
Materials data validation and imputation with an artificial neural network

P.C. Verpoort

University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

P. MacDonald

Granta Design, 62 Clifton Road, Cambridge, CB1 7EG, United Kingdom

G.J. Conduit

University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

Abstract

We apply an artificial neural network to model and verify material properties. The neural network algorithm has a unique
capability to handle incomplete data sets in both training and predicting, so it can regard properties as inputs allowing
it to exploit both composition-property and property-property correlations to enhance the quality of predictions, and
can also handle a graphical data as a single entity. The framework is tested with different validation schemes, and then
applied to materials case studies of alloys and polymers. The algorithm found twenty errors in a commercial materials
database that were confirmed against primary data sources.

1. Introduction

Through the stone, bronze, and iron ages the discovery
of new materials has chronicled human history. The com-
ing of each age was sparked by the chance discovery of a
new material. However, materials discovery is not the only
challenge: selecting the correct material for a purpose is
also crucial[1]. Materials databases curate and make avail-
able properties of a vast range of materials[2–6]. However,
not all properties are known for all materials, and fur-
thermore, not all sources of data are consistent or correct,
introducing errors into the data set. To overcome these
shortcomings we use an artificial neural network (ANN)
to uncover and correct errors in the commercially available
database MaterialUniverse[5] and Prospector Plastics[6].

Many approaches have been developed to understand
and predict materials properties, including direct experi-
mental measurement[7], heuristic models, and first princi-
ples quantum mechanical simulations[8]. We have devel-
oped an ANN algorithm that can be trained from mate-
rials data to rapidly and robustly predict the properties
of unseen materials.[9] Our approach has a unique abil-
ity to handle the data sets that typically have incomplete
data for input variables. Such incomplete entries would
usually be discarded, but the approach presented will ex-
ploit it to gain deeper insights into material correlations.
Furthermore, the tool can exploit the correlations between
different materials properties to enhance the quality of pre-
dictions. The tool has previously been used to propose new
optimal alloys[9–14], but here we use it to impute missing
entries in a materials database and search for erroneous

entries.
Often, material properties cannot be represented by a

single number, as they are dependent on other test param-
eters such as temperature. They can be considered as a
graphical property, for example yield stress versus temper-
ature curves for different alloys[15]. In order to handle this
type of data more efficiently, we treat the data for these
graphs as vector quantities, and provide the ANN with
information of that curve as a whole when operating on
other quantities during the training process. This requires
less data to be stored than the typical approach to regard
each point of the graph as a new material, and allows a
generalized fitting procedure that is on the same footing
as the rest of the model.

Our proposed framework is first tested and validated
using generated exemplar data, and afterwards applied to
real-world examples from the MaterialUniverse and Prospec-
tor Plastics databases. The ANN is trained on both the
alloys and polymers data sets, and then used to make pre-
dictions to identify incorrect experimental measurements,
which we correct using primary source data. For materials
with missing data entries, for which the database provides
estimates from modeling functions, we also provide predic-
tions, and observe that our ANN results offer an improve-
ment over the established modeling functions, while also
being more robust and requiring less manual configuration.

In Section 2 of this paper, we cover in detail the novel
framework that is used to develop the ANN. We compare
our methodology to other approaches, and develop the al-
gorithms for computing the outputs from the inputs, itera-
tively replacing missing entries, promoting graphing quan-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/157769011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2: If we want to evaluate the ANN for a data point x which has some of the entries for
its properties missing, we will follow the process described by this graph. After checking for
the trivial case where all entries are existent, we set x0 = x, and replace all the missing entries
by averages from the training data set. We then iteratively compute xn+1 as a combination
xn and f applied to xn until a certain point of convergence is reached, and return the final
xn as a result instead of f(x).

predicted property yj for 1 ≤ j ≤ I. There are exactly as many given properties
as predicted properties, since all types of properties (defining and physical) are
treated equally by the ANN. Provided a set of parameters Aihj , Bhj , Chj , and
Dj , the predicted properties can be computed from the given properties. The
ANN always sets Akhk = 0 for all 1 ≤ k ≤ I to ensure that the solution of the
fixed-point equation is orthogonal to the identity, and so we derive a network
that can predict yk without the knowledge of xk.

2.2. Handling incomplete data

Typically, materials data that has been obtained from experiments is in-
complete, i.e. not all properties are known for every material, but the set of
missing properties is different for each entry. However, there is information
embedded within property-property relationships: for example ultimate tensile
strength is three times hardness. A typical ANN formalism requires that each
property is either an input or an output of the network, and all inputs must
be provided to obtain a valid output. In our example composition would be
inputs, whereas ultimate tensile strength and hardness are outputs. To exploit
the known relationship between ultimate tensile strength and hardness, and al-
low either the hardness and ultimate tensile strength to inform missing data
in the other property, we treat all properties as both inputs and outputs of

5

the ANN. We have a single ANN rather than an exponentially large number of
them (one for each combination of available composition and properties). We
then adopt an expectation-maximization algorithm[17]. This is an iterative ap-
proach, where we first provide an estimate for the missing data, and then use
the ANN to iteratively correct that initial value.

The algorithm is shown in Fig. 2. For any material x we check which proper-
ties are unknown. In the non-trivial case of missing entries, we first set missing
values to the average of the values present in the data set. An alternative ap-
proach would be to adopt a value suggested by that of a local cluster. With
estimates for all values of the neural network we then iteratively compute

xn+1 = γxn + (1− γ)f(xn) . (2)

The converged result is then returned instead of f(x). The function f remains
fixed on each iteration of the cycle.

We include a softening parameter 0 ≤ γ ≤ 1. With γ = 0 we ignore the
initial guess for the unknowns in x and determine them purely by applying
f to those entries. However, introducing γ > 0 will prevent oscillations and
divergences of the sequence, typically we set γ = 0.5.

2.3. Functional properties

Many material properties are functional graphs, for example to capture the
variation of the yield stress with temperature[15]. To handle this data efficiently,
we promote the two varying quantities to become interdependent vectors. This
will reduce the amount of memory space and computation time used by a factor
roughly proportional to the number of entries in the vector quantities. It also
allows the tool to model functional properties on the same footing as the main
model, rather than as a parameterization of the curve such as mean and gradient.
The graph is represented by a series of points indexed by variable `. Let x be
a point from a training data set. Let x1,` and x2,` be the varying graphical
properties, and let all other properties x3, x4, . . . be normal scalar quantities.
When f(x) is computed, the evaluation of the vector quantities is performed
individually for each component of the vector,

y1,l = f1(x1,`, x2,`, x3, x4, . . .) . (3)

When evaluating the scalar quantities, we aim to provide the ANN with in-
formation of the x2(x1) dependency as a whole, instead of the individual data
points (i.e. parts of the vectors x1,`, and x2,`). It is reasonable to describe the
curve in terms of different moments with respect to some basis functions for
modeling the curve. For most expansions, the moment that appears in lowest
order is the average 〈x1〉, or 〈x2〉 respectively. We therefore evaluate the scalar
quantities by computing,

y3 = f3(〈x1〉 , 〈x2〉 , x3, x4, . . .) . (4)

This can be extended by defining a function basis for expansion, and include
their higher order moments. This approach automatically removes the bias due
to differeing numbers of points in the graphs.

6

2.4. Training process

The ANN has to first be trained on a provided data set. Starting from
random values for Aihj , Bhj , Chj , and Dj , the parameters are varied following
a random walk, and the new values are accepted, if the new function f models
the fixed-point equation f(x) = x better. This is quantitatively measured by
the error function,

δ =

√√√√ 1

N

∑
x∈X

I∑
j=1

[fj(x)− xj]2 . (5)

The optimization proceeds by a steepest descent approach[18], where the num-
ber of optimization cycles C is a run-time variable.

In order to calculate the uncertainty in the ANN’s prediction, fσ(x), we train
a whole suite of ANNs simultaneously, and return their average as the overall
prediction and their standard deviation as the uncertainty[19]. We choose the
number of models M to be between 4 and 64, since this should be sufficient to
extract the mean and uncertainty. In Section 3 we show how the uncertainty re-
flects the noise in the training data and uncertainty in interpolation. Moreover,
on systems that are not uniquely defined, knowledge of the full distribution of
models will expose the degenerate solutions.

2.5. Alternative approaches

ANNs like the one proposed in this paper (with one hidden layer and a
bounded transfer function; see Eq. (1)) can be expressed as a Gaussian process
using the construction first outlined by Neal [20] in 1996. Gaussian processes
were considered as an alternative to building the framework in this paper, but
were rejected for two reasons. Firstly, the ANNs have a lower computational
cost, which scales linearly with the number of entries N , and therefore ANNs
are feasible to train and run on large-scale databases. The cost for Gaussian
processes scales as N3, and therefore does not provide the required speed. Sec-
ondly, materials data tends to be clustered. Often, experimental data is easy to
produce in one region of the parameter space, and hard to produce in another
region. Gaussian processes can only define a unique length-scale of correlation
and consequently fail to model clustered data whereas ANNs perform well.

3. Testing and validation

Having developed the ANN formalism, we proceed by testing it on exemplar
data. We will take data from a range of models to train the ANN, and validate
its results. We validate the ability of the ANN to capture functional relations
between materials properties, handle incomplete data, and calculate graphical
quantities.

In Section 3.1, we interpolate a set of 1-dimensional functional dependencies
(cosine, logarithmic, quadratic), and present a method to determine the optimal
number of hidden nodes. In Section 3.2, we demonstrate how to determine

7

−1

−0.5

0

0.5

1

0 2 4 6 8
(a)

y
(x
)

x

f(x) = cos(x)
Gen. data

ANN

−0.5

0

0.5

1

1.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(b)

y
(x
)

x

f(x) = log(x)
Gen. data

ANN

0

5

10

15

20

25

−4 −2 0 2 4
(c)

y
(x
)

x

f(x) = x2
Gen. data

ANN

0

1

2

3

4

5

6

7

1 2 3 4 5 6
(d)

U
n
ce
rt
ai
n
ty

Number of Hidden Nodes

rms
red. rms
c-v rms

Figure 3: Training an ANN on toy-model data for (a) a cosine function, (b) a logarithmic
function with unequally distributed data, and (c) a quadratic function with Gaussian noise.
(d) For the quadratic function, the performance with different number of hidden nodes is
tested, and the rms (Eq. (5)), the reduced rms (Eq. (6)), and the cross-validation rms are
computed and plotted.

Table 1: The results of cross-validation testing for the three models (a) a cosine function,
(b) a logarithmic function with unequally distributed data, and (c) a quadratic function with
Gaussian noise. The second column gives the error when the ANN is trained on all of the
data, and the third column the error in points unseen in training during cross-validation.

Data set Error all Error cross-validation
Cosine 0.06 0.07
Logarithm 0.05 0.06
Quadratic 1.2 1.4

erroneous entries in a data set, and to predict the number of remaining erroneous
entries. Section 3.3 provides an example of the ANN performing on incomplete
data sets. Finally, in Section 3.4, we present a test for the ANN’s graphing
capability.

3.1. One-dimensional tests

The ANN was trained on a (a) cosine function, (b) logarithmic function
with unequally distributed data, and (c) quadratic function with results shown
in Fig. 3. All of the data is generated with Gaussian distributed noise to reflect
experimental uncertainty in real-world material databases. The cosine function
is selected to test the ability to model a function with multiple turning points,
and was studied with H = 3 hidden nodes. The logarithmic function is selected
because it often occurs in physical examples such as precipitate growth, and is
performed with H = 1. The quadratic function is selected because it captures

8

the two lowest term in a Taylor expansion, and is performed with H = 2.
Fig. 3 shows that the ANN recovers the underlying functional dependence

of the data sets well. The uncertainty of the model is larger at the boundaries,
because the ANN has less information about the gradient. The uncertainty
also reflects the Gaussian noise in the training data, as can be observed from
the test with the log function, where we increased the Gaussian noise of the
generated data from left to right in this test. For the test on the sin function,
the ANN has a larger uncertainty for maxima and minima, because these have
higher curvature, and are therefore harder to fit. The correct modeling of the
smooth curvature of the cosine curve could not be captured by simple linear
interpolation.

The choice of the number of hidden nodes H is critical: Too few will prevent
the ANN from modeling the data accurately; too many hidden nodes leads to
over-fitting. To study the effect of changing the number of hidden nodes, we
repeat the training process for the quadratic function with 1 ≤ H ≤ 6, and
determine the error δ in three ways. Firstly, the straight error δ. The second
approach is cross-validation by comparing to additional unseen data[21]. The
third and final approach is evaluate the reduced error

δ∗ =
δ√

1− 2H/N
, (6)

which assumes that the sum of the squares in Eq. (5) is χ2-distributed, so
we calculate the error per degree of freedom, which is N − 2H, where the 2H
parameters in the ANN arise because each of the H indicator functions in Eq. (1)
has two degrees of freedom: a scaling factor and also a shift. The results are
presented in Fig. 3(d).

The error, δ, monotonically falls with more hidden nodes. This is expected
as more hidden nodes gives the model the flexibility to describe the training
data more accurately. However, it is important that the ANN models the un-
derlying functional dependence between those data points well, and does not
introduce overfitting. The cross-validation results increase above H = 2 hidden
nodes, which implies that overfitting is induced beyond this point. Therefore,
H = 2 is the optimal number of hidden nodes for the quadratic test. This is ex-
pected since we choose tanh as the basis functions to build our ANN, which is a
monotonic function, and the quadratic consists of two parts that are decreasing
and increasing respectively.

In theory, performing a cross-validation test may provide more insight into
the performance of the ANN on a given data set, however, this is usually not
possible because it has a high computational cost. We therefore turn to the
reduced error, δ∗. This also has a minimum at H = 2, and represents a quick
and robust approach to determine the optimal number of hidden nodes.

Cross-validation also provides an approach to confirm the accuracy of the
ANN predictions. For the optimal number of hidden nodes we perform a cross-
validation analysis by taking the three examples in Fig. 3, remove one quarter
of the points at random, train a model on the remaining three quarters of

9

−10

0

10

20

30

0 1 2 3 4 5

y
(x
)

x

Toy model
Good entries
Bad entries

ANN

Figure 4: Blue dashed line: Quadratic curve for generating data. Red/green points: Data
points generated from the blue line with Gaussian noise that have/have not been identified as
erroneous. Black line: Prediction of the model with uncertainty. The Gaussian noise of the
generated data increases proportional to the value of the toy-model function. Observe that
less points are identified as erroneous at the right end of the plot, since the certainty of the
ANN is lower in that region.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−10 −5 0 5 10

Good entries

Bad entries Remaining bad entries

P
(∆

y
)

∆y

Figure 5: Theory of how many entries should be left using a uniform distribution of ’bad’
entries.

the points, and then re-predict the unseen points. We then compare the error
to the predictions of an ANN trained on the entire data set. The results are
summarized in Table 1. The error in the cross-validation analysis is only slightly
larger than the error when trained off all entries, confirming the accuracy of the
ANNs.

In this section, we were able to prove that the ANN is able to model data
accurately, and laid out a clear prescription for determining the optimal number
of hidden nodes by minimizing δ∗.

3.2. Erroneous entries

The ANN can be used to search for erroneous entries in a data set. As
the ANN captures the functional dependence of the training data and the un-
certainty in the estimate, the likelihood of an entry being erroneous can be
determined by computing the number of standard deviations that this entry
lies away from the ANN’s prediction,

∆σ(x) =

G∑
j=1

fj(x)− xj
fσj (x)

. (7)

10

0

10

20

30

40

5 10 15 20 25 30 35 40

E
rr
on

eo
u
s
en
tr
ie
s
re
m
ai
n
in
g

Erroneous entries removed

True
Predicted

Figure 6: Blue points: the neural network prediction of, after removing a certain number
of erroneous entries (x-axis), how many erroneous entries remain in the data set. A perfect
prediction of the remaining number of erroneous entries would be the green points.

For a well-behaved data set with no errors the average absolute value of ∆σ

should be approximately unity. However, in the presence of erroneous entries,
those entries with anomalously large ∆σ(x) can be identified, removed, or cor-
rected. In this section, we will analyze the ability of the ANN to uncover
erroneous entries in an exemplar set of data.

The case study is based on a quadratic function shown in Fig. 4 containing
Ng ‘good’ points and Nb ‘bad’ points. Good points would be the experimental
data with small Gaussian distributed noise, whereas bad points would occur
through strong systematic mistakes modeled with a broad uniform distribution
shown in Fig. 5. The results are shown in Fig. 4, where only 25 % of the data
is plotted. The ten points that are identified to be the most erroneous ones in
this set are removed first, and have been highlighted in the graph.

The upper limit of ∆σ that we use to extract erroneous entries from the
data set has to be chosen correctly. We want to eliminate as many erroneous
entries as possible, while not removing any entries that hold useful information.
We therefore proceed by developing a practical method to analyze how many
erroneous data entries are expected to remain in the data set after extracting
a certain number of entries. In a practical application, the maintainer of a
large materials database might opt to continue removing erroneous entries from
the database until the expected number of erroneous entries that a user would
encounter falls below 1.

The probability density for finding erroneous entries in the region where
erroneous entries have been removed from the sample is approximately equal
to the probability density for finding further erroneous entries in the region
of remaining entries. Therefore, the expected number of remaining erroneous
entries is

Nrem =
Nfound

1− ∆yrem
∆ytot

, (8)

where Nrem,found are the number of remaining and found erroneous data entries
respectively, and ∆ytot,rem refer to the range over which the total and remaining
entries are spread respectively.

11

0

2

4

6

8

10

12

0 2 4 6 8 10

z
(x
)

x

Training data
Pred z w/o x
Pred z w/o y

Figure 7: The toy-model data that is used for training of the ANN is shown as Z as a function
of X together with the predictions of the ANN without providing X or Y respectively. The
ANN learns the Z = X + Y dependence, and uses the average of X or Y values respectively
to replace the unknown values.

Returning to the exemplar data set, we compare Nrem with the true number
of remaining erroneous entries in Fig. 6. The method provides a good prediction
for the actual number of remaining erroneous entries.

The neural network can identify the erroneous entries in a data set. Fur-
thermore, the tool can predict which are the entries most likely to be erroneous
allowing the end user to prioritize their attention on the worse entries. The
capability to predict the remaining number of entries allows the end user to
search through and correct erroneous entries until a target quality threshold is
attained.

3.3. Incomplete data

In the following section, we investigate the capability of the ANN to train
on and analyze incomplete data. This requires at least three different properties
to study, and therefore our tests will be on three-dimensional data sets. This
procedure can be studied for different levels of correlation between the proper-
ties, and we study two limiting classes: completely uncorrelated, and completely
correlated data. In the uncorrelated data set the two input variables are uncor-
related with each other, but still correlated to the output. In the correlated data
set the input variables are now correlated with each other, and also correlated
to the output. We focus first on the uncorrelated data.

3.3.1. Fully uncorrelated data

To study the performance on uncorrelated data we perform the following
two independent tests: we first train the ANN on incomplete uncorrelated data,
and run it on complete data, and secondly train on complete uncorrelated data,
and run on incomplete data.

For N = 20 points X = {x1, . . . , xN} distributed evenly in the interval
0 ≤ x ≤ 10 we generate a set of random numbers Y = (y1, . . . , yN) uniformly
distributed between −2.5 to 2.5. We let Z = X + Y = (x1 + y1, . . . , xN + zN),
which is shown in Fig. 7. This data set is uncorrelated because the values of Y ,
a set of random numbers, are independent of the values X; therefore a model
needs both x and y to calculate z.

12

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 2 4 6 8 10

∆
z
(x

)
x

Exact
0% frag

40% frag
50% frag

60% frag

Figure 8: Deviation ∆z of the predicted values of Z from the true values from the training
data set as a function of X. An exact prediction would be represented by ∆z = 0 as indicated
by the dashed gray line. The accuracy of the ANN predictions get worse with increasing level
of fragmentation of the training data set.

We first train the ANN on all of the training data, and ask it to predict z
while providing (i) x and y, (ii) x only, and (iii) y only. The results of (ii) and
(iii) are shown in Fig. 8 alongside the training data, where z is plotted as a
function of x. Fig. 8 reveals that when provided with both x and y the ANN
is able to capture the full z = x+ y dependence for the complete training data
with maximum deviation |∆z| ≤ 0.13. However, when the ANN is provided
only with the x values, but not y, the best that the ANN could do is replace y
with its average value, 0. Fig. 7 confirms that the ANN returns z = x+〈Y 〉 = x.
However, when the ANN is provided with the y values but not the x, the best
that the ANN could do is replace x with its average value, 5. Fig. 7 shows that
it returns z = 〈X〉+ y = 5 + y. This confirms that after training off a complete
uncorrelated data set, that when confronted with incomplete data, the ANN
delivers the best possible predictions given the data available. The analysis also
confirms the behavior of the ANN when presented with completely randomly
distributed data: it correctly predicts the mean value as the expected outcome.

The second scenario is to train the ANN on an incomplete data set. Later,
when using the neural network to predict values of z, values for both x and y
are provided. We take the original training data, and randomly choose a set
of entries (in any of X, Y , or Z), and set them as blank. We train the ANN
on data sets that are (i) complete, (ii) 40 %, (iii) 50 %, and (iv) 60 % missing
values. The ANN is then asked to predict z for given x and y, and the error in
the predicted value of z shown in Fig. 8. The accuracy of the ANN predictions
decreases with increasing fragmentation of the training data. Yet, even with
60 % fragmentation the ANN is still able to capture the z = x + y accurately
with |∆z| ≤ 0.41 60 %. This is less than the separation of 0.5 between adjacent
points in Z, so despite over half of the data missing the ANN is still able to
distinguish between adjacent points.

3.3.2. Fully correlated data

We next turn to a data set in which given just one parameter, either x or
y, it is possible to recover z = x + y. This requires that y is a function of x,
and so is fully correlated. We now set y = x2, and perform the tests as above.

13

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

z
(x
,y
)

y

Model
Gen. data

ANN

x = 1

x = 5

Figure 9: Training data, true function and predicted ANN function for different values of x.

1

2

3

4

5

2 3 4 5 6 7 8 9 10

P
re
d
ic
ti
on

fo
r
x

Number of provided entries

Figure 10: Predict x from the training data with different number of (y, z)- pairs provided.
The gray dotted lines indicate the true value of x.

Now after training on a complete data set, the ANN is able to predict values
for z when given only x or y. The ANN also performs well when trained from
an incomplete data set.

3.3.3. Summary

We have successfully tested the capability of the ANN to handle incomplete
data sets. We performed tests for both training and running the ANN with
incomplete data. The ANN performs well when the training data is both fully
correlated and completely uncorrelated, so should work well on real-life data.

3.4. Functional properties

We now test the capability for the ANN to handle data with functional
properties (also referred to as graphing data) as a single entity. As before we
have a functional variable X = {x1, . . . , xN} with N = 5 equidistant points
in the interval from 1 to 5. At each value of x point we introduce a vector
quantity, dependent on a variable Y = {y1, . . . , y`} that can have up to ` = 10.
We compute the vector function z` = 4x+ y2

`/4, with additional Gaussian noise
of width 1 and train an ANN on this data set. We show the training data as
well as the ANN prediction for z in Fig. 9, which confirms that the ANN is able
to predict the underlying functional dependence correctly.

The real power of the graphing capability is to predict x with different num-
ber of elements provided in the vector (y, z). We show the predictions of the
ANN in Fig. 10. With all 10 components of the vector provided the ANN makes

14

accurate predictions for x. With fewer components provided the accuracy of the
predictions for x falls, but even if just 2 elements are provided the ANN is still
able to distinguish between the discrete values of x.

We confirm that the ANN is able to fully handle vector and graphical data.
The ANN gives accurate predictions for both the functional properties when
providing non-functional properties only, and vice-versa. This new capability
allows the ANN to handle a new form of real-world problems, for example the
temperature dependence of variables such as yield stress. Temperature can be
used only as an input for the yield stress, without the need to replicate other
properties that are not temperature dependent, for example cost. The reduction
in the amount of data required will increase the efficiency of the approach and
therefore the quality of the predictions.

4. Applications

With the testing on model data complete we now present case studies of ap-
plying the ANN to real-life data. In this section, we will use the ANN framework
to analyze the MaterialUniverse and Prospector Plastics databases. We first fo-
cus on a data set of 1641 metal alloys with a composition space of 31 dimensions
(that is each metal is an alloy of potentially 31 chemical elements). We train
neural networks of 4 hidden nodes to predict properties such as the density, the
melting point temperature, the yield stress, and the fracture toughness of those
materials. Secondly, we examine a system where not all compositional variables
are available: a polymer data set of 5656 entries, and focus on the modeling of
its tensile modulus.

We use the trained ANN to uncover errors by searching for entries multi-
ple standard deviations ∆σ away from the ANN predictions. We compare the
results to primary sources referenced from the MaterialUniverse data set to de-
termine whether the entry was actually erroneous: a difference could only be due
to a transcription error from that primary data set into the MaterialUniverse
database.

When analyzing the density data, we can confirm the ability of the ANN
to identify erroneous entries with a fidelity of over 50 %. For the melting tem-
perature data, we show that for missing entries the ANN yields a significant
improvement in the estimates provided by the curators of the database. When
advancing to the yield stress properties of the materials, we observe that our
methods can only be applied when additional heat treatment data is made
available for training the ANN. Unlike established methods, our framework is
uniquely positioned to include such data for error-finding and extrapolation. For
the fracture toughness data, we exploit correlations with other known proper-
ties to provide more accurate estimation functions compared to established ones.
Finally, in the polymer data, we exploit the capability of our ANN to handle an
incomplete data set without compositional variables, and instead characterize
polymers by their properties.

15

Table 2: A list of MaterialUniverse entries (source) for density in g cm−3 that were identified
by the ANN as being potentially erroneous by the number of standard deviations ∆σ , and
then subsequently confirmed to be incorrect by a primary source database (actual).

Alloy Source ANN ∆σ Actual
Stainless steel, Ilium P 7.6 7.9 12 7.75 to 8.0[4]
Tool steel, AISI M43 8.4 8.0 −12 7.7 to 8.0[4]
Copper-nickel, C70400 8.5 8.9 11 8.9[4]
Tool steel, AISI A3 8.0 7.7 −20 8.9[4]
Tool steel, AISI A4 7.9 7.8 9 8.0[4]
Tool steel, AISI M6 8.5 8.0 11 7.7 to 8.0[4]
Aluminum, 8091, T6 2.6 2.5 10 2.5[4]

4.1. Density

The density of an alloy is set primarily by its composition, the data for
which can be provided in a convenient form for training the ANN. This makes
the density data set an attractive starting point for our investigation.

We first construct a model following the rule of mixtures by calibrating a
weighted average of the densities of each constituent element to the MaterialU-
niverse density data. This model offers an average rms error of 0.19 g cm−3. We
then construct a data set that is the difference between the model and the origi-
nal density data and compositions, and use this to train the ANN. The resulting
rms error in the ANN prediction was 0.12 g cm−3, a significant improvement on
the rule of mixtures.

With an ANN model for density in place, we use it to search for erroneous
entries within the density training set. For each entry we calculate the number of
standard deviations from the ANN prediction, with the top 20 being considered
as candidates for being erroneous. Of the 20 entries with highest ∆σ, 7 were
found to be incorrect after comparing to a primary data source, these entries
tabulated in Table 2. Of the remaining 13, 7 are found to be correct, and no
source of primary data could be found for the remaining 6. The ANN detected
errors with a fidelity of 50 %. Following these amendments, using Eq. (8), we
predict that the the number of remaining erroneous entries to be 17.

The ability to identify erroneous entries in a materials database, as well as
the ability to assess the overall quality should be of interest to the curators of
such databases. We therefore now use the ANN to search for errors in other
quantities in the MaterialUniverse data set.

4.2. Melting temperature

The melting point of a material is a complex function of its composition so
modeling it is a stern test for the ANN formalism. Furthermore, the melting
temperature data set in the MaterialUniverse database has 80 % of its data
taken from experiments with the remaining 20 % estimated from a fitting func-
tion by the database curators. This means that we have to handle data with
underlying differing levels of accuracy.

16

Table 3: Erroneous entries for melting temperature in K from the MaterialUniverse database
(source) alongside predictions from the ANN, that differ by ∆σ standard deviations, subse-
quently confirmed to be incorrect by a primary source databases (actual).

Alloy Source ANN ∆σ Actual
Wrought iron 1973 1760 −37 1808[4]
Nickel, INCOLOY840 1419 1661 8 1724 to 1784[22]
Titanium, α-β 1593 1878 17 1866[4]
Steel, AISI 1095 1650 1699 13 1788[23]

Table 4: Differences in the estimates of the melting temperature in K from the actual value
for the 7 points where the established fitting function (EFF), and the ANN differ the most
and primary source data is available.

Alloy ∆EFF ∆ANN

Steel Fe-9Ni-4Co-0.2C, quenched[24] -94 9
Tool steel, AISI W5, water-hardened[24] 48 -19
Tool steel, AISI A4, air-hardened[24] 56 16
Tool steel, AISI A10, air-hardened[23] 59 -61
Tool steel, AISI L6, 650 ◦C tempered[24] 59 14
Tool steel, AISI L6, annealed[24] 59 14
Tool steel, AISI L6, 315 ◦C tempered[24] 59 14

We begin by training the ANN on only the experimental data. We seek
to improve the quality of the data set by searching and correcting erroneous
entries as was done for density. After identifying and correcting the 4 incorrect
entries listed in Table 3, we estimate that there are still 5 erroneous entries in
the data set. This leaves us with just 0.3 % of the database being erroneous,
and hence with a high-quality data set of experimental measurements to study
the accuracy of the MaterialUniverse fitting function.

We now wish to quantify the improvement in accuracy of the ANN model
over the established MaterialUniverse fitting model for those entries for which
no experimental data is available. We do so by analyzing the 30 entries where
the ANN and the fitting function are most different. By referring to primary
data sources in Table 4 we confirmed that the ANN predictions are closer to
the true value than the fitting function’s prediction in 20 cases, further away in
4 cases, and no conclusion is possible in 4 cases due to a lack of primary data.

Sometimes there are two sources of primary data that are inconsistent. In
these cases we can use the ANN to determine which source is correct. Assuming
that out of several experimental results only one can be correct, we can decide
which one it is by evaluating ∆σ for each entry, and comparing the resulting
difference in likelihood for each of the values being correct. For example, for the
alloy AISI O1 Tool steel, the value from one source is 1694 K, only 0.6 standard
deviations away from the ANN prediction of 1698 K, whereas the value given
by the other source, 1723 K, is 4.5 standard deviations away. The value of
1694 K exp (−0.62)/ exp (−4.52) ≈ 109-times more likely to be correct and we
can therefore confidently adopt this value.

17

Table 5: The effect of adding heat treatment into the training set on the average error in the
ANN predictions of yield stress. Separate results for ferrous and non-ferrous alloys as well as
the entire metals data set are shown. The error from the established fitting model used within
MaterialsUniverse is also shown.
Data set Error
Composition alone 0.349
Composition and elongation 0.092
Composition, elongation, and heat treatment 0.052
Established model 0.072

Table 6: Erroneous entries for yield stress in MPa from the MaterialUniverse database (source)
alongside predictions from the ANN, that differ by ∆σ standard deviations, subsequently
confirmed to be incorrect by a primary source databases (actual).

Alloy Source ANN ∆σ Actual
Stainless steel, AISI 301L 193 269 5 238[23]
Stainless steel, AISI 301 193 267 5 221[23]
Aluminum, 1080, H18 51 124 5 120[23]
Aluminum, 5083, wrought 117 191 14 300,190[4, 23]
Aluminum, 5086, wrought 110 172 11 269,131[4, 23]
Aluminum, 5454, wrought 102 149 14 124[23]
Aluminum, 5456, wrought 130 201 11 165[23]
Nickel, INCONEL600 223 278 10 ≥550[23]

The ANN yields a clear improvement over the established fitting model.
Having accurate modeling functions available for is crucial for operators of ma-
terials databases, and improvements over current modeling functions will greatly
benefit usage of those databases in industrial applications.

4.3. Yield stress

We now study yield stress, a property of importance for many engineering
applications, and therefore one that must be recorded with high accuracy in
the MaterialUniverse database. Yield stress is strongly influenced by not only
the composition but also the heat treatment routine. Initial attempts to use
composition alone produces an inaccurate ANN with relative error of 0.349 be-
cause alloys with similar or identical compositions had undergone a different
heat treatment and so have quite different yield stress. To capture the conse-
quences of the heat treatment routine additional information can be included
in the training set. For example, the elongation depends on similar microscopic
properties to yield stress, such as the bond strength between atoms and the
ease of dislocation movement, and so has a weak inverse correlation with yield
stress. Elongation was therefore included in the training set, and as summarized
in Table 5 we observed a reduction in the average error to 0.092 as a result.

To directly include information about the heat treatment a bit-wise repre-
sentation for encoding information on the range of different heat treatments into

18

Table 7: Error in the ANN when different quantities are used in the training data set to fit
fracture toughness.

Data set Relative error
Composition alone 0.144
Composition & elongation 0.113
Composition & young modulus 0.136
Composition & yield stress 0.132
Composition & UTS 0.134
Composition, elongation & yield stress 0.106

Table 8: Relative error in the available models for fracture toughness, calculated over only
the experimentally determined data.

Model ANN Steels Nickel Aluminium
Logarithmic error 0.065 0.188 0.102 0.086
Data points 202 81 5 57

input data readable by the ANN was devised. This was achieved by represent-
ing the heat-treatment routine of an alloy bit-wise, indicating whether or not
the alloy had undergone the possible heat treatments: tempering, annealing,
wrought, hot or cold worked, or cast. Table 5 shows that including this heat
treatment data allows the ANN to model the data better than established mod-
eling frameworks, with the average error reduced to 0.052. This error can be
compared with the standard polynomial fitting model previously used by Mate-
rialUniverse, which has an error of 0.072. This confirms the increased accuracy
offered by the ANN.

With the ANN model established, we can then use it to search for erroneous
entries within the MaterialUniverse database. Following the prescription de-
veloped in density and melting point, of the twenty alloys with the largest ∆σ

in the estimate of yield stress, eight were confirmed by comparison to primary
sources to be erroneous, and are included in Table 6. The other twelve entries
could not be checked against primary sources, resulting in an fidelity in catching
errors that could be confirmed of 100 %.

4.4. Fracture toughness

Fracture toughness indicates how great a load a material containing a crack
can withstand before brittle fracture occurs. Although it is an important quan-
tity it has proven to be difficult to model from first principles. We therefore
turn to our ANN. Fracture toughness depends on both the stress required to
propagate a crack and the initial length of the crack. We can therefore identify
the UTS and yield stress as likely correlated quantities. Additionally, elongation
a measure of the materials ability to deform plastically, is also relevant for crack
propagation.

The model functions fitted by the curator of MaterialUniverse all use compo-
sition as an input so we follow their prescription. An efficient way to identify the

19

0

1000

2000

3000

4000

5000

6000

7000

8000

0.8 0.9 1 1.1 1.2 1.3 1.4

T
en

si
le

M
o
d
u

lu
s

in
M

P
a

Density in g/cm

Glass fibre filler
Mineral filler

Unkn./zero filler

Figure 11: Polymer tensile modulus against density with glass fiber filler (blue) and mineral
filler (red). The input information includes not only the filler type but also the filler amount
(weight in %).

properties most strongly correlated to fracture toughness is to train the ANN
with each quantity in turn (in addition to the composition data), and then eval-
uate the deviation from the fracture toughness data. The properties for which
the error is minimized are the most correlated. Table 7 shows that elongation
is the property most strongly correlated to fracture toughness. Whilst yield
stress, Young modulus, and UTS offer some reduction in the error, including
these quantities to the training data will not lead to a significant improvement
on the average error obtained from composition and elongation alone.

The MaterialUniverse fracture toughness data contains only around 200 val-
ues that have been determined experimentally, with the remaining 1400 values
estimated by fitting functions. These are polynomial functions which take com-
position and elongation as input, and are fitted to either steels, nickel, or alu-
minum separately. We train the ANN over just the experimentally determined
data, and compare the error in its predictions to those from the known fitting
functions. Table 8 shows that the ANN is the most accurate, having a smaller
error than the fitting function for all three alloy families. While the different
fitting functions are ‘trained’ only on the subset of the data for which they are
designed, the ANN is able to use information gathered from the entire data set
to produce a better model over each individual subset. This is one of the key
advantages of a ANN over traditional data modeling methods.

4.5. Polymers

In this section, we study polymers, which is an incomplete data set. Polymer
composition cannot be described simply by percentage of constituent elements
(as in the previous example with metals) due to the complexity of chemical
bonding, so we must characterize the polymers by their properties. Some prop-
erties are physical, such as tensile modulus and density; others take discrete
values, such as type of polymer or filler used, and filler percentage. As the
data [6] was originally compiled from manufacturer’s data sheets, not all entries
for these properties are known, rendering the data set incomplete.

We analyze a database of polymers that has the filler type as a class-separable
property. Many other properties exhibit a split based on filler type, such as

20

Table 9: A list of three ProspectorPlastics entries (source) for polymer flexural modu-
lus/strength in MPa that were identified by the ANN as being potentially erroneous and
then subsequently confirmed to be incorrect by a primary source databases (actual). The
final five entries had missing filler type and amount in % that imputed by the ANN and then
confirmed against a primary data source.

Polymer Property Source ANN Actual
4PROP25C21120 Modulus 2 300 000 2186 2300[25]
AZDELU400-B01N Modulus 8 000 000 8189 8000[25]
Hyundai HT340 Strength 469 46.1 46.9[25]
Borealis NJ201AI Mineral filler - 20± 4 20[25]
Daplen EE168AIB Mineral filler - 11± 3 10[25]
Maxxam NM-818 Glass filler - 18± 4 20[25]
FORMULA P 5220 Mineral filler - 19± 3 20[25]
4PROP 9C13100 Mineral filler - 13± 3 10[25]

tensile modulus, flexural strength, or heat deflection temperature. We first
focus on the tensile modulus shown in Fig. 11. Analysis of the predicted entries
in Table 9 uncovers three erroneous entries that could be confirmed against
primary source data. All three of these polymers had been entered into the
database incorrectly, being either one or three orders of magnitude too large.

The data set is incomplete so many polymers have unknown filler type. The
vast majority of entries sit at the expected density of 0.9 g cm−3. However, some
entries sit well away from there. Since the data set includes no other properties
that can account for this discrepancy, a reasonable assumption is that these en-
tries do not have zero filler, but instead are lacking filler information. The ANN
applies this observation to predict the filler type and fraction. In Table 9 we
show five polymers for which the filler type and fraction were correctly predicted
when compared to primary sources of data.

Having successfully confirmed the ANN’s ability to model incomplete data,
we have completed our tests on real-life data. The ANN can perform materials
data analysis that has so far not been possible with established methods, and
hence our framework yields an important improvement in operating large-scale
materials databases. With polymers being another class of materials of great
importance to industry, we have again shown how our approach will have an
impact across a broad range industrial fields.

5. Conclusions

We developed an artificial intelligence algorithm and extended it to handle
incomplete data, functional data, and to quantify the accuracy of data. We
validated its performance for model data to confirm that the framework deliv-
ers the expected results in tests on the error-prediction, incomplete data, and
graphing capabilities. Finally, we applied the framework to the real-life Mate-
rialUniverse and Prospector Plastics databases, and were able to showcase the
immense utility of the approach.

21

In particular, we were able to propose and verify erroneous entries, provide
improvements in extrapolations to give estimates for unknowns, impute missing
data on materials composition and fabrication, and also help the characteriza-
tion of materials by identifying non-obvious descriptors across a broad range of
different applications. Therefore, we were able to show how artificial intelligence
algorithms can contribute significantly to innovation in researching, designing,
and selecting materials for industrial applications.

The authors thank Bryce Conduit, Patrick Coulter, Richard Gibbens, Al-
fred Ireland, Victor Kouzmanov, Hauke Neitzel, Diego Oliveira Sánchez, and
Howard Stone for useful discussions, and acknowledge the financial support of
the EPSRC [EP/J017639/1] and the Royal Society. There is Open Access to
this paper and data available at https://www.openaccess.cam.ac.uk.

[1] M. Ashby, Materials Selection in Mechanical Design, Butterworth-
Heinemann, 2004.

[2] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder,
K. a. Persson, APL Materials 1 (2013) 011002. URL:
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi.
doi:10.1063/1.4812323.

[3] NoMaD, http://nomad-repository.eu/, 2017.

[4] MatWeb, LLC, http://www.matweb.com/, 2017.

[5] Granta Design, MaterialUniverse, CES EduPack 2017,
https://www.grantadesign.com/products/data/materialuniverse.htm,
2017.

[6] Granta Design, Prospector Plastics, CES EduPack 2017,
https://www.grantadesign.com/products/data/ul.htm, 2017.

[7] S. Zhang, L. Li, A. Kumar, Materials Characterization Techniques, CRC,
2008.

[8] E. Tadmor, R. Miller, Modeling Materials: Continuum, Atomistic and Mul-
tiscale Techniques, Cambridge University Press, 2011.

[9] B. Conduit, N. Jones, H. Stone, G. Conduit, Materials & Design 131 (2017)
358.

[10] B. Conduit, G. Conduit, H. Stone, M. Hardy, Development of a new nickel
based superalloy for a combustor liner and other high temperature appli-
cations, Patent GB1408536, 2014.

[11] B. Conduit, G. Conduit, H. Stone, M. Hardy, Molybdenum-niobium alloys
for high temperature applications, Patent GB1307535.3, 2013.

22

[12] B. Conduit, G. Conduit, H. Stone, M. Hardy, Molybdenum-hafnium alloys
for high temperature applications, Patent EP14161255, US 2014/223465,
2014.

[13] B. Conduit, G. Conduit, H. Stone, M. Hardy, Molybdenum-niobium alloys
for high temperature applications, Patent EP14161529, US 2014/224885,
2014.

[14] B. Conduit, G. Conduit, H. Stone, M. Hardy, A nickel alloy, Patent
EP14157622, amendment to US 2013/0052077 A2, 2014.

[15] R. Ritchie, J. Knott, J. Me. Phys. Solids 21 (1973) 395–410.

[16] O. Oliveira Jr., J. Rodrigues Jr., M. de Oliveira, Neural Networks (2016).

[17] T. Krishnan, G. McLachlan, The EM Algorithm and Extensions, Wiley,
2008.

[18] C. Floudas, P. Pardalos, Encyclopedia of Optimization, Springer, 2008.

[19] H. Steck, T. Jaakkola, in: Advances in Neural Information Processing Sys-
tems 16: Proceedings of the 2003 Conference, p. 521.

[20] R. Neal, Bayesian learning for neural networks, Lecture notes in statistics
; 118, Springer, New York, 1996.

[21] T. Hill, P. Lewicki, Statistics: Methods and Applications, StatSoft, 2005.

[22] Longhai Special Steel Co., Ltd, China steel suppliers,
http://www.steelgr.com/Steel-Grades/High-Alloy/incoloy-alloy-840.html,
2017.

[23] AZoM, https://www.azom.com/, 2017.

[24] Metal Suppliers Online, LLS, www.metalsuppliersonline.com/, 2017.

[25] PolyOne, http://www.polyone.com/resources/technical-data-sheets/,
2017.

23

