynomials new problems
arise, mainly because the structure of the zero-set of quaternionic polynomials is quite different from the
complex case. In particular, the relation between the factors and the zeros of a polynomial is not so simple
now.

In this paper we address the problem of evaluating a polynomial, i.e., given a polynomial, find its value at
a given argument.

The paper is organized as follows: in Section 2 we introduce the algebra of real quaternions, the complexity
of the elementary arithmetic operations and the fundamentals of quaternion floating-point arithmetic. Section 3
contains a review of the main results concerning the ring of one-sided left quaternionic polynomials (i.e.
quaternionic polynomials whose coefficients are on the left-hand side of the variable). Section 4 is entirely
dedicated to several polynomial evaluation schemes, each of one associated to a particular form in which the
polynomial can be given: expanded form, nested form, factor form or one of two remainder forms. Of these,
we would like to point out the method which we have designated by Niven’s method — acknowledging in this
way the work of [17] — calling the attention to the fact that this procedure can be seen as a quaternionic
version of the well-known algorithm of Goertzel [5]; in addition, we show that this method also corresponds to
a particular case of the algorithm proposed in [19] for the efficient evaluation of powers. The main objective of
Section 5 is to obtain forward error bounds for the Horner’s and Niven’s algorithms to polynomial evaluation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/157771279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mif@math.uminho.pt
mailto:fmiranda@math.uminho.pt
mailto:ricardo@math.uminho.pt
mailto:jsoares@math.uminho.pt
https://link.springer.com/journal/10543
http://dx.doi.org/10.1007/s10543-017-0667-8
https://link.springer.com/article/10.1007%2Fs10543-017-0667-8


2 Evaluation schemes in the ring of quaternionic polynomials

In this context, we introduce the notion, similar to the classical case, of the condition number of the evaluation
of a polynomial at a given point, and express the relative error bound in the approximations produced by each
of the aforementioned methods in terms of this number. Finally, Section 6 illustrates the results of the paper
by examples.

2 Quaternion arithmetic

2.1 The quaternion algebra

Let H denote the algebra of real quaternions. H is a vector space of dimension 4 over R with basis {1, i, j,k}
and multiplication rules i2 = j2 = k2 = −1, ij = −ji = k. Given a quaternion x = x0 + x1i + x2j + x3k,
with x0, x1, x2, x3 ∈ R, its conjugate x is defined as x = x0 − x1i − x2j − x3k; the real part of x is the
number x0 and is denoted by Rex and the vector part of x, denoted by x, is given by x = x1i + x2j + x3k;
the norm of x, |x|, is given by |x| =

√
xx =

√
x20 + x21 + x22 + x23; if x 6= 0, the inverse of x, denoted by x−1,

is the (unique) quaternion such that xx−1 = x−1x = 1 and is given by x−1 = x
|x|2 . Note that the norm is

multiplicative, i.e. we have |xy| = |x||y|, for all x, y ∈ H.

2.2 Complexity

In the next sections we are going to present several algorithms to perform operations on polynomials together
with their computational costs. We will assume that for quaternion numbers x = x0 + x1i + x2j + x3k and
y = y0 + y1i + y2j + y3k we compute

x± y = x0 ± y0 + (x1 ± y1)i + (x2 ± y2)j + (x3 ± y3)k (2.1)

kx = kx0 + kx1i + kx2j + kx3k, k ∈ R (2.2)

xy := x× y = (x0y0 − x1y1 − x2y2 − x3y3) + (x1y0 + x0y1 − x3y2 + x2y3)i

+ (x2y0 + x3y1 + x0y2 − x1y3)j + (x3y0 − x2y1 + x1y2 + x0y3)k (2.3)

1

x
=
x0 − x1i− x2j− x3k
x20 + x21 + x22 + x23

(2.4)

Table 1 summarizes the number of flops1 required by each of the arithmetic operations (2.1)-(2.4).

Table 1: Operations cost

Operations ×R ±R ÷R flops

±H : quaternion± quaternion − 4 − 4
×

scalar
: real× quaternion 4 − − 4

×H : quaternion× quaternion 16 12 − 28
invH : 1/quaternion 4 3 4 11

Remark 2.1. It is possible to perform a quaternionic multiplication using only 8 real multiplications, but
using 27 additions. In our days, with machines where the multiplications are as fast as additions, it is not
important anymore to distinguish these type of operations and so multiplication performed as indicated in
(2.3) is preferable.

1In the context of this paper, a flop is any of the four elementary arithmetic operations +, −, ×, ÷.
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2.3 Quaternion floating-point arithmetic

To carry out error analysis of algorithms in quaternion arithmetic we recall first the principles of real floating-
point arithmetic. We mostly follow [10] (see also [22] and [7]) and adapt the results to the quaternion context,
considering the operations (2.1)-(2.4).

Let F ⊂ R denote the set of all normalized floating-point numbers and let fl : R → F denote rounding
to the nearest according to IEEE 754. Floating-point operations in IEEE 754 satisfy the following standard
model (assuming that no underflow nor overflow occurs), in which x, y ∈ F and op ∈ {+,−,×,÷}:

fl(x op y) = (x op y)(1 + δ1) =
x op y

1 + δ2
, |δ1|, |δ2| ≤ u,

where u is the unit roundoff of the system. For binary IEEE 754 double precision, u = 2−53.
Throughout the paper, we assume that, in the operations performed, overflow or underflow never occurs.
The following results play an important role in the error analysis performed in this section.

Lemma 2.1 ([10, Lemma 3.1]). If |δi| ≤ u and ρi = ±1, i = 1, . . . , n and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn, where |θn| ≤

nu

1− nu
=: γn. (2.5)

Lemma 2.2 ([10, Lemma 3.3]). For any positive integer k let θk denote a quantity bounded according to
|θk| ≤ γk with γk defined by (2.5). The following relations hold:

i. (1 + θk)(1 + θj) = 1 + θj+k;

ii. 1+θk
1+θj

=

{
1 + θk+j , j ≤ k,
1 + θk+2j , j > k

;

iii. γkγj ≤ γmin(k,j), if max(j, k)u ≤ 1
2 ;

iv. iγk ≤ γik;

v. γk + u ≤ γk+1;

vi. γk + γj + γkγj ≤ γk+j .

Theorem 2.1 ([11, Theorem 4.2]). For n ∈ N and given x = (xi), y = (yi), with xi, yi ∈ F for i = 1, . . . , n,
any order of evaluation of the inner-product xTy produces an approximation fl(xTy) such that

|fl(xTy)− xTy| ≤ nu
n∑
i=1

|xi||yi|.

We denote by FH := F + Fi + Fj + Fk the set of quaternion floating-point numbers. As in the real
(or complex) case we denote by fl(·) the result of a floating-point computation, where all operations inside
parentheses are done in floating-point working precision in the obvious way ([10, 7]). We adapt [10, Lemma
3.5] to derive the following error bounds of the quaternion operations.

Theorem 2.2. For x, y ∈ FH and k ∈ F we have, with δ denoting a quaternion:

i. fl(x± y) = (x± y)(1 + δ), |δ| ≤ u;

ii. fl(kx) = (kx)(1 + δ), |δ| ≤ u;

iii. fl(xy) = (xy)(1 + δ), |δ| ≤ 8u;

iv. fl(x y) = (x y)(1 + δ), |δ| ≤ 3
√

3u;

v. fl( 1
x ) = 1

x (1 + δ), |δ| ≤ γ5;
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vi. fl(|x|2) = |x|2(1 + δ), |δ| ≤ 4u.

Proof. We only prove relation iii., the other results being obtained in a similar manner. From (2.3), we have
e := fl(xy)− xy = e0 + e1i + e2j + e3k, where

e0 = fl(x0y0 − x1y1 − x2y2 − x3y3)− (x0y0 − x1y1 − x2y2 − x3y3),

e1 = fl(x1y0 + x0y1 − x3y2 + x2y3)− (x1y0 + x0y1 − x3y2 + x2y3),

e2 = fl(x2y0 + x3y1 + x0y2 − x1y3)− (x2y0 + x3y1 + x0y2 − x1y3),

e3 = fl(x3y0 − x2y1 + x1y2 + x0y3)− (x3y0 − x2y1 + x1y2 + x0y3).

By using the result of Theorem 2.1, it follows that

|ei| ≤ 4uAi, i = 0, 1, 2, 3,

where

A0 := |x0||y0|+ |x1||y1|+ |x2||y2|+ |x3||y3|,
A1 := |x1||y0|+ |x0||y1|+ |x3||y2|+ |x2||y3|,
A2 := |x2||y0|+ |x3||y1|+ |x0||y2|+ |x1||y3|,
A3 := |x3||y0|+ |x2||y1|+ |x1||y2|+ |x0||y3|.

Using the fact that (|a|+ |b|+ |c|+ |d|)2 ≤ 4(a2 + b2 + c2 + d2), we can write

A2
0 ≤ 4

(
x20y

2
0 + x21y

2
1 + x22y

2
2 + x23y

2
3

)
,

A2
1 ≤ 4

(
x21y

2
0 + x20y

2
1 + x23y

2
2 + x22y

2
3

)
,

A2
2 ≤ 4

(
x22y

2
0 + x23y

2
1 + x20y

2
2 + x21y

2
3

)
,

A2
3 ≤ 4

(
x23y

2
0 + x22y

2
1 + x21y

2
2 + x20y

2
3) .

Therefore, we obtain

|e| =
√
e20 + e21 + e22 + e23 ≤ 4u

√
A2

0 +A2
1 +A2

2 +A2
3

≤ 8u
√

(x20 + x21 + x22 + x23)(y20 + y21 + x22 + y23)

= 8u|x||y| = 8u|xy|,

where in the last equality we used the fact that the norm is multiplicative.

3 The ring of quaternionic polynomials

3.1 One-sided left polynomials

In this paper we focus on the so-called one-sided or unilateral left quaternionic polynomials, i.e. polynomials
whose coefficients are located only on the left-hand side of the powers of x,

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ak ∈ H. (3.1)

As usual, if an 6= 0, we say that the degree of the polynomial p is n, write deg p = n and refer to an as the
leading coefficient of the polynomial. When an = 1, we say that p is monic . The set of polynomials of the
form (3.1) is a ring with respect to the operations of addition (+) and multiplication (∗) defined in the same
way as in the commutative case, where the variable x is assumed to commute with the quaternion coefficients,
which we will denote by H[x]. The evaluation of p ∈ H[x] at a given quaternion α is defined as

p(α) = anα
n + an−1α

n−1 + · · ·+ a1α+ a0.

We say that α is a zero of p if p(α) = 0.
The next result underlines the fact that the evaluation at α is in general not a ring homomorphism from

H[x] to H, i.e. factoring does not preserve evaluation.
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Theorem 3.1 ([13]). Let f, g ∈ H[x], p = f ∗ g and α ∈ H. Then

p(α) =

{
0, if g(α) = 0,

f(α̃) g(α), if g(α) 6= 0
where α̃ = g(α)α (g(α))−1. (3.2)

In particular, if α is a zero of p which is not a zero of g, then α̃ is a zero of p.

3.2 Factorization

We summarize now the results needed in the sequel. For more details we refer the reader mainly to [13, 17, 20].

Theorem 3.2 (Euclidean division [13]). If f and g are polynomials in H[x] (with deg g ≤ deg f and g 6= 0),
then there exist unique polynomials q and r in H[x] such that

f(x) = q(x) ∗ g(x) + r(x) (3.3)

with r = 0 or deg r < deg g.

Theorem 3.3 (Factor Theorem [6, 13]). Let p ∈ H[x] and α ∈ H. Then, α is a zero of p if and only if there
exists q ∈ H[x] such that p(x) = q(x) ∗ (x− α).

Theorem 3.4 (Fundamental Theorem of Algebra [17]). Any non-constant polynomial in H[x] always has a
zero in H.

The following result is an immediate consequence of the aforementioned theorems.

Theorem 3.5. - Factorization into linear terms Any monic polynomial p of degree n (n ≥ 1) in H[x] admits
a factorization into linear factors, i.e. there exist x1, . . . , xn ∈ H, such that

pn(x) = (x− xn) ∗ (x− xn−1) ∗ · · · ∗ (x− x1). (3.4)

4 Polynomial evaluation

An evaluation algorithm depends, of course, on the form in which the polynomial is (or can be) written. In
what follows we are going to consider a polynomial pn of degree n in the following forms:

– Expanded form
pn(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 (4.1)

– Nested form
pn(x) = ((. . . (anx+ an−1) ∗ x+ . . . ) ∗ x+ a1) ∗ x+ a0 (4.2)

– Factor form
pn(x) = an(x− xn) ∗ (x− xn−1) ∗ · · · ∗ (x− x1) (4.3)

– Remainder form
pn(x) = qn−1(x) ∗ (x− α) + c0, α ∈ H, (4.4)

where c0 = pn(α).

– “Niven” remainder form

pn(x) = qn−2(x) ∗ (x− ᾱ) ∗ (x− α) + c1x+ c0, α ∈ H. (4.5)

Naturally, if pn is written as (4.5), then pn(α) = c1α+ c0.

We would like to call attention to the equations (4.4) and (4.5) which correspond to the use of the Euclidean
division algorithm (3.3) with b(x) = x− α and b(x) = (x− ᾱ) ∗ (x− α), respectively. The polynomial

Ψα := (x− ᾱ) ∗ (x− α) = x2 − 2 Reαx+ |α|2 (4.6)

is known as the characteristic polynomial of the quaternion α. The designation of “Niven” remainder form
was motivated by its use in the seminal paper [17].
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4.1 Direct evaluation

The direct evaluation of a polynomial pn with degree n at α in its expanded form (4.1) requires
[
n(n+1)

2

]
×H

and [n]±H , corresponding to a total of 14n2 + 18n flops.

Algorithm 1: Direct evaluation

p0 = a0;
for k = 0 : n− 1

pk+1 = pk + ak+1α
k+1;

end

When the powers of α are recursively computed, as in Algorithm 1’ below, the process requires [2n− 1]×H

and [n]±H which gives a total of 60n− 28 flops.

Algorithm 1’: Direct evaluation with recursion

t1 = α;
p1 = a0 + a1t1;
for k = 1 : n− 1

tk+1 = αtk;
pk+1 = pk + ak+1tk+1;

end

4.2 Horner’s rule

The value p = pn(α) can be obtained from (4.2) as

p = ((. . . (anα+ an−1)α+ . . . )α+ a1)α+ a0

or from the following recursive scheme.

Algorithm 2: Horner’s rule

cn = an;
for k = n− 1 : −1 : 0

ck = ck+1α+ ak;
end
p = c0;

These nested and recursive forms are both quaternionic versions of the well-known Horner’s method.
Horner’s rule provides a computationally efficient method of evaluating real polynomials pn and can also be
used for a compact presentation of the division of pn by the linear polynomial x − α, usually designated
by synthetic division. In the quaternionic case, as in the commutative case, the coefficients of the quotient
polynomial qn−1 in (4.4) are also generated by Horner’s method for pn(α), i.e.

qn−1(x) = cnx
n−1 + cn−1x

n−2 + · · ·+ c2x+ c1.

The computational cost of Horner’s scheme can be obtained as follows: [n]×H and [n]±H , which corresponds
to 32n flops.

4.3 Factor form evaluation

If pn is known in the form (4.3), the evaluation process is not so simple as in the classical case, where, as in
Horner’s scheme, n multiplications and n additions are needed. Here, due to the fact that the evaluation map
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is not a homomorphism (see Section 2) one has to apply (3.2) recursively. In fact, if qn has a factorization of
the form (3.4) and writing

qn(x) = rn(x) = (x− xn) ∗ rn−1(x),

where rn−1(x) = (x− xn−1) ∗ · · · ∗ (x− x1), one has

qn(α) = rn(α) =
(
rn−1(α)αrn−1(α)−1 − xn

)
rn−1(α) = rn−1(α)α− xnrn−1(α).

Hence p = pn(α) = anrn(α). The corresponding algorithm is as follows:

Algorithm 3: Factor form evaluation

r1 = α− x1;
for k = 1 : n− 1

rk+1 = rkα− xk+1rk;
end
p = an rn;

This algorithm requires [2n− 1]×H and [n]±H corresponding to a total of 60n − 28 flops as the direct
evaluation of Algorithm 1’.

4.4 Efficient evaluation of powers

In [19], the authors observed that since any quaternion α is a zero of its characteristic polynomial Ψα, any
positive integer power of α can be written as

αn = Anα+Bn,

with real An and Bn. The following algorithm corresponds essentially to the algorithm proposed by the authors
to recursively obtain the values of An and Bn and hence to compute t = αn.

Algorithm 4: Efficient evaluation of powers

r = 2 Re(α); s = |α|2;
A1 = 1;B1 = 0;
for k = 1 : n− 1
Ak+1 = rAk +Bk;
Bk+1 = −sAk;

end
t = Anα+Bn;

As a consequence, the value p = pn(α) can be obtained from

p = Aα+B, (4.7)

where

A = a1 +

n∑
k=2

Akak and B = a0 +

n∑
k=2

Bkak. (4.8)

This algorithm involves the following costs: the computation of s and r requires 1 flop and 7 flops,
respectively. An and Bn together cost 3n− 3 flops, while the computation of A and B requires 8n− 8 flops.
Finally, considering the 32 flops needed for obtaining p using (4.7), we reach a total of 19n+ 21 flops.

Observe that the computation of αn uses 3n+ 10 flops, while the direct approach needs 28n− 28. This
algorithm also requires less flops for the evaluation of pn(α) than Horner’s rule.
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4.5 Niven’s algorithm

The determination of “Niven” remainder form (4.5), corresponding to the division of pn by the characteristic
polynomial of α (cf. (4.6)), can also be presented in a compact form by the use of an expanded synthetic
division corresponding to a slight modification of Algorithm 2. Algorithm 5 addresses this issue.

Algorithm 5: Niven’s algorithm

r = 2 Re(α); s = |α|2;
cn+1 = 0; cn = an;
for k = n− 1 : −1 : 1

ck = ak + r ck+1 − s ck+2;
end
c0 = a0 − s c2;
p = c1α+ c0;

In this case, the coefficients of the quotient polynomial qn−2 are also generated by the expanded synthetic
division, i.e.

pn(x) = (cnx
n−2 + cn−1x

n−3 + · · ·+ c3x+ c2) ∗Ψα(x) + c1x+ c0. (4.9)

Concerning the complexity of the algorithm, we observe that the computation of the coefficients ck requires
16n flops. Therefore, Niven’s algorithm costs only 16n+32 flops, which represents, for n > 3, an improvement
over the other methods presented in this section. A similar procedure for evaluating complex functions is also
referred in [12]. Note, however, that if α ∈ R, Horner’s method requires only 8n flops, whilst Niven’s procedure
requires 16n+ 2 flops. For this reason, in what follows, when referring to Niven’s method to compute pn(α),
we assume that α ∈ H \ R.

Remark 4.1. Observe that when pn(x) = xn, Niven’s recurrence relations can easily be written as

ck = rck+1 + bk+1

bk = −sck+1; k = n− 1 : −1 : 1,

since ak = 0, k = 0, . . . , n − 1. Also cn = 1 and bn = cn+1 = 0. Therefore, Algorithm 4 turns out to be a
particular case of Niven’s algorithm for evaluating powers (with Aj = cn−j−1 and Bj = bn−j−1; j = 1, . . . , n).
However the use of (4.7)-(4.8) to evaluate pn(α) for more general polynomials is less efficient than Algorithm
5.

Table 2 contains a summary of the operations cost of the evaluation algorithms presented in this section.

Table 2: Complexity of the evaluation algorithms

Algorithm flops

Direct evaluation - Algorithm 1 14n2 + 18n
Direct evaluation - Algorithm 1’ 60n− 28
Horner’s rule - Algorithm 2 32n
Factor form evaluation - Algorithm 3 60n− 28
Powers evaluation - Algorithm 4 19n+ 21
Niven’s scheme - Algorithm 5 16n+ 32

Example 1. Evaluation of the polynomial

p4(x) = x4 + (1 + j− k)x3 + (1− 3i + j + k)x+ 2 + 2j
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at x = i.

[Algorithm 1] p4(i) = i4 + (1 + j− k)i3 + (1− 3i + j + k)i + 2 + 2j = 6 + 4j

[Algorithm 1’] t1 = i p1 = 5 + i + 3j− k
t2 = it1 = −1 p2 = p1 = 5 + i + 3j− k
t3 = it2 = −i p3 = p2 + (1 + j− k)(−i) = 5 + 4j
t4 = it3 = 1 p4 = p3 + 1 = 6 + 4j

[Algorithm 2] 1 1 + j− k 0 1− 3i + j + k 2 + 2j

i i −1 + i− j− k −1− i− j + k 4 + 2j

1 1 + i + j− k −1 + i− j− k −4i + 2k 6 + 4j︸ ︷︷ ︸
c0

[Algorithm 3] It is easy to see that

p4(x) = (x− x4) ∗ (x− x3) ∗ (x− x2) ∗ (x− x1),

where x1 = −i, x2 = 1 + i, x3 = −1− j, x4 = −1 + k. Therefore

p1(i) = i + i = 2i p3(i) = p2(i)i + (1 + j)p2(i) = 2− 2i + 2k
p2(i) = p1(i)i− (1 + i)p1(i) = −2i p4(i) = p3(i)i− (−1 + k)p3(i) = 6 + 4j

[Algorithm 4] k 2 3 4
Ak 0 −1 0
Bk −1 0 1

A = a1 − a3 = −3i + 2k
B = a0 − 2a2 + a4 = 3 + 2j
p4(i) = Ai +B = 6 + 4j

[Algorithm 5] 1 1 + j− k 0 1− 3i + j + k 2 + 2j

−1 −1 −1− j + k 1

0 0 0 0

1 1 + j− k −1 −3i + 2k︸ ︷︷ ︸
c1

3 + 2j︸ ︷︷ ︸
c0

p4(i) = c1i + c0 = 6 + 4j

5 Error analysis

In this section we analyze the rounding errors of the Horner’s and Niven’s algorithms, presented in Section 4,
for evaluating a one-sided left polynomial of degree n, pn =

∑n
i=0 aix

i, with ai ∈ FH, at a point α =
α0 + α1i + α2j + α3k ∈ FH.

5.1 Horner’s algorithm

Denote by Horner(pn, α) the result of the evaluation at x = α of the polynomial pn through Horner’s algorithm.

Theorem 5.1. A forward error bound in polynomial evaluation by Horner’s rule is

|pn(α)−Horner(pn, α)| ≤ γ9np̂n(|α|),

where

p̂n(x) :=

n∑
i=0

|ai|xi. (5.1)
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Proof. The proof is an adaptation of the corresponding proof for the real case, given in [10, p. 95]; see also
[8, p.65], where the complex case was considered, and [22], where the numerical stability of Horner’s rule was
studied for the first time.

First, we observe that any quaternion x of the form x = (1 + δ)α, with δ, α ∈ H can be written as
x = α(1 + δ̃), with |δ| = |δ̃| and also that Lemma 2.1, which was established in [10] for real numbers δi,
is valid for quaternions numbers δi (where, naturally, in that case, the symbol | · | refers to the norm of a
quaternion). Then, using the error bounds of the quaternion floating-point arithmetic operations given in
Theorem 2.2 — cases i. and iii. — and the result vi. of Lemma 2.2, one can easily show that

Horner(pn, α) =

n∑
i=0

ai(1 + δi)α
i

where |δi| ≤ γ9i+1 for i = 0, . . . , n− 1 and |δn| ≤ γ9n. We thus have

|pn(α)− Horner(pn, α)| ≤
n∑
i=0

|ai||δi||α|i ≤ γ9n
n∑
i=0

|ai||α|i = γ9np̂n(|α|),

as intended.

If pn(α) 6= 0, then
|pn(α)− Horner(pn, α)|

|pn(α)|
≤ γ9n

p̂n(|α|)
|pn(α)|

.

Following the classical case, we introduce the notation

cond(pn, α) :=
p̂n(|α|)
|pn(α)|

(5.2)

and call this quantity the condition number for the evaluation of the polynomial pn at α.
Thus, the relative error in polynomial evaluation by Horner’s rule can be written as

|pn(α)− Horner(pn, α)|
|pn(α)|

≤ γ9n cond(pn, α). (5.3)

Since the condition number can be arbitrary large, the above expression shows that, as in the classical case,
one can not guarantee accurate polynomial evaluation by Horner’s rule.

5.2 Niven’s algorithm

At this stage we should point out that Niven’s algorithm can be seen as the generalization to the quaternionic
case of the Goertzel’s algorithm for complex polynomial evaluation (see [5], [12, pp. 468]). Goertzel’s method
is just an extension of Clenshaw’s method [1] for evaluating Chebyshev series by three-term recurrence and is
a popular technique in digital signal processing. The stability of Goertzel’s algorithm has been considered by
several authors (see [4, 16, 18]), but for our purpose here we mostly follow [21].

Two aspects of the quaternion algebra play an important role in the generalization of the error analysis of
Goertzel’s algorithm to quaternionic context. The first one is the de Moivre formula for quaternions.

Theorem 5.2 ([9, Theorem 2.14]). Any quaternion x = x0 + x1i + x2j + x3k ∈ H, x 6= 0, can be written in
the trigonometric form

x = |x|(cos θ + ω(x) sin θ), −π < θ ≤ π, (5.4)

where

cos θ =
x0
|x|
, sin θ =

|x|
|x|

and ω(x) =
x

|x|
. (5.5)

Note that ω(x) ∈ S2, where S2 designates the unit sphere in R3. Moreover, a de Moivre formula can be
established:

(cos θ + ω(x) sin θ)n = cosnθ + ω(x) sinnθ. (5.6)
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The second key result concerns the fact that the explicit form of the coefficients of a three-term recurrence
relation presented in the paper by Goertzel [5] can be extended in a straightforward manner to the more general
situation considered here. In fact, if we replace the last two lines of Niven’s algorithm by the equivalent relations

u = a0 + α0 c1 − s c2; v = c1 α;
p = u+ v;

(5.7)

one can easily derive:

Theorem 5.3. The quantities computed by Niven’s algorithm are given explicitly by

cj =

n∑
k=j

ak|α|k−jUk−j(t), j = 1, 2, . . . , n, (5.8)

u =

n∑
k=0

ak|α|kTk(t), v =

(
n∑
k=1

ak|α|k−1Uk−1(t)

)
α, t =

α0

|α|
, (5.9)

where Tk(t) and Uk(t) are the Chebyshev polynomials of the first kind and of the second kind, respectively.

Remark 5.1. It is well known (see e.g. [2]) that for |t| < 1

Tk(t) = cos kθ and Uk(t) =
sin(k + 1)θ

sin θ
, where t = cos θ.

Hence the trigonometric form (5.4) of a quaternion x and the de Moivre formula (5.6) allow us to write
xk = |x|k(cos kθ + ω(x) sin kθ) = |x|k(Tk(t) + ω(x) sin θUk−1(t)). This, together with (5.5), implies that

xk = |x|kTk(t) + x|x|k−1Uk−1(t), k = 0, 1, . . . , n. (5.10)

We are now in the position to present the error analysis of Niven’s algorithm. Here, as observed previously,
we follow closely the analysis for the complex case given in [21], whose approach is particularly suitable for a
quaternionic extension.

Denoting by Niven(pn, α) the result of evaluating at x = α a polynomial pn of degree n, through (5.7),
and retaining, for simplicity of the analysis, only error terms of first degree, the following error bound can be
established.

Theorem 5.4. A forward error bound in polynomial evaluation by Niven’s algorithm is

|pn(α)−Niven(pn, α)| ≤ ϑn u p̂n(|α|) +O(u2),

where
ϑn := 12n(n+ 1) + (1 + 3

√
3)n+ 1 (5.11)

and p̂n is the polynomial defined by (5.1).

Proof. We shall analyze the effects of roundoff by backward error analysis. Assume that the arithmetic
operations in Niven’s recurrence relation are performed in the order indicated and denote by ũ, ṽ, c̃k, s̃ and
p̃ the quantities actually computed by Niven’s algorithm through (5.7) (we consider that no roundoff error is
generated in the process of computing r). Recall from Theorem 2.2 that

s̃ = fl(|α|2) = s(1 + δ), |δ| ≤ 4u.

Therefore c̃n+1 = 0, c̃n = an and, for j = n− 1, . . . , 1, we get

c̃j = (aj + ηj) + r c̃j+1 − s c̃j+2, (5.12)

where
|ηj | ≤ γ2|aj |+ 2γ3|α| |c̃j+1|+ γ6|α|2|c̃j+2|. (5.13)
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We also have

ũ = (a0 + η0) + α0 c̃1 − s c̃2, (5.14)

where

|η0| ≤ γ2|a0|+ γ3|α|| c̃1|+ γ6|α|2|c̃2|. (5.15)

We can combine the two inequalities (5.13) and (5.15) in the form

|ηj | ≤ γ6
(
|aj |+ |α||c̃j+1|+ |α|2|c̃j+2|

)
, j = n− 1, . . . , 0,

or, alternatively, as

|ηj | ≤ 6u
(
|aj |+ |α||c̃j+1|+ |α|2|c̃j+2|

)
+O(u2), j = n− 1, . . . , 0. (5.16)

Taking into account (5.8)-(5.9), relations (5.12) and (5.14) give

c̃j =

n∑
k=j

(ak + ηk)|α|k−jUk−j(t), j = n− 1, . . . , 1, (5.17)

ũ =

n∑
k=0

(ak + ηk)|α|kTk(t). (5.18)

Writing c̃j = cj + ej , j = 1, . . . , n− 1 and ũ = u+ e0 we have

|ej | ≤
n∑
k=j

|ηk||α|k−j |Uk−j(t)| and |e0| ≤
n∑
k=0

|ηk||α|k|Tk(t)|.

The well-known properties of Chebyshev polynomials, |Tk(t)| ≤ 1 and |Uk(t)| ≤ k + 1 allow us to write the
last relations as

|ej | ≤
n∑
k=j

(k − j + 1)|ηk||α|k−j ≤ (n− j + 1)

n∑
k=j

|ηk||α|k−j and |e0| ≤
n∑
k=0

|ηk||α|k.

The same properties produce (cf. (5.8)-(5.9))

|cj | ≤ (n− j + 1)

n∑
k=j

|ak||α|k−j and |u| ≤
n∑
k=0

|ak||α|k.

Introducing the notation

gj :=

n∑
k=j

|ak||α|k−j , j = 0, 1, . . . , n,

the last inequalities can be written simply as

|cj | ≤ (n− j + 1)gj , j = 1, 2, . . . , n, and |u| ≤ g0 = p̂n(|α|),
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where p̂n is the polynomial defined by (5.1). We also have, from (5.16),

|ηj | ≤ 6u
(
|aj |+

n∑
k=j+1

(|ak|+ |ηk|)|α|k−j(k − j − 1)

+

n∑
k=j+2

(|ak|+ |ηk|)|α|k−j(k − j − 2)
)

+O(u2)

≤ 6u
(
|aj |+

n∑
k=j+1

(|ak|+O(u))|α|k−j(k − j − 1)

+

n∑
k=j+2

(|ak|+O(u))|α|k−j(k − j − 2)
)

+O(u2)

= 6u
(
|aj |+

n∑
k=j+1

|ak||α|k−j(k − j − 1)

+

n∑
k=j+2

|ak||α|k−j(k − j − 2)
)

+O(u2)

≤ 12ugj(n− j) +O(u2). (5.19)

Observing that
∑n
j=0 gj |α|j =

∑n
j=0

∑n
k=j |ak||α|k ≤ (n+ 1)g0, it follows that

n∑
j=0

|ηj ||α|j ≤12u

n∑
j=0

(n− j)gj |α|j +O(u2)

≤12n(n+ 1)u g0 +O(u2). (5.20)

Next, observe that since pn(α) = u+ v = u+ c1 α, we have (see Theorem 2.2 – iv)

p̃ = ũ+ ṽ + ξ, with |ξ| ≤ u
(
|û|+ (1 + 3

√
3)|c̃1||α|

)
+O(u2). (5.21)

Since

|ũ| ≤ |u|+ |e0| ≤ g0 +O(u)

and

|c̃1||α| ≤ (|c1|+ |e1|)|α| ≤ ng1|α|+O(u) ≤ ng0 +O(u)

we obtain

|ξ| ≤ ((1 + 3
√

3)n+ 1)u g0 +O(u2). (5.22)

But, (5.17)-(5.18) produce

ũ+ c̃1α =

n∑
k=0

(ak + ηk)|α|kTk(t) +

(
n∑
k=1

(ak + ηk)|α|k−1Uk−1(t)

)
α

= a0 + η0 +

n∑
k=1

(ak + ηk)
(
|α|kTk(t) + α|α|k−1Uk−1(t)

)
=

n∑
k=0

(ak + ηk)αk, (5.23)

where we have used (5.10) and the identity T0(t) = 1. Therefore from (5.21)-(5.22) we have

|p̃− pn(α)| ≤ |ũ+ c̃1α− u− c1α|+ |ξ|.



14 Evaluation schemes in the ring of quaternionic polynomials

Using (5.8)-(5.9), (5.17)-(5.18) and (5.23) we obtain

|p̃− pn(α)| ≤

∣∣∣∣∣
n∑
k=0

(ak + ηk)αk −
n∑
k=0

akα
k

∣∣∣∣∣+ |ξ|

≤
n∑
k=0

|ηk||α|k + ((1 + 3
√

3)n+ 1)u g0 +O(u2).

Finally, from (5.20) we obtain

|pn(α)− Niven(pn, α)| ≤ ϑnu g0 +O(u2) = ϑnu p̂n(|α|) +O(u2),

where ϑn is given by (5.11), which completes the proof.

If pn(α) 6= 0, then the relative error in polynomial evaluation by Niven’s algorithm can be bounded as

|pn(α)− Niven(pn, α)|
|pn(α)|

≤ ϑnu cond(pn, α) +O(u2). (5.24)

6 Numerical tests

In this section we report some of the experiments we have carried out to illustrate the accuracy and computing
time of the algorithms presented along the paper. Our numerical tests were performed using IEEE 754
double precision with Matlab R2016a (u = 2−53). In order to exactly evaluate a polynomial, we have used the
Mathematica package QuaternionAnalysis [3, 15] which was endowed with the ability to perform operations
on quaternion polynomials.

More detailed informations about the package can be obtained from the website

http://w3.math.uminho.pt/QuaternionAnalysis.

6.1 Performance comparisons

We have compared, in terms of computing time, four algorithms: the recursive direct approach of Algorithm 1’,
the Horner’s rule (Algorithm 2), the Pogorui & Shapiro efficient evaluation of powers (Algorithm 4) and finally,
Niven’s method (Algorithm 5). We do not present results for Algorithm 1 and Algorithm 4 for the obvious
reasons: the first one is very time consuming, while the second requires the knowledge of the factor-terms of
the polynomial under consideration and therefore cannot be directly compared with the other methods.

We have implemented straightforwardly in Matlab the four aforementioned methods, taking into account
the quaternion arithmetic operations (2.1)-(2.3) and identifying a quaternion with a 1×4 array of real numbers.

All the simulations have been performed on a computer with Intel Core i7-4700Hp processor at 2.40 GHz
with 8 GB of RAM and 6 MB of cache memory. We have chosen polynomials with random quaternionic
coefficients ak = ak,0 +ak,1i+ak,2j+ak,3k, where ak,i ∈ [−5, 5], with degrees varying from 5 to 250. These
polynomials were evaluated at 500 random quaternion points in the same range of ak. The tests confirm the
complexity analysis carried out in Section 4 (cf. Table 2), as illustrated in Figure 1.

6.2 Accuracy comparisons

In order to test the accuracy of Horner’s and Niven’s methods we have adapted the example presented in [8,
p. 69] to the quaternionic case. Instead of considering the evaluation of complex polynomials of the form
(x− (1 + i))n we focus on quaternionic polynomials

pn(x) = (x− (1 + i− j− k))n; n = 3, . . . , 20, (6.1)

written in expanded form and consider the evaluation of pn at two different points.

http://w3.math.uminho.pt/QuaternionAnalysis
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Figure 1: Average measured running time for Algorithms 1’ (Direct evaluation), 2 (Horner’s algorithm), 4
(Efficient computation of powers) and 5 (Niven’s algorithm)
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Figure 2: Relative accuracy of Horner’s and Niven’s algorithms for evaluating the polynomial pn given by (6.1)
at α1 = fl(1 + 1

2 i + 1
3 j + 1

4k). A priori error bounds (Horner T and Niven T) are also represented. Here, the
condition number varies from 3 (for n = 3) to 5× 102 (for n = 20).

We first consider a point α1 = fl(1 + 1
2 i + 1

3 j + 1
4k) for which the condition number cond(pn, α1) varies

from 3 (for n = 3) to 5× 102 (for n = 20). Following [8] we present in Figure 2 the relative accuracy

|pn(α1)− Horner(pn, α1)|
|pn(α1)|

and
|pn(α1)− Niven(pn, α1)|

|pn(α1)|
.

The a priori errors (5.3) and (5.24) are also plotted in the same figure.
Due to the magnitude of the condition number, one can expect accurate enough approximations to pn(α1)

(cf. (5.3) and (5.24)). This is clearly illustrated in Figure 2.
We have also chosen a point α2 = fl(1.333 + 1.333i − 1.333j − 1.333k) such that the condition number

cond(pn, α2) rapidly grows with the degree n of the polynomial, varying from 3× 102 (for n = 3) to 5× 1016

(for n = 20). Our purpose was to call the attention to the fact that the classical ill-conditioning issues
associated with polynomial evaluation (see e.g. [8]) also appear, as expected, in the quaternionic case.

To illustrate the above considerations, in Figure 3 we present a plot of the errors against the condition
number corresponding to the evaluation of pn at α2 for n = 3 to n = 20.

In Figures 2 and 3 we can observe that the error bounds (5.3) and (5.24) are always pessimistic compared
to the actual measured errors. The same behavior was observed in the other test examples we have performed.

7 Final remarks

The increasing interest in quaternionic numerical methods, particularly root-finding methods, justifies the
importance and motivation for the study of polynomial evaluation schemes from the point of view of their
complexity and stability, conducted in this paper. Such study was mainly focused on two algorithms: the
Horner’s rule for quaternions and what we have called Niven’s algorithm – a generalization to H of the
classical Goertzel’s algorithm.
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104 108 1012 1016
Condition Number

10-16

10-12

10-8

10-4

Error

Horner

Niven

Horner_T

Niven_T

Figure 3: Relative accuracy of Horner’s and Niven’s algorithms for evaluating the polynomials pn given by
(6.1) at α2 = fl(1.333 + 1.333i − 1.333j − 1.333k). A priori error bounds (Horner T and Niven T) are also
represented. Here, as in Figure 2, the degree of the polynomials varies from n = 3 to n = 20.

The theoretical analysis carried out in the paper shows that Niven’s method requires less operations than
Horner’s rule and that both methods produce accurate approximations to the value of pn(α), as far as the
condition number cond(pn, α) is not large.

Not surprisingly, for large values of the condition number both methods suffer from instability producing
a computed value with few (or even none) exact digits. Such behavior is similar to the one exhibited by
classical polynomial evaluation schemes. In the classical case, several techniques are known to overcome such
difficulties (see e.g. [21, 8, 7]). In the near future, quaternionic versions of these procedures will also be
considered.
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[9] K. Gürlebeck, K. Habetha, and W. Sprößig. Holomorphic Functions in the Plane and n-dimensional
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