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Zika virus (ZIKV) is an emerging flavivirus rapidly spreading throughout the tropical

Americas. Aedes mosquitoes is the principal way of transmission of the virus

to humans. ZIKV can be spread by transplacental, perinatal, and body fluids.

ZIKV infection is often asymptomatic and those with symptoms present minor

illness after 3 to 12 days of incubation, characterized by a mild and self-limiting

disease with low-grade fever, conjunctivitis, widespread pruritic maculopapular rash,

arthralgia and myalgia. ZIKV has been linked to a number of central and peripheral

nervous system injuries such as Guillain-Barré syndrome (GBS), transverse myelitis

(TM), meningoencephalitis, ophthalmological manifestations, and other neurological

complications. Nevertheless, mechanisms of host-pathogen neuro-immune interactions

remain incompletely elucidated. This review provides a critical discussion about

the possible mechanisms underlying the development of autoimmune neurological

conditions associated with Zika virus infection.
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INTRODUCTION

Zika virus (ZIKV) from the genus Flavivirus is an emerging mosquito-borne pathogen part of
the Spondweni serocomplex. ZIKV was first isolated in 1947 from the serum of a febrile sentinel
monkey in the Zika forest in Uganda, east Africa (Dick et al., 1952). The first human infection was
reported in Nigeria in 1954, and later, in 1962 a ZIKV strain was isolated from an adult male in
Uganda (Simpson, 1964). In 2007, a large human outbreak outside of Africa was reported on Yap
Islands in the Federated States of Micronesia (Hayes, 2009). The next outbreak of ZIKV occurred
in French Polynesia in 2013 and 2014 and was unprecedented, with an estimated 28,000 cases of
ZIKV infection (Cao-Lormeau et al., 2014). Subsequent ZIKV outbreaks occurred on other Pacific
Islands including the Cook Islands, New Caledonia, and Easter Island (Musso et al., 2014). ZIKV
spread rapidly throughout the Americas after its initial appearance in northeastern Brazil in May
2015, possibly by infected travelers (Campos et al., 2015). Since then, transmission of ZIKV has
been reported throughout South America, Central America, the Caribbean, Mexico, and the USA.
In August 2016, the PAHO reported 578,148 suspected cases of ZIKV in 45 countries and territories
in the Americas (PAHOWHO, 2016).

ZIKV is an arthropod-borne virus with two transmission cycles (Figure 1). The sylvatic cycle
is tangled in the maintenance of ZIKV between non-human primates and arboreal mosquitoes in
forests, whereas in the urban cycle is implicated in the transmission of ZIKV from humans to urban
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FIGURE 1 | The transmission cycle of ZIKV. The sylvatic cycle involves the maintenance of ZIKV between non-human primates and arboreal mosquitoes in forests.

There is only serological evidence showing that elephants, zebras, rodents, and orangutans are possible reservoirs of ZIKV. The urban cycle involves the transmission

of ZIKV between humans and mosquitoes in urban areas.

mosquitoes (Weaver et al., 2016). ZIKV is transmitted mainly
by Aedes species mosquitoes including Aedes africanus, Aedes
luteocephalus,Aedes vittatus,Aedes furcifer,Aedes apicoargenteus,
Aedes hensilli, Aedes aegypti, and Aedes albopictus. Mosquitoes
acquire the virus via blood meal, and host it throughout their
life-span without adverse effects (Suzuki et al., 2017; Zhao
et al., 2018). Thus, ZIKV is transmitted to human through
the bite of female infected Aedes species mosquito, most
commonly A. aegypti and A. albopictus. These two species
of mosquitoes generated epidemic risk due to their dynamic
adaptation to urban environments, their capacity to survive to
extreme environmental conditions or to be dispersed passively
by humans, their ability to tolerate moderate climates and keep
sylvatic niches, together with the urbanization and migration
(Saiz et al., 2017). On the other hand, species that belong to
genera other than Aedes, including Culex perfuscus, Anopheles
coustani, Anopheles gambiae, and Mansonia uniformis were
found to be infected with ZIKV in Africa, proving that these
mosquitoes must have fed on a viremic vertebrate (Saiz et al.,
2017). Moreover, anti-ZIKV antibodies were detected in wild
mammals in Senegal in 1967–1968 (Brès, 1970). In Indonesia,
anti-ZIKV antibodies were detected in ducks, goats, cows, horses,
bats, and carabaos (Olson et al., 1983). In 1983, Darwish and
collaborators reported anti-ZIKV antibodies in rodents, sheep
and goats in Pakistan (Darwish et al., 1983). In Malaysia, samples
collected between 1996 and 1997 from wild and semi-captive
orangutans were positive for anti-ZIKV antibodies (Wolfe et al.,
2001). The detection of these antibodies were the first findings
of probable ZIKV infection in rodents and domestic animals.

Abbreviations: AIDP, Acute inflammatory demyelinating polyneuropathy;
AMAN, Acute motor axonal neuropathy; AMSAN, Acute motor sensory axonal
neuropathy; C, Capsid protein; E, Envelope protein; GBS, Guillain-Barré
Syndrome; IFN, Interferon; M, Membrane protein; mTOR, Mammalian target
of rapamycin; NS, Non-structural protein; prM, Precursor of membrane; RLRs,
RIG-I like receptors; STAT2, Signal transducer and activator of transcription 2;
TM, Transverse myelitis; WNV, West Nile Virus; ZIKV, Zika virus.

However, the natural history of this virus must be investigated
in more detail.

Other transmission routes are sexual activities, perinatal
transmission frommother to fetus, and blood transfusion (Musso
et al., 2014). ZIKV RNA has been detected in semen and female
genital tract samples (Saiz et al., 2017). Also, many studies
have showed evidence of sexual transmission (Moreira et al.,
2017). Studies in rhesus and cynomolgus macaques indicate that
transmission of ZIKV by sexual intercourse is a mechanism of
virus maintenance in the absence of mosquito transmission and
could increase the probability of spread of ZIKV in regions where
this virus is not present (Haddow et al., 2017). These different
ways of transmission of this virus make it difficult to develop
control strategies against ZIKV.

ZIKV infection can be symptomatic in 18–57% of cases; thus,
it may be asymptomatic in up to 80% of cases. It causes a minor,
self-limiting disease with an incubation period of maximum
10 days (Ahmad et al., 2016). Viremia is generally seen within
3–4 days after onset of symptoms. Symptomatic patients may
develop fever and symptoms typical of arboviral infections, such
as rash, joint pain, conjunctivitis, headache, and myalgia (Ahmad
et al., 2016). These relatively mild symptoms last a few days.
However, ZIKV appears to be neuroinvasive (6.5× 107 viral RNA
copies/mg of brain tissue; Mlakar et al., 2016) and has been linked
to numerous neurological complications including congenital
brain abnormalities (Gerardin et al., 2017), infant microcephaly
(Johansson et al., 2016), Guillain-Barré syndrome (GBS) (Oehler
et al., 2014; Pinto-Diaz et al., 2017), and meningoencephalitis
(Carteaux et al., 2016; Table 1).

Arboviral infections may alter the immune recognition of
peripheral nerve, possibly causing the myelin and underlying
axon not to be recognized as self-tissue. This would make
these structures a target for abnormal autoimmune responses.
This article provides updated information about the potential
mechanisms underlying the development of autoimmune
neurological conditions associated with ZIKV infection.
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BIOLOGY OF ZIKV

Phylogenetic analyses of ZIKV genomes expose the presence
of two principal viral lineages, Asian, and African. Yun
and collaborators performed phylogenetic analysis with the
nucleotide sequences of the 29 accessible ZIKV genomes,
finding the following genetic lineages: African, including MR-
766 (African lineage, Uganda, 1947); and Asian, including both
PRVABC-59 (Asian lineage-derived American strain, Puerto
Rico, 2015) and P6-740 (Asian lineage, Malaysia, 1966; Yun
et al., 2016). ZIKV involved in the outbreak in Brazil and in the
Americas has been found to come from the Asian-lineage virus,
which was isolated in French Polynesia between 2013 and 2014
(de Melo Freire et al., in review).

ZIKV has been classified as a member of the family
Flaviviridae, genus Flavivirus with an enveloped, icosahedral
virion of 40–50 nm in diameter containing the non-segmented,
single-stranded, positive-sense RNA genome of 10,794
nucleotides in length (White et al., 2016). This genome has
two non-coding regions at the 5′ and 3′ end of the genome and
a single long open reading frame, encoding a polyprotein that
is cleaved into capsid (C), envelope (E), membrane precursor
(prM), and seven non-structural proteins (NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5; Kuno and Chang, 2007). The
C protein is basic and complexes with the viral RNA in the
nucleocapsid, whereas the outer membrane of the virion is a
lipid bilayer containing the viral membrane protein (M) and E
protein. The M protein is expressed as a glycosylated prM, and
the E protein is responsible for viral entry and represents a key
determinant for viral pathogenesis (Neal, 2014). E glycosylation
is important for ZIKV infection of mammalian and mosquito
hosts (Fontes-Garfias et al., 2017). NS1 protein is associated
with the evasion of the immune system of the host and appears
to be involved in viral replication along with NS4A. NS2A
is involved in virus assembly and NS2B acts as a cofactor
for NS3 protease domain. NS3 protein is involved in viral
replication and in the polyprotein processing. NS4A and NS4B
protein is involved in the inhibition of Akt-mammalian target
of rapamycin (mTOR) signaling pathway. NS5 appears to be
involved in suppressing the interferon (IFN) signaling, which
is mediated via proteasome-dependent degradation of Signal
Transducer and Activator of Transcription 2 (STAT2) (Mishra
et al., 2017).

The life cycle of ZIKV is similar to other known flaviviruses
(Figure 2). Briefly, virions attach to the surface of the
host cell by interactions between viral surface glycoproteins
and cell surface receptors and subsequently enter the cell
by receptor-mediated endocytosis and are internalized into
clathrin-coated pits. Subsequently, the viral RNA is released
into the cytoplasm following fusion of the viral and host
membranes. The positive-sense genomic RNA is translated
into a single polyprotein that is processed cotranslationally
and post-translationally by cellular and viral proteases. This
cleavage makes a total of three structural proteins and seven
non-structural proteins. Genome replication occurs on vesicle
packages, thus facilitating the assembly of the viral replication
complex (Hamel et al., 2015). Virus assembly occurs on the

surface of the endoplasmic reticulum, these new particles
travel alongside the host secretory pathway through the trans-
Golgi network, where virion maturation occurs and then is
released by exocytosis (Lindenbach and Rice, 2003; Roby et al.,
2015).

NEUROPATHOGENESIS OF ZIKV

The mechanisms underlying ZIKV-induced neuropathogenesis
are still poorly understood. However, studies in mice and guinea
pigs showed that ZIKV can replicate and affect CNS cells
(Dick, 1952; Bell et al., 1971; Kumar et al., 2017). Also, recent
studies have used in vitro technologies to elucidate mechanisms
that contribute to development of autoimmune neurological
alterations after Zika infection (Figure 3). Some studies have
described the mechanisms by which ZIKV avoids the host IFN
signaling of STAT2. During viral infection IFN-I pathways are
activated, allowing the expression of hundreds of IFN-stimulated
response elements. ZIKV protein NS5 binds and destroys STAT2
via proteasomal degradation, conferring viral resistance to IFN in
cell cultures (Grant et al., 2016; Kumar et al., 2016).

Another potential mechanism linking ZIKV infection to
neurological disease concerns the inhibition of RIG-I molecules
(Donald et al., 2016). RIG-I-like receptors (RLRs) are viral RNA
sensors required to initiate an innate immune response through
type I IFN production (Oshiumi et al., 2016). These recognition
receptors are able to induce a proinflammatory cytokine state.
This may explain why in acute phases, a Th1, Th2, Th9, and Th17
response is observed in patients with ZIKV infection (Tappe et al.,
2016). A closer look at the activation of cytoplasmic retinoic acid
inducible gene RLRs, shows that they need to undergo a post-
translational modification process facilitated by Tripartite motif-
containing protein 25 ubiquitin ligase (Gack et al., 2007). A defect
in these non-specific defense mechanisms could facilitate GBS
manifestations following ZIKV infection.

ZIKV infects a broad range of neural cells including
neural stem cell, astrocytes, oligodendrocyte precursor cells, and
microglia (Retallack et al., 2016; Cumberworth et al., 2017). The
ability of the virus to induce implosive cell death in fibroblasts
and astrocytes is another interesting mechanism observed
in ZIKV pathogenesis. Imaging studies have demonstrated
ZIKV infection triggers cytopathic effect on infected cells
in which ZIKV-infected cells undergo morphological changes
with massive vacuolization followed by implosion (Monel
et al., 2017). IFN induced transmembrane family proteins are
restriction factors implicated in the prevention of the viral cell-
fusion of multiple viruses. Failure in the expression of these
transmembrane proteins is associated with an increase of ZIKV-
induced cell death (Savidis et al., 2016).

In assessing ZIKV proteins, a recent study suggests that
expression of ZIKV viral proteins is responsible for cytopathic
effects including cell-cycle disturbance, inhibition of cell
proliferation, and cell death in host cells. For instance, the
expression of prM protein resulted in cell-cycle G1 accumulation,
whereas cell-cycle G2/M accumulation is observed inmembrane-
anchored capsid, M protein, E protein, and NS4A protein.
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FIGURE 2 | Life cycle of ZIKV. ZIKV attaches to the surface of a host cell and enters the cell by a process called endocytosis. Once deep inside the cell, the virus

fuses with the endosomal membrane and it is released into the cytoplasm. The virus particle releases the viral genome. The viral RNA is translated into a single

polypeptide that is cut into 10 proteins, and the viral genome is replicated. Virus assembly occurs on the surface of the endoplasmic reticulum. The immature viral

particles are transported through the trans-Golgi network, where they mature and convert to their infectious form. The mature viruses are released from the cell and

can go on to infect other cells.

Thus, Li and collaborators demonstrated that NS4A, expressed
individually in a fusion yeast model, triggers inhibition of
proliferation, cell hypertrophy, cell-cycle dysregulation, and
cellular oxidative stress leading to cell death through Tor1
and type 2A phosphatase activator Tip41 proteins (Li et al.,
2017). However, ZIKV proteins NS4A and NS4B impede
phosphorylation of Akt at those specific sites in the mTOR
pathway (Liang et al., 2016). Moreover, the presence of
neurologic syndromes possibly are related to the existence of
high cytokine levels, as it is found in ZIKV-infected neural
crest cells, which in some way, may induce cytotoxicity in vitro
(Bayless et al., 2016). In this context, ZIKV infection turns
out to be a substantial stressor for the Akt pathway, which
could have important clinical implications in brain functioning
and development. In addition, dysregulation in the autophagy
might induce myelin injury similar to the one observed in
multiple sclerosis patients, in which augmented expression of
Atg5 gene was associated with immune-mediated myelin injury
in experimental autoimmune encephalomyelitis (Alirezaei et al.,
2009).

Few approaches have been proposed to determine the
relationship between viral RNA persistence and the presence
of neurologic syndromes. The frequency of ZIKV RNA and
the lag time term differs between fluids. A preliminary study

demonstrated that viral RNA clearance may take ∼14–80 days
in serum; 8–39 days in urine and 34–125 days in semen samples
(Paz-Bailey et al., 2017). Lozier and collaborators demonstrated
that time-to-loss of ZIKV RNA in serum was longer in adults
than in children, and conjunctivitis was associated with detection
of ZIKV RNA in semen (Lozier et al., 2017). These data raise the
possibility that ZIKV may co-exist in different anatomic regions,
such as lymph nodes and neural cell compartments.

It appears that viral survival in the central nervous system is
associated with activation of mTOR, pro-inflammatory, and anti-
apoptotic pathways (Aid et al., 2017). This phenomenon may be
linked to neurological manifestations caused by ZIKV, even days
following viral clearance from peripheral blood.

GUILLAIN-BARRÉ SYNDROME

GBS is a neurological disorder characterized by an aberrant
activation of the immune system that results in the damage
of peripheral nervous system (Sejvar et al., 2011; Willison
et al., 2016). Patients with GBS develop a rapidly ascending
neuromuscular paralysis followed by a loss in sensitivity and
pain perception. Although the pathogenesis of this syndrome
is not fully understood, most cases have in common a recent
respiratory or gastrointestinal infection (Tam et al., 2007;
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FIGURE 3 | Molecular mechanisms of ZIKV underlying the neuropathogenesis. 1. IFITM3 proteins confers immunity to the ZIKV. However, failure in the expression of

this transmembrane protein allows viral replication, cell-fusion and massive vacuolization. 2. ZIKV protein NS5 binds and destroys STAT2 via proteosomal degradation,

impeding interferon production. 3. Activated retinoic acid-inducible gene 1 (RIG-1) receptors recognize viral components and induce an antiviral immune response.

However, ZIKV manages to inhibit these sensors, conferring resistance to IFN products. 4. Lastly, ZIKV proteins NS4A and NS4B interrupt phosphorylation of AKT at

two sites T308 and S473. As a result, ZIKV infection turns out to be a substantial stressor for the Akt pathway, which could have important clinical implications in brain

functioning and development. IFITM3, Interferon induced transmembrane protein 3; IFN, Interferon; IRF9, Interferon regulatory factor 9; ISG F3, Interferon-stimulated

gene factor 3; JAK1, Janus kinase 1; MAVS, Mitochondrial antiviral-signaling protein; mTOR, Mammalian target of rapamycin; PI3K, Phosphoinositide 3-kinase; PIP2,

Phosphatidylinositol 4,5-bisphosphate; PIP3, Phosphatidylinositol (3,4,5)-trisphosphate; PTEN, Phosphatase and tensin homolog; Rheb, Ras homolog enriched in

brain; STAT, Signal transducer and activator of transcription; TORC2, Transducer of CREB protein 2; TRIM 25, Tripartite motif-containing protein 25; TSC, Tuberous

sclerosis; TYK2, Tyrosine Kinase 2.

Mahecha et al., 2017). Microorganisms such as Campylobacter
jejuni, Mycoplasma pneumonia, Cytomegalovirus, Epstein-Barr
virus, Haemophilus influenza, Hepatitis E, as well as human
immunodeficiency virus, and ZIKV have been implicated in
triggering the onset of GBS (Brannagan and Zhou, 2003;
Monsalve et al., 2017; Rodríguez et al., 2018a). Furthermore, GBS
cases associated with vaccines have also been reported (Israeli
et al., 2012; Sejvar, 2014).

Acute inflammatory demyelinating polyneuropathy (AIDP),
acute motor axonal neuropathy (AMAN), and acute motor
sensory axonal neuropathy (AMSAN) are clinical variants of
GBS, principally defined through electrophysiological studies,
underpinned by pathological findings. The underlying driver
of GBS is believed to be due to a loss of immunological
tolerance to self-antigens (Shoenfeld et al., 1996). There is
evidence that the antibodies bind to epitopes on the outer
myelin surface producing complement activation and myelin
destruction previous macrophage invasion (Hafer-Macko et al.,
1996). These macrophages release cytokines and free radicals,

invade myelin sheaths and act as scavengers in order to remove
myelin debris (Yuki and Hartung, 2012). Damage to myelin
sheaths, nodes of Ranvier, and nerve axons can disrupt nodal
Nav channel clusters and subsequently cause nerve conduction
failure. In AMAN, antibodies are directed against ganglioside
components of the motor nerves and nodes of Ranvier,
whereas in AMSAN, antibodies affect both motor and sensory
fibers (Hughes and Cornblath, 2005). IgG antibodies against
GM1, GD1a, GalNAc-GD1a, and GM1b are found in patients
with AMAN and AMSAN (Dalakas, 2015). Furthermore, the
production of different ganglioside antibodies is associated with
certain clinical manifestations including Bickerstaff brainstem
encephalitis and Miller Fisher syndrome (Ito et al., 2008; Dagklis
et al., 2016).

The molecular mechanisms of ZIKV underlying the
pathogenesis of GBS are still not at all understood. However,
multiple host-virus interactions have been proposed to induce
disease. Some of these are focused on molecular mimicry,
antibody dependent enhancement of ZIKV infection, T-cell
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immunoreactivity, humoral immunity, and viral neurotropism
for neuron and glial cells (Anaya et al., 2016; Munoz et al., 2016).

One widely considered hypothesis implicated in this disease
is best described by molecular mimicry. According to Lucchese
et al., ZIKV polyproteins share peptides with human proteins
that, when altered, are associated with GBS. These analyzes
suggested that many of the shared peptides may be endowed
with immunological potential. In other words, ZIKV infection
could cross-react with some brain proteins and other molecules
that might contribute to the ZIKV-associated neuropathologic
sequelae (Lucchese and Kanduc, 2016). In the case of ZIKV-
associated GBS, high titers of ZIKV antibodies could lead
to cross-reactivity between component of ZIKV and neuronal
membrane gangliosides. In a case-control study, Cao-Lormeau
et al., found that patients with ZIKV infection and GBS had
some evidence of anti-glycolipid antibody activity against GA1,
GM2, GD1a, andGD1b antigens (Cao-Lormeau et al., 2016). This
suggested the possible role of molecular mimicry in ZIKV-GBS
pathogenesis.

Sera from patients diagnosed with GBS which tested positive
for ZIKV infection in Cucuta, Colombia (Anaya et al., 2017),
between June 2015 and 2016 were also screened for the
presence of anti-glycolipid IgG and IgM antibodies. The results
of this study demonstrated the absence of such antibodies at
greater frequency than non-neurological, post-ZIKV infected
group (unpublished data). This is unusual given that 11/42
(26.2%) patients in this cohort were diagnosed with the
axonal (AMAN/AMSAN) subtype of the disease and IgG anti-
ganglioside antibodies are frequently associated with the axonal
variant of GBS. One explanation for this may be the extended lag
between neurological onset and serum collection (median time
100 days, range 36–242 days) in this acute phase disease.

Moreover, Lucchese and Kanduc found that more than 500
immunogenic epitopes are shared by the virus and human
neural proteins, when related to axonal neuropathies and
myelin disorders (Lucchese and Kanduc, 2016). The proteins
identified as the targets of antibodies to high probability
ZIKV mimic epitopes, including pro-neuropeptide Y, neuron
navigator 2, neurogenic differentiation factor 4, brain-derived
neurotrophic factor, and neurexins, are proteins with diverse
roles in neurologic function and in embryonic development
(Homan et al., in review). These homologies highlight the
potential complexity of GBS pathogenesis mediated by ZIKV.

Lastly, antibody-dependent enhancement of Zika could result
in severe neurological complications (Vatti et al., 2017). This
may be triggered by a previous immunological response, in
which circulating antibodies bind to the virus but it is not
able to neutralize infection. Rather, these antibodies increase the
number of infected cells and virus replication (Flipse et al., 2013).
Under laboratory conditions, the phenomenon of antibody-
dependent enhancement is observed in ZIKV experiments
(Dejnirattisai et al., 2016; Paul et al., 2016). Interestingly, a
previous infection withM. pneumoniaewas observed to be a high
risk for developing GBS in patients infected with ZIKV (Anaya
et al., 2017). However, the role of previous infection with M.
pneumoniae in the development of GBS associated with ZIKV
deserves further investigation.

TRANSVERSE MYELITIS

Transverse myelitis (TM) is also considered an immune-
mediated syndrome. TM causes neural injury to the spinal
cord with concurrent acute or subacute dysfunction, resulting
in varying clinical manifestations as described below (Krishnan
et al., 2004; Cree and Wingerchuk, 2005). The incidence of TM
ranges between 0.134 and 0.460 new cases per 100,000 habitants
per year (Berman et al., 1981; Bhat et al., 2010). Although TM can
occur at any age, it has been observed a bimodal peak between the
ages of 10 and 19 years and 30 and 39 years (Berman et al., 1981;
Christensen et al., 1990; Jeffery et al., 1993). Furthermore, it has
been observed that, females have a higher risk of developing TM
than males (Beh et al., 2013).

Clinically, patients with TM present signs and symptoms
associated to motor, sensory and autonomic nerves dysfunction
(Cree and Wingerchuk, 2005). Concerning weakness, this is
described as rapidly progressive beginning in the legs and
infrequently progresses to the arms. The most common sensory
level in adults is the mid-thoracic region, nonetheless children
may have a higher frequency of cervical sensory level (Pidcock
et al., 2007). In relation to autonomic nerve involvement,
autonomic dysfunction may be a common complication of TM.
This can take place in the acute or chronic phases of TM and
occurs mainly in lesions above the upper thoracic segments (Beh
et al., 2013). Additionally, associated to the acute spinal cord
lesion, it could cause a neurogenic shock as a severe complication
(Krassioukov et al., 2007).

Myelopathies can be subdivided into compressive and
non-compressive causes. Between the latter, TM is one of the
main important ones. Etiologies for TM can be classified as
disease-associated TM when patient shows standard criteria for
known causes or idiopathic TM when an extensive search fails
to determine the exact cause (Barnes et al., 2002). Among the
causes of disease-associated TM are paraneoplastic syndromes
and parainfectious causes acquired (de Seze et al., 2001; Jacob
and Weinshenker, 2008). On the other hand, demyelinating
disorders as multiple sclerosis, neuromyelitis optica, and acute
disseminated encephalomyelitis have been strongly associated
with TM (Borchers and Gershwin, 2012). Additionally,
other systemic autoimmune diseases such as systemic lupus
erythematosus (Mok et al., 1998), antiphospholipid syndrome
(Dar et al., 2015), and Sjögren’s syndrome (Alhomoud et al.,
2009) could be included in the list of causes of TM.

It has been noted that in approximately half of the cases of TM
is parainfectious, i.e., the neurologic injury related with TM may
be associated to direct microbial infection, or indirect infection
followed by a systemic response, thus inducing neural injury
(Bhat et al., 2010; Beh et al., 2013). Among the causative agents
of parainfectious TM are bacteria, parasites, fungi, and viruses.
Concerning viral infection and TM, recently ZIKV appears to be
a new triggering agent of the disease, since in some countries
where outbreaks have occurred, associated cases of TM have
been reported as a neurological complication distinct from GBS
(Mecharles et al., 2016; Palacios et al., 2016; Anaya et al., 2017).
Up to know, it has been difficult to determine if parainfectious
TM, in this case triggered by ZIKV, is produced by direct viral
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invasion or a consequence of inflammatory mechanisms induced
by the infection (Figure 4; Beh et al., 2013). In relation to viral
invasion, the virus can access to an immune restricted site,
evading the immune surveillance present in other organs. Such
a mechanism may also explain the limited inflammation at a
focal region of the spinal cord present in TM patients (Kerr and
Ayetey, 2002).

Although the infectious agent in these cases may be present
within the central nervous system, other immune-mediated
mechanisms, such as molecular mimicry and superantigen-
mediated disease, require only peripheral immune activation
and may to be part of the pathophysiology of TM (Kaplin
et al., 2005). Even though, it remains unclear the mechanisms
by which ZIKV can generate TM, as in GBS, molecular
mimicry could be a plausible one. In this case, the human
neural tissue contains numerous subtypes of ganglioside
moieties within their plasma membranes, similar to different
microorganisms, generating an immune response and later
development of autoantibodies. The development of abnormal
antibodies probably activate other components of the immune
system and/or recruit additional cellular components to
the spinal cord as is observed in neuromyelitis optica or
multiple sclerosis, two diseases strongly related with TM
(Lin et al., 2017; Prineas and Parratt, 2017; Yoshikura et al.,
2017).

The production of autoantibodies seen in TM patients
suggests that a direct and selective injury of neurons containing
antigens that cross-react with antibodies directed against
infectious pathogens may occur (Kaplin et al., 2005). Another
possible link between ZIKV and TM may be the activation of
lymphocytes by viral superantigens. It is possible that some ZIKV
peptides not identified can activate T lymphocytes in a different
way compared with conventional antigens that activate a more
aggressive cellular response.

FIGURE 4 | Neurologic damage by ZIKV. Immune regulatory mechanisms fail,

thus culminating in the breakdown of self-tolerance, resulting in

immune-mediated attack directed against both viral and self-antigens.

Immune disruption in cellular and humoral response
described before could be associated with monocytes and
lymphocytes infiltration into segments of the spinal cord and
perivascular spaces and an invariable astroglial and microglial
activation observed y pathological specimens (Katz and Ropper,
2000; Krishnan et al., 2004). Moreover, in postinfectious
TM, the presence of white and gray matter inflammatory
changes, associated with demyelination and axonal injury has
been described. On the other hand, two different immune
responses during acute phase and subacute TM phases have
been elucidated. During the acute phases, infiltration of CD4+
and CD8+ lymphocytes in the central compartment of the
cord, along with an increased presence of monocytes, is
quite prominent. Furthermore, in subacute phases, prominent
monocyte and phagocytic-macrophage infiltration is detected
(Krishnan et al., 2004). In addition, the high prevalence of
different autoantibodies in TM patients proposes polyclonal
imbalance of the immune system. It may also be that some
autoantibodies initiate a direct and selective injury of neurons
containing antigens that cross-react with antibodies against
pathogens. These confirm that TM is an immune mediated
disorder that involves cellular responses and feasibly humoral
factors that wound compartments of the spinal cord (Krishnan
et al., 2004).

AUTONOMIC SYSTEM INVOLVEMENT

Dysautonomia has been observed in up to 76% of patients
with GBS during ZIKV infection (Anaya et al., 2017). This
percentage is certainly higher than that one found in patients
with GBS associated with other etiologies (González et al.,
2016). This phenomenon may be due to an additive effect
of ZIKV on the GBS development, or an indirect autonomic
dysfunction affecting the organs innervated by the autonomic
system without affecting the autonomic nerves, as has been
observed in animal models of West Nile Virus (WNV) infection
(Wang et al., 2011; Maramattom et al., 2014). WNV is another
arbovirus which may induce autonomic dysfunction in humans
regardless of the presence of GBS (Leis and Stokic, 2012).
Therefore, based on the above mentioned data we underwent
a case-control study aimed to evaluate autonomic symptoms
in ZIKV infected patients, by using the composite autonomic
symptom scale 31 (COMPASS-31) (Rodriguez et al., 2018b).
Patients with previous ZIKV infection had significantly higher
COMPASS-31 score than controls, regardless of age and sex. The
main drivers for the higher scores where orthostatic intolerance,
secretomotor, and bladder symptoms (Rodriguez et al., 2018b).
Several pathogenic mechanisms have been proposed to explain
autonomic dysfunction due to a viral infection (Carod-Artal,
2018), including invasion of the central nervous system and
the direct viral, toxin-mediated or immune-mediated association
of the peripheral and autonomic nervous system (Carod-
Artal, 2018). Using a neuronal culture model from murine, it
was determined that ZIKV persistently and effectively infects
sensory neurons of the trigeminal and dorsal root ganglia
(Swartwout et al., 2017). Autonomic neurons that innervate
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these regions were not tolerant for ZIKV infection. Nevertheless,
ZIKV infection of satellite glial cells that frame and support
sensory and autonomic neurons in peripheral ganglia lead
to in their destruction (Swartwout et al., 2017). Thus, if
autonomic nerve damage during the acute ZIKV infection in
the absence of other neurological manifestations is confirmed,
the mechanisms should be fully investigated, and early diagnosis
will become fundamental for the suitable treatment of autonomic
dysfunction.

CONCLUSIONS AND PERSPECTIVES

The recent ZIKV outbreaks have triggered the occurrence of
neurological manifestations likely associated to this arbovirus.
Molecular mimicry between glycolipids and surface molecules
of infectious agents has been proposed as a possible pathogenic
mechanism of autoimmune diseases, this hypothesis is supported
in GBS. Also, most of the cases of TM appear to be parainfectious.
Further studies aimed at elucidating the underlying pathogenic
mechanisms responsible of neurologic injuries associated with
ZIKV infection are needed, as well as assays designed to identify
the targets of the autoimmune response and viral cross-reactivity.

It is important to note that other factors combined with ZIKV
infectionmay be the cause of these neurological disorders, for this
reasonmore genetic, environmental and immunological research
are needed. Finally, ZIKV surveillance and monitoring programs
should be implemented to control outbreaks of ZIKV in the
future.
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