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SUMMARY 

The structure and purpose of multi-access systems are 

described and the various types. are compared. The Cambridge multi­

access system is described in detail with the methods used to gather 

information about its operation. Various statistics about it are 

given, some .of which are used in the subsequent work. 

The relative merits of deterministic and probabilistic 

analytical models of multi-access systems are discussed and models 

of both types are developed. The results of these are compared for 

various parameter values. 

Next the types of sinrulation languages are discussed and 

details of the structure and use of the one designed and implemented 

for the work are given. The advantages and difficulties of 

simulation for investigating computer systems are set out and there 

is a detailed description of the actual simulation models used. 

The results of these are compared for various storage allocation 

schemes . 

Finally conclusions are drmm about the use of the various 

techniqu.es for modelling multi-access systems and the value of the 

work for systems design and development, References are made to 

previous analy tical and simulation models and simulation languages 

and the reasons for choos ing dif f erent models and languages 

according to the system be i ng examined are di scus.s ed. 
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Chapter 1 

INTRODUCTION 

In the early days of computing most of the jobs were numerical 

calculations which sometimes lasted for hours, and the limiting factor 

was the speed of the central processor. As a result of this it was 

quite common for a progrannner to sit at a computer, finding his mistakes 

by examining his results and rectifying them by punching another card or 

examining and changing the contents of the core store using hand keys or 

a typewriter. The time the central processor was idle waiting for this 

and for input-output was small compared with the total computing time. 

As the speed of central processors increased, much of the 

potential increase in computing power was wasted by the processor 

waiting for input-output from the peripherals, the speed of which was 

limited by their moving parts. Various solutions were tried for this 

problem. 

One of these was to use a small cheap computer to convert a 

batch of jobs on cards to magnetic tape, this was then transferred tu 

the main c9mputer where the jobs were run in succession without human 

intervention, the output going to another magnetic tape. Finally the 

contents of this tape were printed or punched as required on the small 

computer. This t echnique was known as "batch processing" , the 

connnones t example used an IBH 7090 as t he ma i n comput er and a 1401 

as the smal l comput er. The 1401 wa s a character-or i ented machine and 

thus particularly suitable for input-output. 

To get the full advantages of this system the central 

processor nnist be able to work with the mini mum of human intervention 



and delays waiting for peripherals. Since the input and output was 

on magnetic tape a "buffer" is necessary in the core store, as a 

typical program consumes input and produces output in small irregular 

amounts, whereas a magnetic tape is best for large regular amounts. 

This reduces the amount of tape used for gaps between blocks of 

information and the time taken to start and stop the tape and traverse 

the gaps. With two buffers the contents of one can be transferred to 

or from the tape while the other is being filled or emptied and then 

the roles can be reversed. 

Iu order that the processor can proceed at full speed when 

there is none of this work to do, without having to test regularly 

whether anything needs doing, a system of interrupts is used. When a 

tape transfer finishes or a buffer becomes full, the current user's 

program is interrupted, and control is transferred to a program often 

called the Supervisor, Executive or Monitor. This deals with the 

event as necessary and then resumes the interrupted user's program. 

~11 input and output is done by calls to subroutines in the 

Supervisor, these can perform useful functions like translating from 

internal character coding to the various peripheral codings, 

assembling character by character input-output into lines or vice versa 

using buffers,and organising input and output into several streams so 

that it appears to be coming from or going to several peripherals 

simultaneously, whereas in fact each stream comes out in turn on the 

same peripheral. 

In addition to this the Supervisor can perform some of the 

jobs of an operator on a small computer. At the end of each job 

control returns to the Supervisor which tidies up and then starts the 
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next job of the batch if any • . Provision is made for the operator to 

terminate or restart the current job if anything has gone \-IL·ong. If 

there is a hardware clock it can be used to provide accounting 

information, and to terminate a job automatically if it has exceeded 

the programmer's time estimate. 

While a job is running it often has several 11phases 11
, for 

example editing, compilation, assembly, loading and execution. The 

supervisor can ask the operator to load the relevant tapes and then 

read down the programs and data, thus steering the job through the 

different steps without any operator intervention except where 

necessary. This saves . human and computer time and reduces the chances 

of error, since checks can be built in and faults are always 

reproducible. Such a system is known as an "operating system"(SO). 

The most serious disadvantagl:! of this was the increased cost 

of having two computers instead of one and a large number of tape decks. 

In larger installations several small computers were necessary to cope 

with the volume of i nput and output. It was also difficult to sort 

out and load the many reels of magnetic tape and identify the output. 

Direct access by the programme!' while his program was being run 

was techntcally feasible but administratively impracticaole . Not only 

would he be wasting valuable central processor time whilst he did his 

thinking, but also it was impossible for h im to change a card and have 

another run because his cards were no longer there, and if he were 

allowed to alter the core store of the computer he might have upset the 

operating system or the other jobs that had already run or were ,~aiting 

to run. 

4 



Another disadvantage imposed by the sequential nat~re of 

magnetic tape is that the jobs have to be run in the order that they 

are presented and hence the turnround time for short jobs is almost as 

long as for long jobs, since they all have to queue together on a 

magnetic tape at each stage. This can be improved slightly by devoting 

certain runs to short jobs only, or having different streams of input 

and output for short and long jobs, but a consistently low turnround 

is impossible, particularly because of the time spent handling the jobs. 

If a job has a high proportion of input or output relative to the a~Dunt 

of processing it requires, the central processor is idle for some of the 

time waiting for the magnetic tape. 

Some of these problems were solved by the introduction of a 

technique knm-m as "time sharing" (64). The true use of this term is to 

describe the situation where two or more independent activities are 

proceeding simultaneously, such as the execution of a program and 

output to a printer. In time sharing systems only one computer need be 

used and the output of past jobs, execution .of current job(s) and input 

for future jobs all takes place simultaneously under t he control of the 

operating system. 

Hhen a peripheral has some input ready or is waiting for some 

output it sends an interrupt to the central processor. This causes the 

processor to suspend what it 1s doing, transfer the input or output to 

or from the buffer and set the peripheral going again . The processor 

t hen resumes wha t i t was doing before unless ther e are any further 

inter,:t:pts waiting , in which case it deals with t hese in order of 

priority. Thus as far as possible both the peripherals and the central 

processor are kept going at full speed as long as there is work for 



them to do. If the workload on the machine is sufficiently high and 

the buffers are large enough, one can approach the condition where 

all the equipment is working all the time, which gives the intuitive 

impression that the computer is being used with maximum efficiency. 

From the prograrmner's point of view this is much the same as 

batch processing, as he still has no direct access to his program 

when it is running. The computer utilisation is highest when there 

is always a backlog of work to be done, which means a long turnround 

time. There are also hidden overheads associated with time sharing, 

the processor must fill andempty buffers, deal with peripherals and 

perform the functions of the operating system. 

Since all the input or output cannot in general be kept in 

the core store, which would soon fill up, it rust be transferred to 

backiL1g storage, possibly magnetic tape but preferably magnetic cards, 

disc or drum, since fast random access is desirable. This opens up 

the possibility of programs being backing store channel lL~ited 

instead of peripheral limited. It may appear paradoxical that if we 

remove one bottleneck we should immediately introduce another, but in 

fact this is inevitable in a fully loaded system, since unless all 

the units of the system have adequate speed or capacity the slower 

ones constitute the bottleneck. Hat·lever it is possible to compensate 

partially for this by favouring jobs that use spare capacity in 

preference to those that cause overloads. 

Systems have been proposed to overcome this problem using a 

hierarchy of different backing stores with different access times, 

capacities and costs, but this results in a large number of transfers. 

The solution usually adopted is "multiprogramming" which means having 



several active programs in the core store at once , or "swapping" 

which means having several programs active at once, but only one in 

the core store at a time and the remainder on backing storage. Both 

of these can improve the turnround time for short jobs considerably 

by interrupting long jobs while they are runm.ng, but only multi­

programnu.ng can keep the processor fully occupied while a program is 

waiting for backing store transfers, since with luck there is always 

one program in core free to go. It is possible to combine multi­

programming and swapping, or have programs partly in the core store 

and partly on backing storage. This scheme, known as "paging", will 

be described later. 

We have now described a system whereby peripherals of any 

speed can be catered for and several jobs can be run simultaneously, 

and this leads naturally to the idea of having a peripheral controlled 

by a human "on•line" to the computer. This would give the programmer 

back the facilities he used to have of being able to think about and 

modify his program, interact with it and get the results back quickl y, 

and many new facilities which will be described l ater. 

In a I1n.1lti-access system several people have this faci l i ty 

s imul t aneous ly. I n principle it i s as easy t o pr ovi de i t f or s everal 

people as for one, however i n pr act i ce the main problem is alloca ting 

the l imited resources of a comput er sys t em, such as pr oces sor time, 

core s t ore, disc space, peripher al output , backing store channel time, 

etc., among a · large number of users with conflicting demands to try 

and satisfy as many as possible as much as possible. 

There are several types of multi-access system. First we 

have what are misleadingly known as "real time" systems. This description 



refers to systems where it is important that there should be a response 

within a certain specified time, or alternatively that the probability 

of there not being a response should be less than a certain value. 

Examples of these are process control, telephone call switching and 

seat reservation systems, the latter being included because the 

customer does not want to wait a long time, rather than because of any 

intrinsic urgency. 

Multi-access is not popular among such systems, except for the 

latter where the common data base makes it necessary. The main reason 

for this is that there is no further drop in response time as a result 

of multi-access since this has to be short anyway, and the extra 

complication and overhead needed to deal with several simultaneous 

real time processes reduce the reliability and the gains in efficiency. 

However it will probably be ,1sed more in the future when 

computer networks are developed, since this will be a good means of 

ensuring the reliability that these systems require at reasonaole cost, 

and computers can conveniently and economically deal with real time 

and ordinary work simultaneously using interrupts and nrulti-programming 

as described earlier. Such systems will not be considered explicitly 

though some of the conclusions drawn apply to them also. 

Nost real time systems are special purpose and li].1'\ited to a 

certain set of programs, often only one. Some other multi-access 

systems have adopted this idea , which certainly leads to simplicity 

and fast r esponse , since there need only be one copy of the program 

permanently resident in core with a separate set of data for each ~ser 

if necessary, and t hus channel time and core allocation present 

relatively little trouble. The languages used try to provide for 
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simple numerical calculations in a format that can easil y be learnt 

by non-programmers. 

However there is a limit to what can be done in these 

languages , and some programs may ei t her be written in an existing 

language, or require a neu language, or have to be written in machine 

code to make full use o± the available facilities or run efficiently. 

It is because of the existence of such problems t hat more effort has 

gone into designing general purpose compatible systems, which enable 

any program that can be run off-line to be run on-line within 

reasonable limits. These are the type of systems that will be 

considered, since the problems involved in the design and running of 

such systems are much more complicated and interesting. The languages 

used in special purpose systems can easily be implemented in a general 

purpose system. 

Host systems allow "conversational" input and output at t he 

terminal while the program is active, However this is an expensive 

facility to provide since either the core store has to be r e served 

for as long as t he user takes to .decide what h is next i nput will be , 

or i t has to be "swapped" by writing it to backing stor age and r ead ing 

it dmm again when the input or output is finished and the program is 

f r ee to continue r unning. 

One of the most difficult problems about molti-access systems 

is resource allocation. There wi l l always be an unsatis f i ed denand 

for computers and computing poi;.;er because of their flexibi l ity. As 

t he speed and reliability of computers increase and i mprovements in 

softeware and techniques oake them easier to use, problems which before 

would have required too r:mch computer tine are now just soluble. The 
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progress of science and oper~tional research and allied techniques 

bring to light problems whose existence had not been realised, which 

had always been treated as areas of human judgment not susceptible to 

analysis. T'nis unfulfilled demand was the reason for the introduction 

of time-sharing, and subsequently multi-access systems, for if computer 

speed and power could not be raised overnight, the best use must be 

made of the equipment available. One of the most difficult problems 

however is deciding what is the best use, owing to the wide variety of 

requirements. 

Some of the resources for which competition occurs can be 

allocated explicitly, such as magnetic tapes and rr~gnetic card, drum 

or disc space for storing programs and data, and maximum amounts of 

core store, peripheral output, processor time, console time, and total 

running time. These can be decided by the management of the computing 

service and can be enforced by software, the operating staff, the 

honesty of the users, or finance. If a financial system is not used 

these resources are allocated according to political criteria, for 

example the relative claims or riches of two departments may have t o 

be judged, or it may be important not to set a precedent by allocating 

unequally _among users. Optimisation is usually done by a trial and 

error method, if nobody complains too much then there is pressure to 

retain the status quo, since somebody usually suffers from changes and 

t hese ar e only made when necessary . At t he moment t her e i s no 

objective basis for deciding the effectiveness of various policies . 

A f inancial control sys t em is perhaps t he best attempt at this 

since it enables users t o state the relative importance of indiv idual 

factors to them and makes them realise what is expensive f or the 
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system. The prices can be set according to the laws of supply and 

demand. In theory users will trade off some potential advantages against 

others so that priority can be given where necessary without everybody 

demanding it all the time with consequent loss of effect. In practice 

this may mean a considerable effort on the users' part to play the game 

and produce programs fitting the administration's stereotype, which may 

not be the most efficient for their particular problem in the long run. 

When the users are within an organization the money is often 

imaginary, which peuple are much less r~luctant to spend, and one 

department may be careful to use up their allowance to ensure that it 

is not reduced at the next allocation. If the money is allocated 

centrally it may be difficult to decide on the relative merits of 

competing claims, particularly as the amount needed may be very 

unpredictable. People may ask for more than they need, knowing that 

they will be given less than they asked for. · Over-allocation ,·nll 

defeat the object by causing inflation, as the price of each resource 

must include scarcity value as well as capital cost in order to ensure 

an efficient use of the system. 

One must balance the result of any such controls against the 

cost of human or computer time involved in implementing them. 

Different controls may be applicable in different environments, for 

example a seriously overloaded machine must be controlled much more 

rigidly than a relatively lightly loaded machine, where the important 

factor may be giving a good service. It rr~y be preferable to give a 

good service to a few than a bad service to many, though the line is 

hard to draw. The effect of changes in the nature of the load should 

be taken into account, though it is the difficul ty of estimating this 
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that partially accounts for the reluctance to change. 

Hany of these remarks also apply to the resources which are 

allocated implicitly by the structure and the algorithms of the system. 

The most important of these are· the turnround time for off-line jobs 

and response time for on-line jobs. Both of these will depend on the 

nature of the jobs, such as what systems programs they use, how much 

core space and processor ti~~ and disc accesses they need, the load at 

the time, whether any backlogs have built up, and various other factors. 

It is difficult to say -what aspects of system performance 

should be optimized since this involves the weight that is given to 

various users' preferences and the importance attached to the 

efficient running of the system. Originally the main aim was to 

optimise the use of the central processor, since this was the main 

bottleneck. 1fnen buying a computer system there might be a difficult 

choice between having a slower processor and more core store, thus 

enabling the processor to be kept busy more of the time by multi­

programming and providing a faster response time, or a faster 

processor which would be idle more because there was not enough core 

store to keep it busy. The decision between these two depends on the 

relative pri~~ of processors and core store, but it is often difficult 

to judge which would be better. 

The decision to keep the processor busy through multiprogramming 

will weigh against jobs using a lot of core store, since these will 

either not be allowed or curtailed because they interfere with the 

multiprograraraing, or will cause excessive overhead by reqttiring 

frequent swapping and thus keeping the disc or drum busy. It is also 
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possible that users will recompute sets of numbers or shift them about 

the core and backing store devices to avoid using too nruch store and 

being discriminated against, which will defeat the object of saving 

processor time. The more sophisticated schemes such as paging introduce 

considerable overhead which may not be justified. 

Perhaps we should reconsider why processor time 1s important. 

If we are selling processor time by the second with no charge or 

conditions for the serv{ce and prograrmner's tiro~ is irrelevant then 

this is a reasonable criterion. Such a situation rarely occurs in 

practice. The objective is to maximize the satisfaction of existing 

and potential users, ,mere relevant this is indicated by how much they 

are prepared to pay for the service, though this is often distorted by 

competition and lack of knowledge of the consequences of various 

alternatives. When it is free one should weigh up factors like the 

relative importance of off-line and on-line jobs, the cost of a 

programmer's time relative to machine time, how much machine time a 

certain degree of reliability is worth, how .much tape jobs should be 

favoured or otherwise, how should big jobs be scheduled, and so on . 

Analysis and simulation can prove valuable to show the consequences 

of various alternatives in each respect to help make a choice 

between them. 

As an example we can consider the response time for on-line 

jobs. Some people have taken a very simple factor to be op t i mi sed, 

the average waiting time for a response . While matherr.atically simp l e, 

and t hus us ed at times in this \vork, t his does not take account of t he 

psychology of the average user. Tne important factors t o him are the 

expec ted response time to a given request and its variat i on. I t is 

13 



it:, 

reasonable that jobs requiring more processor time should take 

longer but what the relationship between t he two should be is open 

to debate. 

If the user knows that he is going to have to wait less than a 

minute he will be patient, and if it will be more than five minutes he 

can get on with something else. In the latter case he should be able 

to use his console and be notified in a non-destructive manner when his 

first job has finished.· Obviously he will prefer a rapid response, but 

what he wants more is to know how long it will take. If the time is 

variable or lies in the middle range he has a difficult decision to make. 

One can insist on the user estimating the time required with a 

default estimate for short jobs. There 1.s an incentive to estimate 

accurately since if the estimate 1.s too low the job will be terminated 

by the system after it has exceeded it -and if the estimate 1.s too high 

the scheduling algorithm will result 1.n a slow response. 

This estimate can then be used by the scheduler to estimate a 

completio.1 time and print it out, if it is more t han say five minutes. 

Allowance has to be made for the possibility of other people initiating 

short or high priority jobs in the meantime and it may be better to 

give a r ange of comp l et ion times wi t h i n which t he actual time has s ay 

a 95% chance of falling. 

Another d i ffi cult prob l em is how t o arrange t he acti ve pr ograms 

in the core store. The simples t al location s chemes have each active 

program in a fixed place in core s tore all the time that it 1.s active. 

Some mul tiprogrammi.ng syste11,s even insist that the store be divided in 

a fixed way, for example in a 64K machine there might be a limit of 

three active programs each limited to 16k and 16K for the supervisor. 



Such a rigid arrangement is obviously very wasteful of store and 

restricts severely the maximum program size that can be run. 

However if the programs go in variable positions this makes the 

core storage protection hardware, which prevents one program affecting 

another or the supervisor, much more complicated , and when one program 

finishes an awkward gap may be left since the waiting programs will 

probably be a different size. Some of the ways of choosing the next 

program and uhere to put it in the core store are discussed in 

Chapter -, 
I e 

This problem can be alleviated by moving sections of program 

around to close up the gaps, this will be called "shuffling". This is 
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a satisfactory procedure in machines with efficient hardware instructions 

for doing this, but otherwise 1s liable to waste central processor time, 

both in deciding when and how to do it, which is not at all obvious, 

and to a greater extent in actually doing it. 

The next possibility is swapping sections of program or whole 

programs onto backing store, usually magnetic drums. The pioneer 

multi-access system, Proj ect HAG CTSS (Compatible Time-Sharing System) 

at HIT (lZ , 53 ) had swapping without multiprogramming, and most of the 

analysis on multi-access systems has concentrated on systems of this 

t 
(9,i6,17,54,58,59) 

ype. 

Here we have to decide which programs to swap in and out, and 

have not only to consider the system overhead but also the use of the 

backing store channels, which can get seriously overloaded. If fully 

conversational working is permitted some fonn of swapping becomes 

essential. 



The newest systems are paged, which means that although a 

user numbers his core store from location O upwards as a contiguous 

block it is stored in pages of fixed size, which may be scattered 

around the core store, the correspondence being made by hardware. 

The size of pages in different computers varies from about 100 to 

2000words. Some of the pages may not be in core, and if the program 

attempts to refer to one of these they must be brought down from 

backing storage. Similarly if a page has not been used for some 

time, or the core space is required for some other program, the page 

can be written up to backing storage. The advocates of paging claim 

that it provides the user with an apparently large core store and 

permits conversational working at minimal expense to the system. 

This system will only work satisfactorily if a program's 

references to core store follow a simple pattern and remain within 

one or two pages at a time. If a program genuinely uses the store 

for random access it will use up an inordinate amount of backing 

store char"nel time. When such things are concealed from the user 

there is a danger that he may use them inefficiently without 

realising it. 

P~ging 1n principle reduces the number of swaps and abolishes 

shuffling altogether, though it requires expensive associative 

registers to give quick access to where the pages of a program are 

in the store, and software to keep t hese tables up to date and deal 

with exceptional conditions and decide when and how to reject 

unwanted pages and get new ones. This depends on user address 

sequences as wel l as other fac t ors. 
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A paged computer, Atlas I, has been in use for some time 

without multi-access but multi-access paged systems have only 

recently been developed. Extravagant claims are made for such 

systems, such as that they can serve 200 simultaneous users, but much 

of the central processor time is spent on administrative overhead or 

waiting for the backing store channels to provide pages. Such 

systems may prove satisfactory in the long run ·when they are better 

understood, but new developments in fast access mass stores may make 

this technique obsolete. 

. (46 47) Attempts have been wade to simulate such systems, ' 

which certainly defy mathematical analysis in toto, but the cost and 

effort required is so great that trial and error is usually used 

in designing them. Yne difficulty lies in a lack of experimental 

data for such systems, both on the operation of the hardware and t he 

software which is only just becoming available, and also on the 

behaviour of the users and the types of program that they write, 

which are intimately linked to the characteristics of the system. 

So many assumptions have to be made thrt it is difficult to place 

much confidence in the model . Because of this and t he raagnitude of 

the task such systems have not been considered here. 

Having considered the various t ypes of store organisation, 

we shall now consider some of t he possible schedul i ng algorithms 

for allocating the processor time between active programs when 

multiprograrmning or swapping is used. 

The. fundamental nrul tiprogrammin8 scheduling algorithm is 

the "Round Kobin" (RR). In t his system tne jo"os are i n a circular 

queue and the processor serves each of them in turn for up to one 

11111 
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"quantum" of time, generally about a s econd. At the expiry of the 

quantum (generally detected by an internal clock interrupt) or 

when the job halts for input or output or finishes, the processor 

starts to serve t he next job , and if t he job still remains it is 

effectively at t he end of the queue . This scheme is designed to 

reduce the waiting time of short jobs. 

In the limit as the quantum tends to zero t he processor 

serves all the users sinrultaneously , t his 1.s known as "Processor 

Shared" (PS) and is useful 1.n theoretical analysis while giving a 

reasonable approximation to the case when t he quantum 1.s small. 

In the limit as the quantum tends to infinity each job 1.s served to 

completion, this is known as "First Come First Served" (FCFS) and 

corresponds to a simple queue, however the short jobs then have to 

wait almost as long as the long jobs. 

Various alternative schemes based on the round robin have 

been suggested . In the "Foreground Background" (FB) scheme a 

program joins the foreground queue and 1.s given one quantum of 

pr ocessor time when its turn comes , if it has not finished by then 

it joins t he background queue which 1.s served to completion on a 

FCFS basis, but only when there are no j obs i n the fo reground queue. 

Usually t h is 1.s "pre- emptive" , i f a new program arr i ves while the 

processor i s servi ng t he background queue it interrupts t he background 

pr ogram and serves t he new one f or a quant um. 

This ensures a good service f or programs las ting l ess than 

one quan tum while r educing overhead owing to program changes, which 

is particularly iuportant when there is swapping . However if a 

program lasts more than one quantum its response is bad, and the 
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main advantage of this scheme over the schemes described below 1s 

the relative ease with which it can be analysed. 

This scheme can be extended to several levels. Each time a 

program finishes a quantum at one level it joins the end of the 

queue at the next higher level, and a level is only served if there 

are no programs waiting on any ·lower level. This is generally done 

on a pre-emptive basis. A scheme of this nature was used in CTSS 

with quanta which doubled each time the level increased, larger 

programs which were-expected to last lorcger entered at higher levels 

to reduce the amount of swapping and safeguards were included to 

ensure that no program·reached the top level and never got run 

because there were always other program£ waiting at lower levels. 

This proved very successful since it gave a short response 

to short programs and yet reflected the fact that there is no point 

in giving a short quantum to a program that has already run for say 

30 seconds when all other programs waiting have run as long or 

longer, since this only adds to overhead. In a system without 

swapping the size of the quanta makes little difference. 

There are three techniques for comparing various possible 

hardware and software systems. The first is to do experiments with 

the actual systems. It is usually impossible to experiment with the 

hardware except for manufacturers, since tne maximum configuration 

is fixed by the equipment available. Alsothe commitments to the 

users of a system make it impossible to experiment .with the software 

of a system unless it is likely to show a significant improvement. 

Only a limited amount of information can be gathered from this, since 

the experiment ca..'1not be controlled or repeated. However, useful 

19 



main advantage of this scheme over the schemes described below is 

the relative ease with which it can be analysed. 

This scheme can be extended to several levels. Each time a 

program finishes a quantum at one level it joins the end of the 

queue at the next higher level, and a level is only served if there 

are no programs waiting on any · lower level. This is generally done 

on a pre-emptive basis. A scheme of this nature was used in CTSS 

with quanta which doubled each time the level increased, larger 

programs which were·expected to last lor:ger entered at higher levels 

to reduce the amount of swapping and safeguards were included to 

ensure that no program ·reached the top level and never got run 

because there were always other program.E waiting at lower levels. 

This proved very successful since it gave a short response 

to short programs and yet reflected the fact that there is no point 

in giving a short quantum to a program that has already run for say 

30 seconds when all other programs waiting have run as long or 

longer, since this only adds to overhead. In a system ·without 

swapping the size of the quanta makes little difference. 

There are three techniques for comparing various possible 

hardware and software systems. The first is to do experiments with 

the actual systems. It is usually impossible to experiment with the 

hardware except for manufacturers, since tpe maximum configuration 

is fixed by the equipment available. Alsothe commitments to the 

users of a system make it impossible to experiment .with the software 

of a system unless it 1.s likely to show a significant improvement. 

Only a limited amount of information can be gathered from this, since 

the experiment ca..,not be controlled or repeated. However, useful 
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statistics can be gathered of user and system behaviour and the 

nature of the load by observing a real system, as is shown in 

Chapter 3. 

One possible solution to this problem is suggested by 

Greenbaum(2l) who used a computer to simulate several users typing 

away at their consoles. Scripts were used to enable any user session 

to be sinrulated and allowance uas made for user thinking time. This 

makes controlled experiments possible, but plenty of computer time 

would be necessary to allow for a sufficiently representative user 

session, and it would be difficult to decide on criteria for judging 

how representative a session is. Also the experiment would have to 

be repeated for each proposed modification to the system, as with a 

simulation. 

The next method is mathematical analysis. Some results Cc.n 

be obtained from deterministic models by considering rates of flow 

through the system and assuming everything to be constant. However 

it is more accurate to use the theory of queues and Harkov processes, 

which.involve representing the various times and queues involved by" 

probability distribution. The usual distribution adopted for the 

known times is the exponential distribution. This has the valuable 

property that the behaviour of the system is independent of its past 

history and depends only on the present conditions. Without this 

property the analysis becomes very much more complicated. In 

practice this represents a reasonable approximation to the observed 

distrihutions, even of thinking time, thougl1 more accurate fits with 

d . d d. .b . ·b1 (19,62) erive 1.stri ut1.ons are poss1. e. 
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Apart from this approximation a great deal of simplification 

of the system is necessary and thus one inevitably wonders whether 

the resulting model is a good one . The advantages of this method is 

that the amount of computer time to produce results is very small so 

that a wide range of cases may be considered, and it is sometin:es 

possible to solve the equations analytically and see the explicit 

dependence of one parameter on another. One also knows that the 

result is an exact solution of the model, even if this does not 

give an exact representation of the system. 

The other is simulation of a model of the system, where 

the situation is very different. Here we can make the model as 

complicated as necessary, subject to the serious limitations of 

one's ingenuity and computer tiw~, and get a numerical solution. 

The data for simulations can be either real jobs or random numbers 

sampled from histograms or analytical distributions,preferably 

determined by statistical results from a real system. Statistics 

on queue lengths and waiting times can be collected during the 

simulation of a given period of real time and tabulated at the end. 

More detailed analysis can trace any apparent instabilities in the 

system. 

The main advantage of simulation is that it can in principle 

be applied to any type of system and any desired statistics can be 

collected. Host multi-access systems involve several types of delay, 

waiting for input and output, waiting for backing store transfers, 

waiting for core store to become av:i.ilable, and waiting while other 

progra.~s are being run. A mathematical model cannot deal with all 

of these simultaneously. It involves simplifying assumptions that 
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may change the picture completely, and only a limited number of 

results can be deduced. The results of simulation can give a good 

qualitative and quantitative picture of the system and indicate 

where the main bottlenecks occur. 

Like most numerical methods, simulation suffers from the 

disadvantage that it is expensive in computer time. It is difficult 

to achieve accuracy without having several runs simulating long real 

time periods, and changing any one parameter will usually involve a 

complete set of reruns. Though techniques exist for esti.'Uating the 

error(60) much depends on the particular features of the runs used. 

In cases as complicated as multi-access systems the accuracy 

of the mo<lel and its implicit assumptions is always in doubt and can 

only really be verified by comparison with the real system. Even 

,this wi_ll only show that the assumptions are satisfactory for one set 

of parameter values, and when these are changed new factors might 

come into play which were legitimately ignored before. The accuracy 

of models of non-ex istent systems cannot be checked except against 

oversimplified mathematical models of the same system, and the same 

incorrect assumptions might be present in botn, though this does 

provide a good technique for detecting programming errors. 

Simulation cannot show clearly the dependence or lack of 

dependence of a result on a given parameter in the saiae Hay that an 

equation can. Unless fairly consistent results are obtained in 

different runs it 1.s difficult to know ·whether to ascrioe variations 

as directly due to a paraQeter or to other ignored factors, or due 

to the inherent randonmess of the process. If the results are 

independent of one parameter for given values of the other parameters 
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this parameter might become critical with other values, and yet it 

would consume too much time lo test all possible cases with 

sufficient accuracy. 

In spite of these disadvantages simulation is a worthwhile 

technique that can produce useful results unattainable by other 

methods, and in comparable cases the results agree reasonably with 

those obtained from the real system and mathematical analysis. (S4) 

Most of the :work described here concerns the Cambridge multi­

access system, described in Chapter 2. This was partly because the 

author had first hand experience of using it and more convenient 

access to information and statistics about it, and partly because it 

represent$ the most successful example of a general purpose non-paged 

multi-access system in actual operation and has been operational 

sufficiently long for it and its users to have reached a reasonable 

degree of stability. Hypothetical modifications to the software and 

hardware were also considered as a basis for comparison. 

The uork was in four main sections which were in practice 

done concurrently. First statistics were gathered about the system 

giving disc access times, user response times, program sizes and 

running ti_mes, use of various systems programs, etc. Next analytical 

models of the system and similar systems using the theory of Harkov 

processes and queues were designed, and various results tabulated. 

Next a simulation language, FOSSIL, was designed and implemented, 

which represented an important piece of work in its mm right. 

This was used to simulate the system to investigate core store 

allocation. 



At the end of this thesis the value of investigating multi­

access systems is discussed and conclusions are drawn as to how this 

problem should be tackled in the light of this work and the uses of 

the various techniques described here. 



Chapter 2 

THE CAlIBRIDGE SYSTEM 

As we are confining our analysis to systems of a sintllar type 

of the Cambridge multi-access system and are using statistics derived 

from this system, a short description of it will now be given. Further 

details can be found in Ref.(25). This is designed to explain its 

most important hardware and software aspects and hou it appears to the 

user. 

The Cambridge system is based on the TITAi~ (ATLAS 2) computer, 

which differed from the ATLAS 1 by not being paged and not having a 

drum. Ti . 11 d h S . <26 ) · · · · 1 · · here 1.s a program ea e t e uperv1.sor uni.en oea s u1.tn 

the administration of jobs, controls all the peripherals, organises 

the buffering of i~put-output in the core store and on the disc, 

records logging and accounting information, deals with all interrupts, 

provides two way commi.mication with the operators and does other 

routine jobs. This represents about 32K words of program and tables 

of which about half is permanently resident in the core store and the 

other half read in from disc when needed. 

In addition there are certain systems prograras, such as the 

filing system and the console logging in and out syste.r::1, wnich are 

written as ordinary programs but have certain privileges. The filing 

' d .c • f ' f ' • · -l • (2) 
system 1.s use ,1.or tne storage o in ormat1.on on tne ~iscs. A file 

can contain either program or data copied from t~e core store or a 

"s tread' of characters, as frora a paper tape reader or to a printer. 

Programs can take their input from and send their output to 

peripherals or files or tapes according to choice, except ti.1at on-line 
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Chapter 2 

THE CAHBRIDGE SYSTEM 

As we are confining our analysis to systems of a similar type 

of the Cambridge nrulti-access system and are using statistics derived 

from this system, a short description of it will now be given. Further 

details can be found in Ref.(25). This is designed to explain its 

most important hardware and software aspects and hou it appears to the 

user. 

The Cambridge system is based on the TITAN (ATLAS 2) computer, 

which differed from the ATLAS 1 by not being paged and not having a 

drum. Th . 11 d h S . ( 26 ) ' . · · 1 · · 
ere 1.s a program ea e t e upe.rv1.s or uni.en aea s i:ntn 

the administration of jobs, controls all the peripherals, organises 

the buffering of input-output in the core store and on the disc, 

records logging and accounting information , deals with all interrupts, 

provides two way connnunication with the operators and does other 

routine jobs. This represents about 32K words of program and tables 

of which about half is permanently resident :i..n the core store and the 

other half read in from disc when needed . 

In addition there are certain systems prograras, such as t he 

filing system and the console logging in and out systeI:J., wnich are 

uritten as ordinary programs but have certain privileges. The filing 

system 1.s used for the storage of informat·ion on tne ciscs. (2) A file 

can contain either program or data copied from the core store or a 

"strean" of characters, as fror:i a paper tape reader or to a printer. 

Programs can tal:e their input from and send their output to 

peripherals or files or tapes according to choice, except t i:1at on- line 
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jobs cannot use paper tape readers or magnetic tapes for operational 

convenience. The same system is used for buffering input-output 

streams and storing files on the discs. The user communicates with 

the supervisor, the peripherals and the filing system by raeans of 

special orders, known as extracodes. In this way he can perfonn 

operations requiring privileges in a controlled fashion. 

The core store was originally 64K uords of 48 bits, and the 

largest size program allowed was 40K, the remainder being used for 

the supervisor, buffering, and temporary working space. Later the 

core store was increased to 128K but no corresponding increase uas 

made in the largest program size allowed, this w2.s to allow more 

multiprog=ar.nning, particularly of on-line jobs, and reduce the rate 

at which "chapters" of non-resident supervisor had to be overwritten 

and retrieved from the disc owing to lack of working space in core. 

The disc store consists of 32 discs in 2 units, each disc has 

a capacity of 512 blocks of 512 words making a total of 8 million 

l'lOrds. In addition to these, uhich are read by heads fixed to arms 

moved witn compressed air, there are 96 blocks ·which can be read by 

fixed heads and thus have a 3horter access time. These are used for 

parts of t he supervisor. There are t wo lo3ic units which can each 

move the arms on eitner disc unit, and two channels for transferr i ng 

information, and so we can approximate by treating the discs as 

being in t wo completely separate units as far as calculation of t he 

access times and queues are concer ned. Although the channels have 

to be shared uith the six tape deck.:, the degradation due t o these 

is small. 

A typ ical j ob passes through a number of phases such as 
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editing, compilation, assembly, loading and execution. Facilities 

are provided using extracodes or systeras programs for joining these 

phases together. Information is usually passed between phases in the 

form of streams or files which are output by one phase and used as 

input for the next. At the end of each phase all the core store is 

freed and the job joins the queue again for more space for the next 

phase, except in the case of the IAL loader, the IIT assembler, and 

the system HONITOR which prints out information when a fault occurs 

in a program. For each of these part of the same space is used in 

two phases. 

For on-line jobs various options are open. It is possible to 

create another job which will run in ex;:!ctly the same was as an 

off-line job using an identical job description format (excent for 

paper tape input not being allowed) and operate independently of the 

console. This would be the normal mode of operation for jobs lasting 

over about a minute, or using magnetic tape, or liable to long delays 

because they need a lot of store. However a more natural way of 

using the system, particularly during rrogram development, is to run 

one phase at a time, examining the results of each phase at the 

console before going on to the next phase if it was successful. 

All on-line jobs operate under the CONHAND program, which 

can also be used by off-line jobs but is .priraarily designed for 

interactive use. A request for a phase, which may use a system 

program or a private precompiled binary program, is typed in to 

the command program as the system or file name, followed by 

argun1ents uhich are usually stream numbers or file titles. The 

command program sets up the streams and files appropriately, and 
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then loads the appropriate system by "changing phase", uhich involves 

finding the core space or joining a queue for it and reading the 

system down from the disc. 

Hhen the phase has finished running it will generally return 

to the command program, again by changing phase, which will type out 

the output at the console. This may be interrupted and the output 

printed, punched, filed or edited. Thus the natural unit of 

interaction is a phase subject to certain exceptions. 

Some of the more corrnnon corrnnands, such as INPUT, FILE, 

DELETE, PRINT, etc. are built into the command program for efficiency 

reasons and do not involve changing phase. 

I.: is possible to string several phases together without 

having interaction, by the same means that are used for off-line 

jobs. Each phase can change phase into t he next, and sometimes 

several phases are present behind the scenes (e.g. conpile, asse.i.uble, 

run). Another steering program called 1'11.S (Hixed Language Syste:n) 

can be used, (6) and there is a special CO~INA,"lD conmand which will 

make the command program read a list of commands from a stream and 

only return at the end or if an error occurs. 

As well as the command program some other cot:liTI.ands are 

allowed to be interactive themselves, sucli as EDIT (context editor), 

PATCH (debugging aid), FIGARO (for small numerical calculatior~s)., 

EXAUINE (for looking at file dictionaries) and FINISH (for logging 

in and out) . This is usually done by having only one copy of the 

program in core to serve all the users, this is knmm as a "pure 

. procedure" because it is not allowed to rao<lify itself and has a 
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small amount (typically 64 words) of working space for each user. 

This reduces the amount of idle store during input-output while the 

users think and saves reading down the program from the disc each 

time, since often it is in the store already. Because of this, and 

the fact that a special area (16K) of the store which is rarely full 

is reserved for pure procedures only, the response time for pure 

procedures is shorter and less variable. 

All other programs must have all the input typed in before 

-
they start and no output comes out till they have finished. The 

input and output is stored on the disc and thus the core store is 

not tied down waiting for the console. This may app?ar to nullify 

some of the advantages of on-line acces5 but has in practice proved 

very satisfactory for most users. The facility for storing, printing 

and editing output can save a lot of time waiting for something 

coming at the end, for example a system HONITOR owing to an output 

loop, which would come at the end of the output causing the trouble. 

The core allocation and scheduling routines are described 

implicitly in Chapter 7, but a brief summary from the system point of 

view will be given here. The core store available to object programs 

is divided into two sections , 0-40k and 64k-112k, in addition to the 

separate space available to pure procedures. Hhenever space becomes 

available it is allocated to the first job in the queue that will 

fit, and so on down the line. If a job wa i ts fo r more than a certain 

time, depending on the amount of store requested and whether it is 

on- or off-line, it joins a second queue unich is served on a first 

come first served basis, and no allocation of the region 0-40k is 

made to jobs not in t his queue until it is empty. This ensures 

-. -. ---=--. 
- - - --....:...:t__ 
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that all jobs get run eventually without all the inefficiencies 

of a simple first come first served system. 

Swapping or shuffling is not employed because of the length 

of time required to access the disc, which 1s a slow one, and the 

absence of efficient hardware instructions for moving around the 

contents of the store. Also the base register, ,·,hich gives the 

actual starting place of a program in the store 1s CR-ed with rather 

than added to the program's address which means that a program of 

size N must start in an absolute store address which is a multiple of 

i 1 where i'1 ~ N. This means that there is only a restricted scope 

for closing up the gaps. 

For scheduling a queue of jobs is maintained and at any stage 

the first one free to go is run. At 1.28 second intervals the 

queue is examined and the job that has used the ILost processor t:i.r:1e 

in this period is put at the end of the queue. This ensures that 

each job gets run at least every 1.28 x N seconds where N is the 

number of jobs in the queue assuming it is free to go. Any job that 

uses up relatively little processor time and is usually halted, such 

as console and tape or disc limited jobs, has high priority when it 

is free. The algorithiu combines the best features of the Round Robin 

and Foreground Background algorithms. 

- ~ ----..:._--.... "' 
. -------
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Chapter 3 

STATISTICAL lIBASUREMENTS 

The first statistic that ,-,as measured was the disc access time. 

Two figures are of interest here, the length of time required to read 

a block and the time required to position the arm and verify. These 

were measured experimentally on an empty machine, to avoid queueing 

delays or multiprograrrnning causing an error in the real time 

measurement. From a fixed position on the disc with no arm movement 

420 blocks were transferred in seven runs, respectively one block to 

seven blocks at a time, and the mean time between the beginning of 

the transfer and the end, which is determined by uhen the store is 

unlocked and the last word can be read, was measured. A similar 

experiment was also done with the arm 1.n a randora position on the 

disc instead of the correct position. The results of these are given 

in Table 3.1 and Figure 3.1. 

Hith the arm 1.n the correct position the mean time per block 

is 183 milliseconds , irr espective of t he number of blocks transf erred. 

lbe mean time requir ed to position t he arm 1.s 153 milliseconds . 

The remaining statistics u ere gather ed from the log 

automatically collected by the supervisor and stored on magnetic t ap e 

for subsequent analysis . This gives details of t he starting and 

finishing time for each job, whether it is off-line, on-line or 

logging i n on- line, details of wh ich system programs and how much 

computat ion time, execution time , and s t ore it uses. t'hen a console 

user first logs in his n.l!~e 1.s not known and so a job for a standard 

.notional user is started which enters the logg ing in program. When 
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Table 3.1 

Disc access times with arm in correct and random positions 

Arm Number of bl0cks 1 2 3 4 5 6 7 

Correct 
Total time (ms) 185 365 551 732 943 1106 1230 

Position Time/olock (ms) 185 182 184 182 189 184 176 

Random Total time (ms) 338 501 708 878 1120 1256 1382 

Position Positioning time (ms) 153 136 157 146 177 150 152 
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the user has established his identity and stated what system 

resources he requires a new job is created with the correct title 

and the old job is terminated. This new job may be subject to 

scheduling delays if his requireoents are large to even out the load. 

If there is a serious software or hardware failure all 

console jobs that have finished logging in will be restarted 

automatically as will all off-line jobs which are still running, and 

thus it is desirable to create a second job whose name and resource 

requirements are known, to avoid the user having to type these again, 

since this information can be stored on the disc. 

The execution time for a phase is the sum of the computation 

time and any time that the phase is in store and held up through its 

own fault. This can be for several reasons, the progra.w tJa.Y be 

waiting for input from or output to a console, it may be waiting 

for transfers from tape or disc, or it may have deliberately 

requested to wait, for example in the hope that soffie filing system 

interlock may clear. It does not include any time waiting for 

stream transfers, which varies according to the reliability of t he 

disc, how full the core is, how much multiprogramming is going on, 

or any time the supervisor spends running other prograra.s when it is 

free to go. For on-line jobs it roughly represents the amount of 

time required to receive the output from .the previous phase, think 

about it , type in the i nput fo r t he next phase and load the 

program from the disc. 

This must be qualified by the remarks made earlier that some 

phases f ollow each other without any interaction and other phases are 
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interactive themselves, but this will be discussed later when the 

command usage is analysed. 

An analysis program was. written 1.n Fortran and w.achine code 

to gather statistics from the details for each job recorded in the 

log. This proved to be a much more difficult task than expected, 

since many unforseen problems occurred. The most important of these 

was the wide variety in the results. This necessitated analysing 

data over a much longer period than was originally intended and 

precluded the possibility of sampling. This contrasts with 

Scher/54 , 55) who found the users of CTSS relatively consistent in 

their habits. 

Some of the variation is explained by terms, holidays, etc. 

,~1ich affect the nature of the load, if the on-line load or the 

number of short jobs is small then more long jobs are run which 

puts up the mean times. There are nearly always enough long jobs 

waiting to be run to keep the machine busy. Also during this period 

the size of the core store was increased from 64K to 128K, but 

since this was done intermittently for testing before being 

finalised it was impossible to separate the figures relating to 

each store- size . The main effect of this was to improve effic iency 

by reducing disc transfers and increase the throughput. The mean 

times should not be affected significantly . 

Because the data was automatically collected there was a 

number of errors or exceptional cases which it took some time to 

discover and protect against. These were caused by factors like 

restarts, errors in the logging program and possibilities which were 

not considered when the analysis program ,ms first ·Hrit ten. S0u1e of 
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these produce obvious absurdities or faults which can easily be 

corrected but others proved more difficult to detect since the volUI:le 

of logging information was too great to scrutinise by eye for errors. 

A system had to be devised to store intermediate infonn...ation 

to avoid complete reruns in the case of a fault occurring such as an 

unreadable block on the tape, or an error in the data,or the time allowed 

running out. The Fortran routines proved after much experiment to be 

unusable so machine code routines were Hritten to store tables and 

blocks of information on streams and recover the relevant ones for 

the next run. 

All the information was stored cumulatively, but details of 

the most important features of each str,?.am on the logging tape, 

corresponding typically to one day's use, were printed. As an example 

of the variation the range of values of the daily means of comp. 

time and halt time (=exec.time - comp. time) are given in Table 3.2. 

The variations in the on-line figures are wider than the off-line ones 

because of changes in the nature of the load. The w4in statistics 

are given in Table 3.3 and the distributions of the number of jobs 

running are given in Table 3.4 and Figure 3.2. 

The remaining statistics were gathered over a much shorter 

period (19/8/68 - 29/8/68). This was partly because the original 

data had disappeared , since the logging tapes are reused on a cyclic 

basis and at the time it did not seem worthwhile preserving then. 

Also it takes about 25 minute s of Titan time to process each tape 

even if relatively little informatio~ is extracted, and since the 

subsequent fi°gures refer mainly to distributions rather than r.ieans 

it did not seem worthwhile spending as much time as before to achieve 

36 



37 

Table 3.2 

Ranges of daily mean comp. and halt times 

Off-line On-line 

Min Max Min Max 
(sec) (sec) (sec) (sec) 

Comp. 1.97 120.05 o.79 1.92 

Halt 1.41 31.25 36.18 77 .87 

.. 
_....a.:.: 
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Table 3.3 

General Statistics for 7/4/68 - 30/5/68 

No. of restarts 457 

Total time (min) 35600 

Disc transfers: 7462081 

Filing system 1402098 

Well 2663715 

Object programs 1019060 

Others 2377208 

Off-line On-line Total 

Total comp. (min) 25300 4467 29767 

% comp. 71 12.5 83.5 

Jobs 20594 15278 35872 

Logging in jobs 3575 

Phases 79349 175507 254856 

Throughput (phases/nin) 2.2~ 4.92 7.15 

Hean comp. (sec) 19.13 1.51 7.oo 

Hean halt (sec) 9.36 44.59 34.04 

Hean stor e · (K) 5.80 2.27 3 . 37 

Mean number running 5.37 4.61 9.98 

- ·- -,-~~- -
-~ 



Table 3 .l1 

Distributions of number of off-l ine and on-line 

jabs running 

Number of Off-line On-line 
jobs running probability probability 

0 .001 .109 

1 .100 .112 

2 .097 .100 

3 .010 .096 

4 .071 .092 

5 .149 .095 

6 .167 .095 

7 .127 .092 

8 .167 .085 

9 .007 .056 

10 .007 .031 

11 .008 .018 

12 .012 .013 

13 .009 .004 

14 .002 .002 

15 .003 .001 

16 .002 .001 

17 .001 .001 

18 .ooo .ooo 

19 .ooo 
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Figure 3.2 
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accuracy, since it is not so crucial in this case. Also just 

processing one tape made it relatively simple to extract further 

statistics when these appeared necessary. 

Some of the results were directly comparable, the means for 

the halt times were within 3% of the earlier values though the mean 

off-line and on-line comp. times were 33.9 and 1.1 seconds 

respectively. The difference between these values and the previous 

ones mainly reflects the fact that the second set of data is out of 

term in the summer when the on-line load is light and more long 

off-line jobs get run. The pattern of store sizes was also much the 

same, except that the mean size of off-line phases had increased 

from 5.8K to 7.4K for the same reason. Thus it is reasonable to 

treat the results as typical of a period with a slightly light on-line 

load. 

The first object of these supplementary measurements was to 

find a satisfactory method of comparing the distribution of comp. and 

halt times with the exponential distribution to see if it is possible 

to use this . The original measurements were tabulated in a table wi t h 

linear intervals and a cut-off point, but this was unsatisfactory 

since to get a reasonable number of cells the intervals must be too 

large to get adequate resolution at the low end of the table and the 

cut- off po i nt too small to compare the tail end of the distributions. 

Also it is diff icul t to find an i nterva l which will gi ve adequat e. 

detail without producing too jagged a curve. 

The solution adopt ed was to t abula te t he log of the times, 

which gives sufficient detail at the low end without requiring a 

cut-off. The number of entries in each section of the table uas 



plotted on a logarithmic scale for the same r eason. The tabulation 

and graph plotting routines developed for simulation were used 

for this. 

To get the exponentially distributed graph corresponding a 

technique which is potentially useful for simulation was developed to 

generate the best possible set of a given number of exponentially 

distributed variables. The object of this uas to produce as smooth a 

graph as possible and obviate unnecessary error owing to the use of 

random numbers. 

Suppose we r equire N exponentially distributed numbers 

with mean unity (other means are possible by multiplying every 

number by the new mean). We divide the r ange into N intervals 

bounded by ~ = o, ~-1 ' ~ - 2 ' ... X = a> • 
0 

If an exponentially 

distributed variable has an equal chance of falling in each interval 

then we have: 

J
xi-1 

- x 
e 

x. 
]. 

-x. 
]. 

e 
i 

= -
N 

i 
xi = - log N (i == O,l, ••• N) 

We now choose our exponentially distributed number y. 
J. 

in the 

i nter val (xi' xi_1) such t ha t i t s value is t he expectat ion of a 

number drawn f rom the di s tr ibution which lie s in that inter val. 
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x. 
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These may be conveniently calculated and tabulated in turn, 

only one log operation being required for each, the same as for random 

sampling from an exponential distribution. 

Figures 3.3-3.6 show t he quantities of interest, namely 

off-line and on-line comp. and halt times. The time is given on a 

logarithmic scale starting at O.l which is the lowest that can be 

measured, any items with value Oare also entered here, and the kink 

in the theoretical distribution is due to all those items with value 

less than 0.1 being included. The increment in log10 (time) for the 

table is 0.2, which seems to combine resolution and smoothness. The 

height of the curves is proportional to the log of the number of 

entries in a given cell of the table, adjacent points on the graph 

being joined by straight lines. 

As might be expected there is a certain amount of divergence 

between the actual and the exponential distributions, the chief 

difference being that the standard deviation of the actual 

distributions is higher than that of the exponential ones, there 

being more very h igh and ver y low entries and fewer near t he mean . 

To get a better fit we must use a derived distribution, where 

one chooses according to a set of probabilities t he mean of t he 

· exponential distribution to be samp led from. Distribu t ions of t hi s 

sort have been used befor e(l9,sz,ss, 59 , 62) to pr ovide a better fit 

than a simple exponential, and are knO\m as hyperexponential. If ue 

examine Tables 3 . 5 and 3 . 6 and Fi gur e 3.7 wnich gives the mean comp. 

times according t o store size we see that there is a significant 

correlation between the two as would be expected. 



Table 3.5 

Frequency and length of of f - line phases by store size 

Store Phases Comp. 
K Number % Total Mean Total 

min sec min 

Pure* 2908 18 110 2.3 272 

1-4 5668 35 1658 17.5 1009 

5-8 3592 22 1254 20.9 492 

9-12 1497 9 1070 42.9 144 

13-16 656 4 693 63.4 93 

17-20 441 3 417 56.7 17 

21-24 405 3 521 77 .2 100 

25-28 259 2 161 37.3 33 

29-32 427 ') 531 74.6 150 J 

33-36 178 1 583 196.4 46 

37-40 238 2 2186 550.0 130 

* Pure procedures with 64 words working space 
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Table 3.6 

Frequency and length of on-line phases by store size 

Store 
Phases Comp. Halt 

K Number % Total Hean Total Mean 
min sec min sec 

Pure* 41870 65 496 0.7 4425 63.0 

l-l1 18042 28 176 o.6 1974 6.6 

5-8 2721 4 243 5.4 64 1.4 

9-12 1814 3 138 4.6 67 2.2 

13-16 292 1 85 17.4 1 0.3 

17-20 88 0 16 10.9 0 0 .3 

21-24 24 0 12 28.9 1 2.3 

25-28 0 

29-32 5 0 0 2.8 2 29.0 

33-36 0 

37-40 0 

* Pure procedures with 64 words working space 



Figure 3.3 

Distributions of off-l ine comp . ti~es 
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Figure 3.4 

Distributions of on-line coynp. times 
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Figure 3.5 

Distributions of off-line halt times 
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Figure 3.6 

Distributions of on-line halt times 
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Figure 3.7 

Mean comu. time of phases against store size 
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Some unevenness is caused by compilers of particular sizes 

which are used a lot. Tables 3.7 and 3.8 show the most commonly used 

systems for off-line and on-line jobs respectively and it can be seen 

how a few systems account for much of the time. Pure procedures with 

64 words of working space are marked with an asterisk; these are 

classified separately since there is only one copy for all the users 

and this goes in an area reserved specially for them which is rarely full. 

Using hyperexponential distribution for comp. times with a 

different mean for different store sizes we get a much better fit than 

the exponential as can be seen from Figures 3.3 to 3.6. This distribution 

was used for the simulations, but the simple exponential was used for the 

analysis, since the results from that appear to be relatively insensitive 

to distribution. For the halt times Tables 3.5 and 3.6 show that there 

is little correlation and so the simple exponential distribution provides 

a better fit. 

I 
I 
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Table 3.7 

Off-line system usage 

Phases Comp. Halt 

System Number . % Total Mean Total tlean 
min sec min sec 

MLS 12316 14.8 95 0.5 578 2.8 

!IT 10888 13.1 1933 10.7 515 0.8 

!IT PROG 9852 11.9 17069 104.0 2881 17.5 

*COHNAND 9807 11.8 21 0.1 54 0.3 

AUTOCODE 8lfl8 10.1 1015 7.2 508 3.6 

*E3 7641 9.2 373 2.9 725 5.7 

FMJOB 3684 4.4 5 0.1 0 a.a 

*FINISH 2611 3.1 6 0.1 35 o.8 

!AL 2540 3.1 281 6.6 192 4.5 

PRIVATE 2480 3.0 649 15.7 803 19.4 

FORTRAL~ 2443 2.9 248 6.1 179 4.4 

!AL PROG 2149 2.6 1951 54.5 146 4.1 

FILELOG 1861 2.2 386 12.4 814 26.2 

RELOAD 1302 1.6 150 6.9 2428 111.9 

*EDIT 1064 1.3 123 6.9 94 5.3 

*ETAL 571 o.7 11 1.1 10 1.0 

FILEH 494 o.6 137 16.6 1162 1~1.1 

F}1ACTI0N 471 o.6 2 0.2 4 o.s 

}1ACR01 332 0.4 342 62,0 22 4.0 

FILEDUHP 300 o.4 83 16.5 212 42.4 

CRYST 278 o.3 1 0.1 14 3.1 

HAKARCH 232 o.3 70 18.2 624 161. Lf 

OWN 175 0.2 34 11.8 19 6.4 

TSAS 168 0 .2 201 71.9 627 223.9 

SET 154 0.2 0 0.1 0 o.o 

SIGNAL 136 0.2 1 0.2 2 0.8 

EXAHINE 116 0 .1 1 0.3 3 1.4 
,, 

U:N'DU1'IP 112 0.1 2 1.0 50 26.8 

* Pure procedure with 64 words working space 
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Table 3.8 

On-line sistem usa~e 

System 
Phases Comp. Halt 

Number % Total Mean Total Hean 
min sec min sec 

I. *COM}rA.ND 76956 43.8 944 0.7 71639 55.9 

*EDIT 17486 10.0 552 1.9 36594 125.6 

PRIVATE 17208 9.8 249 0.9 821 2.9 

'1 
*LOGIN 11703 6.7 116 o.6 6388 32.7 

NLS 7280 4.1 56 o.5 287 2.4 

*FINISH 7023 A.a 533 4.6 16749 143.1 

IIT 5336 3.0 393 4.4 15 0.2 

EXANINE 5049 2,9 32 o.4 3348 39.8 

!IT PROG 4947 2.8 596 7.2 540 6.6 

*RUNJOB 2987 1. 7 7 0.1 3 0.1 

!AL 2286 1.3 181 4.7 50 1.3 

SET 1966 1.1 2 0.1 0 o.o 

IAL PROG 1960 1.1 197 6.0 57 1.8 

AUTOCODE 1493 0.9 96 3.9 30 i.2 

FORTRA.11' 1790 o.8 80 3.2 124 5.0 

FSPACE 1449 o.8 2 0.1 1 o.o 

*ETAL 1191 o. 7 38 1.9 10 0.5 

COPY 961 0.5 4 o.3 55 3.5 

STATUS 715 0.4 0.1 0 o.o 

SIGNAL 528. 0.3 2 0.2 8 o.9 

MESSAGE 525 0.3 1 0.1 0 o.o 
HELP 519 0.3 20 2.3 0 o.o 
TIHE 508 0.3 0.1 0 o.o 

*E3 466 0.3 16 2.1 5 0.7 

STREAf1S 448 0.3 0.1 0 0.1 

TSAS 436 0.2 83 11.4 190 26.2 

PDP 376 0.2 8 1.3 15 2.4 

UNLOCK 301 0.2 0.1 34 6.8 

TESTSWIT 295 0.2 1 0.1 0 o.o 

FIGARO 238 0.1 6 1.6 956 241.1 

MACiWl 232 0.1 80 20.8 7 1. 7 

CROSSREF 204 0.1 38 11.2 2 o.6 
RECOVER 114 0.1 0.1 0 o.o 
FILEDUHP 109 0.1 32 17.6 54 29.5 

RELATION 100 0.1 0.1 5 2.9 

* Pure procedure with 64 words wor king space 



Chapter 4 

ANALYTICAL :i:lODELS 

Computer systems have been modelled analytically in various ways, 

which reflect the differences between systems and the particular 

interests of the analyst. Several types of model will be developed, 

the first of which is a deterministic one. Here we consider the floH of 

jobs through the system at a constant rate spending a constant time in 

each section of the system. In spite of these assumptions these models 

have several advantages. 

First the resulting equations are extremely simple, and enabl~ 

one to see clearly and explicitly the relationship between certain 

quantities. This relationship is often similar to or the same as more 

complicated models where the results can only be evaluated numerically. 

Sometimes systems ·can be modelled which would otherwise prove too 

difficult. Finally they provide a useful basis for comparison, for 

checking results froni more complicated analytical models and simulations 

and seeing how much is gained or lost in practice by the variability of 

programs. They can give a good idea of the means of various 

quantities, such as waiting times, queue sizes and idle time, but they 

cannot tell us anything about the distributions. 

Kleinrock( 36) used a deterministic model to define the concept 

of saturation in a simple multi-access system, and compared the results 

with a Markovian model. Penny(49 ) used two such models to get upper 

and lower bounds for the performance of a system with various parameter 

values for interpolating between simulation result~ as described in 

Chapter 7. 
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Figure 4.1 shows the deterministic model in diagrammatic form. 

We regard the system as a set of stages of service denoted by square 

boxes with the service time for each stage given inside each box . In 

this model all the service times are constant. The flow of jobs through 

the system is indicated by the lines, dotted lines showing where there 

is a choice of route. 

There is assumed to be an infinite supply of off-line phases 

which have two stages of service, first by the discs and then by the 

processor. Although in fact most jobs Kill have several phases and go 

through these stages several times we are only considering t.~e total 

number of phases run and not the job they are part of. 

On-line jobs also have these stages of service, with a different 

processor time, but they also have a third stage, corresponding to 

input- output and thinking time at a ~onsole. This is necessary because 

we want to consider the performance of the system with a fixed number 

of on-line jobs running rather than an infinite supply as for off-line 

jobs. A delay in one phase of a job will delay the start of the next 

phase , and so on, and so the sys t em is 3table as no backlog is possible. 

We assume that all t he disc activity is concentrated at the 

beginning <:>fa phas e to give a clear er model, though it makes no 

differ ence even for the statistical model as will be proved later . 

The figures used for the constant va l ues are the means derived f r0m 

observation of the Cambridge system given in Table 3.3, namely: 

Cl = 19.1 s ec Hean comp. time fo r off~line phas es 
C2 = 1.51 s ec Hean comp. time for on-line phases 
H = 42.0 sec Hean thinking time fo r on- l ine phases 
D = 5.6 sec Mean disc time for all phases 

H is derived from the mean halt time (= exec . time - co~p. tLJe) 

which was 44.59 sec, by subtracting the amount of disc time that is 
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Fi gure 4.1 

Deterministic model of Canbrid;e sys tem 
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chargeable to exec. time, namely that which is not used for streams. 

Dis derived by noting that there are roughly 28 disc transfers for 

each phase, 10 for the filing system and object programs, 10 for the 

well, and 8 for other reasons, including fixed head transfers for the 

supervisor which are quicker. If each of these except the latter take 

0.183 seconds and there are typically 8 arm repositionings taking 

0.153 seconds, the total comes to about 5.6 seconds. This figure is 

unfortunately not very accurately determined, since we do not know how 

many arm repositionings there actually are, or even whether the amount 

of disc activity is proportional to the number of phases as has been 

assumed, but it is impossible to get further details within the present 

system. 

This model is solved by equating the arrival and departure 

rates at each stage to the throughputs (Tl for off-line jobs, T2 for 

on-line jobs). If this were not true in equilibrium we would have an 

indefinite build-up of jobs at one stage. He have not included the 

number of off-line jobs in core explicitly since this only affects the 

waiting time for off.:.line jobs which is not of great importance. He 

can compare different scheduling algoritlm1s according to the values of 

Tl and T2 they produce, whereas later models only enable us to consider 

a few alte_rnatives. 

Both the discs and the processor can be in one of two states. 

Either they can be saturated, that is working all the time, or 

unsaturated, that is idle some of the time. The condition for 

saturation of a stage is that the throughput multiplied by the 

effective service time by the stage should be equal to one, if this is 

less than one it gives the utilisation of the stage. This gives us 
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the following two conditions: 

(1'2 + T1 )xD / 2 = DU ~ 1 (2 discs) 

(Tl x Cl + T2 :ir. C2 ) /V . = CU ~ 1 

where CU is the processor utilisation, DU is the disc utilisation, 

and Vis the system overhead factor, that is the fraction of the 

processor time spent in obeying user's programs. This is taken to be 

0.833 though later measurements indicate that it has risen to nearer 

0.9. This may be the result of increasing the store size or just 

random variation. 

In practice we can assume an infinite supply of off-line jobs, 

so if we are given T2 we can then work out Tl to be the maximum that 

just saturates either the discs or the processor, that is: 

Tl = Mi"n (l 2 V - T2 x C2) 
D - T ' Cl 

If a stage is not saturated the waiting time is equal to the 

service time. Thus we have a maximum on T2 imposed by the fact that 

it will t?ke a certain time for a job to pass through all the 3 stages 

even if there are no delays at all, that 

T2 N2 
~ H + D + C2/V 

. 
l.S: 

where N2 is trie number of on-line jobs running. 

The effect of saturation of a stage will be to cause waiting 

at that stage to make the total time required to pass round the circuit 

multiplied by the throughput equal to the number of consoles, that is: 

T2 N2 -
H + DH + CW 

where DW is the disc waiting time for on-line jobs and CW is the 

processor waiting time for on-line jobs. 
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Hence we can calculate the sum of the waiting times, i.e. the 

response time, and the two times individually except in the case when 

both stages are saturated, where the individual waiting times depend 

on the initial conditions. 

Finally the mean queue length for a stage is equal to the 

throughput multiplied by the waiting time for it. This fact is 

obvious for queues with constant arrival and service times, since the 

waiting time is equal to the mean queue size multiplied by the mean 

service time. In f~ct it is also true for all queueing systems with 

' 11 . 'b d ' 1 d · · c43) exponentia y distri ute arriva an service times. The mean 

queue size for an unsaturated stage is the same as the fraction of time 

it is in use, since there will never be a queue of more than one. 

If there were by the next time round the system the arrivals would 

have evened themselves out to correspond to times when the stage was 

free. The queue length includes the current user of a stage. 

The results of this model are given in Table 4.1 and Figure 4.2. 

The throughputs (Tl and T2) are given in phases/min for convenience of 

comparison, whereas in the equations they are in phases/sec. As can 

be seen from the equations the waiting time is a function only of the 

throughput per console (T2/N), whereas the mean nunber of consoles 

waiting for the disc or the processor (Q) and the fraction of processor 

time used by on-line jobs (CU2) including overhead are proportional to 

the throughput (T2), or to the number of . consoles for a given value 

of T2/N. We can take the . arithmetic mean of the ntliiIDer of on-line 

jobs running measured from the system and compare the results, using 

linear interpolation. The values were: 
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Table 4.1 

Deterministic model of Cambridge system 

N Tl T2 T2/N w Q CUl CU2 DUl DU2 

3 2.47 1.80 0.60 58 . 00 1. 74 o.95 0.05 0.12 0.08 
3 2.44 2 . 27 ·o.76 37.37 1.41 0.93 0.01 0.11 0.11 
3 2.40 2.74 0.91 23.79 1.08 o . 92 0.08 0.11 0 .13 
3 2.36 3.20 1.07 14.18 0.76 0.90 0.10 0.11 0.15 
3 2. 33 3.64 1.21 7.41 0.45 0.89 0.11 0.11 0.17 

6 2.33 3.60 0.60 58.00 3.48 0.89 0.11 0.11 0.17 
6 2.26 4.54 0.76 37.37 2.82 o.86 0.14 0.11 0. 21 
6 2.18 5.47 0.91 23.79 2.17 0.83 0.17 0.10 0.26 
6 2 . 11 6. 41 1.07 14.18 1.51 0.81 0.19 0.10 0.30 
6 2.04 7.29 1.21 · 7.41 0.90 0.78 0.22 0.10 0 . 34 

9 2.19 5.40 0.60 58.00 5.22 0.84 0.16 0.10 0.25 
9 2.08 6.80 0.76 37.37 4. 2/+ 0.79 0.21 0.10 0.32 

9 1.97 8.21 0.91 23.79 3.25 0.75 0.25 0.09 o .38 
9 1.86 9.61 1.07 ll• .18 2.27 o. 71 0.29 0.09 0.45 
9 1.75 10.93 1.21 7.41 1.35 o.67 o.33 0.08 0.51 

12 2.05 7.20 0.60 58.00 6.96 0. 78 0.22 0.10 0.34 
12 1.90 9.07 0.76 37.37 5.65 0.73 0.27 0.09 0. 42 
12 1. 75 10.94 0.91 23.79 4.34 o.67 0.33 0.08 0.51 
12 1.60 12 .82 i.07 i4.18 3.03 0.61 0.39 ('\ ('\., 0. 60 VeVI 

12 1.46 14.57 1.21 7.41 1.80 0.56 0.44 0.07 o.68 

15 1.91 9.00 0.60 58.00 8.70 o.73 0.27 0.09 o .42 
15 1.72 11.34 0.76 37.37 7 .06 o.66 0.34 0.0 8 o.53 
15 1.54 13.68 o.91 23.79 5. 42 o.59 0.41 0.07 o . 64 
15 1.35 16.02 1.07 14.18 3. 79 o.s2 0.48 0.06 o. 75 
15 1.18 18.21 1.21 7 . 41 2. 25 0.45 o.55 0.05 o .ss 

18 1.76 10 . 80 0.60 58.00 10.44 o.67 0.33 0.08 o.so 
18 1.54 13.61 0.76 37.37 S.47 0.59 0.41 0.07 0.64 
18 1.32 16.42 0.91 23 . 79 6.51 0 . 50 a.so 0.06 o .7 7 
18 1. 10 19.22 1.07 14. 18 4 . 54 o . 42 0 . 58 o.os o. 90 
18 o .oo 21.43 1.19 8.40 3.00 o.oo 0 . 65 o.oo 1.00 

~ 
N Numb er of on-l i ne jobs r unning , 
Tl Off-line throughput (phases / min) 
T2 On-line throughput (phases / min) 
w Mean respons e t ime f or on-line jobs 
Q Hean number of on-line jobs .:n:aiting response 
CUl Processor use by off-line j obs (including overhead) 
CU2 Processor use by on-line j obs (incl uding overhead) 
DUl Disc use by off-line jobs 
DU2 Disc use by on-line jobs 



Figure l1 .2 
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Tl = 2.22 phases/min 

T2 = 4.93 phases/min 

N - 4.61 on-line jobs 

from which we have T2/N = 1.07. 

By interpolating in Table 4J between N = 3 and N = 6 we get 

Tl = 2.24 phases/min which is rerr.arkably close to the actual figure. 

We also get by the same method the disc usage DU= 0.33 which raay 

seem remarkably low until we remember that in practice the number of 

on-line jobs varies a lot and we have to be able to cope with the peaks 

as well. Similarly in practice the waiting time W = 14.18 sec will 

vary when we take into account the stati.stical nature of the real system. 

Considering the amount of computer time used we see by 

interpolation that CUl = 0.85, CU2 = 0.15. If we exclude overhead 

the fractions of processor time devoted to off-line and on-line work 

are 0.71 and 0.125 respectively, which is in exact agreement with the 

observed values. The extent of these agreements and the one noted 

above are coincidental, but they do indicate the role of this type of 

model when the performance of the whole system is being considered. 

However it cannot describe in de tail t he e ffect on individual j obs , t he 

value of U being only an approxi ma te :neasure of the mean response time . 

One of the r ecurrent quest ions abou t such sys tems i s whether the 

on- line response time or the number of on-line jobs running or both can 

be i mproved without too serious a drop in the amount of off-line work, 

or whether these objectives are incompatible. 

This model can partially ans'.·1er these questions by telling us 

the theoretical optimum r es ults and how much trade-off between objec t ives 

is required. It does not tell us whether this can be achieved, or how 
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to achieve it, because the problens of scheduling and store 

allocation can only be investigated by analysis or simulation with 

more sophisticated models. 

The reason it gives a theoretical optimuill is that randomness 

in arrival and service times and waiting for core store will produce 

delays and result in idle time which the model does not account for. 

As we can see from Table l1,l & Figure 4.2, even if on-line jobs 

are given the maximum possible amount of processor time, i.e. use of the 

processor whenever there are any ·waiting, saturation of the disc does 

not occur until there are 17 on-line jobs running and thus the table 

provide a valid picture over all this range. ;men the disc becomes 

saturated the two expressions for Tl given earlier are equal, i.e. 

2 
D 

T2 = V _ T2 x C2 
Cl 

= Tl 

This happens when T2 = 21.4, Tl = L059 

can be seen in Figure 4.2 • 

The resulting discontinuity 

If we first consider how much we can improve the response tit1e 

keeping the number of on-line jobs the same we see that we can cut W 

almost by half, from 14.18 to 7.41 with CUl and CU2 being 0.83 and 

0.17 respectively corresponding to 0.69 and 0.14 after overhead has 

been deductec. It seems remarkable that such a change can be made by 

reducing the time devoted to off-line jobs by only 3% of its value, 

but this reflects the fact that in its mean state the on-line system 

is nowhere near saturation. 

The mean state however is not the typical state, as a glance 

at Table 3.4 and Figure 3.2 giving the number of jobs running will 

show, since at some times during the day there are twelve people 
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logged in but during the night there are very few. At peak times the 

degradation required to give this increase in performance is more 

severe, for example with 15 users the fraction of actual time given to 

off-line users decreases from .0.43 to 0.38, over 11% of its value. 

Whether off-line users are prepared to accept the resulting degradation 

in their turn-round during the day is essentially a political decision. 

A similar situation arises when c'hanges to the maximu.rn number 

of consoles are considered. If the mean rose to 9, which would roughly 

be the effect of increasing the maximum to 18, keeping the response 

time the sa.-ue, the resultant CUl and CU2 would be o. 71 and 0.29, 

that is 0.59 and 0.24 after deducting overhead. With 18 consoles 

actually in operation the figures for CUl and CU2 are 0.42 and 0.53 

respectively and the consoles are now consuming the lion's share of 

the time in peak periods, though the change in the mean time devoted 

to off-line work is only 14% of its previous value. 

There is an additional danger that once the off-line response 

time becomes too bad more and more people will do more of their work 

on..;.line, thus causing a vicious circle. No computer can serve two 

masters. 

The situation is also slightly altered by the fact that the 

supply of off- line work is not in fact infinite but depends to a l arge 

extent on people getting the results of t heir old runs back befor e 

initiating new ones, thus an increase in the turn- round time will no t 

produce an infinite backlog but s t abilise with a larger backlog, the 

most impor t an t eff ect be i ng a les s sa tis factory service. 

There are two reasons for giving the on-l ine user prior i t y, 

f irst because his requests for service are usually short, and therefore 

. ' . -,, .... 
• .r 

-~ 
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logged in but during the night ther e ar e very few . At peak times the 

degradation required to give this increase in performance is rr~re 

severe, fo r example with 15 us ers the fraction of actual time given to 

off-line users decreases from 0~43 to 0.33, over 11% of its value. 

Whether off-line users are prepared to accept the resulting degradation 

in their turn-round during the day is essentially a political decision. 

A similar situation arises when changes to the maximu.'11 number 

of consoles are considered . If the mean rose to 9, which would roughl y 

be the effect of increasing the maximum to 18, keeping the response 

time the sa.-ue, the resultant CUl and CU2 would be 0.71 and 0.29, 

that is 0.59 and 0.24 after deducting overhead. With 18 consoles 

actually in operation the figures for CUl and CU2 are 0.42 and 0.5 3 

respectively and the consoles are now consuming the lion's share of 

the time in peak periods , though the change in the mean time devoted 

to off-line work is only 14% of its previous value. 

There is an additional danger t hat once the off-line response 

time becomes too bad more and more people will do more of their work 

on- line , thus causing a vicious cir cle. No computer can serve t wo 

masters . 

The s ituati on i s a lso slight l y a l t er ed by the fact t hat t he 

supply of off-line work is not in fact infinite but depends t o a large 

extent on peop le getting t he results of the i r old r uns back before 

initiatins new ones, thus an i ncreas e in the turn-round time will not 

produce an infinite backlog but stabilise with a larger backlog, the 

most important effect being a less satisfactory service. 

There are two reasons for giving the on-line user priority, 

first because his reques ts for service are usually short, and therefore 
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easy to satisfy, and second because he is sitting waiting for the 

results, presumably idle. Because of this latter fact he implicitly 

states how important a particular set of results is to him by choosing 

to wait for it on-line, since he .can always create the equivalent of 

an off-line job from a console to run in its own time, provided it doe3 

not use paper tape input. If the response time worsens he does more of 

his work in this way and thus the situation improves again. It is not 

easy to coopare the needs of on-line and off- line users directly, but 

at least using analysis we know the alternatives open to us • 

Another interesting solution to this problem, though rather 

improbable in practice, is the . installation of a second processor. We 

have seen that it is nearly always the processor that is saturated 

rather than the disc, and that the system is theoretically capable of 

providing a much better service to on-line users, but at the expense of 

off-line users. Since the ~ain resource that these use is processor time, 

a second processor seems the natural solution. 

Table 4.2 gives the results of this :nodel with two processors, 

each with t he same power as tne current one. These show that in fact t he 

main beneficiaries are off-line jobs, and if we compare it with Table 4.1 

we see that the throughput of these is relatively so nruch higher t hat we 

can afford- to give maximum priority for on- line jobs, except when there 

are over 17 of t hese running, when again we run into trouble with the 

discs. Even with 15 on-line jobs running,· if we give them maximum 

priority the disc is fully used and the processor is only used 89% 

of the time including overhead. This assmaes the same overhead , which 

is reasonable since the extra adn:inistrative needs would be balanced 

by the fact that only one processor need handle interrupts and the 
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Table 4.2 

Deterministic model of t1v0 processor system 

N Tl T2 T2/N w. Q CUl CU2 DUl DU2 

3 5.09 1.80 0.60 58.00 1. 74 o.97 0.03 0.24 0 . 08 

3 5.05 2.27 · o. 76 37.37 1.41 0.97 0.03 0.24 O. ll 

3 5.02 2 .74 0.91 23.79 1.08 o.96 0.04 0.23 0.13 

3 4.98 3.20 1.07 14.18 o.76 0.95 o.os 0.23 0.15 

3 4.95 3.64 1.21 7 .Lfl 0.45 0.94 0.06 0.23 0.17 

6 4.95 3.60 0.60 58.00 3.48 0 .95 o.os 0.23 0.17 

6 4.87 4.54 0.76 37.37 2.82 0.93 0.07 0.23 0.21 

6 4.80 5.47 o. 91 23.79 2.17 o.92 -0.08 0. 22 0. 26 

6 4.73 6.41 1.07 14.18 1.51 0.90 0.10 0.22 0.30 

6 4.66 7.29 1.21 7.41 0.'.10 o.89 0.11 0.22 0 .34 

9 4.81 5.40 0.60 58.00 5.22 0.92 o.os 0.22 0.25 

9 4.70 6.80 0.76 37.37 4.24 0.90 0.10 0.22 o .32 

9 4.58 8.21 O·. 91 23.79 3.25 o.ss 0.12 0.21 0.38 

9 4.47 9.61 1.07 14.18 2.27 o.ss 0.15 0.21 0.45 

9 4.37 10.93 1.21 7.41 1. 35 o.83 0.17 0.20 0.51 

12 4.66 7.20 0.60 58.00 6.96 0.89 0.11 0.22 0.34 

12 4.52 9 .07 0.76 37.37 5.65 0.86 0.14 0.21 0.42 

12 4.37 10.94 0.91 23.79 4.34 o.83 0.17 0.20 0.51 

12 4. 22 12.82 1.07 14.18 3.03 0.81 0.19 0.20 0.60 

12 4.08 14.57 1.21 7 .L1l 1.30 0.78 0.22 0.19 o. 68 

15 4.52 9.00 0.60 58.00 8.70 o.86 0.14 0.21 o .42 

15 4 0 3L1 11.34 0.76 37.37 7 . 06 o . 83 0.17 0. 20 0.53 

15 4.15 13. 68 o.91 23.79 5 .Lf2 0.79 0.21 0.19 o. 64 

15 3.97 16.02 1.07 14.18 3.79 0.76 0.24 0 . 19 0. 1s 

15 3.21 18. 21 1. 21 7. lfl 2.25 o.61 0.28 0.15 o . 85 

18 4. 38 10.80 0 . 60 58.00 10 .44 o . 84 0.16 0.20 a.so 

18 4 .16 13 . 61 0 . 76 37 . 37 8.47 o.79 0 . 21 0.19 0 .64 

18 3. 94 16 .42 0.91 23 . 79 6.51 o. 75 0. 25 0.1 8 o. 77 

18 2~20 19.22 1.07 14.18 4. 54 0 .42 0 .29 0 . 10 0.90 

18 o .oo - 21. 43 1. 19 8. 40 3.00 o.oo 0 .3 2 o.oo 1.00 

Key 
N Number of on-l i ne jobs running 
Tl Of f - line t hroughput (o:1ases/mi n) 
T2 On-l i ne throughput (phases / min) 
w Nean response tir.1e for on-line j obs 
Q Hean nur;iber of on..;. line jobs awai ting response 
CUl Process or use by off-li~e j obs ( including overhead) 
CU2 Processor use by on-line jobs (including overhead) 
DUl Disc use by off-line jobs 
DU2 Disc use by on-line jobs. 

- - - - -· 
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number of phases would be less than doubled because of the higher 

proportion of off-line v:ork with a longer time per phase. 128K of core 

store would probably suffice for both processors, since one would be 

running mainly off-line jobs without much time sharing. This would 
I 

represent a system where the disc and the processors were more evenly 

balanced for the given policy on the ratio of off-line to on-line work. 

Hore off-line work would soon appear to fill the extra capacity. 

The next type of model uses the theory of )Iarkov processes and 

again considers the system as a whole with jobs floHing through it, 

though at a variable rate and spending variable lengths of tine in the 

different stages of the system. The system is considered as having a 

number of distinct states atld is able to make transitions betueen the 

various states with the passage of time. To each transition from one 

state to another and from a state to itself is assigned a transition 

probability, whi ch can be calculated from a knowledge of the system. 

The system is called a Harkov process if these transition 

probabilities depend only on the curreri.t state of the system and not 

on its past history. As mentioned earlier the exponential distribution 

possesses t h is men~ryless property and w~st models assume this. Other 

distributions can be derived from the exponential by introducing 

notional ~xt~a stages of service, in series, parallel or a series­

parallel combination, with different means. The use of the hyper­

exponential distribution for comp. times has been mentioned already. 

Though these can represent a better approxiaci.tion to the real 

distribution, and the methods of solving them are similar, they 

complicate the analysis and require more cora?u ter time for solution, 

or only permit nuD~rical solution. 
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The result is a series of linear equations in the probabilities, 

which in certain cases can be solved analytically if there is sufficient 

symmetry. Because there may be a number of equations numerical solution 

of the other cases is difficult and requires recursion. However once 

numerical methods are necessary simulation with a more accurate model 

becomes attractive and numerical solution was not used in this work. 

These have been studied by statisticians such as Jackson(3o) and 

Koenisberg< 33) in the last few year$ but there have only been two 

previous applications to computer systems. Tiie simplest case is 

analogous to a machine minding problem with the consoles representing 

machines, the requests for processor time representing breakdo~ns, and 

the process or representing the engineer. Tiie solution of this has been 

knovm for some time and this model was used by Scherr<54 , 55 ) at HIT 

to model CTSS and is derived in detail later. It has been developed 

further by Kleinrock~35 •36) 

1 . ' h . 1 1 ' b . ' (SS) The other app 1.cat1.on waste numer1.ca so ut1.on y J.L. Snutn 

of a system containing about SOOOstates, using a recursive method 

developed by Wallace and Rosenberg. Tiiis method has also been used by 

J.H. Srnith~59 ) None of this work has distinguished between off-line 

and on-line jobs or dealt with requests for specific processing units. 

All the service times used in the models are assumed to be 

exponentially distributed because of the convenient memoryless property 

this gives. If a random variable y with mean m is exponentially 

distributed its probability density function is given by: 

-x/m 
2 
---t.x PR(x:;; y ~ x+ilx) = 

m 

Consider the distribution of the remainders of those y that are 
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greater than z. 

than z is: 

The probability of a random y being greater 

PR (y > z) == J
O) -x/m 

e · dx 
m . 

z 
= 

-z/m 
e 

Hence the conditional distribution of (y - z) granted that it is 

positive or zero is siven by: 

PR(x-z ~ y-z ~ x+tx-z) = 
-x/m 

e 
-z/m tx 

me 

where O ~ x-z ~ ... • If we chc:.nge the variable to x';:: x - z 

this reduces once more to the exponential distribution. Thus however 

long a job has been in any stage its mean rate of leaving that stage 

is still 1/M where N is the mean effective service time for that 

stage. We shall consider first the simplest model, partly for 

illustration and partly because it is the only one that has previously 

been used for analytic solution when applied to computer systems. 

This is shown in Figure 4.3 and consists of N consoles with 

exponentially distributed thinking time H using one processor with 

mean computation time C. The notation is the same as before except 

that stages with exponentially distributed service times are 

represented by a circle with the mean time inside. 

Because this is a closed system with a fixed number of 

jobs and because the memoryless property means that the amount of 

service they have had so far is irrelevant we concentrate our attention 

on the finite number of possible states of the system instead of on 

the individual jobs. The state (i,j) of the system can be described 

by the number of consoles thinking i and the nur:iber of jobs 

computing J• Since i + j == N we only need one of these in principle, 
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Figure 4.3 

Simplest Harkov model of 1ml ti-a.ccess s ystem 
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but the equations for the ~ore general cases are more symnetrical 

and easier to follow if both are used. To each state we ascribe 

a probability P .. 
l.J 

of the system being in that state. 

consider the transition rates bePveen various states. 

We then 

We nrust also introduce the Heaviside unit function, to give it 

one of its names: 

U(i) = 1 

0 

if 

if 

i > 0 

i = 0 

The mean rate of exit from the state where a job is thinking to the 

state where it is computing is 1/H and since there are i such jobs 

which all think in parallel the rate of transition from state (i,j) 

to state (i-1,j+l) is i/H. He assume that no two jobs stop 

thinking exactly simultaneously and that "thinking" includes the 

processes of console input and output, the validity of the latter 

assumption has already been discussed. Similarly the rate of 

transition from staie (i,j) to state (i+l,j-1) is U(j)/C, since 

only one job can be computing at a tirre. 

It does not in fact matter what the scheduling algorithm is, 

since this will merely reorder the service completions rather than 

change the rate of completion. Although it affects the distribution 

of waiting time conditional on processor time it does not affect its 

mean. 

In equilibrium, which must be reached since this is a closed 

aperiodic system, the rate of transfer out of state (i,j) must be 

equal to the rate of transfer into it from other states for all 

possible (i,j). Renee we have: 

. - ' _ • ..::!.....J!... 
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I 
( i + U(j)) p 
H C ij 

= (i+l) P 1 P 
H i+l,j-1 + C i-1,j+l 

Rate of leaving (i,j) Rate of entering (i,j) 

These N + 1 equations in N + 1 unknowns are homogeneous witn 

zero determinant, since each ter.n occurs both on a right-hand and left­

hand side, and are soluble in several ways. One way is to note t hat the 

output of a queue with exponential input is also exponential, and app ly 

the normal queueing theory solutions to each queue. Alternatively 

one can assume that the solution is of the form P .. = Q(i) x R(j) and 
l.J 

get the solutions by inspection or from the recurrence relations: 

HO(i-1) ri 
Q(i) 

"1 
= = ..._,,.. 

i l. • 

and R(j) = CR(j-1) = cj 

giving P •. 
FHiCj 

= . ' l.J l.. 

where F is a normalizing constant. This can be found from the fact 

that 
N 

. l pi N-i · = l 
1.=0 , 

Hence we have 

N 
P •• 

l.J 
= l 

k=O 

Given the P.. we can easily work 
l.J N 

out everything else such as the 

mean processor queue size Q = l k p 
N-k,k' the processor utilisation 

k:::() 

CU= 1 - PN O 
' 

and the mean waiting time 
QxC 

W = CU • This value for H 

comes from the mean queue size conditional on the stage being busy 

multiplied by the mean service time and will be used in the later queues 

we consider. The throughput can b8 expressed as T = N/(H+H) or 

alternatively as T = Q/W and hence we can get explicit relations 

• l • 

. - ,-. . -
·--~·~ 
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for Q and W in terms of CtJ namely 

Q = N (H x C·U)/C 

W = N x C/CU - H 

Results from this model will not be given since they are not 

appropriate to a system with a heavy off-line load and a disc, and 

can be found elsewhere. (36 , 54 ) 

The first extension we shall consider is the inclusion of the 

discs. This is complicated by the fact that there are effectively 

two of them. If we consider the model in Figure 4.4 with only on-lir,e 

jobs again for simplicity and i, j and k jobs thinking, waiting for 

the discs, and ,1aiting for the processor respectively, and M discs 

the rate of exit from state (i,j ,k) to state (i,j-1,k+l) is 

HIN(j ,M) the numerator giving the number of disc units in use. 
D ' 

He thus get the following set of equations: 

( i + dIN(j,M) + U(k)) 
H D C P. 'k . l.J . 

= 
i+l 
F1 +P.1.lk 
• J.+ ,J- ' 

+ MIN (j; l ,H) p. ' 1 k l + .!_ p' 1 . k 1 
i,J+-, - C i- ,J, + 

where terms with any suffix negative are ignored. To simplify 

subsequent equations we use the notation 

= pi J'+l k-1 
' ' 

etc. 

The upper -subscript is increased by one and the lower is decreased 

by one, all others remaining the same. Hence the equation just given 

could be written: 

( i HIN(j ~tl) + U(k))P = 
R + D C ijk . 

i+l pi + HIN(j+l,M) pJ 1 Pk 
H j D k +C i 

Proceeding to solve these in the same Hay we get 

- - -- . 
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Figure 4.4 

Markov model wi t h several discs 
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P. 'k 
HiDjC~ 

j ~ M = •I' I l.J . J.. •J • 

P .. k 
HiDjC~ 

j M = (. ?.f) ~ l.J . i!H!M J-i · 

l P .. k = 1 l.J . i+j+k=n 

the factor F being derived from the last equation in the same way. 

This can obviously be extended to deal with multiple processors. 

A closer approximation to the truth is to assume that disc 

activity is spread out into several bursts during the phase and see 

what difference that makes. In the model in Figure 4.5 we assume 

that each phase starts and ends with a disc access and also has disc 

accesses in the middle of it. After each disc access the probability 

of returning for more computation is q and the probability of 

finishing is p where p + q = 1. The mean number of disc accesses 

per phase is lip and the mean number of processor bursts is q/p. 

Thus we have for the new disc time per burst D' = p x D and the new 

processor time per burst C' = p x C/q. Typical values of p and q 

would be p = 0.125; q = 0.875 corresponding to 8 disc bursts and 

7 processor bursts per phase. It must be remembered that this includes 

program loading, backing store transfers, stream handling, filing and 

supervisor activitie~ The new equations are: 

(i + MIN(j 12) + u (k)) 
P .. k = 

i+l pi + p 
MIN (j + 1 22.) p~ 

H D' C' l.J . H j D' l. 

HIN(j +l !2) pj 1 k 
+ q D' + C' pj k 

These give by inspection: 

P .. l = (EH) i (IJ) J 
(qC I )k F' ~ 2 . ' -;-;- J 

l.J < l. • J • 

P .. k = 
(eH)i (~') J ( C I) k F' J >, 2 . i 2J-l q l.J l.. 

--- -

- -------
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Figure 4.5 

Markov model with bursts of processing and disc activity 
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If we substitute in the values of D' = p x D and C' = p x C/q 

we find that the equations are the same as the original ones provided 

that p(i+j+k) x F' = F. But i + j + k = N always and since F and F' 

are just normalising factors it . is the ratios between the P .. k l.J 
that 

matter. Hence the assumption that all the disc activity is concentrated 

at the beginning of each phase makes no difference, and will be used in 

future • 

The next problem is how to include the off-line work and 

apportion the processor and disc time between the two. Here the 

equations resist solution for the general case. However one of the most 

natural algorithms, namely if there are k jobs of one type and m jobs 

of another type waiting for service at a given stage, then the first 

type get a fraction k/(k+m) and the second type a fraction m/(k+m) 

of the server's time, is soluble. We can apply this algorithm both to 

the disc and the processor. 

In order to apply this algorithm we must assume a fixed total 

(Nl) of off-line jobs with £ waitinf' for the disc and m waiting 

for the processor, and £ + m = Nl. This corresponds reasonably well 

to reality where the number is effectively limited by the size of the 

core store and the scheduling policy of the supervisor. For a first 

come fi r s t s erved queue such as for the disc, or a round robin system, 

which is almost the case for the processor, this algorithm for time 

apportioning is the obvious one t o use. This gives the following 

equations: 
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(2: + MI N(j+l ,z ) + ...,.---1_,< _ 
H D (k+m)C 

+ m = i +i P~ + (j +l)HI N(jH+l ,2 ) ¥.1 
(k+m)C )Pijktm H J (j +Hl) D k 

+ (k+l ) Pk+ (Hl)HI N(j +H l , 2) -P£ m+l pm 
(k+m+l)C2 i (jH+l)D ~m + (k+m+l) Cl £ 



The solution of these l.S 

Hi DjH 
C2kC1m (k+m) ! j+t ~ 2 p. 'ki = TI j ! Q, ! k!m! F 

l.J m . l.. 

p. 'ki 
Hi Dj+t (j+t) ! C2kClm (k+m)! 

F j+i ~ 2 = 7f' 
l.J m . l. • . ·•1•2j+t-l k!m! 

J. • 

where Nl and N2 are the total numbers of off-line and on-line· jobs 

respectively and Cl and C2 are their mean processor times. F is 

found from the normalising condition in the usual way. 

l l 
i+j+k = N2 Hm = Nl 

p • 'kn l.J ,<,ffi 
= 1 

In such models the actual values of the probabilities are not 

usually of interest, and would occupy too much paper in any case, 

since the number of possible states is in the thousands for large 

Nl and N2. Instead we are interested primarily in the derived 

quantities like queue sizes and waiting time and item usage and 

throughput, the method of calculating which was described earlier 

for the simple case. In this case the situation is much the same 

only the sum must be taken over a larger range of possibilities. 

The results for this model are given in Table 4.3 and 

Figure 4.6 for the one processor case and Table 4.4 or the two 

processor case, both processors being of the same speed as the current 

one, as before. The first thing to notice about these results is the 

remarkable measure of agreement with the non-statistical model. 

Although the latter did not include the number of off-line jobs we can 

compare results with equal values of the throughputs. One might have 

thougnt that the statistical variation of times would have changecl 

the performance characteristics of the system, but this appears not 

to be so. 
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Figure 4.6 

Hean on-line waiting time against off-line tnrott_8hput for ~,:arkov mode l 
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Table 4.3 

Harkov model of Cambridge system 

N2 Nl Tl T2 T2/N2 w Q CUl CU2 DUl DU2 

3 0 o.oo 3.63 1.21 7.59 0.46 o.oo 0.11 o.oo 0.17 
3 3 2.35 3.27 1.09 13.13 o. 71 0.90 0.10 0.11 0.15 

. 3 6 2.38 2.96 0.99 18.84 0.93 0. 91 0.09 0.11 0.14 
3 9 2.40 2. 71 o . 9o 24.51 1.11 o.92 0.08 0.11 0.13 
3 12 2.42 2.50 0.83 30.l<t 1.25 o.92 0.08 0.11 0.12 

6 0 o.oo 7. 18 1.20 8.16 0.98 o.oo 0.22 o.oo 0.33 
6 3 2.11 6.38 1.06 14. 39 1.53 0.80 0.19 0.10 o.3o 
6 6 2.16 5.76 0.96 20.50 1.97 o.83 0.17 0.10 0.27 
6 9 2.20 5.26 o.88 26.49 2.32 o.84 0.16 0.10 0.25 
6 12 2.23 4.84 0.81 32.39 2.61 o.85 o.15 0.10 0.23 

9 0 o.oo 10.56 1.17 9.15 1.61 o.oo 0.32 o.oo 0.49 
9 3 1.87 9.30 1.03 16.06 2.49 o.72 0.28 0.09 O.L,3 

9 6 1.96 . 8 .37 0.93 22.54 3.14 o. 75 0.25 0.09 0.39 
9 9 2.01 7.63 o.85 28.82 3.66 o. 77 0.23 0.09 0.36 
9 12 2.06 7.02 0.78 34.95 4.09 o.79 0.21 0.10 0.33 

12 0 o.oo 13.66 1.14 10.70 2.44 o.oo 0.41 o.oo o.64 
12 3 1.66 11.95 1.00 18.23 3.63 o.64 o.36 0.08 0.56 
12 6 1.77 10.75 o.9o 25.00 4.48 o.68 0.32 0.08 o.so 
12 9 1.84 9.80 0.82 31.50 5.14 o.7o 0.30 0.09 o.46 
12 12 1.90 9.02 0.75 37.82 5.69 0.73 0.27 0.09 0.42 

15 0 o.oo 16.36 1.09 13.02 3.55 o.oo 0.49 o.oo o.76 
15 3 1.48 14.28 0.95 21.00 5.00 o.56 0.43 0.07 o.67 
15 6 1.60 12.87 0.86 27.92 5.99 o . 61 0.39 0.07 0.60 
15 9 1.69 11. 75 0.78 34.57 6.77 o.6t; o.36 0.08 0.55 
15 12 1. 76 10.84 o. 72 41.02 7.41 o.67 0.33 o.os 0.51 

18 ·O o .oo 18. L;9 1.03 16.40 5.05 o.oo 0.56 o.oo G.86 
18 3 1.32 16. 23 0 .90 24.52 6. 6L; a.so 0.49 0.06 o . 76 
18 6 1.45 14.72 o.sz 31.37 7.70 o.s6 0.44 0.07 0.69 
18 9 1.55 13.49 0.75 38.04 8.55 0.59 0.41 0.07 G.63 
18 12 1.63 12.48 0.69 44 .SL, 9. 26 0.62 0,38 o.o s o.ss 

· Nl Number oi of f-:- line jobs running 
NZ Number of on-line jobs running 
Tl Off- line throughput (phases / min) 
T2 On- line throu~hput (phases / min) 
w :Mean r espons e time for on-line jobs 
Q Hean number of on-line j obs await i ng response 
CUl Process or use by off- line jobs (including overhead) 
CU2 Processor use by on-line j obs (includinG overhead) 
DUl Disc use by off- l ine jobs 
DU2 Disc use by on-line jobs 



Table 4.4 

Markov model of t wo processor sys tem 

N2 Nl Tl T2 T2/N2 w 

3 0 o.oo 3.64 1.21 7.45 
3 3 4. 71 3.50 1.17 9.49 
3 6 4.97 3.31 1.10 12,35 
3 9 4.98 3. 15 1.05 15.13 
3 12 5.00 3,00 1.00 17 .91 

6 0 o.oo 7.23 1.21 7.79 
6 3 4.42 6.87 1.14 10.43 
6 6 4. 71 6.50 1.08 13.42 
6 9 4.74 6.18 1.03 16.27 
6 12 l1. 77 5 .. 89 0.98 19 .11 

9 0 o.oo 10.69 1.19 8,52 
9 3 4.13 10,03 1.11 11.86 
9 6 4.47 9.48 1.05 14.97 
9 9 4.52 9 .02 1.00 17.85 
9 12 4.55 8.61 o.96 20.70 

12 0 o.oo 13 . 90 1.16 9,80 
12 3 3.83 12.85 1.07 14.01 
12 6 4.25 12 .16 1.01 17,23 
12 9 4.31 11 . 61 0,97 20,03 
12 12 4.36 11 . 11 0.93 22 , 82 

15 0 o . oo 16. 71 1.11 11.87 
15 3 3.53 15 . 20 1.01 17. 21 
15 6 4.05 14 . 39 0,96 20 , 52 
15 9 4. 14 13 . 82 o.n 23.13 
15 12 4. 18 13 . 29 o.89 25. 71 

18 0 o.oo 18.90 1.05 15.13 
18 3 3.23 16.93 0.94 21. 80 
18 6 3 . 89 16.05 0 .89 25 . 27 
18 9 4.00 15.54 o . 86 27. 51 
18 12 4. 04 15.06 o . 84 29 , 71 

Nl Number of off- l ine j obs running 
N2 Number of on-line j obs r unni ng 
Tl Off-line throughput (phases / min) 
T2 On-line throughput (phases/min) 
W Hean response time for on-line jobs 

Q CUl 

0.45 o.oo 
0.55 0.90 
o.68 0.95 
0 . 79 0.95 
0.90 0.95 

0.94 o.oo 
1.19 0.85 
1.45 o.9o 
1.68 0,91 
1.88 0,91 

1.52 0,00 
1.98 0,79 
2.37 0,85 
2.68 0,86 
2.97 0.87 

2.27 o.oo 
3.00 0,73 
3.49 0,81 
3. 87 0,82 
4. 22 0 . 83 

3.31 o.oo 
4.36 0.68 
4 . 92 o . 77 
5,33 0 . 79 
5,70 0,80 

4. 77 o. oo 
6.15 0,62 
6 .76 o. 74 
7. 12 0 , 76 
7. 46 o. 77 

Q Hean mm1ber of on-line jobs awa iting response 

CU2 

0,05 
o.os 
0,05 
0.05 
0,05 

0.11 
0.10 
0.10 
0.09 
0.09 

0,16 
0.15 
0,14 
0,14 
0,13 

0.21 
0.19 
0,18 
0.18 
0,17 

0 , 25 
0.23 
0,22 
0,21 
0.20 

0 .29 
0,26 
0.24 
0,23 
0 . 23 

CUl Proces sor use by off-line jobs (including over head) 
CU2 Processor use by on-line jobs (including overhead) 
DUl Di sc use by of f-l i ne j obs 
DU2 Disc use by on-line jobs 

.. 
- I• t 

- . -· --~. 

DUl 

o.oo 
0.22 
0.23 
0.23 
0.23 

o.oo 
0.21 
0.22 
0.22 
0.22 

o.oo 
0.19 
0.21 
0.21 
0,21 

0,00 
0,18 
0.20 
0.20 
0 . 20 

o.oo 
0.16 
0.19 
0.19 
0 .20 

o.oo 
0 . 15 
0.1 8 
0,19 
0.19 

DU2 

0.17 
0.16 
0.15 
0.15 
0.14 

o.34 
0.32 
o.3o 
0.29 
0.27 

0,50 
0.47 
0,44 
o.42 
0.40 

o.65 
0,60 
0.57 · 
0,54 
o.s2 

o.78 
0. 71 
o.67 
o.64 
0,6 2 

0 . 88 
0 , 79 
o . 75 
0.73 
0.70 
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The values for Nl = 0 give some idea of the extent that the 

response time and on-line throughput are degraded by clashes of 

requests, for small N2 we approach the theoretical optimum, but by 

the time we get 13 consoles the response time has doubled, the 

bottleneck here being the disc which is in use 86% of the time. 

Once the off-line work i s included the waiting time is much the same 

for a given throughput per console, this is because the scheduling 

algorithm gives priority for on-line jobs when there are a lot Haiting. 

It can be seen that 3 off-line jobs are sufficient to keep on.e 

processor busy over 99% of the time, however many on-line jobs there 

are. The only reason one might want more is to give a better turn­

round for short jobs while l ong jobs are running, or to encourage 

console users to do some of their work by creating off-line jobs, or 

because the scheduling algorithm requires more off-line jobs in order 

to give them more time. The disadvantage of having several off-line 

jobs going is the amount of core store they use, and effectively deny 

to on-line jobs. The present scheduling algoritl~m could easily be 

altered, for exa.~ple by halving the amount of comp. time used in each 

second by off-line jobs before m..1.king the comparison to see which one 

should be demoted. In that uay three off-line jobs could use as much 

time as six ,·,c. uld have done, with a possible i mprovement in on-line 

response time in the ·worst cases because waiting for core store is 

reduced. 

If another processor were added then more off-line jobs would 

be needed t o keep t he processor as busy and absorb the extra time , 

thus this change would probably not be desirable wi t hout adding a drum 

for swapping or more core store. A compromise solution t o this problem 

··----
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which has been used elsewhere and has proved quite satisfactory is to 

have a small computer to deal with the more basic needs of the on-line 

jobs, such as input, editing and filing, and only use the main 

rpocessor for program runs. From the tables given earlier it can be 

seen that these operations represent almost half the total amount of 

computer time used by on-line jobs, and thus this would give a 

substantial improvement, the limiting factor then being the discs. 

As mentioned earlier the disc units can be considered as being 

between the two extremes of either haviag a request met by any unit 

that is free or having each request for a specific unit. The forrr..er 

case which is the easiest has already been dealt with and the latter 

will now be considered. He solve this problem by introducing new 

variables to describe the state, and instead of considering the total 

number of off-line and on-line jobs ,vaiting for the disc, i and j 

respectively in the previous notation, we consider the number waiting 

for disc unit one ( R,l and j 1
) and the number waiting the disc unit 

two (R,2 nnd j 
2

) separately. Using the previous notation for the 

other variables the equations become: 

i U(jl+Q.1) U(j 2H2) k ID 

(H + D + D + (k+m)c2 
+ (1 )C )P. . · l 

< +m 1 1. 'J rJ z,-~' t 1 ' Q, 2 'm 

i + 1 ( 1 (P i pi ) 
jl + l jl j2 + 1 J2 k + 1 

k 
= ti 2 • +. + (j +t +l)D Pk + Pk + P. 

J1 J 2 (j2+.e,2+l)D c2(k+m+l) l. 
1 1 

The solution is 

= 

--- -, 

----
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The results are given in Table 4.5. As might be expected they 

show a degradation in performance, which is small at first but 

increases as the number of consoles increases. However it is 

sufficiently small in magnitude to be ignored when doing simulations. 

The main interest in this model lies not so much in the results 

but in the method of extension of the previous model and the method 

used for numerical computation of the answers. This type of extension 

can be applied also to the case where there are two types of processor, 

one used for input-output,filing and editing and one for serious 

calculation. There is no need for either the two service times or 

the probabilities of a request being for a given unit to be the same. 

When the number of states is over 10,000 as in this model, 

straightforward techniques of computing each term as required and 

adding the sum together are very time consuming. The basic method is 

to store as much as possible in arrays. The factorials and the powers 

are obvious candidates for this since they can be generated 

conveniently from the previous one and expressions like Hi/i! can 

be computed all at once. Since we are not interested in the 

distribution between the two discs except as far as disc usage is 

concerned we can calculate a function: 

F (j 'l) = l 
j1+J2=j 

Taking advantage of the synunetry between j and Q, to halve 

the work and calculating the corresponding on-line and off-line dis c 

usage 3imultaneously wi th F(j,2) we can reduce the work so much t hat 

it only takes 20 seconds including compilation for the results in 

Table 4.5. 

1-
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Table 4.5 

Markov model of Cambrid;;e szstem with re9.uests 
for snecific discs 

NZ Nl Tl T2 T2/N2 w Q CUl CU2 DUl DU2 

3 0 o.oo 3.58 1.19 8.21 0.49 o.oo 0.11 o.oo 0.17 
3 3 2.35 3.20 1.07 14.26 0.76 0.90 0.10 0.11 0.15 
3 6 2.39 2.91 0.97 19.93 0.97 o.91 0.09 0.11 0.14 
3 9 2.41 2.66 0.89 25.55 1.13 0.92 0.08 0.11 0.12 
3 12 2.42 2.46 0.82 31.15 1.23 0.93 0.07 0.11 0.11 

6 0 o.oo 6.96 1.16 9.72 1.13 o.oo 0.21 o.oo 0.32 
6 3 2.11 6.18 1.03 16.28 1.68 o.s1 0.19 0.10 0.29 
6 6 2.17 5.60 0.93 22.26 2.08 o.83 0.11 0.10 0.26 
6 9 2.21 5.13 0.86 28.14 2.41 o.84 0.16 0.10 0.24 
6 12 2.24 lf. 74 0~79 33.95 2.68 o.s6 0.14 0.10 0.22 

9 0 o.oo 10.06 1.12 11. 70 1.96 o.oo 0.30 o.oo o.47 
9 3 1.90 8.89 0.99 18. 76 2.78 0.72 0.27 0.09 0.41 
9 6 1.98 8.06 0.90 24.98 3.36 o.76 0.24 0.09 0.38 
9 9 2.03 7.39 0.82 31.06 3.83 0.78 0.22 0.09 0.34 
9 12 2.08 6.83 0.76 37.04 4.22 0.79 0.21 0.10 0.32 

12 0 o.oo 12.78 1.07 14.33 3.05 o.oo o.39 o.oo 0.60 
12 3 1. 70 11.29 0.94 21. 78 lf .10 o.6s 0.34 0.08 0.53 
12 6 1.81 10.26 0.86 28.15 4.82 o.69 o.31 0.08 0.48 
12 9 1.87 9. lf3 0.79 34 .36 5.40 o. 72 0.28 0.09 0.44 
12 12 1. 93 8.73 0.73 40.45 5.89 o.74 0.26 0.09 0.41 

15 0 o.oo 15.06 1.00 17. 77 4.46 o.oo o.45 o.oo 0.10 

15 3 1.54 13. 3Lf 0.89 25.46 5.66 o.59 0 .L,O 0.07 o.62 
15 6 1.65 12.19 0.81 31.82 6.47 o.63 0.37 0.08 0.57 
15 9 1. 73 11.24 0.75 38.05 7.13 0.66 0 .34 o.os o.s2 
15 12 1. 79 10. lf4 0.10 44.19 7.69 o.68 0.32 0.08 0 .lf9 

18 ·O o.oo 16.83 0.93 22.18 6.22 o.oo 0.51 o.oo 0.79 
18 3 1.40 15.03 0.33 29.87 7. L,8 0.53 0.45 0.07 0.70 
18 6 1.52 13.84 0.77 36.03 8.31 0.58 0.42 0.07 o.65 
18 9 1.60 12.83 o. 71 42.17 9.02 0.61 0.39 0.01 0.60 
18 12 1.67 11.9G 0.66 48.28 9.63 o.64 0.36 0.08 o.56 

Nl Nurr0er of off-line jobs r unning 
N2 Nu1rber of on-line jobs running 
Tl Off-line throughput (phases /i:1in) 
T2 On-line throughput (phases/nin) 
H ~ean response time for on-line jobs 
Q Nean number of on- line jobs awaiting response 
CUl Processor use by off-line jobs (including overhead) 
CU2 Processor use by on-line jobs (including overhead) 
DUl Disc use by off-line jobs 
DU2 Disc use by on-line jobs 
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Table 4.5 

Markov model of Carnbrid2;e szs tern with re9.ues ts 
for snecific discs 

N2 Nl Tl T2 T2/N2 H Q CUl CU2 DUl DU2 

3 0 o.oo 3.58 1.19 8.21 0.49 o.oo 0.11 o.oo 0.17 
3 3 2.35 3.20 1.07 14.26 0.76 0.90 0.10 0.11 0.15 
3 6 2.39 2.91 0.97 19.93 0.97 0.91 0.09 0.11 0.14 

3 9 2.41 2.66 0.89 25.55 1.13 0.92 o.os 0.11 0.12 

3 12 2.42 2.46 0.82 31.15 1.28 0.93 0.07 0.11 0.11 

6 0 o.oo 6.96 1.16 9. 72 1.13 o.oo 0.21 o.oo o.32 

6 3 2.11 6.18 1.03 16.28 1.68 o.s1 0.19 0.10 0.29 
6 6 2.17 5.60 0.93 22.26 2.08 0.83 0.17 0.10 0.26 
6 9 2.21 5 .13 0.86 28.14 2.41 0.84 0.16 0.10 0.24 
6 12 2.24 lf. 74 0.79 33.95 2.68 0.86 0.14 0.10 0.22 

9 0 o.oo 10.06 1.12 11. 70 1.96 o.oo 0.30 o.oo o.47 
9 3 1.90 8.89 o.99 18. 76 2.78 o. 72 0.27 0.09 0.41 

9 6 1.98 8.06 o.9o 24.98 3.36 0.76 0.24 0.09 0.38 

9 9 2.03 7.39 o.s2 31.06 3.83 0.78 0.22 0.09 0.34 
9 12 2.08 6.83 0.76 37.04 4.22 0.79 0.21 0.10 0.32 

12 0 o.oo 12.73 1.07 14.33 3.05 o.oo 0.39 o.oo 0.60 

12 3 1. 70 ll.29 0.94 21. 78 lf .10 0.65 0.34 0.08 o.53 
12 6 1.81 10.26 o.86 28.15 4.82 o.69 o.31 o.os 0.48 

12 9 1.87 9. Lf3 0.79 34.36 5.40 o. 72 0.28 0.09 o.44 

12 12 1. 93 8.73 0 .73 40 .45 5.89 0.74 0.26 0.09 o.41 

15 0 o.oo 15.06 1.00 17. 77 4.46 o.oo o.45 o.oo 0.70 

15 3 1.54 13.% o.39 25.46 5.66 0 .59 o .,fo 0.07 0.62 

15 6 1.65 12.19 0.81 31.82 6.47 o.63 0.37 0.08 0.57 
15 9 1. 73 11.24 0. 75 38.05 7 .13 0.66 0. 34 o.os o.52 
15 12 1. 79 10.44 0.70 44.19 7.69 0.68 0.32 0.03 0.lf9 

18 0 o.oo 16.83 0.93 22.18 6.22 o.oo 0.51 o.oo 0.79 
18 3 1.40 15.03 o.33 29.87 7 0 lf8 0.53 0.45 0.07 o. 70 
18 6 1.52 13.84 o. 77 36.03 8.31 0.58 0.42 0.07 o.65 
18 9 1.60 12.83 o. 71 42.17 9.02 0.61 0.39 0.07 0.60 

18 12 1.67 11.96 o.66 48.28 9.63 o.64 0.36 0.08 o.56 

Nl Nurriller of off-line jobs running 
NZ Nrn::ilier of on-line jobs running 
Tl Off-line throughput (phases /i,1in) 
T2 On-line throughput (phases/nin) 
H :,rean response time for on-lin~ jobs 
Q Hean number of on-line jobs awaiting response 
CUl Processor use by off-line jobs (including over:head) 
CU2 Processor use by on-line jobs (including overhead) 
DUl Disc use by off-line jobs 
DU2 Disc usi by on-line jobs 

·----...... .. •' 
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A deficiency of these types of models is that one can only get 

the mean of the waiting time rather t han the distribution, except for 

simple scheduling algorithms, and no account is taken of the delays 

waiting for store. Hhen a good paging system is used or the store is 

big enough for the central processor never to be idle waiting for it 

this is a satisfactory assumption, as the main difference it makes is 

to the distribution of waiting times,for example by several jobs being 

held up by a large one. The mean waiting time is not affected. To 

study the distribution we have to use another type of rnodel or 

simulation. 

The next type of model concentrates on individual jobs 

arriving at the various stages of service and follows then through 

according to the scheduling algorithm. Examples of this are 

Coffman(9), Coffman and Kleinrock(lO), Fife(lS) and Gaver(l9). Fife's 

work is particularly interesting since he considers a three queue 

system and evaluates systematically all the scheduling policies to see 

which is best according to cer tain criteria. Although this is only 

possible for a limited range of scheduling policies it nevertheless 

represents the only attempt to derive them systematical ly. Such a 

study would take much too long using simulation. 

For -more compl icated scheduling systems such as are used in the 

Cai-ubridge system this sort of analysis becomes impossible, and no new 

work was done in t his field. However , another analytical model was 

developed to give some insight into the problems of swapping. This is 

based on the concept of a pipeline, suggested by Wilkes(6S), through 

which jobs pass on the way to a swapping region where they are swapped 

in and out of core. When in the pipeline the job s remain in core, and 

- ---
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in the original model they were in the pipeline for a fixed real ti..'ne. 

In this model however they rerr,ain in the pipeline (i.e. in core) until 

they have had a certain quantum of processor time. The object in both 

models is the sai-ne, to avoid swapping out jobs that have just arrived. 

This variation ensures that short running jobs will not get swapped out 

just because there is a long queue and they are held up. To simplify 

the analysis we assume an infinite supply of jobs for the pipeline, as 

we are concentrating primarily on what happens in the swapping region. 

In order ·;:o develop equations for this mode we need some 

notation as follows: 

C mean processor time (exponentially distributed) 

T quantum of processor time given to each job before being 

transferred to swapping region 

P proportion of processor time given to jobs in pipeline 

F proportion of jobs with processor time T 

S proportion of processor time given to jobs in swapping region 

when there are any 

R0 probability of no jobs in swapping region 

R
1 

prob-1bility of 1 job in swapping region 

• 
• 
• 

Q mean number of jobs in s wapping region 

W mean \~aiting time in swapping region 

I: -y/(' 
Hean processor time pipeline = "- " in e ~ dx 

C 

-T/C -T/C 
C - Ce - Te Te ""r -J. v 

= + 

r, -x/c T + e -
T C 

dx 

= C(l-e -T/C) 

r~ ~x/C b r -x/c [-cc+x) e -x/c J b ) (since = [ -x/CJ dx = e -xe - -e 
a a a a 

Rate of exit from pipeline 
p 

= 
C(l- e-T/c) 
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A fraction F of jobs leaving the pipeline will be doing so because 

their quantum has expired and will enter the swapp ing region 

F = I
00 

1 -x/c d - e X 
T C 

= 
-T'r e ,,.., 

This relationship will be used as a shorthand hereafter. 

Rate of entry to swapping region . = Rate of 

owing to quantum exph;ing . = 

exit from pipeline 
PF 

C(l-F) 

Rate of exit from swapping region when jobs present there . = s 
C 

(since mean residual length is C from properties of exponential 

distribution). 

Now P depends on whether there are jobs in the swapping region or not 

Hence for 

Let r. 
l. 

a. 
l. 

s . 
l. 

P = 1 - S 

p = 1 

if there are 

if not 

the swapping region we have a queue 

be the probability that there are i 

be the arrival rate when there are 

be the service rate when there are 

Then from queueing theory 

a 
0

8
1 

... a. 1 r i- 0 
r. = 

l. SlS2 . . . s . 
l. 

1 
r = 

0 a aoal 
1 +~ +-- ... 

sl SlS2 

For stability the denominator of r must be 
0 

s 
sl . = S2 ... = 

C 

a F 
ell a2 . (1-S )3 = C(l-F) = = o · . 0 

Let y ri+l 
for 1 = l. ~ r. 

l. 

dependent arrival rate. 

jobs in the queue 

i jobs in t he queue 

i jobs in the queue 

finite 
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For convergence the ratio of successive terms Y must be less than unity 

y = F I .§_ 
(l-S) x C(l-F) C = 

F (1-S) 
S(l-F) 

F - SF < S - SF S > F 

r = 
O · 

1 = 1-Y 

r = 
0 

r. = 
1. . 

1 
F 1 

1 + S(l-F) X --1-Y 

S(l-F) 
S(l-F) -

1 

1 + ...!:._ 
S-F 

yir 
0 

= 1-S 

(S-F)F 
2 (1-F)S 

(1-S)F 

S-F 
= s 

(S-F)Y 
S(l-S) 

i 

= S(l-F) 
S-F 

Mean queue size Q. = J::ir. 
J. 

But 
y 

= 

< 1 

Q = 
(S-F) 

.....,..._"-- X 
F(l-S) 
S(l-F) 

S2(1-F)2 
X ------'--

F(l-F) 
= 

S(l-S) (S-F) 2 

Average P . = r + (1-S)(l-r ) 
0 0 · 

S-F 

S-F 
== - + s 

(l_;S)F 
s = 1 - F 

A fraction F of jobs enter the sHapping region with mean residual 

length C (from properties of exponential distribution). 

Service rate for swapping region = f = % from queueing t heory (43) 

• . . H = C(l- F) 
S- F 

Table 4.6 gives some of these quantities for some t ypical values 

for C = 8 seconds. 

. ' 

____ •..:...:....:a.. 
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Table 4.6 

Pipeline swapping model for C = 8 sec 

T p F s R Rl y Q w c+~·T.F 
0 

1 0.12 0.88 1.00 0.12· o.as o.oo o.88 s.oo 16.04 
1 0.12 0.88 0.98 0.09 0.73 0.19 1.12 10.42 17.16 
1 0.12 0.88 o.95 0.07 0.56 0.40 1.54 14.66 20.88 
1 0.12 o.88 o.92 0.05 0.37 0.61 2.44 23.91 29.10 
1 0.12 0.88 0.90 0.02 0.16 0.83 5.92 59.67 60.50 

2 0.22 0.78 1.00 0.22 o.78 o.oo 0.78 8.00 llf .25 
2 0.22 0.78 0.95 0.18 0.67 0.19 1.01 10.88 16. 4l1 
2 0.22 0.78 0.90 0.13 0.53 0.39 1.42 16.22 20.68 
2 0.22 0.78 0.85 0.08 0.35 0.62 2.42 29.24 30.85 
2 0.22 0.78 o.so 0.03 0.12 0.88 8.13 104.34 89.50 

4 0.39 0.61 1.00 0.39 0.61 o.oo 0.61 s.oo 13.68 
4 0.39 0.61 0.90 0.33 0.56 0.17 o.s1 11.92 15.28 
4 0.39 0.61 o.so 0.24 0.47 0.39 1.23 20.34 20.62 
4 0.39 0.61 0.70 0.13 0.29 0.66 2.55 48.11 37.40 
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8 o.63 0 .37 1.00 o.63 0.37 o.oo 0.37 8.00 10.96 
8 0.63 0.37 o.so 0.54 0.39 0.15 0.54 14.63 13.43 
8 o.63 0.37 0.60 0.39 0.33 o. 39 1.00 36.31 21.45 
8 0.63 0.37 o.4o o.os 0.12 o.87 7.24 393.59 lllf .oo 

16 o.86 0.14 1.00 o.86 0.14 o.oo 0.14 8.00 9.12 
16 o.86 0.14 0.80 o.83 0.16 0.04 0.18 13.01 9.82 
16 0.86 0.14 0.60 o. 77 0.20 0.10 o. 25 24.81 11.48 
16 o •. 86 0.14 0.40 o.66 0.26 0.23 o.44 65.34 17.15 
16 o.86 0.14 0.20 0.32 0.25 0.63 1.81 534.86 82. 7G 

C mean processor time (exponentially distributed) 
T quantum of processor time given to each job before being 

transferred to swapping region 
p proportion of processor time given to jobs in pipeline 
F proportion of jobs with processor tine T 
s proportiun of processor time given to jobs in swapping region 

Hhen there are any 
R probability of no jobs in s,Japping region 

0 

Rl probability of 1 job in sHapping regi.on 

y Ri+l 
(i 1) R. > 

l. 

Q mean number of jobs 1.n si;,apping region 
w !:lean waiting time in swapping region 

·---· "-. 
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The surprising feature about this model is that the mean 

waiting time in the pipeline is not affected by the proportion of 

processor time given to jobs in the swapping region when there are any, 

since if this is high the swapping region is emptied more quickly and 

the average proportion given to each region is unaffected. With n 

jobs in the pipeline and a round robin with a small quantuw operating 

for these the mean total waiting time (V) for a job of length x 

is given by: 

V 
nx 

T - 1=F X ~ 

V 
nT C(l-F) 

x-T-C T = 1-F .+ + X ~ S-F 

The second of these is derived by adding together the mean time in 

the pipeline and the mean time in the swapping region and the 

difference between the actual residue of time required whe.n it enters 

the swapping region (x-T) and its expected value (C). Tb.is 

assumed that the swapping region is served on a first corr,e first 

served basis. 

From examining Table 4 .6 alon,; one might deduce that it was 

best to have S as high as possible since nothing seems to suffer, in 

fact however this results in a much higher variance 1.n the waiting ti::a.e 

for short -jobs which might get held up for a long time by a job in foe 

pipeline. The answer is to pick from the table a T, RO, W triplet 

that gives a reasonable compromise. To get the mean overall 1,:ait i ng 

time we integrate the expression for V using the fornula : 

J
b -x/c xe 

C 
a 

= '-xe -x/c]b - rb (-e -x/c )dx. = 
L a Ja 
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V = J
T nx -T/C Ico nT _ -T/C o 1-F e dx + T (1-F + i;f + (x-T- C))e dx 

n(C-CF-TF) nTF 
1- F + 1-F + WF = nC + WF = 

l,Je can take n = 1 as corresponding to a situation with an 

ever present background load and a relatively light on-line load which 

always received priority, and the results for this are included in 

Table 4.6. 
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Chapter 5 

SIMULATION LANGUAGES 

Si~~1lation describes t he process of building a model of a 

system, usually simplified 1.n sorae ways, and observing its behaviour 

under certa in conditions . As there are several different types of 

simulation, Hhich require different computing techniques, we shall 

consider first how the simulation of computer systems differs from 

other simulations. 

Because of the complexity of computer systems we must use a 

digital computer to simulate them. For simpler systems a variety of 

other techniques are available. Hand simulation, mechanical wodels, 

electrical models and analogue computer simulation may be used 

depending on the type of system. He are also concerned with the 

operation of the sys tem over time, ,,:hereas for some simulations a ll 

that is required 1.s the instantaneous state of the system under 

certain conditions. 

We use random numbers to simulate typical user and program 

behaviour, and collect statistics about various aspects of the system. 

Hence there is an inherent variability in the r esults of the sL-:mlation.s 

compared with a deterministic one, in addition to any inaccuracy owing 

to the simplications of the nodel. However this reflects the fact 

that there is no such thing as a standard user session . 

Some simulations are based on a fixed time interval. These 

usually represent a reGular or cont inuous process in contrast to the 

irregular and unpredictable pattern of events in a Dlllti-access 

computer system. A fixed time interval simulation can always be 

treated as a special cas e of a variable time interval one. 
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Whereas the mathematical models described in the previous 

chapter are ab-stract and deduce the perfor!l'.ance of the system from 

theoretical considerations, the simulation models resemble the 

system much more closely, all i mportant components of the system such 

as jobs, phases, processors, discs, etc. having their analogues in the 

simulation model. The operation of the system is imitated as closely 

as is possible and necessary and its performance is observed. 

The various components of a simulation model can be active or 

passive. Active components are represented by activities, otherwise 

known as processes or transactions, and the same section of program 

may be used by several activities. At any moment there is one 

activity running and the others have either not yet started, or halted 

for various reasons, or finished completely. These activities operate 

on the passive components of the system, which are represented by 

variables, queues, lists and data structures. 

Whether a particular component of a system, such as a job, a 

processor, or a scheduler, is active or passive depends on its 

complexity and particular features of the model and language chosen . 

The fewer active components there are, the simpler the program is, 

since fewer routines and facilities for connnunicating between them 

need be provided. However, if a component requires complicated 

dec isions to be taken then it will need to be active and the 

corresponding activity takes the decisions. Usually a problem splits 

fairly naturally into active and passive components with a few 

borderline cases. 

Simulations of multi-access systems consist of several inter­

dependent activities. These are simultaneous in simulated time, but 
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in an actual simulation on a one processor computer they must occur 

sequentially. Thus the pattern of control transfers between activities 

is not hierarchical like subroutine calls but lateral, so that when an 

activity halts it does not know which activity will run next. Instead it 

transfers control back to a master routine which decides which 

activity should run next and transfers control to this activity at 

the point where it last halted. 

Originally most simulations were written in machine code or a 

general purpose language such as Fortran. Machine code makes it 

possible to minimize running time and the use of store, both of which 

can be critical resources in a simulation. However it is extremely 

difficult to write and debug simulation programs in machine code 

because of their complicated structure. 

A general purpose language makes this easier and has the 

advantage that complete reprogramming is not necessary if the simulation 

is transferred to another machine, assuming that the language is 

available on both machines. However it is usually necessary to include 

machine code routines in order to deal i,ith the pattern of control 

transfers described earlier and provide other simulation facilities 

which cannot conveniently be provid~d in the general purpose language. 

A tortuous or inefficient structure and syntax may be necessary. 

In order to provide more natural languages for writing 

simulation programs, with a simpler and more appropriate syntax and a 

wider range of built-in facilities, special simulation languages were 

developed. In principle these have the additional advantage that they 

are machine independent and si:r.mlation programs can easily be 

transferred. In practice however there are so many different simul ation 

' -· 
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languages that few are implemented on more than two different 

machines. 

It is interesting to consider whether the same type of 

language could be used for simulation and real-time progranuning, such 

as supervisors, process control, seat reservation, etc. This would 

have the desirable feature that programs could be partially debugged 

by simulation, since debugging is always a serious problem for 

systems where a given set of conditions may not be repeatable. 

Ideally a modular approach could be used, sections of the 

real system could be tested in turn with other parts being simulated 

to generate conditions which might take several months running to occur 

in practice. Also simulations of proposed modifications could be do~~ 

without reprograrm.11ing in a simulation language and new algorithms 

developed with simulation could be used directly. This would also 

reduce the problem of communication between the softHare writers and 

each other and the outside world and ensure that the sinrulation 

represents the real system adequately. 

While such a language might be useful for developing a new 

system where plenty of machine time is available, for example with 

a computer manufacturer, it could never be appropriate for all 

simulations. Many of the operations necessary 1.n real time systems are 

needed because events are not completely under the programmer's control 

or because a response must be given within a certain time. Neither of 

these is true for simulation, and inclusion of too much detail will 

slow the system down and create unnecessary confusion. 

Often an existing general purpose language is used as the 

.. - .. 
. ~ 

96 

/, 



basis of a simulation language. This can be done by providing a set 

of subroutines, written either in the language itself or in machine 

code, to perform the basic simulation functions, and compiling the 

simulation language either into . the general purpose language or 

straight into machine code by modifying the original compiler. 

The full power of the general purpose language can be used 

which makes the language more flexible, and the language can be 

transferred to another machine with relative ease, particularly if 

the compiler is not modified. It is much easier to understand and 

write programs in a language if it is very similar to a well-known 

one such as FORTRAN or ALGOL, the t wo most used as bases for 

simulation languages. 

However the syntax is outside the control of t he designer and 

desirable featur es may prove i mpossible or too inefficient or tort uous 

to incorporate. Also inefficiency may be introduced by unnecessary 

generality in the base language , part i cularly in the case of ALGOL­

based languages. The importance of these factors depend on the 

language, its i mp lementation , and the type of simulation. 

Hos t simulation l anguages ar e either activity- based or event­

bas ed . An activity corresponds to a section of program being obeyed, 

whereas an event 1.s instantaneous, such as a variab l e chang i ng or a 

pr ogram halting. Any s imulation conta i ns both ac t ivit i es and events 

and .the distinc tion i s more one of approach than of types of problem. 

In an activity-based language each activity is preceded by a 

series of leading tests which may involve time cells , these aJe set . _ 

like normal variables and when there is no a c t i vity free to go at t he 

. . - - -__ .-~ 
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present time the list of time cells is acanned to find the lowest 

positive value. This value is then subtracted from all the 

positive ones, simulation time is advanced by this amount, and the 

tests are repeated. In general ~11 the leading tests of each activity 

are made at each stage, though a more sophisticated system would only 

perform tests, involving variables that are known to have changed since 

the last test. 

This approach is satisfactory in multi-resource simulations, 

where several conditions which can be specified in advance must hold 

before an activity can run. Rescheduling an event merely involves 

changing the value of the appropriate time cell. It does however 

involve mttch unnecessary testing of conditions and searching through 

the whole list of time cells twice on each occasion that simulated 

time is advanced. This can be reduced by holding absolute rather than 

relative time in the time cells, or dividing the list of time cells 

into sublists. 

In an event-based language a list is kept of all the activities 

that are free to go in order of the time that they may start, possibly 

combined with a list of those activities that are halted together with 

the reason. When an activity is halted simulation time is advanced to 

· the earliest time that enables another activity to start, which may be 

the present. All activities must be caused or freed explicitly, and 

no leading tests are permitted. 

When changing from one activity to another several things have 

to be done. First of all some test w3y be necessary to decide whether 

to continue the current activity or change to a new one. If the latter 
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then the link must be preserved in order to know where to restart the 

activity and the variables local to that activity must be preserved er 

a pointer to them stored. The next activity to proceed must then be 

chosen according to certain rules, simulation time advanced if 

necessary and the local variables restored or a pointer to them reset. 

Only then can control be transferred to the new activity at the address 

stored in the link. 

If an activity is caused by several events each one must test 

for the others or the activity itself must test for them all and halt 

itself if they have not all happened, which gives the equivalent effect 

to a leading test. This has the advantage that the identity of the 

event freeing the activity can be preserved and only possible 

activities need be attempted, and by keeping the list in order of time 

only part of the list need be searched when inserting and removing 

items, whereas with a random list as for time cells the whole list must 

be searched whenever sinn.1lated time is advanced. There is no reason in 

principle why time cells could not be in an ordered list, though the 

list would then have to be reordered every time one was se.t. 

An activity-based language may be easier to program and more 

efficient when the relationship of events to activities is many-one 

or many-many, but for simulating computer systems an event-based system 

is preferable. Each activity is usually caused by a single event such 

as a clock interrupt or a job finishing, and it is easier and more 

efficient to treat schedulers as activities that determine which 

activity (job) is to run next than to have a test in front of each 

activity which is obeyed on every event . The event-based system also 

fits more easily into existing algorithmic languages, since the tab l e 

. ' . - - ~ 
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of activities gets updated automatically as we have to cause each 

event explicitly, and the number of activities can change dynamically 

corresponding to the flow of jobs and phases which avoids having 

several copies of a basically identical routine. 

A distinction is often made between machine-based and 

material-based languages, though not all fall into one of these 

categories. The terms derive from the "job shopll problem where there 

is a flow of material which is processed by machines. In a machine­

based language the material is basically homogeneous and is a passive 

component whereas the machines are the active components and are 

responsible for deciding the scheduling of which material to process 

when. 

In a material-based language the machines are hoIT~geneous 

passive components and the material is the active component which 

decides which machines to be processed by. In the multi-access system 

the machines would be processors, disc units and users thinking and 

the material would be jobs. This does not fall clearly into either 

category, since both may be non-homogeneous and so any language which 

is oriented solely towards one view will be artificial in some way. 

The main difference in practice between the two types of 

languages are the automatic statistics ~athering facilities or 

standard machines that they provide. A language which leaves this 

for the user to specify can be used in either way. 

At Cambridge there was no existing siraulation language 

implemented and so the choice lay between writing a simulation system 

for either an existing or a new simulation language. Writing the 

-- ----
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model in machine code or a general purpose language had been ruled out 

for the reasons stated above. 

There are many simulation languages in existence, some of the 

better known and more interestincr
6 

ones bein,:, CSL(S,G,S) Simula(l 3, 43 ) 
0 , ' 

Simscript(l4), ops<2z, 3l,JZ), GPss<27 ), SOL(37). This list excludes 

those that are unsuitable for multi-access system simulation, for 

example those with a fixed time increment. Detailed comparison of the 

various languages can be found in (44,61) and most of the other papers 

on simulations describe and compare some of the languages, so only the 

more important points will be discussed. 

CSL is an activity-based language that is designed for 

compilation into Fortran. It was one of the earlier languages and 

lacks some of the facilities and improvements in later ones. Because 

it uses the Fortran subroutine structure, each time that an activity 

halts it must either specify the next activity explicitly or else 

leading tests must be made at the beginning of each activity in turn 

until one is found that is free to go. It is impossible to restart 

the halted activity at the point where it halted unless this is treated 

as two separate activities which results in extra testing. It is thus 

more suitable for simulations with activi ties which occur regularly or 

have compricated conditions before they can start than for simulations 

of multi-access systems wher e events happen randomly in time and can 

be caused explicitly. 

Simula is an Algol-based language. It contains Algol as a 

subset and a Simula block can be enclosed in an Algol program without 

requiring the whole program to be compiled by Simula. A good range of 
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facilities are provided, particularly for scheduling events, which 

can be scheduled before or after other events at the same or a 

different time, or rescheduled at a different time. Its main 

disadvantage is the block structure of Algol, which makes it impossible 

to include machine code or precompiled subroutines and means that if 

any change is made the whole program has to be recompiled, which can 

take a lot of central processor time. It would also be unsuitable for 

on-line use, since Algol uses a larger amount of store and tends to 

run slower because of its greater generality compared with Fortran. 

Simscript is a Fortran-based language containing Fortran as a 

subset. It is event-oriented and each event must be caused explicitly. 

However it is impossible to schedule events relative to other 

previously scheduled events, or find out when events are due to occur 

or reschedule them. There are also no debugging facilities and again 

if any change is made the progr~~ has to be recompiled. 

OPS-3 was written at HIT for CTSS and is now being extended 

considerably to give OPS-4 which is being implemented as part of the 

(11) 
Multics system • OPS-4 is based on PL/I with the compiler also 

written in PL/I, however it uses features in Hultics which will make 

it difficult to implement elsewhere. Apart from this fact and the 

lack of any evidence on the size of the compiler and the store and 

processor time required it sounds an excellent langua8e, which 

combines the best features of all the others and adds several more. 

It is designed for on-line use, and so sections of the model can be 

tested interpretively or be portrayed by the console user, and then 

compiled for greater efficiency. It is not necessary to recompile 

the whole program when changes are made and a mixture of compiled, 
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interpreted and user-portrayed sections can be used. Comprehensive 

on-line and off-line debugging facilities are available and a wide 

variety of output is possible. 

GPSS was d~gned for non-programmers and is based on a flowchart 

approach, each box on the flowchart corresponding to one instruction in 

GPSS, typically joining a queue or waiting for a specified time. While 

operations of this type are easy because of the built-in structure, no 

general mathew~tical facilities are available. Good debugging 

facilities are available and the language is easy to follow for a 

simple simulation, though more complicated ones are difficult or 

impossible. The language is rather inefficient because it is executed 

in a partially interpretive fashion, and automatic statistics are 

gathered for queues, facilities, and stores. Routines in other 

languages cannot be included and compilation is necessary if any 

changes are made. 

SOL takes the basic concepts of GPSS and includes them in an 

algebraic language similar to Algol. A sophisticated system of 

prioriti~s for queues and deciding 1d1ich process to execute next is 

available, and it is possible to create and destroy activities 

dynamically. However it is inefficient for the same reasons as GPSS. 

None of these languages were really suitable for the task in 

hand, except OPS-4 which would have required a PL/1 compiler and had 

not been published at the time that a language was being chosen 
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(Hay 1967), and there appeared to be no demand among users for a 

simulation language. A new langua;;e was therefore designed and 

implemented based on Fortran and called FOSSIL - Fortran Systems 

Simulation Language. The name does not reflect the philosophy behind it! 



Chanter 6 

FOSSIL - Fortran Systems Simulation Language 

Although old-fashioned, FORTRAN is still very popular because 

of the simple reason that it serves scientific users' basic needs well 

and almost every machine has a compiler for some version of it. It is 

capable of being compiled quickly and producing efficient code and does 

not usually use as much store or time for compilation or execution as 

ALGOL and similar lahguages. 

The Cambridge T3 FORTRAN Conpiler (4o) is part of HLS (l-1ixed 

Language System)~4l) This makes it easy to incorporate machine code 

and precompiled routines, and provides a library facility whereby only 

routines which have been changed need be recompiled, and all other 

routines needed are loaded automatically. The routines that are 

responsible for changing the current activity and advancing simulation 

time and dealing with interlocks are written in machine code for 

efficiency, and yet they are called like ordinary FORTRAN subroutines. 

No other high level ,language offers su~h a facility. 

Yne system was tailor w~de for the applications and easy to 

change wl:en necessary. If an existing system had been implemented 

many of the features that were tir;ie-consu:ning to irnTJleraent might have 

proved redundant for this type of application, and difficult to chan0e 

if necessary, and the syntax would not be so easy to understand. It 

is of course always easier to follow something one has designed 

oneself, and not least among the advantages was the valuable 

experience gained. 

The HL/I macrogenerator(3) is used to remove some of the 

inelegancies of FORTRAN syntax and introduce various new features 

104 



1\ 

necessary or desirable for simulation. This could be avoided by 

modifying the FORTRAN compiler, but this would mean another version 

would have to be maintained, and give a negligible gain in efficiency, 

since t:1e macrogeneration time is relatively sw.all. 

The most important features in sinrulation languages once the 

basic type has been settled can be summarised as follows: 

1) Control and timing of activities 

2) Interlocks and queues 

3) Data structures 

4) List processing facilities 

5) Statistics output 

6) Debugbing facilities 

These will be discussed in turn with reference to FOSSIL. Vertical bars 

each end denote an item of a given type, for example !routine name! 

means the name of the routine concerned. 

The reasons for choosing an event-based language have been 

given in Chapter 5. ,Usually in an acti·.·i ty-based language all the 

activities are active all the time and control statements are unnecessary 

except f0r stopping the simulation. Originally the system started 

attempting to obey all the activations of all the routines at once. 

This soon proved unsatisfactory and was replaced by a flexible system 

where it was possible to have a variable number of concurrent 

activations of the same routine which could be begun and finished at 

will. 

Initially only the main program is active. This can do any 

necessary initialisation, start the sinrulation, intervene at intervals 

- ------
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to print out debugg ing infonnat i on, test for conver gence, tabulate 

results or restart the sinrulation with different parameters, and 

finally stop the simulation. 

An agenda is kept of all current activities, sorted in 

ascending order of the time they are free to go i f not otherwise 

halted, t h is time is known as their schedule. A BEGIN (I routine name I, 

jindexj) instruction inserts a new activity in the agenda and marks it 

as free to go now. The l ocal variable I NDEX is set to the value of 
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the second argument . This is automatically saved every time the routine 

is halted and restored when it is restarted and it serves to identify 

a specific activation of a routine, both for the purpose of referring 

to the activity in other instructions and for subscripting arrays. 

A TERMINATE ( I routine name I, I index I) instruction will remove 

an activity from tne agenda without affecting any other activations of 

the same routine or the activity that obeys the instruction. A FINISII 

instruction removes the current activity from the agenda and proceeds 

with the next one that is free to go. 

A RESTART instruction r emoves all activi t ies from the agenda 

except the current one and res ets simulation time to zero. This can 

be used where sever al runs are requir ed. A STOP instruction wil l stop 

completely, t hough it is possible t o run other j obs after returning 

to MLS . 

The s imulation t i me is held in the CO!llit1on variab le THIE 1:hich 

is autofilatical l y declared in each routine and can be used as a value 

but should not be set. Special instructions are required to advance 

simulation tine since it is necessary to test to see whether any other 



activities are free to go, and RESTART is the onl y way of settin8 i t 

back to a lower value. 

T'ne instructions DELAY (!interval!) and WAIT Clnewtimel) 

shedule the current activity at ~IHE + !interval! and lnewtimel 

respectively , if this is less than or equal to TIME the activity just 

continues without any change. Otherwise the first activity on the 

agenda that is free to go is resumed and TINE is advanced accordingly 

if necessary. The function SCHEDULE (!routine namel,lindexl) gives the 

schedule of an activity on tl-le agenda. The function NEXT Clnexttimel) 

sets lnexttirnel to the schedule of the next activity on the agenda 

-- 1 
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that is free to go. The instruction RESCHEDULE (!routine narnel ,I index !, 

lnewtime!) reschedules an activity on the agenda at MAX (THIB,lneutim.c.l), 

this is to avoid the possibility of scheduling an activity before t he 

current one. 

This system allows direct scheduling of other events and look 

ahead , and though not as flexible as SDmLA or OPS- 4 which perrnit 

scheduling before and aft er other activit i es and befor e activities with 

the s ame scheduled t ime , it allows all t he possibilities required in 

practice. 

Interlocks and queues are as nece ss ary on a s i mula t ed system 

· as on a real one and raost atterapts t o provide them have not dea l t with 

all cases. The most notable is that used in SOL, where a system of 

FACILITIES and STORES is provided. A facil i ty can only be held by one 

routine at a time with a certain control strength, and i f ano ther 

routine requests it with a higher control strength the holding rot:tine 

is interrupted, otherwise the requesting r outine queues f or it 

according to its control strengt1, until it is free. A STORE is sirn.lar 
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except that varying amounts can be requested up to a maximum capacity 

and no interrupts are possible since the control strength is always 

the same. 

Originally a variation of this was implemented in FOSSIL, 

where a distinction ·was made between a pre-emptive (SEIZE) and ordinary 

(REQUEST) demand for a facility. The former would interrupt any 

activity holding the facility with a lower control strength, whereas 

the latter would wait until the current holder had released it but 

jump the queue according to its control strength. This gives a neat 

way of describing a multi-level scheduling system such as is used in 

Project Hae CTSS, where each level corresponds to a different control 

strength. 

Under this system it is difficult to schedule jobs externally, 

that is to have an activity C that removes a facility from activity A 

and hands it to activity B. This could be overcome by a system of 

dynamic control strengths, but routine C would have to test and change 

the control strengths of routines A and Band other routines on the list 

might need their control strengths altering at the same time. Allowing 

interrupts involves keeping a list of all the facilities held by a 

routine, or all the routines queueing for a facility, which involves a 

considerable amount of list processing. Hi..:hout interrupts a routine 

can only be queueing for one facility at a time and no list is necessary, 

since the timing mechanism will automatically keep the queues in order_. 

The instructions QUEUE ( !queuename I) and NEST ( I queuename I) 

examin~ the value of variable lqueuP.narrel. If it is negative or zero 

then the activity proceeds, otheruise it halts and is marked as queueing 

for lqueuenamel at the back or front of the queue for QUEUE and NEST 
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respectively. In either case the value of variable lqueuenamel is 

increased by one. If a queueing activity is rescheduled then its 

place in the queue may alter, and this facility w~y be used to 

shuffle a queue if necessary. 

The instruction RELEASE (!queuenamel) reduces the value of 

variable lqueuename l by one and frees the activity in the front of 

the queue for lqueuenamel if any. If lqueuenamel is an integer or 

long integer variable it gives the nurrber in the queue including the 

current holder. By setting lqueuenamel negative originally this system 

can be used for stores with capacity greater than one, though the 

previous sentence no longer applies then. 

The instruction BLOCK ( I routine name I, I index I) will halt an 

activity other than the current one and UNBLOCK (!routine namel,lindexl) 

will free it again. This operates independently of the other interlocks 

and after an UNBLOCK instruction an activity may still be halted for 

some other reason or scheduled to begin later. 

The instruction EALT Clargl) will halt the current activity 

and store the argument and FREE (largl) will free all activities halted 

with that argument. Note that it is the value of the argument rather 

than the name that is important, ,,hich allows it to be an integer, and 

it should be strictly positive. 

Some authors have emphasised the importance of data structures 

and lists for representing queues of items and attributes of an item 

in simulation languages. These are more important for applications 

where the number of attributes is la,:-ge or there are several classes 

of entity. 
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Simple lists can be represented as an array where the value 

of each item is the index of its successor, that is the address of its 

successor relative to the base of the array. The attributes of an 

item may be held in separate arrays with mnemonic names or condensed 

into one array according to the convenience of the programmer, in each 

case the array is subscripted by the index of the item. The end of 

the list is marked by a zero value which avoids special action when 

the first item is inserted in a null list or the last item is removed 

from a list. For example consider a queue array of four items, jobs 

numbered 5, 6, 1, 4 whose contents would be: 

JOB(O) = 5, JOB(l) = 4, JOB(2) = JOB(3) = JOB(4) = 0 

JOB(S) = 6, JOB(6) = 1, other elements all zero. 

This is a compromise between the demands of efficiency and 

convenient inplementation and the need to be able to refer to items 

by convenient na..~es, If desired attributes can have coded values for 

example if we set ONLINE= 0 and OFFLINE = 1 we can then use 

statements like: 

IF (STATUS (4) - ONLINE) 1,2,3 

to avoid having to remember the code. The declarations required for 

automatic assignment of these codes uould off set any gains fro,n this. 

Arrays with a single suffix are more satisfactory because they 

can conveniently be accessed in one order using a modifier register 

whereas those with several require multiplication or table look-up, 

Thus having the attributes in separate arrays is convenient both from 

a mnemonic and efficiency point of view. 

The approach described above is used in FOSSIL and the usual 

list processing functions are provided as FORTRAN subroutines. 
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T3 Fortran permits the use of zero as a suffix for one dimensional 

arrays. If necessary they can be programmed in machine code for 

greater efficiency, though this is much harder to debug and only 

worthwhile for those that are used very often. 

Facilities are also provided for manipulating the circular 

queues where the last member points back to the first, though the 

zeroth element of the array still points to the first or is zero if 

the queue is empty. These are particularly suitable for Round Robin 

schedulers, where after dealing with a job it would have to be placed 

at the bottom of an ordinary queue but need not be touched in a 

circular queue as the pointer is merely advanced. Unfortunately the 

same technique cannot be used for the activities list, where we have 

to preserve schedules of the activities in order. 

Also important are functions to insert an item in a list in 

a position dependent on the value of an attribute, either in increasing 

or decreasing order of the attribute, when the attribute is held in an 

array indexed by the item number. 

The possibility of lists with two way pointers was considered 

and dismissed because the extra programming and operations required 

outweighed any advantages gained in putting items on the end of lists, 

which is the only operation that can be performed much more 

satisfactorily with these. The saT!le reasoning applied to the list of 

activities. A compromise solution would be to keep a pointer to the 

last member of the list, but even this would have to be checked and 

updated if necessary. 

An important facility of any simulation language is the 

ability to collect and tabulate statistics conveniently in the form of 
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histograms and graphs. Some languages such as GPSS and SOL provide 

automatic tabulation of the use of facilities, queues and stores, 

but this consumes unnecessary time and paper and is difficult to 

provide in a language where these are not explicitly declared and 

the maximum queue size is unknown. 

In FOSSIL a TAB (I table name I, largll, larg2?1) instruction is 

provided to insert a value in a table which Il'.ay be one of three types. 

The first is a conventional histogram where the number of occurrences 

of each range is recorded, the next records t he mean of one variable 

larg2j for each range of the other larglj , and the third records w~e 

amount of simulation time that the variable spends in each range. 

jarg21 is only necessary for tables of the second type. By using the 

third type and inserting a TAB in~truction before each QUEUE, 1.'1EST or 

RELEASE instruction t~e mean length of queues can be recorded since 

the value of the queue variable is equal to the length of the queue 

if in long integer mode. Summary tables giving just the number of 

entries o:r total tiJ::1.e, maxima, uinima and standard deviations can be 

printed, or full details of the entries in each range of the table, 

in a cor:ipact or detailed form with five or one ranges to a line 

respectively. Out of range entries are also recorded. 

Tables can also be plotted to any desired scale or 

displacement of axes, and it is possible to plot several tables on 

the same set of axes with only one instruc·tion for each. The axes 

are marked out automatically in an appropriate scale with major 

divisions every ten minor divisions enabling them to be calibrated 

easily as required. 
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A random variable can be sampled from a table, a rectangular 

distribution being assumed for each cell and the out of range entries 

if any. One can also have several random nu,_~ber streams and generate 

exponential and other distributions from these as required. The seed 

for the pseudo-random number generator can be set to repeat a sequence 

or produce a different sequence. 

Another important property of simulation languages is the ease 

with which programs can be debugged. With several activities in 

simultaneous operation it is easy to get confused about the location of 

errors and wonder in which order the activities were obeyed. FOSSIL 

has an optional trace system that can output on any stream to avoid 

confusion with other output. 'i·:hen the trace is on, each time an 

instruction that could change the status by freeing or halting the 

current or another activity is obeyed the instruction, sir.iulation time, 

routine name, index, label and line number relative to it are printed. 

Unfortunately the line numbers ref er to the u1acrogenerated program, 

but this can be preserved, and one can usually guess where it is in 

the original. 

Facilities are provided for switching t he trace on and off 

dynamically and it is possible to trace only those activities in 

which one is interested or to trace different activities on different 

streams, since a separate value of the trace strear.1, which may be 

unset, is kept for each activity. 

There is also a STATUS instruction which will print out all the 

activities on the list with tl1e TRACE details of the last time they 

halted and the schedule. The trace routine is carefully prograrm::1ed to 

give a mininal overhead, particularly wh~n it is not required. This 
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is important since it is entered for every simulation instruction. 

The scope of variables is similar to Fortran but new facilities 

have been introduced by the n~crogeneration. A program can be 

preceded by any number of GLOBAL !declaration! statements which will 

copy the !declaration! at the head of each FUNCTION or SUBROUTINE. 

The result must obey the norw~l FORTRAN II conventions about 

the order of declarations. The declaration GLOBAL COl-NON TH.iE,I"i:IDEX 

is assuned. Each routine may contain any number of declarations of 

the fonn LOCAL largll, larg2 1, etc. These arguments, which should be 

simple variables, will then be preserved when an activation of the 

routine is halted, and restored when it is resumed. They are thus 

local to each activation of a routine. The variable I NDEX is 

effectively local, but it is treated specially, since it is used to 

identify activities in the instructions Hhich refer to them. 

This facility has obvious disadvantages as far as efficiency is 

concerned, and when this is crucial it may be better to treat the 

variable as an array with subscript I NDEX so that it does not have to 

be preserved and r estored each time. The main object of using LOCAL 

instead is to make programs more legible and ·simpler to understand. 

If the variable is used a great deal compared to the mm1ber of ha lts 

it may actually be more effi cient t o avoid t he subscr i pt i ng each t ime 

by using LOCAL . 

No r eal attempt is made to retrieve s t orage except the six word 

blocks used for the lis t of activi t i es, and i f ac t i v ities using l ocal 

variables are created and destroyed t oo often t hi s might prove a 

problem, since holding stora0e n~ps and piec ing toge t her variable sized 

blocks was not considered worthwhile. 
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The six words of the agenda entry for each activity contain 

the pointer to the next entry on the list or zero if at the end, the 

address where local variables are stored if any, the start address of 

115 

the routine (for identification), the trace stream if any, the routine na~e 

in characters, the label and line nurrber, the link, the value of I NDEX 

for the activity, the scheduled ti~e, and the status. These are all 

halfwords except the routine name and the scheduled time which are full 

words. 

The status -halfword is: 

0 

-n 

Address of Q 

+o.l 

If free to go 

· If halted for reason n 

If queueing for Q 

If blocked 

Only this halfword need be tested to see if a routine is free which 

makes the scan of the list very fast. When a routine is halted it 

goes behind all other routines scheduled at the same time excep t for 

a NEST instruction when it stays at the top of the list, and thus t he 

queueing 1.s accomplished automatically using the same list as for the 

tini.ing. 

An exar:iple of a FOSSIL program is given in the Appendix, 

One must now consider how useful the language has been , and how it 

could be improved. Leaving aside the utility of simulation as a 

technique, which is discussed elsewhere , the alternatives once 

simulation had been decided on were machine code or the use of a non­

simulation language, uhich were unacceptable for ti.1e reasons 

discussed above. 



A set of subroutines written all in Fortran might have fulfilled 

some of the necessary criteria, but efficiency of time and store usage 

would have been a major problem. Several parts of the machine code 

sec t ions had to be recoded to run faster and the tabulation routines, 

which are all in FORTRAN, can represent serious overhead and were 

replaced in some models by special purpose facilities. 

Even if the temptation to slip into machine code were resisted 

it would probably have been necessary to exploit various non-standard 

features which would have destroyed the advantage of compatibility. 

Accordingly some special purpose lan6uage was necessary. 

FOSSIL never set out to be a general purpose simulation 

language, though some features were included which were not of direct 

relevance to the problem partly with this in mind. As a language for 

simulating computer systems it has proved very satisfactory and more 

appropriate than rr,ost other lan:-;uages, because it was specially 

designed for that purpose. 

An ideal l anguage should have its queue manipulation and list 

processing f acilities corrbined with its timing facilities and activity 

control , t his would solve some of the more tortuous interlock problems 

and give a more fle:dble system of queues and delays with the standard 

simulation . functions (e.g. WAIT, DELAY, QUEUE) as special cases. The 

disadvantage of such a system would be a considerable drop in 

efficiency if the language was based on ano t her algorithmic language, 

such as FORTRAN, which did not incorporate these facili t ies, since it 

would be difficult to insert them efficiently and convenient ly . 

Sli,IULA, an ALGOL-based language with a separate compiler, goes some 

way towards solving this problem, but though the first lis t processing 
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language LISP has been in existence a long time nobody has succeeded 

in incorporating its facilities satisfactorily into a general purpose 

algorithmic language. 

An important deficiency as a result of fois which is difficult 

to rectify within the present frameHork is the lack of loops for 

members of lists anQ facilities for finding mewbers of lists given a 

set of conditions, such as are provided in CSL. One may wish to 

choose a random mer.ilier 6£ a list or see if one exists satisfying 

certain conditions, or to perform a set of operations on all members 

satisfying certain conditions. These operations can be procrammed in 
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an ad hoe fashion or even as functions, but there is no convenient means 

of specifying a sequence of instruc tions as an argument. This difficulty 

is not present in ALGOL-based languages, whose block structure gives 

them a major advantage over FO~TRAN-based ones, b~t not sufficient to 

compensate for the other disadvantages mentioned above. 

Another major improvenent would be a statement of the form 

11Delay T while not halted" or "Hold facility F for time T". Both of 

these were implemented but the inefficiencies involved in the attendant 

testing and shuffling of the list of activities were too serious, and 

they were abandoned in favour of ad hoe recording of the time e_ach job 

. is in possession of the central processor, which would have been their 

main use. There seems to be no satisfactory compromise solution to 

this problem. 

Large simulations generally take too long and have too many 

operations to rr~ke on-line interaction an attractive proportion except 

for testing , though the use of visual input-output could make a big 

difference as one could then watch queues grow longer and shorter and 
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get variables monitored continuously to check for errors. 

One could also intervene to change the value of a parameter 

if things were not going as expected and continue without recompiling. 

The latter is practicable at the. moment for cm:1roN variables which are 

stored in a fixed location, but if interaction in the source language 

is required then an interpretive language must be used. For most 

simulations running time is an important criterion and this technique 

is not viable. Visual interaction also puts a big load on the 

central processor and store and channels, and for this application 

the result is not sufficient to justify this. However OPS-4 will 

have facilities for on-line interaction and visual display. 

Some languages, such as Simscript, have report generators 

which are useful but difficult to build into an existing language. 

In FOSSIL flexibility of output for TAELEs has been sacrificed to 

some extent to avoid having many arguments or a complicated algorithm 

to decide what is wanted. However the options are satisfactory for 

most purposes, and with a knowledge of the storage alloc2.tion FORTRAN 

routines can be written for special purpose styles. 
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Chapter 7 

SINULATION HODELS !Jill RESULTS 

We have already seen some of the reasons for simulating 

computer systems and some of the .difficulties that are likely to be 

involved. We want to complement rather than duplicate t he analytical 

models by investigating models with more accurate representations of 

core store allocation and scheduling. We want not only some absolute 

measures of the performance of such systems but also to compare them 

against each other in various circunstances to see which fares better. 

We should thus regard simulation as an experiment rather than a means 

of producing accurate figures, in particular we can have more confidence 

in comparative fi gures than 1.n absolute values, provided that we are 

comparing like with like. 

Simulation has been a popular technique for modelling compu ter 

sys teID.s, since it can be used for sys terns where there is no satisfactory 

mathematical model , and the l evel of detail is completely under the 

control of the modeller. Fine and Hclsaa/16 •1
7) used it to mode l th:! 

SDC time-sharing system, (S 6) which is similar to CTSS with a drum and 

using s'\'lapping. Greenbaum(Z l) used another cor:1puter to produce a 

reproducible load for evaluating and testine :multi-access systems. 

- . (28 29) Hutchinson and Hagu1.re ' used Simscript to evaluate a batch 

processing systen with three 7090s from a broader point of view, by 

comparing it with bureaux for different types of job taking factors 

like manpower and operator imposed priorities into account, and also to 

determine the effects of hardware and buffer size modifications tv the 

manufacturer's software. 
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Katz (33) used Simscript to model an I m-I 7040-7090 Direct 

Coupled System, where t he smaller computer (7040) feeds the larger one 

(7090) with a stream of jobs and receives the output, the 7040 dealing 

with the peripherals. Katz(34) has also used Simscript to model the 

System/360, but although consoles are included in the model the input 

from them and output to them are regarded as independent and there is 

no paging in the model. 

Nielsen(4G, 47 ) has simulated a third generation nulti-access 

system before it was installed but he points out that the cost of 

doing thi~ properly is high and efficiency and feasibility may i mpose 

constraints on the design and hence the fidelity of the model. One 

computer manufacturer considering a simulation model of their third 

generation system decided against it when they estimated that 

designing and running a good simulation would cost as rr:uch as 

developing the system. 

Fe·w people have combined simulation and analysis of the same 

system. Penny(49) did so for a simple system by getting analytical 

upper and lower bounds for the performance of the system over a rangE> 

of parame t er values thus producing an envelope of two curves between 

which the r esults must lie, then by simulating with a feu carefully 

chosen par an,e i.:er values he was ab l e t o estimate t he perfo r111.ance f or 

t he whole r ange by interpolation. This t e chn i que could cut down t he 

amount of time needed for simulation considerably if suitable 

applications of i t coul d be f ound . 

Scherr(54 , 55 ) us ed t he Harkov model descr i bed earlier and 

simulation in his own language to model CTSS and found a very good 

agreement between the results of the two, and the performance of the 
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actual system. However in this case the main use of the simulation 

was to provide a check on the validity of the analytical model by using 

a more accurate representation of the system. 

One of the first problems we encounter in sirr.ulation is whether 

to use data from an actual run of the real system or whether to 

generate data from the distributions observed from several runs or 

convenient approximations to them. The former has the advantage that 

it is a genuine sample and so no unrealistic values can be generated, 

however a random sample is not necessarily a typical sample and is 

unlikely to have the same means and distributions as the results from 

several weeks' running, unless we make it rather long. The storage of 

the data also presents a difficult problem since we will not 

necessarily use them in the same order as they occurred in the original 

run. Effectively a different stream of data is needed for each job. 

The choice between using an actual distribution or an 

analytical distribution as an approximation if generated data 1.s used 

is governed by convenience and goodness of fit. For distributions 

that are ·,ery unbalanced, such as the negative exponential, the 

analytical one is better if it is a reasonable approximation, since 

an eqw.al interval histogram will give inaccurate results at the ends. 

Routines are provided in FOSSIL to sample from histograms which have 

been generated earlier and stored or fed in directly, here a uniform 

distribution is assumed uithin each interval and between the minimum 

or max iQUill value r ecorded and the appropriate end range. 

The next problem to be considered i s how much deta i l should be 

included. Any model is no more accurate than its weakest link, and to 

simulat e s ome parts of the sys t em in much Q~re deta i l than necessary 

----- -
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is pointless unless detailed insight is required into those parts, 

and even that is not likely to be accurate. Computer and programming 

time is wasted, there is more scope for programming bugs to creep in, 

and the model is harder to understand and deal with. 

In practice however it is very difficult to tell when the 

required level of detail has been reached, since there is no common 

standard to measure detail by and there nay be nothing with which to 

compare the results of the model. One can ensure that the tirae scale 

of all activities in the model is the same, and no activity has events 

which can be grouped together occurring much more frequently than 

anywhere else in the model. Randell and Zurcher(Sl) suggested 

starting with a modular model with each part of the system represented 

by a very simplified "black box" and gradually develop the detail 

in each sirrrultaneously. In principle this should make it easier to 

debug the model and tell when the detail in any specific part makes 

any difference or not. 

Although any simulation model is bound to change and develop 

a lot this approach has the disadvantage that the interfaces bet1,een 

the various parts are likely to require changing a lot, thus removing 

the advantage of compatibility with the previous versions and 

requiring extra programming effort in the long run. Also defects in 

the initial model nay be perpetuated when a new approach not 

corresponding with the initial model is required. Looking at the 

final model described below it is difficult to see what initial model 

it could have been derived from, indeed its lack of modularity 

contributes to its efficiency. 

-­. , 
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Another approach is to try and isolate the critical factors 

by comparison with analytical or other simulation models, which can 

enable one to omit factors if the model proves to be insensitive to 

them. However it is dangerous to apply conclusions reached from 

analysis or one simulation model to another where different factors 

may be critical and the only safe comparison is between a model with 

a factor included and the same model using the same data without it. 

If these prove sufficiently similar the simpler model can be used for 

other parameter values and small modifications, but if any major 

modifications are made the comparison should be done again. 

In practice it 1.s usually the ingenuity and judgrnent of the 

analyst, the resources of computer time and store and the human time 

available that decide the complexity of the model, and for this 

reason simulation.is often looked on with suspicion. 

The next difficult question, in some ways very similar to the 

previous one, is how long to simulate for. If there are many long runs 

the cost in computer time and delays in developing the model can be 

considerable. However simulation for too short a period produces a 

wide variability in results, and one cannot attach much confidence in 

them. There is no obvious place to stop since the accuracy does not 

increase p-roportionally with time , and to aim for a mean which hardly 

changes when another run is done is asking for too much, since 

simulation results are inherently very variable just like the real 

systems they represent. By co~~aring the results from several runs 

one can check tha t one's sar.ip le is reasonably typical and take t he 

final decis ion on the same sort of basis as mentioned above. 
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,vnen comparing different values of parameters or different 

algorithms we want as far as possible to be comparing like with like. 

If we have a different stream of random numbers for each of the 

quantities to be sampled and use the sane streams for each of the 

two cases then we get them as similar as possible. If the parameter 

being changed is the mean of one of the variables being sampled then 

they will all be reduced proportionally but occur in the same order, 

subject to a few more or less at the end. All unaffected variables 

will sample the sam~ values in the same order. 

The random nurrbers are basically generated by a multiplicative 

congruence method, which produces a uniformly distributed sequence 

with a very large recurrence period. These are knovm as pseudo-random 

numbers, since they are determined and thus repeatable to allow 

comparisons like the above and checking of results. To get a negative 

exponential distribution with mean 1 we take the negative l ogarithm 

of a uniformly distributed sequence between O and 1. 

One alternative that ·vas considered was to use the set of 

exponentially distributed numb ers whict. were most representative as 

described in Chapter 3, permuted in a random way. If all of them ar e 

used this will produce a much better sequence to represent the 

di stribution than a t r uly r andom s ample , since i t will have exactly 

the right mean and variance. However t hi s would involve one set of 

numbers fo r each stream being held on disc· and read dm,m, since the r e 

,·1ould no t be r oom i n cor e s t ore fo r a suff i c iently large s et . It 

would als o be impossib l e to ensure that exactly all the numb ers ,;;,ere 

used, since the different streams are consurr.ed at dif f eren t rates 

which cannot be determined in advance, and the method depends on this 

-• - ' - - . . -
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for its accuracy. However there is possibly a use for this method 

to determine a more typical set of numbers to represent the tail of 

the distribution. This illustrates the fact that a representative 

as opposed to random sample is required. 

Another method for reducing randomness and increasing 

representativeness can best be described by treating random numbers from 

a uniform distribution as marks on the edge of a circle, the distance 

around the circumference from a fixed point being proportional to the 

value of the number. If we superirapose the reflection of the circle 

about the diameter through this point on itself ue get a set of twice 

as many random numbers which have exactly the right mean. This is the 

method of arttithetic variates(ZJ) the practical implementation of which 

is to have one run with random numbers 

with random numbers assuming the 

0 and 1. 

and then another 

x. 
]. 

are bet"i-Ieen 

Because the random numbers are usually transformed to produce 

a negative exponential distribution and the runs finish in slightly 

different places if they are of the same length the mean is not 

exactly correct, but there is still a significant improveITente This 

was adopted for the present work and ex tended still further by 

taking t he t wo rotations of the circle through 120° and 240° and 

then reflecting and superimposing these as well to give effectively 

six sets in each run, thus producing a more even distribution all the 

way round without prejudicing the randomness by making the runs too 

shor t . 

Next we must consider the type of output that is required, 

both f or diagnostic purposes and as result s . I t i s i mp or tant not to 
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mix these two together otherwise so much paper will be required to 

contain a few results that it is difficult to make quick comparisons 

and see patterns. There is a need for both detailed results and a 

summary of a run on one page or so, this can conveniently be done by 

using different streams for the different purposes. The trace 

facility in FOSSIL which can use different streams for different 

activities was designed with this in mind. Other sorts of diagnostics 

will be necessary both as general checks that all is functioning 

correctly, particularly in the more complicated routines like 

scheduling and core allocation, and to detect specific errors. By 

printing out related information in different routines one can check 

for consistency. 

It is sometime difficult to avoid generating too much 

diagnostic information, and all diagnostics should have a switch so 

they can conveniently be removed if necessary. If the time at which 

an error occurs is known one can switch on the diagnostic shortly 

before it, and on the Cambridge system the output can be edited by 

successive bisection if the program is looping to find where the 

loop started without having to print it all. 

For the results only .the values of interest should be printed 

for the reasons stated above, since other values obscure the detail. 

However it is important not to have too much aggregation of results, 

for example it rarely makes sense to average off-line and on-line 

results since the tHo are sq dissimilar. This also applies to the 

various possible pro8ran store sizes~ since they yield very different 

results. It is also better to generate directly all results that 

will be needed even if it involves IT~re initial ~ffort, since it is 

126 



so tedious and error prone to 60 through working out means and t otals 

and drawing graphs from other figures when t hese could have been 

pr oduced by the computer in the first place. T'nis is particularly 

t r ue when it turns out to be necessary to have several different 

runs, as is of ten the case. 

If several runs are made of the same simulation it is 

desirable to have both the figures for each run and also the combined 

totals and means for all the runs, since the former is necessary to 

see how much variat ion t here i s from one run to another i n order to 
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see how much confidence can be placed in the results, and the l atter t o be 

able to make quick comparisons between runs with different parameters . 

Having considered some of the factors that are important in 

designing simulation models , we shall now examine the basic model 

which corr esponds as far as possible to the present state of the 

Carrbridge multi- access system. This wiil serve to illustrate some 

of the points above and the approach that has been adopted touar ds the 

simul ations . 

The basic model consis t s of about 900 lines of FOSSIL , i n 

addi t ion ther e are 400 lines of FORTRAN and 800 orders of machine code 

in sys t ems subr out i nes . Da t a ga ther i ng and print ing repres ents a 

significant propor t ion of this even though this is kept to a min illll.4'TI 

a s f ar as pos s i ble. Since the operation of mak i ng an en t ry i n a 

general table is a lengthy one special purpose routines were used when 

more efficient, such a s f or · calculating time averages. This avoids 

the necessity of checking for out cf range entries , multiplying by 

the increment , etc . 



Various techniques were adopted to minimize the delays 

inherent in running sucn a large program. After each compilation t he 

binary program was dumped on the disc, thus saving further compilation 

and loading except for major changes to the program. If there is an 

error,portions of the code can be examined on-line and changed easily 

by using the system program PATCH. One can identify the relevant 

section by using the corrnnand to search for the orders setting the 

name of the subroutine and the line number for the diagnostics of 

the FORTRAN system. 

The relocatable binary was also stored on the disc, so if it 

was necessary to recompile some subroutines the unaffected ones need 

not be compiled too (except for the main program). This resulted in 

a considerable improvement in response time on-line and also saved 

central processor time, as macrogeneration and compilation of the 

complete program took about a minute. When running on-line it was 

often convenient to have a short test run for a few seconds after a 

change had been made, since this could detect some of the more 

blatant errors, and only intiate a full run from the dumped version 

after this, rather than wait the extra time for a potentially lon; 

job to be run only to find that it had misfired almost at once. 

The FOSSIL section of the program is given in the appendix, 

but this is intended primarily to illustrate what a simulation 

program in FOSSIL looks like. The text refers to the names of t he 

most important subroutines in order to show how the program is 

divided but only the basic structure of the program and its most 

interesting features are described. 
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The main program's sole function is to call a subroutine 

called ~IAI N, which does all the work that the main program would 

normally be expected to do, this was because the main program has to 

be recompiled every time any other subroutine 1.s corr.pi.led or else 

held in a different file from the remainder. This -subroutine initialises 

all the arrays, variables and tables, begins two activations of the 

routine JOBGEN to create off-line and on- line jobs respectively and 

the activity ALG2 to do the scheduling and then dumps the program. 

After this it reads in the data giving the number of runs and their 

length and the serial number of the algorithms to be used which are 

selected by means of switches on the serial number at appropriate 

points. There is then an initial period of 15 minutes siIIB.1lated time 

to allow the system to warm up, since the simulation starts with an 
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empty system. After this all the tables and other data gathering variables 

are reset to zero, since it is difficult to switch off the data 

gathering, and the run is started. 

The routine MA.IN interferes six times in each run to reset the 

random number variables in accordance :·:ith the algorithm mentioned above, 

and at the end of each run it outputs all the statistics, adds on to the 

cumulative tables the details for this run, resets the other tables and 

the data gath~ring variables to zero and starts the next run if there 1.s 

one. All running jobs remain in the system unaffect ed and the second 

run starts from the situation at the end of the first. At the end of 

the final run, if .there is more than one, the CtL.~ulative results are 

printed out. Herging the tables at the end of each run avoids the 

inefficient process of trying to collect data in two tables sirr:ultaneously • 

. - -=- ... - - ,. 



The routine JOBGEN has two activations which create off-line 

and on-line jobs respectively. These run simultaneously in simulated 

time, and are differentiated by a different value of the variable 

INDEX. They use the empirical data on the number of off-line and 

on-line jobs running given in Chapter 3 and synthesize this 

distribution in a way that is designed to be reasonably similar to 

the actual pattern of job arrivals and departures. This was not 

recorded in the statistical measurements on the real system, since it 

is so variable. There is an additional difficulty insofar as it is 

not possible to stop a job at any time, because of the facilities it 

may be using and the queues it may be in, though it is possible to 

start one at any time. ·when this activity wishes to stop a job it 

reduces the desirable number of jobs runm.ng by one. When a job 

reaches strategic points it checks to see that the actual number of 

jobs is equal to ... i.. - desirable numbcr, and • r 4-t.., ..-..- ...... 
., __ ,... 

running l,..Ut: ir L,..U.::J. t:; are 1..VV 

many running it stops gracefully. When this act i vity wishes to 

create a job it increases the desirable number of jobs running by one, 

and only creates a new job if this is greater than the actual number 
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of jobs running . The i naccuracy produced by thi s l ag is not significant. 

After each creation or termination of a job the activity waits 

fo r a time that is exp onentially dis tr i but.:d wi th mean proportiona l to 

the fraction of the total time with tha t number of jobs running in t he 

empir ical distribution. It then randomly . decides with equal pr obability 

whether to increase or decrease the number of jobs. With zero or the 

maxi mu.'11 number of j ob s running there is obvi ously .only one al ternative, 

and this i s compens ated for by multip l yi ng t he 1r.ean time spent in these 

states by t,w • 

• =-- - • . - . 



If we let the empirically determined distribution probabilities 

of the number of jobs running be a, 
l. 

for i=O,l ..• n, and the 

distribution probabilities determined by this algori thm be p. 
l. 

for 

i = O, 1. •• n, we have in equilibrium that the rate of entering state J. 

is the same as the rate of leaving state i, using the theory of Harkov 

chains as described in Chapter 4. This gives the follouing equations: 

1 
Po (l - 2ka) 

0 

pi-1 
(1 + p. 

2ka. 
1 

l. 
1.-

1 --) 
· ka. 

l. 

Pn-1 1 + p (1 - --) 
2ka n 2ka 

n-1 n 

Pi+l 
1,2 ••• n-1 + = p. for l. = 2ka. 

1 
· l. 1.+ 

= Pn 

which are solved by pi = ai for i = O,l ••• n, i.e. rur algorithm 

reproduces the empirical distribution. The constant k detemines 

the rate at which the number of jobs running changes, a value of 500 

was used to give a reasonab le compromise between a very rapidly 

changing nm:iber, which would suffer more from the lag mentioned 

earlier, and a slowly changing nuwber, which would cause bigger 

fluctuations 1.n the load as backlogs built up, the extreme being 

a system which gradually added jobs until the maximum number had been 

reached and then gradually terminated them again. The largest 

individual probability is 0.16 givin3 a mean tirae before a change 

of 80 seconds, though most of them are rather less than this. 111ere 

was an alternative to generating jobs and ~erminating them explicitly 

of keeping them all going and nalting and freeing them, but the former 

was chosen as being conceptually simpler and more faithful. This also 

keeps the list of activities on the agenda shorter and thus saves 

time when searching it. 

-----. , . 
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The routine JOB is the heart of the program and one activation 

of it exists for each running job. It consists basically of a loop 

which is obeyed continuously as long as the job is running, the only 

difference between on-line and off-line jabs being different means for 

the various time and store parameters and the inclusion of a stage in 

the loop representing console input-output and thinking for the 

former. No attempt has been made to reproduce identically the various 

possible paths that real jobs can take, but rather to generate a 

typical mix of activities for a given number of jobs running. The 

first action is to join the end of the scheduling algorithm's queue 

for processor time, and then call the sampling subroutine. 

The subroutine SA?-1 samples the size of store to the nearest 

4K from a histogram, and chooses an exponentially distributed 

processor time with the mean corresponding to the store size. Yne 

result of this is to maintain the correlation between store size and 

processor tirr£ noted earlier, and produce a hyperexponential 

distribution of processor time, which is more faithful than an 

exponential distribution, as can be seen from Figures 3.3 and 3.4. 

If the sampling procedure gives a store size of zero this signifies 

a pure procedure with 64 words of working space and the probabilities 

and mean proc.~ssor time are set accordingly. These can be treated e.s 

using no store, since there is a special region of store reserved for 

them which has nearly always spare space, , and a copy may well be in 

the store already . If the sampled store size is not zero , the job 

calls the subroutine GEST to get store, whicn halts if necessary unti l 

the store is allocated and returns. Tabulation of the waiting time 

for store and the use of it , and recording t~1e throughput and 

. -... 
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processor use 1.s al l done in r out ine JOB. The max i mum waiting times 

for store are also recorded to give an idea of the range . 

After acquiring store (except fo r a pure procedure) t he job 

makes a disc request by calling the subroutine DIS , and if necessary 

joins a single queue for t·wo notionally separate discs. The 

justification for this assumption has been discussed in Chapter 4. 

To give a more realistic picture half the disc time is used before 

the processing, corresponding mainly to program loading and file 

access , and half is used after , cor responding mainly to output . After 

this it calls the scheduling al gorithm, which will halt where 

necessary like the storage allocation algorithm, and return control 

when it has had the total of processor time requested. 

After the second disc reques t the store is released and the 

job calls the subroutine CHR which checks to see if there are too many 

jobs running as described earlier. Off-line jobs then go back to t he 

beginning . On- line jobs delay for an exponentially distributed t irc.e 

cor responding to " t hinking" , as this is usually in a pure procedur e 

no major resources are tied up . Th ey t hen check once more to s ee i f 

t here ar e too many jobs running and go back to t he beginning. 

The s cheduling of jobs is probably the mos t complicated 

feature to simulate and several different methods were tried before 

t he one f inally chos en . The basic difficul t y lies in ensur i ng t hat 

the use of processor time is recorded both f or schedul i ng purposes and 

in order to free a j ob when it has finish ed with t he processor. The 

s ecor,d of these could be solved by an instruction of the form 

"delay for x while free" and this was inplemented with some difficul ty 

at one stage. However it proved i neff i cient since when the activity is 

. -
. -
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halted the entry corresponding to it in the agenda has to be reordered 

every time simulation tirre is advanced, since this also advances the 

completion time. 

Another approach that was. tried and discarded as too inefficient 

was to make the running job find out each time what the next event was, 

delay until then and record the amount of processor tiffie used, and then 

halt until the event was over. When one considers the number of 

events which may be completely unrelated, such as the arrival of a job 

or another job finishing its disc or thinking time, the disadvantages 

of this method become apparent. 

A flowchart of the method finally adopted is shown in Figure 7.1. 

When a job requires processing it calls the subroutine ALGl. This sets 

the amount of processing time required and looks to see if it is first 

in the queue. If the job is not first 1n the queue it delays for a 

very long period, which in practice means until it is later rescheduled. 

If the job is first rn the queue it looks to see if the~e is another 

job running, and if so it calls the subroutine RECT to record the amount 

· of processor time used by the running job and then blocks it. It then 

raarks itself as the running job and delays for the amount of processing 

time required, though during this time it may be rescheduled by other 

jobs or th~ scheduling algorith~. After it has finished it again calls 

RECT to record the amount of processor time used and looks for the 

first job in the queue that is free to go. , If there is such a job it 

marks the new one as the running job, unblocks it and reschedules it to 

continue after the length of time the new job still · requires for 

processing. 

-----



Fig. 7 .1 

Scheduling routine flowch<:1.rt 
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The supervisor 1.s represented by the activity ALG2 , which runs 

regu l arly throughout the simulation at intervals in simulated time equal 

to the quantum, which is 1.28 seconds since the Titan hardware 

effectively dictates a multiple of this. Each cycle it calls RECT 

which updates the amount of comp. time used in the last quantum period 

by the running job. It then looks to see which job has had the most 

processor time in the last quantum interval and puts it at the end of 

the queue. If this was the running job the scheduler looks for t he 

first job in the queue that is free to go. If there is another job 

free to go the scheduler blocks the previous running job, marks the 

new one as the running job, unblocks it and reschedules it to continue 

after the length of time the new job still requires for processing. 

T'nere are various possible ways of representing the store of a 

computer, for example one can have a matrix with the elements of store 

(in this case units of 4K words) as one dimension and the jobs as the 

other dimension , or a one dimensional array by jobs or by store. List 

processing techniques can be used to indicate the free areas of store 

and their size. However when a job is bound to be in a contiguous area 

of stor e the effort of keeping the mor e sub t l e s truc t ures up t o date 

is not adequately repaid when finding spaces to put jobs in. A siTI'.ple 

. approach wa_s ~dopted of having one array e l c;nent fo r each element of 

store and setting t his to be - I i f unavai lable , 0 if free , and t he job 

fo1)EX numb er if in use . There were t hree basic subroutines , GEST which 

gets store, LOST which los es it and ISST which when called by either of 

the other two checks t o see if there i s suffi cient s tore f or a gi ven 

j ob and al l ocates it if t here is. 
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Because the supervisor was originally designed to operate in 

64K words of store, the store available to object programs in the Titan 

with 128K. words of store is divided into two regions, 0-40K (bottom 

segment) and 64K-112K (top segment). The remainder is used by the 

supervisor for program, working space, buffers and pure procedures. 

The store allocation algorithm is designed to take account of this fact 

by allocating the ti10 regions in different ways. There are two queues 

and initially all jobs join the second queue if they cannot fit in the 

store. When space becomes available the first job in this queue that 

will fit is allocated space and so on. If space has still not been 

-

allocated after a certain time the job moves to the first queue, 

which is served preferentially on a first come first served basis, and 

allocation of the bottom segment stops until the first queue is empt}• 

This system ensures that all jobs however large will get run 

eventually without affecting the response time of smaller jobs too 

adversely, since the latter can still use the top segment while the 

large ones are waiting for the bottom segment to empty. Its 

impleu1entation in th~ simulation follows a similar pattern, and a 

flouchart is given in Figure 7.2. 

The subroutine GEST which gets store first calls subroutine ISST 

to check if- the job will fit in the top segment, or either segment if 

the first queue is empty. If this fails it joins the second queue 

and waits for 200 or 600 seconds according to whether it is an on-line 

or off-line job respectively. This figure is doubled if it needs more 

than 16K words of store. If it has not been allocated space in this 

time it then joins the fir:,t queue and is eligible for both segraents. 
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Fir; .7.2 

Storage allocation flci:;c:1art 
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The subroutine LOST which releases store first searches t hrough 

and marks all the store used by the job as free. If there are any joos 

in the first queue it calls ISST to attempt to find store for them in 

order using both segments. If all the jobs in the first queue are 

allocated store it serves the second queue from both segITents. If a 

job in the first queue cannot be allocated store it serves the remaining 

jobs in order in the first and then the second queues from the top 

segment only. 

The routine ISST to check if a job will fit and allocate store goes 

through all possible starting points. Jobs greater than 32K words of 

store must start at the bottom of store to avoid overfilling it and 

programs of size N must start at an absolute store address which is a 

H 
multiple of 2 where His chosen as the minimum number such that 

2H N ~ . This is because the base address register is OR-ed with 

rather than added to the program's address as described in Chapter 2. 

It selects the highest possible starting point when there J_s space, if 

any, and allocates from there. This is in order to keep the lo,·1er 

parts of the store free for larger jobs which must go there. 

The object of the first simulation runs was to choose a 

suitable number of runs and length of run for future use. As already 

mentioned this is a difficult process and any choice is to sorr.e extent 

arbitrary as there are no good criteria. The amount of processor time 

used imposes an upper limit, since to avoid' t aking an unreasonable 

time and to ensure a better t:urnround and tile possibility of testin;; 

on-lin~, this should be less than five minutes for any run. Sinc e 

macrogeneration, compilation and assembly took just over a minute, 

and the ratio of simulated time to real time was about 100:1 depending 



on the algoritl1m used, this restricted the maxi;num length of run to 

six hours of siuulated time. Six different runs of two simulated hours 

each were done and the results compared to see how great the range was. 

The results are given in Table 7.1. 

It can be seen that over six runs the range is quite high, 

up to half the wean value in several cases, though this is often due to 

an isolated unusual value. The sixth run shows a remarkable 

correspondance with the mean, however we cannot take it by itself since 

we would have to do ·the previous runs ar,yway to get the initial 

conditions the same. Taking the first two runs we get a maxirrrum error 

of 267. and a mean error of 14% Hith consistently high values of 

-the measurements. Adding the third run~ which has values near or 

below the mean, would improve this to a maximum error of 1'1% and a 

mean of 7% but would involve 50% more computing. 

It was decided to .... dopt two runs of two hours simulated time 

each as the standard for subsequent simulations, this representing a 

reasonable compromise between the amount of processor time used and 

accuracy. The comparison given above h0lds good for the other 

simulations since the same sets of random numbers were used in each 

case as far as possible. Having this enables comparisons between runs 

as well as comparisons of the means for different algoritlm1s, and hence 

two runs of two hours are preferable to one of four hours. There 1.s 

little point in splitting it up any further 'or else one gets 

overwhelmed with paper and the individual runs become too short, with 

a resulting increase in variability. 

For the simulations t he second set of statistics mentioned 

1.n Chapter 3 was used. Comparing the results with these statistics ue 
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Table 7.1 

Simulation of Cambridge system with 6 runs of 2 hours 

Run 2 runs 3 runs 6 runs 
Measurement 

% 7o 1 2 3 4 5 6 Hean Hean }lean Ra.~ 
error error 

Off-line 
throughput 2.06 1.40 1.28 1.51 1.25 1.50 1. 73 15 1.58 5 1.50 0.76 

On-line 
throughput 4.39 5.54 4.01 3.40 3.77 4.43 4.97 17 4.65 9 4.26 2.14 

Off-line 
processor 
queue 3.94 3.99 3.44 3.65 3.05 3.73 3.96 9 3.79 4 3.63 o.94 

On-line I I 

processor 
queue 0.28 0.45 0.31 0.26 0.29 0.36 0.37 12 0.35 6 0.33 0.19 

Off-line 
processor 
usei, o.91 o.89 o.92 o.93 o.91 o.9o o.9o 11 0.91 0 o.91 o.o4 

On-line 
processor 
use 0.01 o.n o.os 0.01 o.o9 o.o9 0.09 0 0.09 0 o.o9 o.ot, 

Off-line 
disc queue 0.23 0.16 0.13 0.14 0.15 0.17 0 .20 25 0.17 6 0.16 0.10 

On-line 
disc queue . o.49 o.67 o.41 0.33 0.41 0.46 0.58 20 0.52 13 0.46 0.3't 

Off-line 
disc use 0.10 0.07 0.06 0.07 0.06 0.07 0.08 14 0.08 14 0.07 0.04 

On-line 
disc use 0 . 20 0.26 0.19 0 . 16 0 . 19 0. 21 0 . 23 6 0.22 10 0 .20 0 . 10 

* Includ i ng overhead 



see that only 9% of the time (including overhead) was devoted to 

on-line work instead of 11% in fact, and thus the on-line throughput 

has fallen from 5.33 phases/min to 4.97 and the off-line throughput 

has fallen from 1.33 to 1.79. Tnis is probably because in the 

simulation we mix in large jobs which tend to last a long time fairly 

randomly, whereas in practice they tend to be run at night when there 

is little on-line load and thus do not reduce the on-line throu6hput 

so much. A facility was included to allow for this by biasing the 

random numbers to represent night and day running, but this was not 

pursued because it was not a sufficiently accurate representation. 

For this algorithm Table 7.2 shows that the store waiting times 

increase with program size, as do the maxima. Usually the randomness 

of the simulation does not produce such a neat result. 32K jobs wait 

an average of 6 minutes and 40K jobs wait 13 minutes with 

considerably higher maxima, whicn is a long time to keep a job waiting 

around in the machine and suggests that we should try only to have one 

or two large jobs running at a time. The waiting times of on-lil1e 

jobs are quite acceptable, the maxima probably being caused by a long 

off-line job. These maxima should be reduced by swapping or shuffling. 

The overall disc usage seems low, but it has to cope with the peaks 

and the figu!cs are comparable with those c-'Jtained :f:rom the analytical 

model, when one allo,·1s for the higher off-line load and mean comp. time 

in th~ second set of statistics on which these results are based. 

The first alterations to the basic model that were tried were 

the effects of 20% variations either way in the raeans of the off-line 

and on-line comp . times and the thinking tir::e. Ti.,is was done partly 

to see how sensitive the simulation was to these parameters in case a 
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Table 7 .2 

Simulation of Cambridge system 

Throughput (phases/ruin) 

Processor queue 

Processor use (inc. overhead) 

(exc. overhead) 

Disc queue 

Disc use 

Off-line 

1.73 

3.96 

0.90 

o. 75 

0.20 

0.08 

Off-line 

Store 

Pure procedure 

0-4K 

5-8K 

9-16K 

17-32K 

33-40K 

Queue 
Hean Hax. 

0.04 3 

0.06 2 

0.50 5 

1 . 04 4 

0.41 2 

Use 

0.10 

1.17 

o. 77 

0.89 

o . 99 

0.23 

Wait(secs) 
Nean Hax. 

2 79 

5 167 

83 L•45 

352 1145 

793 1666 

Queue 
Hean Nax. 

0.01 2 

0.05 1 

0 • .19 2 

On-line 

4.97 

o.37 

0.09 

0.07 

o.58 

0.23 

On-line 
Wait(secs) Use Hean Nax. 

0.56 

0.21 0 21 

0.10 12 399 

o.os 62 389 
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bad estimate had been made from the data, and partly to see how 

things varied with changes in the load of this type. The comparison 

was done using the same stream of random numbers for each of the 

variables to be sampled as was used for it previously, but 

multiplying the result by the appropriate factor. The same period 

was used for each run as before, which meant that the runs were not 

exactly comparable since the ends of the various streaw$ were at 

different points and so some phases are not included in all the runs. 

Unfortunately there. is no satisfactory method of getting round this 

problem. Because of this the waiting times for store have not been 

included in the results in Table 7.3, since the random variation in 

these seens to outweigh any other effects. 

The first comparison was with a low off-line processor time. 

liere we notice that the off-line throughput :1.ncreases as expected 

from 1.73 to 2.07 phases/min. For a high off-line processor time 

it falls to 1.22, arid the processor use increases slightly. 

Changing the on-line processor time makes very little 

difference to the on- line throughput, since this is not really the 

bottleneck for on-line jobs. However it affects the distribution of 

processor time as expected and when it is raised the off-line 

throughput drops to 1.38, a fall of 20%. 

Changing the on-line ti1inking time affects both the on-line 

throughput and the processor use in the opposite way as would be 

expected, since this has a big effect on the amount of on-line work 

that is done. The reduced off-line throughput for a high on-line:: 

thinking time seems surprising, however the detailed results show that 

this is the average of two very dissimilar runs. These have off-line 
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· Table 7 .3 

Simulation results with 207. variation 1.n certain parameters 

Parameter changed 

Standard parameter 
values 

Low off-line 
comp. time 

High off-line 
comp.ti!lle 

Low on-line 
comp. time 

High on-line 
comp. time 

Low on-line 
think time 

High on-line 
think time 

* including overhead 

Off-line On-line 

Throughput Proc. use* Throughput Proc. use* 

1. 73 0.90 4.97 0.09 

2 .07 0.90 4. 75 0.09 

1.22 0.91 4.43 0.08 

1. 77 0.93 4.83 0.07 

1.33 0.90 I -:A 
'i • /U 

.~ 1 /'\ 
VoJ.V 

1.55 0.89 5.37 0.10 

1.47 0.92 4.41 0.08 
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throughputs of 2.03 and 0.92 respectively, and for the second run 

the mean store usage for off-line jobs more than 32K was 0.92, 

which is exceptionally high and helps to account for the low throughput. 

Reducing the munber of on-line job.s helps the large jobs more than t r_e 

small ones , since the large jobs tend to get held up the most by 

on-line jobs. 

The first alteration to t he basic storage algorithm that was 

tried was to take the jobs in the first (priority) store queue which 

had been waiting a long time in a different order by allocating store 

to the first one in the queue that 1:1ould fit into the space, and then 

the next, if any, that would fit into the remainder and so on instead 

of allocating store strictly first come first served as betore. 

This algorithm will be called First Fitting First Served (FFFS). 

The danger of this policy is that jobs may arrive in the first queue 

and get served so quickly that sor.,e jobs never get served. However 

the results in Table 7.4 indicate virtually no difference, a slightly 

higher throughput for both off-line and on-line jobs because of 1nore 

efficient use of space, and a longer wait for large r jobs as ~voulcl 

be expected. 

The next alteration was to cor.-.b ine this with putting on-line 

· jobs directly in the first queue, thus making thera eligible for all 

the store even if tnere are sone other jobs waiting in the first 

queue. Here the danger outlined before is r.iagnified, and sureenough 

we see from Table 7.5 that the off- line throughput went right down to 

1.47 and the mean waiting tines for off- line jobs increased 

significantly. The on-line throughput is much the same and the 
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Table 7.4 

Simulation with first queue FFFS* 

Off-line On-line 

Throughput 1.79 5.08 

Processor queue 3.75 o.4o 

Processor use (inc. overi1ec:d) o.89 0.10 

(exc. overhead) 0.74 o.os 

Disc queuE: 0.20 0.57 

Disc use 0.08 0.24 

Off-line On-line 

Store 
Queue Use Wait Queue Use 

Hait 
Hean Nax. Hean Hax. Hean Nax. Mean Hax. 

Pure procedure 0.13 0.54 

0-4K 0.07 3 1.27 3 112 0.47 3 0.22 1 109 

5-SK 0:10 3 0.65 12 292 . 0.06 2 0.11 18 310 

9- 16K o.ss 5 o.72 95 603 0.15 3 0.10 l18 280 

17-32K 1.08 4 o.67 415 2648 

33-40K 0.52 2 o.45 1058 2845 

* First Fitting First Served 



Table 7.5 

Simulation with on-line jobs immediately joining 

first store queue which is FFFS:~ 

Off-line On-line 

Throughput 1.47 5.10 

Processor queue 3.57 o.36 

Processor use (inc. overhead) 0.90 0.10 

(exc. overhead) 0.74 0.08 

Disc queue 0.16 0.56 

Disc use 0.07 0.24 

Off-1 ine On-line 

Store 
Queue Use 

Wait Queue Use 
Hean lfax. Mean Eax. Hean Hax. 

Pure procedure 0.15 0.53 

0-4K o.os J 1.05 3 130 0.08 2 0.20 

5-BK 0.07 3 o.6s lJ 171 0.06 3 0.10 
< 

9-16K 0.48 5 o.86 97 603 o.on 2 0.08 

17-32K 1.58 5 0.47 668 2468 

33-40K o.ss 2 0.72 1902 4732 

-/: 
First Fitting First Served 
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~fean i:Iax. 

0 27 

13 183 
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reduction in their waiting times, though significant, does not seem 

sufficient to warrant this pulicy, since these were fairly low anyway. 

Another way of serving the queues is Largest Fitting First 

Served (LFFS). Table 7.6 shows as might be expected that the waiting 

times for small j obs ,,ere increased slightly, the waiting time for 

17-32K j obs fell, and the waiting time for 33-40K jobs lay between 

those for the basic algorithm and FFFS. This algorithm is probably 

preferable to FFFS since it has a more balanced distribution of 

waiting times. 

A simulation model for swapping was devel oped, using an iraage. 

of the store and making alterations to it t o de cide whether swapping 

was worth~vhile or not, but results with the basic algorithm indicated 

that if we swapped when an on-line job entered the first queue and 

could not obtain store this resulted in very little swapping. There 

is no real point in sHapping j obs to make room for off-line jobs, 

since there is not the same pressure for quick response. Accordingly 

it was decided not to pursue this line of inquiry further. If the 

discs we':e faster or there were magnetic drums it would probably 

change the balance in favour of more swapping. 

- ·--

149 



150 

Table 7.6 

Simulation with both store queues LFFS1c 

Off-line On--line 

Throughput 1. 78 4.96 

Processor queue 4.16 o.4o 

Processor use (inc. overhead) 0.90 0.09 

(exc. overhead) 0.74 0.08 

Disc queue 0.20 o.56 

Disc use o.os 0.23 

Off-line On-line 

Store 
Queue Use 

Hait Queue Use 
Hait 

Mean 11ax. Hean IIax. Hean l·Iax. Hean :;:.rax. 

Pure procedure 0.12 o.s4 

0-4K 0.04 3 1.26 3 123 0.04 2 0.23 1 136 

5-8K 0.21 4 o.91 25 616 0.14 4 0.11 32 280 

9-16K 0.68 5 o.91 113 764 0.14 2 o.os 47 379 

17-32K 0.81 3 o.67 291 1591 

33-40K 0.39 ') a.so 893 2535 ,_ 

* Largest Fitting First Served 



Chapter 8 

COHCLUSIOr~S 

There are two main reasons for doing the type of work described 

here, to compare and develop techniques and to obtain useful results. 

Although the initial intention of the research was to obtain useful 

results, it ended up with the emphasis mainly on techniques, as can be 

seen from the preceding description. When the l,orlz first started the 

Cambridge system was in an embryonic state and the main need was seen 

to be for more knowledge about the effects of various factors on 

system performance, and how it could be .i mproved. However to find 

this out it was necessary first to learn and then to develop techniques. 

There seemed to be more scope for comparing and developing t hes e 

than for producing results relevant to the Car.ibrid6e system, since as 

time went on the need for results became less and less as experience 

was gained with the system and it became operational, thus reducing 

the possibilities for change and experiment. It also seemed better 

to model the system as it was and see 1'ow it worked rather than produce 

models of hypothetical systeu1.s u:1ich uould never be iDplemented, or 

evaluate software changes, wh ich had been tried or could be seen to be 

unsatisfactory. 

By the time results were available taere were very feu obvious 

problems outstanding except core store allocation, which is one reason 

why that has been examined in sori1e detail, t11ough it is also a useful 

vehicle to deraonstrate the simulation and its use. Some other problems 

w11ich might have been considered were rejected because they uould involve 

major changes to the hardware or software. It is pointless to invent 
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. problems where no real proolem is felt, since it is at the system 

design phase t1iat the results are really needed, not 'tlihen the system 

is operatio~al. 

We should now consider the value of the various techniques, in 

the three main categories of Experiment, Analysis and Simulation, and 

what has been learnt about exa~ining multi-access systems. The most 

satisfactory source of data on system and user behaviour is an 
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existing system. In this case the system being analysed was sufficiently 

stable and had enough users to make it a good source of data, but in 

general an analysis should come during the design or development of a 

system and . this would. not be so. For developing sys terns one must analyse 

a system with a similar user populatiofl, using a batch processing one 

if no multi-access one is available. By making assumptions about the 

management policies and charging system one can estimate the potential 

on-line load. 

The system perfor~iance is also better obtained from analysing 

a system with the same or similar hardware than £ram manufacturer's 

data. This will give some idea of the overhe ad and time required to 

run typical jobs 1:1ith existinc software, and whether the 

manufacturer's claims are to be trusted. 

It 1.s more efficient and convenient if the systera contains 

built-in facilities for collecting various types of statistics, and 

produces these in a usable form rather than as sheets of paper with 

detailed figures wi.1.ich require a considerable amount of arithraetic 

to be of any use. It should be possible to turn this on and off, and 

preferably to set it to sample at a certain rate to reduce the awount 
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of data and increase efficiency. It could be rr~de to produce only 

wanted information, but then there might be a request for some 

historical information which had been lost. Probably the best solution 

is to produce the most important .information regularly on one stream 

and have other streams of specialized information on request. The 

Titan accounting system, which produces the system name (if it is a . 

public system), store sizes and cumulative comp. and exec. times at 

the end of each phase or where the store size changes, provides a lot 

of useful information. It would be extremely useful if the disc usage 

details w~re also given for each job, at the moment only the totals 

each minute are given. A software switch has recently been included 

to cut out the detail when it is not required. It would also be 

useful if the more important overall statistics such as the means 

and standard deviations of the comp. times and the throughput in terms 

of jobs and phases were printed as a matter of course on a daily bas is 

which would give some indication of trends. 

As a means of determining the <::£feet of changes to the system 

experiment is not very practical. It cannot be properly controlled, 

since it is iQpossible to repeat an on-line load except on a sw~ll 
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scale. Greenbaum <2I) used a computer to simulate a set of users and / 

their responses, but this as a very expensive method. The results are only /1 

valuable with a relatively stable system and a large load, and then the 1/ 

commitment to the system is too great to start messing around with it. 11' 

' I 

The cost in terms of computer and human time may be great, and it is I ' 

only practicable for small changes, or ones whose effects can be 

predicted by intuition or one of the other r:1ethods. 

- -- .. .-.._. ~ -
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Before making any model of a multi-access system it is 

important to know exactly wliat information is being sought and what 

the problem is, particularly for analytical as opposed to simulation 

models where a wide variety is possible. The process should ideally 

be treated as an experiment with the models becoming more and more 

refined as more data becomes available and more insight into the nature 

of the system being modelled and uhat the critical factors are. 

The emphasis should be on comparison, both oetueen alternative 

models of the same system and the system itself where possible, and 

between results with different parameter values and possible hardware 

or software modifications. The absolute values of the results are 

useful in giving an insight into the operation of the systen, but J.t 

is the relative values that will tell us how sensitive the system is 

to various factors, particularly with simulation uhere t he absolute 

values are rather unreliable. 

It is becaus e of tl1is that there are a wide variety of ~odels 

for both analysis and simulation depennini; on t i1e e1upi1asis. As far as 

analytical t1odcls are concerned t he main differences are between t i:;.os e 

that concentrate on an individual job as it passes through a syst em 

an<l determine the distribution of uaiting time, and those that 

concentrate ·on the system ar..d treat jobs merely as things to be 

counted. A lot of uork has been done on t he fi rs t t ype of mod el, 

and some examp les are given in tne bibliogr aphy, but even simp le 

schedulin6 systems require ap proxi mations, and more complicated ones 

cannot be analysed i n t his way . T:.1e only results that c an be oota ined 

from t hese mode l s are about t he time spent waiting for process i ng , 

and if there are other delaying factors such as disc or core store 
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queues which are too difficult to analys e this information 1s not of. 

much use. 

The second type of model, which gives results about mean 

waiting times, queue sizes, resource usage and throughput is much more 

useful. Here t he types of model can be further categorized acccrding 

to uhether we assume that the service times are constar,t, negative 

exponential, or a combined distribution. This can be regarded as 

several negative exponential stages of service, probably with different 

means, either in series (Erlangian) or in parallel (Rypercxponential) 

each with certain prooabilities, or a mixture of the two. 

Deterministic ruodels with constant service time have received 

little attention in the past, presumably because they uere considered 

too unrealistic. However the results are remarkably similar to t hose 

with exponential service time where they are comparable, suggesting 

they might be of use in more complicated systems wi1ich cannot be 

analysed using Harkov models. They are useful for providing a clear 

indication of when a device becomes saturated and giving sinple 

equations connecting t he various quantities wh ich are quite good 

approximations to more realistic cases. They can also show how 

sensitive various results are to the distributions by comparing a 

deterministic· model using constant service tit1es with a l-iarkov model 

using negative exponential distributions. 

Markov nodels with negative exponential distributions which 

consider the Hhole system have not received much attention in the 

past, because they could only deal with a restricted class of systeu1.s 

or else required numerical solution. However extendin[; this tedmique 

to include on-line and off-line work, several stages of service and 
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requests for specif ic servers and producing analytical solutions has 

enabled us to deal with a much wider class of rr,ulti-access systems, and 

the assumption of negative exponential instead of constant service times 

is much more realistic. A lot of information can be gleaned from these 

models as to the effects of changins the quantity of on-line or off-line 

work, increasing the processor speed or adding another processor, and 

changing the mean times. This is much cneaper than simulation and 

produces more accurate ans,·1ers if the model is good. It can provide a 

useful background to simulation oy giving values of the most important 

results and an idea of what t he critical factors are. It also provides 

a good check on the accuracy of a simulation and vice versa. The 

ideas developed here could be extended to other systems, even possibly 

to paged systems by regarding the store as another resource for which 

one has to queue. Eowever they cannot give a picture of store 

allocation in a system without suapping or paging, and for this r eason 

,re must use sir.rulution. 

Hodels with more complicated dir.tributions have been solved 

numerically, since the number of sta tes increases rapidly as neu 

notional stages of service are added, but it is arguable whet her the 

increase of accuracy justifies the extra labour and time when only an 

. approximate solution to the model is produced and the solution oft.3n 

appears to be insensitive to t he distributions. 

The swapping model is included priR.ar'i.ly to show that even 

quite corilplicated systems can often be analysed in a relatively si1:1p le 

,1ay, provided t hat the appropriate ;:issunptions are made. Hith a 

specific system in filind one would be able to clerive sorae useful results 

from a model of t his t ype, since s,mpping syst ens arc difficult to 

simulate. 

----
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1Jhen we cone to simulation t he first question is the choice 

of a language. Often t h is will be dictated by practical considerations 

such as what is available on the computers t hat can be used, or uhat 

the analyst is familiar with. Eowever choice of language can be very 

important from the point of view of efficiency and simplicity and t he 

range of models that are possible. If the time and effort are 

available and rauch simulation is to be done, serious consideration 

should be given to i mp lementing another language, whether new or old 

if a suitable existing language is not available. 

If compatibility is not important the language can be 

tailored to t he model rather than vice versa, and good diagnostics 

can be built in, uhich can save hours trying to find obscure errors. 

If it is based on another language such as P.LGOL or FORTRAN, as r:iany 

existing simulation languages are, a lot of time is saved on 

development. Useful facilities in the base language are available, 

including possibly debugging facilities, and it is much easier to 

learn. However this r.1ay well prejudice t he design of the language and 

its efficiency. The n:.ost important efficiency fea tures are to have a 

language that is comp iled rather than interpreted, since simulations 

involve rnany loops, and to have an event-based rather t 11an an 

· activity-based language, since this avoids all the leading tests that 

are a feature of t he latter. Some of the more recent languages, for 

example Simula and O?S-l~, can be used in either uay, ~7hich is thE: 

ideal solution. 

The experience gained in the desi [;n and implementation of 

FOSSIL was useful in understanding the nature and variety of sir:rulation 

languages and models. The structure and syntax are very siQple, so~e 

----
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of the limitations being imposed for efficiency reasons. It was not 

designed for general use, and hence lacks data structure rnanipulation 

facilities, whici1 were not really necessary for this application. 

The implementation exp loits non-standard features that might prove 

difficult elsewhere, t hough a language uhich was implemented entirely 

by Fortran subroutines would probably be intolerably inefficient. 

The features most worthy of incorporation in subsequent lancuages are 

the ability to begin and terminate activities at will, contained in 

several existing languages, the interlock and queueing systera, the 

tabulation facilities, and having local variables identified by an 

index for different activations of t he sane r outine. 

Simulation must always be done ~·Jith care, both to save time and 

to ensure more accurate results insofar as these can be reconciled. 

One of the main difficulties is to decide on the right level of 

detail , and it is here that the results of preliminary analyses c an 

help. There is ah1ays more t hat can be included , for example a user 

behaviour model or details of the internal Horkings of the discs or 

the supervisor, and it is difficult to knm.1 when to stop. Randell and 

Zurcher (Sl) proposed a modu lar simulation, ·with "black boxes" whose 

workinzs are not included gradually being replaced by more detail ed 

r.iodels. Houever modularity is very difficult and inefficient to 

achieve in practice, since different al6orithms may imply differences 

all over the program. 

Because of t he fact that simulation programs are constantly 

changing they must be easy to modify and it should not oe necessary to 

modify 10 different programs to test 10 different algorith~~. The 

sir.rulation described in Chapter 7 uas one program u ith sHitches all 
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over it to select the different branches for the different algori thi:1s, 

this 1.s slight ly inefficient and impractical for large nunbers of 

alternatives, unless they can be reduced to smaller independent sets 

of alternatives, but is much easier · to oodify. Debugging facilities 

should also be built into the program uith switches so that 

modifications can easily be tested, they can be rer;ioved completely 

for production runs if necessary. 

A little effort put into techniques to improve accuracy can 

bring great savings in time and improved results, and it is important 

to realise that what is wanted is not a random sample but a typical 

sample. Tests s hould also be done to show the sensitivity of the 

simulation to certain parameters and assumptions. 

Having a c?nvenient operational system and output format can 

make a big difference in the rate of developing simulations and the 

ease with which the relevant inforri.ation can be extracted. As 

mentioned earlier it is comparisons between similar runs that are 

important, and the eye cannot take in more ti1.an about tuo pages at 

once, so whatever detail is provided a summary of the important 

results is vital. 

The main scope for future work lies in the study of paged 

systems probably with several processors. To do this properly uould 

require a considerable araount of effort . A combination of all three of 

the techniques described above should be used, since each has its mm 

distinctive advanta;;es. The combination 1.s Dore pm1erful than 

relying solely on one technique, and also avoids putting all one's 

eggs 1.n the same basket. 
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It is most important that this study should occur at the 

system design stage, and preferably when the hardware is bi::!ing 

designed, so that the total system can be analysed with a wide range of 

alternatives and hypotheses tested. A study of a fully developed system 

is of value for developing techniques and . furthering understanding of 

the system. However it is not likely to come up with startling 

proposals for improvements, because by then there are too IT~ny 

constraints. The person to whom the results could be most useful is 

the one who decides the basic philosophy of the system, often 

completely in the dark, rather than the sof t,·rnre e:h-pert tinkerini 

about with the scheduling algorithm, who by the time the system is 

operational usually has a fairly good idea of ,~at is going to 

happen anyuay. 
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Appendix 

SIHULATION PROG~·1 



ci L T, id, c n :r: o n r P , "' : , T 3 , I v , r 1. , r s w , o f N , o P' s 
n L I ] r. L, (; n; '.:; J 1; ".' H :t l ~ ~: ·~ t ~ t f. ' f) I s C 'T' I H [: ' Q L' A N T u H , 0 V E .R H E A D 
G i.,--, :1J.. r, :: n;; ~11J J ;: T tJ n -:;c:; U ~ tJ B , .ST O ~CW ld T , S ~ M, SW i1 
c: L'"l :-Ji- ! , C r1;:: \ 0 H PH DC '.:1 n !'. :n; , P I SC 0. U EU r; , ~ tJ , CU , DU , I, B 
!'1 L :1 ;:L". L C [1 '.: .'.: 0 :l ;) I f, C 1 :~ :2 1 S N I S T , N B , R 1' , J l , 1 N Q , LIS , U P , ND , T 0 
'~ L il r, ;\ L C. !11'.:: m, r: C , C :1 , C '.; , CC , J R , C S , Cl L , T H , ;-; TOR~~ U SE 
;:L,1;11d, rir::0n srnr: ("'~(4'.1 ) , r;c ( 4f' ) ,c ir ( t,e ) ,CS ( 4o ) , R U(2) ,Jl'd2) 
,-;v,:: i'. L i1! :: ~NS !f1N 811 ( 4('.) ) , ST ( 2 13 ,2) ,SQ(2 J ,OL( :10 ) ,TH ( ~) , r.U ( 4 ) ,PU( ,1 ) 
(i Vi~' iH, lH Jc:~ N S I ll H :-; ':' n R '.": Q U r~ U ~ ( 4 ) , S '.'.' 0 RE :~ A I T ( 4 ) 
(;[, fl :1 AL D: ~: C N SI n H F R [l C ~ U g U E ( 8 ) , DI,', C Q lJ E iJ E ( 8 ) , SQM ( 5, 4 ) 
~ 1, ~ r, _;,_ r. j) :r r. :' N 3 r.rrn s ? rrn c u :.rn ( 4 , , u P ( 2 , , u R ( 5 , 2 l , R N ( 1 1 , , s w M ( s , 4 ) 
c; v·1~/, :J ! ""'QGE:-'.'. cri I ?.Q I ST I nL I S(lh I on: 1 OFS . 

CALL J:A ! E 
j~ l'·I f) 

r~t: ~ !i DL'?Ii~~ MA:tN 
fl I:'. ":!'.,:, I n ' 7 0 ~l CJ f ( 4 ) , !,: ! n A ( 3 ) , HILO ( 2 ) , VARI ( 4 ) 
; ;iJ :: r ':.i',LL~ '. ~CS (;<:R , f~l ), ( NR , E~ ), (L:1, P.3 ), (L,C,E4), ( li R,E5) 
p ;i 
,, L 

t~ C1 = ! .i Cl f ~ ' - l 
.-::Q(ll == ; ,n( 4l) 
no !~ ) = Ui ( 4 l) 
( ' "' . ~,! = LD ( ~ 1) 
r~ c :: L ,J { 4i) ) - , .. 
C N = L'.1 ( 40 ) - l 
C' ,, .,.;, ::: LrJ / t~D ) - l 
:HJ - I, n ( 40 ) - 1 
nL :: !.,r') I ,~i) ) - l 
t:"'1"' ::: Ln (!:'.n ) - 1 ' ~· J. 

r-~ r: "1 Ln(l l) - l 
US - LO{ lO) - l 
SQ;: = LO (20 ) .. l 
;;WI'. = i., 0 (20) - l 
UP = r~ o < ~} - l 
RU :: L0( 2 ) - l 
,TA ::: LG ( ~ J - l .... .. 
- ri. C: LO ( .. t j - l 

(; u = r. n ( 4 l - l 
b l! t: Ln ( 4 ) - l 
p j;, '.l C n, r; r: i: i:: :: Ln ( 8 ) - 1 

J. 

DI ;-:;c r; t:?:1.''"'. = Lrl ( 8 ) - l 
sr1 ~~r:our:T ~ = rjn ( 4, ... 1 
f,T,!R;::..•sr = L0 ( 4 ) - l 
~Tl~~~A!~ ~ L0 ( 4 ) • l 
~'H: :n·:~n:~ = 6e 
DI :-"~~~I~··tr-:::: 5.6 
(: u i~. !7 ,~ ~1 r·: = 1 • 2 8 
·l V ~~HP l'\!) 
(: !', :,r, ~E~ 
cA.r.4; .. s~: 
CJ<, L ~CT 
r'f..LL :J r.;T 
r!AT.L f;~:' 
C P. ;,L SJ:T 
(~ALf.J ~ ... ... 

l -) I .J ..,. 

,-;l\LL fi B':' 
CJ}LL 0 !=:-;, 
CA LL r'°''C"f'l"I 

Wu .. 

= e.83 
( DN8r(l ),~ EA~S ( 4 7,38,38,3 0,44,4l,46,37 )) 
( :1 ~:or r 2 ) , ::: 1 t ;, :~ s ( 4 7 , 4 F , 3 e , 4 t. , ,~ 1 , 4 6 , 3 7 , 5 J l · 
(GNOF'(3) ,1r 'J'."'(l )) 
( cm .J r ( ,i l , ] ;7 a~- ( 2 ) , 
( ;7 I i) ;.. ( l ) , C ! : i.. ;; S ( 4 6 , 4 l , 3 9 , 4 e , 5 2 , 5 , 5 , 5 ) l 
( ~· I D A ( 2 ) , :": l ! P.?. S ( 4 5 , 3 7 , .'. 3 , 4 6 , 5 , ~5 , 5 , 5 ) ) 
(:iIDA(3) , :::::;. ~S(36 , 33,57, 5 , 5 , 5 , 5 , 5 )) 
( V A H I ( l ) , r: '. l !, r- S ( 4 7 , 3 fj , 3 8 , l , 3 5 , 4 7 , 4 5 , 4 8 ) ) 
( 

1r A ,U ( 2 ) , ::: 1 : A. R S ( 4 7 , 4 6 , l , 3 5 , 4 7 , 4 5 , 4 8 , 5 ) ) 
( ? AK I ( 3 ) , '.:: l ; ;\ ~ S ( 5 2, 4 ~, 4 l , 4 6 , 4 .3 , 5 , S , 5 ) ) 

I 

I 

1111 

II , 

r.1' 

11 



8 

17 

7 

59 

57 
45 

58 

24 

9 

2e 
31 

CAI,L SET (VARI(4),CHARS(36,4l,5l,35,5,5,5,5)) 
C A r-' L ~1 S ( l ) 
Dif.C = -1 
DO 8 I:: ll,lo 
ST(I,l) =· -l 
irn = 2a 
BEGIN (JOBGEN,l) 
nEOIN (JnBGEN,2) 
I3ECl!N (ALG2,e) 
CA~L SETDUMP 
CALT.., FORCEDUMP 
cLn i;; CLOCK(e) 
IN= 253 + NDCTAL(t) 
c Ar, i., r r .c I N , 
IF {IN .. 254) 17,17 1 27 · 
CA!,L SI(IU) 
ASSIGN 27 TO I 
CALL TRAP (I,11) 
MR= INTREAD (•l) 
NR = XSIGHF (MR,l) 
LR = INTREAD (~l) 
IP = IHTREAD (•l) 
r:'A = l 
IF (IP) 70 1 27,7 
IP = -Il' 
IV = INTREAD (•1) 
FA= REALREAD (•l) 
CAL.L TD(T,D) 
DO 59 I= l,4 
TABL~ (STOREWAIT(I),l.,l.,5.,2) 
TADLE (STOREQUEUE(I),l.,l.,5,,-2) 
TARLE (STOREUSE(I) ,o.,1.,s.,-2) . 
DO 60 KR = e,NR ' . 
IF (KR) 57 1 57,58 
PD 45 t = l,11 
RN(I) = e.&83 * . I 
DE!.,AY (9ee,) 
GOTO 68 
Te= TIM~ 
Dd 9 I= l,2 
PD 24 J = l,S 
SQM(J,I) a e 
SWI1(J,I) a e 
TABLE (STDREWAIT(I) ,l.,l,,5.,2) 
TABLE (STOREQUEUE(I),1,,1.,5,,•2) 
TABLE (STOREUSF;(I),e.,1.,s.,-2) . 
PRncQUEUE(I) = e . . 
rRnCQUEU~(I + 4) a 0 
DISCQUEUr. (I) a • e 
Pif1CQUEUE ( I + 4) c , E) 

CU(I) = 0 
PU(I) i:i E) 

TH (I) =- · &· 
DO 31 LC = -3,2 
CAt,L RS (!"C/ 3 •) 
DO 20 I ~- 1,11. 
RN(I) 1:1 . (I+ KR)/(KR +· 12.) 
DET..,AY (19. * LR) 
DO 50 I =· l, 2 
DO 51 J . ;; 1,5 



,c; ~n ( J , r + :J. l = n ; A ? or ( so,~ ( J , r l , s Q 11 ( J , t + 2 l ) 
5 l ;; ~; ' l ( .J , ! ... 2 ) = I l A :-: ). : ( S H l·l ( J I I ) , S W H ( J , I + 2 ) ) 

CA! ,L. .!-.f) ( ,; :J, I) 
c;._ ~,L An( nU,I ) 

r1. Ii. ~ ! ~ ... 

'""!h! ,L 

r. .. Lr.., 
!._~~a. ; Jr.., 
c~ r 7 .1~ 

AD("' H,I) 
AD (P ~r1 Ct,rnr.uE, ! ) 
h~(r RncJU~UE , t~4 ) 
l , :, ( ') : 0 C Q !J P: lJ :~ , I ) 
A D ( !') I ;, C ). :; r: lJ E , ! ~. 4 ) 
i·: T ( ~. '7" n R ;:; '. ! A I T , I ) 
il't' ( :: ·r rn~~Q;r~~ur; , t' 
:: T ( ."; 'I' ORtu:rn' I) 

IF ( ;U~) ,;0 ,?,7 ,7'J. 
~l If (I A~D(YR,l )) 4 1,41,61 
61 :-iR I'.2E':flt!'.'.' l,lti,IP + !Sw,T,D 

!F (f A ... l) 40 1 41 ,42 
46 ~R t~cn u ~ 1 , 4 3, VAR I(IV) 

r}O':" C"J 41 
4 2 ; : R I T E '1 TJ ''." l , 4 4 , ~r ii. R I ( 1 V ) 
4 1 P e.1 1 o r = £~ • ;: + l , 2 * M + 2 

no .., r1 ( 57. 1 54 ,5 3 ,G 4 ),I 
52 ::~U':'f.ntJT' l , 55 , !rn ,L, P. -

53 ~'. R X'.' t::llUT 1, 5_6,tiR,!,R 

54 ~RI7 ~LlUT l,5 ,C UOF ( I ),68 * TH(I)/(TIME - T8) 
~n-n: '::' ~ C1 U :' l , 3 , rn: D F ( I ) , r. Q ( PR n C Q U B U g , I ) 
r u = c u ( : , / ( T r r: E - :, o ) 
.. ~ H T 'i' E n wr l , l 8 , P U , P t! * 0 V E .R H C A D 
:i R: ~:En w:r l , 4 , r.Jl,J(") F ( I i , A Q (DI S C\~ U E U E, ! ) 
'.: n T ':"' 2 [l U T 1 , J. 9 , D U ( I l / ( 2 • ( T I :-rn - T e ) ) 
:·: =: f~ t; { S '".~ n ~ E Qi~~ U E ( ! ) , 4 } 
L i-: RC' ( ['.""'1RE11!~1JE ( ! 1, 5) 
::f (;C - L; 32 ,3 2,33. . 

32 IF (:::P - 4 ) 6 2 1 33,6 2 
6 ~ : r P. r. '::' s n, ! T 1 , 11 , nti n r ( I ) 

; i I 1: ,..,i\B (S ?ClI~ E: QlllrnS( I) ,-4) 
'~RI"'S ilUT 1 ,2 5 , (fiQ:i(J ,I),J = K,L) 

33 1 'RITY':'1'.;T l,G,O HOF(!) 
l: I::':']', D ( ~ :.\IRE: iJ G i~ ( I ) ; - 4) 
!F (IP - ,) 63,10,63 

6 3 i: = R 1~ ( r, '.' 0 REW A IT ( I l , {) 
L ~ RC(C ? Of;~wA!T (I),5) 
!F (K - L) 34,311,10 

3 , ;, R r. ~· :':: r1 !.' 7 1 , 1 3 , n Ho F ( I ) 
::r: '~'l. R (~TDREl1A!T(!i ,-4) 
·.~Rr 71: n u '." 1 , 2 6 , ( s w ;~ ( j, I l , J = K, L > 

1 ~ r.o :: ·:n ~~ur: 
1 f n: - 1 / !:: R ) 7 2 , 6 0, 7 2 

60 ~8 = TIM~ 
;1 ~ 1 
H ' p ; r ) 7 ?. , 7 2 , 6 l 

7 2 [' R T WI' l ::'. , :: ! ii T F ( C I. n ... 0 L O C K ( e ) ) , LO ( 0 ) 
CA r,r. U!i 

27 :J T l ::1 
3 l'O~'. ! A'T' ( 1X , A8 ,), 6H Pn ncES S OR <QUE UE>,F6.2) 
1 6 ~~o;;;iJ:.T ( lSl--; + f" f;OCJ;C:,/~OP. l1 SE,2f' 6 . 2) 
4 r~~~A7 (1~ , AB , llH OI S8 <QUEUE >,F6.2) 
1 9 PQ~~AT (l OH + DI S C U3E ,F8.2) 

1 \1 



5 FDRHAT (lHA,A8 1 llH THROUGHPUT,F6~2) 
o f'ORJ-!AT (1X 1 A8,l0H STORE USE) 
11 fORHAT (1X,A8,l2l! S':'ORE <QUEUE>) 
13 f0RMAT (1H+,AB 1 14H <WAIT> VS STORE) 
15 PORMAT (6H CLOCK,I5,6R STDRE,I6,/) . 
16 f0K?tAT (lOHl/D/6 IP =,I2,2 (1X,A8)) 
25 fOR!tAT ('1.H+l1AX,Il6,4Il2) . 
26 FDRl!AT ( 4!1 +MAX,F20,3,4Fl2.3) 
4 3 f' DR g AT ( 6 H + LO t-r , !\ g , 5 H TIME ) 
44 F02HAT (7H+ HIGH ,A8,5H TIME) 
55 FORMAT (4HARUN,I2,4H . FOR,l4,5H MINS) 
56 FDRHAT (/,t2,9H RUNS ?OR,14,SH MINS) 

EN!) 

7 

FUncT!ON AQ(X,I) 
DIHBNSION X(l) . 
AQ = X(I)/(X(I + 4)) 
END 

SUAROUTINE MT(T,I) 
Dl;tENSIOH T (l) 
CALL. !1ERGETAB (T(I),T(I + 2),T(I + Z)) 
ENT) 

SURROUTINE AD(X,I) 
DI;tENSIOU X(l) 
X(I + 2) = X(I + ?.) + X(I) 
END 

SUDROUTINE JOBGEN 
Diit r~NSION A(40) 
IF (A(O)) 7,7,8 

A(~) = 0.001 • 2 
A ( l) = 0.100 
A(2) = 0.097 
A ( .3 ) = e 11 1)79 
/'. ( 4 ) = 0.011 
A (5) = e.149 
A(6) = o.1s1 
A(7) = 0.121 
A ( '1) = e.167 
Id 9) = e.eo1 
Id le) C: f:J.ee1 
A ( l ll = o.oea 
A(l2) = o.e12 
A(l3) = o.ee9 
A(l4) = e.ee2 
~.(15) -· 9.oeJ 
A(l6) = ~. ee.2 
A ( 17) = ~.ee1 
A(l8) = e,,ee1 * 2 
A(20) = <t.le9 * 2 
A{2l) = 0.112 
A(22} = e.1ee 
A.(~3) = 0.096 
A(?.4) = o.e92 
A(25) = o.e9s 
A(26) i::: o.e95 
A( 27) i::: 9.092 



8 

10 
l l 

9 

2 

6 

5 

3 

12 

l-.(::R ) = o.e-ss 
A { ::'9 ) = 0.055 
1. ( '.'ie) = G.031 
;. ( J l ) :: & 0 018 
;,( ~-:... l = -l1. ~ l 3 
i-.133) = e .':"H=>4 
;.. ( '.14 ) = e.~02 
:1 ( :; 'j ) = &.0-iH 
!'. ( 3 6 ) = ().OOl • 2 

T 
;. :::: ~0 * IPDEX .. 2 () 
IF (JA{r:rnr:x)) .t,9,lt) 
IF (J A (J'.'.fl ~ Z) ... 20 + 2 * INflr,X) J.l,12,l 
:,:: = I R ( R ;7 ( I 14 0 ~ )~) , 0, l ) 
!f (r:l !,1 2,9 
IF ( RU ( I ~! Dr, X l - J .~ ( INDEX) ) l, 2, 3 
00 G J =I+ 1,18 • !JDEX 
If' (GL(J)) 5,5 1 6 
co:7'!IJ-1UC 
GO'~r1 l 
SE G I ;; ( ,Fi !3 , J ) 
m .. ( J ) = I n D ti X 
JA (I!'D:~Xi :: JA 
hO'r.'i l 13 

(! N;)S;: ) 

LT A ( r:rncn = JA(!NDSX) 

+ l 

.. l 
1 3 DE r,;; Y ( E :q R :·H nm Ex + :? ) , A ( I + JA ( I H DE x ) ) * s Ei e ) ) 

GC"'fl 8 
l i' R ! ~~ r l t.. , ~ tJ { I n [l f~ X ' , J ti ( I N D E X ) 

l 4 r OR; 1 AT ( lt'~ It E P, i; crn ! ?! JOB GE iJ , ?. I 3 ) 

15 
14 

fWBRGl!T !llE JOB 
iH 11::; j.: SIC:: RT ( 4 0) , QC ( 2 ) 
~:'211 IVAL2'1 C'."; ( I,OL (I:rnsx)) 
HU(I) :: RU(I) + l 
TF (T2) 14,14,15 
C A L L T·: T ( I ) 
(;ALL JQ(CQ) 

2 ~ A t.L S idt 
rr~ (SH(!liDP.X)) 3,3,10 

1e IF (!? - 4) 21,;!2,:n 
21 !1T ( IlW:SXl = TITH; 

C = ~;;: (S'.l{INDEX)) 
;r = -TI JU: - BT ( Ir1D8X} 
3 P Ti. ( S , I ) = h AX l P ( S i-; it ( 3 , I ) , W ) 
TA;; ( .ST C1 :1 C i: A I 7 ( '!. ) , S , H ) 

2 2 S = SE ( S '! { I N D f~ X ) ) 
TAFl (ST0~:"::1iSE(!),S,US(S,I)) 
usrs,rJ :::: trs<s,:r:, + 1 

3 :'h?I (STOF;SUSE(I) ,o.,ur(I)) 
UP (I) = ur (I) + l . 

4 r!Af,L DIS 
CAL!, llD (PROGQUr.UE, JC, I) 
QC ( ! ) :::: QC ( I j + .J. 

CALfJ A t,G l 
C:J!I) = i;IJ(I) + Cl1(I) 
CAT,I, lJD(?ROCQUr.t1E,:::lC 1 I) 

'ill 



qc i I } = QC (I) .. l 
TH (I} = TH(I ) + l 
C.ll.l,L PI S 
I F. ( S ?T ( I ~r DEX ) ) 5 , 5 , 6 

6 S = S~(S~ { INDCX )} 
':'Al1 ( STOREIJSE ( I ) ,S,US(S,l)) 
TJS(S,!) = US(S 1 I) ~ l . 
If (IP - 4} 20 1 23,?.e 

28 CALL LOST 
2 3 CAt~L CHR 

GOTO 2 
5 TA11 (S TORE USE(I),~.,UP(I)) 

UP (I) = UP (I) .. l 
If (I - l ) 2,2,l 

l ntd..,L CHR 
TT= EX ( P.H (7), 'l' HINKTU1E) 
IF (IV• 3) 18 1 19,18 

19 TT= TT* FA 
18 DE~AY (TT) 

c~ALL CHR 
GOTO 2 

9 rOn~AT ( ~I3 ,F8 . 2) 
13 roruiAT (IJ,I4,f8 .2 ) 

END 

4 

8 Ul1ROTJT I HE ALGl 
E C ( I NDE:X } = CN ( IllDEX) 
CALL INQr(I) 
IF (I - IHJ")EX) 4,2,4 
DELAY (99999.) 
GD':"D 3 

2 CALL REC~ 
BLnci<; (JOB,JR) 
,..TR = I NDF!X 
DE!,AY (P.:C(!NDCX)) 

3 CAT,r .. R8CT 
JR =;, 
CAI,L IUQF (I) 
IF (!) 5,5,6 

6 trlrnLOCK (JOB, I) 
RES CH EDU LB (JOB,I,TIHE + EC(I)) 
JR = I 

5 RETURt! 
8N)') 

SUBROIJTIHE DIS 
DIHENSIOli QD(2) 
F.QUIVALE)ll'jF} (I, OL (INDEX)) 
CP,!~L UD(D!SCQU~~UE,QD,I) . 
QD (I) = QD (I) + l , 
QUGUE (DISC) 
D = EX(RN(I + 4),DIGCTIME/2) 
IF (IV - 4) l6 1 l7,l6 

17 D = D w rA 
16 DU(I) = l)U(I) + D 

DELAY (D) 
~ALL UD(PISCQtJf.UE,QD,I) 
QD (I) = QD (I) .. l . 
REU;ASE (DI SC) 
EHD 

I'll 



l 

su:v :OUT!.?'r: UD { A,Q,I) 
J-) I · · :' :; ,.. I r1 \' r, ( l ) 0 ( l ). i. - -' ., \..-l .., - • .l'\ I }... . 

'21 = 'I' I :u: - T ~ 
,. ( T ) = "· ( I ) + iJ ( I ) * ( T - A ( I + 4 ) ) 
1'\(I + 4 ) = T 

c; U :'. ~ CJ 1J '1' ! ; 7 C S 11 ( ! ) 
(iO':''l { 1, 2 , 3, 3, 4 , 4, t,, 4, 5, 5), I 
~n == .t 

2 ;;n = 2 
;)~~t' r) \ l , ,_ ._.J • V ,, •. i 

5 Stl = 5 

:--;U0t":iJUTI?r: CHK 
I :.-:: 0 r, ( I :rn E X ) 
!F (F;i_!(T) - JA(X)) 2,2,3 

3 r: u r r l = n tJ , I l .. 1 
IF (T2) C , ii,7 

7 CAGL JT(-I) 
6 ~L[!NDEX) = 0 

r'Ai,L LQ (~Q) 
p J: ;iI.SH 

2 IF (T2) 4,4,5 
5 C A. r, L, !-~ T ( 9 ) 

2 

~ur; i1nUTIPC LQ(0.) 
f)r,:~r;nf.!f"l}, Q ( J.) 

: - e 
I = ,T 
c"f = Q(I) 
! f ( J .. I J! 0 2: X ) 2 , 3 , 2 

3 Q (!) = Q (J) 

8UiHW!JTF'8 i-JT (!) 
Dr:11::,:sro:r nT(2l 
IF' (!) ~,3,4 

2 I = - ! 
P R I ~,· f: n 1T T 2 , 6 , T ti~ E , .. I N D E X , X I N T F ( P. lJ ( I ) ) , T I 11 E • 0 T ( I ) 
•'iO":'Cl 5 

4 i: R J" ';' r:; CJ :J T ~ , 6 , ':" .r i~ r:, urn r: X, X I l'! T F' ( RU ( I ) ) , TIME - 0 T ( I ) 
5 nT(J. ) = Tii!E 

Rt:"."URH 
3 ~lRI:'S OTJT 2,6,T!!~E,IH Dr:X 

P. E'7'U RH 
6 ror. !L\T (re.2,2.tt1,rn.2) 

r: ?f [, 



8 

SUtiROUTil1E SAM 
DHir.Nsrm; P(2), PT(ll,2.), CT(ll,2) 
XNTEGP.R PT,P 
IF (FS) 8,S,7 
rs = 1 
P(l) = 16269 
P(2) = 64856 

PT(l,l) = 2988 
PT(2,l) c 5668 
PT(3,l) = 3592 
PT ( 4, l) = 1497 
rT(5,l) = 656 
PT(6 1 l) - 441 
PT(7,l) = 403 
PT(8,l) = 259 
PT(9,l) = 427 
PT(H~,l) = 178 
PT(ll,l) = 238 

PT(l,2) = 41878 
PT(2 1 2) - 18042 
PT(3,2) = 2721 
PT(4,2) = 1814 
PT(5,2) = 292 
PT(6,2) = 88 
J?T(7 1 2) = 24 
PT(B,2) - 0 
PT(9,2) - 5 

CT(l,l) = 2.3 
CT ( 2, l) = l 7 • 5 
r.T(3,l) = 2e.9 
CT(4,l) = 42.9 
CT(5,l) c 63.4 
GT(6,l) = 56.7 
r.T(7,l) = 77.2 
CT ( 8, l) = 3 7 • 3 
CT(9,l) c 74.6 
CT(l~,l) = 196.4 
CT(ll,l) = 559,8· 

CT(l,2) = 0 0 7 
CT(2 1 2) = 0.6 
~T -(3,2) =· 5.4 
C:T(4,2) = 4 0 6 
CT(5 1 2) = 17.4 
CT(6,2) = l~.9 
~T(7,2) = 28 0 9 
CT(8 1 2) =· 8 
CT ( 9, 2) = 2. 8 

7 I= OL(INDEX) 
GOTO (4, !3), I 

5 J = I R ( RN ( 8) , l, P ( I ) ) 
GOTO 6 

4 J = 1 + r(r) * RND(RN(9),ND) 
6 L4 = e 

DO 2 K = l,13 ~ 2 * I 



L:;: L + PT (K,J.) 
IF (L ... J ) 2,J,3 

PR I :1 T 9 , I , J , L , P ( I ) 
ST 1 P 

3 S l', ( I !1 D r; X ) = K .... l 
CN iI )1DC X) = - rT{K,I) * !,OGr'(P.ND(fH; (I + 9), 00 ND)) 
C N ( I :: D f.~ ) - C E ( I :1 D '.': :: ) / D VF: RHEAD 
If (J '\' - ! ) 10 1 ).l,10 

11 c ,; ( r rrn r.: x l = c 1; ( ! 11 ri r; ;O . * r A 
le :1E'~ 11R!l 
g ro::1:AT ( (, !6 ) 

f;N r, 

l 

FU~CTID~ R~D(X,I) 
J :: I + ~ 

GO'"':J (1,2,3, 4 ,~~),LT 
!") 1' • · - <' () r) "' .., I n D ( V l ) ) ; , . 1 ; 1 - 1.;> ,_ . .. : . r \ r ~ , , L'\ 1 .i.. . 

2 R0) = SQRTF IRR(X,0.~51 ,2.2 49 )) • 0.s 
P.E...,1J!;!! 

3 RN~ = RR(X,l.) 

4 J;~F• = 1.ri - ~3QP.T.F(P.!;(X,~.25l,2.249) ) 

5 Rt;~> r. l - SQR'I' .F (RRiX,J.)) 
r; trn 

Ci1 = ft 

J = f, 

7 I = .T 
;; ::.: CQ (I) 
IF' (.i) 3 1 3 1 4 

~ IF ( C:l - CS (J)) 6,S,!3 
6 ~M = CG(J) 

K = I 

5 ~S(J) = 0 

3 !F (C l':) 8,8 ,10 
le ~Q ( I l = L 

C Q (!,; ) = C Q ( L ) 
CQU~) = e 
!f ('!'3) !.l,ll,12 

12 Cll.1 ,L WQ (CQ,3) 
ll IF (1., - .Jr.) 8,14,8 
14 ()A!,L IHQr'(I) 

If ( I - :rrn 13,8,13 
1 ~ h L n c; r: ( J n n , J R ) · 

UN ;iI,OC i~ ( JClB, I) 
RE SCHo;D ULr: (JD B , I, Tillf: + EC (I)) 
JR:: I 
GO'"'(l 8 
f.N r, 



SU BP.OUT INE INQl"(I) 
I :, 0 

4 I = CQ (I) 
IF ( I ) 2,2,3 

3 IF (EC(!)) 4,4,2 
2 RE':'URU 

END 

SURROUTIPP. RECT 
H' ( JR) 2,2,3 

3 CS (.TR) = CS(JR) + THrn - Tt 
BC(JR) = EC(JR) - TIMS + TI 
TI = TIME 

2 RETURN 
END 

SURRDUTIME JQ (Q) 
DI!lCNSION Q(l) 
INTEGER Q 
,r =, e. 

2 I = J 
J = Q (I) 
IF (J) 3,3,2 

3 Q (I) = IUDP.X 
Q ( INDEX) = e 
F.ND 

sUnROUTI:rn WQ(Q,N) 
J)IJtCNS!OH I"\ I ' \ 

•• \ ~ I 
INTEGER Q 
NL 
I = e 

l I C: Q (X) 
IF ( I ) 2,2,3 

3 WRITED UT N,4,I 
GOTO l 

2 RETURN 
4 FDFU1AT (lH+,I3) 

END 

SUl1ROUTIHE GEST 
D rrm N SI O ;! Q S ( 5, 2) 
8 Q ll I V 11.1, E N C 8 ( J 1 0 L ( I U D EX ) ) 
GO~O (lB,lB,29,l,19,29,l8,l8,l8,l6),IP 

2e IF (J • 1) l,lB,7 
18 It (IC(SQ(l))) l,7,ll 
7 !.iB = l 

G0'1'.'0 3 
11 LB= 17 
3 IF (ISST(INDEX,l)) 2,1,4 
2 S = SM(SH(INDEX)) 

TAD (STOREQUEUP.(J),S,~S(S,J)) 
QS(S,LT) = QS(S,J) + l 
SQH(S,J) = XMAX0F(SQM(S,J),XINTF(QS(S,J) )) 
0070 (15,15,19,l,15,19,15,l5,l5,l5),IP 

19 IF (J • l) 1,15,]_6 
15 CALL EQ(SQ(2 )) 

T = 1888 ~ 488 * J 
IF (S - 4) 12,B,8 

8 T = 2 * T 



12 DET,I~"f (T) 
!P (I ~(.SQ(2 ))) 9 1 1,10 

l B r. AT, L ~ F C ( SQ ( 2 ) , I :· D:::: X ) 
GQr:"'rl ( l 6, 1 7, 17, J., l 7, l 7, 16, l 7, 16, l 7) , IP 

17 LB=). 

9 

4 
1 .. 

If ( IS S"' ( ! ;; D ~ X, J. i l l 6 , l , 9 

~~ :: S !: ( ~ )! ( IND;~ X) ) 
,, ' A ; ( ::; 'J' 0 ::'. '.-: 0, lJ E U i; ( J ) , 8 , Q S ( S , J ) ) 
~} S ( S 

1 
J ) . :: Q S ( ~ , ,T ) "" l . 

I'""' rn .-, :"'.'I 
• ; J. . 1,t" 

l. 4 f O i; l·li, ~ { 1 4 H 1-~ ~ r. D R ! H G ?; S T ) 
P. N fl 

;; U n ;=: 1 TT T I !7;, LOS "' 
r,o r, L :e 1, Na 
X f ( S ':' ( L, , l ) • T. H D r:: ;.: ) B , l l , 8 

J,l ;,Tl;,,1 ) = e 
8 c·o::'.;I::TJE 

r F ( r r n :F' :~ - 2 e ) 1 s , 1 8 , l a 
1 s ·.1?:! = on: ... 1 

Cl F ~ :.: G f 8 ... S ?·1 ( ! J~ 0 ~ ;,: ) 
18 T,8:: !. 

1e 

6 

17 
9 

13 
4 

2 

3 

7 
l 

I = J 
J.:: IC(SQ(l),I) 
!f {I) 1,5,6 
? :: .!C.S"' (I,l) 
!F P) l':,1,9 
GO-::'n 17,J.O,lO,l,lA,l0,7,l0,7,l0) 1 IP 
r.r..t~, r:FO (8Q(J.),I) 
:R~'.~ (I) 
CO':' iJ LH 
! :: e, 
IF (U:(f,CJ(l))) 1,4,13 
r, B = 1 7 
I= !C(C0,(2),!) 
If (Ii l,7,2 
J ::: I2ST(!, l) 
IF' ( .T) 4,3,3 
, ... Ar, L r: r Q r 0 o , 2 l , I l 
~E~ C ~~nu~~ (Jn n,: ,TIM~) 

PR J.:~T 12 

l 2 :1 0 ;-:; : : n. 'I' ( l 4 H E 2 P. 0 R ! :1 LO S T ) 
;~ND 

4 

3 
2 

SU~R1UTIPE RFQ(Q,Kl 
DF~r.:i srn:r Q ( 1) 
I N'i\~Gr:R Q 
.; :; e 
I :: J 
"J :; Q(Il 
IF (J - Y.) 3,2 1 4 
TF (J) l,1,4 
Q (I) = Q(J) 



RETURN 
l CALL PQ(Q,O) 

PR!NT 5,K 
STflP 

5 PORM AT (I3) 
DND 

SUi1ROllTil1E EQ(Q) 
D Di G N S I ON Q ( l ) 
I N":1EGPJR Q 

J = e 
2 I ::i . J 

J :,; Q(I) 
IF (J) 1 1 3 1 4 

4 GO~O {2,2,2,l,5,5,2,2,2,2),IP 
5 If (SU(J) - SN(IHDEX)) 3,2,2 
3 Q (I) = I HDEX 

Q(!NDEX) = J 
R.E7URH 

l PR!HT 6 
sirnp 

6 FORMAT (l2H lRROR IN EQ) 
END 

FUHCT!ON IQ (Q) 
DIHENSIOH Q(l) 
INTr;GER Q 
I = e 

4 I= Q(I) 
!F (I - INDEX) j,2,4 

3 IF (I) l,l,4 
l IQ = ..:.1 

RETURN 
2 IQ= l 

END 

FUNCTION !SST(I,HE) 
ISST = -l 
,T :: SN (I) 
GOTO (ll,ll,ll,ll,ll,ll,ll,ll,l7,l7),IP 

17 IF (I .. :Ze) 19 1 11,ll 
19 GO..,.,fl (l0,11),HE 
10 IF (OF'U ... 3) 12,15,15 
12 IF (OPS + J - 18) ll,11,15 
ll K = MB(J) 

If (K - 16) 7,8,8 
7 N = NB - K + l 

GOTO 9 
8 N' = l 
9 DO 2 L = LB,N,K 

DO 3M= L,~ + J • l 
IF (ST(M,I1E)) 2,3,2 

3 C O nrr I N U E 
!SST r.: L 
GO~O (lB,18,18 1 18,lB,lB,2,2,l8,l8),IP 

2 COHT I lWE 
If (ISST) 15,18,!.S 

18 DO 4 11 = ISST,ISST + J , • l 
4 ST(M,ME) = I 

GOTO (16,15),ME 



16 T.r ( :C - :?,,') ) l4rl5 , J.::i 
14 ("JF,l = C]fl'; + l 

rJ?.''.i = nF3 + J 
15 ;~f] 7-7 ;::;.: 

1~ ll jJ 

3 
4 

2 
3 

4 

6 

1 

3 

2 
4 
!) 

;""J u:-,:1~:J "" r '1!: PR 8 7 < :1 l 
; ~ R. T. ·:.~ f. 'l U T ; ; , 4 , ( ::; T ( I , l ) , l = l , 1 B ) , ( S T ( I , l ) , I = l 7 , 2 8 ) 

......, -, • T r, '' ~ . t., .. t.- r .• :, 
r-rn;u,.7 ( 4I3 , I4 , 3I3 , !4 , I3 , 3 (I 4 ,3I 3 )) 
:: :n 

T'U 1; "~'i.'IcJN ;rn (I ) 
:;3 ::: l 
X F ( .~1r.. - ! ) 3, 4, 4 
::s = :rn + nn 

~E~:JRJI 
i~N ~J 

.':;Ul~;iJU":'I:':": PQ((l ,J, N) 
T;I:: 1;;:SILl~~ Q ( l ) . 
!. ;r:':;Gr:~ Q 
J'.F (Q ( f, )1 ?., 2 , 6 
·.rRI:i;::l!JT 11 ,5, J 

I = 0. ( I ) 
XF ( I ) ~ , 2 ,3 
~·;t !7~'1UT n , 4 ,I 

;:' ilr: ;!AT ( 1 H+, I 3) 
? 1J?::1;r; ( T.2 , 4X ) 
;~NJ 


