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A B S T R A C T

When the Use Case Points method is used for software effort estimation, users are faced with low model accuracy
which impacts on its practical application. This study investigates the significance of using subset selection
methods for the prediction accuracy of Multiple Linear Regression models, obtained by the stepwise approach. K-
means, Spectral Clustering, the Gaussian Mixture Model and Moving Window are evaluated as appropriate
subset selection techniques. The methods were evaluated according to several evaluation criteria and then
statistically tested. Evaluation was performing on two independent datasets - which differ in project types and
size. Both were cut by the hold-out method. If clustering were used, the training sets were clustered into 3
classes; and, for each of class, an independent regression model was created. These were later used for the
prediction of testing sets. If Moving Window was used, then window of sizes 5, 10 and 15 were tested.

The results show that clustering techniques decrease prediction errors significantly when compared to Use
Case Points or moving windows methods. Spectral Clustering was selected as the best-performing solution,
because it achieves a Sum of Squared Errors reduction of 32% for the first dataset, and 98% for the second
dataset. The Mean Absolute Percentage Error is less than 1% for the second dataset for Spectral Clustering; 9%
for moving window; and 27% for Use Case Points. When the first dataset is used, then prediction errors are
significantly higher – 53% for Spectral Clustering, but Use Case Points produces a 165% result.

It can be concluded that this study proves subset selection techniques as a significant method for improving
the prediction ability of linear regression models - which are used for software development effort prediction. It
can also be concluded that the clustering method performs better than the moving window method.

1. Introduction

Software Development Effort Estimation methods represent actual
topics that are crucial for software project planning. If effort estimation
is not performed, it causes incorrect project planning, which is an im-
portant risk in software engineering project management.

At the early stage, only limited knowledge about a software project
is available. The project scope is described in a limited way, and
usually, there is no possibility of obtaining a complex and valid in-
formation - which should be useful for estimation purposes. Therefore,
the Use Case Point (UCP) method [1], can be used to perform estima-
tions. UCP is based on Use Case Model (UCM) structured scenario and
actors analysis. Structured scenarios or transactions based representa-
tion is a prerequisite for UCP. The actors and use cases are evaluated;
the software size is estimated based on an evaluation of the UCM. UCP
considers software development efforts as linear correlated value to
software size [2].

In previously published studies authors presents improvements
[2–5] and simplification [6–8] of an estimation process.

In this paper, the focus is on the issue of “how can we automatically
come up with the optimum subset of historical data-points?” Methods
for finding similarities or analogies between historical data-points can
lead to reducing an estimation error.

The rest of the article is structured as follows: Section 1 is an In-
troduction. Section 2 defines the research questions. Section 3 describes
the methods proposed to address the research questions. Section 4 in-
troduces the project datasets and experimental procedure. Section 5
presents the results obtained. Finally, Section 6 summarises the con-
clusions and future work.

1.1. Related work

Jorgensen and Shepperd in [9], identify 11 estimation approaches,
which are mostly based on statistical or numerical models. Many of
them are based on linear regression. Many these algorithms are based
on historical datasets, where all available projects are considered for
new estimation. Silhavy et al. [2], present the Algorithmic Optimisation
Method (AOM), which is based on linear regression and brings
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significant improvements in comparison to UCP. The AOM methods
outperform many other methods because of its simplicity; only the
variables known from UCP are used in AOM. The second group re-
presents Machine Learning Algorithms. Wen et al. [10], conducted a
systematic literature review in which they identify 84 primary studies
and 8 methods of applied machine learning algorithms. In this paper,
the focus is on methods which are applicable in conjunction with the
AOM method – or, more generally, with Least Squared Regression
models (LSR), or Multiple Linear Regression (MLR).

In [11], Silhavy et al., recently discussed variable validity and
model selection. They declare that all variables from the UCP method
are understood as exploratory variables, and the stepwise procedure
allows one to select the best performing model.

Idri et al. [12], provide a systematic mapping study of Analogy-
based Software Development Effort Estimation (ASEE). This paper´s
authors investigate 65 studies from 1990 to 2012. Most of these studies
are aimed at subset method selection. Idri et al., conclude that ASEE
outperforms most algorithms which used all historical data-points
available. ASEE method looks for similarities in historical projects.
Clustering helps to find analogy among projects - and is a broadly in-
vestigated method for reducing the number of historical data-points and
selecting the most similar subset. Azzeh and Nassif [13], deal with
setting the number of nearest projects. These authors recommend a
method called Bisecting k-medoids Clustering and have claimed that
this method is better than common ASEE methods.

Azzeh et al. in their paper [14], present a hybrid model that consists
of classification and prediction stages using a Support Vector Machine
and Radial Basis Neural Networks. They compare the said model with k-
medoids. They recommend that ECF be omitted from the estimation
and to focus all estimation on the productivity factor - which represents
the ratio between UCP, and development effort in person-hours.

Bardisiri et al. [15], declare that clustering has a significant effect
on the accuracy of development effort estimation because it allows one
to omit irrelevant projects from historical data-points.

Prokopova et al. [16], compare k-means, hierarchical and density-
based clustering techniques with three different distance metrics. The
results show that all tested clustering techniques improve estimation
accuracy and that the number of clusters plays a significant role. It is
important to select the clustering type and distance metric properly.
The authors show that hierarchical clustering has produced in-
appropriate distribution of clusters – and therefore, cannot be used. The
k-means clustering technique with 4 clusters and the cosine distance
metric appears to be the most appropriate method for a tested dataset
and AOM model.

In [17], Bardisiri et al., improved their method by the combination
of ASEE and the Particle Swarm Optimization (PSO) [18] algorithm.
They introduce a weighting system in which the project attributes of
different clusters are given different weights. This approach supports
the comparison of a new project only with projects located in related
clusters, based on the similarity measures. This method, like other
methods where a subset is selected, deals with setting the correct value
of k of the nearest project. Hihn et al. [19], described that the nearest
neighbour method has significantly more outliers than Spectral Clus-
tering does.

Lokan and Mendes [20], investigations showed that moving win-
dows are helpful as a subset selection technique. Using 75 most recent
projects for a new estimation makes this estimation more accurate than
using all available data points. Amasaki and Lokan [21], later compare
moving windows for ASEE and MLR models. They found MLR benefits
more from windowing than analogy-based methods.

2. Problem statement

Historical projects in datasets, even if they are from identical or-
ganisation, should be dissimilar, which should negatively influence the
model capability.

This research study addresses a problem of selecting a subset from
historical datasets, which allows to construct a prediction model more
relevant to newly estimated software development project. The incon-
sistence of historical dataset has negative impact to model performance.

Estimation performance and accuracy for the chosen subset selec-
tion techniques, together with an MLR model based on UCP variables, is
compared.

Model initial configuration was derived from Silhavy et al. [11].
Silhavy et al., tested several MLR models by using a stepwise linear
regression approach and the Best Performing Regression Model (BPRM)
was selected. The following methods were evaluated and understood as
subset selection techniques:

• k-means Clustering (k-means)

• Gaussian Mixture Model Clustering (GMM)

• Spectral Clustering (SC)

• Moving Window (MW)

These techniques were selected to demonstrate the differences be-
tween classical methods (k-means, GMM), and the modern one (SC),
with alternative approach (MW). Selected clustering methods are fa-
vour for numerical data [22] and were previously used in the field
[16,19]. MW method was previously studied by [23–25] an was in-
troduced as subset selection method for increasing similarity among
historical data.

In Silhavy et al. [11], the authors confirm that all UCP variables/
features are significant for software development effort estimation.

Therefore, this study deals with UCP variables. The UCP method
identifies:

• Unadjusted Actors´ Weights (UAW)

• Unadjusted Use Case Weights (UUCW)

• Technical Complexity Factors (TCF)

• Environmental Complexity Factors (ECF)

Other attributes available in datasets - including nominal attributes
were not used, because nominal attributes, in general, cannot be used
for new project classification to selected cluster.

The UCP method is based on assigning weights to clustered actors
and use cases. It employs three cluster types: simple, average, and
complex. The sum of the weighted actors creates a value called UAW;
the UUCW value is calculated similarly. Two coefficients, technical
factors and environmental factors, are used to describe the project,
related information, and the experience level of the development team.

Actors play roles in the UAW variables [2,26]. A simple actor ty-
pically represents an application programming interface and a complex
actor represents a human using a graphical user interface.

UAW and UUCW are derivate from UCM and the software size is
based on actors or scenarios from use cases. TCF and ECF are used to
describe the project, related information and the experience level of the
development team. An Adjusted UCP (AUCP) score is obtained by
summing the UAW and the UUCW, and then multiplying the resulting
value by the TCF and ECF (1). See [11,27] for a detailed description of
the UCP method.

= + × ×AUCP UAW UUCW TCF ECF( ) (1)

2.1. Research questions and hypothesis formulation

RQ1: Can be a prediction ability of MLR models improved by using
subset selection technique?
RQ2: Which subset selection technique is the best, when compared
to UCP?
RQ3: Are moving windows equal to clustering techniques when
prediction accuracy is compared?
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Let us assume that, the Squared Prediction Errors (SE) of Tested
Models (TM) - when the data subset technique is used, will be sig-
nificantly lower than UCP's SE. To decide whether the model employing
subset selection technique is more capable for prediction, a statistical
hypothesis was tested:

H0: =μSE μSETM UCP; there is no difference in prediction capability
between UCP and TM with subset techniques. No difference in the
mean of such prediction errors.
Alternative hypothesis:
H1: μSETM< μSEUCP; there is difference in prediction capability
between UCP and the TM with subset techniques. The mean of
squared prediction errors is significantly lower for TM than for the
UCP method.

This paper compares the accuracy of the tested models with that of
the UCP method using a pair two sample t-test. The pair t-test for two
samples is used as a test of the null hypothesis - that the means of two
normally distributed populations (two sample) are equal. The t-test will
be used for the evaluation of squared prediction errors. Usage of t-test
was proofed by analysis in [11].

2.2. Evaluation criteria

All the tested methods were evaluated according to (2) Mean Ab-
solute Percentage Error (MAPE), (3) the Sum of Squared Errors (SSE),
(4) Mean Squared Error (MSE), (5) Root Mean Squared Error (RMSE)
and (6) Normalised Mean Squared Error (NRMSE). MAPE was selected,
because of in [28] authors proofs that MAPE has practical and theo-
retical relevance for evaluation of regression models and its intuitive
interpretation in terms of relative error. Whereas Mean Relative Error
(MRE) is not always optimal for describing the estimation accuracy [7].
MRE sometime omits overestimation, which lowers usability for soft-
ware development effort estimation [29,30]. SSE is used because of its
ability to represent errors for selected datasets. Cross-dataset compar-
ability is weak (number of n must be handled), but overall it illustrates
the model prediction performance.

MSE is seen as the best performing cost function in [8], which guide
us to include it as possible performance measurement. RMSE and
NRMSE are included for illustration purposes for future comparability
of other models tested on given datasets. The equations are given as
follows:

∑=
−

×
=n

y y
y

MAPE 1 100
i

n
i i

i1 (2)

∑=
=

SSE ɛ
i

n

i
1

2

(3)

∑=
=

MSE
n
1 ɛ

i

n

i
1

2

(4)

=
∑ =RMSE

n
ɛi

n
i1
2

(5)

=NRMSE RMSE
n (6)

Where n is the number of observations, yi is the known real value, yi
is the predicted value and ɛ is the prediction error value.

3. Methods used

3.1. K-means Clustering

K-means is a method for finding clusters in unlabelled data points.
The number of clusters has to be set before the algorithm starts. This

approach is based on finding data centres, where the initial centres are
set randomly. The centres are iteratively moved to minimize data var-
iance in one cluster [31]. The mean value of each feature is calculated,
and those means are set as new cluster centres. In fact, it finds a subset
for each centre for which the Cost Function (CF) of dissimilarity is
minimized. In (7), the cost function in its generic form can be seen:

∑ ∑=
= ∈

CF d x c( , )
k

K

x G
k

1 k (7)

Where, K represents the predefined number of clusters; Gk re-
presents a cluster; d (8) is the distance/dissimilarity function; x is a
vector; and ck represents a cluster centre:

= − × −d x c x c M x c( , ) ( ) ( )k k
T

k (8)

Where, M is a distance matrix. The K-means approach does not
guarantee that one will obtain an optimal solution. In many cases, a
sub-optimal solution is found. There is a tendency in many iterative
algorithms - including k-means, not to be convergent with the global
minima. Therefore, it is used to run the k-means process several times –
and, as result, a solution resulting from several runs is taken.

3.2. Gaussians Mixture Model Clustering

The Gaussian Mixture Model [32], (GMM), presents a model-based
approach to clustering. GMM is understood as Probabilistic Clustering.
In model-based clusters, a model for cluster and optimisation between
data and model is researched. Each cluster is represented by its para-
metric distribution (component distribution). GMM can be used in ad-
vance in dominant pattern recognitions since these dominant patterns
are related to the component distribution. (9), shows a multivariate
Gaussian equation:

N = − − −−{ }x μ
π

x μ x( , Σ) 1
(2 ) Σ

exp 1
2

( ) Σ ( Σ)d
T

/2 1/2
1

(9)

Where, μ is, a component mean; Σ is the covariance matrix; and x
represents a component. Mixing confidents can be interpreted by using
(10). For GMM Clustering, the process is inverted and parameters like
mixing confidents, means and covariance are researched:

∑=
=

p x p k p x k( ) ( ) ( )
k

K

1 (10)

Then, a maximum likelihood function is used. The maximum of log-
likelihood (11), is resolved by using an Expectation-Maximization (EM)
algorithm, which describes an iterative scheme for the maximisation of
the log-likelihood function. Firstly, the initial quest of the parameters is
needed:

N∑ ∑= ⎧
⎨⎩

⎫
⎬⎭= =

D π μ ln π π μln p( , , Σ) ( , Σ )
n

N

k

K

k k k k
1 1 (11)

EM needs an e-steps approach for the parameters - which are latent
variables and m-steps for the expected complete log-likelihood. In each
iteration, the parameters are updated. The algorithm iterates until the
log-likelihood of the data remains fixed. EM tends to stay within the
local optimal value. Therefore, a new initial setting is recommended for
running the algorithm again; and even several runs remain within the
same optimum, and the global optimum might be found.

3.3. Spectral Clustering

The Spectral Clustering [33] algorithm is an Unsupervised Clus-
tering method, based on a graphical representation, where each data
point is a node and the edges between data points represent similarity,
see Graph G (12). This represents a Degree Diagonal Matrix, in which a
cell represents a sum of weights corresponding to each node from the

R. Silhavy et al. Information and Software Technology 97 (2018) 1–9

3



graph - or respectively, a cell of matrix W:

=G V E( , ) (12)

Where, set V contains vertexes vi and set E the edges ei, which re-
present data points. Two vertexes are connected if the similarity sij
between the corresponding data points xiand xj are larger or equal to
the threshold; and the edge is weighted by sij. This means that part of
the graph where edges with very low weights are found.

The K-nearest neighbour graph, ɛ-neighborhood graph and the fully-
connected graph are typically used in Spectral Clustering [34]. The k-
nearest neighbour graph connects vi and vjvertexes, where vj is one of
the k-nearest vertexes of vi. The ɛ-neighborhood graph connects all data
points where pairwise distances are smaller than ɛ. Later, the Adjacency
Matrix W (13) is created:

=W w( )ij (13)

Where, =i j n, 1. . and each cell in the matrix correspond to the
edge’ weight between two data points. If the weight is 0, then there is
no connection between the edges. Finally, a Laplacian Matrix (14) is
calculated:

= −L D W (14)

Where, D is the diagonal matrix of the degree of vertex vi. The L
matrix is used for spectrum calculation - which is a key point in spectral
clustering algorithms. The L matrix is used in un-normalized algo-
rithms; when a normalized Laplacian algorithm is used, there are two
possibilities (15) – a symmetric matrix and a random-walk:

= = −
= = −

− − − −

− −

L D LD I D WD
L D L I D W

:
:

sym

rw

1/2 1/2 1/2 1/2

1 1 (15)

The spectrum is a sorted list of the eigenvectors of a L, Lsym or Lrw
matrix. In fact, the eigenvectors represent a data-point of a data-set and
an eigenvalue of a L, Lsym or Lrw matrix. Spectral Clustering uses these
eigenvectors as a feature. The clustering of features can be performed
by any known algorithm. In this paper, the k-means algorithm is used.

3.4. Classifying into clusters

Multiclass Linear Discriminant Analysis, (MLDA), is used for the
classification of new data-points to existing clusters. Each new project,
which is represented as a new row in the testing set, is classified ac-
cording to the clusters that were obtained from a training set. The
testing set and training set must be matrices, with the same number of
columns. In this case, more than two groups are used, which leads to
seeking out more projections. Therefore, the WP (16) projection matrix
is arranged as follows:

=WP W XT (16)

Where, WT represents a Transposed Adjacency Matrix and X is the
testing set data point matrix. The first step, (17), is used for the inter-
class scatter matrix Σb [35]:

 ∑= − × − ′
=

m x x x xΣ ( ) ( )b
i

n

i i i
1 (17)

Where, mi is the number of data points in the training set for each
cluster; xi is the mean for each cluster; and x is the mean vector. The
linear transformation is then performed - where the key point is to
maximize (17), and solve as a generalized eigenvalue problem.

The classification itself, is then performed in the transformed space
by using metrics like Euclidean Distance or Cosine Distance. Newly-
obtained instances are classified by minimizing a distance function with
respect to a kth cluster centroid; and a mean value: xk.

3.5. Moving Window

Moving Window is a subset technique that can be understood in two

types. The first type of MW is based on duration - and the second is
based on the number of projects [20]. The Duration-based approach
means, a training set project, a finished in a specific time frame, are
used as parameters. If there is a large number of finished projects, then
this is the most useful approach. Otherwise, if there is a low number of
finished projects, then the “number of projects” is only an option.

Fig. 1 illustrates the window function application is. Iteration 0 is
described as an initial partitioning of a dataset - (n=70), to a training
set - (n=49), and the testing part, (n=21). The training dataset ex-
pands after a project is finished, (= data-point in testing set), and 5
most recent data-points are selected (see window).

In Iteration 1, the 5 most-recent projects, (44-49), are selected - and
used to create the model. The model is used for the estimation of Project
50 - (the first one in the testing set).

In Iteration 2, Project 51 is estimated, and the model is constructed
based upon Projects 45-49 from the training set and 50 from the testing
set. This result, once again, in 5 the most recent projects. In Iteration 3,
Project 52 is estimated, by means of a model which is based on Projects
46-49 from the training set and on Projects 50 and 51 from the testing
set. In this illustrative example, it is expected that the projects are
completed one by one.

If more than 1 project is finished before the next estimation is
performed, then all finished projects are appended to the end of the
training dataset.

Similarly, if more than 1 project must be estimated in each iteration
a window can be used, which means that all projects are estimated by
using an identical model.

Window-size represents the number of most recent projects in the
training set. If window-size is n=5, then the 5 most-recent data-points
are used for the MLR model construction:

Authors of [36] recommend that the size of the training set, (the
number of finished projects) should be around 30. Amasaki et al. [21]
discuss windows sizes and conclude that 75 data points provides best
available results. Window size depends on dataset size, this is a reason
why in this study only smaller windows are tested. It is expected that
the relevancy of earlier projects decreases over time. This claim can
only be made if there is an assumption of increasing estimation accu-
racy, or if changes in size or project types are expected.

3.6. Stepwise Linear Regression

SLR is employed to select a BPRM by means of an automatic pro-
cedure. SLR is sometimes biased to the significance level in statistical
assumptions. The best model is selected when the evaluation criteria
are fulfilled. On the other hand, SLR should also help to reduce the
number of predictors used in the selected model.

Fig. 1. Moving Window – project selection.
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Stepwise regression is based on the forward - and backward selec-
tion that involves an automatic process for the selection of independent
variables; and can be briefly described as follows:

(1) Set a starting model, which contains predefined terms (backward);
or set a null model (forward);

(2) Set limits for the final model—what type of model is needed?,
whether linear terms are used?, squared terms?, or vice-versa?;

(3) Set an evaluation threshold, (p value of x, Sum of Squared Errors, or
similar statistics) error is significantly decreased);

(4) Adding or removing terms; retesting the model;
(5) Stepwise regression halts when no further improvement in estima-

tion occurs.

Fig. 2 depicts a schema of the stepwise process. There is a mod-
ification of forward selection - such that after each step in which a
variable x is added, all the candidate variables in the model are checked
to see whether their significance p has been reduced below a specified
threshold penter (upper bound), or premove (lower bound). Forward se-
lection starts as a null model and then iterates to add each variable
which meet a condition. When a non-significant variable is found, it is
removed from the model. Backward selection works in a similar
manner, but removes variables when they are found to be non-sig-
nificant. Therefore, stepwise regression requires two significance levels:
the first, for adding variables; and the second, for removing variables.

SLR only is a method of building many models from a combination
of predictors, therefore the multiple linear regression assumption has to
be fulfilled. The multiple linear regression model, (18), is defined as:

= + + + …+ +y β β X β X β X ɛi i i p ip i0 1 1 2 2 (18)

Where, = …i n y1, , i is the dependent variable; …X Xi ip1 are in-
dependent variables, (predictors); β0 is an intercept; and, …β βn1 are
regression coefficients. The value of ɛi represents the residuals. The
model is designed as a matrix - where each row represents a data-point.

When MLR is a polynomial regression, (19); then the relationship
between the dependent variables and the independent variable is
modelled as an mth degree polynomial:

= + + + …+ +y β β X β X β X ɛi i i p ip
m

i0 1 1 2 2
2

(19)

If ordinary Least Square Estimation is used, the vector of the esti-
mated regression coefficients is in a matrix form - and can be defined as
follows (20):

̂ = −Xβ X X y( )T T1 (20)

4. Experiment design

4.1. Project datasets

Methods, previously described above, were evaluated using two

datasets. Dataset 1 - (DS1), was obtained from [2] – in which the da-
taset was based on [6] and [37]. Dataset 2 - (DS2), was collected by the
authors and was first published - (in part), in [11].

For the purpose of this study, we do not aggregate data by data-
donators or problem-domains. All projects were ordered by develop-
ment completion date, for each donator. Fig. 3 shows a boxplot of the
datasets. As shown, the two datasets represent groupings of different
project sizes.

Table 1 shows the characteristics of the datasets used in the ex-
periments. As shown, both datasets have a similar standard deviation,
but DS2 contains larger projects. All the values in Table 1 are based on
the Real_P20 [11], which describes the real project size in points (UCP).
Datasets contain following variables:

• Project_No - project ID for identification purposes

• Simple Actors - Number of actor classify according UCP - simple
actors

• Average Actors - Number of actor classify according UCP - average
actors

• Complex Actors - Number of actor classify according UCP - complex
actors

• UAW - Unadjusted Actor weight, computed by using UCP equation

• Simple UC - Number of use cases classified as simple - UCP number
of steps is used Average UC - Number of use cases classified as
average - UCP number of steps is used

• Complex UC - Number of use cases classified as complex - UCP
number of steps is used

• UUCW - Unadjusted Use Case Weight - computed by using UCP
equation

• TCF - Technical Complexity Factor

• T1-T13 - Technical factors significance

• ECF - Environmental Complexity Factors

• ENV1 - ENV8 - Environmental factors significance value

• Real_P20 - Real Effort in Person hours, divided by productivity
factor (person hours per 1 UCP) (PF=20)

• Real_Effort_Person_Hours - Real Effort (development time) in
person-hours

• Sector - Problem domain of project

• Language - Programming language used for project

• Methodology - Development methodology used for project devel-
opment

• ApplicationType - Classification of project type - provided by do-
nator

• DataDonator - Anonymized acronym for data donator

In Table 1 Datasets’ statistical characteristics can be seen. Median
Person-Hours illustrates man value of project development time, which

Fig. 2. The Stepwise Regression Process.

Fig. 3. Boxplots of project size, transformed into UCP.
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was consumed from project's starting date to acceptance date. Median
Real_P20 presents same value divided by PF= 20. It supposes that 20
person-hours corresponds to 1 UCP. This transformation was done be-
cause of data donators do not perform estimation using UCP.

Range Real_P20 describes difference between the smallest
(Minimum Real_P20) and largest project (Maximum Real_P20). As can
be seen variance of Dataset 1 is higher than for Dataset 2. Last column
(n) stands for number of projects in each dataset.

4.2. Experiment procedure

For the purposes of this study, the BPRM [11] model is used. BPRM
is built by SLR - with constraints applied. The model contains an in-
tercept, linear terms, and squared terms. Both datasets - (DS1 and DS2),
were divided in a ratio of 2:1, by using a hold-out method, which then
was used to create training and testing sets. The testing sets are un-
derstood as time-ordered projects, which enter an estimation process.
The training set was standardised (23) for clustering and used as non-
standardised to obtain models for each subset/cluster, or as the source
for the window range.

The experimental procedure for clustering algorithms is as follows:

(1) Creating training and testing sets by using the hold-out method
(2) Standardization of the training set, using the z-score method
(3) Selecting features for clustering (UAW, UUCW, TCF, ECF and

Real_P20)
(4) Applying a clustering approach on the standardized training set
(5) Only solutions where each cluster contains more than 5 projects

are selected
(6) Computing a BPRM for each of the clusters
(7) Projects in the testing set are classified into clusters
(8) Estimation of AUCP is performed by using a cluster-specific model
(9) PE for projects in the training set are computed

(10) SSE and other evaluation criteria are computed

The experiment procedure for the windows-based algorithm is as
follows:

(1) Creating training and testing datasets by using the hold-out method
(2) The training set is understood as a historical project, in chron-

ological order
(3) Computing a BPRM for projects in window-sizes: 5, 10 and 15
(4) Estimating a AUCP value for the first project in the training set
(5) Appending the project from Step 4 to the training set
(6) Repeating the procedure upon the testing set until it is empty
(7) PE for estimated projects in the training set are computed
(8) SSE and other evaluation criteria are computed

SLR - or generally, a MLR model; is sensitive to a minimum number
of projects acceptable for training a model. When MLR is used in con-
nection with clustering, a minimum number of projects must be set
when a solution is selected. In this paper, only solutions where each
cluster contains 5 or more data-points are used. This condition is used
to obtain an appropriate level of machine precision when MLR models
are calculated.

All algorithms tested in this experiment have no natural way as to
how to apply this constraint, therefore the training set was clustered

iteratively, with a predefined maximum value k, (21):

= ⎛
⎝

⎞
⎠

k round n2. .
5 (21)

Where, k is the number of clusters, and n is the number of projects in
the training set. Clustering algorithms - (k-means, GMM clustering and
Spectral Clustering), were used in combination with cosine similarity
measurement (22). Cosine similarity was selected according to the re-
sults of the simulation study - [16], where several distance functions
were tested.

= −d x x1 cos( , )i j (22)

Where, xi, xj are feature sets that describe data-points in the training
set. The k-nearest neighbour graph, was used for similarity measure-
ment in Spectral Clustering; and k-means with cosine similarity were
used for Eigenvectors Clustering – where a constraint of 5 data-points in
each cluster was applied.

UAW, UUCW, TCF, ECF and Real_P20 were used as feature sets for
all of the clustering algorithms. This feature set was selected because all
of those attributes contribute to effort estimation. Using this set allows
to cluster datasets not only according a project size, but also relation-
ships among attributes can be included when the similarity is measured.

Training sets data were standardized. Standardizations were formed
by using z-score. Z-scores measure the distance of a data point from the
mean in terms of the standard deviation. This is also called standardi-
zation of data. The standardized data set has mean 0 and standard
deviation 1, and retains the shape properties of the original data set
(same skewness and kurtosis). Applying standardization equal weights
are given to all of attributes, which are used in distance measurements.

=
−

z
x μ

σ
( )

(23)

Where, x is a variable, μ stands for mean and σ represents a standard
deviation.

5. Results

5.1. K-means Clustering

Only a solution in which a maximum of 3 clusters are created, can
be accepted with respect to all constraints. The algorithm behaves the
same for DS1 and DS2. Using more clusters is not possible, because of
the initial constraint of 5 data-points in each cluster.

Table 2 shows that the 3-cluster solution allows one to achieve
better prediction than a 2-cluster solution. Note: SSE for the DS2, 2
clusters: 2700.96 points; and 3 clusters: 289.36 only. Prediction Error is
more than 9 times lower; when MAPE is compared, then 3 clusters are 3
times better than 2 clusters.

5.2. Spectral Clustering

In Table 3, the Spectral Clustering results are shown. Spectral
Clustering achieves 5 clusters for DS2; and 3 clusters for DS1. The best
DS2 results were achieved by 3 clusters. The SSE for 4 clusters is
552.04; and 5 clusters achieved: 3739.35. A similar difference is valid
for all other criteria.

Table 1
Datasets’ characteristics.

Median Median Range SD Minimum Maximum n
person-hours Real_P20 Real_P20 Real_P20 Real_P20 Real_P20

Dataset 1 1952.500 97.625 183.650 57.063 13.850 197.500 28
Dataset 2 6406.000 320.300 109.750 33.212 288.750 398.500 70
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5.3. GMM Clustering

In Table 4, GMM shows the worst clustering ability since only two
clusters were identified for DS2, and no clusters for DS1. For DS1, this
means that there was only one cluster with a majority of data-points
and the second contains less than 5 data-points.

5.4. Moving Window

Moving Window, (Table 5), produced results which show its pre-
diction ability - but also, error limits in its practical ability. Moving
Window achieved a MAPE 27.26 for DS2, which means that the average
prediction is about 27% lower - or higher, than real known value.

6. Discussion

In this study, four subset selection techniques methods were tested
on the two datasets. Winning approaches (the best performing
methods) are presented in Table 6, (DS1); and Table 7, (DS2). The best
prediction ability was achieved by using k-means or spectral clustering,
when 3 clusters for both datasets (DS1, DS2) were used. As can be seen
from Table 3, Spectral Clustering is able to cluster a DS2 dataset into a
maximum of 5 clusters - if the 5 data-point constraint is applied. The
overall results show - (see Table 3) that 3 clusters outperform the 5-
cluster solution. The winning application is Spectral Clustering, because
it shown a better ability to cluster and if dataset is larger, than more
clustering can be used if any minimal number of data-points in each

cluster is requested.
For DS1, applying Spectral Clustering leads to decreases in errors by

40% as compared to UCP, and MAPE is 53%; other methods, (e.g.
GMM, MW), are outperformed by SC or k-means. MW is outperformed
by UCP.

When DS2 is evaluated; then similar results and behaviour can be
observed. The results show yet again that SC is the winning solution –
but in absolute values; all methods behave better than in DS1, which
could be caused by higher of cluster consistency levels. This is driven by
the source data - when DS2 contains more similar projects.

An interesting aspect can be seen in comparing DS2 and DS1 results.
The difference between how all methods behave is clearly seen by using
the MAPE criterion or by NRMSE - which are the only two criteria not
biased regarding the number of data-points. As can be seen, the effects
of clustering are higher for a bigger dataset (DS2).

Answering a RQ1 it can be shown, that UCP and BPRM (when
identical MLR model is applied) are outperformed. Subselection tech-
nique for historical datasets impacted estimation accuracy. Applying
clustering with 3 (k-means, SC) and 2 (GMM) clusters allows to increase
a performance when compared to UCP or BPRM. MW, when window
size equals 15 outperforms UCP but results are not significant for BPRM
(Table 8b). The results were analysed using a “pair t-test”. This analysis
revealed a significant difference between k-means and SC – as against
UCP and BPRM. The test results at: =α 0.05, can be seen in Table 8a
and in Table 8b. The results are statistically significant for DS2 only.
Fig. 4 illustrates the prediction errors for each data-point set in DS1 and
DS2.

Table 2
K-means clustering results.

Number of clusters SSE MSE RMSE NRMSE MAPE

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

2 96,237.00 2700.96 12,030.00 128.62 109.68 11.34 0.62 0.13 95.78 2.52
3 42,001.00 289.36 5250.10 13.77 72.46 3.71 0.41 0.04 53.05 0.97

Table 3
Spectral Clustering results.

Number of clusters SSE MSE RMSE NRMSE MAPE

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

2 125,560.00 6451.49 15,695.00 307.21 125.28 17.53 0.71 0.20 69.50 2.30
3 42,001.00 289.36 5250.10 13.78 72.46 3.71 0.41 0.04 53.05 0.98
4 NaN 552.04 NaN 26.29 NaN 5.13 NaN 0.06 NaN 1.25
5 NaN 3739.35 NaN 178.06 NaN 13.34 NaN 0.15 NaN 2.39

Table 4
GMM Clustering results.

Number of clusters SSE MSE RMSE NRMSE MAPE

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

2 51 773.00 2700.96 6471.70 128.62 80.45 11.34 0.45 0.13 96.58 2.52

Table 5
Moving Window results.

Window size SSE MSE RMSE NRMSE MAPE

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

5 135,760.00 1,537,772.33 1697.00 73,227.25 130.26 270.61 0.76 3.09 394.31 27.26
10 617,570.00 10,851,000.00 77,196.00 516,700.00 277.84 718.81 1.63 8.21 509.61 59.61
15 95,361.00 40,287.00 11,920.00 1918.50 109.18 43.80 0.64 0.50 333.98 9.35
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The RQ2 asking about if all subset selection techniques are equal. As
can be seen k-means and SC are only significantly better (see Tables 8a
and 8b). GMM or MW cannot be understood as better when numerical
nor statistical significance is studied.

The residuals show a significance that the MW approach is capable
of predicting effort - when projects are natively similar. Whereas,
clustering methods are less sensitive for changes in project types or size.

When RQ3 is discussed – if MW equals to clustering techniques.
When MW are used together with MLR, they are not as capable as
spectral clustering or k-means.

If all projects in a window are similar - and newly-predicted, this is
significantly different that the MLR model and can provide an accurate
prediction. Clustering methods excel because of the classification of
projects in advance and because of using MLR models - which were
constructed on similar projects.

Small window-size respects a practical point-of-view because it is
usually not possible to use larger windows in practice; but does relate to
historical dataset size. The influence of MW size can be seen in Fig. 5. Large
windows produce better prediction - as previously confirmed in other stu-
dies [23–25]. Window sizes larger than 15 data-points bring significant
improvements. But, SC is a more capable method. When SSE is compared,
then SC achieves (for DS2): 289.36 vs 40,287.00; and MAPE is 0.98%
compared to 9.35%. In Fig. 5, a development of SSE for a selected window
size is shown. For better overview, the SSE is shown on a log-transformed y
axis; while MAPE is shown on a normal y-axis (percentage).

6.1. Threats to validity

In this study, two datasets - which both are publicly available, are
used. Both datasets are related to the UCP estimation approach, which
makes it a bias-to-estimation method. All conclusions are valid for the
experiment setup presented herein. No other datasets for UCP methods
are available, therefore only mentioned datasets are used.

A dataset is used in the hold-out setup, which allows one to divide it
into training and testing sets. Hold-out is only an option due to limited
size of DS1. This division is based on random generation; therefore,
replication is limited if the same random generator configuration is not
used.

Sub-selection Techniques, (Clustering), are sensitive to initial seed
setup. Seed is used for initial centroid selection for clustering methods.

The rule of a minimum of 5 observation (historical data-points) in
each cluster is applied. This rule allows to avoid creation of too many
small clusters, which an impropriate for MLR model construction.

In the MW approach, the windows size takes on an important role.
In this study, a window of size of 15 is used because the DS1 is small
and larger windows cannot be tested.

7. Conclusion

The effect of subset selection techniques was studied, and three
clustering techniques: (k-means, SC, GMM), as well as the MW method,
were evaluated against the UCP method. All techniques were used as
data-preparation methods for the MLR models. Clustering allows

Table 6
Selecting a winning approach for DS1.

Method SSE MSE RMSE NRMSE MAPE

K-means - 3clust 42,001.00 5250.10 72.46 0.41 53.05
SC – 3clust 42,001.00 5250.10 72.46 0.41 53.05
GMM – 2clust 51,773.00 6471.70 80.45 0.45 96.58
MW – size 15 95,361.00 11,920.00 109.18 0.64 333.61
UCP 69,344.24 8667.60 93.10 0.54 165.52
BPRM [11] 29,499.90 3687.74 60.72 0.34 56.32

Table 7
Selecting a winning approach for DS2.

Method SSE MSE RMSE NRMSE MAPE

K-means - 3clust 289.36 13.78 3.71 0.04 0.98
SC – 3clust 289.36 13.78 3.71 0.04 0.98
GMM – 2clust 2700.96 128.62 13.34 0.13 2.52
MW 40,287.00 1918.50 43.80 0.50 9.35
UCP 203,140.00 9673.20 98.35 1.12 26.82
BPRM [11] 7865.10 374.52 19.35 0.18 4.44

Table 8a
Statistical Significance of Tested Methods vs. UCP.

Method DS1 DS2

k-means - 3clust 0.227 <0.001
SC – 3clust 0.227 <0.001
GMM – 2 clust 0.310 <0.001
MW – size 15 0.661 <0.001

Table 8b
Statistical Significance of Tested Methods vs. BPRM.

Method DS1 DS2

k-means - 3clust 0.709 <0.001
SC – 3clust 0.709 <0.001
GMM – 2 clust 0.981 0.052
MW – size 15 0.849 0.963

Fig. 4. Residuals for individual data-points (DS1 – left, DS2 – right).

Fig. 5. Moving Window Size Impact on SSE and MAPE (on DS2).
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selecting more similar projects - which leads to better estimation, be-
cause of more capable is used for prediction. MW is similar in perfor-
mance, only if a larger size is used, (15 data-points). This means MW is
not acceptable for smaller data-sets. MW is sensitive to significant
changes in project-size, or characteristics. The MW solution is not a
robust solution, due to its data sensitivity.

When RQ1 is discussed, it can be concluded that Subset Selection
Techniques improve overall prediction and MLR performance is sig-
nificantly improved. GMM Clustering provides small improvements -
when compared to UCP or BPRM, (for DS1). MW - when window-size
equals 15, is better than UCP; but, smaller window sizes are not as
capable.

In RQ2, we can declare that the best performing subset selection
technique is SC, which we can assume is the most influential method. In
this study, SC performance is equal to k-means; but, as can be seen in
Table 3, SC is able to cluster data better, (into more clusters), if the
dataset is larger. This is supported by the results, when DS2 is em-
ployed.

To answer RQ3; it can be concluding that MW is usable – only for
larger dataset, but is still not as good as SC when windows size is large -
(15 data-points). Otherwise, MW caused rises in prediction errors. MW
is sensitive to changes in project characteristics; if a newly predicted
project is dissimilar to those in the historical dataset, then MW can
introduce a significant error.

In conclusion clustering methods reduce the prediction error of
linear regression methods significantly, where SC is a winning method
of subset selection techniques. SC can reduce a prediction error by up to
98%, when compared to UCP and by 30% when compared to BMRM
[11]. MW produces inconsistent results and it is a data sensitive
method.

In future research, a hybrid method - which will combine a MW and
SC approach, will be investigated and weighted windows based on
windows function will be evaluated.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.infsof.2017.12.009.
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