L ——

.' . ® L a

| - Pﬁ-D-D'MAM 7063

' THZ BOrRD OF GRADUATE STUDIES
LPPROVED TH:S DISSERTATION

FOR THE Ph, D, DEGREEON 7 MAY 1 /0

—

THE ANALYSIS AND SIMULATION OF

MULTI-ACCESS COMPUTER SYSTEMS

by

J.M.H, HUNTER

A dissertation submitted to the
. ; . |
University of Cambridge for the |
|

Degree of Doctor of Philosophy

Trinity College November 1969

PREFACE

The work described in this dissertation was carried out in
the Cambridge University Mathematical Laboratory. 1 should like to
thank the director and staff of the laboratory for their cooperation

and for the use of the facilities, particularly the Titan computer.

I should particularly like to thank my supervisors,
Professor D.VW. Barron for the first two years and Dr. R.M. Needham
for the last two years, for the help, encouragement and guidance

they both gave me.

During the first three years I was grateful for the

financial support of a Research Studentship from the Science Research

Council.

No part of the work described in this dissertation has been
submitted for a degree at any other university. Except where
acknowledgement to other authors is given, the work described herein

is original.

CONTENTS
Chapter

Summary
1 Introduction
2 The Cambridge System
3 Statistical ﬁeasurements
4 Analytical Models and Results
5 Simulation Languages
6 FOSSIL - Fortran Systems Simulation Language
7 Simulation Models and Results
8 Conclusions

'Bibliography

Appendix Simulation Program

Page

25

31

54

93

104

119

151

161

168

SUMIARY

The structure and purpose of multi-access systems are
described and the various types are compared. The Cambridge multi-
access system is described in detail with the methods used to gather
information about its operation. Various statistics about it are

given, some of which are used in the subsequent work.

The relative merits of deterministic and probabilistic
analytical models of multi-access systems are discussed and models
of both types are developed., The results of these are compared for

various parameter values.

Next the types of simulation languages are discussed and
details of the structure and use of the one designed and implemented
for the work are given. The advantages and difficulties of
simulation for investigating computer systems are set out and there
is a detailed description of the actual simulation models used.

The results of these are compared for various storage allocation

schemes,

Finally conclusions are drawn about the use of the various
techniqugs for modelling multi-access systems and the value of the
" work for systems design and development, References are made to
previous analytical and simulation models and simulation languages

and the reasons for choosing different models and languages

according to the system being examined are discussed.

Chapter 1

INTRODUCTION

In the early days of computing most of the jobs were numerical
calculations which sometimes lasted for hours, and the limiting factor
was the speed of the central processor. As a result of this it was
quite common for a programmer to sit at a computer, finding his mistakes
by examining his results and rectifying them by punching another card or
examining and changing the contents of the core store using hand keys or
a typewriter, The time the central processor was idle waiting for this

and for input-output was small compared with the total computing time.

As the speed of central processors increased, much of the
potential increase in computing power was wasted by the processor
waiting for input-output from the peripherals, the speed of which was
limited by their moving parts. Various solutions were tried for this

problem,

One of these was to use a sﬁall cheap computer to convert a
batch. of jobs on cards to magnetic tape, this was then transferred to
the main computer where the jobs were run in succession without human
intervention, the output going to another magnetic tape. Finally the
contents of this tape were printed or punched as required on the small
computer. This technique was known as "batch processing', the
commonest example used an IBM 7090 as the main computer and a 1401
as the small computer., The 1401 was a character-oriented machinc and

thus particularly suitable for input-output,

To get the full advantages of this system the central

processor must be able to work with the minimum of human intervention

N

and delays waiting for peripherals. Since the input and output was

on magnetic tape a "buffer" is necessary in the core store, as a
typical program consumes input and produces output in small irregular
amounts, whereas a magnetic tape 1s best for large regqlar amounts.
This reduces the amount of tape used for gaps between blocks of
information and the time taken to start and stop the tape and traverse
the gaps. With two buffers the contents of one can be transferred to
or from the tape while the other is being filled or emptied and then

the roles can be reversed.

In order that the processor can proceed at full speed when
there is none of this work to do, without having to test regularly
whether anything needs doing, a system of interrupts is used. VWhen a
tape transfer finishes or a buffer becomes full, the current user's
progrém is interrupted, and control is transferred to a program often
called the Supervisor, Executive or Monitor. This deals with the

event as necessary and then resumes the interrupted user's program.

A1l input and output is done by calls to subroutines in the
Sﬁpervisor, these can perform useful functions like translating from
internal character coding to the various peripheral codings,
assembling character by character input-output into lines or vice versa
using buffers,and organising input and output into several streams so
that it appears to be coming from or going to several peripherals
simultaneously, whereas in fact each stream comes out in turn on the

same peripheral.

In addition to this the Supervisor can perform some of the

jobs of an operator on a small computer. At the end of each job

control returns to the Supervisor which tidies up and then starts the

?—

4

next job of the batch if any. Provision is made for the operator to
ferminate or restart the current job if anyfhing has gone wrong. If
there is a hardware clock it can be used to provide accounting

information, and to terminate a job automatically if it has exceeded

the programmer's time estimate.,

While a job is running it often has several "phases", for
example editing, compilation, assembly, loading and execution. The
supervisor can ask the operator to load the relevant tapes and then
read down the programs and data, thus steering the job through the
different steps without any operator intervention except where
necessary. This saves. human and computer time and reduces the chances
of error, since checks can be built in and faults are always

1(50)

"operating system

reproducible, Such a system is known as an

The most sérious disadvantage of this was the increased cost
of having two computers instead of one and a large number of tape decks.
In larger installations several small computers were necessary to cope
with the volume of input and output. It was also difficult to sort

out and load the many reels of magnetic tape and identify the output.

Direct access by the programmer while his program was being run
was technically feasible but administratively impracticable. Not only
would he be wasting valuable central processor time whilst he did his
thinking, but also it was impossible for him to change a card and have
another run because his cards were no longer there, and if he were
allowed to alter the core store of the computer he might have upset the

operating system or the other jobs that had already run or were waiting

to run.

Another disadvantage imposed by the sequential nature of
magnetic tape is that the jobs have to be run in the order that they
are presented and hence the turnround time for short jobs is almost as
long as for long jobs, since théy all have to queue together on a
magnetic tape at each stage. This can be improved slightly by devoting
certain runs to short jobs only, or having different streams of input
and output for short and 1ong jobs, but a consistently low turnround
is impossible, particularly because of the time spent handling the jobs.
If a job has a high proportion of input or output relative to the amount
of processing it requires, the central processor is idle for some of the

time waiting for the magnetic tape.

Some of these problems were solved by the introduction of a
, - . n(64) . ;
technique known as '"time sharing o The true use of this term 1s to
describe the situation vwhere two or more independent activities are
proceeding simultaneously, such as the execution of a program and
output to a printer. In time sharing systems only one computer need be
used and the output of past jobs, execution of current job(s) and input

for future jobs all takes place simultaneously under the control of the

operating system,

When a peripheral has some input ready or is waiting for some
" output it sends an interrupt to the central processor., This causes the
processor to susPepd what it is doing, transfer the input or output to
or from the buffer and set the peripheral going again. The processor
then resumes what it was doing before unless there are any further
interiupts waiting, in which case it deals with these in order of
priority. Thus as far as possible both the peripherals and the central

r

processor are kept going at full speed as long as there is work for

them to do. If the workload on the machine is sufficiently high and
the buffers are large enough, one can approach the condition where
all the equipment is working all the time, which gives the intuitive

impression that the computer is being used with maximum efficiency.

From the programmer's point of view this is much the same as
batch processing, as he still has no direct access to his program
when it is running. The computer utilisation is highest when there
is always a backlog of work to be done, which means a long turnround
time, There are also hidden overheads associated with time sharing,
the processor must £ill andempty buffers, deal with peripherals and

perform the functions of the operating system.

Since all the input or output cannot in general be kept in
the core store, which would soon f£ill up, it must be tramnsferred to
backing storage, possibly magnetic tape but preferably magnetic cards,
disc or drum, since fast random access is desirable. This opens up
the possibility of programs being backing store channel limited
iﬂstead of peripheral limited. It may appear paradoxical that if we
remove one bottleneck we should immediately introduce another, but in
fact this is inevitable in a fully loaded system, since unless all
the unité of the system have adequate speed or capacity the slower
ones constitute the bottleneck. However it is possible to compensate
partially for this by favouring jobs that use spare capacity in

preference to those that cause overloads.

Systems have been proposed to overcome this problem using a
hierarchy of different backing stores with different access times,

capacities and costs, but this results in a large number of transiers.

The solution usually adopted is "multiprogramming" which means having

several active programs in the core store at once, or "swapping"
which means having several programs active at once, but only one in
the core store at a time and the remainder on backing storage. Both
of these can improve the turnround time for short jobs considerably
by interrupting long jobs while they are running, but only multi-
programming can keep the processor fully occupied while a program is
waiting for backing store transfers, since with luck there is always
one program in core free to go. It is possible to combine multi-
programming and swapping, or have programs partly in the core store
and partly on backing storage. This scheme, known as "paging', will

be described later.

We have now described a system whereby peripherals of any
speed can be catered for and several jobs can be run simultaneously,
and this leads naturally to the idea of having a peripheral controlled
by a human "oneline" to the computer. This would give the programmer
back the facilities he used to have of being able to think about and
modify his program, interact with it and get the results back quickly,

and many new facilities which will be described later.

In a2 multi-access system several people have this facility
simultanéously. In principle it is as easy to provide it for several
people as for one, however in practice the main problem is allocating
the limited resources of a computer systém, such as processor time,
core store, disc space, peripheral output, backing store channel time,

etc., among a large number of users with conflicting demands to try

and satisfy as many as possible as much as possible,

There are several types of multi-access system. First we

have what are misleadingly known as "real time" systems., This deecription

refers to systems where it is important that there should be a response

Qithin a qertain specified time, or alternatively that the probability
of there not being a response should be less than a certain value.
Examples of these are process control, telephone call switching and
seat reservation systems, the latter being included because the
customer does not want to wait a long time, rather than because of any

intrinsic urgency.

Multi-access is not popular among such systems, except for the
latter where the common data base makes it necessary. The main reason
for this is that there is no further drop in response time as a result
of multi-access since this has to be short anyway, and the extra
complication and overhead needed to deal with several simultaneous

real time processes reduce the reliability and the gains in efficiency.

However it‘will probably be used more in the future when
computer networks are developed, since this will be a good means of
ensuring the reliability that these systems require at reasonable cost,
and computers can conveniently and economically deal with real time
and ordinary work simultaneously using interrupts and multi-programming
as described earlier. Such systems will not be considered explicitly

though some of the conclusions drawn apply to them also.

lost real time systems are special purpose and limited to a
certain set of programs, often only one. \Some other multi-access
systems have adopted this idea, which certainly leads to simplicity
and fast response, since there need only be oﬁe copy of the program

permanently resident in core with a separate set of data for each user

if necessary, and thus channel time and core allocation present \

relatively little trouble. The languages used try to provide for

simple numerical calculations in a format that can easily be learnt

by non-programmers.,

However there is a limit to what can be done in these
languages, and some programs may either be written in an existing
language, or require a new language, or have to be written in machine
code to make full use of the available facilities or run efficiently,
It is because of the existence of such problems that more effort has
gone into designing general purpose compatible systems, which enable
any program that can be run off-line to be run on-line within
reasonable limits. These are the type of systems that will be
considered, since the problems involved ip the design and running of
such systems are much more complicated and interesting. The languages
used in special purpose systems can easily be implemented in a general

purpose system,

Most systems allow "conversational" input and output at the
terminal while the program is active, However this is an expensive
facility to provide since either the core store has to be reserved
for as long as the user takes to decide what his next input will be,
or it has to be "swapped" by writing it to backing storage and reading
it down again when the input or output is finished and the program is

free to continue running.

One of the most difficult problems about multi-access systems
is resource allocation. There will alwvays be an unsatisfied demand
for computers and computing power because of their flexibility. As

the speed and reliability of computers increase and improvements in

softeware and techniques make them easier to use, problems which before

would have required too ruch computer time are now just soluble. The

progress of science and operational research and allied techniques
bring to light problems whose existence had not been realised, which
had always been treated as areas of human judgment not susceptible to
analysis. This unfulfilled demand was the reason for the introduction
of time-sharing, and subsequently multi-access systems, for if computer
speed and power could not be raised overnight, the best use must be
made of the equipment available. One of the most difficult problems
however is deciding what is the best use, owing to the wide variety of

requirements,

Some of the resources for which competition occurs can be
allocated explicitly, such as magnetic tapes and magnetic card, drum
or disc space for storing programs and data, and maximum amounts of
core store, peripheral output, processor time, console time, and total
running time. These can be decided by the management of the computing
service and can be enforced by software, the operating staff, the
honesty of the users, or finance., If a financial system is not used
these resources are allocated according to political criteria, for
example the relative/claims or riches of two departments may have to
be judged, or it may be important not to set a precedent by allocating
unequally among users. Optimisation is usually done by a trial and
error method, if nobody complains too much then there is pressure to
retain the status quo, since somebody usually suffers from changes and
these are only made when necessary. At the moment there is no

objective basis for deciding the effectiveness of various policies.

A financial control system is perhaps the best attempt at this
since it enables users to state the relative importance of individual

factors to them and makes them realise what is expensive for the

10

———

11

system. The prices can be set according to the laws of supply and

demand. In theory userswill trade off some potential advantages against

others so that priority can be given where necessary without everybody
demanding it all the time with consequent loss of effect. In practice
this may mean a considerable effort on the users' part to play the game
and produce programs fitting the administration's stereotype, which may

not be the most efficient for their particular problem in the long run.

When the users are within an organization the money is often
imaginary, which people are much less reluctant to spend, and one
department may be careful to use up their allowance to ensure that it ‘
is not reduced at the mext allocation. If the money is allocated
centrally it may be difficult to decide on the relative merits of
competing claims, particularly as the amount needed may be very
unpredictable, Peéople may ask for more than they need, knowing that
they will be given less than they asked for. Over-allocation will
defeat the object by causing inflation, as the price of each resource
must include scarcity value as well és capital cost in order to ensure

an efficient use of the system.

One must balance the result of any such controls against the |
cost of human or computer time involved in implementing them.
Different controls may be applicable in different environments, for
example a seriously overloaded machine must be controlled much more
rigidly than a relatively lightly loaded machine, where the important
factor may be giving a good service., It may be preferable to give a
good service to a few than a bad service to many, though the line is

hard to draw. The effect of changes in the nature of the load should

be taken into account, though it is the difficulty of estimating this

that partially accounts for the reluctance to change.

Many of these remarks also apply to the resources which are
allocated implicitly by the structure and the algorithms of the system.
The most important of these are the turnround time for off-line jobs
and response time for on-line jobs. Both of these will depend on the
nature of the jobs, such as what systems programs they use, how much
core space and processor time and disc accesses they need, the load at

the time, whether any backlogs have built up, and various other factors.

It is difficult to say what aspects of system performance
should be optimized since this involves the weight that is given to
various users' preferences and the importance attached to the
efficient running of the system. Originally the main aim was to
optimise the use of the central processor, since this was the main
bottleneck. When buying a computer system there might be a difficult
choice between having a slower processor and more core store, thus
enabling the processor to be kept busy more of the time by multi-
programming and providing a faster response time, or a faster
proceésor thch would be idle more because there was not enough core

store to keep it busy. The decision between these two depends on the

relative price of processors and core store, but it is often difficult

to judge which would be better.

The decision to keep the processor busy through multiprogramming
‘will weigh against jobs using a lot of core store, since these will
either not be allowed or curtailed because they interfere with the

multiprogramming, or will cause excessive overhead by requiring

frequent swapping and thus keeping the disc or drum busy. It is also

12

> —— e v——

possible that users will recompute sets of numbers or shift them about
the core and backing store devices to avoid using too much store and
being discriminated against, which will defeat the object of saving
processor time. The more sophiéticated schemes such as paging introduce

considerable overhead which may not be justified.

Perhaps we should reconsider why processor time_is important.
If we are selling processor time by the second with no charge or
conditions for the service and programmer's time is irrelevant then
this is a reasonable criterion. Such a situation rarely occurs in

practice. The objective is to maximize the satisfaction of existing

- and potential users, where relevant this is indicated by how much they

are prepared to pay for the service, though this is often distorted by
competition and lack of knowledge of the consequences of various
alternatives. When it is free one should weigh up factors like the
relative importance of off-line and on-line jobs, the cost of a
programmer's time relative to machine time, how much machine time a
certain degree of reliability is worth, how much tape jobs should be
favoured or otherwise, how should big jobs be scheduled, and so on.
Analysis and simulation can prove valuable to show the consequences

of various alternatives in each respect to help make a choice

. between them.

As an example we can consider the response time for on-line
jobs. Some people have taken a very simple factor to be optimised,
the average waiting time for a response. While mathematically simple,
and thus used at times in this work, this does not take account of the
psychology of the average user. The important factors to him are the

expected response time to a given request and its variation. It is

13

-

" a 95% chance of falling.

14

reasonable that jobs requiring more processor time should tak
longer but what the relationship between the two should be is open

tc debate.

If the user knows that he is going to have to wait less than a
minute he will be patient? and if it will be more than five minutes he
can get on with something else. In the latter case he should be able
té use his console and be notified in a non-destructive manner when his
first job has finished. Obviously he will prefer a rapid response, but
what he wants more is to know how long it will take. If the time is

variable or lies in the middle range he has a difficult decision to make.

One can insist on the user estimating the time required with a
default estimate for short jobs. There is an incentive to estimate
accurately since if the estimate is too low the job will be terminated
by the system after it has exceeded it -and if the estimate is too high

the scheduling algorithm will result in a slow respomnse.

This estimate can then be used by the scheduler to estimate a

completica time and print it out, if it is more than say five minutes,

Allowance has to be made for the possibility of other people initiating
short or high priority jobs in the meantime and it may be better to

give a range of completion times within which the actual time has say

Another difficult problem is how to arrange the active programs

in the core store., The simplest allocation schemes have each active
program in a fixed place in core store all the time that it is active.

Some multiprogramming systems even insist that the store be divided in

a fixed way, for example in a 64K machine there might be a limit of

three active programs each limited to 16k and 16K for the supervisor.

15

Such a rigid arrangement is obviously very wasteful of store and

restricts severely the maximum program size that can be run.

However if the programs go in variable positions this makes the
core storage protection hardware, which prevents one program affecting
another or the supervisor, much more complicated, and when one program
finishes an awkward gap may be left siﬁce the waiting programs will
probably be a different size. Some of the ways of choosing the next
program and where to put it in the core store are discussed in

-

Chapter 7.

This problem can be alleviated by moving sections of program
around to close up the gaps, this will be called "shuffling". This is
a satisfactory procedurevin machines with efficient hardware instructions
for doing this, but otherwise is liable to waste central processor time,
both in deciding when and how to do it, which is not at all obvious,

and to a greater extent in actually doing it.

The next possibility is swapping sections of program or whole
programs onto backing store, usually magnetic drums. The piomeer
multi-access system, Project MAC CTSS (Compatible Time-Sharing System)

(12,53)

at MIT had swapping without multiprogramming, and most of the

analysis on multi-access systems has concentrated on systems of this

type.(9,16,17,54,58,59)

Here we have to decide which programs to swap in and out, and
have not only to consider the system overhead but also the use of the
backing store channels, which can get seriously overloaded. If fully

conversational working is permitted some form of swapping becomes

essential,

16

The newest systems are paged, which means that although a
.user numbers his core store from location O upwards as a contiguous
block it is stored in pages of fixed size, which may be scattered
around the core store, the corré5pondence being made by hardware.,
The size of pages in different computers varies from about 100 to
2000words. Some of the pages may not be in core, and if the program
attempts to refer to one of these they must be brought down from
backing storage. Similarly if a page has not been used for some
time, or the core space is required for some other program, the page
can be written up to backing storage. The advocates of paging claim
that it provides the user with an apparently large core store and

permits conversational working at minimal expense to the system.

This system will only work satisfactorily if a program's
references to core store follow a simple pattern and remain within
one or two pages at a time., If a program genuinely uses the store
for random access it will use up an inordinate amount of backing
store charnel time, When such things are concealed from the user
; there is a danger that he may use them inefficiently without

realising it.

Paging in principle reduces the number of swaps and abolishes

shuffling altogether, though it requires expensive associative

registers to give quick access to where the pages of a program are
in the store, and software to keep these tables up to date and deal

with exceptional conditions and decide when and how to reject

unwanted pages and get new ones. This depends on user address

sequences as well as other factors.

*—

17

A paged computer, Atlas I, has been in use for some time
without multi~access but multi-access paged systems have only
recently been developed. Extravagant claims are made for such
systems, such as that they can serve 200 simultaneous users, but much
of the central processor time is spent on administrative overhead or
'waiting for the backing store channels to provide pages. Such
systems may prove satisfactory in the long run when they are better
understood, but new developments in fast access mass stores may make
this technique obsolete.

Attempts have been made to simulate such systems,(46’47)

which certainly defy mathematical analysis in toto, but the cost and
effort required is so great that trial and error is usually used

in designing them. The difficulty lies in a lack of experimental
data for such sysfems, both on the operation of the hardware and the
software which is only just becoming available, and also on the
behaviour of the users and the types of program that they write,
which are intimately linked to the characteristics of the system.

l So many assumptions have to be made thet it is difficult to place
much confidence in the model. Because of this and the magnitude of

the task such systems have not been considered here.

Having considered the various types of store organisation,
we shall now consider some of the possible scheduling algorithms
for allocating the processor time between active programs when

multiprogramming or swapping is used.

The fundamental multiprogramming scheduling algorithm is

the "Round Robin" (RR). In this system the jobs are in a circular

queue and the processor serves each of them in turn for up to one

N
1
i

"quantum" of time, generally about a second. At the expiry of the
quantum (generally detected by an internal clock interrupt) or
when the job halts for imput or output or finishes, the processor
starts to serve the next job,and if the job still remains it is
effectively at the end of the queue, This scheme is designed to

reduce the waiting time of short jobs.

In the limit as the quantum tends to zero the processor
serves all the users simultaneously, this is known as "Processor
Shared" (PS) and is useful in theoretical analysis while giving a
reasonable approximation to the case when the quantum is small.

In the limit as the quantum tends to infinity each job is served to
completion, this 1s known as '"First Come First Served" (FCFS) and
corresponds to a simple queue, however the short jobs then have to

wait almost as long as the long jobs.

Various alternative schemes based on the round robin have
been suggested. In the "Foreground Background" (FB) scheme a
program joins the foreground queue and is given one quantum of
processor time when its turn comes, if it has not finished by then
it joins the background queue which is served to completion on a

FCFS basis, but only when there are no jobs in the foreground queue.

" Usually this is "'pre-emptive", if a new program arrives while the
p p] s S

processor is serving the background queue it interrupts the background

program and serves the new one for a quantum.

This ensures a good service for programs lasting less than
one quantum while reducing overhead owing to program changes, which
is particularly irmportant when there is swapping. However if a

program lasts more than one quantum its response is bad, and the

18

main advantage of this scheme over the schemes described below is

the relative ease with which it can be analysed.

This scheme can be extended to several levels. Each time a
program finishes a quantum at ome level it joins the end of the
queue>at the next higher level, and a level is only served if there
are no programs waiting on any lower level. This is generally done
on a pre-emptive basis. A scheme of this nature was used in CTSS
with quanta which doubled each time the level increased, larger
programs which were ‘expected to last lornger entered at higher levels
to reduce the amount of swapping and safeguards were included to
ensure that no program reached the top level and never got run

because there were always other programs waiting at lower levels.

This proved very successful since it gave a short response
to short programs and yet reflected the fact that there is no point
in giving a short quantum to a program that has already run for say
30 seconds when all other programs waiting have run as long or
~longer, since this only adds to overhead. In a system without

swapping the size of the quanta makes little difference.

There are three techniques for comparing various possible
hardware and software systems. The first is to do experiments with
the actual systems, It is usually impossible to experiment with the
hardware except for manufacturers, since the maximum configuration
is fixed by the equipment available. Alsothe commitments to the
users of a system make it impossible to experiment with the software
of a system unléss it is likely to show a significant improvement.

Only a limited amount of information can be gathered from this, since

the experiment cannot be controlled or repeated. However, useful

main advantage of this scheme over the schemes described below is

the relative ease with which it can be analysed.

This scheme can be extended to several levels. Each time a
program finishes a quantum at one level it joins the end of the
queue‘at the next higher level, and a level is only served if there
are no programs waiting on any lower level, This is generally done
on a pre-emptive basis. A scheme of this nature was used in CTSS
with quanta which doubled each time the level increased, larger
programs which were expected to last lorger entered at higher levels
to reduce the amount of swapping and safeguards were included to
ensure that no program reached the top level and never got run

because there were always other programs waiting at lower levels.

This proved very successful since it gave a short response

to short programs and yet reflected the fact that there is no point
in giving a short quantum to a program that has already run for say
30 seconds when all other programs waiting have run as long or
longer, since this only adds to overhead. In a system without

swapping the size of the quanta makes little difference.

There are three techniques for comparing various possible
hardware and software systems. The first is to do experiments with
the actual systems., It is usually impossible to experiment with the

hardware except for manufacturers, since the maximum configuration

is fixed by the equipment available. Alsothe commitments to the
users of a system make it impossible to experiment with the software
of a system unless it is likely to show a significant improvement.

Only a limited amount of information can be gathered from this, since

the experiment cannot be controlled or repeated. However,useful

statistics can be gathered of user and system behaviour and the
nature of the load by observing a real system, as is shown in
Chapter 3.

One possible solution to this problem is suggested by

(21)

Greenbaum who used a computer to simulate several users typing
away at their consoles. Scripts were used to enable any user session
to be simulated and allowance was made for user thinking time. This
makes controlled experiments possible, butplenty of computer time
would be necessary to allow for a sufficiently representative user
session, and it would be difficult to decide on criteria for judging
how representative a session is. Also the experiment would have to

be repeated for each proposed modification to the system, as with a

simulation.

The next method is mathematical analysis. Some results can
be obtained from deterministic models by considering rates of flow
through the system and assuming everything to be constant. However
it is more éccurate to use the theory of queues and llarkov processes,
which involve representing the various times and queues involved by &«
probability distribution. The usual distribution adopted for the
known timesis the exponential distribution. This has the valuable
" property that the-behéviour of the system is independent of its past
history and depends only on the present conditions. Without this
property the analysis becomes very much mbre complicated. In
practice this represents a reasonable approximation to the observed

distributions, even of thinking time, though more accurate fits with

(19,62)

derived distributions are possible,

20

Apart from this approximation a great deal of simplification
of the system is necessary and thus one inevitably wonders whether
the resulting model is a good one., The advantages of this method is
that the amount of computer time to produce results is very small so
that a wide range of cases may be considered, and it is sometimes
possible to solve the equations analytically and see the explicit
dependence of one parameter on another. One also knows that the
result is an exact solution of the model, even if this does not

give an exact representation of the system.

The other is simulation of a model of the system, where
the situation is very different. Here we can make the model as
complicated as necessary, subject to the serious limitations of
one's ingenuity and computer time, and get a numerical solution.
The data for simulations can be either real jobs or random numbers
sampled from histograms or analytical distributions, preferably
determined by statistical results from a real system. Statistics
on queue lengths and waiting times can be collected during the
simulation of a giveﬁ period of real time and tabulated at the end.
More detailed analysis can trace any apparent instabilities in the

system.

Tﬁe main advantage of simulation is that it can in principle
be applied to any type of system and any desired statistics can be
collected. Most multi-access systems involve several types of delay,
waiting for input and output, waiting for backing store transfers,
waiting for core store to become available, and waiting while other

programs are being run. A mathematical model canmot deal with all

of these simultaneously. It involves simplifying assumptions that

may change the picture completely, and only a limited number of

results can be deduced. The results of simulation can give a good
qualitative and quantitative picture of the system and indicate

where the main bottlenecks occur,

Like most numerical methods, simulation suffers from the
disadvantage that it is expensive in computer time, It is difficult
to achieve accuracy without having several runs simulating long real
time periods, and changing any one parameter will usually inveolve a
complete set of reruns. Though techniques exist for estimating the

error(6o) much depends on the particular features of the runs used.

In cases as complicated as multi-access systems the accuracy
of the model and its implicit assumptions is always in doubt and can
only really be verified by comparison with the real system. Even
this will only show that the assumptions are satisfactory for ome set
of parameter values,.and when these are changed new factors might
come into play which were legitimately ignored before. The accuracy
of models of non—existent systems cannot be checked except against
overéimplified mathematical models of the saﬁe system, and the same
incorrect assumptions might be present in both, though this does

provide a good technique for detecting programming errors.

Sgimulation cannot show clearly the depeﬁdence or lack of
dependence of a result on a given parameter in the same way that an
equation can. Unless fairly consistent results are obtained in
different runs it is difficult to know whether to ascribe variations

as directly due to a parameter or to other ignored factors, or due

to the inherent randommess of the process. II the results are

independent of one parameter for given values of the other parameters

this parameter might become critical with other values, and yet it

would consume too much time ifo test all possible cases with

sufficient accuracy.

In spite of these disadvantages simulation is a worthwhile
technique that can produce useful results unattainable by other
methods, and in comparable cases the results agree reasonably with

those obtained from the real system and mathematical analysis.(54)

Most of the work described here concerns the Cambridge multi-
access system, described in Chapter 2. This was partly because the
author had first hand experience of using it and more convenient
accesé to information and statistics about it, and partly because it
represents the most successful example of a general purpose non-paged
multi-access system in actual operation and has been operational
sufficiently long for it and its users to have reached a reasonable
degree of stability. Hypothetical modifications to the software and

hardware were also considered as a basis for comparison.

The work was in four main sections which were in practice
done concurrently. First statistics were gathered about the system
giving disc access times, user response times, program sizes and
running times, use of various systems programs, etc. Next analytical
models of the system and similar systems using the theory of Markov
processes and queues were designed, and various results tabulated.
Next a simulation language, FOSSIL, was designed and implemented,
which represented an important piece of work in its own right,

This was used to simulate the system to investigate core store

allocation,

At the end of this thesis the value of investigating multi-
access syétems is discussed and conclusions are drawn as to how this
problem should be tackled in the light of this work and the uses of

the various techniques described here.

ChaEter 2

THE CAMBRIDGE SYSTERM

As we are confining our analysis to systems of a similar type
of the Cambridge multi-access system and are using statistics derived
from this system, a short description of it will now be givem. Further
details can be found in Ref.(25). This is designed to explain its

most important hardware and software aspects and how it appears to the

user.

The Cambridge system is based on the TITAN (ATLAS 2) computer,

which differed from the ATLAS 1 by not being paged and not having a

] ; 5 .-
drum. There is a program called the Superv1sor(2) which deals with

the administration of jobs, controls all the peripherals, organises
the buffering of input-output in the core store and on the disc,

records logging and accounting information, deals with all interrupts,

provides two way communication with the operators and does other

routine jobs. This represents about 32K words of program and tables

" of which about half is permanently resident in the core store and the

other half read in from disc when needed.

In addition there are certain systems programs, such as the
filing system and the console logging in and out system, which are

written as ordinary programs but have certain privileges., The filing

T
; & % ; o 3 . 2) -
system is used for the storage of information on tne discs, A file

can contain either program or data copied from the core store or a

Metrean" of characters, as from a paper tape reader or to a printer.

Programs can take their input from and send their output to

o
=

peripherals or files or tapes according to choice, except that on-lin

N o

ChaEter 2

THE CAMBRIDGE SYSTELM

As we are confining our analysis to systems of a similar type
of the Cambridge multi-access sysfem and are using statistics derived
from this system, a short description of it will now be given. Further
details can be found in Ref.(25). This is designed to explain its

most important hardware and software aspects and how it appears to the

usere.

The Cambridge system is based on the TITAN (ATLAS 2) computer,

which differed from the ATLAS 1 by not being paged and not having a
. ‘ . (26) .. .-

drum. There is a program called the Supervisor which deals with
the administration of jobs, controls all the peripherals, organises
the buffering of input—output in the core store and on the disc,
records logging and accounting information, deals with all interrupts,
provides two way communication with the operators and does other

routine jobs. This represents about 32K words of program and tables

. of which about half is permanently resident in the core store and the

other half read in from disc when needed.

In addition there are certain systems programs, such as the

filing system and the comsole logging in and out system, which are
The filing

@

written as ordinary programs but have certain privileges.

t-h

system is used for the storage of information on the discs. ile
can contain either program or data copied from the core store or a

"stream" of characters, as from a paper tape reader or to a printer.

Programs can take their input from and send their output to

na
=

peripherals or files or tapes according to choice, except that on-lin

jobs cannot use paper tape readers or magnetic tapes for operational
convenience, The same system is used for buffering input-output
streams and storing files on the discs. The user communicates with
the supervisor, the peripherals and the filing system by means of
special orders, known as extracodes. In this way he can perform

operations requiring privileges in a controlled fashionm.

The core store was originally 64K words of 48 bits, and the
largest size program allowed was 40K, the remainder being used for
the supervisor, buffering, and temporary working space. Later the
core store was increased to 123K but no corresponding increase was
made in the largest program size allowed, this was to allow more
multiprograrmming, particularly of on-line jobs, and reduce the rate
at which “chapters" of non-resident supervisor had to be overwritten

and retrieved from the disc owing to lack of working space in core.

The disc store consists of 32 discs in 2 units, each disc has

a‘capacity of 512 blocks of 512 words making a total of 3 million
words. In addition to these, wvhich are read by heads fixed to arms
moved with compressed air, there are 96 blocks which can be read by
fixed heads and thus have a shorter access time. These are used for
parts of the supervisor. There are two logic units which can each
move the arms on either disc unit, and two channels for transferring
information, and so we can approximate ﬁy treating the discs as
being in two completely separate units as far as calculation of the
access times. and queues are concerned, Although‘the channels have
to be shared with the six tape decks the degradation due to these

is small.

A typical job passes through a number of phases such as

editing, compilation, assembly, loading and execution. Facilities

are provided using extracodes or systems programs for joining these
phases together. Information is usually passed between phases in the
form of streams or files which are output by one phase and used as
input for the next. At the end of each phase all the core store is
freed and the job joins the queue again for more space for the next
phase, except in the case of the IAL loader, the IIT assembler, and
the system MONITOR which prints out information when a fault occurs
in a program. For each of these part of the same space is used in

two phases.

For on-line jobs various options are open. It is possible to
create another job which will run in exactly the same was as an
off-line job using an identical job description format (except for
paper tape input not being allowed) and operate independently of the
console. This would be the normal mode of operation for jobs lasting
over about a minute, or using magnetic tape, or liable to long delays
because they need a lot of store., However a more natural way of
using the system, particularly during program development, is to run
one phase at a time, examining the results of each phase at the

console before going on to the next phase if it was successful.

All on~line jobs operate under the COMMAND program, which
can also be used by off-line jobé but is primarily designed for
interactive use. A request for a phase, which may use a system
program or a private precompiled binary program, is typed in to
the command program as the system or file name, followed by

arguments which are usually stream numbers or file titles. The

command program sets up the streams and files appropriately, and
preg p pPpLeop Ys

then loads the appropriate system by "changing phase", which involves

finding the core space or joining a queue for it and reading the

system down from the disc.

When the phase has finished running it will generally return
to the command program, again by changing phase, which will type out
the output at the console. This may be interrupted and the output
printed, punched, filed or edited. Thus the natural unit of

interaction is a phase subject to certain exceptions.

Some of the more common commands, such as INPUT, FILE,
DELETE, PRINT, etc. are built into the command program for efficiency

reasons and do not involve changing phase.

Iv is possible to string several phases together without
having interaction, by the same means that are used for off-line
jobs. Each phase can change phase intc the next, and sometimes
several phases are present behind the scenes (e.g. compile, assemble,
run). Another steering program called LS (ilixed Language System)

' (6) - ; . R S o 5 @
can be used, and there is a special COIDMAND command which will
make the command program read a list of commands from a stream and

only return at the end or if an error cccurs.

-

As well as the command program some other commands are
alloved to be interactive themselves, such as EDIT {context editor),
PATCH (debugging aid), FIGARO (for small numerical calculations),
EXAMINE (for looking at file dictionaries) and FINISH (for logging
in and out). This is usually done by having only one copy of the
program in core to serve all the users, this is known as a '"pure

1

procedure" because it is not allowed to modify itself and has a

28

29

.small amount (typically 64 words) of working space for each user.

This reduces the amount of idle store during input-output while the

users think and saves reading down the program from the disc each ‘
time, since often it is in the store already., Because of this, and

the fact that a special area (16K) of the store which is rarely full

is reserved for pure procedures only, the response time for pure

procedures is shorter and less variable.

All other progréms must have all the input typed in before
[they start and no oﬁtput comes out till they have finished. The
input and output is stored on the disc and thus the core store is
not tied down waiting for the console. This may appear to nullify

some of the advantages of on-line access but has in practice proved

very satisfactory for most users. The facility for storing, printing
| and editing output can save a lot of time waiting for something
coming at the end, for example a system MNONITOR owing to an output

loop, which would come at the end of the output causing the trouble.

The core allocation and scheduling routines are described
implicitly in Chapter 7, but a brief summary from the system point of
view will be given here. The core store available to object programs

is divided into two sectioms, 0-40k and 64k-112k, in addition to the

separate épace available to pure procedures. Whenever space becomes ;
available it is allocated to the first job in the queue that wil J
fit, and so on down the line. 1If a job waits for more than a certain ;
time, depending on the amount of store requested and whether it is
on- or off-line, it joins a second queue which is served on a first

come first served basis, and no allocation of the region 0-40k is

made to jobs not in this queue until it is empty. This ensures

that all jobs get run eventually without all the inefficiencies

of a simple first come first served system.

Swapping or shuffling is not employed because of the length

of time required to access the disc, which is a slow ome, and the

absence of efficient hardware instructions for moving around the

contents of the store. Also the base register, waich gives the

actual starting place of a program in the store is (R=-ed with rather

than added to the program's address which means that a program of

size N must start in an absolute store address which is a multiple of

2M where ot > N. This means that there is only a restricted scope

for closing up the gaps.

For scheduling a queue of jobs is maintained and at any stage

the first ome free to go is run. At 1.28 second

intervals the

queue is examined and the job that has used the most processor time

in this period is put at the end of the queue. This ensures that

each job gets run at least every 1,28 x N seconds

number of jobs in the queue assuming it is free to

wvhere N is the

go. Any job that

uses up relatively little processor time and is usually halted, such

as console and tape or disc limited jobs, has high

is free. The algorithm combines the best features

and Foreground Background algorithms.

priority when it

of the Round RKobin

30

Chapter 3

STATISTICAL IEASUREMENTS

The first statistic that was measured was the disc access time,
Two figures are of interest here, the length of time required to read
a block and the time required to position the arm and verify. These
were measured experimentally on an empty machine, to avoid queueing
delays or multiprogramming causing an error in the real time
measurement., From a fixed position on the disc with no arm movement
420 blocks were transferred in seven runs, respectively one block to
seven blocks at a time, and the mean time between the beginning of
the transfer and the end, which is determined by when the store is
unlocked and the last word can be read, was measured. A similar
experiment was also done with the arm in a random position on the

d

|

sc instead of the correct position., The results of these are given

in Table 3.1 and Figure 3.1.

With the arm in the correct position the mean time per block
is 183 milliseconds, irrespective of the number of blocks transferred.

The mean time required to position the arm is 153 milliseconds.

The remaining statistics were gathered from the log

-automatically collected by the supervisor and stored on magnetic tape

for subsequent analysis. This gives details of the starting and
finishing time for each job, whether it is cff-line, on-line or
logging in on-line, details of which system programs and how much
computation tiﬁe, execution time, and store it uses. When a console
user first logs in his name is not known and so a job for a standard

notional user is started which enters the logging in program. When

Table 3,1

: Disc access times with arm in correct and random positions

Arm

Correct
Position

Randomn
Position

Number of blocks 1
Total time (ms) 185
Time/olock (ms) 185
Total time (ms) 338

Positioning time (ms) 153

365

182

501

136

551

184

708

157

4 5
732 943
182 189
8§78 1120
146 177

6 7
1106 1230
184 176
1256 1382
150 152

Figure 3,1

Disc access times with arm in correct and random positions

Tine
(msec) _
1.4

1.2

1,0

Random
position

0.6

0.6

0.4~

Correct
position

=
e
Lo

Number of blocks transferred

~

the user has established his identity and stated what system

resources he requires a new job is created with the correct title
and the old job is terminated. This new job may be subject to

scheduling delays if his requirements are large to even out the load.

If there is a serious software or hardware failure all
console jobs that have finished logging in will be restarted
automatically as will all off-line jobs which are still running, and
thus it is desirable to-create a second job whose name and resource
requirements are known, to avoid the user having to type these again,

since this information can be stored on the disc.

The execution time for a phase is the sum of the computation
time and any time that the phase is in store and held up through its
own fault. This can be for several reasons, the program may be
waiting for input from or output to a console, it may be waiting
for transfers from tape or disc, or it may have deliberately
requested to wait, for example in the hope that some filing system
interlock may clear. It does mnot include any time waiting for
stream transfers, which varies according to the reliability of the
disc, how full the core is, how much multiprogramming is going on,
or any time the supervisor spends running other programs when it is
free to go. For on-line jobs it roughly represents the amount of
time required to receive the output from the previous phase, think
about it, type in the input for the next phase and load the

progran from the disc.

This must be qualified by the remarks made earlier that some

phases follow each other without any interaction and other phases are

interactive themselves, but this will be discussed later when the

command usage is analysed.

An analysis program was written in Fortran and machine code
to gather statistics from the details for each job recorded in the
log. This proved to be a much more difficult task than expected,
since many unforseen problems occurfed. The most important of these
was the wide variety in the results, This necessitated analysing
data over a much longer period than was originally intended and
precluded the possibility of sampling. This contrasts with

(54,35 who found the users of CTSS relatively consistent in

Scherr
their habits,.

Some of the variation is explained by terms, holidays, etc.
which affect the nature of the load, if the on~line load or the
number of short jobs is small then more long jobs are run which
puts up the mean times. There are nearly always enough long jobs
wvaiting to be run to keep the machine busy. Also during this period
the size of the core store was increased from 64K to 128K, but
since this was done intermittently for testing before being
finalised it was impossible to separate the figures relating to
each store size. The main effect of this was to improve efficiency

by reducing disc transfers and increase the throughput., The mean

times should not be affected significantly.

Because the data was automatically collected there was a
number of errors or exceptional cases which it took some time to
discover and protect against. These were caused by factors like
restarts, errors in the logging program and possibilities which were

not considered when the analysis program was first written. Some of

these produce obvious absurdities or faults which can easily be

corrected but others proved more difficult to detect since the volume

of logging information was too great to scrutinise by eye for errors.

A system had to be devised to store intermediate information

to avoid complete reruns in the case of a fault occurring such as an

unreadable block on the tape, or an error in the data,or the time allowed

running out., The Fortran routines proved after much experiment to be
unusable so machine code routines were written to store tables and
blocks of informatien on streams and recover the relevant ones for

the next run.

All the information was stored cumulatively, but details of
the most important features of each str2am on the logging tape,
corresponding typically to one day's use, were printed. As an example
of the variation the range of values of the daily means of comp.
time and halt time (= exec. time - comp. time) are given in Table 3.2,
The variations in the on-line figures are wider than the off-line ones
because of changes in the nature of the load. The main statistics
are given in Table 3.3 and the distributions of the number of jobs

running are given in Table 3.4 and Figure 3.2,

The remaining statistics were gathered over a much shorter
period (19/8/68 - 29/8/68). This was partly because the original
data had disappeared, since the logging tapes are reused on a cyclic
basis and at the time it did not seem wortﬁwhile preserving them,
Also it takes about 25 minutes of Titan time to process each tape
even if relatively little information is extracted; and since the

subsequent figures refer mainly to distributions rather than means

it did not seem worthwhile spending as much time as before to achieve

Table 3.2

Ranges of daily mean comp. and halt times

Off-line On-line
Min Max Min Max
(sec) (sec) (sec) (sec)
Comp. 1.97 120,05 0,79 1.92

Halt 1.41 31.25 36,18 77.87

Table 3.3

General Statistics for 7/4/68 - 30/5/68 |

No. of restarts 457
Total time (min) 35600 | L
Disc transfers; 7 7462081 |
Filing system ; 1402098
L Well . 2663715
Object programs 1019060
Othere 2377208
- Off-line On-line Total
Total comp. (min) 25300 4467 29767 “
7 comp., 71 . 12,5 83.5
Jobs 20594 15278 35872
Logging in jobs . 3575
Phases 79349 175507 254856
| Throughput (phasesfin) 2,22 4,92 7.15 ;‘1
Mean comp. (sec) 19.13 1.51 7.00
IMean halt (sec) 9.36 44,59 34,04
Mean store (K) 5.80 2,27 3.37 |
Mean number running 5.37 4,61 9.98

Table 3.4

Distributions of number of off-line and on-line

Number of
jobs running

0

10
11
12
13
14
15
16

17

19

jobs running

Off-line
probability

.001
«100
097
.070
071
.149
.167
o127
.167
.007
,007
.008
012

.009

,003
.002
.001

.000

On-line
probability

.109
+1312
.100
.096
.092
«095
.095
.092
.085
056
.031
.018
.013
.004
.002
.001
.001

.001

Distribution of number of off-line and on-line jobs running

|
Figure 3.2
|
|

Probabilitx

Off=line

0.15 9

0.10 =

0.05 7

Number of jobs rumning

:

accuracy, since it is not so crucial in this case. Also just
processing one tape made it relatively simple to extract further

statistics when these eppeared necessary.

Some of the results were directly comparable, the means for
the halt times were within 3% of the earlier values though the mean
off-line and on-line comp. times were 33.9 and 1.1 seconds
respectively. The difference between these values and the previous
ones mainly reflects the fact that the second set of data is out of
term in the summer when the on-line load is light and more long
off-line jobs get run. The pattern of store sizes was also much the
same, except that the mean size of off-line phases had increased
from 5.8K to 7.4K for the same reason, Thus it is reasonable to

treat the results as typical of a period with a slightly light on-line
load.,

The first object of these supplementary measurements was to
find a satisfactory method of comparing the distribution of comp. and
halt times with the exponential distribution to see if it is possible
to use this., The original measurements were tabulated in a table with
linear intervals and a cut-off point, but this was unsatisfactory

since to get a reasonable number of cells the intervals must be too

. large to get adequate resolution at the low end of the table and the

cut-off point too small to compare the tail end of the distributions.
Also it is difficult to find an interval which will give adequate
detail without producing too jagged a curve.

“aaqg

The solution adopted was to tabulate the log of the times,
which gives sufficient detail at the low end without requiring a

cut-off. The number of entries in each section of the table was

41

plotted on a logarithmic scale for the same reasom. The tabulation

and graph plotting routines developed for simulation were used

for this.,

To get the exponentially distributed graph corresponding a
technique which is potentially useful for simulation was developed to
generate the best possible set of a given number of exponentially
distributed variables. The object of this was to produce as smooth a
graph as possible and obviate unnecessary error owing to the use of

random numbers,

Suppose we require N exponentially distributed numbers
with mean unity (other means are possible by multiplying every
number by the new mean). We divide the range into N intervals

bounded by Xy = o, X1 Fg-pe c0c % T o If an exponentially

distributed variable has an equal chance of falling in each interval

then we have:

(i = 0,1,40.1)

il

p

i1 ~%.
e dx 1 i

X, ’ N :

;4

We now choose our exponentially distributed number vs in the

interval (xi, Xi—l) such that its value is the expectation of a

aumber drawn from the distribution which lies in that interval.

-1
J Xe % ax

X -x|¥i-1 X1 —x
y; . < Xl = N[fxe x] ~+ N J e T dx
i=1 i X X
J e dx
X,
1
o - ® I o i(elog By - (i-1) (-log Sh)
Iy I, A0 °8 T
i

1+ log & + (i-1) log(i-1) = i log i

«
u

These may be conveniently calculated and tabulated in turn,

only one log operation being required for each, the same as for random

sampling from an exponential distribution.

Figures 3,3-3.6 show the quantities of interest, namely
off-line and on~line comp. and halt times, The time is given on a
logarithmic scale starting at 0.1 which is the lowest that can be
measured, any items with value O are also entered here, and the kink
in the theoretical distribution is due to all those items with value
less than 0.1 being included. The increment in loglo(time) for the
table is 0.2, which seems to combine resolution and smoothmess. The
height of the curves is proportional to the log of the number of
entries in a given cell of the table, adjacent points on the graph

being joined by straight lines.

As might be expected there is a certain amount of divergence
between the actual and the exponential distributions, the chief
difference being that the standard deviation of the actual
distributions is higher than that of the exponential ones, there

being more very high and very low entries and fewer near the mean.

To get a better fit we must use a derived distribution, where
one chooses according to a set of probabilities the mean of the
“exponential distribution to be sampled from. Distributions of this

(19’52’58,59,62) to provide a better fit

sort have been used before
than a simple exponmential, and are known as hyperexponential. If we

examine Tables 3.5 and 3.6 and Figure 3,7 which gives the mean comp.

times according to store size we see that there is a significant

correlation between the two as would be expected,

Store
K

Pure®

5-8

9-12

13-16

17-20

*

Table 3.5

Frequency and length of off-line phases by store size

Numbe

2908
5668
3592
1497
656
441
405

259

238

Phases

r %

18

35

22

Comp.,
To?al Mean
min sec
110 2.3
1658 17.5
1254 20,9
1070 42.9
693 63.4
417 56.7
521 77.2
161 37.3
531 74.6
583 196.4

2186 550.0

Pure procedures with 64 words working space

Halt

To?al Mean
min sec
272 5.6
1009 10,7
492 8.5
144 5.7
93 8.5
17 2.3
100 14.3
33 7.6
150 21.0
46 15.4
130 32.8

Store

Pure®

1-4

9-12

13-16

17-20

21-24

Table 3.6

Frequency and length of on-line phases by store size

Phases

Number

41870
18042
2721
1814
292
88

24

W

65

28

(]

Total
min

496
176
243
138
85
16

12

Comp.

Mean
sec

0.7
0.6
5.4
4,6
17.4
10,9

28,9

2,8

Pure procedures with 64 words working space

Halt

To?al Mean
min sec
4425 63.0
1974 6.6
64 1.4
67 2.2

1 0.3

0 0.3

1 2.3

2 29.0

Fipure 3.3

Distributions of off-line comp. times

Nunber of occurrences

10000
1000

100 S
10 4

Hyper=

Exponential== | exponentials
1 . i] N H
0.1 1 10 100 1000

Off-line comp, time

(sec)

47

Figure 3.4

Distributions of on-line comp. times

Number of occurrences-

10000
1000 o
100
10 |
Liyper=-
. Exponential——3lexponential—y Actual >
] T ‘ I LD
0.1 1 10 100 1000

On=line comp. time

(sec) : J

48
Figure 3.5
Distributions of off-line halt times
Number of occurrences
10000+
Exponential
1600
Actual
100 -+
10 =
0
T i : | T T
0.1 1 10 100 1000 10000

Off=line halt time

(sec)

Figure 3.6
St e

Distributions of on-line halt times

Number of occurrences

1000007

10600 "'\

1000

100

10=
Exponential— Actual—>
1
: ! T T
0.1 1 10 100 1000 10000 |

On=line halt time

(sec)

. 0 o

50
Figure 3.7
Mean comp. time of phases azainst store size
Mean comp. time
(sec)
500 =
. 400
300 o
200
| 100
On-line
0 :
! L) T |
Pure procedures 8K 16K 24K 32K 40K
Store size
(rounded up to next multiple of 4K words)
{

|

\

\

|

| |
Some unevenness is caused by compilers of particular sizes |

which are used a lot. Tables 3.7 and 3.8 show the most commonly used
systems for off-line and on-line jobs respectively and it can be seen
how a few systems account for much of the time. Pure procedures with

64 words of working space are marked with an asterisk; these are

and this goes in an area reserved specially for them which is rarely full.

Using hyperexponmential distribution for comp. times with a

|
classified separately since there is only one copy for all the users ‘
|
different mean for different store sizes we get a much better fit than }

the exponential as can be seen from Figures 3.3 to 3.6. This distribution

was used for the simulations, but the simple exponential was used for the “

analysis, since the results from that appear to be relatively insensitive

to distribution. TFor the halt times Tables 3.5 and 3.6 show that there

is little correlation and so the simple exponentizl distribution provides |

a better fit. H‘

14 52]
Table 3.7
Off-line system usage

Phases Comp., _ Halt |
Systenm Number 7 | Total Mean Total Mean |
min sec min sec ‘w
MLS 12316 14.8 95 0.5 578 2.8 |
IIT 10888 13.1 1933 10.7 515 0.8 I
IIT PROG 9852 11.9 17069 104.0 2881 17.5 \

%COMMAND 9807 11.8 21 0.1 54 0.3
AUTOCODE 8418 10.1 1015 7.2 508 3.6 |
*E3 7641 9.2 573 2.9 725 5.7 I

FMJOB 3684 A 5 0.1 0 0.0
SFINISH 2611 3.1 6 0.1 35 0.8 ‘J
IAL 2540 3.1 281 6.6 192 ba5 |
PRIVATE 2480 3.0 649 15.7 803 9.4
FORTRAN 2443 2.9 248 6.1 179 bt i
IAL PROG 2149 2.6 1951 54.5 146 4.1
FILELOG 1861 2.2 386 12.4 814 26, 2 I
RELOAD 1302 1.6 150 6.9 2428 111.9 |
¥EDIT 1064 1.3 123 6.9 94 5.3 V{
SETAL 571 0.7 11 1.1 10 1.0 I
| FILEM 494 0.6 137 16.6 62 14|
! FMACTION 471 0.6 2 0.2 4 0.5 It
MACRO1 332 0.4 342 62,0 22 4.0 I
FILEDUIP 300 0.4 83 16.5 212 42,4 |
CRYST 278 0.3 1 0.1 14 3.1 Fw
MAKARCH 232 0.3 70 18.2 624 161.4 I
OWN 175 0.2 34 11.8 19 6.4 m
. TSAS 168 0.2 201 71.9 627 223.9
SET 154 0.2 0 0.1 0 0.0 M

SIGNAL 136 042 1 0.2 2 0.8
EXAMINE 116 0.1 1 0.3 3 1.4
UNDUIP 112 0.1 2 1.0 50 26.8 @
*Pure procedure with 64 words working space |
{

Table 3.8

On-line system usage

5 Phases Compe Halt
ystem
Number % Total Mean Total Mean
min sec min sec
*COMMAND 76956 43,8 944 0.7 71639 55,9
*EDIT 17486 10.0 552 1.9 36594 125.6
PRIVATE 17208 9.8 249 0.9 821 2.9
*LOGIN 11703 6.7 116 0.6 6388 32.7
MLS 7280 4,1 56 0.5 287 2.4
*FINISH 7023 4,0 533 4.6 16749 143.1
1IT 5336 3.0 393 A 15 0.2
EXAMINE 5049 2,9 32 0.4 3348 39.8
‘ IIT PROG 4947 2.8 596 7.2 540 6.6
! *RUNJOB 2987 ° 1.7 7 0.1 3 0.1
| IAL 2286 1.3 181 4.7 50 1.3
\ SET 1966 1.1 2 0.1 0 0.0
TAL PROG 1960 1.1 197 6.0 57 1.8
AUTOCODE 1493 0.9 96 3.9 30 142
FORTRAN 1790 0.8 80 3.2 124 5.0
FSPACE 1449 0.8 2 0.1 1 0.0
*ETAL 1191 0.7 38 1.9 10 0.5
COPY 961 0.5 4 0.3 55 3.5
STATUS 715 0.4 0.1 0 0.0
SIGNAL 528 0.3 2 0.2 8 0.9
MESSAGE 525 0.3 1 0.1 0 0.0
HELP 519 0.3 20 2.3 0 0.0
TIME 508 0.3 0.1 0 0.0
*E3 466 0.3 16 2.1 5 0.7
STREAMS 448 0.3 0.1 0 0.1 il
TSAS 436 0.2 83 11.4 190 26.2
PDP 376 0.2 8 1.3 15 24 |
' UNLOCK 301 0.2 0.1 34 6.8
TESTSWIT 295 0,2 1 0.1 0 0.0 I
FIGARO 238 0.1 6 1.6 956 241.1 |
MACRO1 232 0.1 80 20,8 7 1.7 i
CROSSREF 204 0,1 38 11.2 2 0.6 ‘
RECOVER 114 0.1 0.1 0 0.0 I
FILEDUIP 109 0.1 32 17.6 54 29.5 I
RELATION 100 0.1 0.1 5 2.9 *

* :
Pure procedure with 64 words working space

Chapter 4
ANALYTICAL *ODELS

Computer systems have been modelled analytically in various ways,
which reflect the differences between systems and the particular
interests of the analyst. Several types of model will be developed,
the first of which is a deterministic one, Here we consider the flow of
jobs through the system at a constant rate spending a constant time in
each section of the system., In spite of these assumptions these models

have several advantagess

First the resulting equations are extremely simple, and enable
one to see clearly and explicitly the relationship between certain
quantities, This relationship is often similar to or the same as more
complicated models where the results can only be evaluated numerically.
Sometimes systems can be modelled which would otherwise prove too
difficult. Finally they provide a useful basis for comparison, for
checking results from more complicated analytical models and simulations
and seeing how much is gained or lost in practice by the variability of
- programs. They can give a good idea of the means of various
quantities, such as waiting times, queue sizes and idle time, but they
cannot tell us anything about the distributions.

(36)

Kleinrock used a deterministic model to define the concept

of saturation in a simple multi-access system, and compared the results

(49)

with a Markovian model, Penny used two such models to get upper
and lower bounds for the performance of a system with various parameter

values for interpolating between simulation results as described in

Chapter 7.

w
o

——

Figure 4.1 shows the deterministic model in diagrammatic form.

We regard the system as a set of stages of service denoted by square
boxes with the service time for each stage given inside each box. In
this model all the service times are constant. The flow of jobs through

the system is indicated by the lines, dotted lines showing where there

is a choice of route.

There is assumed to be an infinite supply of off-line phases
which have two stages of serﬁice, first by the discs and then by the
processor. Although in fact most jobs will have several phases and go
through these stages several times we are only considering the total

number of phases run and not the job they are part of.

On-line jobs also have these stages of service, with a different
processor time, but they also have a third stage, corresponding to
input-output and tﬁinking time at a console., This is necessary because
we want to consider the performance of the system with a fixed number

of on-line jobs running rather than an infinite supply as for off-line

.

jobs, A delay in one phase of a job will delay the start of the next

phase, and so on, and so the system is stable as no backlog is possible.

We assume that all the disc activity is concentrated at the
beginning of a phase to give a clearer model, though it makes no
difference even for the statistical model as will be proved later.
The figures used for the constant values are the means derived from

observation of the Cambridge system given in Table 3.3, namely:

Cl = 19.1 sec Mean comp. time for off-line phases
C2.= 1.51 sec Mean comp. time for on-line phases
H = 42.0 sec Mean thinking time for on-line phases
D = 5.6 sec Mean disc time for all phases

H is derived from the mean halt time (= exec. time - comp. tinme)

which was 44.59 sec, by subtracting the amount of disc time that is

Figure 4,1

Deterministic model of Cambridge system

|

‘\“

On- Line l
e

|

I

:
I

|

|

b e =

I
{
T

}
|

|

|

J

! .

| ‘
—>——c-=AD f---2Aco

-
]
]
]
]
L
!
I
I
(I i
! | N7 ad |
: I /)\\ //\\ ‘
V4 N 7 ~ ‘
i : S A0y - Cl “1
i |
' ! iM
] : 2 discs Processor |
I I ‘
| ! ‘\‘
! |
(i
1 | I
] 1 H
i 1 I
1 1 I
[I H e &
OFF- Line \

"N consoles

chargeable to exec. time, namely that which is not used for streams.

D is derived by noting that there are roughly 28 disc transfers for
each phase, 10 for the filing system and object programs, 10 for the
well, and 8 for other reasons, including fixed head transfers for the
supervisor which are quicker. If each of these except the latter take
0.183 seconds and there are typically 8 arm repositionings taking
0.153 secénds, the total comes to about 5.6 seconds. This figure is
unfortunately not very accurately determined, since we do not know how
many arm repositionings there actually are, or even whether the amount
of disc activity is propértional to the number of phases as has been

assumed, but it is impossible to get further details within the present

system.

This model is solved by equating the arrival and départure
rates at each stage to the throughputs (Tl for off-line jobs, T2 for
on-line jobs). If this were not true in equilibrium we would have an
indefinite build-up of jobs at one stage. We have not included the
number of off-line jobs in core explicitly since this only affects the
waiting time for off-line jobs which is not of great importance. Ve
can éompare different scheduling algorithms according to the values of
Tl and T2 they produce, whereas later models only enable us to consider

a few alternatives,

Both the discs and the processor can be in one of two states.
Either they can be saturated, that is working all the time, or
unsaturated, that is idle some of the time. The condition for
saturation of a stage is that the throughput multiplied by the

effective service time by the stage should be equal to one, if this is
y & q s

less than one it gives the utilisation of the stage. This gives us

the following two conditions:

(T2 + TL)xD/2 = DU g 1 (2 discs)
(TL xClL + T2 2 C2)/V = CU s 1

where CU is the processor utilisation, DU is the disc utilisation,
and V is the system overhead factor, that is the fraction of the
processor time spent in obeying user's programs. This is taken to be
0.833 though later measurements indicate that it has risen to nearer
0.9. This may be the result of increasing the store size or just

random variation,

In practice we can assume an infinite supply of off=-line jobs,
so if we are given T2 we can then work out Tl to be the maximum that
just saturates either the discs or the processor, that is:

V-T2 x C2

Cl)

11 = Min & - 12,

If a stage is not saturated the waiting time is equal to the
service time. Thus we have a meximum on T2 imposed by the fact that
it will teke a certain time for a job to pass through all the 3 stages
eveﬁ if there are no delays at all, that is:

N2
<
S H +D + CZ/V

T2
wvhere N2 is the number of on-line jobs running.

The effect of saturation of a stage will be to cause waiting

at that stage to make the total time required to pass round the circuit

multiplied by the throughput equal to the number of consoles, that is:

N2

T2 = ir T a

where DW is the disc waiting time for on-line jobs and CW is the

processor waiting time for on-line jobs.

Hence we can calculate the sum of the waiting times, i.e. the
response time, and the two times individually except in the case when
both stages are saturated, where the individual waiting times depend

on the initial conditions.

Finally the mean queue length for a stage is equal to the
throughput multiplied by the waiting time for it. This fact is
obvious for queues with constant arrival and service times, since the
waiting time is equal to the mean queue size multiplied by the mean
service time. In fact it is also true for all queueing systems with

(43)

exponentially distributed arrival and service times. The mean
queue size for an unsaturated stage is the same as the fraction of time
it is in use, since there will never be a queue of more than one.

If there were by the next time round the system the arrivals would

have evened themsélves out to correspond to times when the stage was

free, The queue length includes the current user of a stage.

The results of this model are given in Table 4.1 and Figure 4.2,
The throughputs (Tl and T2) are given in phases/min for convenience of
comparison, whereas in the equations they are in phases/sec. As can
be seen from the equations the waiting time is a function only of the
throughput per console (T2/N), whereas the mean number of comsoles
waiting for the disc or the processor (Q) and the fraction of processor
time used by on-line jobs (CU2) including overhead are proportional to
the throughput (T2), or to the number of consoles for a given value
of T2/N. We can take the arithmetic mean of the number of on-line

jobs rumning measured from the system and compare the results, using

linear interpolation. The values were:

60

Table 4.1

Deterministic model of Cambridge system

N T1 T2 T2/ W Q CUl Cu2 DUl DuU2
3 2,47 1,80 0,60 58.00 1,74 0.95 0.05 0.12 0.08
3 2,44 2,27 0.76 37.37 1.41 0.93 0,07 0.11 0.11
3 2,40 2.74 0.91 23,79 1,08 0.92 0.08 0.11 8
3 2,36 3.20 1.07 14,18 0.76 0.90 0.10 0.11 0.15
3 2.33 3.64 1.21 7.41 0,45 0.89 0.11 0.11 0.17
6 2,33 3.60 0,60 58,00 3.48 0.89 0.11 0.11 0.17
6 2.26 4,54 0.76 37.37 2.82 0.86 0.14 0.11 021
6 2.18 5.47 0.91 23.79 2,17 0.83 0,17 0.10 0.26
6 2,11 6.41 1.07 14,18 1.51 0.81 0.19 0.10 0.30
6 2.04 729 1.21 7.41 0.90 0.78 0.22 0.10 0.34 ‘
9 2,19 5.40 0.60 58,00 5.22 0.84 0,16 0,10 0.25 ‘lw
9 2,08 6.8 0.76 37.37 4.24 0,79 0,21 0,10 0.32 iy
9 1.97 8.21 0.91 23.79 3.25 0.75 0.25 0.09 0,38 I
9 1.86 9.61 1,07 14,18 227 0.71 0,29 0.09 0.45 |
9 1.75 10.93 1.21 7.41 1.35 0.67 0.33 0.08 0,51 |
12 2.05 7.20 0.60 58,00 6.26 0.78 0.22 0.10 0.34
12 1.90 9.07 0.76 37.37 5.65 0.73 0,27 0.09 0.42
12 1,75 10.94 0.91 23.79 4,34 0.67 0.33 0.08 0.51
12 1.60 12.82 1.07 14,18 3,03 0.61 0.33 0.07 0.50 |
12 1.46 14,57 1.21 7.41 1.80 0.56 0.44 0.07 0.68 “
15 1.91 9.00 0.60 58,00 8.70 0.73 0.27 0.09 0.42
15 1.72 11.34 0.76 37.37 7.06 0.66 0.34 0,08 0,53 ‘
15 1.54 13.68 0.91 23.79 5.42 0.59 0.41 0.07 0.64
15 1.35 16.02 1.07 14,18 3.79 0.52 0.48 0.06 0.75
15 1.18 18.21 1.21 7.41 225 0.45 0.55 0.05 &, 85
18 1.76 10.80 0.60 58,00 10.44 0.67 0.33 0.08 0,50
18 1.54 13.61 0.76 37.37 8.47 0.59 0.41 0.07 0.64
18 1,32 16.42 0.91 23.79 6.51 0.50 0.50 0.06 i I
18 1,10 19.22 1.07 14,18 4,54 0.42 0.58 0.05 0.90
18 0,00 21.43 1.19 8.40 3.00 0.00 0.65 0.00 1.00
Key
N Number of on-line jobs running I
TL Off-line throughput (phases/min)
T2 On-line throughput (phases/min)
W Mean response time for on-line jobs
Q Mean number of on-line jobs awaiting response ﬂ
CUl Processor use by off=-line jobs (including overhead) J

CU2 Processor use by on-line jobs (including overhead) \
DUl Disc use by off-line jobs
DU2 Disc use by on—line jobs 1

61

Figure 4.2

On-line waiting time against off-line throughput for deterministic model ‘

On~-line waiting time
(W sec)

Number of on-line jobs running

60 <~ ~ 18 1512 9 6 3 |

f

0 1 2

1
Off-line throughput]

(T1 phases/min)

Tl = 2.22 phases/min
T2 = 4.93 phases/min
N = 4.6l on-line jobs

from which we have T2/N = 1.07.

By interpolating in Tabie4d‘between N=3 and N =6 we get
Tl = 2.24 phases/min which is remarkably close to the actual figure.
We also get by the same method the disc usage DU = 0,33 which may
seem remarkably low until we remember that in practice the number of
on-line jobs varies a lot and we have to be able to cope with the peaks

as well., Similarly in practice the waiting time W = 14,18 sec will

vary when we take into account the statistical nature of the real system.

Considering the amount of computer time used we see by
interpolation that CUl = 0.85, CU2 = 0.15. If we exclude overhead

the fractions of processor time devoted to off-line and on-line work

1.
i1

=
g{;
)
0
ot
n
0o
]
o
o
{
<]
=4
%
,.-l
ot
o p
ot
o
o)

are 0.71 and 0.125 respectively, wvhich is i
observed values., The extent of these agreements and the one noted
above are coincidental, but they do indicate the role of this type of
model when the performance of the whole system is being considered.

However it cannot describe in detail the effect on individual jobs, the

value of W being only an approximate measure of the mean response time.

One of the recurrent questions about such systems is whether the
on-line response time or the number of on-line jobs rumning or both can
be improved without too serious a drop in the amount of off-line work,

or whether these objectives are incompatible.

This model can partially answer these questions by telling us

the theoretical optimum results and how much trade-off between objectives

is required. It does not tell us whether this can be achieved, or how

63

to achieve it, because the problems of scheduling and store
allocation can only be investigated by analysis or simulation with

more sophisticated models.,

The reason it gives a theoretical optimum is that randommess
in arrival and service times and waiting for core store will produce

delays and result in idle time which the model does not account for.

As we can see from Table 4.1 & Figure 4.2, even if on-line jobs

are given the maximum possible amount of processor time, i.e. use of the

processor whenever there are any waiting, saturation of the disc does
not occur until there are 17 on-line jobs running and thus the table

provide a valid picture over all this ranmge. When the disc becomes

_ T2 x C2

o1 T1

2 -
) T2 =V

|
|
|
\
saturated the two expressions for Tl given earlier are equal, i.e.
This happens when T2 = 21.4, Tl =1.05, The resulting discontinuity

can be seen in Figure 4.2,

If we first consider how much we can improve the response time
keeping the number of on~line jobs the same we see that we can cut W
almos£ by half, from 14,18 to 7.4i with CULl and CU2 being 0.83 and
0.17 respectively corresponding to 0.69 and 0.14 after overhead has
been deducted. It seems remarkable that such a change can be made by
reducing the time devoted to off-line jobs by only 3% 6f its value,
but this reflects the fact that in its mean state the on-line system

is nowhere near saturation.

The mean state however is not the typical state, as a glance

at Table 3.4 and Figure 3.2 giving the number of jobs running will

show, since at some times during the day there are twelve people

logged in but during the night there are very few. At peak times the
degradation required to give this increase in performance is more
severe, for example with 15 users the fraction of actual time given to
off-line users decreases from 0.43 to 0,38, over 117 of its value.
Whether off-line users are prepared to accept the resulting degradation

in their turn-round during the day is essentially a political decision,

A similar situation arises when changes to the maximum number
of consoles are considered. If the mean rose to 9, which would roughly
be the effect of increasing the maximum to 18, keeping the response
time the same, the resultant CULl and CU2 would be 0,71 and 0.29,
that is 0.59 and 0.24 after deducting overhead., With 18 comsoles
actually in operation the figures for CUl and CU2 are 0,42 and 0,58
respectively and the consoles are now consuming the lion's share of
the time in peak periods, though the change in the mean time devoted

to off-line work is only 147 of its previous value,

There is an additional danger that once the off=line response
time becomes too bad more and more peopie will do more of their work
on-line, thus causing a vicious circle, No computer can serve two

masters.,

The situation 1s also slightly altered by the fact that the
supply of off-line work is not in fact infinite but depends to a large
extent on people getting the results of their old runs back before
initiating new ones, thus an increase in‘the turn-round time will not
produce an infinite backlog but stabilise with a larger backlog, the

most important effect being a less satisfactory service.

There are two reasons for giving the on-line user priority,

first because his requests for service are usually short, and therefore

1

logged in but during the night there are very few. At peak times the
degradation requ{red to give this increase in performance is more
severe, for example with 15 users the fraction of actual time given to
off-line users decreases from 0.43 to 0,38, over 11% of its value.
Whether off-line users are prepared to accept the resulting degradation

in their turn-round during the day is essentially a political decision. i

A similar situation arises when changes to the maximum number

of consoles are considered. If the mean rose to 9, which would roughly

be the effect of increasing the maximum to 18, keeping the response |
time the same, the resultant CUl and CU2 would be 0,71 and 0.29,
that is 0,59 and 0.24 after deducting overhead. With 18 consoles ‘
actually in operation the figures for CUl and CU2 are 0.42 and 0.55
respectively and the consoles are now consuming the lion's share of
the time in peak periods, though the change in the mean time devoted

to off-line work is only 14%7 of its previous value.

There is an additional danger that once the off-line response

time becomes too bad more and more peopie will do more of their work

on-line, thus causing a vicious circle. No computer can serve two

||
masters. ‘ }‘

The situation is also slightly altered by the fact that the

supply of off-line work is not in fact infinite but depends to a large w

extent on people getting the results of their old runs back before

initiating new ones, thus an increase in the turn-round time will not i

\ produce an infinite backlog but stabilise with a larger backlog, the

There are two reasons for giving the on-line user priority, {
|

I
first because his requests for service are usually short, and therefore |
|

j most important effect being a less satisfactory service.
I

65

easy to satisfy, and second because he is sitting waiting for the
fesults, presumably idle, Because of this latter fact he implicitly
states how important a particular set of results is to him by choosing
to wait for it on-line, since he can alvays create the equivalent of

an off-line job from a console to run in its own time, provided it does
not use paper tape input., If the response time worsens he does more bf
his work in this way and thus the situation improves again. It is not
easy to compare the needs of on-line and off-line users directly, but

at least using analysis we know the alternatives open to us .

Another interesting solution to this problem, though rather
improbable in practice, is the installation of a second processor. We
have seen that it is nearly always the processor that is saturated
rather than the disc, and that the system is theoretically capable of
providing a much better service to on~line users, but at the expense of
off-line users., Since the main resource that these use is processor time,

a second processor seems the natural solution.

Table 4.2 gives the results of this model with two processors,

each with the same power as the current one. These show that in fact the
main beneficiaries are off-line jobs, and if we compare it with Table 4.1
we see that the throughput of these is relatively so much higher that we
can afford to give maximum priority for on-line jobs, except when there
are over 17 of these running, when again we run into trouble with the
discs. Even with 15 on-line jobs rumning, if we give them maximum
priority the disc is fully used and the processor is only used 897

of the time including overhead. This assumes the same overhead, which

is reasonable since the extra administrative needs would be balanced

by the fact that only one processor need handle interrupts and the

WWwwww

VO Oy OV O

cu2
DUl
Du2

Table 4.2

Deterministic model of two processor system

5.40
6.80
8,21
9.61
10,93

7.20
9.07

10.94

12.82
14,57

9,00
11.34
13.68
16,02
18.21

10.80
13.61
16.42
158,22
21.43

T2/N

W

58,00
37.37
23.79
14.18

7.41

58.00
37.37
23.79
14,18

7441

58.00
37.37
23.79
14,18

7441

58.00
37.37
23.79
14.18

7.41

58.00
3737
23.79
14.18

7.41

58.00
37.37
23.79
14.18

8440

lNumber of on-line jobs running

Off-line throughput (phases/min)

On-line throughput (phases/min)

Mean response time for on-line jobs

(@)
-
~J

cfofclole

® [] ®
e
IO WO~ A

PO 1=
00 B = sy

oNeoNeoNeoNe]
e e o)
W NN N B9

o NeNeNeNe]
°
N W L= Oy

Mean number of on-line jobs awaiting response

Processor use by off-lire jobs (including overhead)
Processor use by on-line jobs (including overhead)
Disc use by off-line jobs

Disc use by on-line jobs.

oNoNeNoNe]

» o o
[T N I AR S R £V]
O =M

[eNeNeNe N
L]
=N R NI

OO O

0.08
0.11
0.13
0.15

(o]
®

=
~l

OO0 000
e e o o
W oo

OO OO0
» e o @ °

L B W W
= U1 O3 o U

OO0 00O
L]

oy Oy Ut s W

O QO M N B

O oY N

66

number of phases would be less than doubled because of the higher
proportion of off-line work with a longer time per phase. 128K of core
store would probably suffice for both processors, since one would be
running mainly off-line jobs without much time sharing. This would
represent a system where the diéc and the processors were more evenly
balanced for the given policy on the ratio of off-line to on-line work,

More off-line work would soon appear to fill the extra capacity.

The next type of model uses the theory of larkov processes and
again considers the system as a whole with jobs flowing through it,
though at a variable rate and spending variable lengths of time in the
different stages of the system. The system is considered as having a
number of distinct states and is able to make transitions between the
various states with the passage of time. To each transition from one
state to another and from a state to itself is assigned a transition

probability, which can be calculated from a knowledge of the system.

The system is called a larkov process if these transition
probabilities depend only on the current state of the system and not
on its past history. As mentioned earlier the exponential distribution
possesses this memoryless property and most models assume this., Other
distributions can be derived from the exponential by introducing
notional ext-a stages of service, in series, parallel or a series-
parallel combination, with different means., The use of the hyper-
exponential distribution for comp. times has been mentioned already.
Though these can represent a better approximation to the real
distribution, and the methods of solving them are similar, they

complicate the analysis and require more computer time for solution,

or only permit numerical solution.

67

|
|
|
The result is a series of linear equations in the probabilities,
which in certain cases can be solved analytically if there is sufficient
symmetry. DBecause there may be a number of equations numerical solution
of the other cases is difficult and requires recursion. However once

| \
numerical methods are necessary simulation with a more accurate model

becomes attractive and numerical solution was not used in this work.

These have been studied by statisticians such as Jackson(Bo) and W

(38)

Koenisberg in the last few years but there have only been two

previous applications to computer systems. The simplest case is |
analogous to a machine minding problem with the consoles representing
machines, the requests for processor time representing breakdowns, and ‘
the processor representing the engineer. The solution of this has been ‘
(54,55)

known for some time and this model was used by Scherr at MIT

to model CTSS and is derived in detail later. It has been developed

further by Kleinrock$35’36)

(58)

The other application was the numerical solution by J.L. Smith

of a system containing about 5000states, using a recursive method I

developed by Wallace and Rosenberg, This method has also been used by
(59)

J.M. Smith, None of this work has distinguished between off-line

and on-line jobs or dealt with requests for specific processing units.

All the service times used in the models are assumed to be
exponentially distributed because of the convenient memoryless property
this gives. If a random variable vy with mean m is expomnentially

distributed its probability density function is given by:

J—x/m

PR(x gy € x+Ax) = <= —— Ax ‘

f Consider the distribution of the remainders of those y that are

69

greater than z. The probability of a random ¥y being greater

than z 1is:

PR (y > 2) =

© ~x/m |
J e . dX‘ = @ z/m ‘
z

Hence the conditional distribution of (y - z) granted that it is

positive or zero is given by: |
oTX/m |
PR(x-z € y=z § x#dx~z) =
(y x~27) —7= Ax |
me }
|

where 0 ¢ x-z <« , If we change the variable to x' =x - z

this reduces once more to the exponential distribution. Thus however

long a job has been in any stage its mean rate of leaving that stage
is still 1/M where M 1is the mean effective service time for that

stage. We shall consider first the simplest model, partly for

illustration and partly because it is the only ome that has previously

been used for analytic solution when applied to computer systems.
This is shown in Figure 4.3 and consists of N consoles with
exponentially distributed thinking time H using one processor with 1
1 | mean computation time C. The notation is the same as before except ‘
that stages with exponentially distributed service times are |

represented by a circle with the mean time inside.

Because this is a closed system with a fixed number of
jobs and Because the memoryless property means that the amount of
service they have had so far is irrelevant we concentrate our attention
on the finite number of possible states éf the system instead of on
the individual jobs. The state (i,j) of the system can be described

by the number -of consoles thinking i and the number of jobs

computing j. Since i + j =N we only need one of these in principle,

70
Figure 4.3
Simplest Markov model of multi-access system
’h
|
/ j\
™ J

oc

- D o cows wew n tews Sme ceas ol -.‘——*-D_-J———J

I

\%

©

Processor f

= e e e e e om e =

-0

N consoles ,
‘ |

but the equations for the more general cases are more symmetrical
and easier to follow if both are used. To each state we ascribe
a probability Pij of the system being in that state. We then

consider the transition rates between various states.

We must also introduce the Heaviside unit function, to give it
one of its names:
u@d) =1 if i > 0
0 if i = 0
The mean rate of exit from the state where a job is thinking to the
state where it is computing is 1/H and since there are 1 such jobs
which all think in parallel the rate of transition from state (i,])
to state >(i-1,j+1) is i/H. Je assume that no two jobs stop

' includes the

thinking exactly simultaneously and that "thinking'
processes of console input and output, the validity of the latter
assumption has already been discussed. Similarly the rate of

transition from state (i,j) to state (i+l1,j-1) 1is U(j)/C, since

only one job can be computing at a time.

It does not in fact matter what the scheduling algorithm is,
since this will merely reorder the service completions rather than
change the rate of completion. Although it affects the distribution
of waiting time conditional on processor time it does not affect its

mean,
In equilibrium, which must be reached since this is a closed

aperiodic system, the rate of transfer out of state (i,j) must be

equal to the rate of transfer into it from other states for all

possible (i,j). lence we have:

i, U() _ o (i+1) 1
G+ Py = TE Fie,j-1 T Tie, 41
Rate of leaving (i,j) Rate of entering (i,j)

These N + 1 equations in N + 1 unknowns are homogeneous with
zero determinant, since each term occurs both on a right-hand and left-
hand side, and are soluble in several ways. One way is to note that the
output of a queue with exponential input is also exponential, and apply
the normal queueing theory solutions to each queue. Alternatively
one can assume that the solution is of the form Pij = Q(i) x R(j) and

get the solutions by inspection or from the recurrence relations:

. i
: HQ(1i-1 H
Q(l)»-——_—g(.;f—“)-:_i%
and R(j) = CR(j-1) = cJ
I
s 2 FHC
ivin =
glving Byy .7 TAT

where F 1is a normalizing constant. This can be found from the fact

that

Hence we have

Ti j e q N .k Iq_k 1
P.. @ xch)y/Ex § @ xc /k))
3 k=0

Given the Pij we can easily work out everything else such as the

) N
mean processor queue size Q = z k P\I_k 1 the processor utilisation
k=0 "
CU =1~ P, and the mean waiting time W =%§% . This value for W
?

comes from the mean queue size conditional on the stage being busy
multiplied by the mean service time and will be used in the later queues

we consider. The throughput can be expressed as T = N/ (W+H) or

alternatively as T = Q/W and hence we can get explicit relations

72

7 o 73

Q.

w -

|

for Q and W 1in terms of CU namely ‘
N - (H=xctU)/C ‘ \\

w

N x ¢/CU - H “

appropriate to a system with a heavy off-line load and a disc, and

can be found elsewhere.(36’54)

Results from this model will not be given since they are not
The first extension we shall consider is the inclusion of the H
discs., This is complicated by the fact that there are effectively 1
two of them. If we consider the model in Figure 4.4 with only on-lire
jobs again for simplicity and i, j and k jobs thinking, waiting for
the discs, and waiting for the processor respectively, and M discs

the rate of exit from state (i,j,k) to state (i,j-1,k+l) is

ﬂ' j }I . * : o e *
?‘}%§lL‘l , the numerator giving the number of disc units 1in use.
\

Ve thus get the following set of equations:

i MINGLM) | UCK) i+l
G+t ¢ P g " Pie1,5-1,k “
MIN(j+1.M) 1 |
* 5 Ti,341,k-1 T T Fi-1,3,k+1

where terms with any suffix negative are ignored. To simplify
subsequent equations we use the notation

i .
P = Py 51,k

etc.
- The upper subscript is increased by one and the lower is decreased

by one, all others remaining the same., Hence the equation just given

could be written:

i MIN(3,M) | U(k) i+l i, MINQHL,M) o L 1ok i‘
G+—p *t7¢ Wik H 5t R] I

Proceeding to solve these in the same way we get

Figure 4.4

Markov model with several discs

Processor

M discs

N consoles

H DJCkF

.. = I <
Ple- iij4 jsH
nipdckr ,
Pi'k- = '-—-—"(—:-}3']2 M
J it
Y e, =1
i+j+k=n 13k

the factor F being derived from the last equation in the same way.

This can obviously be extended to deal with multiple processors.

A closer approximation to the truth is to aésume that disc
activity is spread out into several bursts during the phase and see
what difference that mékés. In the model in Figure 4,5 we assume
that each phase starts and ends with a disc access and also has disc
accesses in the middle of it. After each disc access the probability
of returning for more computation is ¢ and the probability of
finishing is p where p + q = 1. The mean number of disc accesses

is q/p.

L4]

per phase is 1/p and the mean numoer of processor bursts
Thus we have for the new disc time per burst D' = p x D and the new
processor time per burst C' = p x C/q. Typical values of p and g
would be p = 0.125, q = 0.875 corresponding to 8 disc bursts and

7 processor bursts per phase. It must be remembered that this includes
program loading, backing store transfers; stream handling, filing and

supervisor activities, The new equations are:

(_]'_._ IIIN(JSZ) U(k)) - _J._-_F_]._P ‘II\(1+1)
H D' ;

MIN(j+1,2) o] 1 _k
+ q oL ’ Pi + ET-Pj

These give by inspection:

=—l?—~—(D‘)<C)F' 552

ijk

(pL; h) (D) .
Pijk iv pi- ~rop(ac’) izz2

75

Markov model with bursts of processing and disc activity

Figure 4,5

Q)
&

. —-_‘-—T—J“—-J

N consoles

Y

N\
2 Discs
\ / AN Ve
\ 7/ \N 7
VAN £~
VAN // \
By~
/\ \/
@
Processor

77

If we substitute in the values of D' =pxD and C' =p x C/q
we find that the equations are the same as the original ones provided
that p(i+j+k) x F' =F. But i+ j+k=N aiways and since F and F'
are just normalising factors it is the ratios between the Pijk that
matter. Hence the assumption that all the disc activity is concentrated

at the beginning of each phase makes no difference, and will be used in
future ,

The next probleﬁ is how to include the off-line work and
apportion the processor and disc time between the two., Here the
equations resist solution for the general case. However one of the most
natural algoritims, namely if there are k jobs of one type and m jobs
of another type waiting for service at a given stage, then the first
type get a fraction k/(k+m) and the second type a fraction m/(k+m)
of the server's time, is soluble. We can apply this algorithm both to

the disc and the processor.

In order to.apply this algorithm we must assume a fixed total
(N1) of off-line jqbs with 2 waiting for the disc and m waiting
for the processor, and & + m = Nl. This corresponds reasonably well
to reality where the number is effectively limited by the size of the
core store and the scheduling policy of the supervisor. For a first
come first served queue such as for the disec, or a round robin system,
which is almost the case for the processor, this algorithm for time
apportioning is the obvious one to use. This gives the following

equations:

(i MIN(j+1,2) k . m__yp _ i+l P%Jr (j+1)1“Ii.[N(j+5L+1,2) ?]
H D (k+m)C (k+m)C ijkm H] (3+2+1)D 4
+ (k+1) Pk+(2+1)DHN(j+R+1,2) . m+1 o

() 1 G+a+1)D “n T (oGl L

78

The solution of these is

i J+L |
B D k. m (k+m) ! .

= - PE— C Setan/e
Pijkﬂ,m- le. J!Z! 27C1 Kim! F j¥e s 2 |

i _j*e,. vk) ,
P * oy et (e gy
1J m o jlz!zj .m‘ ““
|

where N1 and N2 are the total numbers of off-line and on-line jobs
respectively and Cl and C2 are their mean processor times, F 1is
|

found from the normalising condition in the usual way.

) ¥ P.. =
j4¢k = N2 pm =1 AR

In such models the actual values of the probabilities are not :

usually of interest, and would occupy too much paper in any case, f

since the number of possible states is in the thousands for large i”

"Nl and N2. Instead we are interested primarily in the derived ;\
quantities like queue sizes and waiting time and item usage and i

throughput, the method of calculating which was described earlier I

for the simple case. .In this case the situation is much the same

only the sum must be taken over a larger range of possibilities.,

The results for this model are given in Table 4.3 and Il

Figure 4.6 for the one processor case and Table 4.4 or the two “M

processor case, both processors being of the same speed as the current ‘

'one, as before. The first thing to notice about these results is the
remarkable measure of agreement with the non-statistical model. w

Although the latter did not include the nuﬁber of off-iine jobs we can I

compare results with equal values of the throughputs. One might have il

thought that the statistical variation of times wouid have changed

the performance characteristics of the system, but this appears not

to be so0.

Figure 4.6

Mean on-line waiting time against off-line throughput for iarkov model

Mean on=line
waltingz time

(W sec)
Number of
40 off-line jobs
9
6
%’

b

J
0

T i
0 1 ‘ 2

Off-line throughput

(T1 phases/min)

T

Table 4.3 1
Markov model of Cambridge system |
N2 N1 T1 T2 T2/N2 W Q cul Cu2 DUl DU2 |
3 0 0.00 3.63 1.21 7.59 0.46 0,00 0,11 0,00 0.17
3 3 2.35 3.27 1.09 13.13 0.71 0,90 0,10 0,11 0.15 w
-3 6 2,38 2,96 0.99 18.84 0.93 0,91 0,09 0,11 0.l4
3 9 2,40 2,71 0,90 24,51 1.11 0.,92 0,08 0,11 0.13
3 12 2.42 2,50 0.83 30,14 1.25 0.92 0,08 0.11 0.12
6 o0 0,00 7.8 1,20 8,16 0.98 0,00 0.22 0,00 0.33 ”
6 3 2.11 6.38 1,06 14,39 1,53 0.,80 0,19 0.10 0.30
6 6 2.16 5.76 0.96 20,50 1.97 0,83 0,17 0,10 0.27 |
6 9 2.20 5.26 0.88 26.49 2.32 0.84 0,16 0,10 0.25
6 12 2.23 4,84 0,81 32,39 2.61 0,85 0,15 0,10 0.23
9 0 0,00 10,56 1.17 9,15 1.61 0,00 0.32 0.00 0.49
9 3 1.87 9,30 1.03 16,06 2.49 0,72 0.28 0.09 0.43
9 6 1.96 8,37 0,93 22.54 3.14 0,75 0,25 0,09 0.39 I
9 9 2,01 7.63 0.85 28,82 3.66 0,77 0.23 0.09 0.36
9 12 2,06 7.02 0,78 34,95 4,09 0,79 0.21 0.10 0.33 k
(|
12 0 0.00 13.66 1.14 10.70 2.44 0.00 0,41 0,00 0.64 {
12 3 1.66 11,95 1.00 18.23 3.63 0,64 0,36 0.08 Q.56 h
12 6 l7. 1075 0,90 25,00 4,48 0.68 0.32 0.08 0.50
12 9 - 1,84 9,80 0.82 31.50 5.,14 0,70 0,30 0.09 0.46 ;
12 12 1.90 9.02 0.75 37.82 5.69 0.73 0.27 0.05 0.42
15 0 0.00 16.36 1.09 13.02 3.55 0,00 0,49 0.00 0.76 |
15 3 1.48 14,28 0,95 21,00 5,00 0,56 0,43 0,07 0.67 3
15 6 1.60 12,87 0.86 27.92 5.99 0,61 0,39 0.07 0.60 1
15 9 1.69 11,75 0,78 34,57 6.77 0.64 0,36 0,08 0.55 \
15 12 1.76 10.84 0.72 41.02 7.41 0,67 0,33 0.03 0.51
13 -0 0.00 18.49 1.03 16.40 5.05 0.00 0,56 0.00 (.86
18 3 1.32 16.23 0.90 24,52 6.64 0,50 0.49 0.06 0.76 ‘
18 6 1.45 14,72 0,82 31,37 7.70 0.56 0.44 0,07 0.69 |
18 9 1.55 13.49 0.75 38,04 8.55 0,59 0.,41 0.07 G.63 |
18 12 1.63 12,48 0,69 44,54 9.26 0.62 0,38 0.08 0.38 I
N1 Number of off=line jobs running ‘
N2 Number of on-line jobs running |
Tl Off-line throughput (phases/min) |
T2 On-line throughput (phases/min) I
| W Mean response time for on-line jobs
Q Mean number of on-line jobs awaiting response J
CU1l Processor use by off-line jobs (including overhead)
CU2 Processor use by on-line jobs (including overhead) I
DUl Disc use by off-line jobs '
DU2 Disc use by on-line jobs |

Table 4.4 |

Markov model of two processor system

N2 N1 T1 T2 T2/N2 L Q cul Ccu2 DUl DU2 |
3 0 0.00 3.64 1.21 7.45 0.45 0,00 0,05 0,00 0.17 |
3 3 4,71 3.50 1.17 9.49 0,55 0,90 0.05 0.22 0.1l6
3 6 4,97 3.31 1,10 12.35 0,68 0,95 0,05 0.23 0.15
3 9 4,98 3.15 1.05 15.13 0,79 0,95 0.05 0.23 0.15
3 12 5,00 3,00 1,00 17,91 0,90 0,95 0,05 0.23 0.1l4
6 0 0.0 7,23 1.21 7.79 0.9 0,00 0,11 0.00 0.34
6 3 4.42 6.87 1.14 10.43 1,19 0,85 0.10 0.21 0,32 |
6 6 4,71 6.50 - 1,08 13,42 1,45 0,90 0.10 0.22 0,30 |
6 9 4,74 6.18 1,03 16.27 1,68 0,91 0.09 0.22 0.29 f
6 12 4.77 5.89 0,98 19,11 1,88 0,91 0.09 0.22 0,27 I
9 o 0,00 10,69 1.19 8.52 1,52 0,00 0,16 0.0C 0.50 N
9 3 4,13 10,03 1.11 11.86 1,98 0.79 0.15 0.19 0.47 i
9 6 4.47 9,48 1,05 14.97 2,37 0,85 0.14 0.21 0.44 |
9 9 4.52 9.02 1.00 17.35 2.68 0.86 0,14 0,21 0,42 1
9 12 4,55 8.61 0.96 20.70 2,97 0.87 0.13 0.21 0.40 UW

i

12 0 0.00 13.90 1.16 9.80 2.27 0.00 0.21 0,00 0.65 ‘

12 3 3.83 12.85 1,07 14.01 3,00 0,73 0.19 0.18 0.60 I

12 6 4,25 12,16 1,01 17,23 3.42 0.81 0.18 0.20 0.57 ‘m

12 9 4,31 11.61 0.97 20,03 3,87 0,82 0.18 0.20 0,54 I

12 12 4.36 1l.11 0.93 22.82 4,22 0,83 0.17 0.20 0.52 i

|

15 o0 0.00 16,71 1,11 11.87 3.31 0,00 0.25 0,00 0.78

15 3 3,53 15.20 1.01 17.21 4,36 0,68 0.23 0.16 0.71

15 6 4.05 14,39 0,96 20,52 4,92 0.77 0.22 0.19 0,67

15 9 4,14 13.82 0,92 23.13 5,33 0.79 0.21 0.19 0.64 |

15 12 4,18 13.29 0.89 25,71 5,70 0,80 0.20 0.20 0.62 ‘”

18 o 0.00 18.90 1,05 15,13 4,77 0,00 0.29 0.00 0.88 ‘M

18 3 3.23 16,93 0.94 21.80 6.15 0.62 0.26 0.15 0.79 i

18 6 3.89 16,05 0.89 25.27 6.76 0,74 0.24 0.18 0.75 il

18 9 4,00 15.54 0.86 27,51 7,12 0,76 0.23 0,19 0.73 V

18 12 0.70 i

4,04 15,06 0.84 29,71 7.46 0.77 0.23 0.19

N1 Number of off-line jobs running M
N2 Number of on-line jobs rumning : _

T1 Off-line throughput (phases/min) H
T2 On-line throughput (phases/min) |
W ean response time for on-line jobs \
Q Mean number of on-line jobs awaiting response
CUl Processor use by off=line jobs (including overhead) \
CU2 Processor use by on-line jobs (including overhead) il
DUl Disc use by off-line jobs ‘
DU2 Disc use by on-line jobs

82

The values for Nl = 0 give some idea of the extent that the
response time and on-line throughputare degraded by clashes of
requests, for small N2 we approach the theoretical optimum, but by
the time we get 18 consoles the response time has doubled, the
bottleneck here being the disc which is in use 867 of the time.
Once the off-line work is included the waiting time is much the same

for a given throughput per console, this is because the scheduling

algorithm gives priority for on-line jobs when there are a lot waiting.

It can be seen that 3 off-line jobs are sufficient to keep one
processor busy over 997 of the time, however many on-line jobs there
are, The only reason one might want more is to give a better turn-
round for short jobs wvhile long jobs are running, or to encourage
console users to do some of their work by creating off-line jobs, or
because the scheduling algorithm requires more off-line jobs in order
to give them more time. The disadvantage of having several off-line
jobs going is the amount of core store they use, and effectively deny
to on-line jobs. The present scheduling algorithm could easily be
“altered, for example by halving the amount of comp. time used in each
second by off-line jobs before making the comparison to see which one
should be demoted. In that way three off-line jobs could use as much
time as six wculd have done, with a possible improvement in on-line
response time in the worst cases because waiting for core store is

reduced.

If another processor were added then more off-line jobs would
be needed to keep the processor as busy and absorb the extra time,

thus this change would probably not be desirable without adding a drum

for swapning or more core store, A compromise solution to this problem
(&} &

83

which has been used elsevhere and has proved quite satisfactory is to
have a small computer to deal with the more basic needs of the on-line
jobs, such as input, editing and filing, and only use the main

rpocessor for program runs. From the tables given earlier it can be

seen that these operations represent almost half the total amount of

computer time used by on-line jobs, and thus this would give a

substantial improvement, the limiting factor then being the discs.

As mentioned earlier the disc units can be considered as being
between the two extremes of either haviag a request met by any unit
that is free or having each request for a specific unit. The former
case which is the easiest has already been dealt with and the latter
will now be considered. We solve this problem by introducing new
variables to describe the state, and instead of considering the total
number of off-line and on-line jobs waiting for the disc, & and j
respectively in the previous notation, we consider the number waiting
for disc unit one (Ql and jl) and the number waiting the disc unit
two (22 and j2) separately. Using the previous notation for the

other variables the equations become:

& . U(3p*8q) N UGG,+2,) k__,__m
H D D (E%m)Cz (k+m)C1 1,jrjzk,£l,22,m
il b iy, 3L vl S, 2t L 22, k41 .
= - 3 . 2. *—T“——) rrp———— |, Ay L
H 1 4o (J1 zl+l)D k (32+22+1)D k Cz(_‘+m+l) i
2. + 1 2 o + 1 2 m n
* G iz T © " G 32, +1)D sz +(k+m+;,-)é (2(2y_+Py)
1™ o U™y itk | L2
The solution 1s 5454
i i a , 1T, k. m
.) H (Jl+£1). (32+g2). D .(k+m). C2 C1
13132k2122m-. . Jl+32+21+22 .
1o 2 <

: ., 0 o+ 1, 0
31.21. 32.22. 2 ke m.

The results are given in Table 4.5. As might be expected they
show a degradation in performance, which is small at first but
increases as the number of consoles increases, However it is

sufficiently small in magnitude to be ignored when doing simulatioms.

The main interest in this model lies not so much in the results
but in the method of extension of the previous model and the method
used for numerical computation of the answers. This type of extension
can be applied also to the case where there are two types of processor,
one used for input—outpuf,filing and editing and one for serious
calculation. There is no need for either the two service times or

the probabilities of a request being for a given unit to be the same.

When the number of states is over 10,000 as in this model,
straightforwvard techniques of computing each term as required and
adding the sum together are very time consuming. The basic method is
to store as much as possible in arrays. The factorials and the powers
are obvious candidatés for this since they can be generated
conveniently from the previous one and expressions like Hi/i! can
be computed all at once. Since we are not interested in the
distribution between the two discs except as far as disc usage is
concerned we can calculate a function:

SREBHERTRE

PG, =])

LR | | E 1
IR I R Jpshyedpetye

1 -2
Taking advantage of the symmetry bétween j and & to halve
the work and calculating the corresponding on-line and off-line disc
usage simultaneously with TF(j,?) we can reduce tﬁe work so much that

it only takes 20 seconds including compilation for the results in

Table 4.5,

84

N2

W wwLww

SNy O

CUl
Ccu2
DUl
bu2

Table 4,5

Markov model of Cambridge system with requests

for specific discs

N1 T1 T2 T2/N2 W Q Ccul Cu2
0 0,00 3.58 1,19 8.21 0.49 0,00 0,11
3 2,35 3.20 1.07 14,26 0,76 0,90 0.10
6 2,39 2.91 0.97 19.93 0,97 0,91 0,09
9 2.41 2,66 0.89 25.55 1.13 0.%2 0.08

12 2,42 2.46 0,82 31,15 1.28 0,93 0.07
0 0.00 6.96 1.,16 9,72 1,13 0,00 0,21
3 2.11 6,18 1.03 16,28 1.68 0,81 0,19
6 2,17 5.60 0.93 22,26 2,08 0,83 0.17
9 2.21 5.13 0.86 23,14 2,41 0,84 0.16

12 2.24 4,74 0.79 33.95 2,68 0,86 0.1l4
0 0.00 10.06 1.12 11.70 1,96 0,00 0,30
3 1.90 8.89 0.99 18,76 2.78 0.72 0.27
6 1.98 8.06 0,90 24,98 3.36 0,76 0,24
9 2,03 7.39 0.82 31,06 3.83 0.78 0,22

12 2.08 6.83 0.76 37.04 4,22 0,79 0,21
0 0.00 12.78 1.07 14,33 3.05 0,00 0.39
3 1.70 11.29 0.94 21.78 4,10 0,65 0.34
6 1.81 10.26 0.86 28.15 4,82 0,69 0.31
9 1.87 9.43 0.79 34.36 5,40 0,72 0.28

12 1.23 8.73 0.73 40.45 5.89 0,74 0.26
0 0.00 15.06 1.00 17.77 4.46 0,00 0,45
3 1.54 13.34 0,89 25.46 5,66 0,59 0,40
6 1.65 12.19 0.81 31.82 6.47 0,63 0,37
9 1.73 11.24 0.75 38.05 7.13 0,66 0,34

12 1.79 10.44 0,70 44,19 7.69 0,68 0,32
0 0.00 16.83 0.93 22,18 6.22 0,00 0.51
3 1.40 15,03 0.33 29,87 7.48 0,53 0.45
6 1.52 13.84 0.77 36.03 8.31 0.58 0.42
9 1.60 12.83 0.71 42,17 9.02 0.61 0.3°

12 1.67 11.96 0.66 48.28 9.63 0,64 0.36

Number of off-line jobs running

Nurber of on-line jobs running

0ff-line throughput (phases/min)

On-line throughput (phases/min)

ilean response time for on-linz jobs

Mean number of on~-line jobs awaiting response
Processor use by off-line jobs (including overhead)
Processor use by on=line jobs (including overhead)
Disc use by off-line jobs

Disc use by on-line jobs

[eNeoNeNeNe]
Q0O OO0

o

O
o O
~ O

0.07
0.07
0.08

® e e ©
[V, IO IS W]
DO NN O

[eNeoNeoNoNe

e
o]

Table 4.5
Markov model of Cambridse system with requests
for specific discs
N2 N1 T1 T2 T2/N2 W Q Cul Ccu2 DUL DU2
3 0 0.00 3.58 1.19 8.21 0.49 0,00 0.11 0,00 0.17
3 3 2435 3.20 1.07 14,26 0,76 0,90 0,10 0.11 0,15
3 6 2,39 2.91 0,97 19,93 0,97 0.91 0,09 0.11 0.1l4
3 9 2.41 2.66 0.89 25.55 1.13 0.92 0.08 0.11 0.12
3 12 2.42 2.46 0,82 31,15 1,28 0,93 0,07 O.ll «11
6 0 0.00 6.96 1.16 9,72 1,13 0,00 0,21 0,00 0.32
6 3 2.11 6.,18 1.03 16,28 1,68 0,81 0.,19 0.10 0.29
6 6 2,17 5,60 0.93 22,26 2,08 0,83 0.17 0.10 0.26
6 9 2,21 5.13 0.86 28,14 2,41 0.84 0,16 0,10 0.24
6 12 2,24 4,74 0,79 33.95 2.68 0,86 0,14 0,10 0.22
1
‘ 9 o 0.00 10.06 1,12 11.70 1,96 0,00 0,30 0.00 0,47
9 3 1.90 8.89 0.99 18,76 2,78 0,72 0.27 0,09 0.41
9 6 1,98 8.06 0,90 24,98 3.36 0,76 0,24 0,09 0.33
9 9 2,03 7.39 0.82 31,06 3,83 0.78 0,22 0,09 0.34
9 12 2.08 6.83 0.76 37.04 4,22 0,79 0.21 0.10 0,32
12 0 0.00 12.78 1.07 14,33 3,05 0,00 0,39 0,00 0.60
12 3 1.70 11.29 0.94 21.78 4,10 0.65 0.34 0.08 0.53
12 6 1.81 10.26 0.86 28,15 4,82 0,69 0.31 0,08 0.48
12 9 1.87 9.43 0.79 34.36 5,40 0,72 0,28 0,09 0.44
12 12 1.93 8.73 0.73 40.45 5.89 0.74 0,26 0,09 0.41
15 0 0.00 15.06 1.00 17,77 4.46 0,00 0.45 0,00 0.70 l‘
15 3 1.54 13.34 0,39 25.46 5,66 0.59 0.40 0.07 0.62
15 6 1.65 12.19 0.81 31.82 6.47 0,63 0.37 0.08 0.57 I
i5 9 1.73 11.24 0.75 38,05 7.13 0.66 0,34 0.08 0.52
15 12 1.79 10.44 0.70 44,19 7.69 0,68 0.32 0,08 0.4%
18 -0 0.00 16.83 0.93 22,18 6.22 0,00 0.51 0,00 0,79
8 3 1.40 15,03 0.83 29,87 7.48 0.53 0.45 0.07 0.70 1
18 6 1.52 13.84 0.77 36.03 8.31 0.58 0.42 0,07 0.65
18 9 1.60 12.83 0.71 42,17 9,02 0.61 0.39 0,07 0,60
18 12 1.67 11.96 0.66 48,28 9.63 0.64 0,36 0.08 0.36
N1 Number of off-line jobs running
N2 Nurcber of on-line jcbs running I
Tl Off-line throughput (phases/min)
T2 On-line throughput (phases/min)
W llean response time for on-line jobs
Q Mean number of on-~line jobs awaiting response
CUlL Processor use by off-line jobs (including overhead)
CU2 Processor use by on-line jobs (including overhead)
DUl Disc use by off-line jobs
DU2 Disc use by on-line jobs

A deficiency of these types of models is that one can only get
the mean of the waiting time rather than the distribution, except for
simple scheduling algorithms, and no account is taken of the delays
waiting for store. When a good paging system is used or the store is
big enough for the central processor never to be idle waiting for it
this is a satisfactory assumption, as the main difference it makes is
to the distribution of waiting times,for example by several jobs being
held up by a large oné.. The mean waiting time is not affected. To
study the distribution we have to use another type of model or
simulation,

The next type of model concentrates on individual jobs
arriving at the various stages of service and follows them through
according to the scheduling algorithm. Examples of this are

€)) (10) (15) (19

Coffman' ’, Coffman and Kleinrock , Fife and Gaver . Fife's
work is particularly interesting since he considers a three queue
system and evaluates systematically all the scheduling policies to see
which is best according to certain criteria. Although this is only
possible for a limited range of scheduling policies it nevertheless
repreéents the only attempt to derive them systematically. Such a

study would take much too long using simulation.

For more complicated scheduling systems such as are used in the
Cambridge system this sort of analysis becomes impossible, and no new
work was donme in this field., However, another analytical model was
developed to give some insight into the problems of swapping. This is

(65)

based on the concept of a pipeline, suggested by Wilkes' 7, through

which jobs pass on the way to a swapping region where they are swapped

in and out of core. When in the pipeline the jobs remain in core, and

86 i

r o |
| BN

in the original model they were in the pipeline for a fixed real time,

In this model however they remain in the pipeline (i.e. in core) until <
they have had a certain quantum of processor time. The object in both
models is tﬁe same, to avoid swapping out jobs that have just arrived, 1
[This variation ensures that short running jobs will not get swapped out ‘
just because there is a long queue and they are held up. To simplify |

the analysis we assume an infinite supply of jobs for the pipeline, as N

we are concentrating primarily on what happens in the swapping region. @
‘ |

in order to develop equations for this mode we need some |

notation as follows:
C mean processor time (exponentially distributed) |

T quantum of processor time given to each job before being |
transferred to swapping region H
I

P proportion of processor time given to jobs in pipeline M

F proportion of jobs with processor time T “

aL

S proportion of processor time given to jobs in swapping region }
wvhen there are any

R, probability of no jobs in swapping region

R, 'probability of 1 job in swapping region ‘
|
. \

®

Q mean number of jobs in swapping region H

W mean waiting time in swapping region |

2 g m oza I xle x ® -x/c T

Mean processor time in pipeline = [e 'Y = dx + e — dx Il
) C C i

0 T @

-1/C ~T/C -T/C = ‘M

= C - Ce e . Te T/ + Te T/ = C(l-e T/C) |

b b b : b
- C - s - c -

(since f %-e'x/ o= [—xe X/”] - J -e x/0 dx = {-(C+x)e A/bJ) |
a a a . a ;‘\
P

Rate of exit from pipeline = — 5 3

A fraction F of jobs leaving the pipeline will be doing so because

their guantum has expired and will enter the swapping region
q P pping 2

F = J -l-e-xlC dx = e-T/C

This relationship will be used as a shorthand hereafter.

Rate of entry to swapping region = Rate of exit from pipeline
PF

owing to quantum expiring = o=
y . ‘ ; ; S
Rate of exit from swapping region when jobs present there = el

(since mean residual length is C from properties of exponential
distribution).
Now P depends on whether there are jobs in the swapping region or not
P = 1~-5 if there are
P = i if not
Hence for the swapping region we have a queue dependent arrival rate.
Let T, be the probability that there are 1 jobs in the queue
a; be the arrival rate when there are i jobs in the queue
s; be the service rate when there are i jobs in the queue

Then from queueing theory

a a seo Ja 11'0

o 1 1=
o s.s s
172 °°*° 74
1
r =
o a a dy
1+~‘9+ O 9 0
®1 %1%

For stability the denominator of r must be finite

s. = s . £
l 2 LR C
3 = —t e B = 2. = (1-5)3
o c(i-r) "1 — T2 7 o
Let Y = i+l for i>1

88 I

For convergence the ratio of successive terms Y must be less than unity

ol F S _ F(1-5) ?

Y= WS xegEm /et osam < |
F-SF < S~=6F S > F
- 1 ’

o F 1 i
LYsam * 1w I

1‘

1. S(1-F) _ S(1-F) |

1Y S(1-F) - (1-9)F S-T |

- 1 _ 5T

0 - F_ S (i
=

i o I

. YT (s=myvt il

i- 1-S S(l"'S) M;

r, = _(_5_:‘5,’_)2‘".5 i
(1-F)S ‘#

EH‘}\‘

Mean queue size Q = Ziri Wf
But iy = Y G- IvT = -——Y—-E
YU aw |

2 2

¢ = LB Fam9) sTam? | FA-E)
5(1-8 S(1-F T 5= il

(1-s) = s(1-F) (S—F)z F

Average P = r + (1-8)(1-r) = SE,G=DF _ 4 _p
verage = T r) = =g+ g T “”

(l
A fraction F of jobs enter the swapping region with mean residual I

length C (from properties of exponential distribution). ‘w

i
Service rate for swapping region = %- = -% from queueing theory (43) M
‘H
° — C (l—F) N I

Table 4.6 gives some of these quantities for some typical values |

i
for C = 8 seconds. ”

90

Pipeline swapping model for C = 8 sec

T P F S R, Ry Y Q W C+UF |
1 0.12 0.8 1.00 0.,12 0,88 0,00 0,88 8.00 16.04 !
1 0.12 0.88 0,98 0,09 0,73 0.19 1.12 10.42 17.16 ‘
1 0.12 0.88 0.95 0,07 0.56 0.40 1.54 14.66 20.38
1 0.12 0.88 0.92 0,05 0,37 0,61 2.44 23,91 29,10 ;
1 0.12 0.88 0,90 0,02 0,16 0.83 5.92 59.67 60.50 N
2 0.22 0.78 1.00 0,22 0,78 0,00 0.78 8.00 14.25 1
2 0.22 0,78 0.95 0,18 0.67 0,19 1,01 10.88 16.44 |
2 0.22 .78 0,90 0.13 0.53 0.39 1.42 16.22 20.68 t
2 0.22 0.78 0.85 0,08 0.35 0.62 2,42 29.24 30.85 I
2 0.22 0.78 0.80 0.03 0.12 0.88 8.13 104.34 89.50 W
4 0.39 0.61 1,00 0.39 0,61 0.00 0.61 8,00 13.68 I
4 0.39 0.61 0.90 0,33 0.56 0.17 0.81 11.92 15.28
4L 0.39 0.6l 0.80 0.24 0,47 0.39 1.23 20.34 20.62 “
4 0.39 0.61 0,70 0.13 .29 0.66 2.55 48.11 37.40
8 0.63 0.37 1,00 0,63 0,37 0,00 0.37 8.00 10.96 |
8 0.63 0.37 0.8 0.54 0.39 0,15 0.54 14,63 13.43 |
8 0.63 0.37 0.60 0.39 0.33 0.39 1,00 36.31 21.45 !
8 0.63 0.37 0.40 0,08 0,12 0,87 7.24 393.59 114,00 W
[
16 0.86 0,14 1,00 0,86 0,14 0,00 0.14 8.00 9.12 |
16 0.8 0,14 0.80 0.83 0,16 0.04 0,18 13.01 9.82 I
16 0.86 0.14 0.60 0,77 0.20 0.10 0.25 24,81 11.48 i
| 16 0.86 0.14 0,40 0.66 0.26 0.23 0.44 65,34 17.15 w
16 0.86 0.14 0.20 0.32 0,25 0.63 1.81 534.86 82,70

C nmean processor time (exponentially distributed) ﬁ
T quantum of processor time given to each job before being I

transferred to swapping region w
P proportion of processor time given to jobs in pipeline ﬁ
F proportion of jobs with processor time T . W
S proportion of processor time given to jobs in swapping region I

wvhen there are any 1
R probability of no jobs in swapping region I

o
Ry probability of 1 job in swapping region

1 Y Ri"‘l . 1) 1}\

| R @ > |

Q mean number of jobs in swapping region ‘ |
W mean waiting time in swapping region |

91

The surprising feature about this model is that the mean
waiting time in the pipeline is not affected by the proportion of
processor time given to jobs in the swapping region when there are any,
since if this is high the swapping region is emptied more quickly and
the average proportion giVen to each region is unaffected. vith n
jobs in the pipeline and a round robin with a small quantum operating
for these the mean total waiting time (V) for a job of length =

is given by:

. nx
V = = x T
_ T Cc(1-F))
v.—.l_F.+ s + x~I-C x 3T

The second of these is derived by adding together the mean time in
therpipeline and the mean time in the swapping region and the
difference between the actual residue of time required when it enters
the swapping region (x~T) and its expected value (C). This
assumed that the swapping region is served on a first come first

served basis.

From examining Table 4.6 alone one might deduce that it was
best to have S as high as possible since nothing seems to suffer, in
fact however this results in a much higher variance in the waiting time
for short jobs which might get held up for a long time by a job in the
pipeline. The answer is to pick from the table a T, RO, W triplet
that gives a reasonable compromise, To get the mean overall waiting

time we integrate the expression for V wusing the formula:

n

fb}-{-g-ix—{g- [:-xe-x/c:lb - {b (-e—X/C Ydx = [(C +3x) e-X/C} ¢

a

C
a P b

92

/C

<!
[

\
T o
J e f G+ W+ T-0))e T ax |
o " r F

n(C-CF-TF) & nTF
1-F 1-F

+ WF = nC + WF “

We can take n =1 as corresponding to a situation with an
ever present background load and a relatively light on-line load which

always received priority, and the results for this are included in

Table 4.6,

93

Chagter 3
SIMULATION LANGUAGES

Simulation describes the process of building a model of a
system, usually simplified in some ways, and observing its behaviour
under certain conditions. As there are several different types of
simulation, which require different computing techniques, we shall

consider first how the simulation of computer systems differs from

other simulations.
) o ‘1‘\w |
Because of the complexity of computer systems we must use a
digital computer to simulate them. TFor simpler systems a variety of |

other techniques are available. Hand simulation, mechanical models, W

electrical models and analogue computer simulation may be used |
Il

depending on the type of system, We are also concerned with the
operation of the system over time, vhereas for some simulations all I

that is required is the instantaneous state of the system under |

certain conditions, |

We use random numbers to simulate typical user and program [
behﬁviour, and collect statistics about various aspects of the system. i
Hence there is an inherent variability in the results of the simulations “M
compared with a deterministic one, in addition to any inaccuracy owing HM
to the simﬁlications of the model. However this reflects the fact

that there is no such thing as a standard user session.

} o 3 e ° o

Some simulations are based on a fixed time interval. These
usually represent a regular or continuous process in contrast to the i
irregular and unpredictable pattern of events in a mumlti-access I

computer system. A fixed time interval simulation can always be I

treated as a special case of a variable time interval one. |

Whereas the mathematical models described in the previous
chapter are abstract and deduce the performance of the system from
theoretical considerations, the simulation models resemble the
system much more closely, all important components of the system such
as jobs, phases, processors, discs, etc. having their analogues in the
simulation model. The operation of the system is imitated as closely

as is possible and necessary and its performance is observed.

The various components of a simulation model can be active or
passive., Active components are represented by activities, otherwise
known as processes or transactions, and the same section of program
may be used by several activities. At any moment there is one
activity running and the others have either not yet started, or halted
for various reasons, or finished completely. These activities operate
on the passive components of the system, which ars represented by

variables, queues, lists and data structures.

Whether a pafticular component of a system, such as a job, a
processor, or a scheduler, is active or passive depends on its
complgxity and particular features of the model and language chosen.
The fewer active components there are, the simpler the program is,
since fewer routines and facilities for communicating between them
need be provided. However, if a component requires complicated
decisions to be taken then it will need to be active and the
corresponding activity takes the decisions. Usually a problem splits
fairly naturally into active and passive components with a few

borderline cases.

Simulations of multi-access systems consist of several inter=

dependent activities. These are simultaneous in simulated time, but

95

in an actual simulation on a one processor computer they must occur
sequentially. Thus the pattern of control transfers between activities
is not hierarchical like subroutine calls but lateral, so that when an
activity halts it does not know which activity will run next. Instead it
transfers control back to a master routine which decides which

activity should run next and transfers control to this activity at

the point where it last halted.

Originally most simulations were written in machine code or a
general purpose language such as Fortran. DMNachine code makes it
possible to minimize running time and the use of store, both of which
can be critical resources in a simulation. However it is extremely
difficult to write and debug simulation programs in machine code

because of their complicated structure.

A general éurpose language makes this easier and has the
advantage that complete reprogramming is not necessary if the simulation
is transferred to another machine, assuming that the language is
available on both machines. However it is usually necessary to include
machine code routines in order to deal with the pattern of control
transfers described earlier and provide other simulation facilities
which cannot conveniently be provided in the general purpose language.

A tortuous or inefficient structure and syntax may be necessary.

In order to provide more natural languages for writing
simulation programs, with a simpler and more appropriate syntax and a
wider range of built-in facilities, special simulation languages were
developed. In principle these have the additional advantage that they

are machine independent and simulation programs can easily be

transferred. In practice however there are so many different simulation

languages that few are implemented on more than two different

machines.

It is interesting to consider whether the same type of
language could be used for simulation and real-time programming, such
as supervisors, process control, seat reservation, etc. This would
have the desirable feature that programs could be partially debugged
by simulation, since debugging is always a serious problem for

systems where a given set of conditions may not be repeatable.

Ideally a modular approach could be used, sections of the
real system could be tested in turn with other parts being simulated
to generate conditions which might take several months running to occur
in practice. Also simulations of proposed modifications could be domne
without reprogramming in a simulation language and new algorithms
developed with simulation could be used directly, This would also
reduce the problem of communication between the software writers and
each other and the outside world and ensure that the simulation

represents the real system adequately.,

While such a languaze might be useful for developing a new
system where plenty of machine time is available, for example with
a computer manufacturer, it could never be appropriate for all
" simulations. Many of the operations necessary in real time systems are
needed because events are not completely under the programmer's control
or because a response must be given withiﬁ a certain time. Neither of
these is true for simulation, and inclusion of too much detail will

slow the system down and create unnecessary confusion.

Often an existing general purpose language is used as the

96

basis of a simulation language. This can be done by providing a set
of subroutines, written either in the language itself or in machine
code, to perform the basic simulation functions, and compiling the
simulation language either into the general purpose language or

straight into machine code by modifying the original compiler,

The full power of the general purpose language can be used
which makes the language more flexible, and the language can be
transferred to another machine with relative ease, particularly if
the compiler is not modified. It is much easier to understand and
write programs in a language if it is very similar to a well-known
one such as FORTRAN or ALGOL, the two most used as bases for

simulaticn languages,

However the syntax is outside the control of the designer and
desirable features may prove impossible or too inefficient or tortuous
to incorporate. Also inefficiency may be introduced by unnecessary
generality in the baée language, particularly in the case of ALGOL~-
based languages. The importance of these factors depend on the

language, its implementation, and the type of simulation.

Most simulation languages are either activity-based or event-
based. An activity corresponds to a section of program being obeyed,
- whereas an event is instaritaneous, such as a variable changing or a
program halting. Any simulation contains both activities and events

and the distinction is more one of approach than of types of problem.

In an activity-based language each activity is preceded by a

series of leading tests which may involve time cells, these are set

like normal variables and when there is no activity free to go at the

97

present time the list of time cells is scanned to find the lowest
positive value, This value is then subtracted from all the

positive ones, simulation time is advanced by this amount, and the
tests are repeated. In general all the leading tests of each activity
are made at each stage, though a more sophisticated system would only
perform tests, involving variables that are known to have changed since

the last test.

This approach is satisfactory in multi-resource simulations,
where several conditions which can be specified in advance must hold
before an activity can run. Rescheduling an event merely involves
changing the value of the appropriate time cell, It does however
involve much unnecessary testing of conditions and searching through
the whole list of time cells twice on each occasion that simulated
time is advanced. This can be reduced by holding absolute rather than
relative time in the time cells, or dividing the list of time cells

into sublists.

In an event-based language a list is kept of all the activities
that are free to go in order of the time that they may start, possibly
combined with a list of those activities that are halted together with
the reason. When an activity is halted simulation time is advanced to

the earliest time that enables another activity to start, which may be
the present. All activities must be caused or freed explicitly, and

no leading tests are permitted.

When changing from one activity to another several things have

to be done. First of all some test may be necessary to decide whether

to continue the current activity or change to a uew one, If the latter

then thé link must be preserved in order to know where to restart the
activity and the variables local to that activity must be preserved cor
a pointer to them stored. The next activity to proceed must then be
chosen according to certain rules, simulation time advanced if
necessary and the local variables restored or a pointer to them reset,

Only then can control be transferred to the new activity at the address

stored in the link.

If an activity is caused by several events each one must test
for the others or the activity itself must test for them all and halt
itself if they have mnot- all happened, which gives the equivalent effect
to a leading test. This has the advantage that the identity of the
event freeing the activity can be preserved and only possible
activities need be attempted, and by keeping the list in order of time
only part of the list need be searched when inserting and removing
items, whereas with a random list as for time cells the whole list must
be searched wheneverisimnlated time is advanced. There is no reason in
principle why time cells could not be in an ordered list, though the

1ist would then have to be reordered every time one was set.

An activity-based language may be easier to program and more
efficient when the relationship of events to activities is many-one
or many—mény, but for simulating computer systems an event-based system
is preferable. Each activity is usually caused by a single event such
as a clock interrupt or a job finishing, énd it is easier and more
efficient to treat schedulers as activities that determine which
activity (job) is to run next than to have a testlin front of each

activity which is obeyed on every event. The event-based system also

fits more easily into existing algorithmic languages, since the table

100

of activities gets updated automatically as we have to cause each
event explicitly, and the number of activities can change dynamically
corresponding to the flow of jobs and phases which avoids having

several copies of a basically identical routine,

A distinction is often made between machine-based and
material-based‘1anguages, though not all fall into one of these
categories. The terms derive from the "job shop" problem where there
is a flow of material which is processed by machines. In a machine-
based language the material is basically homogeneous and is a passive
component whereas the machines are the active components and are
responsible for deciding the scheduling of which material to proceés

when.

In a material-based language the machines are homogeneous

passive components and the material is the active component which

decides which machines to be processed by. In the multi-access system

the machines would be processors, disc units and users thinking and
the material would be jobs. This does not fall clearly into either
category, since both may be non-homogeneous and so any language which

is oriented solely towards one view will be artificial in some way.

The main difference in practice between the two types of
languages are the automatic statistics gathering facilities or
standard machines that they provide. A language which leaves this

for the user to specify can be used in either way.

At Cambridge there was no existing sirmulation language

implemented and so the choice lay between writing a simulation system

for either an existing or a new simulation language. Writing the

101

model in machine code or a general purpose language had been ruled out

for the reasons stated above.

There are many simulation languages in existence, some of the

better known and more interesting ones being CSL(S’B’S), Simula(ls’és),

Simscript(lA), OPS(22’31’32), GPSS(27), SOL(37). This list excludes
those that are unsuitable for multi-access system simulation, for
example those with a fixed time increment. Detailed comparison of the
various languages can bé found in (44,61) and most of the other papers

on simulations describe and compare some of the languages, so only the

more important points will be discussed.

CSL is an activity-based language that is designed for
compilation into Fortran. It was one of the earlier languages and
lacks some of the facilities and improvements in later ones. Because
it uses the Fortran subroutine structure, each time that an activity
halts it must either specify the next activity explicitly or else
leading tests must be made at the beginning of each activity in turn
until one is found that is free to go. It is impossible to restart
the halted activity at the point where it halted unless this is treated
as two separate activities which results in extra testing. It is thus
more suitable for simulations with activities which occur regularly or
" have complicated conditions before they can start than for simulations
of rmlti-access systems where events happen randomly in time and can

be caused explicitly.

Simula is an Algol-based language. It contains Algol as a

subset and a Simula block can be enclosed in an Algol program without

requiring the whole program to be compiled by Simula. A good range of

! 102

facilities are provided, particularly for scheduling events, which

can be scheduled before or after other events at the same or a

different time, or rescheduled at a different time. Its main

disadvantage is»the block structure of Algol, which makes it impossible

to include machine code or precompiled subroutines and means that if

any change is made the whole program has to be recompiled, which can 1
take a lot of central processor time. It would also be unsuitable for

on-line use, since Algol uses a larger amount of store and tends to

run slower because of its greater generality compared with Fortran,

Simscript is a Fortran-based language containing Fortran as a \
subset. It is event-oriented and each event must be caused explicitly.

However it is impossible to schedule events relative to other ‘

or reschedule them., There are also no debugging facilities and again

if any change is made the program has to be recompiled.

OPS-3 was written at MIT for CTSS and is now being extended :
considerably to give OPS=4 which is being implemented as part of the

Multics system(ll). OPS—-4 is based on PL/I with the compiler also

previously scheduled events, or find out when events are due to occur
|
l
|
written in PL/I, however it uses features in Multics which will make i
it difficult to implement elsevhere. Apart from this fact and the \
lack of any evidence on the size of the compiler and the store and |
processor time required it sounds an excellent language, which
combines the best features of all the others and adds several more. i
It is designed for on-line use, and so sections of the model can be |

tested interpretively or be portrayed by the console user, and then

compiled for greater efficiency. It is not necessary to recompile

) the whole program when changes are made and a mixture of compiled,

103

interpreted and user-—portrayed sections can be used. Comprehensive
on-line and off-line debugging facilities are available and a wide

variety of output is possible.

GPSS was deggned for non-programmers and is based on a flowchart
approach, each box on the flowchart corresponding to ome instruction in
GPSS, typically joining a queue or waiting for a specified time. Vhile
0peratioﬁs of this type are easy because of the built-in structure, no
general mathematical facilities are available. Good debugging
facilities are available and the language is easy to follow for a
simple simulation, though more complicated ones are difficult or
impossible. The language is rather inefficient because it is executed
in a partially interpretive fashion, and automatic statistics are
gathered for queues, facilities, and stores. Routines in other
languages cannot be included and compilation is necessary if any

changes are made.

SOL takes the basic concepts of GPSS and includes them in an
algebraic language similar to Algol. A sophisticated system of
priorities for queues and deciding which process to execute mext is
available, and it is possible to create and destroy activities

dypamically. However it is inefficient for the same reasons as GPSS.

None of these languages were really suitable for the task in
hand, except OPS-4 which would have required a PL/I compiler and had
not been published at the time that a 1aﬁguage was being chosen
(May 1967), and there appeared to be no demand among users for a
simulation language. A new languaze was therefore designed and

implemented based on Fortran and called FOSSIL - Fortran Systems

Simulation Language. The name does not reflect the philosophy behind irl

~"

Chapter 6

FOSSIL - Fortran Systems Simulation Language

Although old-fashioned, FORTRAN is still very popular because
of the simple reason that it serves scientific users' basic needs well
and almost every machine has a compiler for some version of it. It is
capable of being compiled quickly and producing efficient code and does
not usually use as much store or time for compilation or execution as

ALGOL and similar lahguages.

The Cambridge T3 FORTRAN Compiler(ao) is part of MLS (Mixed
(41) y i ; .
Language System). This makes it easy to incorporate machine code
and precompiled routines, and provides a library facility whereby only
routines which have been changed need be recompiled, and all other
routines needed are loaded automatically. The routines that are
responsible for changing the current activity and advancing simulation
time and dealing with interlocks are written in machine code for

efficiency, and yet they are called like ordinary FORTRAN subroutines.

No other high level language offers such a facility.

The system was tailor made for the applications and easy to
change when necessary. If an existing system had been implemented
many of the features that were time-consuming to implement nmight have
proved redundant for this type of application, and difficult to change
if necessary, and the syntax would not be so easy to understand. It
is of course always easier to follow something one has designed
oneself, and not least among the advantages was the valuable

experience gained.

3) =
The ML/T macrogenerator() is used to remove some of the

inelegancies of FORTRAN syntax and introduce various new features

104

necessary or desirable for simulation., This could be avoided by
modifying the FORTRAN compiler, but this would mean another version
would have to be maintained, and give a negligible gain in efficiency,

since the macrogeneration time is relatively small.

The most important features in simulation languages once the

basic type has been settled can be summarised as follows:

1) Control and timing of activities

2) Interloéks and queues

3) Data structures

4) List processing facilities

5) Statistics output

6) Debugging facilities
These will be discussed in turn with reference to FOSSIL. Vertical bars
each end denote an item of a given type, for example |routine name

means the name of the routine concerned.

The reasons for choosing an event-based language have been
given in Chapter 5. Usually in an activity-based language all the
activities are active all the time and control statements are unnecessary
except for stopping the simulation. Originally the system started
attempting to obey all the activations of all the routines at once.
This soon proved unsatisfactory and was replaced by a flexible system
where it was possible to have a variable number of concurrent
activations of the same routine which could be begun and finished at

will.

Initially only the main program is active., This can do any

necessary initialisation, start the simulation, intervene at intervals

to print out debugging information, test for convergence, tabulate
results or restart the simulation with different parameters, and

finally stop the simulation.

An agenda is kept of all current activities, sorted in
ascending order of the time they are free to go if not otherwise
halted, this time is known as their schedule. A BEGIN (Iroutine name| ,
|index|) instruction inserts a new activity in the agenda and marks it

as free to go now. The local variable INDEX is set to the value of

106

the second argument. This is automatically saved every time the routine

is halted and restored when it is restarted and it serves to identify
a specific activation of a routine, both for the purpose of referring

to the activity in other instructions and for subscripting arrays.

A TERMINATE (|routine name|, |index|) instruction will remove
an activity from the agenda without affecting any other activations of
the same routine or the activity that obeys the instruction. A FINISI
instruction removes the current activity from the agenda and proceeds

with the next one that is free to go.

A RESTART instruction removes all activities from the agenda
except the current one and resets simulation time to zero. This can
be used where several runs are required., A STOP instruction will stop
completely, though it is possible to run other jobs after returning

to MLS.

The simulation time is held in the common variable TIME vhich
is automatically declared in each routine and can be used as a value

but should not be set. Special instructions are required to advance

simulation time since it is necessary to test to see whether any other

activities are free to go, and RESTART is the only way of setting it

back to a lower value.,

The instructions DELAY (|interval|) and WAIT (|newtimel|)
shedule the current activity at TIME + |interval| and |newtime|
respectively, if this is less than or equal to TIME the activity just
continues without any change. Otherwise the first activity on the
agenda that is free to go is resumed and TIME is advanced accordingly
if necessary. The function SCHEDULE (|routine name|,|index|) gives the
schedule of an activity on the agenda. The function NEXT (|nexttime|)
sets]nexttime| to the schedule of the next activity on the agenda
that is free to go. The instruction RESCHEDULE (|routine name|,|index|,
|nevwtime]) rescﬁedules an activity on the agenda at MAX (TIME,|newtime|)
this is to avoid the possibility of scheduling an activity before the

current one,

This system allows direct scheduling of other events and look
ahead, and though not as flexible as SIMULA or OPS-4 which permit
scheduling before and after other activities and before activities with
‘ the.sgme scheduled time, it allows all the possibilities required in

practice.,

Interlocks and queues are as necessary on a simulated systenm
"as on a real one and most attempts to provide them have not dealt with
all cases. The most notable is that used in SOL, where a system of
FACILITIES and STORES is provided. A facility can only be held by one
routine at a time with a certain control strength, and if another
routine requests it with a higher control strength'the holding routine

is interrupted, otherwise the requesting routine queues for it

according to its control strength until it is free, A STORE is similar

H

except that varying amounts can be requested up to a maximum capacity
and no interrupts are possible since the control strength is always

the same.

Originally a variation of this was implemented in FOSSIL,
where a distinction was made between a pre-emptive (SEIZE) and ordinary
(REQUEST) demand for a facility. The former would interrupt any
activity holding the facility with a lower control strength, whereas
the latter would wait until the current holder had released it but
jump the queue according to its control strength, This gives a neat
way of describing a multi-level scheduling system such as is used in
Project lMac CTSS, where each level corresponds to a different control

strength,

Under this system it is difficult to schedule jobs externally,
that is to have an activity C that removes a facility from activity A
and hands it to activity B. This could be overcome by a system of
dynamic control strengths, but routine C would have to test and change
the control strengths of routines A and B and other routines on the list
"might need their con£r01 strengths altering at the same time, Allowing
interrupts involves keeping a list of all the facilities held by a
routine, or all the routines queueing for a facility, which involves a

considerable amount of list processing. Wichout interrupts a routine

108

can only be queueing for one facility at a time and no list is necessary,

since the timing mechanism will automatically keep the queues in order.

The instructions QUEUE (|queuename|) and NEST (|queuename|)

. If it is negative or zero

examine the value of variable |queurname

then the activity proceeds, otherwise it halts and is marked as queueing

for lqueuename] at the back or front of the queue for QUEUE and MNEST

respectively. In either case the value of variable |queuename| is

place in the queue may alter, and this facility may be used to

shuffle a queue if necessary,

\
|
increased by one. If a queueing activity is rescheduled then its *
|
The instruction RELEASE (|queuename|) reduces the value of
variable |queuename| by one and frees the activity in the front of il
the queue for |queuename| if any. If lqueuename| is an integer or {
long integer variable it gives the number in the queue including the
current holder. By setting |queuename| negative originally this system

can be used for stores with capacity greater than one, though the

previous sentence no longer applies thea.

The instruction BLOCK (|routine name|,|index|) will halt an M
activity other than the current one and UNBLOCK (|routine name|,|index|)
will free it again. This operates independently of the other interlocks it
and after an UNBLOCK instruction an activity may still be halted for

some other reason or scheduled to begin later.

The instruction EALT (|arg|) will halt the current activity J

and store the argument and FREE (larg|) will free all activities halted
with that argument. Note that it is the value of the argument rather |
than the name that is important, which allows it to be an integer, and ‘w

it should be strictly positive. i

Some authors have emphasised the importance of data structures
and lists for representing queues of items and attributes of an item

in simulation languages. These are more important for applicatioms

where the number of attributes is large or there are several classes

of entity. It

u 110

|
|
\
|
Simple lists can be represented as an array where the value
of each item is the index of its successor, that is the address of its
successor relative to the base of the array. The attributes of an w
item may be held in separate arrays with mnemonic names or condensed |

into one array according to the convenience of the programmer, in each

|
case the array is subscripted by the index of the item. The end of ﬁ
the list is marked by a zero value which avoids special action when
the first item is inserted in a null list or the last item is removed
from a list. TFor example consider a queue array of four items, jobs W

numbered 5, 6, 1, 4 whose contents would be: \

JOB(5)

6, JOB(6)

1, other elements all zero. , i

|
JOB(0) = 5, JOB(l) = 4, JOB(2) = JOB(3) = JOB(4) = O - I
This is a compromise between the demands of efficiency and

convenient implementation and the need to be able to refer to items

by convenient names. If desired attributes can have coded values for

example if we set ONLINE = O and OFFLINE = 1 we can then use I

statements like:
IF (STATUS (4) - ONLINE) 1,2,3

to avoid having to remember the code. The declarations required for

automatic assignment of these codes would offset any gains from this.

Arrays with a single suffix are more satisfactory because they
can conveniently be accessed in one order using a modifier register i
whereas those with several require multiplication or table look-up.

Thus having the attributes in separate arrays is convenient both from

a mnemonic and efficiency point of view. l

The approach described above is used in FOSSIL and the usual w

|
list processing functions are provided as FORTRAN subroutines. ‘J

T3 Fortran permits the use of zero as a suffix for one dimensional
arrays. If necessary they can be programmed in machine code for
greater efficiency, though this is much harder to debug and only

worthwhile for those that are used very often.

Facilities are also provided for manipulating the circular
queues where the last member points back to the first, though the
zeroth element of the array still points to the first or is zero if
the queue is empty. These are particularly suitable for Round Robin
schedulers, where after dealing with a job it would have to be placed
at the bottom of an ordinary queue but need not be touched in a
circular queue as the pointer is merely advanced. Unfortunately the
same technique cannot be used for the activities list, where we have

to preserve schedules of the activities in order.

Also important are functions to insert an item in a list in
a position dependent on the value of an attribute, either in increasing
or decreasing order of the attribute, when the attribute is held in an

array indexed by the item number,

The possibility of lists with two way pointers was considered
and dismissed because the extra programming and operations required
outweighed any advantages gained in putting items on the end of lists,
" which is the only operation that can be performed much more
satisfactorily with these., The same reasoning applied to the list of
activities. A compromise solution would be to keep a pointer to the
last member of the list, but even this would have to be checked and

updated if necessary.

An important facility of any simulation language is the

ability to collect and tabulate statistics conveniently in the form of

111

histograms and graphs. Some languages such as GPSS and SOL provide
automatic tabulation of the use of facilities, queues and stores,
but this consumes unnecessary time and paper and is difficult to
provide in a language where these are not explicitly declared and

the maximum queue size i1s unknown.

In FOSSIL a TAB (|tasble name|,|argl|,|arg2?|) instruction is .
provided to insert a value in a table which may be one of three types.
The first is a conventional histogram where the number of occurrences
of each range is recorded, the next records the mean of one variable
IargZI for each range of the other [argll, and the third records the
amount of simulation time that the variable spends in each range.
|arg2| is only necessary for tables of the second type. By using the
third type and inserting a TAB instruction before each QUEUE, NEST or
RELEASE instruction the mean length of queues can be recorded since
the value of the queue variable is equal to the length of the queue
if in long integer mode., Summary tables giving just the number of
entries or total time, maxima, minima and standard deviations can be
printed, or full details of the entries in each range of the table,
in a compact or detailed form with five or one ranges to a line

respectively. Out of range entries are also recorded.

Tables can also be plotted to any desired scale or
displacement of axes, and it is possible to plot several tables on
the same set of axes with only one instruction for each. The axes
are marked out automatically in an appropriate scale with major

divisions every ten minor divisions enabling them to be calibrated

easily as required,

A random variable can be sampled from a table, a rectangular
distribution being assumed for each cell and the out of range entries
if any. One can also have several raﬁdom number streams and generate
exponential and other distributipns from these as required. The seed
for the pscudo-random number generator can be set to repeat a sequence

or produce a different sequence.,

Another important property of simulation languages is the ease
with which programs can be debugged. With several activities in
simultaneous operation it is easy to get confused about the location of
errors and wonder in which order the acéivities were obeyed, FOSSIL
has an optional trace system that can output on any stream to avoid
confusion with other output., Vhen the trace is on, each time an
instruction that could change the status by freeing or halting the
current or another activity is obeyed the instruction, simulation time,
routine name, index, label and line number relative to it are printed.
Unfo rtunately the line numbers refer to the macrogenerated program,
but this can be preserved, and one can usually guess where it is in

- the original,

Facilities are provided for switching the trace on and off
dynamically and it is possible to trace only those activities in
-which one is interested or to trace different activities on different
streams, since a separate value of the trace stream, which may be

unset, is kept for each activity.

There is also a STATUS instruction which will print out all the
activities on the list with the TRACE details of the last time they

halted and the schedule., The trace routine is carefully programmed to

give a minimal overhead, particularly when it is not required. This

113

is important since it is entered for every simulation instruction.

The scope of variables is similar to Fortran but new facilities
have been introduced by the macrogeneration. A program can be
preceded by any number of GLOBAL,[declarationl statements which will

copy the ldeclaration[at the head of each FUNCTION or SUBROUTINE,

The result must obey the normal FORTRAN Il conventions about
the order of declarations. The declaration GLOBAL COMMON TIME,INDEX
is assumed. Each routiﬁe may contain any number of declarations of
the form LOCAL largll,largZI, etc. These arguments, which should be
simple variables, will then be preserved when an activation of the
routine is halted, and restored when it is resumed. They are thus
local to each activation of a routine. The variable INDEX is
effectively local, but it is treated specially, since it is used to

identify activities in the instructions which refer to them.

This facility has obvious disadvantages as far as efficiency is
concerned, arnd when this is crucial it may be better to treat the
variable as an array with subscript INDEX so that it does not have to
be preserved and restored each time, The main object of using LOCAL
instead is to make programs more legible and simpler to understand.

If the variable is used a great deal compared to the number of halts

‘it may actually be more efficient to avoid the subscripting each tim

by using LOCAL,

No real attempt is made to retrieve storage except the six word
blocks used for the list of activities, and if activities using local
variables are created and destroyed too often this might prove a

problem, since holding storage maps and piecing together variable sized

blocks was not considered worthwhile,

114

115

The six words of the agenda entry for each activity contain
‘the pointer to the next entry on the list or zero if at the end, the
address where local variables are stored if any, the start address of
the routine (for identification), the trace stream if any; the routine name

, in characters, the label and line number, the link, the value of INDEX

halfwords except the routine name and the scheduled time which are full

words.
The status-halfword is:
0 If free to go
-n "If halted for reason n
Address of Q If queueing for Q
+0,.1 If blocked

|
|
|
. 1
for the activity, the scheduled time, and the status. These are all
|
\
\
\
|
|
|
\
i
|
Only this halfword need be tested to see if a routine is free which
\
’ ; : s o |
makes the scan of the list very fast. When a routine is halted it
goes behind all other routines scheduled at the same time except for
a NEST instruction when it stays at the top of the list, and thus the

queueing is accomplished automatically using the same list as for the

timing.

An example of a FOSSIL program is given in thie Appendix.

, One nust ﬁow consider how useful the language has been, and how it
could be improved. Leaving aside the utility of simulation as a
technique, which is discussed elsewhere, the alternatives once
simulation had been decided on were machine code or the use of a non-

simulation language, which were unacceptable for the reasons

discussed above.

A set of subroutines written all in Fortran might have fulfilled

some of the necessary criteria, but efficiency of time and store usage

would have been a major problem. Several parts of the machine code
sections had to be recoded to run faster and the tabulation routines,
which are all in FORTRAN, can represent serious overhead and were

replaced in some models by special purpose facilities.,

Even if the temptation to slip into machine code were resisted
it would probably have been necessary to exploit various non-standard
features which would have destroyed the advantage of compatibility.

Accordingly some special purpose language was necessary.

FOSSIL never set out to be a general purpose simulation
language, though some features were included which were not of direct
relevance to the problem partly with this in mind. As a language for
simulating computef systems it has proved very satisfactory and more
appropriate than most other languages, because it was specially

designed for that purpose.

An ideal language should have its queue manipulation and list
processing facilities combined with its timing facilities and activity
control, this would solve some of ﬁhe more tortuous interlock problems
and give a more flexible system of queues and delays with the standard
simulation functions (e.g. WAIT, DELAY, QUEUE) as special cases. The
disadvantage of such a system would be a considerable drop in
efficiency if the language was based on anéther algorithmic language,
such as FORTRAN, which did not incorporate these facilities, since it
would be difficult to insert them efficiently and éonveniently.

SIMULA, an' ALGOL-based language with a separate compiler, goes some

way towards solving this problem, but though the first list processing

116

language LISP has been in existence a long time nobody has succeeded
in incorporating its facilities satisfactorily into a general purpose

algorithmic language.

An important deficiency as a result of this which is difficult
to rectify within the present framework is the lack of loops for
members of lists and facilities for finding members of lists given a
set of conditions, such as are provided in CSL. One may wish to
choose a random member of a list or see if one exists satisfying
certain conditions, or to perform a set of operations on all members
satisfying certain conditions, These operations can be programmed in
an ad hoc fashion or even as functions, but there is no convenient means |
of specifying a sequence of instructions as an argument. This difficulty
is not present in ALGOL-based languages, whose block structure gives
them a major advantage over FORTRAN-based ones, but not sufficient to |

compensate for the other disadvantages mentioned above.

Another majof improvement would be a statement of the form
"Delay T while not halted" or "Hold facility F for time ", Both of |
these were implemented but the inefficiencies involved in the attendant !
testing and shuffling of the list of activities were too serious, and
they were abandoned in favour of ad hoc recording of the time each job

-is in possession of the central processor, which would have been their J
P P ’ |

main use, There seems to be no satisfactory compromise solution to j

this problem. o

Large simulations generally take too long and have too many U
operations to make on-line interaction an attractive proportion except

for testing, though the use of visual input-output could make a big

difference as one could then watch queues grow longer and shorter and |

118

get variables monitored continuously to check for errors.

One could also intervene to change the value of a parameter
if things were not going as expected and continue without recompiling.,
The latter is practicable at the moment for COMION variables which are
stored in a fixed location, but if interaction in the source language
is required then an interpretive language must be used. For most
simulations running time is an important criterion and this technique
is not viable. Visual interaction also puts a big load on the
central processor and store and channels, and for this application
the result is not sufficient to justify this. However OPS-4 will

°

have facilities for on-line interaction and visual display.,

Some languages, such as Simscript, have report genmerators
which are useful but difficult to build into an existing language.
In FOSSiL»flexibility of output for TABLEs has been sacrificed to
some extent to avoid having many arguments or a complicated algorithm
to decide what is wanted. However the options are satisfactory for

most purposes, and with a knowledge of the storage allocation FORTRAN

‘routines can be written for special purpose styles.

Chapter 7

SIMULATION MODELS AND RESULTS

We have already seen some of the reasons for simulating
computer systems and some of the difficulties that are likely to be
involved. We want to complement rather than duplicate the analytical
models by investigating models with more accurate representations of
core store allocation and scheduling, We want not only some absolute
measures of the performéncevof such systems but also to compare them
against each other in various circumstances to see which fares better.
We should thus regard simulation as an experiment rather than a means
of producing accurate figures, in particular we can have more confidence

in comparative figures than in absolute values, provided that we are

comparing like with like.

Simulation has been a popular technique for modelling computer
systems, since it can be used for systems where there is no satisfactory

mathematical model, and the level of detail is completely under the

(16,17)

control of the modeller., Fine and MclIsaac used it to model thz

(56)

SDC time-sharing system, which is similar to CTSS with a drum and

(21)

using swapping. Greenbaum used another computer to produce a

reproducible load for evaluating and testing multi-access systems.

Hutchinson and Maguire(28329)

used Simscript to evaluate a batch
processing system with three 70%0s from a broader point of view, by
comparing it with bureaux for different types of job taking factors

like manpower and operator imposed priorities into account, and also to

determine the effects of hardware and buffer size modifications to the

manufacturer's software.

119

120

(33)

Katz used Simscript to model an IBM 7040-7090 Direct

Coupled System, where the smaller computer (7040) feeds the larger one

(7090) with a stream of jobs and receives the output, the 7040 dealing
(34)

with the peripherals., Katz has also used Simscript to model the
System/360, but although consoles are included in the model the input
from them and output to them are regarded as independent and there is

no paging in the model.

(40, 447) has simulated a third generation multi-access

Nielsen
system before it was installed but he points out that the cost of
doing this properly is high and efficiency and feasibility may impose
constraints on the design and hence the fidelity of the model. One
computer manufacturer considering a simulation model of their third
generation system decided against it when they estimated that
designing and running a good simulation would cost as much as
developing the system.

Few people have combined simulation and analysis of the same

o]
%) aia so for a simple system by getting analytical

system. Penny
upper»and lower bounds for the performance of the system over a range
of parameter values thus producing an envelope of two curves between
which the results must lie, then by simulating with a few carefully

. chosen paramecer values he was able to estimate the performance for
the whole range by interpolation., This technique could cut down the
amount of time needed for simulation considerably if suitable

applications of it could be found.

(54,55)

Scherr used the lMarkov model described earlier and

simulation in his own language to model CTSS and found a very good

agreement between the results of the two, and the performance of the

actual system. However in this case the main use of the simulation
was to provide a check on the validity of the analytical model by using

a more accurate representation of the system,

One of the first problems we encounter in simulation is whether
to use data from an actual run of the real system or whether to
generate data from the distributions observed from several runs or
convenient approximations to them. The former has the advantage that
it is a genuine sample and so no unrealistic values can be generated,
however a random sample is not necessarily a typical sample and is
unlikely to have the same means and distributions as the results from
several weeks' running, unless we make it rather long. The storage of
the data also presents a difficult problem since we will not
necessarily use them in the same order as they occurred in the original

run, Effectively a different stream of data is needed for each job.

The choice between using an actual distribution or an
analytical distributiﬁn as an approximation if generated data is used
is governed by convenience and gecodness of fit., For distributions
that are very unbalanced, such as the negati#e exponential, the
analytical one is better if it is a reasonable approximation, since
an equal interval histogram will give inaccurate results at the ends.
Routines are provided in FOSSIL to sample from histograms which have
been generated earlier and stored or fed in directly, here a uniform
distribution is assumed within each interval and between the minimum

or maximum value recorded and the appropriate end range.

The next problem to be considered is how much detail should be

included. Any model is no more accurate than its weakest link, and to

simulate some parts of the system in much more detail than necessary

is pointless unless detailed insight is required into those parts,
and even that is not likely to be accurate. Computer and programming
time is wasted, there is more scope for programming bugs to creep in,

and the model is harder to understand and deal with.,

In practice however it is very difficult to tell when the
required level of detail has been reached, since there is no cormon
standard to measure detail by and there may be nothing with vhich to
compare the results of the model. One can ensure that the time scale
of all activities in the model is the same, and no activity has events
which can be grouped together occurring much more frequently than

(51)

anywhere else in the modelf Randell and Zurcher suggested
starting with a modular model with each part of the system represented
by a very simplified "black box" and gradually develop the detail

in each simultanecdusly. In principle this should make it easier to

debug the model and tell when the detail in any specific part makes

any difference or not,

Although any simulation model is bound to change and develop

" a lot this approach has the disadvantage that the interfaces between

the various parts are likely to require changing a lot, thus removing
the advantage of compatibility with the previous versions and
requiring extra programming effort in the long run., Also defects in
the initial model may be perpetuated when a new approach not
corresponding with the initial model is required. Looking at the
final model described below it is difficult to see what initial model

it could have been derived from, indeed its lack of modularity

contributes to its efficiency.

! 123

Another approach is to try and isolate the critical factors
by comparison with analytical or other simulation models, which can

enable one to omit factors if the model proves to be insensitive to

[them. However it is dangerous to apply conclusions reached from
analysis or one simulation model to another where different factors
may be critical and the only safe comparison is between a model with l
a factor included and the same model using the same data without it,
If these prove sufficiently similar the simpler model can be used for
other parameter values and small modifications, but if any major

modifications are made the comparison should be done again, . ‘

In practice it is usually the ingenuity and judgment of the
analyst, the resources of computer time and store and the human time |
available that decide the complexity of the model, and for this y

reason simulation is often looked on with suspicion. :

The next difficult question, in some ways very similar to the
previous one, is how>1ong to simulate for, If there are many long runs
the cost in computer time and delays in developing the model can be
considerable. However simulation for too short a period produces a
wide variability in results, and one cannot attach much confidence in
them. There is no obvious place to stop since the accuracy does not ‘
increase proportionally with time, and to aim for a mean which hardly ‘
changes when another run is done is asking for too much, since
simulation results are inherently very variable just like the real |
systems they represent. By comparing the results from several runs

one can check that one's sarple is reasonably typical and take the ‘

final decision on the same sort of basis as mentioned above.

When comparing different values of parameters or different

.algorithms we want as far as possible to be comparing like with like.
If we havé a different stream of random numbers for each of the
quantities to be sampled and use the same streams for each of the
two cases then we get them as similar as possible, If the parameter
being changed is the mean of one of the variables being sampled then
they will all be reduced proportionally but occur in the same order,
subject to a few more or less at the end. All unaffected variables

will sample the samg values in the same order,

The random numbers are basically generated by 2 multiplicative
congruence method, which produces a uniformly distributed sequence
with a very large recurrence period. These are known as pseudo-randon
numbers, since they are determined and thus repeatable to allow
comparisons like the above and checking of results. To get a negative
exponential distribution with mean 1 we take the negative logarithm

of a uniformly distributed sequence between O and 1.

One alternative that was considered was to use the set of
exponentially distributed numbers whick were most representative as
described in Chapter 3, permuted in a random way. If all of them are
used this will produce a much better sequence to represent the
distribution than a truly random sample, since it will have exactly
the right mean and variance. However this would involve one set of
numbers for each stream being held on disc and read dowm, since there
would not be room in core store for a sufficiently large set. It
would also be impossible to ensure that exactly all the numbers were

used, since the different streams are consumed at different rates

which cannot be determined in advance, and the method depends on this

125

for its accuracy. However there is possibly a use for this method
to determine a more typical set of numbers to represent the tail of
the distribution. This illustrates the fact that a representative

as opposed to random sample is required.

Another method for reducing randommess and increasing
representativeness can best be described by treating random numbers from
a uniform distribution as marks on the edge of a circle, the distance
around the circumference from a fixed point being proportional to the
value of the number. If we superimpose the reflection of the circle
about the diameter through this point on itself we get a set of twice
as many random numbers which have exactly the right mean. This is the

(23)

method of antithetic variates the practical implementation of which
is to have one run with random numbers X1sXpsXg see and then another

with random numbers 1l-x 1-x2,1-x3 eees assuming the x, are between

1’
0 and 1.

Because the fandom numbers are usually transformed to produce
a negative exponential distribution and the runs finish in slightly
different places if they are of the same length the mean is not
exactly correct, but there is still a significant improvement. This
was adopted for the present work and extended still further by
taking the two rotations of the circle through 120° and 240° and
then reflecting and superimposing these as well to give effectively
six sets in each run, thus producing a more even distribution all the
way round without prejudicing the randommess by making the runs too

short.

Next we must consider the type of output that is required,

both for diagnostic purposes and as results. It is important not to

126

mix these two together otherwise so much paper will be required to
contain a few results that it is difficult to make quick comparisons
and see patterns., There is a need for both detailed results and a
summary of a run on one page or so, this can conveniently be done by
using different streams for the different purposes. The trace
facility in FOSSIL which can use different streams for different
activities was designed with this in mind. Other sorts of diagnostics
will be necessary both as general checks that all is functioning
correctly, particularly in the more complicated routines like
séheduling and core allocation, and to detect specific errors. By
printing out related information in different routines one can check

for consistency.

It is sometime difficult to avoid generating too much
diagnostic information, and all diagnostics should have a switch so
they can conveniently be removed if necessary. If the time at which
an error occurs is known one can switch on the diagnostic shortly
before it, and on the Cambridee system the.output can be edited by
successive bisection if the program is looping to find where the

loop started without having to print it all,

For the results only the values of interest should be printed
for the reasons stated above, since other values obscure the detail.
However it is important not to have too much aggregation of results,
for example it rarely makes sense to average off-line and on-line
results since the two are so dissimilar. This also applies to the
various possible progran store sizes, since they yield very different

results, It is also better to generate directly all results that

-~

will be needed even if it involves more initial =ffort, since it is

\ ; 127

so tedious and error prome to go through working out means and totals _

and drawing grapns from other figures when these could have been
produced by the computer in the first place. This is particularly
| true vhen it turns out to be necessary to have several different ‘

runs, as is often the case, : '

If several runs are made of the same simulation it is
desirable to have both the figures for each run and also the combined ‘
totals and means for all the runs, since the former is necessary to
see how much variation there is from one run to another in order to |
see how much confidence can be placed in the results, and the latter to be

able to make quick comparisons between runs with different parameters. \

Having considered some of the factors that are important in w
designing simulation medels, we shall now examine the basic model ‘
which corresponds as far as possible to the present state of the
Cambridge multi-access system. This will serve to illustrate scme
of the points above and the approach that has been adopted towards the ‘

simulations.

The basic model consists of about 900 lines of FOSSIL, in
addition there are 400 lines of FORTRAN and 800 orders of machine code
in systems subroutines., Data gathering and printing represents a
significant proportion of this even though this is kept to a minimum
as far as possible. Since the operation of making an entry in a
general table is a lengthy one special pufpose routines were used when
more efficient, such as for calculating time averages, This avoids

the necessity of checking for out of range entries, multiplying by :

the increment, etc.

Various techniques were adopted to minimize the delays
inherent in rumning such a large program. After each compilaticn the
binary program was dumped on the disc, thus saving further compilation
and loading except for major changes to the program. If there is an
error, portions of the code can be examined on-line and changed easily
by using the system program PATCH. One can identify the relevant
section by using the command to search for the orders setting the
name of the subroutine and the line number for the diagnostics of

the FORTRAN system,

The relocatable binary was also stored on the disc, so if it
was necessary to recompile some subroutines the unaffected ones need
not be compiled too (except for the main program). This resulted in
a considerable improvement in response time on-line and also saved
central processor time, as macrogeneration and compilation of the
complete program took about a minute. When running on-line it was
often convenient to have a short test run for a few seconds after a
change had been made, since this could detect some of the more
blatant errors, and only intiate a full run from the dumped version
after this, rather than wait the extra time for a potentially long

job to be run only to find that it had misfired almost at once.

The FOSSIL section of the program is given in the appendix,
but this is intended primarily to illustrate what a simulation
program in FOSSIL looks like. The text refers to the names of the
most important subroutines in order to show how the program is

divided but only the basic structure of the program and its most

interesting features are described.

129

The main program's sole function is to call a subroutine
called MAIN, which does all the work that the main program would
normally be expected to do, this was because the main program has to
be recompiled every tiﬁe any other subroutine is compiled or else
held in a diffefent file from the remainder. This subroutine initialises
all the arrays, variables and tables, begins two activations of the
routine JOBGEN to create off-line and on—line jobs respectively and
the activity ALG2 to do the scheduling and then dumps the program.

After this it reads in the data giving the number of runs and their

length and the serial number of the algorithms to be used which are

selected by means of switches on the serial number at appropriate

points. There is then an initial period of 15 minutes simulated time

to allow the system to warm up, since the simulation starts with an

empty system. After this all the tables and other data gathering variables
are reset to zero, since it is difficult to switch off the data

gathering, and the run is started.

The routine MAIN interferes six times in each run to reset the
random nurber variables in accordance with the algorithm mentioned above,
and at the end of each run it outputs all the statistics, adds on to the

curulative tables the details for this run, resets the other tables and

the data gathering variables to zero and starts the next run if there is

one, All running jobs remain in the system unaffected and the second
run starts from the situation at the end of the first., At the end of
the final run, if there is more than one, the cumulative results are

printed ocut. DMerging the tables at the end of each run avoids the

inefficient process of trying to collect date in two tables simultaneously.

Y [
! 130

The routine JOBGEN has two activations which create off-line
and on-line jobs respectively., These run simultaneously in simulated
time, and are differentiated by a different value of the variablé
INDEX. They use the empirical data on the number of off-line and
on-line jobs running given in Chapter 3 and synthesize this \
distribution in a way that is designed to be reasonably similar to |
the actual pattern of job arrivals and departures. This was not
recofded in the statistical measurements on the real system, since it
is so variable. There is an additional difficulty insofar as it is

not possible to stop a job at any time, because of the facilities it

may be using and the queues it may be in, though it is possible to
start one at any time, When this activity wishes to stop a job it
reduces the desirable number of jobs running by one. When a job
reaches strategic points it checks to see that the actual number of
jobs rumning is equal to the desirable number, and if there are too
many running it stops gracefully, Vhen this activity wishes to

create a job it increases the desirable number of jobs running by one,

and only creates a mew job if this is greater than the actual number

of jobs running. The inaccuracy produced by this lag is not significant.

After each creation or termination of a job the activity waits

for a time that is exponentially distribut-d with mean proporticnal to

the fraction of the total time with that number of jobs running in the

empirical distribution., It then randomly decides with equal probability ‘

1 whether to increase or decrease the number of jobs. With zero or the H

maximum number of jobs running there is obviously only one alternative,

and this is compensated for by multiplying the mean time spent in these

states by two.

If we let the empirically determined distribution probabilities
vof the number of jobs running be ay for i =0,1l...n, and the
distribution probabilities determined by this algorithm be P; for
i=0,1l...n, we have in equilibrium that the rate of entering state i
is the same as the rate of leaving state i, using the theory of lMarkov

chains as described in Chapter 4, This gives the following equations:

(1 - 1) + pl =
Po 2ka 2ka. - P
o 1
P P
1-1 1 1+1 _ y - -
a0 it e o By o fer . 12120
i-1 1 i+l
Pp-1 1
2ka * Pn <1 - 2ka) . = Pn
—1) n

which are solved by p; = a for i =0,l.cen, i.e. ar algorithm

5
reproduces the empirical distribution. The constant k detemines

the rate at which the number of jobs running changes, a value of 500
was used to give a reasonable compromise between a very rapidly
changing number, which would suffer more from the lag mentioned
earlier, and a slowly changing number, which would cause bigger

- fluctuations in the load as backlogs built up, the extreme being

a system which gradually added jobs until the maximum number had been
reached and then gradually terminated them again, The largest
individualAprobability is 0.16 giving a mean time before a change

of 80 seconds, though most of them are rather less than this. There
was an alternative to generating jobs and terminéfing them explicitly
of keeping them all going and halting and freeing them, but the former

was chosen as being conceptually simpler and more faithful. This also

keeps the list of activities on the agenda shorter and thus saves

time when searching it.

131

The routine JOB is the heart of the program and one activation

of it exists for each running job. It consists basically of a loop

which is obeyed continuously as long as the job is rumnning, the only

difference between on-line and off~line jobs being different means for

the various time and store parameters and the inclusion of a stage in

the loop representing console input—output and thinking for the

former. No attempt has been made to reproduce identically the various

possible paths that real jobs can take, but rather to generate a

typical mix of activities for a given number of jobs rumning. The

first action is to join the end of the scheduling algorithm's queue

for processor time, and then call the sampling subroutine,

The subroutine SAM samples the size of store to the nearest

4K from a histogram, and chooses an exponentially distributed

processor

result of

processor

time with the mean corresponding to the store size. The
this is to maintain the correlation between store size and

time noted earlier, and produce a hyperexponential

distribution of processor time, which is more faithful than an

exponential distribution, as can be seen from Figures 3.3 and 3.4,

If the sampling procedure gives a store size of zero this signifies

a pure procedure with 64 words of working space and the probabilities

and mean procsssor time are set accordingly. These can be treated as

using no store, since there is a special region of store reserved for

them which has nearly always spare space, and a copy may well be in

the store

calls the

the store

for store

already. If the sampled store size is not zero, the job
subroutine GEST to get store, which halts if necessary until

is allocated and returns. Tabulation of the waiting time

and the use of it, and recording the throughput and

132

processor use is all done in routine JOB, The maximum waiting times

for store are also recorded to give an idea of the range.

After acquiring store (except for a pure procedure) the job
makes a disc reqﬁest by calling the subroutine DIS, and if necessary
joinsva single queué for two notionally separate discs. The
justification for this assumption has been discussed in Chapter 4.

To give a more realistic picture half the disc time is used before

the processing, corresponding mainly to program loading and file
access, and half is used after, corresponding mainly to output, After
this it calls the scheduling algorithm, which will halt where
necessary like the storage allocation algorithm, and return control

when it has had the total of processor time requested.

After the second disc request the store is released and the
job calls the subroutine CHR which checks to see if there are too many
jobs rumning as described earlier., Off-line jobs then go back to the
beginning. On-line jobs delay for an exponentially distributed time
corresponding to "thinking", as this is usually in a pure procedure
no major resources are tied up. They then check once more to see if

there are too many jobs running and go back to the beginning.

The scheduling of jobs is probably the most complicated
feature tS simulate and several different methods were tried before
the one finally chosen. The basic difficulty lies in ensuring that
the use of processor time is recorded both for scheduling purposes and
in order to free a job when it has finished with the processor. The
second of these could be solved by an instruction of the form

“"delay for x while free" and this was implemented with some difficulty

e

at one stage. However it proved inefficient since when the activity

w

134

halted the entry corresponding to it in the agenda has to be reordered
every time simulation time is advanced, since this also advances the

completion time.

Another approach that was tried and discarded as‘too inefficient
was to make the running job find out each time what the next event was,
delay until then and record the amount of processor time used, and then
halt until the event was over. When one considers the number of
events which may be completely unrelated, such as the arrival of a job
or another job finishing its disc or thinking time, the disadvantages

of this method become apparent.

A flowchart of the method finally adopted is shown in Figure 7.1.
When a job requires p;ocessing it calls the subroutine ALGl., This sets
the amount of processing time required and looks to see if it is first
in the queue., If the job is not first in the queue it delays for a
very long period, which in practiée means until it is later rescheduled,
If the job is first in the queue it looks to see if there is another

job running, and if so it calls the subroutine RECT to record the amount

"of processor time used by the running job and then blocks it. It then

marks itself as the running job and delays for the amount of processing
time required, though during this time it may be rescheduled by other
jobs or the scheduling algorithm. After it has finished it again calls
RECT to record the amount of processor time used and looks for the
first job in the queue that is free to go. If there is such a job it
marks the new one as the running job, unblocks it and reschedules it to

continue after the length of time the new job still requires for

processing.

Fig. 7.

Scheduling routine flowchart

Subroutine ALGl (Jobs)

Set time
required

Is job first
in queue?

Subroutine ALG2 (Supervisor)

Y
- 0

Delay one quantum

Update time used by
running job

No_ . Yes
~ Pl
Is another
job running?
o _-
Y o
Yes
4
/
\ Update tine
used by
running job
Delay
indefinitely >>
(until
rescheduled) Block
running job
Reset number
of
Y running job

Delay for time
required (unless
rescheduled)

_d

S~
-~
Update time us
Find first fre

. lone

‘l ™~
°d by this job

> job in queue

N
7

Unblock tais job

Reschedule according
to remaining time
required

Return

Find job which used
maximum time in last
quantun period

Put this job
at end cf queue

Is this the
running job?

|

No ~ Yes

Find first free
job in queue

Is this the
running jot?

P
Yes

Block
running job

P

ct

h
Mal]
[}
(1]
[

e
B

Unbloeck
free job

Reschedule
according to
remaining
time required

Reset nunber of
running job

N

4]

136

The supervisor is represented by the activity ALG2, which rums
regularly throughout the simulation at intervals in simulated time equal
to the quantum, which is 1.28 seconds sinée the Titan hardware
effectively dictates a multiple of this, Each Eycle it calls RECT
which updates the amount of comp. time used in the last quantum period
by the running job. It then looks to see which job has had the most
processor time in the last quantum interval and puts it at the end of
the queue. If this was the running job the scheduler looks for the
first job in the queue that is free to go. If there is another job
free to go the scheduler blocks the previous running job, marks the
new one as the running job, unblocks it and reschedules it to continue

after the length of time the new job still requires for processing.

There are various possible ways of representing the store of a
computer, for example one can have a matrix with the elements of store
(in this case units of 4K words) as one dimension and the jobs as the
other dimension, or a one dimensional array by jobs or by store., List
processing techniques can be used to indicate the free areas of store
and their size. However when a job is bound to be in a contiguous area
of store the effort of keeping the more subtle structures up to date
is not adequately repaid when finding spaces to put jobs in. A simple
_approach was <dopted of having one array element for each element of
store and setting this to be -1 if unavailable, O if free, and the job
INDEX number if in use. There were three basic subroutines, GEST which
gets store, LOST which loses it and ISST which when called by either of

the other two checks to see if there is sufficient store for a given

job and allocates it if there is,

Because the supervisor was originally designed to operate in
64K words of store, the store available to object programs in the Titan
with 128K words of store is divided into two regions, 0-40K (bottom
segment) and 64K-112K (top segment). The remainder is used by the
supervisor for program, working space, buffers and pure procedures.

The store allocation algorithm is designed to take account of this fact
by allocating the two regions in different ways. There are two queues
and initially all jobs join the second queue if they cannot fit in the
store. When space becomes available the first jbb in this queue that
will fit is allocated 3péce and so on. If space has still not been
allocated after a certain time the job moves to the first queue,

which is served preferentially on a first come first served basis, and

allocation of the bottom segment stops until the first queue is empty.

This system ensures that all jobs however large will get run
eventually without affecting the response time of smaller jobs too
adversely, since the latter can still use the top segment while the

large ones are waiting for the bottom segment to empty. Its

-implementation in the simulation follows a similar pattern, and a

flovchart 1s given in Figure 7.2.
&

The subroutine GEST which gets store first calls subroutine ISST

to check if the job will fit in the top segment, or either segment if

the first queue is empty. If this fails it joins the second queue

and waits for 200 or 600 seconds according to whether it is an on-line

or off-line job respectively. This figure is doubled if it needs more

than 16K words of store, If it has not been allocated space in this

time it then joins the first queue and is eligible for both segments.

138
. |
i
FPig.l.2 |
Storage allocation flowchart
|
Subroutine GEST (Get store) Subroutine LOST (Release store)
Can store be Mark store used
allocated in top by job as free ‘
segment? -~ ‘
pa % 1
'\ < i . ‘
Yes Is first queue empty? |
V.. Yes
No) . No , vV
~ !
; / an store be allocate ‘
Is first N D C o s I
5 to first job in queue? i
queue empty? \V4 !
. , Yes | Yo ‘
\/ No < < ‘
> . v .4 - “;‘ |
Yes Y Remove this job Reserve bottom |
from queue segnent i
!
Can store be . Il
. Free this job : |
allocated in \b Jo T Ww
! Is second
bottom segment? N = I
queue %mpty? Il
v N ‘ i
5 . 7 Wit
Yes , o Yes i
oS s i
Wiio e i
|
Can store be I
Join second queue allocated to |
\V/ next job ‘;
. ‘ . . in queue? ‘
Wait appropriate time 4 Il
(unless rescheduled) I
. I
I
Has job been Il
allocated store? A Remove this \\ I
-~ H111
from queue I
Yes y Ehe Y i
—< I
WVilo L il
Reschedule |
5 this job
Leave second queue
- 3 < I
V Enter first queue | < |
- . Is this the end i
Halt until freed . |
of the gueue? |
Z I
~ ‘
~ Yes Y j
7) i
Return \V lio ‘
— ‘
~
Return
il |

The subroutine LOST which releases store first searches through
and marks all the store used by the job as free. If there are any jobs
in the first queue it calls ISST to attempt to find store for them in
order using both segments, If all the jobs in the first queue are
allocated store it serves the second queue from both segments. If a
job in the first queue cannot be allocated store it serves the remaining
jobs in order in the first and then the second queues from the top

segment only.

The routine ISST to check if a job will fit and allocate store goes
through all possible starting points. Jobs greater than 32K words of
store must start at the bottom of store to avoid overfilling it and
programs of size N must start at an absolute store address which is a
multiple of ZM where M is chosen as the minimum number such that
ZM > N. This is because the base address register is OR-ed with
rather than added to the program's address as described in Chapter 2.

It selects the highest possible starting point when there is space, if

any, and allocates from there. This is in order to keep the lower

parts. of the store free for larger jobs which must go there.

The object of the first simulation runs was to choose a
suitable number of runs and length of run for future use. As already
mentioned this is a difficult process and any choice is to some extent
arbitrary as there are no good criteria, The amount of processor time
used imposes an upper limit, since to avoid taking an unreasonable
time and to ensure a better turnround and the possibility of testing
on-line, this should be less than five minutes for any run. Since

macrogeneration, compilation and assembly took just over a minute,

o

and the ratio of simulated time to real time was about 100:1 depending

140

on the algorithm used, this restricted the maximum length of run to
six hours of simulated time., Six different runs of two simulated hours
each were done and the results compared to see how great the range was,

The results are given in Table 7,1,

It can be seen that over six runs the range is quite high,
up to half the mean value in several cases, though this is oftén due to
an isolated unusual value., The sixth run shows a remarkable
correspondance with the mean, however we cannot take it by itself since
we would have to do’'the previous runs aryway to get the initial
conditions the same, Taking the first two runs we get a maximum error
of 267 and a mean error of 147 with consistently high values of
the measurements. Adding the third run, which has values near or
below the mean, would improve this to a maximum error of 147 and a

mean of 77 but would involve 507 more computing.

It was decided to «dopt two runs of two hours simulated time
each as the standard fér subsequent simulations, this representing a
reasonable cbmpromise between the amount of processor time used and
accuracy. The comparison given above holds gobd for the other
simulations since the same sets of random numbers were used in each
case as far as possible. Having this enables comparisons between runs
as well as comparisons of the means for different algorithms, and hence
two runs of two hours are preferable to one of four hours. There is
little point in splitting it up any further or else one gets
overwvhelmed with paper and the individual runs become too short, with

a resulting increase in variability.

For the simulations the seccond set of statistics mentioned

in Chapter 3 was used. Comparing the results with these statistics we

Simulation of Cambridge system with 6 runs of 2 hours

Table 7.1

lleasurement

Off-line
throughput

On-line
throughput

Off=line
processor
queue

On-line
processor
queue

Off-1ine
processor
use¥

On=line
processor
use

Off-line
disc queue

On-line
disc queue

Off=line
disc use

On-line
disc use

0.49

Run

2,06 1.40 1,28 1,51 1,25 1,50

4,39 5,54 4,01 3,40 3,77 4.43
3.94 3,99 3.44 3,65 3,05 3.73
0.28 0.45 0.31 0.26 0.29 0.36

0,91 0.89 0,92 0.93 0.91

0.07 0.11 0.08 0,07 0,09 0,09

0.23 0,16 0,13 0.14 0,15 0,17

0.67 0.41 0.33 0.41 0.46

0,10 0,07 0.06 0,07 0.06 0.07

0.20 0,26 0,19 0,16 0,19 0,21

% . .
Including overhead

2 runs

%
Mean
error

1.73 15

4.97 17

3.96 9

0,37 12

0.90 11

0,09 O
0.20
0.58
0.08

0.23 6

3 runs
) %
Mean

error

1.58 5
4,65 9
3.79 4
0.35 6
0,91 O
0.09 O
0,17 6
0.52 13
0,08 14
0.22 10

141

6 runs

Mean Ran

1.50 0,78

4,26 2,14

3.63

0.33

0,91 0.04

0.09 0.04

0.16 0.10

0.46

142

see that only 97 of the time (including overhead) was devoted to
on-line work instead of 117 in fact, and thus the on-line throughput
has fallen from 5.33 phases/min to 4.97 and the off-line throughput
| has fallen from 1.33 to 1.79. | This is probably because in the
simulation we mix in large jobs which tend to last a long time fairly
randomly, whereas in pradtice they tend to be run at night when there
is little on-line load and thus do not reduce the on-line throughput

so much, A facility was included to allow for this by biasing the
random numbers to represent night and day running, but this was not

pursued because it was not a sufficiently accurate representation.

For this algorithm Table 7.2 shows that the store waiting times
increase with program size, as do the maxima. Usually the randommess
of the simulation does not produce such a neat result, 32K jobs wait
an average of 6 minutes and 40K jobs wait 13 minutes with
considerably higher maxima, which is a long time to keep a job waiting
around in the machine and suggests that we should try only to have one
or two large jobs running at a time. The waiting times of on-line
jobs are quite accepfable, the maxima probably being caused by a long
off-line job. These maxima should be reduced by swapping or shuffling.
The overall disc usage seems low, but it has to cope with the peaks
and the figures are comparable‘with those cbtained from the analytical
model, when one allows for the higher off-line load and mean comp. time

in the second set of statistics on which these results are based,

The first alterations to the basic model that were tried were
the effects of 207 variations either way in the means of the off-line

and on~line comp. times and the thinking time. This was done partly

to see how sensitive the simulation was to these parameters in case a

4 . -l ol
45! 143
| i

Table 7.2

Simulation of Cambridge system

Off-line On-line J
Throughput (phases/min) 1.73 4,97 |
Processor queue 3.96 0.37 K
Processor use (inc. overhead) 0.90 0.09
(exc..overhead)' 0.75 0.07 ‘
|
Disc queue 0.20 0.58 ﬂ
Disc use 0.08 0.23 _
0ff-line On-line H
Stare Megﬁeﬁix. Eiii(iiif) Me§§e§:x. e 5223(522?) |
I
Pure procedure B 0.10 - 0.56 k
0-4K 0.04 3 1.17 2 79 0,01 2 0,21 0 21 |
5-8K 0,06 2 0,77 5 167 0,05 1 0,10 12 399
9-16K 0.50 5 0.8 83 445 0.19 2 0.08 62 389 ﬁ
: \
17-32K 1.04 4 0,99 352 1145
33-40K 0.41 2 0.28 793 1666

i
l
bad estimate had been made from the data, and partly to see how
Vthings varied with changes in the load of this type. The comparison
was done using the same stream of random numbers for eacﬁ of the 1
variables to be sampled as was used for it previously, but ;‘
multiplying the result by the appropriate factor. The same period
was used for each run as before, which meant that the runs were not
exactly comparable since the ends of the various streams were at I
different points and so some phases are not included in all the runs.
Unfortunately there is no satisfactory method of getting round this
problem. Because of this the waiting times for store have not been I
included in the resul;s in Table 7.3, since the random variation in |

these seems to outweigh any other effects.

The first comparison was with a low off-line processor time,
Here we notice that the off-line throughput increases as expected I
from 1.73 to 2,07 phases/min. For a high off-line processor time [l

it falls to 1.22, and the processor use increases slightly.

Changing the on-line processor time makes very little Wi
‘difference to the on-line throughput, since this is not really the T
bottleneck for on-line jobs. However it affects the distribution of HW
processor time as expected and when it is raised the off-line W

throughput drops to 1.38, a fall of 20%.

Changing the on-line thinking time affects both the on-line
throughput and the processor use in the oppbsite way as would be m
expected, since this has a big effect on the amount of on-line work i
that is done. The reduced off-line throughput for é high on-line

thinking time seems surprising, however the detailed results show that

this is the average of two very dissimilar runs. These have off-line

145

"Table 7.3 |

Simulation results with 207 variation in certain parameters

Off-line On-line |
Parameter changed
Throughput Proc. use* Throughput Proc. use® |

Standard parameter

values 1.73 0.90 4,97 0.09
|
Low off-line i
comp, time 2,07 0.90 4475 0,09 |
:;“
\
High off-line ;
comp.time 1.22 0.91 4.43 0.08 k
Low on—-line ' M
comp. time 1.77 0.93 4,83 0.07 |
High on-line |
comp. time 1.38 0,90 4,70 0.10 |

Low on~line ,
think time 1.55 0,89 5,37 0.10 h

High on-line HJ
think time ‘ 1.47 0.92 4,41 0.08 M
A |

%
including overhead ‘ L

throughputs of 2.03 and 0.92 respectively, and for the second run

the mean store usage for off-line jobs more than 32K was 0.92,

which is exceptionally high and helps to account for the low throughput.
Reducing the number of on—lihe jobs helps the large jobs more than the
small ones, since the large jobs tend to get held up the most by

on-line jobs.

The first alteration to the basic storage algorithm that was
tried was to take the jébs in the first (priority) store queue which
had been waiting a long time in a different order by allocating store
to the first one in the queue that would fit into the space, and then
the next, if any, that would fit into the remainder and so on instead
of allocating store strictly first come first served as before.

This algorithm will be called First Fitting First Served (FFFS).

The danger of this policy is that jobs may arrive in the first queue
and get served so quickly that some jobs never get served. However
the results in Table 7.4 indicate virtually no difference, a slightly
higher throughput for both off-line and on~line jobs because of more
efficient use of space, and a longer wait for larger jobs as would

be expected.

The next alteration was to combine this with putting on-line
"jobs directly in the first queue, thus making them eligible for all
the store even if there are some other jobs waiting in the first
queue. Here the danger outlined before is magnified, and sureenough
we see from Table 7.5 that the off-line throughput went right down to

1.47 and the mean waiting times for off-line jobs increased

significantly. The on~line throughput is much the same and the

146

Table 7.4

Simulation with first queue FFFS%

* ‘. o .
First Fitting First Served

Off-line
Throughput 1.79
Processor queue 3.75
Processor use (inc. overhead) 0,89
(exc. overhead) 0.74
_Disc queue 0.20
Disc use 0.08
Off~-line
SEpEe Megge;‘;x, Use I-IeZ?xi}tiax.
Pure procedure o= 0.13 -
0-4K 0,07 3 1.27 3 112
. §~8K 0.10 3 0.65 12 292
9-16K 0.55 5 0.72 95 603
17-32K 1.08 4 0,67 415 2648
33-40K 0.52 2 0.45 1058 2845

On=line
5.08
0.40
0,10

0,08

0.57

0.24

On-line

Wait
Mean lax.

Queue

. Use
Mean Max,

= 0.54 -
0.47 3 0.22 1 109
0,06 2 0.1l1 18 310
0,15 3 0,10 48 280

Table 7.5

Simulation with on-line jobs immediately joining

Throughput

Processor queue

first store queue which is FFFS¥®

Processor use (inc. overhead)

Disc queue

Disc use

Store

Pure procedure

0-4K

5=8K

9~16K
17-32K

33-40K

148

0.88 2 0.72

First Fitting First Served

1902 4732

Off-line On=line
1.47 5,10
3.57 0.36
0.90 0.10 i
(exc. overhead) 0.74 0,08 i
0.16 0.56 |
0.07 0.24
0ff-line On-1line |
o o I
Meggégzx. Use MeZilﬁax. MeZEQEZX. Use Meaﬂazzx. I
- 0.15 - - 0.53 - |
0.05 3 1.05 3 130 0,08 2 0,20 0 27 it
0.07 3 0.65 1 171 0,06 3 0.10 13 183 |
0.43 5 0.86 97 603 0.08 2 0.08 24 140
1.58 5 0.47 668 2468

reduction in their waiting times, though significant, does not seem

sufficient to warrant this pulicy, since these were fairly low anyway.

Another way of serving the queues is Largest Fitting First
Served (LFFS). Table 7.6 shows as might be expected that the waiting
times for small jobs were increased slightly, the waiting time for
17-32K jobs fell, and the waiting time for 33-40K jobs lay between
those for the basic algorithm and FFFS. This algorithm is probably

preferable to FFFS since it has a more balanced distribution of
waiting times.

A simulation model for swapping was developed, using an image
of the store and making alterations to it to decide whether swapping
was worthwhile or not, but.results with the basic algorithm indicated
that if wé swapped when an on-line job entered the first queue and
could not obtain store this resulted in very little swapping. There
is no real point in swapping jobs to make room for off-line jobs,
since there is not the same pressure for quick response. Accordingly

it was decided not to pursue this line of inquiry further. f the

=

‘discs wewe faster or there were magnetic drums it would probably

change the balance in favour of more swapping.

149

Throughput

Processor queue

Simulation with both store queues LFFS*

Table 7.6

Processor use (inc. overhead)

Disc queue

Disc use

Store

Pure procedure
0-4K

5-8K
-16

17=32K

33-40K

150

* . .
Largest Fitting First Served

0ff-line On-=line
1,78 4,96
4,16 0,40
0.90 0.09
(exc. overhead) 0.74 0.08
0.20 0.56
0.08 0.23
Off-line On-line
Megzeﬁzx. Use Meaza;;x. MegieSZx. Use Meazaizx.
= 0.12 - = 0.54 -
0.04 3 1,26 3 123 0,04 2 0.23 1 136
0.21 4 0.%1 25 0616 ,0'14 4 0.11 32 280
0.68 5 0.91 113 764 0.14 2 0.08 47 379
0.81 3 0.67 291 1591
0.39 2 0.50 893 2535

ChaEter 8
CONCLUSION

There are two main reasons for doing the type of work described

here, to compare and develop techniques and to obtain useful results,

Although the initial intention of the research was to obtain useful

results, it ended up with the emphasis mainly on techniques, as can be
seen from the preceding description. When the work first started the
Cambridge system was in-an embryonic state and the main need was seen

to be for more knowledge about the effects of various factors on

system performance, and how it could be improved. HNowever to find i

this out it was necessary first to learn and then to develop techniques.

There seemed to be more scope for comparing amd developing these 0
than for producing results relevant to the Cambridge system, since as
1 time went on the need for results became less and less as experience fg
‘ was gained with the system and it became operational, thus reducing
the possibilities for change and experiment. It also seemed better |
to model the system as it was and see how it worked rather than produce N

models of hypothetical systems walch would never be implemented, or

evaluate software changes, which had been tried or could be seen to be |

unsatisfactory. i

By the time results were available there were very few obvious !
problems outstanding except core store allocation, which is one reason ‘
why that has been examined in some detail, though it is also a useful w

g il

vehicle to demonstrate the simulation and its use. Some other problems ‘

which might have been considered were rejected because they would involve *

major changes to the hardware or software. It is pointless to invent i

152

problems where no real problem is felt, since it is at the system

design phase that the results are really needed, not when the system

is operational.

e should now consider the value of the various techniques, in b
the three main categories of Experiment, Analysis and Simulation, and
what has been learnt about examining multi-access systems. The most
satisfactory source of data on system and user behaviour is an |
existing system. In tﬁis case the system being analysed was sufficiently
stable and had enohgh users to make it a good source of data, but in
general an analysis should come during the design or development of a I
system and this would not be so. For developing systems one must analyse i
a system with a similar user populatioa, using a batch processing one |
if no multi-access one is available. By making assumptions about the i
managenent policies and charging system one can estimate the potential W“

on-line load.

The system performance is also better obtained from analysing

a system with the same or similar hardvare than from manufacturer's

data. This will give some idea of the overhead and time required to
run typical jobs with existing software, and whether th i
|
manufacturer's claims are to be trusted. -
It is more efficient and convenient if the system contains |
built-in facilities for collecting various types of statistics, and }

produces these in a usable form rather than as sheets of paper with i

=

detailed figures wiich require a considerable amount of arithmetic

to be of any use. It should be possible to turn this on and off, and i

|
preferably to set it to sample at a certain rate to reduce the amount ‘ H

of data and increase efficiency. It could be made to produce only 1
| wanted information, but then there might be a request for some ‘f
| historical information which had been lost. Probably the best solution ’
is to produce the most important information regularly on one strean i
and have other streams of specialized information on request. The I
Titan accounting system, which produces the system name (if it is a. ‘A
public system), store sizes and cumulative comp. and exec. times at i
the end of each phase or where the store size changes, provides a lot J
of useful information. It would be extremely useful if the disc usage M

details were also given for each job, at the moment only the totals i

each minute are given. A softwarc switch has recently been included h

to cut out the detail when it is not required. It would also be Hﬁ
I

| . y 5 o
useful if the more important overall statistics such as the means I
‘ and standard deviations of the comp. times and the throughput in terms
of jobs and phases were printed as a matter of course on a daily basis i

which would give some indication of trends. ”

As a means of determining the effect of changes to the system

experiment is not very practical. It cannot be properly contreclled, l

since it is impossible to repeat an on-line load except on a small

; (21) . \
scale. Greenbaum used a computer to simulate a set of users and I
their responses, but this as a very expensive method. The results are only |

valuable with a relatively stable system and a large load, and then the 1

commitment to the system is too great to start messing around with ite I
I
The cost in terms of computer and human time may be great, and it is |

only practicable for small changes, or ones wiose effects can be

predicted by intuition or one of the other methods. i

154

Before making any model of a multi-access system it is
important to know exactly what information is being sought and what
the problem is, particularly for analytical as opposed to simulation
models where a wide variety is possible. The process should ideally
be treated as an experiment with the models becoming more and more
refined as more data becomes available and more insight into the nature

of the system being modelled and what the critical factors are.

The emphasis shbuld be on.comparison, both between alternative
models of the same system and the system itself where possible, and
between results with different parameter values and possible hardware
or software modifications. The absolute values of the results are
useful in giving an insight into the operation of the system, but £
is the relative values that will tell us how sensitive the system is

to various factors, particularly with simulation where the absolute

values are rather unreliable,

It is because éf this that there are a wide variety of models
for both analysis and simulation depending on the emphasis. As far as
énalytical models are concerned the main differences are between tiose
that concentrate on an individual job as it passes through a system
and determine the distribution of waiting time, and those that
concentrate on the system and treat jobs merely as things to be
counted. A lot of work haé been done on the first type of model,
and some examples are given in the bibliography, but even simple
scheduling systems require approximations, and more complicated ones
cannot be analysed in this way. The only results that can be obtained

from these models are about the time spent waiting for processing,

and if there are other delaying factors such as disc or core store

queues vhich are too difficult to analyse this information is not o

Hh

much use,.

The second type of model, which gives results about mean
waiting times, queue sizes, resource usage and throughput is much more
useful., Here the types of model can be further categorized accerding
to whether we assume that the service times are constant, negzative
exponential, or a combined distribution. This can be regarded as
several negative exponeﬁtial stages of service, probably with different
means, either in series (Erlangian) or in parallel (Hyperexponential)

each with certain probabilities, or a mixture of the two.

Deterministic-models with constant service time have received
little attention in the past, presumably because they were considered
too unrealistic. However the results are remarkably similar to those
with exponential service time where they are comparable, suggesting
they might be of use in more complicated systems which cannot be
analysed using iarkov models. They are useful for providing a clear
jndication of when a device becomes saturated and giving simple
equations comnecting the various quantities which are quite good
approximations to more realistic cases. They can also show how
sensitive various results are to the distributions by comparing a
deterministic model using constant service times with a larkov model

using negative exponential distributions.

Markov rodels with negative exponential distributions which
consider the whole system have not received much attention in the
past, because they could only deal with a restricted class of systems

or else required numerical solution. However extending this technique

to include on-line and off-line work, several stages of service and

requests for specific servers and producing analytical solutions has
enabled us to deal with a much wider class of multi-access systems, and
the assumption of negative exponential instead of constant service times
is much more realistic. A lot of information can be gleaned from these
models as to the effects of changing the quantity of on-line or off-lime
work, increasing the processor speed or adding another processor, and
changing the mean times., This is much éheaper than simulation and
produces more accurate ansvwers if the model is good. It can provide a
useful background to simulation by giving values of the most important
results and an idea of what the critical factors are. It also provides
a good check on the accuracy of a simulation and vice versa. The

ideas developed here could be extended to other systems; even possibly
to paged systems by regarding the store as another resource for which
one has to queue. However they cannot give a picture of store
allocation in a system without swapping or paging, and for this reason

we must use simulation.

Models with more complicated distributions have been solved
numerically, since the number of states increases rapidly as new
notional stages of service are added, but it is arguable whether the
increase of accuracy justifies the extra labour and time when only an

. approximate solution to the model is produced and the solution often

40 .

appears to be insensitive to the distributions.

The swapping model is included nrimarily to show that even

quite complicated systems can often be analysed in a relatively simple
way, provided that the appropriate assumptions are made., VWith a
specific system in mind ore would be able to derive some useful results

o o e

from a model of this type, since swapplng systems are difficult to
YEEC, PE o J

simulate.

‘ of a language. Often this will be dictated by practical considerations w;‘w
| such as what is available on the computers that can be used, or what

\ : the analyst is familiar‘with. Fowever choice of language can be very

’ important from the point of view of efficiency and simplicity and the

i range of models that are possible. If the time and effort are |
available and much simulation is to be done, sericus consideration
should be given to implementing another language, whether new or old

if a suitable existing language is not available.

o

If compatibility is not important the language can be i

tailored to the model rather than vice versa, and good diagnostics

can be built in, whicﬁ can save hours trying to find obscure errors. “
\ If it is based on another language such as ALGOL or FORTRAN, as many
existing simulation languages are, a lot of time is saved on
i
development. Useful facilities in the base language are available, | ‘j

s ~ o o v

including possibly debugging facilities, and it is much easier to I

|
|
| |
Vhen we come to simulation the first question is the choice i
learn, However this may well prejudice the design of the language and
its efficiency. The most important efficiency features are to have &
language that is compiled rather than interpreted, since simulations
involve many loops, and to have an event-based rather than an ‘
-activity-based language, since this avoids all the leading tests that I

are a feature of the latter. Some of the more recent languages, for i

example Simula and 0PS-=4, can be used in either way, vwhich is the
] 9

ideal solution. i

The exzperience gained in the design and implementation of

FOSSIL was useful in understanding the nature and variety of simulation

o

languages and models. The structure and syntax are very simple, some |

i S 2 "l “
158 W

of the limitations being imposed for efficiency reasons. It was not :

designed for general use, and hence lacks data structure manipulation |
| ‘
1 facilities, which were not really necessary for this application. !
The implementation exploits non-standard features that might prove

difficult elsevhere, though a language which was implemented entirely

by Fortran subroutines would probably be intolerably inefficient.
The features most worthy of incorporation in subsequent languages are
the ability to begin and terminate activities at will, contained in 1

several existing languages, the interlock and queueing system, the ‘

tabulation facilities, and having local variables identified by an i

index for different activations of the same routine.

Simulation must always be done with care, both to save time and ‘J
I
1 to ensure more accurate results insofar as these can be reconciled. i

One of the main difficulties is to decide on the right level of ‘ k

detail, and it is here that the results of preliminary analyses can I

help. There is always more that can be included, for example a user

‘ behaviour model or details of the internal workings of the discs or |

the supervisor, and it is difficult to know when to stop. Randell and
1 (51) - . . . 1 "o ‘

Zurcher proposed a modular simulation, with black boxes" whose i

workings are not included gradually being replaced by more detailed I

models. Houvever modularity is very difficult and inefficient to I

achieve in practice, since different algorithms may imply differences \
I
all over the program.
Because of the fact that simulation programs are constantly
changing they must be easy to modify and it should not be necessary to

rmodify 10 different programs to test 10 different algorithms., The

simulation described in Chapter 7 was one program with switches all

|
i
|
!
l
|

over it to seiect the different branches for the different algorithms,
this is slightly inefficient and impractical for large numbers of
alternatives, unless they can be reduced to smaller independent sets
of alternatives, but is much easier to modify. Debugging facilities
should also be built into the program with switches so that

modifications can easily be tested, they can be removed completely

for production runs if necessary.

A little effort put into techniques to improve accuracy can

bring great savings in time and improved results, and it is important
to realise that what is wanted is not a random sample but a typical
Tests should also be done to show the sensitivity of the

sample.

simulation to certain parameters and assumptions.

Having a convenient operational system and output format can
nmake a big difference in the rate of developing simulations and the
ease with which the relevant information can be extracted., As
mentioned earlier it is comparisons between similar runs that are
important, and the eye cannot take in more than about two'pages at
once, éo whatever detail is provided a summary of the important

results is vital.

The main scope for future work lies in the study of paged
systems probably with several processors. To do this properly would
require a considerable amount of effort., A combination of all three of
the techniques described above should be used, since each has its owmn
distinctive advantages. The combination is more powerful than

relying solely on one technique, and also avoids putting all ome's

eggs in the same basket.

160

It is most important that this study should occur at the
system design stage, and preferably when the hardware is being
designed, so that the total system can be analysed with a wide range of
alternatives and hypotheses tested. A study of a fully developed system
is of value for developing techniques and furthering understanding of
the system. However it is not likely to come up with startling
proposals for improvements, because by then there are too many
constraints. The person to whom the results could be most useful is
the one who decides the basic philosophy of the system, often
completely in the dark, rather than the software expert tinkering
about with the scheduling algorithm, who by the time the system is

operational usually has a fairly good idea of what is going to

happen anyway.

T
!

i
§
|
1
|
!
|
|
|

Bibliography
Note The references are given in alphabetical order of author and
the authors of an article or book are also in alphabetical order.
The following abbreviations are used:
ACM Association of Computing Manufacturers |
AFIPS American Federation of Information Processing Societies it |
FJCC Fall Joint Computer Conference ’NJ
IBM International Business lachines E;j
: il
IEE Institute of Electrical Engineers ‘ﬁﬂ
IFIP International Federation for Information Processing ‘iw
I
MIT Massachussets Institute of Technology |
SJCC Spring Joint Computer Conference

i
New developments in simulation MN
AP, Amiry and K.D. Tocher |

. ‘

conference on Operational Research

1963 p.832 | |

roceedings of the third

(p]

File handling at Cambridge University I
D.W. Barron, A.G. Fraser, D.F., Hartley, B. Landy and R.M. Needhan (mf

\
‘ |
Proceedings of the AFIPS SJCC 1967 p.163 I

ML/I User's manual |
P.J. Brown ‘ ‘M

| I

I

It
Cambridge University Mathematical Laboratory Nov. 1966 \

The output of a queueing system
P.J. Burke i
Operations Research 4, Dec. 1956 p.699 i

Writing simulations in CSL
J.N. Buxton
Computer Journal Vol.9 No.2 Aug. 1966 p.137 i

Control and Simulation Language
J.N, Buxton and J,G. Laski

Computer Journal Vol.5 No.3 Nov. 1962 p.194

10

11

12

13

14

15

16

17

162

Systems performance evaluation, survey and appraisal
P. Calingaert

Communications of the ACM Vol.l0 No.l Jan. 1967 p.l2

Extended Control and Simulation Language
A.T, Clementson

Computer Journal Vol.9 No.3 Nov. 1966 p.215

Stochastic models of multiple and time-shared computer operations

E.G., Coffman

University of California Engineering Department No.66-38 June 1966

Distribution of attained service in time shared systems

E.G., Coffman and L. Kleinrock

Journal of Computer and Systems Science Vol.l No,3 Oct. 1967 p.287

The Multics system (series of articles)
F.J, Corbato et al.
Proceedings of the AFIPS FJCC 1965 p.l85

CTSS = A programmer's guide
Ed. P.A. Crisman
MIT Project MAC 1965
Simula = An Algol based simulation language

0.-J. Dahl and K, Nygaard
Communications of the ACM Vol.9 No.9 Sept. 1966 p.671

‘A description of the Simscript language
B. Dimsdale and H,M. Markowitz
IBM Systems Journal Vol.3 No.l 1964 p.57

An optimization model for time-sharing
D.W, Fife
Proceedings of the AFIPS SJCC 1966 p.87

Preliminary investigations in time-shadring simulation
G.H. Fine

System Development Cdrporation SDC-T¥M-2203 Jan. 1965

Simulation of a time-sharing system

G.H. Fine and P.V,. McIsaac

System Development Corporation SDC-T¥-2203 Dec. 1964

18

19

20

21

22

23

24

25

26

27

A Markovian model of the University of Michigan executive system
J.D. Foley
Communications of the ACM Vol.lO Wo.9 Sept. 1967 p.584

Probability models for multiprogramming computer systems
D.P. Gaver
Journal of the ACM Vol.14 No.,3 July 1967 p.423

 Evaluating computer systems through simulation

R.P, Goldberg and L.R, Huesmann

Computer Journal Vol.1l0 No.2 Aug. 1967 p.150

A simulation of multiple interactive users to drive a time-shared
computer system
H.J. Greenbaum

MIT Project MAC MAC-TR-58 Jan. 1969

On-line computation and simulation OPS-3
M. Greenberger et al.

MIT Project MAC 1965

A new Monte Carlo techniques; Antithetic variates
J.}. Hammersley
Proceedings of the Cambridge Philosophical Society 52

July 1956 p.449

Simulation techniques in operational research
. J. Harling

Operational Research Quarterly Vol.9 Mar., 1958 p.9

Cambridge multiple~access system user's reference manual
Ed. D.F. Hartley

Cambridge University Mathematical Laboratory Nov. 1968

The structure of a multiprogramming supervisor
D.F. Hartley, B, Landy and R.M. Needham
Computer Journal Vol.1ll No.3 Nov. 1968 p.247

GPSS III: An expanded genefal purpose simulator

H. Herscovitch and T. Schneider

IBM Systems Journal Vol.4 No.3 1966

163 ||l

28

29

30

31

32

33

34

35

36

37

38

A computer center simulation project
G.K. Hutchinson

Communications of the ACH Vol.8 No.9 Sept. 1965 p.559

Computer systems design and analysis through simulation
G.K. Hutchinson and J.N., Maguire

Proceedings of the AFIPS FJCC 1965 p.l6l

Networks of waiting lines
J.R. Jackson
Operations Research Vol.5 No.4 Aug. 1957 p.5138

On-line simulation
M.M., Jones

Proceedings of the ACM National Conference 1967 p.591

Incremental simulation on a time-shared computer
M.}, Jones

MIT Project MAC MAC-TR-48 Jan. 1963

Simulation of a multiprocessor computer system

J.H. Katz

(=G Y

An experimental model of System/360
J.H. Katz
Communications of the ACM Vol.10 No.ll Nov. 1967 p.694

Time~shared systems: A theoretical treatment
L. Kleinrock

Journal of the ACM Vol.13 No.12 April 1967 p.242

Certain analyticsl results for time-shared processors
L. Kleinrock

Proceedings of the IFIP congress Aug. 1968 p.D119

SOL - A symbolic language for general purpose systems simulation

D.E. Knuth and J.L. licleley

IEE Transactions on electronic computers Aug. 1964 p.40l

Cyclic Queues

E. Koenisberg

Operational Research Quarterly Vol.9 No.,l Mar. 1958 p.22

164

39

40

41

42

43

44

45

46

47

48

165

The past, present and future of general simulation languages
J.S. Krasnow and R.A. Merikallio

Management Science Vol.ll No.2 Nov. 1964

T3 Fortran reference manual
J. Larmouth

Cambridge University Mathematical Laboratory July 1967

MLS - the Titan mixed language system
J. Larmouth and C. Whitb y-Strevens
Computer Journal Vol.ll No.3 Wov. 1968 p.256

On time structure in Monte Carlo simulations
J.G, Laski

Operational Research Quarterly Vol.l6 No.3 Sept. 1965 p.329

A proof of the queueing formula L = AW
J.D.C, Little
Operations Research Vol.9 No.3 May 1961 p.383

Computer simulation: Discussion of the techniques and comparison
of languages

J.F. Lubin

Communications of the ACM Vol.9 No.10 Oct. 1966 p.273
The design of multiple~access computer systems: Part 2

R.l1M. Needham and M.V. Wilkes

. Computer Journal Vol.1l0 No.3 Nov. 1967 p.315

Computer simulation of computer systems performance
N.R. Nielsen

Proceedings of the ACM National conference 1967 p.581
The simulation of time-sharing systems
N.R. Nielsen

Communications of the ACHM Vol.l0 No.7 July 1967 p.397

A status report on Simula

K, Nygaard

Proceedings of the third conference on Operational Research 1963

49

50

51

52

53

54

55

56

57

58

166

An analysis both theoretical and by simulation of a time—shared
computer system

J.P. Penny

Computer Journal Vol.9 No,l May 1966 p.53

Operating systems for digital computers
P.R. Radford
Cambridge University Ph,D., Thesis 1968

Iterative multi-level modelling — A methodology for computer
system design
B. Randell and F.W. Zurcher

Proceedings-of the IFIP conference Aug. 1968 p.D133

Markovian models and numerical analysis of computer systems behaviour
R,S. Rosenberg and V.L. Wallace

Proceedings of the AFIPS SJCC 1966 p.l4l

CTSS Technical notes
J.H. Saltzer
MIT Project MAC MAC-TR-16 lar. 1965

An analysis of time-shared computer systems
A.L. Scherr
MIT Project MAC MAC-TR-18 June 1965

Time-sharing measurement
AL, Scherr

Datamation Vol.1l2 No.4 Apr. 1966 p.22

The SDC Time-sharing system: Parts 1 and 2
J.I. Schwartz
Datamation Vol.10 No.ll Hov. 1964 p.28 and No.l2 Dec. 1964 p.51

The role of digital simulation
P.H. Seaman

IBl Systems Journmal Vol.5 No.3, 1966 p.l75

An analysis of time-shared computer systems using Markov models

Proceedings of the AFIPS SJCC 1966 p.87

———

|
1
|

60

61

62

63

64

65

Assessing computer performance
J.M,. Smith
Radio and Electronic Engineer Vol.36 lNo.5 Nov. 1968 p.238

The art of simulation
K.D. Tocher

English Universities Press

Review of simulation languages
K.D. Tocher

Operational Research Quarterly Vol.16 No.2 June 1965 p.189

Further analysis of a computer centre environment
V.L. Wallace and E,S, Walter
Communications of the ACM Vol.1l0 No.5 May 1967 p.266

The design of multiple access computer systems
M.V, Wilkes
Computer Journal Vol.l0 No.l May 1967 p.l

Time sharing computer systems
M.V. Wilkes
lMacdonald & Co. 1968
A model for core space allocation in a time-sharing system
M.V, Wilkes
Proceedings of the AFIPS SJCC 1969 p.265

167

\
‘ ;i |
|
\‘1 ‘
Appendix ‘; | ‘

|
_
SIMULATION PROGRAM I

|

“ |

|

Il
|

(I
o ‘

(i
ik

\ |

: GLIRAL ¢ANNOw 1P,T2,T3,1V,FL,18W,0FN,OFS (i
¢ GLIBAL CONNAS THINKTINR,PISCTINE, QUANTUN,OVERHEAD i |
; GLOBLEL, QN0 STORTOUTUE, STOREWA xT,sgm,SJu "
| GLOnRlL cninos qu~~w"wv ,DISCQUEUR,RN,CU,DU,LB i
; GLNZAL coiiod nxsc,ng,uu,ur,ug,nx Jx,NQ,US,UP,¥D,T6
SLOGAL aNIION EC,C?,””,CL,JH,CD,DL,TH,ST PEU” MW
! TS DINBHSINK C2{4 9),&@(49),cr(Ae),uu(,a),L {(2),JA(2)
L SN(49),3T(28,2),50Q(2),0L(48),TH(4),C0U(4),DU(4)
L’ STORAQUEUE{4) ,5TOREYAIT(4)
PRNOCRUEVE(8), WIaC;UFUF(d),SQH(S 4) 1
| sr1u2u H(4),UP(2),US(5,2) ,RN(11),SHM(5,¢) N

-n,ul,ﬁb,uOH,DFL,OFS W

4(1‘n=\ RU,S:I ‘ i

" {4) ,NINDA(3) , HILD(2), VARI (4) W
KR,El), (NR,E2), (LR,R3), (LC,E4), (NR,ES) H

= :J) = l ““n

vy o= 0t 41.) M\

’ o) o= J4’ {41) ‘T‘J‘
| = LO(4L) i
* = ud.éﬁ) -1 [

: No= LO{4D) = 1 i
; s = L") {4G) = ‘M\
SY = LO(40) = o

=
o
b

LNL4a) -
LO{EAR)
o LO{LY) =

i

4
2

=

n

§
o 1o (s s fa tee

¢a8 = nnlle) = fili

SO = LO(20) = 1 MW

¥l o= L0l26) =) jﬁ

UP = LO(A} =) i

RU = LO{2) = 1 h

JA Lo(n) = 1 ‘W

THom LOL4) = 1 Nm

au o= LO(4) = 1 i
; DU & LO(4) = 3

PROCOUNUD = LO(8) = } |

DIZCQUIUT = LO(8) = 1

STINRQURTD = L0(4) = 1

STORSUSE = LO(4) = 1

STORAFALT = LO(4) = 1

MEINETIET = 60

AIRATINR = 5.6

AUALNTIM = 1_22

e 40

/ JVIRHEAD = 8,83

5 CALL SET (ONOP(1),CHARS(47,38,38,36,44,41,46,37)) i
. CALI, SZT (ONOQF(2),CHARS(47,46, 3@ 44,41, 49,37,3)) |
! CRILL SET (f“a £3),900°¢(1))

? CALIL, ST (ONAD(4),7107(2))

2 CALL SRAT {EIDA(z},?S\2>(46 41,39,40,52,5,5,5))

| QRLL SOT (NIDA(2),CIIARS (45,37, 33,46,5,5,5,5))

: CALL 50T (5151(3),Tﬁlﬂﬁ(oé,33,&7,5,5,3,5,5))

| CALL S8BT (VARI(L),CHARS(47,38,38,1,3%,47,45,48))

i CALL SE™ (YARI(2),2!IARS(47,46,1,35,47,45,48,5))

' CALL SET {YARI(3),CHARS(52,40,41,46,43,5,5,5))

CALL SET {(VARI(4),CHARS(36,41,51,35,5,5,5,5))
CAr1, HS(1) I
PISQ = =} |
PO 8 I = 11,16
8 ST(I,l) = =1
NB = 28
BEGIN (JOBGEN,1)
BEGIN (JOBGEN,2)
REGIN (ALG2,9) |
CALL SETDUMP | I
CALL FORCEDUMP |
oLN = CLOCK(9)
IN = 253 + NOCTAL())
CALL TI(IN) ‘ i
IF {IN = 254) 17,17,27 i
17 CALL SI(IN)
ASSIGN 27 TO I |
CALL TRAP (I,11) : I

KR = INTREAD (=1) |

NR = XSIGHF (MR,1) il

LR = INTREAD (w=l)

IP = INTREAD(=])

FA =] ' I

IF (IP) 70,27,7 |
79 IP = =IP

IV = INTREAD (=1)
FA = REALREAD (=1)
7 CALL TD(T,D)
PO 59 I = 1,4
TARLE (STOREWAIT(I),1l,,1,,5,,2)
TARLE (STOREQUEUE(I),le,le¢,5,,"2)
59 TABLE (STOREUSE(I),0,,1,,5.,2)
DO 6@ KR = @,NR ’
IF (XR) 57,57,58

57 PO 45 T = },11
45 RN({I) = 0,083 » I

DELAY (966,) ' il
N GOTL 66 i
58 - Te = TIMR® |

DO 9 I =1,2
DO 24 J = 1,5
SQM(J,I) = @

24 SWHM(J,I) = @
TABLE (STOREWAIT(I),l.,1e,5,,2)
TABLE (STOREQUEUE(I),Llesle,5,,=2)
TABLE (STOREUSE(I),0.,16,5¢,72)
PROCQUEUR(I) = &
PROCQUEUR(I + 4) = @
DISCQUEUR(I) = @ :
DISCQUEUE(T + 4) = o
cu(I) = o '
pulr) = o

9 TH(I) = &
DO 31 LC = =3,2
CALL RS(LC/3,)
po 20 I = 1,11

28 RN(I) = {I + KR)/(KR + 12,)

31 DELAY (18, * LR) '
DO 56 I = 1,2
DO 51y J = 1,5

N ——

SRULT, T 4 2} = XNAYOP(SQIU(JI,I),SQH(T,1 + 2))
51 SHLT, I + 2) = HANLDISUE(JT,I),SHHI(J,1 + 2))
QRLL AD(7U,I)
AATI, AD(DU,I)
TRLL OAD(TH,I) |
nan, Anf“ﬁnﬂuurua, }

. »
= ey b
TATL AD(PRNCQUTYE, X
B P\('\T” “’)"“'{];—J’I
A.l"i.ll_x *‘&F'(WT)&:y‘)\. ,':d,t
CALL ﬂT(”"DHﬂV& T,I

JALL HT(STORE

RS
e CALL LT (S870f A,YE}F],I)
=g \

IF [1R) 65,27,71
T {
A}

71 TANDINR, 1)) 41,4),61 |

61 YRITENUT 1,16,IP + ISW,T,D w
IF (FA =~ 1) 40,41,42

4¢ YRITEAUT 1,43,VARI(IV) |

aQmTn 41
2]

‘
]

3
0)
=
=2
3

3
s

\
\
| L 44, YARI(TV)
41 PO 16 I = 2 % JL 4 1,2 % M o+ 2 |

607 (52,54,53,54),1 d

52 YRITEOUT 1,55,KR,LR - Il
a070 54

53 YRIVEQUT 1,56,NR,LR |
"8 = 056 ‘

54 WRITEOUT L,5,08N0F(1),66 % TH(I)/(TIME = T6)
URITEONT 1,3,000F(1),AQ(PROCQUEUE,) i
PU = QUIIV/(TINE - T9) i
URTTPROUT 1,18,PU,PU * OVERHEAD ‘
TRITAOUT 1,4,0H0F(I),AQ(DISCRUEUR,) il
TRITROUT 1,19,DU(IN/(2 % (TINE = Te)) ‘
X = ROUISTOREQUAUER(L), 4) |
L, = RO(STNREQUAYE(I),S)
IF (X =~ L, 32,32,33° Il

3z IF (IP = 4) 62,3352 I

6% TRITEONT 1,11,0H0P(I) I
HINTAR (TORSQUENT(I), -4 i
PRITEOUT 1,25, (8QR(S,1),0 = K, L) - ‘

33 URITEOUT 1,6,00M0F (1)
NINTAB (OTOREUSH(I), =4) .
IF (IP = 4) 63,12,63

63 o= W“("”Dr“HAI”(I),é)
L = RO(STOREWAIT(I),S)
IF (K = L)Y 34,234,)0

3¢ VRITEOUT 1,13,0RQF (1)

' NITTER {GTOREWAIT(I), =4)
VRITEOUT 1,26, (SWH(J,I1),T = K,L)

1€ CONTINUE
IF (M = L/HR) 72,60,72

66 7g = TIND
1= I
1P {ER) 72,72,61

72 PRTNT 1E,XINTF(CLO = CLOCK(e)),LO(8) |
‘/-'AIJJ UI: - “3

27 STOP

3 FORIAT (1%,A8,)6H PRNCESSOR <QUEVE>,F6,2) - |

18 FONMAT (15H+ PROCRSSOR USE,2F6.2) ‘ I

4 PORAAT (1%,A8,11H DISO <QUEUE>,FE€,2) |

19 PONNMAT (16H+ DISC U3E,F8,2) i

11
13
15
16
25
26
43
44
55
56

FORMAT (1HA,A8,11H THROUGHPUT,F6,2)
FOR1AT (1X,A8,10H STNRE USE)

FORMAT (1X,A8,12H STORE <QUEUE>)
FORMAT (1H+,A8,14H <WAIT> VS STORE)
FORMAT (6H CLOCK,I5,6H4 STORE,I16,/)
FORNAT (16HL1/D/6 IP =,12,2(1X,A8))
FORHAT (AH+MAX,I16,41I12) ‘
PORNAT (4H+MAX,F20,3,4F12,3)

FPORNAT (6H+ LOW ,A8,5H TIME)

FORMAT (7H+ HIGH ,A8,5H TIME)

FORMAT (4HARUN,I12,4H FOR,14,5H MINS)
FORHAT (/,12,9H RUNS PFOR,I14,5H MINS)
END

FUNCTION AQ(X,I)
DINENSION X(1)
RQ = X(I)/Z(X(1 + 4))
END -

SUBROUTINE MT(T,I)

DIVENSION T(1)

CALL MERGETAB (T(I),T(I + 2),T(I + 2))
END .

SUBROUTINE AD(X,I)
DIJIENSION X (1)

X(I + 2) = X(I + 2) + X(I)
END

SUBROUTINE JOBGEN
DINENSION A(49)
IF (A(e)) 7,7,8

A(@) = 6,061 » 2
A(l) = o,100
A(2) = @,097
Al3) = 0,070
L(4) = o,071
A(S) = &,149
Al{6) = €,167
AlT7) = 9,127
A(S) = ©,167
A(9) = ©,007
A(le) = 9,027
A(ll) = e,008
A(l2) = 0,012
A(l3) = @,009
A(l4) = 0,022
A(1l8) = 5,683
A(ls) = 9,002
A(Ll7) = 9,001
A(ls) = ©,001 % 2
A{(26) = 5,169 * 2
A{21) = @&,112
A(22) = o,le0
L(23) = 0,096
Al24) = 9,692
A(25) = ©,095
A(26) = 0,095
A(27) = 9,092

14

Y
- L

Al2R) = 6,085
A(209) = 0,056
Eloe) = 6,631
A(31) = 0,018
Al22) = 2,013
L{23) = 0,004
42'.(:“*‘:'4) = 9,962
A(AD) = &,991
L(G6) = 8,601 » 2

T = 28 % IVNDREY = 20
IF (JA(INDEX)) 1,9,18
IF (JA(IVDIEZ) = 20 + 2 * INDRX) 11,12,1
% o= IR(RT{INDEX),®,1)
TFO(R) 1,12,9
IF (RU(INDOX) =~ JA(INDEX)) 1,2,3
MO 6 J = T o+ 1,18 * TUDEX
IF (OL(I)) 5,5,6
CONTINUE :
aomn 1

GIK (JINB,J)

J) = INDEX

~
"

S IR |
‘L’:D*:]:Ui:)’ﬂlb{Dﬁf‘r"UJ'«:}D"ijj"]*‘l

Lot B
puiy
e
..;

(IBPEY) = JA(INDER) + 1
0 13
JALIHDEZ) = JA(INDAR) = 1
NWAY (BX{RE(INDEX + 2),A(I + JA(IHDEX)) * S5e0))

,.
3
3

14, RU(ILHDRX) ,JA{INDEX)

- ol

(161 ERROR IM JOBGEH,213)

MM Oy

SURRODUTIVNE JOB

DINBNSIO! BT(48),QC0({2)
SAMIVALEYCE (I,0L(INDREX))
RU(TI) = RU(1) + 1

TF (T2) 14,14,15

CAIJu T':T (I)

OALL SAL .

IF (SE{IUDRX)) 3,3,106 -
IF (1P = 4) 21,22,21
BT(INDEXY = TINE

aATT
(PRIOENY] ‘JHL"

S o= 3I(ST({INDEX))
o= TIME = BT({INDRX)

pi
i

3WI(S,I) = HAXLF(sWI(3,1),H)
TAR (STORRWAIT(I),S,W)

S o= SH{ST(INDDY))

TAR (STORNUSE({I),S,US(S,I))
Usis,I) = US(S,I) + 1

GgamTn 4

TAR (STORDUSE(I),o,,UP(I))
Up{z) = UP{I) + 1L

ORLL DIS

"1;'\!:!4 UD(P r O”‘UL,’}(",I)
JC(I) = QC(I) +)

CALL ALGL

QUiIy = owlI) + Cn(I)

CALL UD(PROCQURUE,QRC,I)

nc{1) = Qa(Ir) = 1\
TH(I) = TH(I) + 1)
CALL DIs
IF (SM(INDEX)) 5,5,6

6 S = SM(SN(INDEX))
TAR (STOREUSE(I),S,US(S,I))
us{s,I) = Us(s,I) =1 '
IF (IP = 4) 20,23,20

26 CALL LOST
23 CALL CHR

GOTo 2 |
5 TAB (STOREUSE(I),o,,UP(I))

UP(I) = UP({I) = 1
IF (I - 1) 2,2,1
1 (OALL CHR
TT = EX(RN(7),THINKTIMNE)
IF (IV = 3) 18,19,18

19 TT = TT * FA
18 DELAY (TT)
CALL CHR
GOTO 2
) FORMAT (213,F8,2)
13 FORHAT (I3,14,F8,2)
END

SURRDUTINE ALGL
EC({INDEX) = CN(INDEX)
CALL INQP({I)

IF (I = INDEX) 4,2,4

4 DELAY (99999,)
GOTO 3 , |
2 CALL RECT

BLOCK (J0B,JR)
JR = INDEX
DELAY (EC(INDEX))
3 CALIL RECT
JR = @
CALL INQP(I) .
IF (I) %,5,6 ‘

5 UNBLOCK (J0OB,I) :
RESCHFDULE (J0OB,I,TINE + EC(I)) 1
JR = I

5 RETURN
AND

SUBROQUTINE DIS
DINENSION QD(2)
EQUIVALENCE (I,0L(INDEX))
CALL UD(DISCQURVE,QD,I)
QD(I) = QD(I) * 1}
QURUE (DISsC).
D = EX(RN{I + 4),DISCTIHE/2)
IF (IV = 4) 16,17,16

17 . D =D % PA

16 DU{I) = DU(I) + D
DELAY (D)
CALL UD(DPISCQURUE,QD,I)
aD(1) = QD(I) = 1
RELLASE (DISC)
BUD

N

4

O

HoU O

[#]

[N

SURRDUTIVE UD(A,Q,I)
PITIDHGION A(1), Q(lI

o= TINE = To
FATY = A{I) + Q{1) * (T = A(I + 4))
A(T + 4) =T ‘
REER
SURROUTING SH{1) .
6077 (1,2,3,3,4,4,4,4,5,5),1
SH = L
RE™IIRH
51 = 2
RETURY
SH o= 3
RETURY
o o= 4
RETURN
S =8
TND
AURRAUTINEG CHR
T = OL{IYDEX)
IF (RU{I) = Ja(X)) 2,2,3
putt) = RU(I) -]
IF (T2) ¢ 7
CALL U7 (= I)
ALIINDRY) = o
Q)

AH["&-{C"\HA
‘;J
1"'
1)
—
P el
¥

CAT, :

PINISH

IF (T2) 4,4,5

CALL WT(e)
RETURY

™Y ")

ek

AURBROUTINE LQ(0)
NIARTSIOY O(1)
I H ' :L:.;;I‘ Q

J 3

I =4 -
T o= Q)

IF {J ~ INDEX) 2,3,2

Qf{I) = Q(J)

IF (1) 2,3,4

RRITEO!

HT 2
aT(r) = TINE

RETURH
WRITEQUT 2,6,TINE, INDOX

VRITEQUT 2,6, TINE, = INDEX,XINTF(RU(I)),TIHE = DT‘I)

2,6, TIRE, INDEX, XINTF(RU(I)),TINE = OT(I)

SUBROUTINE SAM

DINENSION P(2), PT(l),2), CT(1ll,2)
INTEGER PT,P '
IF (FS) 8,8,7

ol < P |

P(1) = 16269
P(2) = 64856
PT(L,1) = 29908
PT(2,1) = 5668
PT(3,1) = 3592
PT(4,1) = 1497
PT(5,1) = 656
PT(6,1) = 441
PT(7,1) = 403
PT{8,1) = 259
PT(9,L1) = 427
PT(le,1) = 178
PT{11,1) = 238
PT(1,2) = 418780
PT(2,2) = 18942
PT(3,2) = 2721
PT{4,2) = 1814
PT(5,2) = 292
PT(6,2) = 88
PT(7,2) = 24
PT(8,2) = 0
PT(9,2) = 5
CT(1,1) = 2,3
cr{2,1) = 17,5
CT(3,1) = 20,9
CT(4,1) = 42,9
CT(5,1) = 63,4
CT(6,1) = 56,7
ar{7,l) = 77,2
crT{8,l) = 37,3
CT{9,1) = 74,6
cT(le,l) = 196,4
CT(11,1) = 550,06
CT(1,2) = 0,7
CT(2,2) = 9,6
arT{3,2) = 5,4
CT(4,2) = 4,6
CT(5,2) = 17,4
CT(6,2) = 16,9
aT({7,2) = 28,9
cT(8,2) 5 @
cT(9,2) = 2,8

I = OL(INDEX)
GaT™n (4,5),1
J = IR(RN(8),1,P(I))

GOTO 6
J = 1 + P(I) %= RND(RN(9),HND)
L = @

DO 2 K = 1,13 = 2 » I

7F IJ =~

' 2 A0 IRUE ‘

PRIJT 9,1,7,L,P{1) _ ;
STOP

3 SEIIHNDRY =K e] |
CNIINDEX) = = OT(K,I) * LOGP(RND(RE(I + 9),=ND))
CN{INDEY) = Cﬁ(IUﬁT:)/OVEhL“AD ‘
IF _¢I1¥-=-§) 11,10

11 CN{INDRX) = CV('“DEX)‘* FA

l¢ RETURN

] o “h_ (AIS)
ANT
FUNCTION RED(X,I)
J o= I o+ 2 |
CDH (1,2,3,4,5),7 ‘

1 RED = BORTF (RR{X, 1))
ﬁ*“nn

2 Rin = SORTF(RR(X,0,251,2,249)) = 0,5 \
RETURNE ‘
3 RUN = RR{X,1l.)
RETURY
4 DHD = 1,5 = FQRTF(QH(X,G,ZEl,Z.ZGg))
RETURE
5 RED = L = SQRTF (P“\)\ 1))
RHD

SURRDUTING ALG2
g mq\:\:': ‘

DELAY [QUAHNTUL) j

MmMprr T ~
"Ar‘h‘!l) ’\ 1(‘

cH = 9

J o= & ‘
7 ¥ om

J o= CO(I

IP {J7) 2,3,4
4 IF (cil - €3(J)) 6,5,5
6 M = as(J)

Bos oI
hd

IJ = J
5 n8lg) = 9
Gomn 7
3 IF (C) #,8,10
le cQiry = I,
cQir)y = cQlL)
CQ{M) = e’ ‘
IF (T3) 11,111,112 \
12 CALL YQ(CQ,3)
11 IF {L - JR) 8,14,8

14 ORLL INQF(I)
IF (I = JR) 13,8,13
13 RLOCE (SNB,JR) ‘
UHNBLOCK (J0B,T)
RESCHRDULD (J0B,I,TINE + EC(1))
JR = T
GOTO 8

e
LR

L

AN

SUBRQUTINE INQF({I)
I = @
I = CQ(1)

IF (1) 2,2,3

IF (EC(I)) 4,4,2
RETURN

END

SURRAQUTINE RECT

IF XHJdgR) 2,2,3 <

CS({JR) = CS(JR) + TINE = TI
BC(JR) = BEC(JR) = TIMNE + TI
TI = TIMRA '

RETURN

NHD

SUBROUTINE JQ{Q)
DIMENSION O(1)
INTEGER 0

J

Q(1)
IF (J) 3,3,2
Q(I) = INDRX
Q(INDEX) = @
END '

SURRDBUTINE WQ(Q,N)
DINENSION Q{1)

INTREGER Q

NL
I =0
I = Q1)

IF (1) 2,2,3
WRITEOUT N, 4,1
GoTo 1
RETURY
FORMAT (1lH+,13)
END '

SURROUTINE GEST
PINENSION QS(5,2)

BQUIVALENCE (J,0L(INDEX))

GoTo (1e,18,20,1,18,20,18,18,18,18),1P

IF (J - 1) 1,18,7

IF (IC(sSQ(1))) 1,7,11

LB =1

GoT™ 3

LB =17

IF (ISST(INDEX,1)) 2,1,4

S = SH(SN({INDEX))

TAD (STOREQUEUR(J),5,Q28(S,J))

0sS(s,T) = Q8(s,J) + 1 ,
SQM(8,J) = XNAXeF(3QM(S,J),XINTF(QS(S,7)))
GoT™o (15,15,19,1,15,19,15,15,15,15),1P

IP (J = 1) 1,;15;)6

CALL EQ(5Q(2))

™ = 1000 = 400 * J

IF (S - 4) 12,8,8

T =2 %7

12 DELEY,)
' IF (IQ(8Q12))) 2,1,19
L& CAnLL RFQ (5Q(2),1rnnk)
Gom™n (1€,17,17,1,17,17,16,1.7,16,17),1P
17 LR o=)
IF (ISST(INDEX,L1)) 16,1,9
16 RN DoIB0(L))
MALT {IPDRX)
g 5 = Sl{sH{ INDEX))

TAN (3TORDQUEUR{T),D

AR
s)(LJ,U) = ;h)(bl,kT) - l

4 PETHRY
1 PRIET 14
aTap
14 FORHAT (14X EDROR I GEST)
RED
SURRAUTING LOST
PO g I, = 1,NB
IF (37(L,l) = THDDX) 8,11,8
11 STlL,l) = @
g CoONTINNE
TF (IVDRY =~ Zg8) 15,18,18
15 A7 o= Ord o=)
NFG = OF8 = SN {INDAER)
18 LB = 1

I = 2
16 T Ic(eall), 1)
TF LI 1,5;6
[5) J o= 1357 {I,1)
IF {JT) 17,1,9
L7 f070 17,16,19,1,16,19,7,16,7,10) , IP ‘
g Al }-::’Q (SQ(L)'I) |
FROT (1) ‘
agaTd le
L I = & }
IF (IC(EQL1))Y 1,4,13
13 LB o= 17
4. To= I0(S0(2),1)
IF (1) 1,7,2
2 J o= IF‘.ST(I,I_)
IF (7) ¢4,3,3
3 CALL DrQtsQz),1)
DELCHRDULD (J0R,I,TINE)
cann 4
7 RETURY
1 PRIUT 12
STODP
12 2ONNAT (14H ERRNOR IX LAOST)
AND

Un.-}r-’vyp“ftyﬂ E\()(
F)I i]SIDT Q(l)
INTRGRR Q

H)

4

I o= @
4 I =J

J o= Q{r)

IF (J = K) 3,2,4
3 IF (J) 1,1,4
2 a1y = Q(J)

17
19
le
12

1l

RETURN
CALL PQ(Q,0)

PRINT 5,K
STOP
FORMAT (I3)
OND

SUARROUTING EQ(Q)
DIXHQSIO Q(1)

1 4
G070 (2,2,2
IF (SH(J) =
Q{I) = INDEX
G(INDEX) = J
RETURY
PRINT 6
sSTNP
FORHMAT (L2H ERROR IN EQ)
END

FURCTION IQ(Q)
DIMENSION 0Q(1)
INTHGER Q

I = 0

I = 0(1)

IF (I = INDEX) 3,2,4
IF (I> 1,1,4
IQ = =)

RETURN

I0 =1

END

TION ISST(I,HE)
= =]
M1
Go "D (11 1.,t1,1%,21,1}, ll 1y,17,17),1P
IF (I = ze) 19,111,111
Gom™n (10,11),HE
IF (OFN - 3) 12,15,15
IF (OFS + J = 18) 11,11,15
K = MB(J)
IF (K -~ 16) 7,8,8
N = NB = K + 1
GoTO 9
=1
po 2 L = LB,N,K
DO 3 M = L,L + J =1
IF {(BT{M ME})) 2,3,2
QUTINUE
ISn = [
¢o™n (.8,1.8,18,18,18,18,2,2,18, 18),IP
CONTINUR
IF {ISsT) 15,18,
PO 4 M = ISST,ISS
ST{M,ME) = I
G0T0 (16,15) ,ME

8
T+ J =1

DWW

N

foa)

&

TF (1 = 29) 14,15,1
OFT = OFT + 1

NF3 = OF3 + J
RETURH

D

ZAD

TUNITION B (Y1)
13 o=)

,)

3

g,"?z?: P2(0, T,
*;nvﬁ" QL)

R G

ayy 2,2,6

4 7
T Nn,5,7

, (8T(1,1),I = 17,28)

PORIMAT (413,14,313,14,13,3(14

