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Abstract
The wide range of wildlife tracking and surveillance technologies (radio and satellite tracking, cameras, and
audio) that are being deployed in conservation have important implications for a geographical understanding
of care for non-human nature. This report explores four dimensions of their influence. First, their detailed
view of spatial dimensions of non-human lives affects conservation’s demarcation and control of space.
Second, the application of surveillance technologies to people is central to the rise of coercive conservation
strategies. Third, such technologies enable the creation and commoditization of spectacular nature. Fourth,
spatial digital data enables the automation of conservation decisions, a trend described here as ‘conservation
by algorithm’.
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She lived her life under near constant surveillance

and was continually stressed by the interactions

with the human world. She was tracked and

logged as data. . . . We’re watching her. She’s

watching us. And at the same time, we’re watch-

ing ourselves. (Mendez and Allison (2012) Bear

71. National Film Board of Canada)

I Introduction

On 2 May 2009, scientists from the British Trust

for Ornithology (BTO) and the Swiss Ornitho-

logical Institute caught a nightingale in a mist

net on the eastern edge of the Cambridgeshire

Fens, UK. A tiny electronic ‘geolocator’ tag was

attached to its back, and the bird was released. A

year later, it was recaptured in the same place

and the tag was removed (BTO, 2016).

A geolocator consists of a battery, a light

sensor, a clock and a chip. By recording light

levels over time, it is possible to calculate lati-

tude and longitude, and hence the bird’s loca-

tion. The tag recorded the nightingale’s autumn

migration to Africa, via the Pyrenees, Madrid

and Lisbon to Senegal and Guinea. Somehow it

made its way back, although the route was not

recorded (BTO, 2016).

The nightingale, a bird laden with cultural

associations (Mabey, 1993), declined in num-

bers in the UK by 91 per cent between 1967 and

2007 (Holt et al., 2012). Many long-distance
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migratory species are in decline, making them

an urgent conservation priority internationally

(Wilcove and Wikelsky, 2008; CMS, 2014).

Effective conservation of such species is seen

to demand better understanding of conditions on

migration routes to target conservation action

(Vickery et al., 2014; Marek, 2017; Hewson

et al., 2016). It is to this end that the Cambridge-

shire nightingale carried its geolocator to

Africa.

In the last two decades, movement ecology

has made significant contributions to conserva-

tion (Benson, 2016), supplying novel data used

to increase the effectiveness of conservation

action (Verma et al., 2016). Devices such as

geolocators represent just part of a wider digital

reshaping of conservation ideas and practice,

involving monitoring, public engagement, citi-

zen science, data analysis, and decision-support

(Arts et al., 2015, Van der Wal and Arts, 2015,

Verma et al., 2016). Computer and communica-

tion technologies such as low-cost sensors,

smartphone ‘apps’, and the predictive analytics

of ‘big data’ analysis are transforming biologi-

cal field recording (August et al., 2015). Con-

servation organizations have been leading users

of such technology, in pursuit of more robust

and evidence-based conservation decisions

(Sutherland et al., 2004; Adams and Sandbrook,

2013) and stronger public engagement and

support.

The development and adoption of digital

tracking and surveillance technologies in con-

servation have significance for human geogra-

phers interested in conservation in a range of

ways. This report explores four of these: first,

the implications of spatial data on animal move-

ments for conservation’s demarcation and con-

trol of space; second, the role of surveillance

technology in the rise of coercive conservation

strategies; third, the role of technology in the

creation and commoditization of nature specta-

cles; fourth, the way in which digital data

enables and encourages the automation of con-

servation decisions, a trend described here as

‘conservation by algorithm’. Before this discus-

sion, the report locates the role of technology as

part of conservation’s biopolitical regime, and

sketches the range of tracking and surveillance

technologies being deployed.

II Technologies of tracking
and surveillance

There is an irony, perhaps, in the way in which

the conservation of ‘nature’ requires the embed-

ding of technology such as a geolocator among

the feathers of a nightingale. Yet this harnessing

of technology should come as no surprise.

Whatever its diversity of ideology and concern

(Sandbrook, 2015a), biodiversity conservation

is a biopolitical regime, a form of governance

whose aim is ‘to secure the future of a valued

life (both human and nonhuman) at the scale of

the population’ (Lorimer, 2015: 12). Conserva-

tion involves the exercise of power over both

nature (keeping species and ecosystems within

specific bounds in terms of state and location)

and humans (determining who may take, kill or

transform non-human lives and spaces). Tech-

nology is central to conservation’s exercise of

biopower, marshalling the ‘productive and

destructive processes through which life is

made to live or left to die’ (Lorimer, 2015: 13).

In biodiversity conservation, humans have in

effect become ‘curators of wildlife’ (Verma

et al., 2016: 77). Classic ‘command and control’

conservation (Holling and Meffe, 1996) bor-

rows techniques, skills and devices from other

kinds of more-than-human biopolitical manage-

ment (hunting, fishing, forestry, disease or pest

control; Lorimer, 2015). In its locally intensive

policing of nature, conservation routinely cuts,

burns, poisons, shoots and traps (Woodworth,

2013), seeking to establish or enhance species

here (those characteristic or in decline) and con-

trol or extirpate others elsewhere (especially

those classed as ‘alien invasive species’; Pearce,

2015; cf. Hobbs et al., 2013). In its deployment

of technologies of control, conservation draws
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on longstanding science-based modes of under-

standing nature, including its own academic dis-

ciples in game management (Leopold, 1933) or

the bespoke missionary field of conservation

biology (Meine et al., 2005).

Technologies that extend the capacity of

humans to observe and record the presence of

other organisms act essentially as prosthetic

devices that extend human abilities to perceive

and observe other lives (Lorimer, 2007, 2015).

Key technologies in terms of geographies of

conservation are those that allow individual

organisms to be identified at particular locations

and times. Such tracking and surveillance

devices can be thought of in two categories:

first, those attached to individual animals, and

second, those that are remotely deployed.

In terms of animal-borne devices, the oldest

is probably bird ringing (or banding, USA),

developed at the end of the 19th century, which

consists of attaching a unique numbered metal

ring to the leg of a captured wild bird, in the

hope that this will be returned when the bird is

killed or recaptured (Robin, 2001; Bircham,

2007). Techniques were developed to identify

individuals visually, for example the use of bird

rings of different colours, or, for other taxa,

visible marks or tags attached to ears, flippers

or fins.

The invention of transistors in 1947 revolu-

tionized the tracking of wild animals (Benson,

2010). The development of radio telemetry in

the USA in the 1950s benefitted from close Cold

War links to military scientific networks, tech-

nology and funding (Benson, 2010). It began to

be routine to attach transmitters whose unique

radio signal could be detected by fixed or mova-

ble aerials, to collars or harnesses (mammals

and birds), or by suckers or darts into the body

(e.g. fish and marine mammals).

Since the 1950s, radio telemetry devices have

grown steadily smaller and more powerful, with

improved battery life. Detection has become

possible from greater distances, from aircraft,

helicopters and even satellites (Pennisi, 2011).

GSM mobile phone technology allows location

to be captured continuously via a mobile phone

network, giving advantages in terms of spatial

accuracy (a few metres), size, cost and battery

life (e.g. Graham et al., 2009). Miniaturized sat-

ellite tags weighing below 5 g can be fitted to

birds such as turtledoves and cuckoos weighing

as little as 100 g (Hewson et al., 2016). Tags as

light as 1.6 g have now been developed (Marek,

2017). Digital data on animal movement is

widely collected, and increasingly it is shared

in standardized format through centralized

open-access archives such as Movebank

(https://www.movebank.org/).

Digital technologies have also revolutionized

remote surveillance. Remote sensing platforms

and sensors have evolved continuously and

become standard conservation tools. Panchro-

matic (black and white) photography from bal-

loons and aeroplanes was developed for military

use in the First World War, and transformed by

stereo photography in the second. Post-war, col-

our photography, and film stock sensitive out-

side the visible spectrum (e.g. infrared) began to

be used for land systems and ecological map-

ping. From the 1970s, multispectral digital ima-

ging from satellite sensors provided civilian

environmental scientists with relatively afford-

able and frequent-repeat imagery of much of the

earth’s surface within and beyond the human

visual spectrum. This made continental scale

ecological mapping possible. Such images and

data are now widely available for download

from the internet.

Semi-automated mapping of vegetation and

other natural features was made possible by

computerized data and analysis. Geographical

information systems allowed data derived from

various sources to be superimposed and the

resulting maps analysed, published and dissemi-

nated. Recently, drones, or unmanned (sic) aer-

ial vehicles (UAVs), have brought the cost of

such surveillance down dramatically, broaden-

ing its accessibility, and triggering numerous

experiments in ecology and environmental
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science (Anderson and Gaston, 2013). Satellite

and airborne radar provide other forms of data

which can also be integrated into conservation

assessments, for example LIDAR mapping of

the topography of forest canopies, and associ-

ated estimates of vegetation density, and hence

biomass, and therefore stocks of carbon relevant

to carbon offsetting schemes (Asner et al., 2010;

Simonson et al., 2012).

Remote photographic surveillance of indi-

vidual organisms has also been transformed

by digital technology. Animal photography

with automatically triggered camera flashes

was pioneered at the end of the 19th century

(Shiras, 1936). Technological advances

included the replacement of cumbersome

plate cameras with film, and from the

1930s small cameras using 35 mm cinema

film stock. The 1980s saw the development

of infrared motion detection, and the 1990s

the development of digital images. Camera

traps are widely used in wildlife biology

(Ancrenaz et al., 2012; O’Connell et al.,

2011; McCallum, 2013), many operating

beyond the human visual range (e.g. infrared).

Close-circuit video is also now commonly

deployed at conservation sites (Chambers,

2007; Verma et al., 2015, 2016).

Digital audio sensors allow animals to be

located and identified using sound, including

sound beyond the range of human hearing

(e.g. the ultrasonic calls of bats). Software

can identify and separate species automati-

cally (Robinson Willmott et al., 2015).

Sonic surveillance can also be conducted

underwater (e.g. passive acoustic tracking

of migrating humpback whales; Stanistreet

et al., 2013).

This quick sketch of technologies for animal

tracking and surveillance indicates their

extraordinary scope. The gaze of field biology,

and conservation, is not yet panoptic, but the

intent – and perhaps the capacity – is clear. Let

us turn to its significance for geographies of

conservation.

III Surveillance and conservation
geographies

The first important aspect of digital tracking and

surveillance technologies for geographies of

conservation lies in the levels of detail and inti-

macy of their view of non-human lives, and

their capacity to individuate, to isolate the

movement of the individual from the broad pat-

terns of the population. This has attracted the

attention of animal geographers (Hodgetts and

Lorimer, 2015; Buller, 2015). Thus Barua

(2014: 916) sees tracking technologies as cen-

tral to the development of ‘lively’ or ‘intradis-

ciplinary’ biogeographies, demonstrated by his

analysis of the ‘dwelt political ecology’ of ele-

phants among the forests and tea estates of

Assam. It is not just the geographies of animals,

but the geographies of particular animals, that

are opened to the scientific gaze. That gaze,

enabled by digital technologies, is inherently

spatial.

Digital tracking allows the construction of

‘wildlife cartographies’, mapping of species

distributions and using those representations

to enable ‘effective, targeted conservation

measures’ (Verma et al., 2016: 81). In particu-

lar, it provides the evidence base for territorial

claims in the form of new protected areas. Thus

Benson (2016) shows how animal tracking not

only changes understanding of the way the

individual animals and populations use land,

but also therefore conservation’s ability to

lay claim to that land. American wildlife

biologist Helmut Buechner studied Uganda

kob (an antelope) in the 1950s, using tranqui-

lizing darts and drugs, plastic collars, identify-

ing tags, and moving films. This ‘spatial-

biopolitical expertise’ (Benson, 2015: 138)

allowed him to demonstrate the territorial

behaviour of the kob, and convert this into a

conservation argument about the need for pro-

tected areas. The ‘territorial claims of endan-

gered species’ could therefore be pressed in

the face of competing land use demands,
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legitimated by other kinds of colonial scientific

expertise (Benson, 2016: 137).

Surveillance not only intensifies conserva-

tion territorialization in terms of the demarca-

tion of spaces for nature and for people, but also

the management of the resulting boundaries. If

animals can be tracked, their boundary-

crossings become not only something that can

be, but must be, managed, as for example when

elephants with GPS collars cross virtual ‘geo-

fences’ in the landscape to engage in crop raid-

ing, or break electric fences built to protect

smallholder farms (Graham et al., 2010; Evans

and Adams, 2016). Tagged animals can be seen

by the public as the responsibility of those who

know their movements, and can be at risk when

they move close to people (Cooke et al., 2017).

Thus an endangered great white shark killed in

Western Australia because it was judged an

‘imminent threat’ to a bathing beach was only

known to be present because of an acoustic tag

fitted by scientists (Meeuwig et al., 2015).

The ability to track also influences conserva-

tion in its selection of priorities for action. Con-

servation organizations actively select

charismatic species (cf. Lorimer, 2007) as flag-

ships for technological projects. Focal species

are selected to be ‘easily recognisable, predict-

able, detectable, distinctive, larger, and yet

unique’ (Verma et al., 2015: 657). The ‘track-

ability’ of a species therefore influences its vis-

ibility in conservation strategies (Benson, 2016:

143), although some megafauna such as ele-

phants offer both traditional photogenic char-

isma and trackability (Graham et al., 2009;

Barua, 2016; Benson, 2016).

IV Surveillance and coercive
conservation

A second implication of tracking and surveil-

lance technologies for geographies of conserva-

tion is their role in the development of coercive

conservation strategies (Peluso, 1993). People

as well as other animals can be subjected to

surveillance and control measures. Digital

sensing and tracking devices (camera traps,

drones and satellites) are widely used to monitor

human activities for conservation law enforce-

ment (e.g. to monitor illegal logging or poach-

ing, collect evidence or catch perpetrators;

Humle et al., 2014; Sandbrook, 2015b).

However, the use of surveillance technology

in conservation has outstripped institutional fra-

meworks for its governance – for example, little

attention has been paid to the social risks of

conservation drones (Sandbrook, 2015b).

Furthermore, surveillance technology is funda-

mental to the militarization of conservation,

such as Africa’s ‘war on poaching’ (Duffy,

2000, 2014; Neumann, 2004), ‘green militariza-

tion’ (Lunstrum, 2014), or ‘green violence’

(Büscher and Ramutsindela, 2015). A discourse

of ‘poachers-as-terrorists’ in Africa has made

illegal hunters legitimate targets for counter-

insurgency violence. Surveillance technologies

such as camera traps, drones, helicopter-

mounted infrared cameras and sniper rifle night

sights are routinely used to combat poachers in

Kenya (Haslam, 2016). The WorldWide Fund

for Nature has collaborated with Google.org to

develop a thermal and infrared camera and soft-

ware system to detect people crossing a national

park boundary (WWF, 2017). The ease with

which technologies can be re-targeted between

animals and people, and between warfare and

securitized conservation, is an important dimen-

sion of the prosecution of ‘war by conservation’,

in which conservation is drawn into a globalized

security agenda (Duffy, 2016).

Conservation surveillance uses fear as a tool

(Humle et al., 2014) to enforce environmental-

ity on reluctant rural people (Agrawal, 2005).

Such surveillance, and the sometimes-violent

enforcement linked to it, offers the same chal-

lenges to rights and liberties as drones in the

service of state security and warfare. It brings

about what Shaw (2017: 9) calls ‘atmospheric

enclosure’, creating ‘biopolitical climates for

human beings to dwell inside’. Shaw’s focus
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is urban policing, but the skies are also increas-

ingly threatening in conservation areas, both

surveillant and even potentially directly

weaponized.

To balance the growing evidence of the

deployment of surveillant technology against

citizens, it might be noted that digital technol-

ogy can also be used by those disadvantaged by

conservation territorialization and boundary-

making. There is no reason (beyond cost and

access) why technologies such as drones should

not be used by communities in counter-mapping

(Peluso, 1995). Butt (2015) describes how

mobile phones help herders in Tanzania to sub-

vert ‘ever-tightening restrictions on access to

land’, sending warnings of the presence of game

guards to enable grazing in areas incorporated

into protected areas. Graham et al. (2012)

describe the use of mobile phones by small-

holder farmers to inform state wildlife managers

when elephants cross the boundaries of wildlife

conservancies and other areas where they are

tolerated to raid growing crops.

V Surveillance, spectacle and
commodity

The third aspect of tracking and surveillance

technologies to which I want to draw attention

is their capacity to create a spectacle of non-

human lives (Igoe, 2010; Igoe et al., 2010).

Spectacular nature has long been a commercial

product, and one widely deployed by conserva-

tionists. The intimate gaze of the camera has

been a feature of wildlife film and television

since the 1930s (Mitman, 1999; Lorimer,

2015), and technology continues to extend its

scope: the 2017 BBC wildlife blockbuster Pla-

net Earth II drew heavily on the novelty of digi-

tal trail cameras, night vision photography and

drones to provide its ‘high-dose nature therapy’

(Rose, 2017).

Digital technologies are fundamental to the

work that conservation does to frame affective

relations between people and non-human

nature. Close-circuit television (CCTV, or the

‘wildlife-cam’) has become a routine adjunct of

visitor experience at conservation sites and

online (Chambers, 2007; Verma et al., 2015).

Cameras positioned at the nests of rare birds

such as peregrine falcons (e.g. Derby Pere-

grines, 2017) or by an African stream (e.g.

Explore, 2017) and linked to the web provide

continuous streaming of ‘live’ images. Conser-

vation organizations routinely use CCTV to

capture interest, and create emotional ‘connec-

tion’ with members of the public (Verma et al.,

2015), to educate, create the sense of the need

for care, and to generate financial and other

forms of support.

CCTV and wildlife film appear to offer an

unedited view of the life of wild animals, free

from human ‘intrusion’ (Verma et al., 2015).

Yet the sense of proximity relies on a physical

and technological separation between watchers

and watched, creating a complex hybrid of real

and virtual. CCTV transforms animal bodies

into digital images that can be stored (and can

be re-run as ‘highlights’), and restricts sensory

interactions to the visual (there are no ‘live’

smells or noises). This makes ‘CCTV-assisted

bird watching’ and similar spectacles paradoxi-

cally geographically distancing (Chambers,

2007). Digital video epitomizes ‘technological

nature’, mediating, augmenting and simulating

physical nature (Kahn, 2009). Virtual natures

are increasingly pervasive, (for example in con-

servation games; Sandbrook et al. 2014;

Dorward et al., 2016). Some fear that the lure

of virtual nature (particularly to young people)

will erode authentic experiences of non-human

nature (e.g. Louv, 2005; Ellard, 2015).

At the same time, footage from wildlife cams

does not always invoke passivity in viewers.

Verma et al. (2015) record the highly emotional

responses of people viewing webcams (for

example a peregrine falcon trying to feed a dead

chick), and Brulliard (2016) reports aggressive

response of American viewers watching star-

ving chicks on nest cams of birds of prey.
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Büscher (2015) notes how viewers of wildlife

cams in South Africa used social media to

demand intervention by conservation managers,

for example if an animal appeared injured.

Tracking technologies also create new possi-

bilities for the creation of spectacle, and facil-

itate new networks of care, based on the

identification of individual animals. Thus in

Scotland, the locations of satellite tagged red

kites were combined with other data to create

a weekly ‘blog’ describing the movements of

four birds on a ‘BloggingBirds’ website, using

natural language technology (http://redkite.abd

n.ac.uk; Van der Wal et al., 2015). Similarly, the

British Trust for Ornithology publishes the loca-

tions of satellite tagged cuckoos on their migra-

tion to Africa to publicize their scientific work

and the challenges of cuckoo conservation

(Verma et al., 2016).

Spectacular images of nature have every-

where become an indispensable part of conser-

vation’s engagement with capitalism (Igoe,

2010; Igoe et al., 2010). Corporate brands are

linked to conservation causes, using ‘images of

landscapes, exotic people and animals to raise

financial support for conservation interven-

tions’ (Igoe, 2010: 378). Thus, in the case of the

BTO’s tagged cuckoos, an attempt has been

made to monetize these data streams through

sponsorship. The BTO website offered the

opportunity to ‘sponsor a cuckoo’ (BTO,

2017) in return for an information pack, a choice

of gift item, regular email updates on the cuck-

oos and their name on a list of sponsors.

As conservation increasingly embraces

market-based models, nature that is threatened

or saved is alike represented in ‘dramatic, tech-

nologically mediated and circulated perfor-

mances’ (Sullivan, 2012: 202). Conceptual

devices used to stabilize, monetize and market

non-human nature (such as carbon credits or

biodiversity offsets) depend on spectacular digi-

tal representations of nature as ‘products’ that

can be bought and sold (Sullivan, 2012, 2013).

Social media create and circulate ‘new virtual

forms and manifestations of nature and its

conservation’ (Büscher, 2013: 1). In ‘Nature

2.0’ applications, nature is increasingly to be

‘“saved” through mouse-clicks and double-

taps’ (Büscher, 2016: 727). Surveillance and

spectacle are respectively the preferred method

and core product of global conservation.

VI Conservation by algorithm

The fourth and final aspect of digital tracking

and surveillance technology to which I wish to

draw attention is its role in the automation of

conservation decisions. Digital devices, espe-

cially using online or mobile phone-based inter-

faces (August et al., 2015; Teacher et al., 2013;

Van der Wal et al., 2016), are transforming the

field collection of biological data. These tech-

nologies generate more, better, faster and

cheaper data capture from sensors, with contin-

uous and geographically located data over a

larger spatial extent and in previously inacces-

sible locations (Arts et al., 2015). Digital track-

ing and surveillance sensors bring advantages of

continuous flows of data, lower costs of capture,

reduced costs in data transfer and storage in

shared multi-species databases (Benson,

2016). However, perhaps the greatest signifi-

cance of digital technologies lies in the ease

with which data can be fed directly into compu-

tational algorithms. As Joppa (2015: 525)

observes, the way in which computational tech-

nology provides ‘tools and infrastructure to

monitor, model, and safeguard biodiversity in

entirely new ways’ is starting to revolutionize

the practice of conservation.

Technical advance means that conservation

data collection is increasingly being automated,

bypassing (or making redundant) scientifically

skilled conservation workers. Fixed sensors can

record continuously and download data without

human intervention. Automation also allows

new kinds of data to be recorded. For example,

algorithms can automatically identify individ-

ual tigers from stripe patterns on photographs
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(e.g. Yu et al., 2013) and distinguish different

species of bats from the characteristics of their

ultrasonic calls from continuous digital record-

ings, an impossibly daunting task for human

analysis (Adams et al., 2010).

Computer-aided taxonomy enables reliable

biological data to be derived from the observa-

tions of even unskilled citizens. In the Google

Play store, Jepson and Ladle (2015) find numer-

ous apps for automated species identification,

for example automated acoustic species detec-

tion and identification, and the use of image

recognition software to automatically identify

tree species from their leaves. Data quality from

citizen observers can be improved by automated

feedback (Van der Wal et al., 2016). The eBird

website (http://ebird.org/) converts observa-

tions by amateur ornithologists into a centra-

lized database usable by scientists (Wood

et al., 2011).

People can also be made to provide data of

conservation importance unconsciously,

scraped from social media or recorded by spe-

cialized apps. For example, Google Trends data

can track natural events such as the flowering of

asthma-producing plants, or the occurrence of

biting insect species (Proulx et al., 2013), and

data on the health and mood of smartphone

users can be linked to location to analyse how

people interact with nature and protected areas

(Teacher et al., 2013).

Not only data collection but also data clean-

ing can be automated. Modelling techniques

from engineering and computer science are

being applied in ecology to perform quality con-

trol procedures to filter out erroneous data

(Porter et al., 2012). Swinnen et al. (2014)

describe an automated processing protocol to

sort video recordings from trail cameras, set to

record beavers, that were empty, or recorded

other species, without having to watch the

recordings. Price-Tack et al. (2016) have devel-

oped automated image processing to identify

animal presence in time-lapse camera trap

images, reducing personnel time and costs.

In part, the automation of analysis is an inev-

itable concomitant of the deployment of digital

sensors (what Gregory (2011: 194), in the con-

text of drone warfare, describes as the ‘image

surge’). The volume and rate of flow of data

from environmental sensor networks are chal-

lenging traditional systems of data management

(e.g. transport, storage, quality control and

assurance, gap filling and analysis), and driving

a new field of ecological informatics or ecoin-

formatics (Porter et al., 2012). As in the drone

warfare, automated software systems are

required to analyse data streams to identify sig-

nificant patterns (cf. Gregory, 2011). Auto-

mated analysis of surveillance data for

conservation is becoming feasible in real time.

Thus Robinson Willmott et al. (2015) describe a

novel system of linked thermal, acoustic and

ultrasound sensors to monitor bird and bat

movements in the eastern USA, with a view to

temporary shut-downs of wind turbines to

reduce mortality from collisions.

Digital tracking and surveillance technolo-

gies are important elements in automated anal-

ysis and planning in conservation.

Automatically cleaned and checked data are

transferred to information management systems

where scientific workflows provide quality

assurance and additional metadata, before anal-

ysis (Porter et al., 2012). Digital data fed

directly into algorithms and models (Benson,

2016) in turn support conservation decisions

and policy prescriptions.

Increasing dependence on digital tracking

and surveillance can therefore be seen as a new

conservation regime, one of ‘conservation by

algorithm’. In security and military contexts,

digital data are routinely handled by algorithm,

translating probable associations between peo-

ple into ‘actionable security decisions’

(Amoore, 2009). Drone killing involves the

deployment of autonomous algorithms that

automate target recognition (Allinson, 2015).

Algorithmic rules of association have become

the basis for everyday securitization in what

8 Progress in Human Geography XX(X)
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Amoore (2009) calls ‘algorithmic war’. Conser-

vation applications are therefore quickly fol-

lowing models that eerily copy the automated

military kill chain. Thus a wildlife concession in

Tanzania uses a reconnaissance drone fitted

with photographic recognition software ‘to pick

up and differentiate potential threats like poa-

chers and cattle from naturally occurring objects

[sic] like wildlife’. If a potential threat is iden-

tified, an ‘ops room technician’ reviews the foo-

tage and any threat is registered in the

computerized Domain Awareness System

(DAS) and ‘law enforcement assets are imme-

diately dispatched to deal with the problem’

(Singita Grumeti Fund, 2017).

Algorithms are as yet mostly having subtler

effects in conservation. But there are nonethe-

less implications. While digital data collection

may be distributed among a range of actors

(even, potentially, shared with local people),

conservation planning and decisions based on

digital data streams tend to be concentrated in

the hands of experts, remote from the field, in

the offices of government, academic or non-

governmental organizations (cf. Bryant, 2002;

Fairhead and Leach, 2003). Advances in remote

sensing, machine-based mapping and spatial

analysis are fundamental to spatial conservation

planning (Moilanen and Wilson, 2009) and the

field of ‘conservation biogeography’ (Richard-

son and Whittaker, 2010; Ladle and Whittaker,

2012). Applications range from the prioritiza-

tion of law enforcement effort using data on the

spatial distribution of illegal activities (Plump-

tre et al., 2014) to the classification of land in

terms of conservation importance and priority

for protection, at any scale from local to global

(e.g. Brooks et al., 2006). Site selection and

decision-support algorithms identify areas that

have the potential to maximize the achievement

of conservation goals, whilst minimizing

resources expended (Fajardo et al., 2014).

Of course, such as their name suggests,

decision-support tools are supposed to inform

and enable a planning system run by human

decision-makers. Yet automation tools are

increasingly mainstream. Thus the NatureServe

network offers a range of specialized conserva-

tion planning tools and models such as ‘Natur-

eServe Vista’ (‘A Powerful Scenario-Based

Assessment and Planning Tool’), which can

‘automate complex GIS processes, keep track

of your work, and deliver defensible, repeatable

maps and reports’ (NatureServe, 2017). The

deployment of such tools moves conservation

decisions further away from people affected

by them and further into the hands of remote

decision-makers, or the technicians who devise

the algorithms on which they rely. Algorithmic

conservation involves a biopolitical regime

operated remotely and autonomously that sub-

jects both nature and society to discipline.

VII Conclusion

Tracking and surveillance technologies are

shaping conservation in a range of ways of

importance to geographers. They offer radical

new insights into non-human lives, enabling and

stimulating new regimes of management and

control. They enable and justify coercion as a

way of addressing conservation problems such

as poaching, drawing on military methods,

machines and mind-sets to change the balance

of power in and around conservation zones.

They offer new forms of spectacular nature, and

new opportunities to monetize those data streams

and interact with potential conservation support-

ers on the cusp between the virtual and physical

world. Finally, they are a key part of the growing

trend towards conservation by algorithm, where

conservation decisions are automated and not

tested through political debate.

Lorimer (2015) explores the possibility of

conservation based on a more ‘cosmopolitical’

cohabitation with nature. But biodiversity con-

servation, increasingly scientific in method and

neoliberal in ideology and structure (Brocking-

ton and Duffy, 2010; Büscher et al., 2012), is

in many ways becoming less open and
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collaborative than Lorimer would wish. Conser-

vation is a major beneficiary of the bulked out

analytical power offered by tracking and sur-

veillance technologies. These make it possible

to address novel conservation problems, for

example the protection of species migrating

between regions and environments, or those

experiencing range shifts due to climate change.

Yet the rise of algorithmic conservation

could bring about profound change. To take just

one rather wild example, Cantrell et al. (2017:

156) explore the potential for ‘the automated

curation of wild places’. They offer a concep-

tual design for a ‘wildness creator’, a fully auto-

mated and autonomous artificially intelligent

infrastructure system ‘to create and sustain

non-human wildness without the need for con-

tinuing human intervention’ (Cantrell et al.,

2017: 161).

Tracking and surveillance technologies, and

digital technologies more widely, have real

implications for the social, political and envi-

ronmental impacts of conservation. With

advances in technology, reductions in cost,

increases in the volume and diversity of data

that can be collected and the range of algorithms

that can be applied to it, conservation decisions

increasingly move into the hands of experts and

away from democratic oversight. The politics of

future conservation geographies is increasingly

shaped by technologies and algorithms. The

question of who owns, programmes and con-

trols them is of crucial importance.
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Muñoz J (2014) Combined use of systematic conserva-

tion planning, species distribution modelling, and con-

nectivity analysis reveals severe conservation gaps in a

megadiverse country (Peru). PLoS ONE 9(12):

e114367.

Graham M, Adams W and Kahiro G (2012) Mobile phone

communication in effective human elephant–conflict

management in Laikipia County, Kenya. Oryx 46:

137–144.

Graham M, Douglas-Hamilton I, Lee P and Adams W

(2009) The movement of African elephants in a

human-dominated land use mosaic. Animal Conserva-

tion 12 445–455.

Graham M, Notter B, Adams W, Lee P and Ochieng T

(2010) Patterns of crop-raiding by elephants Loxodonta

africana in Laikipia, Kenya, and the management of

human-elephant conflict. Systematics and Biodiversity

8: 435–445.

Gregory D (2011) From a view to a kill: Drones and

late modern war. Theory, Culture & Society 28:

188–215.

Haslam C (2016) The snipers trained to protect rhinos.

Available at: www.bbc.com/news/magazine-

35503077 (accessed 11 June 2017).

Hewson CM, Thorup K, Pearce-Higgins JW and Atkinson

PW (2016) Population decline is linked to migration

route in the Common Cuckoo. Nature Communications

7: 12296. DOI: 10.1038/ncomms12296.

Hobbs RJ, Higgs ES and Hall CM (eds) (2013) Novel

Ecosystems: Intervening in the New World Order. Chi-

chester: Wiley-Blackwell.

Hodgetts T and Lorimer J (2015) Methodologies for ani-

mals’ geographies: Cultures, communication and geno-

mics. Cultural Geographies 22: 285–295.

Holling CS and Meffe GK (1996) Command and control

and the pathology of natural resource management.

Conservation Biology 10: 328–337.

Holt CA, Hewson CM and Fuller RJ (2012) The night-

ingale in Britain: Status, ecology and conservation.

British Birds 105: 172–187.

Humle T, Duffy R, Roberts DL, Sandbrook C, John FAV

and Smith RJ (2014) Biology’s drones: Undermined by

fear. Science 344: 1351.

Igoe J (2010) The spectacle of nature in the global

economy of appearances: Anthropological engage-

ments with the spectacular mediations of transna-

tional conservation. Critique of Anthropology 30:

375–397.

Igoe J, Neves K and Brockington D (2010) A spectacular

eco-tour around the historic bloc: Theorising the con-

vergence of biodiversity conservation and capitalist

expansion. Antipode 42: 486–512.

Jepson P and Ladle R (2015) Nature apps: Waiting for the

revolution. Ambio 44(Suppl. 4): 827–32. DOI: 10.1007/

s13280-015-0712-2.

Joppa LN (2015) Technology for nature conservation: An

industry perspective. Ambio 44(Suppl. 4). DOI: 10.

1007/s13280-015-0702-4.

Kahn P (2009) Technological Nature: Adaptation and the

Future of Human Life. Cambridge, MA: MIT Press.

Ladle RJ and Whittaker RJ (2012) Conservation Biogeo-

graphy. Chichester: Wiley.

Leopold A (1933) Game Management. New York:

Scribner’s.

Lorimer J (2007) Nonhuman charisma. Environment and

Planning D: Society and Space 25: 911–932.

Lorimer J (2015) Wildlife in the Anthropocene: Conserva-

tion after Nature. Minneapolis: University of Minne-

sota Press.

Louv R (2005) Last Child in the Woods: Saving Our Chil-

dren from Nature-Deficit Disorder. Chapel Hill, NC:

Algonquin Books.

Lunstrum E (2014) Green militarization: Anti-poaching

efforts and the spatial contours of Kruger National

Park. Annals of the Association of American Geogra-

phers 104: 816–832.

Mabey R (1993) Whistling in the Dark: In Pursuit of the

Nightingale. London: Sinclair-Stevenson.

Marek A (2017) Keeping track. Nature’s Home (Spring):

54–58.

McCallum J (2013) Changing use of camera traps in mam-

malian field research: Habitats, taxa and study types.

Mammal Review 43: 196–206.

Meeuwig JJ, Harcourt R and Whoriskey FG (2015) When

science places threatened species at risk. Conservation

Letters 8: 151–152.
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