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Abstract
The Einstein vacuum equations  in 5D with negative cosmological constant 
are studied in biaxial Bianchi IX symmetry. We show that if initial data of 
Eguchi–Hanson type, modelled after the 4D Riemannian Eguchi–Hanson 
space, have negative mass, the future maximal development does not contain 
horizons, i. e. the complement of the causal past of null infinity is empty. 
In particular, perturbations of Eguchi–Hanson–AdS spacetimes within the 
biaxial Bianchi IX symmetry class cannot form horizons, suggesting that such 
spacetimes are potential candidates for a naked singularity to form. The proof 
relies on an extension principle proven for this system and a priori estimates 
following from the monotonicity of the Hawking mass.

Keywords: general relativity, cosmological constant, five dimensions, 
negative mass, event horizon, naked singularity, Eguchi–Hanson–AdS 
spacetimes

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. The Einstein vacuum equations with negative cosmological constant

The Einstein vacuum equations in n dimensions (n  >  2)

Ric(g) =
2

n − 2
Λg (1.1)
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with cosmological constant Λ ∈ R can be understood as a system of second-order partial 
differ ential equations for the metric tensor g of an n-dimensional spacetime (M, g). Solutions 
with negative cosmological constant Λ = −(n − 1)(n − 2)/(2�2) < 0 have drawn consider-
able attention in recent years, mainly due to the conjectured instability of these spacetimes. 
For more details, see [And06, DH06a, BR11, DHS11, DHMS12, HLSW15] and references 
therein.

The system (1.1) is of hyperbolic nature, and studying the dynamic evolution of initial 
data is very difficult in general, leading us to take recourse to settings with high degrees 
of symmetry. In particular, it is desirable to reduce the dimension of the dynamical prob-
lem to the simplest case of 1  +  1 dimensions. This approach has a longer history for Λ = 0. 
There, for n  =  4, the only symmetry group achieving the reduction to a 1  +  1-dimensional 
problem whilst consistent with the spacetime being asymptotically flat is spherical symmetry. 
However, the well-known Birkhoff theorem prevents any dynamical consideration since such 
a 4D spacetime necessarily embeds locally into a subset of a member of the Schwarzschild 
family, and this embedding is isometric.

To study spherically symmetric gravitational dynamics in 4D, one can follow the approach 
of the seminal work by Christodoulou and couple gravity to matter. In a sequence of papers—
see his own survey article [Chr99] for references—he initiated the rigorous analysis of spheri-
cally symmetric gravitational collapse for Λ = 0 by studying the Einstein-scalar field system. 
The model of a real massless scalar field was chosen because, on the one hand, this matter 
model does not develop singularities in the absence of gravity and, on the other hand, its wave-
like character resembles the character of general gravitational perturbations of Minkowski 
space. Christodoulou’s work led to a complete understanding of weak and strong cosmic 
censorship for this model. His approach has later been extended to other matter models; see 
[Kom13] for a systematic overview and references.

Christodoulou’s approach was adapted to the context of Λ < 0 by Holzegel and Smulevici 
in [HS11a] and by Holzegel and Warnick in [HW13], who show well-posedness of the 
Einstein–Klein–Gordon system with the scalar field satisfying various reflecting bound-
ary conditions at infinity. The work [HS11b] shows stability of Schwarzschild–AdS in this 
symmetry class for Dirichlet boundary conditions. A recent breakthrough has been achieved 
by Moschidis in [Mos17a] and [Mos17b]; in his work, he shows instability of exact anti-
de Sitter space as a solution to the Einstein-null dust system in spherical symmetry with an 
inner mirror.

Another possibility of evading the restrictions of Birkhoff’s theorem is to study (1.1) in 
higher dimensions. Working in 5D and imposing biaxial Bianchi IX symmetry, a symmetry 
corresponding to a subgroup of SO(4), still reduces the system to 1+1 dimensions and intro-
duces a dynamical variable B, not dissimilar to the scalar field in the coupled system. This 
model was introduced by Bizón, Chmaj and Schmidt. In [BCS05], they initiated the study of 
gravitational collapse for Λ = 0 in this symmetry class by numerical computations; invest-
igations along those lines were continued in [DH06b] and [BCS06].

The study of this system in the realm of negative Λ has been initiated by Dafermos and 
Holzegel in 2006. In [DH06a]—now mostly cited for the conjecture of the instability of exact 
AdS space—, our corollary 1.11 has been put forward without rigorous proof. Back then, the 
problem of proving local well-posedness for the system in biaxial Bianchi IX symmetry was 
not solved, thus no extension principle sufficiently strong was available. The present paper 
can be seen as a completion of [DH06a], building on the insight into problems in asymptoti-
cally locally AdS spacetimes obtained over the past decade; for an overview of this work, see 
[HW13, EK14] and references therein.
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In 5D and for Λ < 0, (1.1) has many static solutions which are asymptotically locally AdS. 
A spacetime is asymptotically locally AdS if the asymptotics of the metric towards conformal 
infinity I  is modelled after AdS space, but I  need not be R× S3 topologically. Prominent 
examples of such static solutions are exact AdS5 space with spherical conformal infinity1 
and the AdS soliton of [HM98] with toric I . Eguchi–Hanson–AdS spacetimes form another 
such family with I ∼= R× (S3/Zn) for n � 32. Eguchi–Hanson–AdS spacetimes have nega-
tive mass at infinity (proposition 1.9) and additionally, they are conjectured to have mini-
mal mass among all asymptotically locally AdS spacetimes with topology I ∼= R× (S3/Zn) 
(conjecture 1.13). In other words, Eguchi–Hanson–AdS spacetimes are conjectured to be the 
energy ‘ground state’ solutions given this topology at infinity. This is discussed in more detail 
in section 1.4.

1.2. Spaces of Eguchi–Hanson type

Riemannian Eguchi–Hanson space is isometrically isomorphic to the four dimensional mani-
fold (a,∞)× (S3/Z2)—for any fixed a  >  0—equipped with the metric

g =
1

1 − a4

�4

d�2 +
�2

4
(
σ2

1 + σ2
2

)2
+

�2

4

(
1 − a4

�4

)
σ2

3.

The left-invariant one-forms σi are discussed below. The apparent singularity at � = a is 
removable. Eguchi–Hanson space exhibits an SU(2)× U(1) symmetry and can be considered 
as being defined on the cotangent bundle of the two-sphere.

In the present context, we introduce 4D Riemannian manifolds modifying Eguchi–Hanson 
space to the asymptotically locally AdS context. These will serve as initial data for the 5D 
Einstein vacuum equations

Ric(g) =
2
3
Λg (1.2)

via the local well-posedness theorem 1.7. Our data also exhibit an SU(2)× U(1) symmetry, 
thus giving rise to spacetimes with biaxial Bianchi IX symmetry. Then Eguchi–Hanson–AdS 
spacetimes form particular examples of the spacetimes thus obtained.

Definition 1.1. We say that an initial data set (S , g, K) to (1.2) exhibiting SU(2)× U(1) 
symmetry is of Eguchi–Hanson type if

S = (a,∞)×
(
S3/Zn

)

for fixed a > � and n � 3 satisfying

n2

4
= 1 +

a2

�2 ,

and if

g =
1
A

d�2 + γ with γ =
1
4

r2e2B (σ2
1 + σ2

2

)
+

1
4

r2e−4B σ2
3,

1 Numerical studies within the biaxial Bianchi IX symmetry class for perturbations of AdS5 were carried out 
recently in [BR17].
2 The space S3/Zn  is defined in the usual way as the lense space L(n, 1).
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where (σ1,σ2,σ3) is a basis of left-invariant one-forms on SU(2) (see below) and

A, r, B : (a,∞) → R

are smooth functions such that the following conditions hold:

 (i) Around the centre � = a, the functions satisfy the regularity conditions

A =
n2

a
(�− a) +O

(
(�− a)2)

r =21/3a5/6(�− a)1/6 +O
(
(�− a)7/6

)

B + log r = log a +O((�− a)).

 (ii) The function A is non-zero on (a,∞). Moreover

A =
�2

�2 + 1 + o(1)

  as � → ∞.
 (iii) The function r is the radius of the topological 3-spheres at � . Moreover

r = �+O(1)

  as � → ∞.
 (iv) For an R  >  a, we have

∫ ∞

R

(
�3B2 + �7 (∂�B)2

)
d� < C and sup

�∈(R,∞)

|�3∂�B| < C.

We require that

M := lim
�→∞

(
r2

2

[
1 +

r2

12

(
(trγK)

2 − H2
)]

+
r4

2�2

)
,

where H is the mean curvature of the symmetry orbits, is finite; we call M the mass of (S , g, K) 
at infinity. Recall that in the expression trγK , K is restricted to act only on vectors tangent to 
the topological three-spheres.

Remark 1.2. 

 1. The left-invariant one-forms satisfy

dσ1 + σ2 ∧ σ3 = 0, dσ2 + σ3 ∧ σ1 = 0, dσ3 + σ1 ∧ σ2 = 0.

  One can choose Euler angles (ϑ,ϕ,ψ), 0 < ϑ < π , 0 � ϕ < 2π, 0 � ψ < 4π  on SU(2) 
such that

σ1 = sinϑ sinψ dϕ+ cosψ dϑ, σ2 = sinϑ cosψ dϕ− sinψ dϑ, σ3 = cosϑ dϕ+ dψ.

  In terms of the left-invariant one-forms, the Minkowski metric on R5 is given by

gMink = −dt2 + dr2 +
1
4

r2 (σ2
1 + σ2

2 + σ2
3

)
.

  The Euler angles (ϑ,ϕ,ψ) parametrise the 3-sphere away from the poles. By restricting ψ 
to have period 4π/n, we obtain coordinates on S3/Zn .

D Dold Class. Quantum Grav. 35 (2018) 095012
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 2. By identity (A.1), the notion of mass at infinity is consistent with the renormalised 
Hawking mass introduced in definition 1.5.

 3. The triple (S , g, K) is asymptotically locally AdS, consistent with definition 1.6.

Prima facie it seems as if g  had a singularity at � = a. However, one should compare this 
situation to that of spherical symmetry in spherical coordinates. This intuition is made more 
precise in the following

Proposition 1.3. Let (S , g, K) be of Eguchi–Hanson type. Then there is a b  >  0 such that 
for � ∈ (a, b), (S ∩ {� < b}, g|{�<b}) has topology R2 × S2 and can be smoothly extended by 
adding a 2-sphere at � = a. The resulting manifold is smooth and has no boundary.

Proof. Define

z :=
4
√

a
n

(�− a)1/2 .

To leading order, we have

r2e−4B ∼ r6

a4 ∼ 4a (�− a) =
1
4

n2z2

around � = a. Thus the metric becomes

g ∼ 1
4

(
dz2 + n2z2 (dψ + cosϑdϕ)2

)
+

�2

4
(
dϑ2 + sin2 ϑdϕ2)

to leading order. For fixed (ϑ,ϕ), the restriction on the range of ψ (see remark 1.2) guarantees 
that the metric can be extended smoothly to � = a. By adding an S2 at � = a, we obtain a 
manifold without boundary that has local topology R2 × S2. □ 

Remark 1.4. We immediately see that at infinity, (S , g) is asymptotically locally AdS.

Given Eguchi–Hanson-type initial data, the Einstein vacuum equation (1.2) are well-posed 
in the biaxial Bianchi IX symmetry class—see [Dol17] for a proof. We merely state the well-
posedness theorem here.

Definition 1.5. Let (M, g) be a 5D spacetime. Then (M, g) exhibits a biaxial Bianchi IX 
symmetry if, topologically,

M = Q×
(
S3/Γ

)
,

for Q a 2D manifold (possibly with boundary) and Γ a discrete group with Γ ∈ {∅,Z2,Z3, . . .}, 
such that

g = h +
1
4

r2 (e2B(σ2
1 + σ2

2) + e−4Bσ2
3

)
. (1.3)

Here h is a Lorentzian metric on Q, and r and B are smooth real-valued functions on Q. The 
value r(q) is the area radius of the squashed sphere through q ∈ Q, i. e.

2π2r3 = vol
(
S3

q

)
,

where S3
q is the sphere at q. In this symmetry class, we introduce the renormalised Hawking 
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mass (henceforth referred to as Hawking mass)

m : Q → R

by

m =
r2

2
(1 − g (∇r,∇r)) +

r4

2�2 .

Definition 1.6. A spacetime (M, g) exhibiting biaxial Bianchi IX symmetry is asymptoti-
cally locally AdS with radius � and conformal infinity I  if it is conformally equivalent to a 
manifold (M̃, g̃) with boundary I := ∂M̃ such that

 (i) Conformal infinity I  has topology R× (S3/Γ).
 (ii) The inverse ̃r := r−1 is a boundary defining function for I , i. e. ̃r = 0 and dr̃ �= 0 on I .
 (iii) The rescaled metric r−2g is a smooth metric on a neighbourhood of I  in M̃.
 (iv) For small ̃r > 0, there exist coordinates (t, r̃) on Q such that, locally,

h
(

1
r̃2 ∂r̃,

1
r̃2 ∂r̃

)
= �2r̃2 +O

(
r̃4) .

  in a neighbourhood of I .
 (v) The quantity B satisfies a Dirichlet boundary condition, i. e. B  =  0 on I .

Theorem 1.7. Let (S , g, K) be an initial data set with mass M at infinity such that (S , g, K) 
is of Eguchi–Hanson type. Then there is a T  >  0 and a manifold M := (−T , T)× S equipped 
with a metric g exhibiting biaxial Bianchi IX symmetry such that (M, g) is asymptoticall lo-
cally AdS, g solves (1.2) and {0} × S  has induced metric g  and second fundamental form K. 
Moreover, (M, g) is the unique asymptotically locally AdS solution to (1.2) with initial data 
(S , g, K).

Remark 1.8. 

 1. The local well-posedness theorem for an initial data set (S , g, K) yields the existence of a 
unique maximal development in the sense of [HS11a], see figure 1.

 2. The proof of the local well-posedness theorem in [Dol17] proceeds along the lines of 
[HW13]. Well-posedness of the Einstein vacuum equations  for Λ < 0 in 4D without 
symmetry assumptions was shown by Friedrich in [Fri95], and a recent generalisation 
to higher dimensions by Enciso and Kamran is also available; see [EK14]. In particular, 
theorem 1.7 follows from their work. However the theorem as stated is too general for an 
extension principle (section 3.2); so to exploit the monotonicity of the Hawking mass (see 
section 3.3), a local well-posedness result in norms propagated by the mass (as in sec-
tion 2) is required. It was therefore more convenient to reprove the local well-posedness 
result in the biaxial Bianchi IX symmetry class.

 3. As explained in [Dol17], the most difficult part of this theorem is to establish a local well-
posedness result around null infinity with initial data on an ingoing null hypersurface. 
This local result is reviewed in section 2.

The explicit examples behind this well-posedness theorem are Eguchi–Hanson–AdS spa-
cetimes, constructed in [CM06]. They form a family of solutions (MEH,a, gEH,a) to (1.1) in 
5D, where a > � satisfies

D Dold Class. Quantum Grav. 35 (2018) 095012
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1 +
a2

�2 =
n4

2
for a natural number n � 3. For fixed Λ = −6/�2 < 0, they form a one-parameter family of 
static spacetimes exhibiting biaxial Bianchi IX symmetry. If we define

r = �

(
1 − a4

�4

)1/6

, Ω2 = 1 +
�2

�2 , B = −1
6
log

(
1 − a4

�4

)

and choose coordinates such that

h = −1
2
Ω2 (du ⊗ dv + dv ⊗ du) ,

with

du = dt − 1(
1 + �2

�2

)(
1 − a4

�4

)1/2 d�, dv = dt +
1(

1 + �2

�2

)(
1 − a4

�4

)1/2 d�,

the metric takes the form

gEH,a =−
(

1 +
�2

�2

)
dt2 +

1(
1 + �2

�2

)(
1 − a4

�4

) d�2

+
�2

4

(
1 − a4

�4

)
(dψ + cosϑ dϕ)2

+
�2

4
(
dϑ2 + sin2 ϑ dϕ2)

in (t, �,ϑ,ϕ,ψ) variables with � ∈ (a,∞). In the limit � → ∞, the metric gEH,a restricted to 
hypersurfaces of constant t yields the Riemannian Eguchi–Hanson metric, which was first 
presented in [EH79].

We immediately note:

Proposition 1.9. Let (MEH,a, gEH,a) be an Eguchi–Hanson–AdS spacetime. Then

MEH,a := lim
�→∞

m = −5
6

a4

�2

is negative. At the centre � = a, the Hawking mass is ill-defined, tending to −∞.

1.3. The main result

The main novel result of this paper consists in showing that for initial data of Eguchi–Hanson 
type with negative mass, a Penrose diagram such as figure 2 cannot arise.

Theorem 1.10. Let (S , g, K) be of Eguchi–Hanson type with negative mass M  <  0 at infin-
ity. Then there is no future horizon in the maximal development, i. e. the complement of the 
causal past of null infinity is empty.

Corollary 1.11. Small perturbations of Eguchi–Hanson–AdS spacetimes do not contain fu-
ture horizons.

It is important to stress that the absence of a horizon is a stronger statement than the absence 
of trapped surfaces—shown in proposition 3.2—for a horizon concerns the causal past of null 
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infinity and hence the global geometry of the spacetime, whereas a trapped surface is a local 
phenomenon. For example, in the extended Schwarzschild solution with Λ = 0, there is a fam-
ily of Cauchy surfaces coming arbitrarily close to the singularity r  =  0 such that there exist 
no trapped surfaces lying in the causal past of each surface, see the classical paper by Wald 
and Iyer [WI91].

Figure 1. A general Penrose diagram of the future maximal development of initial data 
of Eguchi–Hanson type via theorem 1.7.

Figure 2. The Penrose diagram depicts the situation of a horizon. The endpoint of I , 
denoted by i+ , is either in I  or its completion; the latter case corresponds to future 
complete I , the former one to an incomplete I . We will show the absence of a horizon, 
that is the impossibility of either of those two cases.

D Dold Class. Quantum Grav. 35 (2018) 095012
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Combining theorem 1.10 with the arguments in section 3.1 leaves us with the following 
dichotomy: either the future development of Eguchi–Hanson-type data with negative mass 
contains a first singularity in Γ\Γ, where Γ is the centre—see figure 3—, or no first singulari-
ties form at all.

In virtue of the properties and conjectures described in the next section, our result, restricted 
to perturbations of Eguchi–Hanson–AdS spacetimes, can corroborate the conjecture put for-
ward in in [DH06a]:

Conjecture 1.12. Small perturbations of Eguchi–Hanson–AdS spacetimes have a Penrose 
diagram as depicted in figure 3. Moreover, I  is future incomplete.

In contrast, in a comparable context where no horizons can form, the work [BJ13], 
described in the next section, allows for growth of perturbations and global existence of the 
solution without the formation of a naked singularity. Thus the dynamics is very complicated 
and the question of the formation of naked singularities remains open.

1.4. The significance of Eguchi–Hanson–AdS spacetimes

The main motivation that sparked recent interest in asymptotically locally AdS solutions to the 
Einstein vacuum equations within the physics community is a putative connection between 
spacetimes of this form and conformal field theories defined on their respective boundaries: 
the AdS-CFT correspondence. It is of interest to understand what the positivity of gravita-
tional energy means in the conformal field theory and thus ‘ground states’, lowest energy 
configurations classically allowed, deserve consideration—see [GSW02] for more details and 
references on the issue of gravitational energy in this context.

A ground state depends heavily on the topology at infinity. If the spacetime is asymptoti-
cally AdS, this ground state is exact anti-de Sitter space with vanishing mass—see [BGH84]. 
For asymptotically locally AdS spacetimes with toroidal topology at infinity, the works 
[HM98] and [GSW02] lend support to the conjecture that the so-called AdS soliton is the 
ground state in a suitable class of spacetimes.

The article [CM06] was motivated by searching for a spacetime that asymptotically 
approaches AdS5/Γ, where Γ is any freely acting discrete group of isometries, but has 
energy less than that of AdS5/Γ. This led to the Eguchi–Hanson–AdS solution in 5D. These 

Figure 3. The Penrose diagram depicts the formation of a first singularity emanating 
from the central wordline Γ. The singularity is denoted by the circled dot; the dotted 
line is not part of the spacetime.

D Dold Class. Quantum Grav. 35 (2018) 095012
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spacetimes have also been conjectured in [CM06] to have minimal mass among asymptoti-
cally locally AdS spacetimes with topology AdS5/Zn at infinity:

Conjecture 1.13. Let (S , g, K) be of Eguchi–Hanson type with S = (a,∞)× (S3/Zn), 
then

M � MEH,a

with equality if and only if the data agree with those induced by the Eguchi–Hanson–AdS 
spacetime with parameter a.

In a neighbourhood of Eguchi–Hanson–AdS solutions, this was indeed shown to be true:

Theorem 1.14 ([DH06a], see also [CM06]). Given any a  >  0, assume initial data 
(S , g, K) of Eguchi–Hanson type with S = (a,∞)× (S3/Zn) which are a sufficiently small, 
but non-zero perturbation of the data induced by the Eguchi–Hanson–AdS spacetime with 
parameter a, then the mass M at infinity satisfies

MEH,a < M < 0. (1.4)

Motivated by the static uniqueness theorem for exact AdS space [BGH84], one conjec-
tured—see [DH06a]:

Conjecture 1.15. There are no static, globally regular asymptotically locally AdS solutions 
to (1.2) with topology S3/Zn  with mass M satisfying (1.4).

Thus, fixing a, the Eguchi–Hanson–AdS spacetime satisfying (1.4) can be seen as the 
ground state in the biaxial Bianchi IX symmetry class. There is a folklore statement that such 
ground states would be stable under gravitational perturbations. However, in contrast, the pre-
sent work, paired with the above conjectures, heuristically hints at an instability: Perturbing 
an Eguchi–Hanson–AdS spacetime slightly increases its mass at infinity, whilst remaining 
negative; therefore, by corollary 1.11, the future maximal development cannot contain a black 
hole, but by conjecture 1.15, there is no static end state for the perturbation, which intimates 
that a first singularity forms, emanating from the centre. Therefore, such perturbations are 
potential candidates for examples of the formation of naked singularities.

It is interesting to note that a dual situation is found for perturbations of AdS3, as investigated 
in [BJ13]. There, small perturbations of 3D AdS space were studied numerically as solutions to 
the Einstein-scalar field system. The parallel to our case is that in 3D, there exists a mass threshold 
below which no black holes can form. In contrast, while the numerical computations of [BJ13] 
suggest turbulence which cannot be terminated by a black hole formation, they provide evidence 
that small perturbations remain globally regular in time since the turbulence is too weak.

Finally, studying 5D static spacetimes for various values of Λ or, more precisely, clas-
sifying their 4D Riemannian counterparts is still an active field of research in geometry. It is 
known that there are exactly four complete non-singular 4D Ricci flat Riemannian spaces: 
Euclidean space, Eguchi–Hanson space, self-dual Taub-NUT space and Taub-Bolt space. See 
[Gib05] for further details. Moreover, Eguchi–Hanson space has been used in geometric glu-
ing constructions; see [Biq13] and [BK17]. For more results in this realm, both classical and 
recent, see [BGPP78, LeB88, EH79, BK17] and references therein.

1.5. Outline of the paper

From the local well-posedness theorem (theorem 1.7), we obtain the existence of a maximal 
development of Eguchi–Hanson-type data, with B satisfying a Dirichlet boundary condition at 
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infinity. The global geometry of spacetimes arising from such data is described in section 3.1. 
We also prove in that section that the spacetime is either globally regular without a horizon, 
or forms a horizon, or evolves into a first singularity at the centre. We proceed to show that no 
horizons can form in the dynamical evolution.

Proving the absence of horizons will take the structure of an argument by contradiction 
(section 3.3). Suppose that the Penrose diagram of the spacetime looks like figure 4. By soft 
arguments relying on the well-posedness result, we show that one can always find a null 
hypersurface such as N2 that does not intersect the initial hypersurface, but reaches from the 
horizon to null infinity. In section 3.2, an extension principle is shown for triangular regions 
around null infinity—such as the one enclosed by H+, N2 and I  –, which permits to extend 
the solutions to the future to a strictly larger triangle, provided uniform bounds hold in the 
triangular region. The proof of the extension principle uses the local existence result proved 
in [Dol17] and reviewed in section 2. We then proceed (section 3.3) to establish that those 
quantities can indeed be bounded only in terms of their values on N2, where they hold by 
compactness of N2 and the local well-posedness result. Thus we can extend the solution along 
I  beyond H+, which is a contradiction.

2. Local well-posedness

Before beginning with the proof of the main result, we review the local well-posedness result 
around null infinity of [Dol17] since the extension principle of section 3.2 relies on it. The 
exposition of this section parallels that of [HW13]. This will allow the reader familiar with 
that argument to gain quick access to the problem at hand.

Proving local well-posedness in the context of negative cosmological constant around 
infinity has been achieved for the 4D Einstein–Klein–Gordon system in [HS11a] and [HW13]. 
Several differences arise in the present context, which are outlined in [Dol17]. However, we 
can follow the general strategy of [HW13]. We first define the triangle

∆δ,u0 := {(u, v) ∈ R2 : u0 � v � u0 + δ, v < u � u0 + δ}

and the conformal boundary

Figure 4. We can achieve that the initial data slice touches null infinity and does not 
reach Γ by moving from a slice such as N1 to N2.
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I := ∆δ,u0\∆δ,u0 .

See figure 5 for a visualisation. Our dynamical variables are

(r̃, m, B) : ∆δ,u0 → R+ × R2.

We treat these as defining auxiliary variables

r :=
1
r̃

, 1 − µ := 1 − 2m
r2 +

r2

�2 , Ω2 := −4r4r̃ur̃v

1 − µ
. (2.1)

Here and henceforth, subscripts u and v signify partial derivatives with respect to u and v, 
respectively.

The general discussion of appendix A.2 show that the correct notion of a solution to the 
Einstein vacuum equations in the triangular region is encapsulated in the following

Definition 2.1. A weak solution to the Einstein vacuum equations in ∆δ,u0 is a triple

(r̃, m, B) ∈ C1
loc(∆δ,u0) ∩ W1,1

loc (∆δ,u0) ∩ H1
loc(∆δ,u0)

such that ̃ruu, Bu, mu ∈ C0
loc and the equations

r̃uv = Ω2r̃3
(
−1 +

1
3

R − 2mr̃2
)

 (2.2)

∂um = − r̃u

r̃3

(
1 − 2

3
R
)
+

4
Ω2

r̃v

r̃5 (Bu)
2

 (2.3)

∂vm = − r̃v

r̃3

(
1 − 2

3
R
)
+

4
Ω2

r̃u

r̃5 (Bv)
2

 (2.4)

Figure 5. The triangular domain ∆δ,u0 of local existence .
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Buv =
3
2

r̃u

r̃
Bv +

3
2

r̃v

r̃
Bu −

1
,
3Ω2r̃2 (e−2B − e−8B) (2.5)

where

R = 2e−2B − 1
2

e−8B,

are satisfied in the interior of ∆δ,u0 in a weak sense.

Remark 2.2. The function spaces Ck
loc, W

k,p
loc  and Hk

loc are the local versions of the spaces 
Ck, Wk,p and Hk, respectively.

Equations (2.2), (2.4) and (2.5) are treated as the dynamical equations, whereas (2.3) can 
be treated as a constraint equation that is propagated.

Definition 2.3. Let N = (u0, u1]. A triple

(r̃, M, B) ∈ C2(N )× R× C1(N )

is a free data set if the following hold:

 (i) r̃ > 0 and ̃ru > 0 in N , as well as limu→u0 r̃(u) = 0, limu→u0 r̃u = 1/2 and limu→u0 r̃uu = 0.
 (ii) There is a constant C0 such that

∫ u1

u0

1
(u − u0)3

[
B

2
+ (Bu)

2
]

du < C0

sup
N

∣∣∣r̃−2
B
∣∣∣+ sup

N

∣∣∣r̃−1
∂uB

∣∣∣ < C0.

From this, we obtain a complete initial data set 
(r̃, B, m, r̃v) ∈ C2(N )× C1(N )× C1(N )× C1(N ). First, we integrate

∂um = − r̃u

r̃
3

(
1 − 2

3
R
)
− 1

r̃r̃u

(
1 − 2mr̃

2
+

1

�2r̃
2

)
(Bu)

2 (2.6)

with boundary condition

lim
u→u0

m = M

for the Hawking mass M at infinity. Note here that

1 − 2
3

R = 8B
2
+O(B

3
),

whence the first term on the right hand side of (2.6) is regular as r̃ → 0 due to the bounds on 
B . The function ̃rv is obtained from solving the ODE

∂ur̃v

r̃v
= − 4r̃u

r̃ − 2mr̃
3
+ 1

�2 r̃

(
−1 +

R
3
− 2mr̃

2
)

with boundary condition

lim
u→u0

r̃v = −1
2

.
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Theorem 2.4. Let (r̃, M, B) be a free data set in the sense of definition 2.3 on N = (u0, u1]. 
Then there is a δ > 0 such that there exists a unique weak solution (r̃, m, B) of the Einstein 
equations in the triangle ∆δ,u0 such that

 (i) r̃  satisfies the boundary condition

r̃
∣∣
I = 0

 (ii) B satisfies the boundary condition

B
∣∣
I = 0

  in a weak sense
 (iii) r̃  and B agree with ̃r  and B  when restricted to N .

Remark 2.5. Imposing higher regularity on the initial data, we obtain a classical solution 
to (1.2) in ∆δ,u0; see [Dol17] for a precise statement.

We conclude this section with a remark about the Hawking mass. The mass is a dynamical 
variable and does not have to be conserved at infinity a priori. However, a geometric version 
of conservation holds:

Proposition 2.6. Let (r̃, m, B) be a classical solution. Set

T :=
1
Ω2 (rv∂u − ru∂v)

R :=
1
Ω2 (rv∂u + ru∂v) .

Then T  and R are invariant under a change of the (u, v) coordinates that preserves the form 
of the metric and

T m
∣∣∣∣
I
= 0.

3. The global problem

This section  is devoted to studying the global dynamics arising from Eguchi–Hanson-type 
initial data. The existence of a maximal development is guaranteed by theorem 1.7 and remark 
1.8. In section 3.1, we specify our choice of coordinates on the orbits of the SU(2)× U(1) 
action and derive some geometric properties; here, we follow the exposition of [Daf04a] and 
[Daf04b] mutatis mutandis. Proving that the existence of a horizon would be contradictory is 
the content of sections 3.2 and 3.3.

3.1. Global biaxial Bianchi IX symmetry

Let (S , g, K) be of Eguchi–Hanson type with negative mass M at infinity. Then, by theorem 
1.7 and remark 1.8, there is a unique maximal forward development (M+, g) which is asymp-
totically locally AdS. There is a projection map π : M+ → Q+ onto a 2D manifold with 
boundary Q+ such that every q ∈ Q+ represents an orbit under the SU(2)× U(1) symmetry. 
The manifold Q+ can be embedded smoothly into (R2, gMink) and its boundary consists of a 
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1D curve Σ (initial hypersurface) and a 1D curve Γ (central worldline, where r  =  0). Choosing 
standard null coordinates (u, v) on R1+1, Q+ shall be endowed with a metric

h = −1
2
Ω2(u, v) (du ⊗ dv + dv ⊗ du) .

We choose u such that the curves of constant u are outgoing and such that u as well as v are 
increasing to the future along Γ. A coordinate chart (u′, v′) preserves these assumptions if and 
only if

∂u′

∂u
> 0,

∂v′

∂v
> 0,

∂u′

∂v
=

∂v′

∂u
= 0. (3.1)

With respect to h, Σ is spacelike and Γ timelike. Conformal infinity I ⊆ Q+\Q+ is defined 
as follows: Set

U :=

{
u : sup

(u,v)∈Q+

r(u, v) = ∞

}
.

For each u ∈ U , there is a unique v∗(u) such that

(u, v∗(u)) ∈ Q+\Q+.

Note here that the closure is always taken with respect to the topology of R2. Now define null 
infinity as

I :=
⋃

u∈U
(u, v∗(u)).

Since the spacetime is asymptotically locally AdS, null infinity I  is timelike. We have

Q+ = D+ (Σ ∪ I) ,

i. e. Q+ is in the future domain of dependence of Σ and I . By a simple change of coordinates 
satisfying (3.1), we achieve that u = v on I . Note that in general, we cannot achieve that 
both I  and Γ are straightened out in this way. We know that B extends continuously to I  and 
vanishes there. Moreover, we know that the Hawking mass m extends continuously to I  and 
equals a constant value M  <  0.

Lemma 3.1. The following hold:

 (i) r is unbounded on Σ.
 (ii) m → M < 0 as r → ∞.
 (iii) rv > 0 for points in Σ with large r, and

rv

Ω2 → c0 > 0

  as r → ∞.

Proof. The radius r is unbounded on Σ by the definition of Eguchi–Hanson-type data. By 
M  <  0, we immediately obtain that m  <  0 on around I . For the Hawking mass to be finite at 
infinity,

−4
rurv

Ω2 =
r2

�2 +O(r)
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as r → ∞. Moreover,

ru

rv
→ −1

as r → ∞ because we have chosen (u, v) such that u = v on I . The conformal factor Ω2 
grows as r2 since the spacetime is asymptotically locally AdS. Therefore, we deduce that 
rv/Ω

2 is positive and finite as r → ∞. □ 

Proposition 3.2. The above manifold M+ does not have any trapped or marginally 
trapped surfaces, i. e.

ru < 0 and rv > 0

globally in Q+.

Proof. Define the set

A := {(u, v) ∈ Q+ : m(u, v) < 0}.

Evidently, A is open. From lemma 3.1, we know that the points of Σ with r sufficiently large 
are contained in A. Call this set U1. Moreover, since M is negative and m is continuous, A con-
tains a neighbourhood of I . Call this neighbourhood U2. Let C be the connected component 
of A containing U1 and U2. Clearly, C is open as well. In C, we have

0 > m =
r2

2

(
1 + 4

rurv

Ω2

)
+

r4

2�2 , (3.2)

from which we conclude that rurv < 0 wherever r is finite because C is connected. Since there 
is a point on Σ, contained in C, where rv > 0, we have that ru  <  0 and rv > 0 in C. From (A.7) 
and (A.8), we obtain ∂um � 0 and ∂vm � 0 in C, thus also in C. Therefore, m  <  0 in C. Hence 
C is open and closed. We conclude that Q+ = C ⊆ A ⊆ Q+. The statement then follows from 
(3.2). □ 

Remark 3.3. The absence of anti-trapped surfaces can also be guaranteed by fixing the sign 
of ru on Σ and I  and then using (A.2).

This fact already allows us to prove a weak geometric statement about the potential singu-
larities that can arise in the time evolution.

Definition 3.4. Let p ∈ Q+. The indecomposable past subset J−( p) ∩ Q+ is said to be 
eventually compactly generated if there exists a compact subset X ⊆ Q+ such that

J−( p) ⊆ D+(X) ∪ J−(X).

Here we denote by J−(S) the causal past of a subset S.

Definition 3.5. A point p ∈ Q+\Q+ is a first singularity if J−( p) ∩ Q+ is eventually 
compactly generated and if any eventually compactly generated indecomposable past proper 
subset of J−( p) ∩ Q+ is of the form J−(q) for a q ∈ Q+.

Lemma 3.6. Let p ∈ Q+\Q+ be a first singularity. Then

D Dold Class. Quantum Grav. 35 (2018) 095012



17

p ∈ Γ\Γ.

Proof. Suppose p /∈ Γ. Since the compact set X of definition 3.5 has to be wholly contained 
in Q+, we know that p /∈ I . In particular, p is the future endpoint of a rectangle, whose re-
mainder is completely contained in the interior of Q+; see figure 6. By proposition 3.2, ru  <  0 
and rv > 0 in this rectangle. Therefore, we can apply the standard extension principle away 
from infinity and the central worldline—in a manner as e. g. in [Daf04a]—to conclude that 
p ∈ Q+, a contradiction. □ 

Theorem 3.7. If Q+\J−(I) �= ∅, then there is a null curve H+ ⊆ Q+ such that

H+ = J−(I)\
(
I−(I) ∪ I

)
. (3.3)

The null curve H+ is the future event horizon.

Note that I−(S) denotes the chronological past of a subset S.

Proof. The horizon is given by

H+ = J̊−(I) ∩ Q+.

Let p be the future endpoint of the horizon. Since Q+\J−(I) �= ∅, p /∈ Γ\Γ. Therefore p 
would not be the future endpoint of the horizon. If p ∈ Γ, there is an open neighbourhood U of 
p such that U ∩ Q+ �= ∅ If p /∈ Γ ∪ I , then p is a first singularity and we have a contradiction 
to lemma 3.6. Therefore p ∈ I . □ 

Sections 3.2 and 3.3 are devoted to showing theorem 1.10.

3.2. An extension principle

We formulate and prove an extension principle tailored to extending a solution beyond a sup-
posed horizon.

Theorem 3.8. Let (r̃, m, B) be a classical solution to the Einstein equation (2.2)–(2.5) in 
the punctured triangle ∆ := ∆d,u0\{(u0 + d, u0 + d)}. Let

X X

(u1, v1)

(u2, v1)

(u1, v2)

(u2, v2)

Figure 6. The extension property in the interior.
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Iaux = ∆d,u0\{∆d,u0 ∪ {(u0 + d, u0 + d)}}.

Assume that

r̃
∣∣∣
Iaux

= 0, m
∣∣∣
Iaux

= M < 0, B
∣∣∣
Iaux

= 0

and that

lim
v→u0+d

r̃(u0 + d, v) = 0.

Suppose that

r̃u > 0 and r̃v < 0

in Δ, that

inf
Iaux

r̃u > 0 and sup
Iaux

r̃v < 0

and that there is a C  >  0 such that

sup
u0�v�u0+d

∫ u0+d

v
r̃−3 (B2 + (Bu)

2) du′ + sup
∆

∣∣r̃−1∂uB
∣∣ < C.

Then there is a δ > 0 such that the solution (r̃, m, B) can be extended to the strictly larger 
triangle ∆d+δ,u0.

Proof. Extending beyond the domain of existence means using the local well-posedness 
result to extend the solution further into the future. We will first need to make sure that on 
each constant v-slice, the function r̃  satisfies the correct boundary conditions. Reformulating 
equation (2.2), we obtain

r̃uv = − 4r̃ur̃v

r̃2 + 2|m|̃r4 + �−2 r̃
(
−1 +

1
3

R − 2mr̃2
)

.

Therefore r̃uv = 0 on Iaux. Using a coordinate change, we want to fix the value of r̃u. By the 
assumptions and since ̃ru = −r̃v on Iaux, |̃ru|, |̃rv| � c > 0. Thus

du′

du
(u, v) = 2r̃u(u, u),

dv′

dv
= 2r̃v(v, v),

where u′ = u and v′ = v on I , defines a regular change of coordinates that preserves the bi-
axial Bianchi IX symmetry. Moreover, in (u′, v′) coordinates,

r̃
∣∣∣
I
= 0, r̃u′

∣∣∣
I
=

1
2

, r̃u′v′

∣∣∣
I
= 0. (3.4)

Hence we can assume without loss of generality that (3.4) already holds in the original (u, v) 
coordinates.

To increase the domain of existence, we also need initial v-slices of increased length. This 
can be achieved by an application of the standard local existence theorem away from in-
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finity in double null coordinates whose proof proceeds by the same methods as for Λ = 0, 
which is standard by now. There is a δ0 > 0 such that we can extend the data to the slice 
(u0, u0 + d + δ′] of constant v = u0. Then, for all ε > 0, there is a 0 < δ′ < δ0 such that there 
is a classical solution in the rectangle

{u0 + d � u � u0 + d + δ′, u0 � v � u0 + d − ε} .

Therefore, for all ε > 0, there is a δ′ > 0 such that the solution can be extended to the set

∆ε := ∆ ∪ (∆d+δ′,u0 ∩ {v � u0 + d − ε}) .

For each constant v-ray in ∆ε, we have a initial data set, whose functions have norms uniform-
ly bounded by 2C. Note that the condition 1 − µ > cr2/�2 (for c  >  0), required in [Dol17] 
holds everywhere because M  <  0.

Therefore, by the local existence theorem of [Dol17] (theorem 3.2.5 there), there is a δ∗ in-
dependent of ε such that each slice of constant v in ∆ε yields a solution in a triangular domain 
of size δ∗. Now we choose ε = δ∗/2 and see that the solution (r̃, m, B) extends to a strictly 
larger triangle ∆d+δ,u0, where δ = ε. □ 

The proof above yields another version of the extension principle that we formulate sepa-
rately for the sake of clarity.

Corollary 3.9. Suppose the assumptions of theorem 3.8 hold. Moreover, let us as-
sume that the classical solution on Δ has an extension to the extended initial data slice 
Ñ = (u0, u0 + d + ε]. Then there is a δ > 0 such that the solution (r̃, m, B) can be extended to 
∆d+δ,u0 such that it agree on Ñ ∪∆d+u0,u0 with the given values. Furthermore, the extension 
is unique for sufficiently small δ > 0

3.3. A priori estimates

In this section, we first establish what was described through figure 4 in section 1.5 as the soft 
argument. This is the content of lemma 3.10. The remainder of the section contains the argu-
ment by contradiction, using the extension principle in form of corollary 3.9.

Lemma 3.10. Let Q+ be as in theorem 1.10. Set ∆d
u := ∆d,u\{(u + d, u + d)} and 

N d
u := {v = u} ∩∆d

u . Then for any ∆d1
u1
⊆ Q+, there is a u0 � u1 and d0 := d1 − (u0 − u1) 

such that

 (i) r � r0 > 0 in ∆d0
u0

.
 (ii) There are q1, q2 > 0 such that

q1 �
rv

Ω2 � q2 (3.5)

  in ∆d
u0

. The constants q1 and q2 depend on the choice of r0.

Proof. If ∆d1
u1

 touches Γ, then by moving the initial slice of constant v to the future—as de-
picted in figure 4—, we achieve that r � r0 > 0 since rv > 0 globally by proposition 3.2. Let 
us choose r0 maximal such that (i) holds.

By assumption, the bound on rv/Ω
2 holds on Σ. Set
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R := {r = r0} ∩ {u � u0 + d0} ∩ Q+.

The set R is closed and touches {u  =  u0  +  d  +  0} and Σ. The continuous function rv/Ω
2 is 

positive in Q+ by proposition 3.2. Therefore the bound on rv/Ω
2 holds in R. We will show 

that (3.5) holds in the causal future of

S := R∪ (Σ ∩ {r � r0})

such that the constants q1 and q2 depend on the values of rv/Ω
2 on S. We rewrite the constraint 

equation (A.3) as

∂v

( rv

Ω2

)
=

(
−4r3ru

Ω2 (Bv)
2
)(

− 2
r2(1 − µ)

)
rv

Ω2 . (3.6)

Given (u, v) ∈ J+(S), there is a (u′, v′) ∈ S such that (u, v) and (u′, v′) are connected by a null 
curve. We integrate (3.6) along a ray of constant u to find

( rv

Ω2

)
(u, v) = exp

(∫ v

v′

4r3ru

Ω2 (Bv)
2 2

r2(1 − µ)
dv′′

)
·
( rv

Ω2

)
(u′, v′)

� exp

(
− 2

r2
0

∫ v

u0

−4r3ru

Ω2 (Bv)
2 dv′′

)
·
( rv

Ω2

)
(u′, v′)

� exp

(
− 2

r2
0
(m(u, v)− m(u′, v′))

)
·
( rv

Ω2

)
(u′, v′).

For the first inequality, we have used 1 − µ > 1 and r � r0. For the second inequality, we have 
used (2.4) and have dropped a non-negative term. Therefore, we obtain

e
− 2

r2
0
[M−m(u0+d,u0)] rv

Ω2

∣∣∣∣
(u′,v′)

�
rv

Ω2

∣∣∣∣
(u,v)

�
rv

Ω2

∣∣∣∣
(u′,v′)

. (3.7)

This yields (3.5). □ 

Remark 3.11. A bound of the form (3.7) can always be achieved, independently of the 
exact value of M.

Now assume for the sake of contradiction that Q+ possesses a horizon H+. According to 
lemma 3.10, we find a ∆ := ∆d0

u0
 such that (u0 + d, u0) ∈ H+ and such that the conclusions 

of the lemma hold. In particular, the constants and bounds will be fixed henceforth. Again, let 
Iaux := ∆d,u0\{∆d,u0 ∪ {(u0 + d, u0 + d)}}. Let N := N d0

u0
. We always have that

r̃
∣∣∣
Iaux

= 0, m
∣∣∣
Iaux

= M < 0, B
∣∣∣
Iaux

= 0,

and that

ru < 0 and rv > 0.

We will show that all the assumptions of the extension principle hold. Let us first turn to 
estimating the norms of B. The mass achieves its minimum at (u1, u0) with u1 = u0 + d and 
its maximum on Iaux. Therefore, upon integration over constant v, we obtain
∫ u1

v

(
−rru

(
1 − 2

3
R
)
+

4
Ω2 r3rv(Bu)

2
)

du = M − m(u1, v) � M − m(u1, u0).
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Note that we have

1 − 2
3

R � min{B2/2, 1}.

We need to estimate the coefficients in the integral. From

r̃u =
1

4r2 rv
Ω2

(1 − µ)

and (3.6), we obtain

1
4�2

(
max

u0�u�u1

rv

Ω2

∣∣∣∣
(u,u0)

)−1

� r̃u �e
2

r2
0
[M−m(u0+d,u0)]

(
min

u0�u�u1

rv

Ω2

∣∣∣∣
(u,u0)

)−1

× r̃2

4

(
1 +

2|M|
r2 +

r2

�2

)

 

(3.8)

and see that r̃u is uniformly bounded above and below by a constant depending only on data 
on N . Therefore

C1(u − v) � r̃ � C2(u − v)

and

lim
v→u0+d

r̃(u0 + d, v) = 0. (3.9)

Furthermore,

−ru

∣∣∣∣
(u,v)

=
1 + 2|m|

r2 + r2

�2

4 rv
Ω2

�
r2

4�2

1

maxu0�u�u1
rv
Ω2

∣∣∣∣
(u,u0)

.

Therefore there is a constant Cu depending only on values of ̃r , ̃rv and m on v = u0 such that
∫ u1

v
r3 (min{B2, 1}+ (Bu)

2) du < Cu (3.10)

uniformly in Δ.
Thus,

|B(u, v)| �
(∫ u

v

1
r3 du′

)1/2 (∫ u

v
r3B2

u du′
)1/2

�
C1/2

2

2
C1/2

u (u − v)2.

It follows that

r̃−2|B| � Cpointwise (3.11)

uniformly. Together with (3.10), this yields
∫ u1

u
r3 (B2 + (Bu)

2) du < C′
u. (3.12)

In a similar way, one also obtains
∫ v

u0

r3 (B2 + (Bv)
2) dv < C′

v
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for v ∈ [u0, u1) from integrating ∂vm and then deriving a bound on ru/Ω
2 as (3.7). Here one 

uses that

ru

Ω2

∣∣∣∣
I
= − rv

Ω2

∣∣∣∣
I

.

Using the wave equation for B in the form

∂v

(
r3/2Bu

)
= −3

2
r1/2ruBv −

Ω2

3r1/2

(
e−2B − e−8B) (3.13)

yields
∣∣∣r(u, v)3/2Bu(u, v)

∣∣∣ �r(u, u0)
3/2|Bu(u, u0)|+ C

∫ v

u0

r(u, v′)5/2|Bv(u, v′)| dv′

+
1
3

(∫ v

u0

Ω2

r2 dv′
)1/2 (∫ v

u0

Ω2r
∣∣e−2B − e−8B

∣∣2 dv′
)1/2

.

Since Ω2/r2 is bounded by virtue of the bounds established above, the third term is easily seen 
to be bounded. The second term is estimates as

∫ v

u0

r5/2|Bv| dv′ �

(∫ v

u0

r3(Bv)
2 dv′

)1/2 (∫ v

u0

r2dv′
)1/2

�C
(∫ v

u0

∂vr
(−r̃v)

dv′
)1/2

�Cr(u, v)1/2.

Therefore,

|rBu| � r(u, u0)|Bu(u, u0)|+ C,

where C depends on values on N  and on C1, C2,, C′
v. Since B is a classical solution up to and 

including the horizon, there is an α > 0 such that

B = sα (a0(t) + a1(t)s + o(s)) (3.14)

for smoothly differentiable functions a0 and a1 of t = (u + v)/2. Here s = (u − v)/2. From 
above, the asymptotics of r, ru, rv and Ω2 are known as we approach the boundary. Inserting 
(3.14) into (3.13), we obtain α = 4. Therefore, rBu is bounded on N  and we have established 
the desired pointwise bound on rBu in Δ.

An application of the extension principle (theorem 3.8) yields theorem 1.10 if it also holds 
true that

inf
Iaux

r̃u > 0 and sup
Iaux

r̃u < 0.

This has been established already in (3.8), thus finishing the proof of theorem 1.10.
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Appendix. Biaxial Bianchi IX symmetry

A.1. Formulae related to the renormalised Hawking mass

In this section, we collect some useful calculations and identities related to the renormalised 
Hawking mass. Let us first start generally with an n-dimensional Lorentzian manifold (M, g) 
with Levi-Civita connection ∇ and a spacelike hypersurface (N , g) with induced second fun-
damental form K. Let n be the timelike normal on N . Let (Σ, γ) be a compact 3D submanifold 
of N , separating N  into an inside and an outside. Let ν be the unit normal pointing outside. 
Set l± := n ± ν. For X and Y tangent to Σ, we define the symmetric null second forms

χ±(X, Y) := g (∇Xl±, Y) .

Clearly,

χ± =
1
2
Ll±g.

The associated null expansion scalars are defined by

ϑ± := trγχ± = γAB (χ±)AB = γAB∇A (l±)B .

Let H be the mean curvature of Σ. Then we immediately obtain

ϑ± = trγK ± H.

Henceforth, we will consider only dimension n  =  5. Let us assume that N  is foliated by topo-
logical 3-spheres Σr , where

4π2r = Vol (Σr) =

∫

Σr

dµγ =

∫

S3

√
γ dµS3 .

We compute

Ll± (Vol (Σr)) =

∫

S3

1
2
√
γ
Ll± (det γ) dµS3 =

∫

S3

1
2
γAB (Ll±γ

)
AB

√
γ dµS3 =

∫

Σr

ϑ± dµΣr .

Assuming that ϑ± is constant on Σr , we obtain

l±r =
r
3

trγχ±.

Therefore,

g(∇r,∇r) = − r2

12
(trγχ+) (trγχ−) = − r2

12

(
(trγK)

2 − H2
)

. (A.1)

A.2. The Einstein vacuum equations reduced by biaxial Bianchi IX symmetry

We quote the following result from [DH06a] and do not present a derivation:

Theorem A.1. Let (M, g) exhibit a biaxial Bianchi IX symmetry with metric

g = −1
2
Ω2 (du ⊗ dv + dv ⊗ du) +

1
4

r2e2B (σ2
1 + σ2

2

)
+

1
4

r2e−4B σ2
3

Then the Einstein vacuum equation (1.2) for Λ = −6/�2 < 0, understood as a classical sys-
tem of partial differential equations, are equivalent to the system of two constraint equations
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∂u

( ru

Ω2

)
= − 2r

Ω2 (Bu)
2 (A.2)

∂v

( rv

Ω2

)
= − 2r

Ω2 (Bv)
2 (A.3)

and four evolution equations

ruv = −Ω2R
3r

− 2rurv

r
− Ω2r

�2
 (A.4)

(log Ω)uv =
Ω2R
2r2 +

3
r2 rurv − 3BuBv +

Ω2

2�2
 (A.5)

Buv = −3
2

ru

r
Bv −

3
2

rv

r
Bu −

Ω2

3r2

(
e−2B − e−8B) , (A.6)

where

R = 2e−2B − 1
2

e−8B

is the scalar curvature of the group orbits.

Proof. One needs to compute the components of the Ricci curvature. The constraints are 
the uu and vv components. The equation  (A.5) comes from the uv component. The equa-
tions (A.4) and (A.6) are the content of the remaining components. □ 

Now our aim is to reformulate the equations of theorem A.1 in terms of the renormalised 
Hawking mass. The derivatives of the mass are given by

∂um = rru

(
1 − 2

3
R
)
− 4

Ω2 r3rv(Bu)
2 (A.7)

∂vm = rrv

(
1 − 2

3
R
)
− 4

Ω2 r3ru(Bv)
2. (A.8)

Since x �→ 2e−2x − e−8x/2 is positive for |x| → ∞ and has no extremum, we conclude that 
∂um � 0 and ∂vm � 0.

Proposition A.2. Assume that (A.4), (A.6)–(A.8) hold. Moreover, define Ω via (2.1). Then 
the constraints (A.2) and (A.3) hold. If the right hand side of (A.4) can be differentiated in u, 
then also (A.5) holds.

Proof. The proof is a calculation. We obtain

4ru

Ω2 = − 1
rv

+
2m
r2rv

− r2

�2rv

from (2.1). This yields
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∂u

( ru

Ω2

)
=− ru

rv

ruv

Ω2 +
1
2

mu

r2rv
− mru

r3rv
− 1

2
r
�2

ru

rv

=
ru

rv

(
1
2r

− R
3r

+
R
3r

− 1
2r

+
m
r3 − r

2�2 +
r
�2 − 1

2
r
�2 − m

r3

)
− 2

Ω2 r (Bu)
2

=− 2
Ω2 r (Bu)

2 .

The second constraint equation is obtained analogously. To obtain the equation for (log Ω)uv, 
we multiply (A.2) by Ω2 and differentiate with respect to u:

−2ru (log Ω)uv + ruuv − 2ruv
Ωu

Ω
= −2rv (Bu)

2 − 4rBuBuv.

Using (A.4), we obtain

ruuv − 2ruv
Ωu

Ω
=

Ω2

r2 ruR +
4Ω2

3r
Bu

(
e−2B − e−8B)+ Ω2ru

�2 + 6
(ru)

2

r2 rv + 4rv(Bu)
2.

Applying (A.6), the desired equation follows. □ 
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