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Abstract Motivated by ongoing developments in aero-engine technology, a model for a coupled gas-lubricated
bearing is developed in terms of an extended dynamical system. A slip boundary condition, characterised by a slip
length, is incorporated on the bearing faces which can be relevant for operation in non-ideal extreme conditions,
notably where external vibrations or disturbances could destabilise the bearing. A modified Reynolds equation is
formulated to model the gas flow, retaining the effects of centrifugal inertia which is increasingly important for
high-speed operation, and is coupled to the structural equations; spring-mass-damper systems model the axial stator
and rotor displacements. A novel model is developed corresponding to a bearing experiencing an external random
force to evaluate the resulting induced displacements of the bearing components. The minimum face clearance is
obtained from a mapping solver for the modified Reynolds equation and structural equations simultaneously. In the
case of random excitations, the solver is combined with a Monte Carlo technique. Evaluation of the average value
of the minimum gap and the probability of the gap reaching a prescribed tolerance are provided. Extensive insight
is given on the effect of key bearing parameters on the corresponding bearing dynamics.
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1 Introduction

Fluid-lubricated bearings typically utilise a thin fluid film to maintain a clearance between rotating and stationary
components when an axial load is imposed. Increasingly industrial applications of bearings are characterised by
high operating speeds, requiring low frictional losses and smaller clearances. Associated film lubrication technology
is designed to enable further improvements in bearing efficiency. In this high-speed and small-clearance scenario,
comprehensive and accurate predictions of variation in the face clearance are needed, especially when the bearing
experiences a range of external loading and disturbances. Quantifying the possibility of contact between the bearing
faces is essential.

The dynamics of an air bearing slider, which employs a thin lubricating air film to separate two non-parallel
moving plates, has been studied in [1] when the bearing has relative normal motion between the two plates. The
interaction of a compressible gas flow with a movable rigid surface was presented, together with linear stability
analysis, showing separation of the plates can be maintained. Analytical methods were used in [2] to study the
dynamics and stability of tapered air bearing sliders, providing insight into the slider behaviour.

Taylor andSaffman [3] performed an early theoretical study examining a coaxial parallel rotor and stator separated
by a thin air film, experiencing normalmotion. Amodel was derived from the compressible Navier–Stokes equations
for negligible rotational inertia effects and small amplitude disturbances. For detailed predictions of the bearing
dynamics, a coupled bearing model in which the fluid flow is coupled to the bearing structure is required, such
that the air film is an integrated component of the bearing [4]. Etison [5] examined a coupled fluid-lubricated
device in three dimensions, identifying hydrodynamic and hydrostatic components of the air film pressure; the
hydrostatic component includes the squeeze film pressure. Results indicate that the squeeze film behaviour has
a significant contribution to the dynamics and can potentially maintain the air film alone. For highly vibrating
operational environments, Salbu [6] examined the effect of significant disturbances in the axial direction through
theoretical analysis and experimental investigations. Describing the rotor–stator clearance by an oscillatory motion
gives predictions of increasing pressure and force in the air film as the amplitude of axial oscillations increases.

The bearing gap dynamics in a coupled high-speed air-lubricated bearing with parallel faces were studied by
Garratt et al. [7]. In this case, the axial displacement of one face has periodic axial oscillations of smaller amplitude
than the equilibrium film thickness, and the other face moves axially in response to the film dynamics. Bailey et al.
[8] considered a similar bearing configuration with the inclusion of a coned rotor and incompressible flow. In this
case, an analytical solution of the corresponding Reynolds equation can be found, leading to an explicit analytical
expression for the fluid force. The coupled bearing problem then reduces to a second-order non-autonomous ordinary
differential equation for the bearing gap. For compressible flow, this direct approach is not feasible due to the
nonlinearity of the resulting Reynolds equation. The effect of the rotor undergoing prescribed axial oscillations
with amplitude larger than the equilibrium film thickness was examined. Results indicate that the fluid film can
become very small, possibly invalidating the classical no-slip velocity condition. Comparison of a CFDmodel of an
air-riding seal with experimental studies by Sayma et al. [9] identified that steady-state flow solutions could not be
obtained for typical gaps of under 10 μm indicating more analysis is required at this smaller scale to comprehend
the corresponding seal dynamics.

The reduced scale of micro- and nanofluidics devices results in the fluid flow being characterised by the confined
fluid at micro- and nanoscales, where surface effects begin to dominate over volume-related phenomena. Mathe-
matical models of thin gas flow regimes are usually classified by the Knudsen number Kn = l/ĥ0, where l is the
mean free path (for air at atmospheric conditions l = 68nm) and ĥ0 is the characteristic film thickness. Knudsen
numbers in the range 10−3 ≤ Kn ≤ 10−1, represent flow at micro- and nano-scales, where a continuum flowmodel
with slip boundary condition is usually employed. The existence of velocity slip was first predicted by Navier
[10], who proposed a constant slip model with a linear relationship between the fluid–wall velocity difference and
the tangential shear rate, i.e. the velocity slip is proportional to the derivatives of the surface fluid velocity, with
the slip length as the proportionality constant (a first-order model). Using Maxwell’s [11] classical theory, the slip
coefficient is taken as proportional to (2− f )/ f and is usually of the order of the mean free path; f is the momentum
accommodation coefficient.
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Use of a slip flow condition has been previously incorporated into models of various bearing geometries. A gas-
lubricated inclined plane slider bearing has been studied in the slip flow regime using a first-order slip model [12],
second-order slipmodel [13] andmodified second-order slipmodel incorporating additional physical considerations,
referred to as a 1.5 slip model [14]. For each case, the corresponding Reynolds equation for compressible flow was
developed and analytical results were obtained.

A non-axisymmetric thrust bearing with slip flow and foil pads on the rotor face is examined by Park et al. [15],
where the gas flow modelled by a classical Reynolds equation is coupled to the bearing structure. Bearing dynamic
predictions are studied for small amplitude rotor displacement using perturbation analysis in the case of a no-slip
and slip condition imposed on the bearing faces. A slip condition results in a reduced hydrodynamic pressure and
thus load carrying capacity when compared with a no-slip condition, as well as decreased stiffness and damping
coefficients in the case of axial perturbations. Incorporating a slip boundary condition in the analysis of a coupled
high-speed fluid-lubricated parallel bearing with small face clearance in the limit of incompressible flow [16] shows
that face contact does not formally occur when the rotor undergoes prescribed periodic oscillations but the bearing
gap can become very small. An increased lubrication force on the stator can be attained by the use of a coned rotor
with stability studies identifying an optimal coning angle [5]. However, detailed analysis of a coned bearing in the
slip regime under extreme operating conditions gives predictions of possible face contact [17]. A similar trend is
also identified for the case of a coupled high-speed fluid-lubricated bearing in the case of compressible flow with
slip boundary conditions under extreme operating conditions [18]. Possible external disturbances imposed on the
rotor can cause the rotor to be displaced by magnitudes larger than the initial equilibrium film thickness. Detailed
results show a parallel rotor and stator maintain a face clearance, although it can become very small, where as a
coned bearing configuration permits contact between the rotor and stator.

For increasingly more compact designs at higher rotational speeds, there exists a requirement for greater pre-
dictability of the dynamic behaviour in industrial bearing designs. Sources of uncertainty in a bearingmodel typically
arise from the random axial motion of the rotor due to external excitations. In [16] and [17], the effect of external
excitations on the bearing is studied by prescribing the axialmotion of the rotor as periodic oscillations and utilising a
comprehensive deterministic mathematical model for the bearing dynamics. The probability of bearing face contact
is correspondingly examined using the method of derived distributions to incorporate the lack of precise knowledge
in the amplitude of rotor oscillations [19]. The probability density function (transforming functions) and cumulative
distribution function of the minimum bearing gap are readily determined when the amplitude of rotor oscillations
is described by a specified probability distribution function. Utilising the deterministic relationship between the
amplitude of rotor oscillations and minimum value of the bearing gap subsequently leads to the evaluation of the
probability of contact.

Analysis of dynamical systems and bearing models with uncertainty arising from external excitations use com-
putational methods which are typically based on Monte Carlo techniques [20]. The Monte Carlo method samples
directly from the random input parameter and the deterministic model is evaluated for each sample, giving the
corresponding output. This robust procedure is able to evaluate complex cases and a large number of uncertain
parameters; however, an extensive number of code executions may be needed to generate sufficiently accurate
results. To minimise the computational cost and increase efficiency, other computational approaches for uncer-
tainty quantification have been developed; examples include polynomial chaos, Gaussian process emulator and a
Quasi-Monte Carlo method, see, e.g. [21–23].

The dynamic response and vibration characteristics of two in-line rotor bearing systems are examined by Li et al.
[24] to quantify the effects of uncertainty. A model for the rotor system is derived using stochastic modelling based
on the polynomial chaos expansion technique for uncertainty in the damping and nonlinear support stiffness. The
results obtained are reported to have good agreement with Monte Carlo simulation. Response statistics demonstrate
that uncertainty in the nonlinear support stiffness and damping has a significant effect on the predicted dynamic
response of the rotor system.

Increasingly environmental and efficiency considerations are leading to the next generation of bearing and sealing
technologies having an extremely small gap, resulting in an almost contact design. In this study, we outline a model
for a gas-lubricated bearing incorporating a slip boundary condition. The compressible flow model is coupled to
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the structural dynamics through the axial force of the fluid on the bearing faces. Previous analysis is extended to
incorporate operation in a non-ideal environment; external vibrations or disturbances could act to destabilise the
bearingwhich aremodelled as a randomexternal force applied to the rotor. InSect. 2, the coupledgoverning equations
are formulated where a Reynolds equation for compressible flow is derived that retains the effects of centrifugal
inertia for high-speed operation and incorporates slip boundary conditions, characterised by a slip length parameter,
on the bearing faces. The axial stator and rotor displacements are modelled by spring-mass-damper systems. Of
significant importance is the analysis of a random external force imposed on the rotor, modelled as a continuous,
stationary, bounded process with finite modes of frequencies in its spectrum. The generality of the proposed random
force is potentially transferable to other models of physical phenomena beyond this particular application. To
numerically solve the coupled bearing model, the modified Reynolds equation is solved simultaneously with the
structural equations via a mapping solver, details of which are given in Sect. 3. The Monte Carlo technique is
implemented to determine the cumulative distribution density function of the minimum gap (face clearance) due to
the imposed random destabilising external force, and also to find the average of the minimum gap and probability
that it reaches a prescribed tolerance. Results are presented in Sect. 4 examining the effect of key model parameters.

2 Mathematical model

A simplified mathematical model is derived for a gas-lubricated bearing with a thin fluid film modelled as com-
pressible flow and a slip boundary condition imposed on the bearing faces. The coaxial, axisymmetric annular rotor
and stator can move axially, giving the respective displacement heights as ĥr and ĥs . The rotor also has a prescribed
rotational speed Ω̂ and the bearing has imposed pressures at the inner and outer radius. This configuration is moti-
vated by aerospace applications and similar technology in the literature is referred to as air-riding [7], film-riding
[25], oil-free [26] or noncontacting [4].

The governing Navier–Stokes equations and boundary conditions for the gas flow in the bearing are expressed
in dimensionless variables by taking a typical bearing radius r̂0 and film thickness ĥ0. The characteristic rotor
velocity is taken as Ω̂ r̂ , typical air density is taken to be ρ̂0 and time is scaled by T̂ defined by the time scale of
an imposed force. The dimensionless velocities are defined as û/Û , v̂/(Ω̂ r̂0) and ŵ/(ĥ0T̂−1), where (û, v̂, ŵ) are
the dimensional radial, azimuthal and axial velocities, respectively. The dimensionless radius and height are given
by r = r̂/r̂0 and z = ẑ/ĥ0, respectively. The dimensionless density is ρ = ρ̂/ρ̂0 and dimensionless slip length is
ls = l̂s/ĥ0.

The bearing geometry for parallel faces is shown in Fig. 1 in the dimensionless coordinate system (r, θ, z);
corresponding geometry for a coned rotor is given in Fig. 2. The coning angle β is assumed small, such that
sin β̂ = O(δ0) and cos β̂ = 1 + O(δ0). Correspondingly, a scaling β̂ = βδ0 with β = O(1) gives consistency
with the lubrication condition such that ∂hr/∂r = −β. Figure 3 shows a cross sectional view of a negatively coned
bearing (NCB) and positively coned bearing (PCB). The dimensionless coned rotor and plane stator heights are
given by hR(r, t;β) and hs(t), respectively, and the axisymmetric rotor–stator clearance is defined by h(r, t;β) =
hs(t) − hR(r, t;β), with rotor height

hR(r, t;β) = hr (t) − (r − 1)β for β ≤ 0,

hR(r, t;β) = hr (t) − (r − a)β for β > 0, (1)

as shown in Fig. 3; hr (t) is defined at the outer radius for a NCB and inner radius for a PCB.
The inner radius is rescaled to a = r̂ I /r̂O and the outer radius to 1, with corresponding dimensionless pressure

boundary conditions

p = pI at r = a, and p = pO at r = 1. (2)

This study considers explicitly the coning angle arising from deformation of the rotor due to over pressurisation of
the bearing, resulting in a NCB having external pressurisation (pI < pO) and a PCB having internal pressurisation
(pI > pO). In both cases, this configuration results in a pressure gradient corresponding to a diverging channel.
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Fig. 1 Geometry and notation of a nondimensional parallel axisymmetric fluid-lubricated bearing

Fig. 2 Geometry and notation of a nondimensional axisymmetric fluid-lubricated bearing with a negatively coned rotor; in contrast a
positively coned rotor has angle below the r axis

The rotor experiences an external axial force N (t), which is assumed to be axisymmetric and imposed at r = a.
It is taken to be a random process, which represents external excitations on the bearing that could act to destabilise
the bearing operation. For the case of non-axisymmetric forcing, for example, point loading, the bearing faces may
become misaligned and experience tilt and/or swash. In turn, this may lead to coning angle instabilties over time. A
dynamic analysis for a noncontacting face seal with coned faces has been examined in three dimensions under the
assumption of assembly face misalignment and rotor axial run-out. Optimal conditions to minimise face contact
and maximise the stability are addressed in [27–29].

A key quantity in the bearing dynamics is the time-dependent minimum face clearance (MFC), defined by the
variable g(t) = hs(t) − hr (t), evaluated at the outer radius for a NCB and inner radius for a PCB; for a parallel
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(a) (b)

Fig. 3 Cross sectional notation for a bearing with a negative (β ≤ 0) and b positive (β > 0) coning angle

bearing g(t) = h(t). If the MFC always remains positive, i.e. g > 0, there is no bearing face contact and a fluid
film is maintained.

2.1 Air flow model

The air flowmodel is derived from the compressible Navier–Stokes momentum equations and conservation of mass
equation for a compressible flow in axisymmetric coordinates; the flow is assumed to be an isothermal ideal gas.
Thermal effects in similar configurations have been studied in the absence of external forcing by numerous authors,
for example see [30,31], suggesting thermal deformation of the faces is more significant than viscous heating. A
study by Minikes and Bucher [32] concluded that temperature variations were less than five per-cent of the ambient
temperature and consequently the flow could be an isothermal process. Correspondingly, the thermal effects are
neglected in the paper as they are secondary to the effects of the dynamic motion.

Under the above approximation the radial and azimuthal Reynolds numbers and the Reynolds number ratio Re∗
are given respectively as

ReU = Û ĥ0
ν

, ReΩ = r̂20 Ω̂

ν
and Re∗ = Ω̂ r̂0

Û
δ0

−1, (3)

where ν = μ/ρ̂0 is the kinematic viscosity. The aspect ratio δ0 = ĥ0/r̂0 is small for thin film bearings δ0 � 1,
justifying the use of the lubrication approximation.Thepressure is scaled as P = μr̂0Û/ĥ20 to ensure that the pressure
gradient in the radial direction is retained at leading order and the Froude number Fr is defined as Fr = Û (g̃ĥ0)−1/2,
where g̃ denotes the acceleration due to gravity and parametrises the importance of gravitational effects relative to the
radial flow. Gravity is neglected because taking the Froude number of O(1), ensuring consistency with lubrication
theory, leads to ReU δ0Fr−2 � 1. Classical lubrication theory neglects inertia when the reduced Reynolds number
ReU δ0 � 1; however, in the case of high-speed bearing operation, an additional term corresponding to the ratio
of the Reynolds numbers Re∗ must be considered, which is not always negligible. A measure of the importance
of the viscous time scale is given by κ = ĥ20/νT̂ , where κ = O(1) gives the time scale of the order of the time it
takes viscosity effects to diffuse over the characteristic film thickness. Thus giving the acceleration term of the same
order as the viscous term. In the current study, the time scale is taken to be of O(ĥ0r̂0/ν), resulting in κ = O(δ0),
justifying a quasi-static approximation of the momentum equations.

Applying a lubrication condition and the given assumptions to the compressible Navier–Stokes momentum
equations, results in the leading-order momentum equations
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− λρ
v2

r
= −∂p

∂r
+ ∂2u

∂z2
, 0 = ∂2v

∂z2
, 0 = ∂p

∂z
. (4)

A speed parameter λ = ReU δ0Re∗2 = r̂0ĥ20Ω̂
2/(νÛ ) characterises effects of inertia due to rotation. If λ = 0, the

standard lubrication equations for compressible flow in axisymmetric cylindrical coordinates are recovered.
Similarly, the conservation of mass equation and equation of state become

∂ρ

∂t
+ 1

σr

∂

∂r
(rρu) + ∂

∂z
(ρw) = 0 and P = Ksρ, (5)

where σ = κ/ReU δ0 = r̂0/Û T̂ . The dimensionless ideal gas constant in (5) is given by Ks = Rτ ĥ20/μr̂0Û M ,
which relates the pressure field to the density field, where R is the gas constant and M is the molar mass.

A first-order Navier formulation slip model is exploited, as used in Bailey et al. [16], where a slip velocity is
introduced that is proportional to the tangential component of the surface traction. The velocity boundary conditions
consist of components of the fluid which are continuous across the fluid–solid boundary with a modification due
to slip flow induced by the wall shear, together with a no flux condition. Thus the dimensionless velocity boundary
conditions, to leading order, are taken as

u = ls
∂u

∂z
, v = r + ls

∂v

∂z
, w = ∂hr

∂t
− ReU δ0

κ
uβ at z = hr ,

u = − ls
∂u

∂z
, v = − ls

∂v

∂z
, w = dhs

dt
at z = hs . (6)

The fluid velocity components tangential to the wall in (6) are proportional to the relevant wall shear stress where the
proportionality constant ls , denotes a dimensionless slip length. The limit ls = 0 corresponds to no-slip conditions.
A derivation of the slip velocity conditions is given in Bailey et al. [17].

The air flow velocities are readily determined from the leading order Navier–Stokes equations (4). Integrating the
conservation of mass equation (5) between the rotor and stator, applying the Leibniz integral rule and the velocity
boundary conditions (6), gives the modified nonlinear Reynolds equation for compressible flow as

∂

∂t
(ph) − 1

12σr

∂

∂r

(

pr
∂p

∂r
h2(h + 6ls)

)

+ λ

12Ksσr

∂

∂r

(

p2r2
h2

( 3
10h

3 + 3h2ls + 7hls2 + 6ls3
)

(h + 2ls)2

)

= 0. (7)

The modified Reynolds equation expresses the relationship between the film pressure and rotor–stator clearance
h, subsequently yielding the flow characteristics when solved. Dependence on the coning angle is given implicitly
in the rotor–stator clearance h. Taking λ = 0 results in the centrifugal inertia effects being neglected;however, the
rotor and stator still experience relative rotational motion due to the velocity boundary conditions.

2.2 Structural dynamics

The axial displacements of the stator and rotor are modelled using a standard spring-mass-damper model incorpo-
rating the bearing pressure variation and an external random, time-dependent force imposed on the rotor N (t). In
dimensionless form, the stator equation is

d2hs
dt2

+ Da
dhs
dt

+ Kz(hs − 1) = αF(t), (8)
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and the rotor equation is either

d2hr
dt2

+ Da
dhr
dt

+ Kz(hr + (1 − a)β) = −α(F(t) − N (t)) for β ≤ 0,

or

d2hr
dt2

+ Da
dhr
dt

+ Kzhr = −α(F(t) − N (t)) for β > 0. (9)

The rotor equations (9) are defined at r = a, resulting in separate equations for cases of a NCB and PCB, to ensure
that they have a similar volume of gas in the bearing for a given magnitude of coning angle. In this configuration,
a PCB and a NCB have different equilibrium rotor heights at r = a.

The corresponding fluid axial force of the fluid on the bearing faces is given by

F(t) = 2π
∫ 1

a
(p − pa)r dr. (10)

Here pa = p̂a/P̂ is the dimensionless atmospheric pressure, α = νÛ/m̂σ 2δ30 is the dimensionless force coupling
parameter, m̂ is the mass of a face, Da = D̂a/m̂σ is the dimensionless damping parameter and Kz = K̂z/m̂σ 2 is
the effective restoring force parameters.

In a physical application, random fluctuations reflect the uncertainty in the precise state of a system. In the
present work, the bearing is envisaged as part of a complex dynamical system characterised by a periodic motion of
period T̂ ; this will be the case for an aero-turbine engine. The system is composed of several rotating parts where
the motion of each individual part and its interaction with the surrounding environment induce an external force
on the rotor surface of the bearing. As the external force is not known with any precision, it is considered to be a
random force. Due to restrictions on the mathematical formulation of the problem as well as physical and operating
constraints, the external force is taken to be continuous, stationary, having a bounded amplitude, and a finite number
of frequencies in its spectrum. Correspondingly, the random external force is chosen of the form

N (t) =
n

∑

i=1

Ai cos(Bi t + φi ), (11)

and amplitudes Ai are truncated normal random variables given by

Ai =

⎧

⎪

⎨

⎪

⎩

Ā, if Xi > Ā,

Xi , if − Ā ≤ Xi ≤ Ā,

− Ā, if Xi < − Ā,

(12)

where Xi are standard normal randomvariables; the phasesφi are uniformly distributed randomvariables on [0, 2π ];
and the frequencies Bi are taken as discrete random variables uniformly distributed on the finite set of non-negative
integers: {0, 1, . . . , B̄}. The choice of B̄ is motivated by the need for the time scale of the forcing to be comparable
or longer than the viscous time scale. The random variables Xi , Bi , φi , i = 1, . . . , n are mutually independent.

The form of the random external force N (t) contrasts with Langevin-type equations associated with white
noise models that are typically unbounded, discontinuous and aperiodic [33,34]. Boundedness of the noise and
frequency in the current work, together with continuity, is important for a realistic model of an external force
in aero-applications. Correspondingly, a realisation of N (t) from (11), determined from a realisation of Ai , Bi ,
φi , provides a periodic function of time. Noting that φi is a uniform random variable on [0, 2π ], then N (t) is
a stationary stochastic process [35,36]. Since Ai are bounded random variables and n is finite, N (t) is bounded
which is a natural requirement for modelling a physical force. The properties of the proposed random force (11),
namely that it is continuous, stationary, boundedness in physical space and has a finite number of frequencies in
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its spectrum, is potentially transferable to other models; the proposed random force may be useful when modelling
other physical phenomena which experience random fluctuations.

3 Numerical methods

Consideration of a fully coupled bearing model provides a quantitative study of the interaction between the air
film and the rotor–stator structure of fluid-lubricated technology. Investigations into the operational requirements
for dynamic bearing behaviour are undertaken in the presence of an external force subject to uncertainties on the
rotor. To numerically solve the coupled bearing model requires the modified Reynolds equation (7) to be simulated
simultaneously with the structural equations (8)–(9). Equations are derived for a NCB, and similar methodolgy can
be followed for those for a PCB, see Bailey et al. [18]. Substituting the MFC g(t) = hs(t)− hr (t) into the modified
Reynolds equation (7) gives

∂

∂t
(p(g + (r − 1)β)) − 1

12σr

∂

∂r

(

pr
∂p

∂r
(g + (r − 1)β)2(g + (r − 1)β + 6ls)

)

+ λ

12Ksσr

∂

∂r

(

p2r2(g + (r − 1)β)2

( 3
10 (g + (r − 1)β)3 + 3(g + (r − 1)β)2ls

)

(g + (r − 1)β + 2ls)2

+
(

7(g + (r − 1)β)ls2 + 6ls3
)

(g + (r − 1)β + 2ls)2

)

= 0, (13)

for a NCB. The equation for a parallel bearing is obtained from (13) by taking β = 0.
Re-writing the stator equation (8) in terms of the MFC gives the system of structural equations for a NCB or

parallel bearing as

d2g

dt2
+ Da

dg

dt
+ Kz(g − 1 − (1 − a)β) − 2αF(t) + αN (t) = 0,

d2hr
dt2

+ Da
dhr
dt

+ Kz(hr − (1 − a)β) + α(F(t) − N (t)) = 0. (14)

To couple numerically the structural and fluid dynamics, the Reynolds equation is discretised in the spatial variable
and approximated by a second-order central finite difference scheme.

Solutions to the coupled system, Reynolds equation (13) and structural equations (14), are denoted by the vector
g(g(t), hr (t), Z(t),Y (t), pi (t)), where pi denotes the pressure at radial points ri ; a ≤ ri ≤ 1, with given initial
conditions:

g(t0) = g0, hr (t0) = hr0, Z(t0) = Z0, Y (t0) = Y0, pi (t0) = pO(ri − a) + pI (1 − ri )

1 − a
. (15)

In this way, the problem reduces to the following system of five first-order random ordinary differential equations.
For a NCB, the set of equations is given by

dg

dt
= Z ,

dhr
dt

= Y,

dZ

dt
= −DaZ − Kz(g − 1 − (1 − a)β) + 2αF − αN (t),

dY

dt
= −DaY − Kz(hr − (1 − a)β) − αF + αN (t),

dpi
dt

= − pi Z

(g + (ri − 1)β)
+ piri (pi+1 − pi−1)

24σδr
(3β(g + (ri − 1)β + 4ls))
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+ (g + (ri − 1)β)(g + (ri − 1)β + 6ls)

12σ

(

pi+1 − pi−1

4riδr
+ pi+1

2 − 2pi 2 + pi−1
2

2δr2

)

− λ

12σKs

(g + (ri − 1)β)

(g + (ri − 1)β + 2ls)2

(

3

10
(g + (ri − 1)β)3 + 3(g + (ri − 1)β)2ls

+ 7(g + (ri − 1)β)ls
2 + 6ls

3
)

(

pi+1
2ri+1

2 − 2pi 2ri 2 + pi−1
2ri−1

2

2riδr2

)

− λ

12σKs

pi 2ri 2β

(g + (ri − 1)β + 2ls)3

(

9

10
(g + (ri − 1)β)4 + 9(g + (ri − 1)β)3ls

+ 31(g + (ri − 1)β)2ls
2 + 42(g + (ri − 1)β)ls

3 + 24ls
4
)

. (16)

The Reynolds equation is discretised in the spatial variable and approximated by a second-order central finite
difference scheme for i = 2 : ξ −1, where ξ is the number of radial points used in the finite difference approximation
of equation (13). The boundary conditions for the pressure are given by p1 = pI and pξ = pO . The force of the

fluid on the faces is denoted by F = 2π
(

∑ξ
i=1 wi (pi − pa)ri

)

, where wi is a weighting function. The set of

equations (13) are solved using a stiff ordinary differential equation solver, namely a variable-step, variable-order
solver based on the numerical differentiation formulas of orders 1 to 5.

For every realisation of the random force (11), the rotor experiences a periodic force which has a period of
T = 2π . Periodic solutions of the system of equations (16), with fixed Ai , Bi , φi in (11), are sought; the solver used
only converges to periodic solutions. Therefore, aRe2 → Re2 map is formulated, advancing an initial condition g0
at time t0 by the time T = 2π , defining a stroboscopic map �(T ; g0, t0) which integrates the system of equations
(16) forward through one period of the forcing. A variable-order solver based on the numerical differentiation
formulas is implemented due to the equations becoming locally stiff when the face clearance becomes very small.
Periodic solutions are identified via the fixed points of the stroboscopic map g(t) = g(t + T ) and found iteratively,
corresponding to the condition

g(T ) − g(t0) = �(T ; g0, t0) − g0 = G(�(T ; g0, t0), g0) = 0, (17)

giving periodic solutions g(g(t), hr (t), Z(t),Y (t), pi (t)).
Due to the nonlinear character of the system of equations, an iterative Newton’s method is used to find solutions

numerically, given an initial guess value g̃0. Successively improved iterates of the initial guess g0 are computed by
the numerical iterative scheme

g0n+1 = g̃0n − J (T )−1(g(T ) − g̃0n), (18)

with the Jacobian matrix

J (T ) = ∂G(�, g0)
∂g0

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂g(T )
∂g0

− 1 ∂g(T )
∂hr0

∂g(T )
∂z0

∂g(T )
∂Y0

∂g(T )
∂p10

· · · ∂g(T )
∂pξ0

∂hr (T )
∂g0

∂hr (T )
∂hr0

− 1 ∂hr (T )
∂z0

∂hr (T )
∂Y0

∂hr (T )
∂p10

· · · ∂hr (T )
∂pξ0

∂Z(T )
∂g0

∂Z(T )
∂hr0

∂Z(T )
∂z0

− 1 ∂Z(T )
∂Y0

∂Z(T )
∂p10

· · · ∂Z(T )
∂pξ0

∂Y (T )
∂g0

∂Y (T )
∂hr0

∂Y (T )
∂z0

∂Y (T )
∂Y0

− 1 ∂Y (T )
∂p10

· · · ∂Y (T )
∂pξ0

∂p1(T )
∂g0

∂p1(T )
∂hr0

∂p1(T )
∂z0

∂p1(T )
∂Y0

∂p1(T )
∂p10

− I · · · ∂p1(T )
∂pξ0

...
...

...
...

...
. . .

...

∂pξ (T )

∂g0
∂pξ (T )

∂hr0
∂pξ (T )

∂z0
∂pξ (T )

∂Y0
∂p1(T )
∂p10

· · · ∂pξ (T )

∂pξ0
− I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (19)
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The elements of the Jacobian matrix J (T ) are found by solving similar systems to the auxiliary system of equations
(16), but which are the derivative with respect to each of the initial guess value g̃0; corresponding initial conditions
are used.

An alternative method, as the modified Reynolds equation (13) does not depend explicitly on the rotor height hr ,
is to solve directly for the pressure and face clearance only and find the rotor height in post processing using F(t)
and N (t). This will eliminate the second and fourth equations in (16) and reduce the Jacobian (19) by removing
the second and fourth rows and columns. However, if the number of radial points ξ is large, the reduction will be
marginal.

The stroboscopicmap is combinedwith theMonte Carlo technique, where a large number of independent random
realisations of the stroboscopic map are computed, each with a randomly generated external force imposed on the
rotor.

Initially, the stroboscopic map is used to obtain the approximation ḡmin of the minimum face clearance gmin as

gmin = lim
t∈[0,T ] g(t).

Then the approximate average of gmin can be computed as

E[gmin] ≈ E[ḡmin] ≈ ĝmin := 1

M

M
∑

m=1

ḡ(m)
min, (20)

where ĝmin is the approximate average of ḡmin and ḡ(m)
min is the value of ḡmin for independent realisation m; m =

1, . . . , M . The Monte Carlo error is

MCerrgmin
= 2

√

var(ḡmin)/
√
M, (21)

where var(ḡmin) is estimated as

var(ḡmin) 	 σ̂ 2 := 1

M

M
∑

m=1

[

ḡ(m)
min

]2 − [

ĝmin
]2

, (22)

and

E[ḡmin] ∈ (

ĝmin − MCerr, ĝmin + MCerr
)

(23)

with a probability of 95% (confidence interval). To achieve a sufficiently accurate result, the Monte Carlo error was
made sufficiently small through choosing an appropriately large number M of independent realisations. We note
that the estimate ĝmin has bias E[gmin] − E[ḡmin], corresponding to the error of the numerical approximation ḡ(t)
of the stroboscopic map g(t). The numerical solution was compared to an analytical asymptotic solution in the case
of small face clearance in Bailey et al. [8]. Results showed the proposed numerical solution has negligible error of
the minimum face clearance compared to the asymptotic solution, indicating that the bias of the estimate ĝmin can
be considered to be negligible. An estimate for the variance of gmin is computed as in (22), and its Monte Carlo
error is evaluated as

MCerr
σ2

	 2√
M

(

1

M

M
∑

m=1

[

ḡ(m)
min

]4 −
[

σ̂ 2
]2

)
1
2

. (24)

4 Results and discussion

Acoupled gas bearing is examined to investigate the effects of key parameters of the bearing dynamics and to identify
possible face contact corresponding to a generic aero-engine industrial application. The bearing configuration is
taken to be a narrowbearinga = 0.8withσ = 0.821 and ambient pressure imposed at the outer radius pO = pa = 1.
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Fig. 4 Pressure in the fluid film, fluid force on bearing faces, stator and rotor height, face clearance and external force imposed on the
rotor for two particular realisations of the random force N (t) in the case of a parallel bearing for a typical realisation and b extreme
realisation with small face clearance; n = 20, Ā = 20, β = 0 and pI = 1

Initially ambient pressure is considered at the inner radius pI = 1, the bearing faces taken to be parallel β = 0 and
the external force (11) has parameters n = 20, B̄ = 10, and Ā = 20; the effect of these parameters on potential face
contact is examined. The speed parameter is considered to be λ = 0.0029, dimensionless slip length to be ls = 0.1
and the ideal gas constant as Ks = 1. The structural parameters are given by Kz = 12.2, Da = 1.5 and the force
coupling parameter by α = 1.22.

These parameter values refer to a bearingwith characteristic radius r̂0 = 0.01m, rotor–stator clearance ĥ0 = 0.3×
10−4m and typical pressure P̂ = 5×103 Pa. The bearing faces havemass 1Kg and the structural stiffness is given as
K̂z = 5× 105 Nm−1 and the damping as D̂a = 300Nsm−1. The fluid properties are given by ρ̂0 = 1.2922Kgm−1,
μ = 2.026 × 10−5 Kgm−1s−1 and the rotational speed of the rotor is taken to be 6000 rpm.

As examples, two different realisations of the bearing dynamics are given in Fig. 4 showing the pressure in the
fluid film, force of the fluid on the bearing faces, the stator and rotor heights, face clearance and external force
imposed on the rotor. It is noted that the realisation in Fig. 4b is an extreme realisation where the face clearance
becomes very small, and a more typical representation of the evolution of the system is given in Fig. 4a. The external
axial force on the rotor causes axial displacement of the rotor: however, the stator only has axial displacement if the
rotor displacements are sufficiently large such that the face clearance becomes sufficiently small. When the rotor is
in close proximity of the stator, resulting in a very small face clearance, as shown in Fig. 4b, there is a peak in the
fluid force and pressure of the fluid ensuring the fluid film is maintained through axial displacement of the stator.
The stator oscillations decrease over time unless the rotor comes into close proximity again (as in Fig. 4b), where
there is another peak in the fluid force and further axial displacement of the stator. The smaller the face clearance
becomes, the larger the peaks in the fluid force and pressure in the fluid film become.
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Fig. 6 Histogram for gmin corresponding to the Monte Carlo simulation with M = 15, 000; n = 20, Ā = 20, β = 0 and PI = 1

The mean value and variance of the minimum face clearance are computed for an increasing number of Monte
Carlo simulations and are given in Fig. 5 for a parallel bearing together with the corresponding Monte Carlo
errors. Increasing the number of Monte Carlo realisations gives converging values for the mean and variance of
the minimum face clearance of μ = 0.447 ± 0.00340 and σ 2 = 0.0432 ± 0.000885. Increasing the number of
realisation from M = 1000 to M = 4000 effectively halves the Monte Carlo error for mean value from 3.00% to
1.48%. Increasing the number of realisations further to M = 15, 000 reduces the Monte Carlo error to 0.760%,
signifying a balance between the accuracy of the results and the excessive computation requirement that is desirable.
For all subsequent cases considered, the number of realisations will be chosen such that the Monte Carlo error is
≤ 2.5% for the mean value of gmin to limit computation time without a significant loss in accuracy.
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Fig. 7 Mean and variance of gmin with corresponding Monte Carlo errors in the case of the parallel bearing with increasing pressures
pI at the inner radius; n = 20, Ā = 20 and β = 0

A histogram for gmin is presented in Fig. 6 for the case of M = 15, 000 in Fig. 5 showing the frequency
distribution. The realisations give a right-skewed distribution due to the dynamics of the bearing when the face
clearance becomes very small, i.e. in the limit of contact. The average value of gmin is 0.447 ± 0.00340; however,
there is a non-negligible possibility of the face clearance reaching a small prescribed tolerance, with the limiting
case of contact gmin = 0.

Evaluation of the parallel bearing is examined for increasing internal pressure imposed at the inner radius;
for pI = 1 an ambient pressure is imposed across the bearing, pI = 0.5 corresponds to external pressurisation
and pI = 1.5 to internal pressurisation. The mean and variance of gmin are given in Fig. 7, together with the
corresponding Monte Carlo error, for a parallel bearing with increasing pressure at the inner radius pI . In general,
as the pressure at the inner radius is increased, the average value of gmin increases. It is noted that the case of
pI = 1.1 has a value less than pI = 1, however with the Monte Carlo error this case fits with the overall trend of
the mean value of gmin increasing as the value of pI increases. In all cases, the variance of gmin is small; σ 2 is of
the order of 10−2.

The corresponding probability of gmin reaching a prescribed tolerance gtol is given in Fig. 8, including the
Monte Carlo errors. Of note is that the probability decreases as the prescribed tolerance decreases, with negligible
probability of face contact, i.e. gtol ∼ 0. For each prescribed tolerance, increasing the pressure at the inner radius
leads to a general trend of the probability of gmin reaching the value of gtol decreasing. There are larger decreases
in the probability of gmin reaching a prescribed tolerance for large values of gtol.

Figure 9 gives the mean and variance of gmin with the corresponding Monte Carlo errors in the case of increasing
values for the truncated amplitude of the components of the random force. Corresponding values of the probability
of gmin reaching a prescribed tolerance of decreasing value gtol for increasing Ā are given in Fig. 10. The bound Ā
of the truncated random variable Ai models the amplitude of the individual components of the random force N (t);
the bound is finite due to the structural limitation of the bearing geometry and its local environment. To test our
numerical solution, values 20 ≤ Ā ≤ 100 are examined; the mean value of gmin is similiar for all cases examined,

123



Evaluation of the minimum face clearance of a high-speed…

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.02

0.04

0.06

0.08

0.1

pI

pr
ob

ab
ilt
y
of

g
m

in
re
ac
hi
ng

to
le
ra
nc

e
g t

o
l gtol = 0.1

gtol = 0.01
gtol = 0.001
gtol = 0
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Fig. 9 Mean and variance of gmin with corresponding Monte Carlo errors in the case of the parallel bearing with increasing values for
the truncated amplitude of the components of the random force Ā; n = 20, β = 0 and pI = 1

and the variance has a small value of the order of 10−2 in all cases. The probability of gmin reaching a given tolerance
gtol remains similiar when the values of Ā increase, with negligible probability of face contact, i.e. gtol ∼ 0.

The mean and variance of gmin with the corresponding Monte Carlo errors are shown in Table 1 for the case
of a parallel bearing with increasing number of frequencies (modes) in the forcing term (11), together with the
probability of gmin reaching a prescribed tolerance gtol. For an increasing number of frequencies, the number of
Monte Carlo realisations required increases, and the mean value of gmin decreases, while the variance increases.
Decreasing the prescribed tolerance causes the probability of gmin becoming that small to decrease, with negligible
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Fig. 10 Probability of gmin reaching a given tolerance gtol in the case of the parallel bearing for increasing values for the truncated
amplitude of the components of the random force Ā; n = 20, β = 0 and pI = 1

Table 1 Mean and variance of gmin for a given number of realisations M together with the probability of gmin reaching a given tolerance
gtol in the case of a parallel bearing with increasing number of frequencies in the forcing term 10 ≤ n ≤ 30; Ā = 20, β = 0 and pI = 1

n M μ σ 2 gtol

0.1 0.01 0.001 0

10 600 0.623 ± 0.0151 0.0342 ± 0.00810 0.00932 ± 0.00785 0.00119 ± 0.00281 0.00101 ± 0.00259 0 ± 0

20 1500 0.440 ± 0.0109 0.0435 ± 0.00682 0.0680 ± 0.0130 0.0147 ± 0.00621 0.00329 ± 0.00296 0 ± 0

30 3000 0.318 ± 0.00776 0.0450 ± 0.00890 0.191 ± 0.0218 0.0607 ± 0.0132 0.0193 ± 0.00763 0 ± 0

Table 2 Mean and variance of gmin for given number of realisations M in the case of a NCB (pI = 0.5) and PCB (pI = 1.5); n = 20
and Ā = 20

β M μ σ 2

0 1900 0.398 ± 0.00975 0.0450 ± 0.00728

−0.1 1800 0.375 ± 0.00930 0.0390 ± 0.00483

−0.2 1900 0.369 ± 0.00923 0.0404 ± 0.00555

−0.3 2200 0.340 ± 0.00850 0.0400 ± 0.00561

0 1400 0.488 ± 0.0120 0.0504 ± 0.00854

0.1 1300 0.500 ± 0.0123 0.0492 ± 0.00988

0.2 1500 0.485 ± 0.0121 0.0547 ± 0.00788

0.3 1200 0.493 ± 0.0123 0.0456 ± 0.00862

probability of gmin reaching zero. Increasing the number of frequencies in the forcing term leads to an increase
in the probability of gmin reaching the prescribed tolerance. This can be observed as the increasing the number of
random models causes the mean value of the minimum gap to significantly decrease with a corresponding increase
in the variance.

Analysis of a coned bearing is undertaken to examine the effects of possible rotor deformation arising due to the
possible over pressurisation of the inner radius of the bearing. Correspondingly, a NCB is examined under external
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Table 3 Probability of gmin reaching a prescribed tolerance gtol in the case of a NCB (pI = 0.5) and PCB (pI = 1.5); n = 20 and
Ā = 20

β gtol

0.1 0.01 0.001 0

0 0.106 ± 0.0141 0.0248 ± 0.00714 0.00946 ± 0.00444 0 ± 0

−0.1 0.111 ± 0.0148 0.0347 ± 0.00863 0.0140 ± 0.00554 0.0130 ± 0.00534

−0.2 0.120 ± 0.0149 0.0375 ± 0.00872 0.0154 ± 0.00565 0.0146 ± 0.00550

−0.3 0.153 ± 0.0153 0.0446 ± 0.00880 0.0363 ± 0.00798 0.0338 ± 0.00771

0 0.0602 ± 0.0127 0.00932 ± 0.00514 0.00207 ± 0.00243 0 ± 0

0.1 0.0513 ± 0.0122 0.00822 ± 0.00501 0.00311 ± 0.00309 0.00216 ± 0.00258

0.2 0.0633 ± 0.0126 0.0116 ± 0.00553 0.00823 ± 0.00467 0.00811 ± 0.00463

0.3 0.0506 ± 0.0127 0.0160 ± 0.00724 0.0124 ± 0.00639 0.00903 ± 0.00546

pressurisation; pI = 0.5 and a PCB under internal pressurisation; pI = 1.5. Table 2 gives the mean value and
variance of gmin (μ and σ 2, respectively) with the corresponding Monte Carlo errors in the case of a NCB and PCB;
for comparison, a parallel bearing is examined under the respective pressure boundary conditions. In general, a PCB
requires less realisations than a NCB to obtain the required level of accuracy and has larger values for the mean
value of gmin and variance. A NCB has a monotonic decrease in the mean value of gmin as the magnitude of the
coning angle increases, whereas a PCB has a non-monotonic trend. The non-monotonic trend in the case of a PCB
may be due to the pressure gradient across the bearing resulting in an internally pressurised bearing as opposed to
a NCB being externally pressurised.
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The cumulative distribution function (CDF) is examined which gives the probability that gmin is less than or equal
to a given value of gmin, i.e. Fgmin(x) = Prob(gmin ≤ x). The cases of β = 0 and | β |= 0.3 for a NCB and PCB
are shown in Fig. 11 with 95% upper and lower confidence bounds; the probability of contact is given by the CDF
when gmin = 0. The probability that gmin becomes equal to or less than a prescribed tolerance gtol is shown in Table
3; note that the parallel bearing is examined under different pressurisations for comparison. Both scenarios have
predictions for a parallel bearing having negligible probability of contact. In contrast, a coned bearing has a non-zero
probability of contact for all the cases considered. A NCB has an increase in the probability of gmin reaching a given
tolerance as the magnitude of the coning angle increases. However, in the case of a PCB this situation occurs only
for gtol = 0.001 and gtol = 0; there is a non-monotonic trend otherwise. A NCB has a larger probability of gmin

reaching the prescribed tolerance than the corresponding PCB, resulting in a higher probability of contact at the
outer radius of the bearing than at the inner radius (see geometry in Fig. 3). The asymmetry between the behaviour
of a NCB and PCB is noted; a NCB has a monotonic trend always, whereas a PCB can have a non-monotonic trend
as seen in Tables 2 and 3. This type of analysis can be used to identify safe operating conditions or limitations on
bearing geometries under operating conditions.

5 Conclusions

A dynamical model for a gas-lubricated bearing with a very small face clearance is derived, which is capable
of predicting the bearing dynamics under destabilising operating conditions. A modified compressible Reynolds
equation is formulated to model a gas film, which is then coupled to the bearing structure through an axial force of
the gas on the bearing faces. The governing compressible Navier–Stokes equations are reduced through using an
axisymmetric lubrication approximation, but maintain leading-order effects of centrifugal inertia, relevant for high-
speed flows. Modified surface boundary conditions corresponding to a slip length formulation are incorporated,
relevant to the case of very small face clearance. The axial displacement of the rotor and stator are modelled as
spring-mass-damper systems. Typically the rotor experiences an external random force due to fluctuations in the
bearings surrounding environment. The generality of the proposed random force, which is continuous, stationary,
bounded in physical space and has a finite number of frequencies in its spectrum, is potentially transferable to other
models of physical phenomena beyond this particular application.

To numerically solve the coupled bearing problem, the modified Reynolds equation and structural equations are
simulated simultaneously within a period. Computed results directly give the face clearance and rotor height, whilst
post-processing calculations are used to determine the force of the gas on the bearing faces and axial displacement of
the stator.Monte Carlo simulations are combinedwith a derived stroboscopicmap solver to evaluate approximations
of the minimum face clearance gmin. The probability associated with a specified minimum face clearance gmin is
examined, with face contact corresponding to a zero value of gmin.

Utilising the bearing dynamics allows an investigation into the effect of the external force on the face clearance.
Axial displacement of the rotor is due to the imposed external force, however axial displacement of the stator arises
from the rotor being forced into close proximity of it. In this case, a peak in the force of the fluid causes the faces to
move apart in order to maintain a fluid film. Results are given for an increasing number of realisations in a Monte
Carlo simulation, yielding the mean and variance of the minimum face clearance.

The effect of key parameters have been examined, including the pressure gradient across the bearing, value of
the bounds of the random variables describing the amplitude of the random force components and the coning angle
of the rotor. Outcomes of this type of analysis provide insight to a given bearing geometry to identify safe operating
conditions and inform ideal bearing geometries such as in the case of establishing a maximum coning angle for
safe operation under given working conditions.
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