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
Abstract—In Wireless Sensor Networks (WSN), maintaining a
high coverage and extending the network lifetime are two
conflicting crucial issues considered by real world service
providers. In this paper, we consider the coverage optimization
problem in WSN with three objectives to strike the balance
between network lifetime and coverage. These include minimizing
the energy consumption, maximizing the coverage rate and
maximizing the equilibrium of energy consumption. Two
improved hybrid multi-objective evolutionary algorithms, namely
Hybrid-MOEA/D-I and Hybrid-MOEA/D-II, have been proposed.
Based on the well-known MOEA/D algorithm, Hybrid-MOEA/D
-I hybrids a genetic algorithm and a differential evolutionary
algorithm to effectively optimize sub-problems of the multi-objec-
tive optimization problem in WSN. By integrating a discrete
particle swarm algorithm, we further enhance solutions generated
by Hybrid-MOEA/D-I in a new Hybrid-MOEA/D-II algorithm.
Simulation results show that the proposed Hybrid-MOEA/D-I
and Hybrid-MOEA/D-II algorithms have a significantly better
performance compared with existing algorithms in the literature
in terms of all the objectives concerned.

Index Terms—Coverage optimization, MOEA/D, Multi-
objective optimization, Wireless Sensor Networks.

I. INTRODUCTION
ireless Sensor Networks (WSNs) are self-organized
networks consisting of sensor nodes capable of sensing,

processing and wireless communication. Coverage control is a
crucial issue in WSN, which mainly concerns how well a sensor
network monitors a field with proper node deployment [1-3].
The energy of sensor nodes, network communication
bandwidth and computing ability are generally limited
resources, and thus the coverage sustainability in WSNs cannot
always be guaranteed. How to balance the network energy
consumption to prolong network lifetime while maintaining a
high coverage rate is an important issue, which can be modeled
as a multi-objective optimization problem (MOP) [4-5].
The goal to solve MOPs with two or more conflicting

optimization objectives is to calculate an approximation of the
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Pareto Front. MOPs should be provided with multiple non
dominated solutions concerning different objectives, which are
difficult to be optimized if been converted into a single
combined objective. Kulkarni et al. [6] used computational
intelligence and evolutionary algorithms to solve MOPs of
coverage control in WSN in complex and dynamic
environments. Ozturk et al. [7] obtained better dynamic
deployments for WSN by using an artificial bee colony
algorithm. Kulkarni et al. [8] applied particle swarm
optimization (PSO) to address issues such as optimal
deployment, node localization, clustering, and data aggregation
in WSN. It is shown that PSO is a simple, effective and efficient
algorithm. Özdemir et al. [9] modeled the WSN coverage
control problem as a MOP with two objectives: the coverage
rate and the network lifetime. The multi-objective problem is
then converted into a series of single objective sub-problems,
each solved by a genetic algorithm. Experimental results
showed that the proposed MOEA/D algorithm outperformed an
improved non-dominated sorting genetic algorithm (NSGA-II)
[10]. Shen et al. [11] proposed a MOEA/D-PSO algorithm by
considering two optimization objectives including coverage
rate and network lifetime, and applied a particle swarm
optimization algorithm in MOEA/D. Since the balance of
energy consumption has a great impact on the entire network,
the energy equilibrium [12] is thus added as another objective
in this research.
Hybrid algorithms and improved particle swarm optimizati-

on algorithms have been well applied in other fields. Xu et al.
[13] proposed a new hybrid evolutionary algorithm to solve
multi-objective multicast routing problems in telecommunica-
tion networks. The algorithm combines simulated annealing
based strategies and a genetic local search to effectively find
more non-dominated solutions. Experimental results
demonstrated that both the simulated annealing based strategies
and the genetic local search can efficiently identify high quality
non-dominated solution sets for the problems and outperform
other conventional multi-objective evolutionary algorithms. In
a novel PSO algorithm based on the jumping PSO (JPSO)
algorithm developed by Xu et al. [14], a path replacement
operator has been used in particle moves to improve the
positions of the particles with regard to the structure of the
routing tree. The experimental results demonstrated the
superior performance of the proposed JPSO algorithm over a
number of other state-of-the-art approaches.
Based on our previous work, this paper considers the

multi-objective coverage control optimization problem in WSN
with three objectives, including the energy consumption, the
coverage rate and the equilibrium of energy consumption, see
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details in Section II. We propose two improved multi-objective
algorithms, namely Hybrid-MOEA/D-I and Hybrid-MOEA/D-
II in Section IV. In order to diversify the search, two
reproduction operators based on Genetic Algorithm (GA) and
Differential Evolution (DE) have been hybridized in
Hybrid-MOEA/D-I to obtain a better Pareto solution set. A
weight is also set for each objective to guide the search
direction. To further enhance the search ability of
Hybrid-MOEA/D-I and preserve high quality individuals in
each generation, a new Hybrid-MOEA/D-II algorithm is
devised to integrate an improved discrete binary particle swarm
optimization algorithm in [15] as the enhancement strategy to
obtain a better Pareto solution set. An extensive set of
experiments have been carried out in Section V to
systematically investigate the performance of our proposed
algorithms.

II. THEMULTI-OBJECTIVE COVERAGE OPTIMIZATION (MCO)
PROBLEM

In WSN, coverage problems can be divided into face
coverage, line coverage and target point coverage. In this paper,
we use the target point coverage, refers to the target point at any
time by one or more than one sensor node coverage. Assume
the target field D is a two-dimensional square, the targeting
point ST= {t1, t2,..., tM}, tj= (xj, yj) are randomly distributed in D,
M is the number of target points, j [1,..., M], xj and yj are the
coordinates of each target point. A set of sensor nodes S is
randomly deployed over D where },...,,{ 21 nsssS  ,

),,( iiii ryxs  , n is the number of sensor nodes, ],...,1[ ni ,

ix and iy are the coordinates of each sensor node, and ir is the
maximum ideal sensing radius of sensor node is . We assume
the Sink node has unlimited energy supply and each sensor
node has the same physical structure, thus the communication
ability, the initial energy and the computing power of each
sensor node are the same. If the sensor node's energy is
exhausted then this is not working, we call the node for the dead
node. The Sink node or each sensor node can get its own
location information and communicate with its neighboring
nodes. In Fig. 1, randomly deployed sensor nodes (red nodes)
and targeting points (blue nodes) are shown within a
two-dimension square. The yellow point in the center is the

Fig. 1. Wireless Sensor Network with Random Node Deployment

Sink node. The coverage field of si at position (xi, yi) is
indicated by the green circle area with a radius of ri.

A. The Network Model of WSN
In this paper, we adopt the well-known LEACH (Low

Energy Adaptive Clustering Hierarchy) routing protocol for
WSN as proposed by Heinzelman et al. [16]. In the LEACH
clustered routing protocol using rounds to represent the
network life. Each round begins with use the optimizer method
to select the deployment solution, a set-up phase when the
clusters are organized, followed by a steady-state phase when
data are transfered from the nodes to the cluster head and on to
the Sink node. The role of the cluster head node is to collect the
information of the sensor nodes in the cluster, and then sends
the data to the Sink node. The probability of each sensor node
being selected as a cluster head is pc. Each non-cluster head
node firstly calculates the energy consumption to communicate
with all cluster heads, and then chooses its own cluster head
with the lowest energy consumption. In order to balance the
energy consumption, cluster head nodes are cyclically changed
in each round based on a threshold value ]1,0[)( iH given by
Eq. (1). If a randomly generated value is less than H(i) then the
node becomes the cluster head node in the current round.
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p is the desired percentage of cluster head nodes in the sensor
population, i represents the i-th node, r is the current round
number, and G is the set of nodes that have not been selected as
the cluster head in the last 1/p rounds.

Fig. 2. The WSN Network Model with the Three Layers Structurehe caption

Based on the above definition, WSN can be defined as a
two-dimension network with three layers as shown in Fig. 2. At
the bottom layer, the sensor nodes are distributed in the
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targeting area with num clusters, where each cluster
has Ks sensor nodes. Each sensor node can communicate
directly with its cluster head. The middle layer is composed of
all cluster heads, which can directly communicate with the Sink
node at the top layer.
The Euclidean distance between sensor node si and the

targeting point tj at position (xj, yj) in D is:
22 )()(),( jijiji yyxxtsd  (2)

The probability of st being covered by si is:
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Where re is the sensing error of a sensor node, ri is the
maximum ideal sensing radius of a sensor node, and λ is the
sensing attenuation coefficient. As long as the target point tj is
covered by at least one active sensor node, it is considered to be
covered by the sensor network. Thus the probability pt of the
target point st covered by the network is defined as:





n

i
jit tspp

1

)),(1(1 (4)

B. The Definition of the Multi-objective Coverage Optimiza-

tion (MCO) Problem
According to the characteristics of WSN, the LEACH

clustered routing protocol is applied in this paper as described
in Section 2.1. The essence of the MCO problem is to schedule
the sensor node, that is, to select the appropriate node as the
cluster head node, the active node and the inactive node, thus
covering more target points, consume less energy and the
energy of the whole network is more balanced.
In our proposed hybrid MOEA, the population IP = {I1, I2, …,

Ipop} of pop individual solutions I is defined in Eq. (5), each as a
fixed-length chromosome of size equal to the total number of
nodes in WSN. i

jI is the j-th gene (sensor node) of the i-th

individual or chromosome with a value of either -1, 0, 1 or 2,
where -1 means a dead node, 0 represents an inactive node in
Sinactive, 1 means an active non-cluster-head node in SnonCH, and 2
represents a cluster-head node in SCH, respectively. E(sj ) is the
remaining energy of the j-th sensor node.
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}....,,1{},....,1{ njandpopi 
We set the population size pop as the same of the number of

sub-problems N, each sub-problem composed of a weight

vector and m objective functions. Take two objective functions
as examples, in Fig .3. f1 and f2 are two objective functions,

F are formulations of sub-problems,  [1,2,..,8].

W={w1,...,w8} is the weight vector matrix, the sum of all
elements of each row is 1, the number of rows is equal to the
number of sub-problems, and the number of columns is equal to
the number of objectives. The same definition can be found in
[35].
The initial population is randomly generated. Each alive

sensor node in the network becomes an active/inactive node

(a) Formula representation of sub-problems

(b) Graphical representation of sub-problems
Fig. 3. An Example of Sub-problemslied field

with an equal probability (i.e. p = 0.5). An active node becomes
a cluster-head (CH) node with the probability defined as
follows:

))1mod(1(
opt

optopt p
rpp  (6)

The optimal selection probability popt defined in LEACH is
calculated as: popt = Kopt /n , where n is the number of nodes in
the network, r is the current round number, and Kopt is the
optimal number of constructed clusters,

765.0
2

2
nKopt 

, as

calculated in [16]. We define the following three objectives in
our MCP in WSN.
1) The Energy Consumption
Energy consumption )(IE is the total energy consumed for

transmitting, receiving, aggregating signals and activating
sensors by solution I, as defined in [17], formulation given in
Eq. (7).
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Where num is the number of clusters, ci is the i-th cluster.
CHi represents the i-th CH node in solution I, which is
represented as a fixed-length list of genes of size equal to the
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total number of nodes in the WSN. The allele of each gene can
be either −1 to represent a dead node, 0 for an inactive node, 1
for a non-cluster-head nodes and 2 for a cluster-head
node.

ji ssE , is the energy consumption for transmitting data

from node si to sj, which is defined in Eq. (8).
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Eelec is the energy consumed by the transceiver circuit,
and Efs and Emp are the energy expenditures for transmitting
l-bit data to achieve an acceptable bit error rate, for the free
space model and the multipath fading model [16], respectively.
If the distance

jSis
d , between two sensor nodes is less than the

threshold mpfs EEd /0  , the free space model is applied,

otherwise, the multipath model is used.
ERX and EDA are the energy consumed for receiving and

aggregating data computed as is defined in Eq. (9).
lEEE elecDARX  (9)

The total energy consumed for activating all nodes at the
current round, namely Etotal, is defined in Eq. (10).
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1
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Where EAC is the energy consumed by activating an inactive
node, ai indicates whether the sensor node si is active or not.
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2) The Coverage Rate
Coverage rate should be maintained to a high level in WSN.

In this paper, we convert the problem of maximizing the
coverage rate into minimizing the number of uncovered target
points N(I).
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where
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U(st) is used to determine whether the target point st is
covered. M is the number of targeting points, Sactive is the set of
active sensor nodes.

3) The Energy Equilibrium
Definition 1: Regional energy The monitoring area is divided

into K grids, ]K[1,...,k . The regional energy in the k-th grid
EQk equals to the average rest energy of all nodes in this grid.
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Where nk is the number of nodes in the k-th grid,
ik

E is the

rest energy of the i-th node in the k-th grid.

Definition 2: Energy Span The energy span in the current
network (the equilibrium degree of energy consumption in the
whole network) )(IEs can be represented by the ratio of the
difference between the maximal and minimal regional energy
to the maximum of the regional energy for solution I.
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A smaller value of Es(I) means the energy consumption in
the network is more uniformly distributed.
Based on the definitions above, in order to achieve higher

network coverage while effectively prolonging the network
lifetime. we formally define the multi-objective coverage
optimization problem of WSN with three objectives as follows:

1) f1(I) Minimize the number of uncovered targeting nodes
))((1 INMinIf ）（ (16)

2) f2(I) Minimize the energy consumption of the network
))((2 IEMinIf ）（ (17)

3) f3(I)Minimize the energy span
The third objective aims at preventing excessive energy

consumption of sensor nodes in partial regions within the whole
network as much as possible.

))((3 IEsMinIf ）（ (18)

III. RELATEDWORK FOR THEMULTI-OBJECTIVE COVERAGE
OPTIMIZATION PROBLEM

In the literature, intensive research has been carried out on
energy efficient routing protocols [18-23] and node placement
[24-27] to reduce energy consumption for WSN. Early work
often models the optimization problem with a single objective.
Recently, the coverage optimization problem [28-34] in WSN
has been modeled as a MOP. A MOP is composed of multiple
conflicting objectives, and the performance improvement of
one objective may cause the performance reduction of one or
more other objectives.
Zhang et al. [35] proposed the MOEA/D algorithm by

decomposing a MOP into a number of single objective
optimization problems (i.e. sub-problems), and optimizing
them simultaneously. By using the optimization information of
the neighboring sub-problem, the sub-problem will be
optimized. The Tchebycheff Approach is used as a
decomposition method in MOEA/D due to its ability to transfer
the objective function of the i-th sub-problem using
non-convex Pareto optimal front as follows:

|})(|{max*),|(min *

1 jj
i
jmi

ite zxfzxg 


 (19)

where x denotes the decision variable space,
Ti

m
ii ),...,( 1   , N ,...,1 denote a weight vector

corresponding to the i-th sub-problem,  j = 1, ..., m, j  0

and 1,...,1  m , m is the number of objective functions,
T

mzzz ),...,(* **
1 is the reference point. zj* is the optimal value of

the j-th objective function. In MOEA/D, a neighborhood of

http://xueshu.baidu.com/s?wd=author:(Qingfu%20Zhang)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
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weight vector i is defined as a set of its several closest weight
vectors in },...,,{ 21 N .The neighborhood of the i-th
subproblem consists of all the subproblems with the weight
vectors from the neighborhood of i .
Özdemir et al. [9] used MOEA/D to solve the problem of

multi-objective coverage optimization in WSN, which can
provide a better performance than the classical NSGA-II
algorithm. The differential evolution algorithm in Xu et al. [36]
obtained a better performance than the classical NSGA-II
algorithm on a two-objective coverage problem of WSN. Li et
al. [37] proposed a multi-objective coverage optimization
algorithm MOCADMA for WSN, which uses a memetic

algorithm with a dynamic local search strategy to optimize
multiple objectives including the network coverage, the node
utilization and the residual energy. The experiment and
evaluation results show that MOCADMA have good
capabilities in maintaining the sensing coverage, achieving
higher network coverage, and effectively prolonging the
network lifetime compared with some existing algorithms.

IV. THE PROPOSED HYBRID-MOEA/D ALGORITHMS

In this paper, we proposed a hybrid MOEA/D algorithm
based on the work in [9], namely Hybrid-MOEA/D-I, by
combining Genetic Algorithm (GA) and Differential
Evolution (DE) as the mixed reproduction operator to
optimize each sub-problem. To improve the efficiency of
search, some of the N sub-problems are optimized by GA and
the others by DE. Using the best solutions generated by
Hybrid-MOEA/D-I as the initial solutions, an improved
algorithm called Hybrid-MOEA/D-II is proposed to integrate
a discrete binary particle swarm optimization (DPSO).

A. The Proposed Hybrid-MOEA/D-I Algorithm
To increase the population diversity, two different

reproduction operators based on GA and DE have been
designed in Hybrid-MOEA/D-I to optimize the N
sub-problems. The mutation probability of DE and GA
operator is pmDE and pmGA, respectively. The crossover
probability of DE and GA operator is pcrDE and pcrGA,
respectively. For ],..,2,1[ mj  , fj is the value of the j-th
objective function. We assume zj is the best value of the j-th
objective function during the search, Ii is the current best
solution for the i-th sub-problem in terms of all objectives, and
fj(Ii) is the value of the j-th objective function for Ii. IP
(Internal Population) is the population maintained during the
search.
The GA and DE operators will be selected randomly for

solving each sub-problem. The procedure of the hybrid
GA-DE operator used in Hybrid-MOEA/D-I, shown in
Algorithm 1.

1) The DE reproduction operator
The DE operator includes three main procedures, i.e. the

mutation, crossover and selection. Taking the l-th
sub-problem as an example, the mutation operation of DE is as
follows:


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 


otherwiseI
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mDE
h
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)('  (20)

Il is the solution of the l-th sub-problem which has T
neighboring sub-problems. Iu and Ih are two solutions of the
u-th and h-th neighboring sub-problems of Il, u and h are
randomly selected indices from [1, 2, …, T]. I’ is the new
solution generated from Il, Iu and Ih. l

rI , u
rI , h

rI and
'
rI represent the r-th gene of Il, Iu, Ih and I’, respectively, where
r  [1, …, n]. The real-value constant  is a scaling factor.
pmDE  (0, 1) is the mutation probability. The random number
rand  (0, 1).

Algorithm 1 The framework of Hybrid-MOEA/D-I

Input:
• N: the number of the sub-problems considered in MOEA/D;
• λ1,..., λN : a uniform spread of N weight vectors;
• T: the number of the weight vectors in the neighborhood
of each weight vector;

• genmax: the maximum number of generations;
Output:
• Solution set IP = {I1, I2, …, Ipop} , pop is the size of population,
here we set pop = N;

• Objective function values for each solution Ii in IP : fj(Ii), i∈
[1,…, pop], j∈ [1,…, m];

Step 1 - Initialization
1.1: gen = 0; // gen is the index of the current generation.
1.2: Divide the target area into K grids;
1.3: Randomly distribute n sensor nodes andM target points in

the target area D;
1.4: Randomly generate an initial internal population, IPgen = {I1,

I2, …, Ipop};
1.5: Initialize z = (z1, z2,…, zm), zj= min(fi,j), ],...,1[ Ni  , fi,j is

the value of the j-th objective for the i-th sub-problem;
1.6: Compute the Euclidean distances between any three weight

vectors and then work out the T closest weight vectors to
each weight vector;

1.7: For ∀ i = 1, 2,…, N, set B(i) = {i1, i2,…, iT}, which are the
index of T closest solutions to the i-th sub-problem;

Step2 - Update: For Ni ,...,1
2.1: Reproduction:Randomly select three indices l, u and h

from B(i);
2.2: if rand<0.5 then
2.3: Generate a solution I’ from Il, Iu and Ih by a mutation

operator with probability pmDE and then generate I’’ with
probability pcrDE by the crossover operator;

2.4: else
2.5: Generate a solution I’ from Il and Iu by a crossover

operator with probability pcrGA and then generate I’’with
probability pmGA by a mutation operator;

2.6: end if
2.7: Update z : mj ,...,2,1 , if zj > fj(I’’), then set zj = fj(I’’); if

gte (I’’ | λl, z) ≤ gte (Il | λl, z*), then set Il = I’’ and F(Il) =
F(I’’);

2.8: endFor
Step3 - Stopping criteria

3.1: If gen == genmax then stop and output {I1, I2, …, IN} and
{fj(I1), fj(I2), …, fj(IN)}, j∈ [1, …, m];

3.2: else gen = gen + 1, go to Step 2;
3.3: endIf
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The polynomial crossover in Eq. (21) generates
),...,,( ""

2
''
1

''
nIIII  from I’ and Il. pcrDE  (0, 1) is the crossover

probability.
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

 


otherwiseI
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r

'
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Fig. 4 shows a new offspring solution I’’ generated based on
parents I’ and Il. A gene in I’’ is randomly selected from
chromosome I’ and then other genes of I’’ are generated from
either I’ or Il based on the crossover probability pcrDE defined in
Eq. (21).

Fig. 4. The Crossover Operation Procedure of DE

2) The GA reproduction operator
The GA operator includes three main procedures, i.e. the

selection, crossover and mutation. Two individuals Il and Iu are
used to generate a new solution I and I’ based on a two-point
crossover operation. To perform the mutation operation, a
parent solution is randomly selected from I or I’. Assuming I’
is selected, a new solution I’’ is generated based on the
mutation operator as shown in Table I, where ''

rI is the r -th
gene of )..,,( "''

2
''
1

''
nIIII  and rand  (0, 1) is a random number.

TABLE I THE MUTATION OPERATOR OF GA

''
rI

0' rI 1' rI 2' rI

rand
PmGA

rand>
PmGA

rand
PmGA

rand>
PmGA

rand
PmGA

rand>
PmGA

1 2 0 2 0 1

Two reproduction operators DE and GA have been randomly
selected to optimize all sub-problems, aiming to diversify the
evolution to obtain high-quality solutions.

B. The Proposed Hybrid-MOEA/D-II Algorithm
In Hybrid-MOEA/D-I, the weights of each sub-problem are

fixed, so the search direction is determined. To further improve
the efficiency of the search, an improved Discrete Particle
Swarm Optimization (DPSO) algorithm is adopted as the
enhancement strategy to Hybrid-MOEA/D-I, leading to a new
hybrid algorithm Hybrid-MOEA/D-II. As shown in Fig. 5,
Hybrid-MOEA/D-I algorithm is used to optimize the initial
solutions generated randomly, and DPSO is applied to further
enhance the search.
Taking five sub-problems in Fig. 6 as an example, the

solution of each sub-problem is optimized by a randomly
selected optimization operator to generate a new solution. Then,
the current solution and the neighborhood solution (the solution
of neighbor sub-problem) are updated. A DPSO is then applied
to further enhance the search.

Fig. 5. The Hybridization of DPSO and Hybrid-MOEA/D-I

Particle swarm optimization (PSO) concerns two important
issues: exploration and exploitation. Exploration is obtained by
particles’ ability to change the original search trajectory to a
new direction, i.e. to search the unexplored region in the search
space. Exploitation is achieved by particles to search within the
explored area. The relationship between exploration and
exploitation is shown in Fig. 7(a). The velocity

Fig. 6. The Example of the Optimization Process of Hybrid-MOEA/D-II
Algorithm

updating formula of discrete binary PSO algorithm proposed by
Kennedy and Eberhart [38] is the same as that of the original
PSO algorithm. Each individual is treated as a particle in the d
dimensional search space. For the MCP in WSN, the best
previous position of the i-th particle },....,,{ 21

i
n

iii IIII  is

represented as },...,,{ 21
besti

n
bestibestibesti IIII   . The global

best solution among all particles in the population is
represented as }...,,,{ 21

g
n

ggg IIII  . The position change

velocity for particle i is defined as }...,,,{ 21
i
n

iii VVVV  . Each

particle updates each bit i
kV of iV according to Eq. (22). The

moves of particles in DPSO are showed in Fig. 7(b).
)()( 2211
i
k

g
k

i
k

besti
k

i
k

i
k IIrcIIrcVV  

),...,2,1( nk (22)
In Eq. (22),  , c1 and c2 are parameters in DPSO for velocity
updating, r1 and r2 are random constants between 0 and 1. The
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velocity formula is consists of three items, the first item i
kV

is the inertial part; the second item )(11
i
k

besti
k IIrc   is

the local cognitive part; and the third item )(22
i
k

g
k IIrc  is

the social cognitive part. In the improved DPSO, the value of
i
kI , besti

kI
 and g

kI can only be 0 or 1. Since only a few cluster

head nodes exist in WSN, i
kI seldom takes value 2, so we

ignore the case for 2ikI . In other words, the DPSO algorithm
is used to schedule the active and non-active nodes in the case
where the position and number of cluster heads are constant.
 ikbesti

k II  and  ikg
k II  take values of -1, 0 or 1, and the

relationship of besti
kI
 , i

kI and g
kI is shown in Table II.

(a) Particle exploration and exploitation

(b) The Moves of Particles in PSO
Fig. 7. The Particle Swarm Optimization Algorithm

TABLE II THE RELATIONSHIP OF i
kI , besti

kI
 AND g

kI

value Possible values for i
kI , g

kI and besti
kI
 How to change the value of i

kI

1
besti

kI
 or g

kI is 1, and the value of i
kI is

0.

i
kI needs to be changed to 1

with the most possibility.

0 besti
kI
 or g

kI is equal to the value of i
kI . i

kI should remain unchanged.

-1 besti
kI
 or g

kI is 0, and the value of i
kI is 1.

i
kI needs to be changed to 0

with the most possibility.

In other words, when i
kV is 0, the value of the probability

mapping function is 0; when i
kV is less than 0 or greater than 0,

the probability mapping function is an even function. When i
kV

tends to be positive or negative infinity, the probability
mapping function value is 1. The probability mapping function
is defined in Eq. (23) as follows (see [12]):



















01

)exp(1
2

0
)exp(1

21
)(

i
ki

k

i
ki

ki
k

Vwhen
V

Vwhen
V

Vp
(23)

When the velocity i
kV is negative, )( i

kVp decreases;

otherwise, )( i
kVp increases; if i

kV = 0, )( i
kVp is 0.

The position of a particle is defined as:
If 0ikV





 


otherwiseI

IandVprif
I

i
k

i
k

i
ki

k

2)(0 1

If 0ikV (24)





 


otherwiseI

IandVprif
I

i
k

i
k

i
k2i

k

2)(1

1r and 2r are randomly generated from the uniform
distribution of interval ]1,0[ .
The pseudo code of Hybrid-MOEA/D-II is as shown in

Algorithm2.

Algorithm 2 The framework of Hybrid-MOEA/D-II

Input:
• The output of Hybrid-MOEA/D-I IP = {I1, I2, …, Ipop};
• genmax: the maximum number of generations;

Output:
• The Non-Dominated Solution set NDS;

Step 1 - Initialization
1.1: For popi ,...,1
1.2: Initialize the position of the i-th particle Ii, the i-th

subproblem generated by Hybrid-MOEA/D-I.
1.3: The initial velocity of the i-th particle = 0;
1.4: end For
1.5: Updated the Non-Dominated Solution set NDS;
1.6: Choose the particle with the best objective function value of all

the particles as the global best;
Step2 - Update:For i=1,...,N
2.1: Update the velocity of each particle according to Eq. (22)
2.2: Update the position of each particle according to Eq. (24);
2.3: Calculate the value of the objective function for each particle

based on the position of the particle;
2.4: Update the best and the global best;
2.5: Update the Non-Dominated Solution set NDS;
2.6: endFor

Step3 - Stopping criteria
3.1: If gen == genmax then stop and output NDS;
3.2: else gen = gen + 1, go to Step2;
3.3: endIf

C. An Illustrative Example of the Proposed Hybrid Algorithms
In an illustrative example, assume the number of sensor

nodes is 200, the number of target points is 64, and the initial
energy of each sensor node is 0.02J. Fig.8 presents and
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compares the solutions found by Hybrid-MOEA/D-I (see
Fig.8(a)) and Hybrid-MOEA/D-II (see Fig.8(b)) with the same
random initial solution showed in Fig.8(a). For each solution, a
black point represents a non-active node, a red point represents
active non-cluster head nodes, and a green point indicates a

(a) A random initial solution, I
( )(1 If =0.0415J, )(2 If =2, )(3 If =0.0292)

(b) One optimal solution obtained by Hybrid-MOEA/D-I, 'I
( )( '

1 If =0.0200J, )( '
2 If =0, )( '

3 If =0.0280)

(c) One optimal solution obtained Hybrid-MOEA/D-II, ''I
( )( ''

1 If =0.0177J, )( ''
2 If =0, )( ''

3 If =0.0280)

Fig. 8. Comparison of Solutions found by Hybrid-MOEA/D-I and
Hybrid-MOEA/D-II

cluster-head node. X and Y represent the horizontal and the
vertical coordinate, respectively. The values of the three
objectives, i.e. )(1 If (the total energy consumption of each

round); )(2 If (the number of uncovered target points); )(3 If

(the energy span), are shown below each solution.
For the random initial solution I, the number of non-active

nodes is 105, the number of non-cluster-head nodes is 85, and
the number of cluster head nodes is 10. For the solution 'I
obtained by Hybrid-MOEA/D-I , the number of non-active
nodes is 156, the number of non-cluster-head nodes is 39, and
the number of cluster-head nodes is 5. Comparing the two
solutions I and 'I , we can see that the solution obtained by
Hybrid-MOEA/D-I has a better coverage (the uncovered node
number )( '

2 If = 0 < )(2 If = 2) with less energy consumption
( )( '

1 If = 0.0200J < )(1 If = 0.0415J) and slightly better energy
span ( )( '

3 If = 0.0280 < )(3 If = 0.0292).
One non-dominated solution obtained by the DPSO

enhancement strategy is Hybrid-MOEA/D-II is shown in Fig. 8
(c). The number of non-active nodes is 161, the number of
non-cluster-head nodes is 34, and the number of cluster head
nodes is 5. It can be seen that Hybrid-MOEA/D-II further
enhances the search and obtains a better solution I” with less
energy ( )( ''

1 If =0.0177J < )( '
1 If =0.0200J) compared with the

solution I’ generated by Hybrid-MOEA/D-I with the same
coverage rate and energy span.

D. The Time Complexity Analysis
We firstly analyze the time complexity of MOEA/D-PSO in

the literature [11] as follows. MOEA/D-PSO applied a PSO
algorithm in MOEA/D to solve the coverage optimization
problem in WSN with two optimization objectives including
the coverage rate and the network lifetime.
1) The population size is N, i.e. N sub-problems, each

sub-problem has g number of iterations, each individual is
represented as a fixed-length chromosome with size equal
to n, i.e. the total number of nodes in WSN;

2) The GA operator: two point crossover and mutation
operate on each gene in the chromosome, in the worst case,
mutation and crossover operations need to be performed on
n genes, requiring g×N×n operations;

3) The PSO operator: the main steps of PSO include updating
the velocity, the position, the personal best and the global
best, requiring g×N×n , g×N×n, g×N and g×N operations,
respectively;

4) Each sub-problem updates the reference point and the
neighborhood solutions, requiring g×N operations,
respectively.

The time complexity of the MOEA/D-PSO algorithm is:
O(MOEA/D-PSO)=g×(2×N×n+2×N×n+2×N+2×N)=4×g×

N×(n+1),
So the time complexity of MOEA/D-PSO is O(g×N×n).
The basic idea of MOEA/D is to decompose a MOP into a set

of single-objective optimization problems and optimize them
simultaneously. We analyze the time complexity of
Hybrid-MOEA/D-I as follows.
1) The population includes N particles (sub-problems), each

has g iterations. Each individual is represented as a
fixed-length chromosome of size n, where n is the total
number of nodes in WSN;
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2) The DE operator is applied to half of the population, and is
consists of the mutation and crossover operations. In the
worst case, n genes are applied mutation and crossover, so
leading to 0.5×g×N×n operations, respectively;

3) The GA operator is applied to half of the population,
which includes the crossover and mutation operations. In
the worst case, this requires 0.5×g×N×n mutation and
crossover operations, respectively, applied to n genes;

4) Each solution of sub-problem needs to update reference
point and update the neighborhood solutions, leading to g
×N operations, respectively;
The time complexity of the Hybrid-MOEA/D-I algorithm is

O(Hybrid-MOE/D-I)=g×(2×0.5×N
×n+2×0.5×N×n+2×N)=2×g×N×(n+1), so its time

complexity of Hybrid-MOE/D-I is O(g×N×n).
The main procedure of DPSO in Hybrid-MOEA/D-II is to

update the particle velocity and particle position based on the
solutions obtained by Hybrid-MOEA/D-I. The time complexity
of Hybrid-MOEA/D-II is thus as follows.
1) The population size is N, i.e N particles, each of g iterations.

Each individual has a fixed size n.
2) According to the velocity and the position update formula

in Eq. (23) and Eq. (25), the velocity and positon of each
particle is updated. The length of the chromosome of each
particle is n, so these g×N×n operations, respectively;

3) To update the personal best of each particle and the global
best , g×N these operations are required, respectively;

The time complexity of Hybrid-MOEA/D-II is thus
calculated as:
O(Hybrid-MOEA/D-II) = g × (2×n×N + 2×N) + O(Hybrid-

MOEA/D-I) = 4×g×N×(n+1).
Thus the time complexity of Hybrid-MOEA/D-II is

O(g×N×n).
The above analysis indicates that the proposed

Hybrid-MOEA/D-I and Hybrid-MOEA/D-II algorithms have
the same time complexity as that of MOEA/D-PSO, showing
that Hybrid-MOEA/D-I and Hybrid-MOEA/D-II can obtain
better solutions without increasing the time complexity.

V. SIMULATION RESULTS
In this paper, all algorithms are implemented using matlab.

To evaluate the performance of Hybrid-MOEA/D-I and
Hybrid-MOEA/D-II, simulation results are compared to those
of MOPSO, NSGA-II, MOEA/D and MOEA/D-PSO using the
same machine and parameters. The experimental parameters
are shown in Table III.

A. Performance Evaluation of Different Algorithms
We compare the performance of our proposed two

algorithms, i.e. Hybrid-MOEA/D-I and Hybrid-MOEA/D-II,
with other four algorithms, including MOPSO, NSGA-II,
MOEA/D and MOEAD-PSO for WSN with different number
of sensor nodes (200, 300, 400 and 500 nodes, respectively).
For each size of WSN, 10 topologies have been randomly
generated and 20 independent runs have been repeated on each
network topology.

We firstly compare the number of targets detected, the
number of alive nodes and the remaining energy of each round.
Each round includes a number of iterations of the algorithm
(here we set the number of iterations as 20) to output the
non-dominated solution set (NDS) and select a deployment

TABLE III PARAMETERS USED IN SIMULATIONS

Parameter Value Parameter Value

Network size: n  500
Targe area 100m×100m
Number of grids 64
Number of target points 64
Maximum iterations  8000
Maximum ideal sensing
radius: ir 10m
Node initial energy: E0 0.02J
The number of sub-problems N 50
T 10
amp 0.0013pJ/bit/m4

pcrGA 0.8
pmGA 0.03
pcrDE 0.9
pmDE 0.7
Eelec 50nJ/bit
fs 100pJ/bit/m2

EDA 5nJ/bit
 0.5
c1 1
c2 2

solution. Then, we compare the coverage rate and energy
consumption rate of different algorithms. We also compare the
three objectives of NDS obtained by different algorithms.
Moreover, to evaluate the solutions set of each algorithm, we
used the Set Coverage metric (C-metric) [39] as the evaluation
criteria. For two NDS sets A and B, C-metric is defined
as: ||/:||),( BbaAaBbBAC  , here b is a solution in B
and a is a solution in A. Note that ),(1),( ABCBAC  , and A is
better than B, if ),( BAC is higher than ),( ABC over many tests.
C-metric calculates the fraction of solutions in the NDS
obtained by one algorithm which are dominated by the NDS
obtained by another algorithm. Finally, we compare the
running time and the NDS obtained at the tenth round of each
algorithm.

B. The Comparison of Total Number Targets Detected
In Fig. 9, the number of target points of six algorithms i.e.,

MOPSO, NSGA-II, MOEA/D, Hybrid-MOEA/D-I,
MOEA/D-PSO and Hybrid-MOEA/D-II, are compared for
WSN with different number of nodes. Compared with other
algorithms, the deployment solution can be obtained by the
Hybrid-MOEA/D-II algorithm can make the network in each
round consumes less energy, higher coverage and more
balanced network energy consumption, so we can see that for
larger networks, Hybrid-MOEA/D-II obtained better
performance (Under the premise of ensuring coverage, the
network lifetime is prolonged). For n = 200 and n = 300,
Hybrid-MOEA/D-I performs slightly worse than
MOEA/D-PSO. For n = 400, Hybrid-MOEA/D-I and
MOEA/D-PSO have the similar performance. For n = 500,
Hybrid-MOEA/D-I is obviously better than the performance of
MOEA/D-PSO algorithm.
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C. The Comparison of the Number of Alive Nodes
Fig. 10 compares the performance of all six algorithms in

terms of the number of sensor nodes alive for WSN with
different number of sensor nodes. Compared with other

(a) n=200

(b) n=300

(c) n=400

(d) n=500

Fig. 9. The comparison of total number targets detected

(a) n=200

(b) n=300

(c) n=400

(d) n=500

Fig. 10. The comparison of number of alive nodes in each round

algorithms, the deployment solution can be obtained by the
Hybrid-MOEA/D-II algorithm can make the network in each
round consumes less energy, So it is obvious that more
surviving nodes have been obtained by Hybrid-MOEA/D-II for
wireless sensor networks with different networks sizes during
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each round, prolonging network life time by saving more node
energy.

D. The Comparison of the Remaining Energy
In Fig. 11, the residual energy of sensor nodes of different

algorithms is compared for WSN with different number of
(a) n=200

(b) n=300

(c) n=400

(d) n=500

Fig. 11. The comparison of residual energy

nodes. It shows again that more residual energy have been
retained by Hybrid-MOEA/D-II for WSN during each round.
This is clearer for WSN with more nodes.

(a) n=200

(b) n=300

(c) n=400

(d) n=500

Fig. 12. The comparison of coverage rate and energy consumption rate
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E. The Comparison of Coverage rate and Energy
Consumption rate
Fig. 12 compares the coverage rate and energy consumption

of sensor nodes of six algorithms. Our proposed
Hybrid-MOEA/D-II algorithm again has a higher coverage rate

(a) n=200

(b) n=300

(c) n=400

(d) n=500

Fig. 13. The comparison of non-dominated solutions

and lower energy consumption rate for wireless sensor
networks with different number of nodes.

F. The Comparison of Non-dominated Solution Sets
In Fig. 13, the non-dominated solution sets within the tenth

rounds of six different algorithms are compared on WSN with
different number of nodes. Hybrid-MOEA/D-I and
Hybrid-MOEA/D-II perform better than other four algorithms
by obtaining better Pareto fronts with respect to the three
objectives defined in Section II. Better NDS sets have been
obtained by Hybrid-MOEA/D-II compared with
Hybrid-MOEA/D-I for four different sizes of WSN, which
demonstrate the effectiveness of the DPSO enhancement
strategy.

TABLE IV DOMINATION OF HYBRID-MOEA/D-I(I) VERSUS MOEA/D( II)
AND NSGA-II( III)

n=200

round C(I,II) C(II,I) C(I,III) C(III,I)

1 1 0 1 0

25 1 0 1 0

50 0.66 0.06 1 0

75 0.625 0 0.7 0

100 0.75 0 0.9 0

125 0.667 0.111 0.16 0

n=300

round C(I,II) C(II,I) C(I,III) C(III,I)

1 1 0 1 0

25 1 0 1 0

50 1 0 1 0

75 1 0 1 0

100 1 0 1 0

125 0 0.051 0 0

n=400

round C(I,II) C(II,I) C(I,III) C(III,I)

1 1 0 1 0

25 1 0 1 0

50 1 0 1 0

75 1 0 1 0

100 1 0 1 0

125 0.5 0.4 0 0

n=500

round C(I,II) C(II,I) C(I,III) C(III,I)

1 1 0 1 0

25 1 0 1 0

50 1 0 1 0

75 1 0 1 0

100 1 0 1 0

125 1 0.050 1 0
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G. The Comparison of Set Coverage Metric
Table IV and Table V compare C-metric of our proposed

hybrid algorithms with MOEAD-PSO, MOEA/D and NSGA-II
for WSN with n = 200, 300, 400 and 500 nodes in the network
at each round.

TABLE V DOMINATION OF HYBRID-MOEA/D-II( IV) VERSUS
MOEA/D-PSO( V) AND HYBRID-MOEA/D-I( I )

n=200

round C(IV,V) C(V,IV) C(IV,I) C(I,IV)

1 1 0 0.989 0

25 0.45 0.305 1 0

50 1 0 0.990 0

75 0.342 0.15 1 0

100 0.48 0 0.527 0

125 0.659 0.0449 0.778 0

150 0.5 0.0185 0.857 0

n=300

round C(IV,V) C(V,IV) C(IV,I) C(I,IV)

1 0.864 0.042 1 0

25 0.786 0 1 0

50 1 0 1 0

75 0.75 0 0.531 0

100 1 0 0.545 0

125 1 0 0.532 0

150 0.64 0 1 0

n=400

round C(IV,V) C(V,IV) C(IV,I) C(I,IV)

1 1 0 0.889 0

25 1 0 1 0

50 1 0 1 0

75 1 0 1 0

100 1 0 1 0

125 1 0 1 0

150 1 0 1 0

n=500

round C(IV,V) C(V,IV) C(IV,I) C(I,IV)

1 1 0 1 0

25 1 0 1 0

50 1 0 1 0

75 1 0 1 0

100 1 0 1 0

125 1 0 1 0

150 1 0 1 0

Table IV presents the values of C-metric of three algorithms,
i.e., Hybrid-MOEA/D-I, MOEA/D and NSGA-II. The Experi-
ments show that all C-metric values of Hybrid-MOEA/D-I (I)
are larger than the those of MOEA/D(II) and NSGA-II(III),
which means Hybrid-MOEA/D-I has the best performance
among the three algorithms. For example, for n = 200, at round
= 25, all C(I, II) are larger than C(II, I), which means

non-dominated solutions generated by Hybrid-MOEA/-D-I
dominate all those generated by MOEA/D. There is only one
exception, for n = 300, at round 125, the C-metric value of C(I,
II) is slightly larger than C(II, I). This means that the
non-dominated solution set found by MOEA/D at this round
has a better diversity than that of Hybrid-MOEA/D-I. However,
from Figure 12(b), we can see that at round 125, the Coverage
rate and Energy Consumption rate of Hybrid-MOEA/D-I are
much better than those of MOEA/D.
Table V shows the comparison of the C-metric of

Hybrid-MOEA/D-II, MOEA/D-PSO and Hybrid-MOEA/D-I
with different network sizes at each round. For example, for n =
200, the non-dominated solutions generated by
Hybrid-MOEA/D-II dominate 34.2% of those generated by
MOEA/D-PSO at round 75, but the non-dominated solutions
generated by MOEA/D-PSO algorithm dominate none of those
by Hybrid-MOEA/D-II. When n becomes larger,
Hybrid-MOEA / D-II obtains even better performance.

H. The Comparison of Running Time
In Table VI, the running time of these six algorithms is

compared after 10 rounds. Although the running time of
Hybrid-MOEA/D-II is slightly longer than the other algorithms,
it always obtains much better results.

TABLE VI THE COMPARISON OF RUNNING TIME OF EACH ALGORITHM

n
Algorithm 200 300 400 500

Hybrid-MOEA/D-II 33.1s 48.4s 64.3s 79.6s
MOEA/D-PSO 27.1s 42.7s 53.8s 71.4s

Hybrid-MOEA/D-I 20.9s 30.8s 40.2s 50.6s
MOEA/D 17.5s 28.1s 34.8s 44.5s
NSGA-II 11.5s 15.8s 21.2s 26.5s
MOPSO 19.0s 28.4s 37.7s 49.4s

VI. CONCLUSION
The issues of reducing and balancing the energy

consumption while retaining high coverage rate represent
conflicting objectives for WSN. In this paper, we model the
coverage control problem in WSN as a MOP by considering
three objectives, including the coverage rate, the energy
consumption and the energy consumption equilibrium. A
Hybrid-MOEA/D-I algorithm has been proposed based on the
well-known MOEA/D algorithm. To increase population
diversity, hybrid GA and DE reproduction operators have been
applied in Hybrid-MOEA/D-I. This shows Hybrid-MOEA/D-I
achieves a higher quality solution than MOEA/D.
In Hybrid-MOEA/D-I, each objective is optimized by a

randomly generated weight, and the search direction is thus
determined with the fixed weights. To further enhance the
search ability of Hybrid-MOEA/D-I and preserve high quality
individuals in each generation, we propose a new
Hybrid-MOEA/D-II algorithm by introducing a discrete binary
particle swarm optimization algorithm (DPSO) as the
enhancement strategy to obtain better Pareto solution set.
We also analyze the time complexity of our proposed

Hybrid-MOEA/D-I and Hybrid-MOEA/D-II as well as
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MOEA/D-PSO in the literature, and demonstrate that our
proposed algorithms have a similar time complexity with that
of MOEA/D-PSO.
Experimental results show that both the Hybrid-MOEA/D-I

and Hybrid-MOEA/D-II perform significantly better than those
of MOEA/D, NSGA - II, MOPSO and MOEA/D-PSO without
increasing the time complexity. With DPSO as the further
enhancement strategy, Hybrid-MOEA/D-II obtained much
better performance than that of Hybrid-MOEA/D-I. The
comparisons using the C-metric demonstrate that both the
hybrid reproduction operator and the DPSO enhancement
strategy have the ability to get better solution. . In our future
work, we plan to apply learning strategies to further improve
the performance of our proposed algorithms. In addition, we
plan to consider the coverage problem of WSN within more
complex real world scenarios, such as those with mobile
charger nodes in the networks.
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