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Abstract

We shall use the minus partial order combined with Pierce’s decomposition to

derive the class of outer inverses for idempotents, units and group invertible elements.

Subsequently we show, for matrices over a field F, that the triplet BÂC is invariant

under all choices of outer inverses of A if and only if B = 0 or C = 0.

Keywords: Invariance, outer inverses, regularity, Pierce decomposition

AMS classification: 15A09, 16E50

1 Introduction

Let R be a ring with 1.

An element a is called regular if aa−a = a for some inner or 1-inverse a−. The condition

for regularity is a linear condition, and the set of all inner inverses is given by

{a(1)} = a− + (1− a−a)R +R(1− aa−).

An outer or 2-inverse â of an element a is such that âaâ = â. It is a quadratic condition

in â. It is clear that aâa will always be regular.

A 1-2 or reflexive inverse of a is denoted by a+ and satisfies

aa+a = a and a+aa+ = a+.
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The set of all outer inverses of an element a will be denoted by Ta or {a(2)} and the set of

all idempotents will be denoted by E. It is clear that a regular element a admits a−aa−

as an outer inverse.

Given the quadratic nature of the outer inverse condition, the characterization of Ta
remains clouded in general. We shall characterize Ta for several special types of elements,

such as idempotents and units. We then use these results to nail down Ta for group

invertible elements.

We shall also use the concepts of a unit-regular element a, for which there is a unit u

in R such that aua = a, and (ii) that of a prime ring, for which aRb = (0), forces either

a = 0 or b = 0. It should be noted that a is unit regular if and only if a = peq, for some

unit p and q and some idempotent e.

2 Classes of outer inverses

We begin by recalling [7] that for any p, a and q, and any (̂qap)

p(̂qap)q · a · p(̂qap)q = p(̂qap)q

so that it is prudent to define, for a fixed p and q,

Definition 2.1. Sp,q = {p(̂qap)q; any (̂qap)}

Clearly

Sp,q = p · Tqap · q ⊆ Ta = S1,1. (1)

We next turn to the set of all outer inverses of 1. It precisely equal the set of all idempotents

E, since x · 1 · x = x if and only if x is idempotent.

Next we recall that for two units p and q

Tpaq = q−1Ta p.
−1 (2)

To characterize Te where e is idempotent, we make use of the minus order as defined

in [3] for a regular element a

a ≤ b iff a−a = a−b and aa− = ba−, for some inner inverse a−. (3)

The key fact that we need is that given e2 = e and g regular such that g ≤ e then

g2 = g = ge = eg. This also tells us that

Lemma 2.1. The following are equivalent, for e2 = e and g regular:

(i) g ≤ e.
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(ii) g = ge = eg = g2.

(iii) g = eêe for some outer inverse ê.

(iv) g = exe = g2 for some x.

We use this in

Theorem 2.1. If e is idempotent then Te = v(x)gw(y), where v(x) = 1 + (1 − e)xe,

w(y) = 1 + ey(1− e), g ≤ e, and x and y are arbitrary.

Proof. Observe that v(x) and w(y) are units for all x and y and that ev(x) = e = w(y)e.

As such v(x)gw(y) · e · v(x)gw(y) = vgegw = vgw. On the other hand, if t = ê is any outer

inverse of e, then we may take x = y = t, and select g = ete. We then get

v(t)etew(t) = [ete+ (1− e)te][1 + et(1− e)]
= ete+ (1− e)te+ et(1− e) + (1− e)t(1− e)
= t,

which is the Pierce Decomposition of t.

The result of Theorem 2.1 is a special case of the following [4]:

Theorem 2.2. The following are equivalent for two regular elements a and b:

(i) a ≤ b.

(ii) a = bb̂b for some outer inverse b̂.

(iii) a = b− bˆ̂bb for some outer inverse
ˆ̂
b.

In which case b̂ab̂ = b̂ and
ˆ̂
ba = 0 = a

ˆ̂
b.

Proof. (i) implies (ii). Note that a ≤ b is equivalent to a = ba−a = aa−b. By taking

b̂ = a−aa−, which is a 2-inverse of b, we have ba−aa−b = aa−b = a.

(ii) implies (i). From a = bb̂b it follows b̂ is a 1-inverse of a, and we may take a− = b̂.

The equalities ab̂ = bb̂ and b̂a = b̂b show that a ≤ b.

(iii) implies (ii). It is easy to show that b̂ = b+ − b+b
ˆ̂
bbb+ is indeed a 2-inverse of

b, for any choice of a reflexive inverse b+ of b and any outer inverse
ˆ̂
b. Furthermore,

b(b+ − b+bˆ̂bbb+)b = b− bˆ̂bb = a.

(ii) implies (iii). Since
ˆ̂
b = b+− b+bb̂bb+ is a 2-inverse of b, substituting in (iii) we have

b− b(b+ − b+bb̂bb+)b = b− b+ bb̂b = a. The remaining parts are clear.
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In general

b ≤ a 6⇒ Tb ⊆ Ta,

as seen from the example where b =

[
1 0

0 0

]
and a = I2. If we pick c =

[
1 1

1 1

]
then

c ∈ Tb yet c 6∈ Ta.
The idempotent result of Theorem 2.1 parallels the (2×2) matrix case, which uses a

Pierce-like decomposition. Indeed if e =

[
1 0

0 0

]
and ê =

[
p r

q s

]
then p2 = p, q = xp,

and r = py, so that

ê =

[
p py

xp qr

]
=

[
1 0

x 1

] [
p 0

0 0

] [
1 y

0 1

]
=

[
1

x

]
p[1, y].

In this x and y are arbitrary and p is an arbitrary idempotent.

We have also seen the importance of outer inverses in the Brown-McCoy transformation

[6].

Pierce decomposition appear naturally in the study of outer inverses.

Lemma 2.2. Given p, q, not necessarily idempotent,

1. a = qap+ qa(1− p) + (1− q)ap+ (1− q)a(1− p).

2. (γ) : a = qap+ (1− q)a(1− p) if and only if (α) : qa(1− p) + (1− q)ap = 0.

3. If q = ax, p = xa then (α) holds if and only if axa(1− xa) + (1− ax)axa = 0 if and

only if (β) : 2(axaxa − axa) = 0. In the case char(R) 6= 2, these are equivalent to

a(xax− x)a = 0.

4. (β)⇒ (α)⇒ (γ).

Proof. (4). If x = â, q = aâ and p = âa then aâaâa = aâa.

Corollary 2.1. If a = peq, with p, q units and e idempotent, then

Ta = q−1Tep
−1 = q−1[1 + (1− e)xe]eêe[1 + ey(1− e)]p−1,

with x, y arbitrary.

Corollary 2.2. If u is a unit then the set of all outer inverses of u is given by Tu =

Eu−1 = u−1E.

Proof. It is clear that (eu−1)u(eu−1) = eu−1, for any e ∈ E. Conversely, if xux = x, then

(xu)1(xu) = xu, so that xu = e must be idempotent. Consequently, x = eu−1 and the set

of all outer inverses of u becomes Tu = Eu−1. The rest follows by symmetry.
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Corollary 2.3. If a = ue, where e is idempotent and u is a unit, then Ta = Teu
−1.

Proof. Clearly êu−1(ue)êu−1 = êu−1. Conversely, if x(ue)x = x, then (xu)e(xu) = xu and

hence xu ∈ Te. This means that x ∈ Teu−1.

Corollary 2.4. If a has a group inverse a# then

Ta = [1 + (1− aa#)xaa#]g[1 + aa#y(1− aa#)](a# + 1− aa#),

where g ≤ aa# and g is regular.

Proof. a = (a+ 1− aa#)(aa#) = ue, where u is a unit and e is idempotent.

Remark. Since g = aa#gaa# the product simplifies considerably.

Next we give an example of a nilpotent element.

Proposition 2.1. If N =

[
0 1

0 0

]
then TN =

[
x

1

]
e[1, y] where e is idempotent and x

and y are arbitrary.

Proof. Equating

[
a c

b d

] [
0 1

0 0

] [
a c

b d

]
=

[
a c

b d

]
gives ab = a, b2 = b, c = ad and

d = bd, from which the result follows.

Remark. This is a special case of the full-rank-factorization result. Indeed, if a = bc,

with b−b = 1 = cc− then c−eb− ∈ Ta for all idempotents e. Conversely, if xbcx = x, then

cxb = e is idempotent. This may be solved to give

x = c−eb− + (1− c−c)R +R(1− bb−).

But not all of these solutions are outer inverses of a. The solution set reduces again to a

quadratic equation!

The question of containment for sets of outer inverses can be extended to unit regular

elements. Inded we have the following.

Theorem 2.3. If a and b are unit regular elements in a prime ring, then the following are

equivalent:

(i) Tb ⊆ Ta (ii) b = a, (iii) Tb = Ta.

Proof. Suppose a = peq and b = rgs, where e and g are idempotent and p, q, r and

s are units. Then Ta = q−1Tep
−1 and Tb = s−1Tgr

−1. Hence Tb ⊆ Ta if and only if
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(qs−1)Tg(r
−1p) ⊆ Te. Because an arbitrary element in Tg has the form vghwg, where h ≤ g,

vg = 1 + (1− g)xg, wg = 1 + gy(1− g), we see that

Tb ⊆ Ta if and only if (qs−1)(vghwg)(r
−1p).e.(qs−1)(vghwg)(r

−1p) = qs−1(vghwg)(r
−1p).

(4)

Since q, s, vg, r, p and wg are units, and h = gh = hg, the latter reduces to

hgwg(r
−1p)e(qs−1)vggh = h (5)

whch can be simplified to

h[1 + y(1− g)](r−1as−1)[1 + (1− g)x]h = h, for all h ≤ g. (6)

Since the x and y are arbitrary and h is any element below g, we may select them suitably.

Selecting x = 0 = y and h = g, we arrive at the first necessary condition

(hr−1)a(s−1h) = h, (7)

which gives g(r−1as−1)g = g. Consequently (rgr−1)a(s−1gs) = rgs = b. Next we consider

the inner inverse b− = s−1gr−1, and obtain

bb− = rgr−1 and b−b = s−1gs. (8)

We thus arrive at our first necessary condition

b = bb−ab−b. (9)

Next we set x = 0 in (6). This gives

hy(1− g)r−1as−1h = 0. (10)

Since y is arbitrary and R is prime this ensures that

(1− g)r−1as−1h = 0.

Left and right multiplication by r and s respectively gives our second necessary condition

(1− bb−)ab−b = 0. (11)

By symmetry (i.e. setting y = 0) we obtain the third condition

hr−1as−1(1− g)xh = 0 (12)

which turns into
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bb−a(1− b−b) = 0. (13)

Substituting (7), (10), and (12) into (6) we are left with

hy(1− g)r−1as−1(1− g)xh = 0. (14)

Again since R is prime and selecting h 6= 0 we obtain

(1− g)r−1as−1(1− g) = 0. (15)

This collapses to

(1− bb−)a(1− b−b) = 0. (16)

Lastly, combining equations (9), (11), (13) and (16), yields

a = ab−b = bb−a = bb−ab−b = b. (17)

3 Triplet invariance over F
In the theory of linear models [1] the invariance of the matrix triplet BA−C under all

choices of inner inverses A− is essential. It is shown there that this invariance occurs if

and only if the range-row-space conditions B = XA and C = AY , for some X and Y , are

satisfied.

In a later paper [2], it was shown that over a prime regular ring, the invariance of the

triplet BA+C under any choice of reflexive inverse A+ is also equivalent to the range-row-

space conditions B = XA and C = AY .

Here we shall examine the invariance of the triplet bâc under all choices of outer inverses

â. In particular we shall show that BÂC is invariant over a field F, under all choices of

outer inverses Â, if and only if either B = 0, or C = 0.

We now need the following definition:

Definition 3.1. Given an idempotent e, R is an e-prime ring if bgc = 0, ∀ g ≤ e, implies

b = 0 or c = 0.

Note that if f = u−1eu and R is e-prime then R is f -prime. Indeed, if bgc = 0 for all

idempotents g ≤ f then bu−1(ugu−1)uc = 0 for all idempotents g ≤ f , ie for all ugu−1 ≤ e.

Since R is e-prime then this implies bu−1 = 0 or uc = 0, that is b = 0 or c = 0.

Suppose bâc is invariant under (̂·). Since 0 is an outer inverse of a, this means that

bâc = 0 for all â. If we assume that a = peq, for some units p and q and some idempotent

e, then we arrive at

bâc = bq−1v(x)gw(y)p−1c = 0,
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for all x, y and g ≤ e, where v(x) = 1 + (1− g)xg, w(y) = 1 + gy(1− g).

Since R is e-prime we may conclude that either bq−1v(x) = 0 or w(y)p−1c = 0. That

is, either b = 0 or c = 0.

It is clear from the normal form that a square matrix over F can be written as PEQ,

where P and Q are invertible and E = diag(Ir, 0). So let us next show that Fn×n is an

I-prime ring.

We begin with

Lemma 3.1. Fn×n is I-prime. That is, if RES = 0 for all choices of E2 = E, either

R = 0 or S = 0.

Proof. Setting R =
[

r1 · · · rn
]

and S =

 sT1
...

sTn

 and taking E = Ekk we see that

rks
T
k = 0 for all k = 1, . . . , n. Since we are over a field this ensures that either rk = 0 or

sk = 0. If R 6= 0, we may rearrange the columns such that R =
[

r1 · · · ru 0 · · · 0
]

with ri 6= 0, i = 1, . . . , u and sTj = 0T for j = 1, . . . , u.

Next we select E = e1e
T
1 + e1e

T
u+v, which yields RES = r1s

T
u+v = 0 and thus forces

sTu+v = 0T for v = 1, . . . , n− u. Thus S = 0. Likewise if S 6= 0 then R = 0.

Theorem 3.1. BÂC is 2-invariant if and only if B = 0 or C = 0.

Proof. Let A = PEQ, where E = diag(Ir, 0). Now if G ≤ E then G has the form

G = diag(H, 0), where H2 = H is r × r. As such

BÂC = (BQ−1V )G(WP−1C) = RGS = R diag(H, 0)S = 0

where V = I + (I −E)XE, W = I +EY (I −E), for all X, Y and for all r× r idempotent

H, using Theorem 2.1. Partitioning we get

[
R1 R2

] [ H 0

0 0

] [
S1

S2

]
= 0

and

R1HS1 = 0.

where R1 and ST
1 are n× r.

We next consider two arbitrary r × r submatrices RI and SJ from R1 and S1, respec-

tively. Then

RIHSJ = 0, ∀ H = H2. (18)

Hence if some SJ 6= 0, then all RI vanish and conversely, using Lemma 3.1. In other words,

either R1 = 0 or S1 = 0.
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If R1 = 0 then R is of the form R = BQ−1V =

[
0 α

0 β

]
.

V is of the form I + (I − E)XE =

[
I 0

x I

]
. Since X is arbitrary, then x is arbitrary.

Denote BQ−1 =

[
a b

c d

]
. We then have BQ−1V =

[
a+ bx b

c+ dx d

]
= R =

[
0 α

0 β

]
,

from which α and β are constant, and α = b, β = d. Also, a + bx = 0 for all x. Taking

x = 0 we have a = 0. So, bx = 0 for all possible choices of x, which gives b = 0 by taking

successively x =
[

0 · · · ei · · · 0
]

for i = 1, . . . , n− r. Similarly from c+ dx = 0 we

obtain c = 0 and d = 0. So, BQ = 0 and therefore B = 0.

The converse is clear.

4 Remarks and questions

1. The element aâa is always regular, with a reflexive inverse of â, and the set of regular

elements is given by {bb̂b; all b}.

2. If â is a outer inverse of a, then so is â+ (1− âa)(a− aâa)∧(1− aâ).

3. When A is m×n over F, we know that A = R

[
Ir 0

0 0

]
S = RES, for some invertible

R and S. As such Â = S−1ÊR−1 is n×m. The class of all outer inverses of E can be

found by direct computation as

[
I

α

]
H[I, β], where H2 = H and α, β are arbitrary.

4. The expression of u−1E in Corollary 2.2 is very similar to the theory of cosets.

5. Can we select p and q such that it is easier to classify (̂qap)?

6. Can we generalize Theorem 3.1 to Rn×n where R is a unit regular ring?

7. Theorem 3.1 shows that over F there are basically not enough outer inverses for the

triple to be trivially invariant, i.e., B = 0 or C = 0.

8. What are some of the other classes of outer inverses that can be characterized?
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