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ABSTRACT

We prove that if two Calabi–Yau invertible pencils have the same dual

weights, then they share a common factor in their zeta functions. By using

Dwork cohomology, we demonstrate that this common factor is related to a

hypergeometric Picard–Fuchs differential equation. The factor in the zeta

function is defined over the rationals and has degree at least the order of

the Picard–Fuchs equation. As an application, we relate several pencils of

K3 surfaces to the Dwork pencil, obtaining new cases of arithmetic mirror

symmetry.

1. Introduction

1.1. Motivation. For a variety X over a finite field Fq, the zeta function of

X is the exponential generating function for the number of Fqr -rational points,

given by

Z(X,T ) := exp

( ∞∑
r=1

#X(Fqr)T
r

r

)
∈ Q(T ).

In his study of the Weil conjectures, Dwork analyzed the way the zeta function

varies for one-parameter deformations of Fermat hypersurfaces in projective

space, like the pencil

(1.1.1) xn+1
0 + · · ·+ xn+1

n − (n+ 1)ψx0x1 · · ·xn = 0

in the parameter ψ. In his 1962 ICM address [Dwo62], Dwork constructed a

family of endomorphisms whose characteristic polynomials determined the zeta

functions of the hypersurfaces modulo p. Furthermore, he identified a power

series in the deformation parameter with rational function coefficients that sat-

isfies an ordinary differential equation with regular singular points. In fact, this

differential equation is the Picard–Fuchs equation for the holomorphic differen-

tial form [Kat68]. The pencil (1.1.1) is a central example in both arithmetic

and algebraic geometry [Kat09]; we label this family Fn+1.

On the arithmetic side, Dwork [Dwo69] analyzed F4 in detail to explore the re-

lationship between the Picard–Fuchs differential equation satisfied by the holo-

morphic form on the family and the characteristic polynomial of Frobenius act-

ing on middle-dimensional cohomology. Dwork identifies the reciprocal zeros of

the zeta function for this family of K3 surfaces explicitly by studying p-adic so-

lutions of the Picard–Fuchs equation. This analysis motivated Dwork’s general

study of p-adic periods.
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On the algebraic side, the family of Calabi–Yau threefolds F5 has been used

to explore the deep geometric relationship known as mirror symmetry. Mirror

symmetry is a duality from string theory that has shaped research in geometry

and physics for the last quarter-century. Loosely defined, it predicts a duality

where, given a Calabi–Yau variety X , there exists another Calabi–Yau variety

Y , the mirror, so that various geometric and physical data is exchanged. For ex-

ample, Candelas–de la Ossa–Green–Parkes [CDGP91] showed that the number

of rational curves on quintic threefolds in projective space can be computed by

studying the mirror family, realized via the Greene–Plesser mirror construction

[GP90] as a resolution of a finite quotient of F5.

Combining both sides, Candelas, de la Ossa, and Rodriguez-Villegas used the

Greene–Plesser mirror construction and techniques from toric varieties to com-

pare the zeta function of fibers Xψ of F5 and the mirror pencil of threefolds Yψ

[CDRV00, CDRV01, CD08]. They found that for general ψ, the zeta functions

of Xψ and Yψ share a common factor related to the period of the holomorphic

form onXψ. In turn, they related the other nontrivial factors of Z(Xψ, T ) to the

action of discrete scaling symmetries of the Dwork pencil F5 on homogeneous

monomials. In related work (but in a somewhat different direction), Jeng-Daw

Yu [Yu08] showed that the unique unit root for the middle-dimensional factor of

the zeta function for the Dwork family in dimension n can be expressed in terms

of a ratio of holomorphic solutions of a hypergeometric Picard–Fuchs equation

(evaluated at certain values).

The Dwork pencil F5 is not the only highly symmetric pencil that may be

used to construct the mirror to quintic threefolds. In fact, there are six different

pencils of projective Calabi–Yau threefolds, each admitting a different group

action, that yield such a mirror: these pencils were studied by Doran–Greene–

Judes [DGJ08] at the level of Picard–Fuchs equations. Bini–van Geemen–Kelly

[BvGK12] then studied the Picard–Fuchs equations for alternate pencils in all

dimensions.

A general mechanism for finding alternate mirrors is given by the framework

of Berglund–Hübsch–Krawitz (BHK) duality. This framework identifies the

mirrors of individual Calabi–Yau varieties given by invertible polynomials, or

more generally of invertible pencils, the one-parameter monomial deformation of

invertible polynomials; these notions are made precise in the next section. Aldi–

Peruničić [AP15] have studied the arithmetic nature of invertible polynomials

via D-modules.
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In this paper, we show that invertible pencils whose mirrors have common

properties share arithmetic similarities as well. Revisiting work of Gährs

[Gäh11], we find that invertible pencils whose BHK mirrors are hypersurfaces

in quotients of the same weighted projective space have the same Picard–Fuchs

equation associated to their holomorphic form. In turn, we show that the

Picard–Fuchs equations for the pencil dictate a factor of the zeta functions of

the pencil. We then show that the factor of the zeta function is bounded by the

degree of the Picard–Fuchs equation and the dimension of the piece of the mid-

dle cohomology that is invariant under the action of a finite group of symmetries

fixing the holomorphic form.

1.2. Main theorem. An invertible polynomial is a polynomial of the form

FA =

n∑
i=0

n∏
j=0

x
aij
j ∈ Z[x0, . . . , xn],

where the matrix of exponents A = (aij)i,j is an (n+ 1)× (n+ 1) matrix with

nonnegative integer entries, such that:

• det(A) �= 0,

• there exist r0, . . . , rn ∈ Z>0 and d ∈ Z such that
∑n

j=0 rjaij = d (i.e.,

the polynomial FA is quasi-homogeneous), and

• the function FA : Cn+1 → C has exactly one singular point at the origin.

We will be particularly interested in the case where FA is invertible and homo-

geneous of degree d = n+ 1: then the hypersurface defined by FA = 0 defines

a Calabi–Yau variety in Pn.

These conditions are restrictive. In fact, Kreuzer–Skarke [KS92] proved that

any invertible polynomial FA(x) can be written as a sum of polynomials, each

of which belongs to one of three atomic types, known as Fermat, loop, and

chain:

Fermats : xa,

loops : xa11 x2 + xa22 x3 + · · ·+ x
am−1

m−1 xm + xamm x1, and

chains : xa11 x2 + xa22 x3 + · · ·+ x
am−1

m−1 xm + xamm .

Invertible polynomials appeared as the first families exemplifying mirror symme-

try [GP90, BH93]. Their arithmetic study, often in the special case of Delsarte

polynomials, is of continuing interest [Shi86, EG-Z16].
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Let FA be an invertible polynomial. Inspired by Berglund–Hübsch–Krawitz

(BHK) mirror symmetry [BH93, Kra09], we look at the polynomial obtained

from the transposed matrix AT :

FAT :=

n∑
i=0

n∏
j=0

x
aji
j .

Then FAT is again an invertible polynomial, quasihomogeneous with (possibly

different) weights q0, . . . , qn for which we may assume gcd(q0, . . . , qn) = 1, so

that FAT = 0 defines a hypersurface XAT in the weighted-projective space

WPn(q0, . . . , qn). We call q0, . . . , qn the dual weights of FA. Let dT :=
∑

i qi

be the sum of the dual weights.

We define a one-parameter deformation of our invertible polynomial by

(1.2.1) FA,ψ :=

n∑
i=0

n∏
j=0

x
aij
j − dTψx0 · · ·xn ∈ Z[ψ][x0, . . . , xn].

Then XA,ψ : FA,ψ = 0 is a family of hypersurfaces in Pn in the parameter ψ,

which we call an invertible pencil.

The Picard–Fuchs equation for the family XA,ψ is determined completely by

the (n+1)-tuple of dual weights (q0, . . . , qn) by work of Gährs [Gäh11, Theorem

3.6]. In particular, there is an explicit formula for the order D(q0, . . . , qn) of

this Picard–Fuchs equation that depends only on the dual weights: see Theo-

rem 4.1.3 for details. We further observe that the Picard–Fuchs equation is a

hypergeometric differential equation.

For a smooth projective hypersurface X in Pn, we have

(1.2.2) Z(X,T ) =
PX(T )(−1)n

(1− T )(1− qT ) · · · (1− qn−1T )
,

with PX(T ) ∈ Q[T ]. Our main result is as follows (for the notion of nondegen-

erate, see section 2).

Theorem 1.2.3: Let XA,ψ and XB,ψ be invertible pencils of Calabi–Yau

(n − 1)-folds in Pn. Suppose A and B have the same dual weights (qi)i. Then

for each ψ ∈ Fq such that gcd(q, (n+ 1)dT ) = 1 and the fibers XA,ψ and XB,ψ

are nondegenerate and smooth, the polynomials PXA,ψ (T ) and PXB,ψ (T ) have

a common factor Rψ(T ) ∈ Q[T ] with

degRψ(T ) ≥ D(q0, . . . , qn).
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We show that the common factor Rψ(T ) is attached to the holomorphic

form on XA,ψ and XB,ψ, explaining the link to the Picard–Fuchs differential

equation: it is given explicitly in terms of a hypergeometric series (4.1.8). For

this reason, if we had an appropriate theorem for rigidity of hypergeometric

motives, we could further conclude that there exists a factor of degree precisely

D(q0, . . . , qn) inQ[T ]: see Remark 4.4.5. For invertible pencils with dual weights

(1, . . . , 1), including those comprised of only Fermats and loops, we can nail this

down precisely (Corollary 4.4.4).

Corollary 1.2.4: With hypotheses as in Theorem 1.2.3, suppose that the

common dual weights are (q0, . . . , qn) = (1, . . . , 1). Then the common factor

Rψ(T ) ∈ Q[T ] has degRψ = D(1, . . . , 1) = n.

Our proof of Theorem 1.2.3 uses the p-adic cohomology theory of Dwork, as

developed by Adolphson–Sperber [AS89, AS08], relating the zeta function of

a member of the family to the L-function of an exponential sum. Our main

theorem then follows from a result of Dwork [Dwo89] on the uniqueness of the

Frobenius structure on the differential equation and the fact that the Picard–

Fuchs equations for the holomorphic forms of XA,ψ and XB,ψ coincide.

Theorem 1.2.3 overlaps work of Miyatani [Miy15, Theorem 3.7]. In our no-

tation, his theorem states that if XA,ψ is an invertible pencil, q satisfies certain

divisibility conditions depending on A, and ψ ∈ F×
q is such that XA,ψ is smooth

and ψd
T �= 1, then PXA,ψ (T ) has a factor in Q[T ] that depends only on q and

the dual weights (qi)i. In particular, if A and B have the same dual weights,

the zeta functions of XA,ψ and XB,ψ (for ψ satisfying these conditions) will

have a common factor in Q[T ]. His factor [Miy15, (2.4), Remark 3.8(i)] divides

the common factor appearing in Theorem 1.2.3. He uses finite-field versions of

Gauss sums together with a combinatorial argument.

To compare these two theorems, we observe that Theorem 1.2.3 provides

slightly more information about the common factor and places fewer restric-

tions on q: for arithmetic applications, it is essential for the result that it hold

without congruence conditions on q. Our techniques are different, and are ruled

by the powerful governing principle that factors of the zeta function are orga-

nized by Picard–Fuchs differential equations. For example, our method could

extend to pencils for which the associated differential equation may not be

hypergeometric.
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1.3. Implications. Theorem 1.2.3 relates the zeta functions of many interest-

ing Calabi–Yau varieties: for example, the dual weights are the same for any

degree n + 1 invertible pencil composed of Fermats and loops. For specificity,

we compare the zeta functions of the Dwork pencil Fn and the generalized

Klein–Mukai family F1Ln, defined by the pencil

(1.3.1) F1Ln : xn0x1 + · · ·+ xnn−1x0 + xn+1
n − (n+ 1)ψx0x1 · · ·xn = 0.

The pencil takes its name from Klein’s quartic curve, whose group of orientation-

preserving automorphisms is isomorphic to the simple group of order 168, and

the member of the family F1L3 at ψ = 0, which appears as an extremal example

during Mukai’s classification of finite groups of automorphisms of K3 surfaces

that preserve a holomorphic form (cf. [Lev99, Muk88, OZ02]). In this setting,

we give a concrete proof of Theorem 1.2.3.

We also consider a collection of five invertible pencils � of K3 surfaces in P4,

including F4 and F1L3. The other three pencils, F2L2, L2L2, and L4, also have

only Fermats and loops as atomic types; all five are described by matrices with

the same dual weights (see Table (5.1.1) for defining polynomials). Let H be the

Greene–Plesser mirror family of quartics in P3, which is obtained by taking the

fiberwise quotient of F4 by (Z/4Z)2 and resolving singularities. A computation

described by Kadir [Kad04, Chapter 6] shows that for odd primes and ψ ∈ Fq

such that ψ4 �= 1 (that is, such that Hψ is smooth),

(1.3.2) Z(Hψ, T ) =
1

(1 − T )(1− qT )19(1− q2T )Rψ(T )
.

This calculation combined with Theorem 1.2.3 and properties of K3 surfaces

yields the following corollary, exemplifying arithmetic mirror symmetry in these

cases.

Corollary 1.3.3: Let � ∈ {F4,F1L3,F2L2, L2L2, L4}. Then there exists r0 ≥ 1

such that for all q = pr with r0 | r and p �= 2, 5, 7 and all ψ ∈ Fq with ψ4 �= 1,

we have

Z(X�,ψ/Fqr , T ) = Z(Hψ/Fqr , T ).

Accordingly, we could say that the zeta functions Z(X�,ψ/Fq, T ) and

Z(Hψ/Fq, T ) are potentially equal—i.e., they are equal after a finite exten-

sion of Fq. (The explicit value of r0 in Corollary 1.3.3 will be computed in

future work [DKSSVW].)
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Finally, we remark on a simple relationship between the numbers of points

of members of alternate mirror families over Fq, reminiscent of the strong

arithmetic mirror symmetry studied by Fu–Wan [FW06], Wan [Wan06], and

Magyar–Whitcher [MW16].

Corollary 1.3.4: Let XA,ψ and XB,ψ be invertible pencils of Calabi–Yau

(n − 1)-folds in Pn such that A,B have the same dual weights. Then for all

ψ ∈ Fq,

#XA,ψ(Fq) ≡ #XB,ψ(Fq) (mod q).

Corollary 1.3.4 is slightly more general than Theorem 1.2.3—there is no hy-

pothesis on the characteristic or on the smoothness of the fiber—but it arrives

at a weaker conclusion.

1.4. Plan of paper. In section 2, we introduce our cohomological setup. In

section 3, we consider first the generalized Klein–Mukai family as a warmup to

the main theorem, giving a detailed treatment in this case. In section 4, we

prove the main result by recasting a result of Gährs [Gäh13] on Picard–Fuchs

equations in hypergeometric terms, study the invariance under symmetry of

the middle cohomology, and then apply Dwork cohomology. To conclude, in

section 5, we specialize to the case of K3 surfaces and give some further details

for several pencils of particular interest.
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2. Cohomological setup

We begin in this section by setting up notation and establishing a few basic

results. In the cohomology theory of Dwork, following the approach for related

exponential sums as developed by Adolphson–Sperber [AS89, AS08], we will

define cohomology spaces endowed with a Frobenius operator with the property

that the middle-dimensional primitive factor of the zeta function is realized as

the characteristic polynomial of the Frobenius operator acting on non-vanishing

cohomology. We refer to the work of Adolphson–Sperber for further reference

and to Sperber–Voight [SV13] for an algorithmic framing.

Throughout the paper, let Fq be a finite field with q elements and character-

istic p, with q = pa. Let Fq be an algebraic closure of Fq.

2.1. Nondegeneracy and convenience. Let

F (x) = F (x0, . . . , xn) ∈ Fq[x0, . . . , xn]

be a nonconstant homogeneous polynomial, so that the vanishing of F (x) defines

a projective hypersurface X ⊆ PnFq . Using multi-index notation, we write

F (x) =
∑

ν∈Z
n+1
≥0

aνx
ν

and

|ν| =
n+1∑
i=0

νi.

Let

suppF = {ν ∈ Zn+1
≥0 : aν �= 0}.

Let Δ be the convex hull of suppF and let Δ∞(F ) be the convex hull of

Δ ∪ {(0, . . . , 0)} in Rn+1. For a face τ ⊆ Δ, let

F |τ =
∑
ν∈τ

aνx
ν .

Definition 2.1.1: We say F is nondegenerate (with respect to its Newton

polyhedron Δ) if for all faces τ ⊆ Δ (including τ = Δ), the system of equations

(2.1.2) F |τ =
∂F |τ
∂x0

= · · · = ∂F |τ
∂xn

= 0

has no solutions in F
×(n+1)

q .
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In this case, with F homogeneous, the definition employed by Adolphson and

Sperber, that F is nondegenerate (with respect to Δ∞(F )) requires that the

system of equations

(2.1.3)
∂F |τ
∂x0

= · · · = ∂F |τ
∂xn

= 0

has no solutions in F
×(n+1)

q for every face τ ⊆ Δ, (including τ = Δ). Note that

when the characteristic p does not divide the degree of F , the Euler relation

ensures the two definitions are equivalent. Finally, we observe that if w is

a new variable and we consider the form wF , then wF is nondegenerate with

respect to Δ∞(wF ) if and only if F is nondegenerate with respect to its Newton

polyhedron Δ.

In the calculations below we will make use of a certain positioning of coordi-

nates. For a subset J ⊆ {x0, . . . , xn} of variables, we let F
�J
be the polynomial

obtained from F by setting the variables in J equal to zero.

Definition 2.1.4: We say that F is convenient with respect to a subset

S ⊆ {x0, . . . , xn} provided that for all subsets J ⊆ S, we have

dimΔ∞(F
�J
) = dimΔ∞(F )−#J.

2.2. Dwork cohomology. Let Gm be the multiplicative torus (so

Gm(Fq) = F×
q ) and fix a nontrivial additive character Θ : Fq → C× of Fq.

Denote by TrFqr/Fq : Fqr → Fq the field trace. We will effectively study the

important middle-dimensional factor of the zeta function by considering an

appropriate exponential sum on Gsm × An+1−s and treating toric and affine

variables somewhat differently. For r ∈ Z≥1, define

Sr(F,G
s
m × An+1−s) :=

∑
x∈(Gsm×An+1−s)(Fqr )

Θ ◦ TrFqr/Fq F (x),

where the sum runs over all n+1-tuples x=(x0, . . . , xn) where x0, . . . , xs−1∈F×
qr

and xs, . . . , xn ∈ Fqr . Consider the L-function of the exponential sum associated

to F defined by

L(F,Gsm × An+1−s, T ) := exp

( ∞∑
r=1

Sr
T r

r

)
.

Then L(F,Gsm ×An+1−s, T ) ∈ Q(ζp)(T ) is a rational function in T with coeffi-

cients in the cyclotomic field Q(ζp), where ζp is a primitive pth root of unity.
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Theorem 2.2.1 ([AS89, Theorem 2.9, Corollary 2.19]): If F is nondegenerate

and convenient with respect to S = {xs+1, . . . , xn}, and dimΔ∞(F ) = n + 1,

then the L-function

L(F,Gsm × An+1−s, T )(−1)n+1 ∈ Q(ζp)[T ]

is a polynomial in T with coefficients in Q(ζp) of degree given explicitly in terms

of the volumes volΔ∞(F
�J
) for J ⊆ S.

This theorem also gives information about the p-adic size of the reciprocal

zeros of L(T )(−1)n+1

.

We now proceed to relate the L-function of such an exponential sum to the

zeta function of the corresponding hypersurface. In general, we write

(2.2.2) Z(X,T ) := exp

( ∞∑
r=1

#X(Fqr)
T r

r

)
=

P (T )(−1)n

(1− T ) · · · (1 − qn−1T )

with P (T ) ∈ Q(T ). If X is smooth and F has degree d, then P (T ) is a polyno-

mial of degree

(2.2.3) degP =
d− 1

d
((d − 1)n + (−1)n+1),

representing the characteristic polynomial of Frobenius acting on the primitive

middle-dimensional cohomology of X . Let Y ⊆ An+1 be the affine hypersurface

defined by the vanishing of F , the cone over X . Let w be a new variable. A

standard argument with character sums shows that

(2.2.4) Sr(wF,A
n+2) = qr#Y (Fqr ).

Therefore

L(wF,An+2, T ) = Z(Y, qT ).

On the other hand, one has

Z(Y, T ) =
Z(X, qT )

Z(X,T )(1− T )
.

So putting these together we have

(2.2.5) L(wF,An+2, T ) =
Z(X, q2T )

Z(X, qT )(1− qT )
.

By combining Equations (2.2.2) and (2.2.5), we have

(2.2.6) L(wF,An+2, T ) =
( P (qT )

P (q2T )

)(−1)n+1
1

1− qn+1T
.
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Finally, splitting the domain for the variable w as A1 = Gm ∪ {0}, we obtain

(2.2.7) L(wF,Gm × An+1, T )(−1)n+1

=
P (qT )

P (q2T )
.

In the special case where F is nondegenerate with respect to Δ∞(F ) and

convenient with respect to {x0, . . . , xn}, Theorem 2.2.1 applies. Under these

hypotheses, Adolphson–Sperber [AS89, Section 6] prove the following: there

exists a p-adic cohomology complex Ω• such that the trace formula

(2.2.8) L(wF,Gm × An+1, T ) =

n+2∏
i=0

det(1− FrobT | Hi(Ω•))(−1)i+1

holds, the cohomology groups Hi(Ω•) vanish for i = 0, . . . , n, we have

(2.2.9) Frob | Hn+1(Ω•) = q Frob | Hn+2(Ω•),

and finally

(2.2.10) P (qT ) = det(1− FrobT | Hn+2(Ω•)).

For more details, see also Adolphson–Sperber [AS08, Corollary 6.23] and

Sperber–Voight [SV13, Section 1 and pages 31–32]. In particular, the formula

(2.2.10) gives a fairly direct way to compute P (T ) in the case of the Dwork fam-

ily of hypersurfaces, since the defining polynomial F is convenient with respect

to the full set of variables {x0, . . . , xn}.

2.3. Unit roots. For convenience, we conclude this section by recalling the

relationship between Hodge numbers and the p-adic absolute values of the re-

ciprocal zeros and poles of the zeta function.

The following is a consequence of the Katz conjecture proved in full generality

by Mazur [Maz72]. In the present context, it follows directly from Adolphson–

Sperber [AS89, Theorem 3.10].

Proposition 2.3.1: The Newton polygon of P�,ψ,q(T ) lies over the Hodge

polygon of middle-dimensional primitive cohomology.

We now apply this to our invertible pencils, as defined in (1.2.1). In particular,

we have XA,ψ a smooth projective hypersurface in Pn defined by a polynomial

FA,ψ of degree n+1, so XA,ψ is a Calabi–Yau variety of dimension n− 1. By a

standard calculation, the first Hodge number of XA,ψ is h0,n−1 = 1. Therefore
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the Hodge polygon of middle-dimensional primitive cohomology starts with a

segment of slope zero having length 1. By Proposition 2.3.1, there is at most

one reciprocal root of the polynomial P�,ψ,q(T ) that is a p-adic unit: we call

this reciprocal root when it occurs a unit root.

Example 2.3.2: If n = 3 and degF = 4, and X is smooth, then X is a quartic

K3 surface, and so the Newton polygon of P�,ψ,q(T ) lies over the Hodge polygon
(i.e., the Newton polygon of (1 − T )(1− qT )19(1− q2T )).

There is a polynomial defined over Fp depending on A, called the Hasse

invariant, with the property that HA(ψ) �= 0 for a smooth fiber ψ ∈ F×
q if and

only if there is a unique unit root. In this case, we callXA,ψ ordinary, otherwise

we sayXA,ψ is supersingular. The polynomial HA is nonzero as the monomial

x0x1 . . . xn appears in FA,ψ [AS16, (1.9), Example 1] (in their notation, we have

μ = 0). Therefore, the ordinary sublocus of P1�{0, 1,∞} is a nonempty Zariski

open subset. This unit root has seen much study: for the Dwork family, it was

investigated by Jeng-Daw Yu [Yu08], and in this generality by Adolphson–

Sperber [AS16, Proposition 1.8] (see also work of Miyatani [Miy15]).

These p-adic estimates can be seen explicitly in Dwork cohomology, as follows.

By (2.2.10), for the hypersurfaceXA,ψ we are interested in the action of q−1 Frob

on the cohomology group Hn+2(Ω•).

Lemma 2.3.3: The operator q−1 Frob acting on Hn+2(Ω•) reduced modulo p

has rank at most 1 and has rank exactly 1 if and only if XA,ψ is ordinary.

Proof. The cohomology group Hn+2(Ω•) has a basis of monomials

{(γw)|ν|/dxν}ν
where d | |ν| and γ ∈ Zp[ζp] is a uniformizer [SV13, Section 5, “Modifications:

projective varieties”]. Let A0 = (a0μν)μ,ν be the matrix of the p-Frobenius on

this basis. Then [AS89, Proposition 3.9]

(2.3.4) ordp a
0
μν ≥ |μ|

d
.

Let A = (aμν)μ,ν be the matrix of the q-Frobenius Frob. By (2.2.10), we have

P (T ) = det(1 − q−1AT ), and (2.3.4) implies (as in Adolphson–Sperber [AS89,

Proof of Theorem 3.10])

(2.3.5) ordq(q
−1aμν) ≥ |μ|

d
− 1.



678 C. F. DORAN ET AL. Isr. J. Math.

By the Calabi–Yau condition, the unique monomial with |μ|/d = 1 is

(2.3.6) ω0 := γwx0 · · ·xn,
so (2.3.5) implies that the matrix q−1A has at most one nonzero row modulo p,

so its reduced rank is at most 1; and this rank is equal to 1 if and only if the

fiber XA,ψ is ordinary, which occurs if and only if

(2.3.7) aνν �≡ 0 (mod p)

where ν = (1, 1, . . . , 1) corresponds to ω0. The reduced polynomial āν,ν is thus

the Hasse invariant for the given family.

3. Generalized Klein–Mukai family

As a warm-up to the main theorem, we now consider in detail the generalized

Klein–Mukai family F1Ln of Calabi–Yau n-folds. We give a proof of the existence

of a common factor—realizing these as alternate mirrors, from the point of view

of p-adic cohomology. Since it is of particular interest, and has rather special

features, along the way we provide further explicit details about this family.

3.1. Basic properties. For n ≥ 1, let

(3.1.1) F (x) = Fψ(x) := xn0x1 + · · ·+ xnn−1x0 + xn+1
n − (n+ 1)ψx0x1 · · ·xn

and define Xψ ⊆ Pn to be the generalized Klein–Mukai family of hypersur-

faces over Z defined by the vanishing of Fψ. The polynomial (3.1.1) of degree

n + 1 in n + 1 variables may be described as consisting of a single Fermat

term together with a single loop of length n, so we will also refer to it by the

symbol F1Ln.

Throughout, let m := nn + (−1)n+1. Note (n+ 1) | m. Let k be a field and

ζ ∈ k a primitive mth root of unity.

Lemma 3.1.2: Suppose p � m. For ψ �= 0, the group

G(k) = {λ = (λi)i ∈ Gn+1
m (k) : Fψ(λx) = Fψ(x)}

is a cyclic group of order m, generated by

z = (ζ, ζ−n, ζn
2

, . . . , ζ(−n)
n−1

, ζ(−1)nm/(n+1)).

The subgroup acting trivially on Xψ is cyclic of order n+ 1, and the quotient

acting faithfully on Xψ is generated by zn+1.
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Proof. This statement follows from a direct computation.

Lemma 3.1.3: Suppose p � m. Then for all ψ ∈ Fq such that ψn+1 �= 1, the

hypersurface defined by Fψ(x) is smooth, nondegenerate, and convenient with

respect to {xn}.
Proof. The statement on convenience is immediate.

We begin with the full face Δ, where nondegeneracy (using the Euler relation)

is equivalent to smoothness. We compute for i = 0, . . . , n− 1 that

(3.1.4) xi
∂F

∂xi
= xni−1xi + nxni xi+1 − (n+ 1)ψx0x1 · · ·xn

with indices taken modulo n, and

(3.1.5) xn
∂F

∂xn
= (n+ 1)xn+1

n − (n+ 1)ψx0x1 · · ·xn.

Setting these partials to zero and subtracting (3.1.5) from (3.1.4), we obtain

the n× (n+ 1)-matrix equation

(3.1.6)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 n 0 · · · 0 0 −(n+ 1)

0 1 n · · · 0 0 −(n+ 1)
...

...
...

. . .
...

...
...

0 0 0 · · · 1 n −(n+ 1)

n 0 0 · · · 0 1 −(n+ 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn0x1

xn1x2

xn2x3
...

xnn−1x0

xn+1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

The absolute value of the determinant of the left n × n block of the matrix in

(3.1.6) is m = nn + (−1)n+1, so by our assumption on p the full matrix has

rank n over Fq. By homogeneity, the vector (1, . . . , 1)t therefore generates the

kernel of the full matrix; the solution vector lies in this kernel, so we conclude

xn0x1 = xn1x2 = xn2x3 = · · · = xnn−1x0 = xn+1
n .

Since x ∈ F
×(n+1)

q , by scaling we may assume xn = 1. Thus xni−1xi = 1 for

i = 1, . . . , n− 1; taking the product of these gives

(x0 · · ·xn−1)
n+1 = 1.

Since ψx0 · · ·xn = 1 as well, we conclude ψn+1 = 1; and these are precisely the

excluded values.
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Now suppose that τ � Δ is a proper face of Δ. Then clearly (1, 1, . . . , 1) does

not belong to τ . If τ contains (0, . . . , 0, n+ 1), then by restricting (3.1.5) to τ ,

we see that a zero of

xn
∂F |τ
∂xn

= (n+ 1)xn+1
n

must have xn=0, so we may assume τ does not contain the vertex (0, . . . , 0, n+1).

If τ does not contain all of the xni−1xi then at least one variable xi with

i ∈ {0, . . . , n − 1} appears in only one monomial of F |τ , so that a zero of
∂F |τ
∂xi

must have a zero coordinate. The only other possibility for a face τ is the

one corresponding to letting xn = 0 in F , i.e., the loop equation itself. Writing

the equations (3.1.4) with xn = 0 in matrix form yields the left n× n-block of

the matrix in (3.1.6); but now, since p � m, a point of nondegeneracy must be

(0, . . . , 0), proving the nondegeneracy of F .

To overcome the fact that the generalized Klein–Mukai pencil is only conve-

nient with respect to {xn} (as opposed to the case of the Dwork pencil, which

is convenient with respect to the full set of variables {x0, . . . , xn}), we prove the
following lemma.

Lemma 3.1.7: We have

L(wF,Gm × An+1, T ) = L(wF,Gn+1
m × A1, T ).

The point of this combinatorial lemma is that one obtains the same value of

the exponential sum when changing affine coordinates to toric coordinates, so

that Theorem 2.2.1 applies.

Proof. Let S = {0, . . . , n− 1} and J ⊆ S with Jc = S − J . Write

AJ
c ⊆ An+1

for the linear subspace defined by the vanishing of xi = 0 for i ∈ J . Recall

that F
�J
(x) ∈ Fq[xi]i∈Jc is the polynomial obtained from F (x) by setting the

variables in J equal to zero.

Let r ∈ Z≥0. A standard inclusion-exclusion argument gives

(3.1.8)

Sr(wF,Gm × An+1) =Sr(wF,G
n+1
m × A1)

+
∑
J⊆S
J �=∅

(−1)#J+1Sr(wF�J
,Gm × AJ

c × A1).
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We claim, in fact, that every summand on the right-hand side of (3.1.8) is zero;

that is, if J �= ∅, that
(3.1.9) Sr(wF�J

,Gm × AJ
c × A1) = 0.

To this end, suppose that J �= ∅; then at least one coordinate is sent to zero

in F
�J
(x), and the deforming monomial x0 · · ·xn is set to zero.

First suppose that #Jc ≤ 1. Then F
�J
(x) = xn+1

n , and

Sr(wF�J
,Gm × AJ

c × A1) = qrtSr(wx
n+1
n ,Gm × A1)

with t = #Jc. We then compute that

Sr(wx
n+1
n ,Gm × A1) = Sr(wx

n+1
n ,A2)− Sr(0,A

1) = qr − qr = 0

by (2.2.4).

So suppose #Jc ≥ 2. If the loop vanishes, we again have F
�J
(x) = xn+1

n

and we are back in the previous case. So we may assume that at least one

of the surviving coordinates appearing linearly: there exists j ∈ S such that

j − 1, j ∈ Jc hence

F
�J
(x) = F

�J′(x) + xnj−1xj

with J ′ = J ∪ {j}. But then (J ′)c ∪ {j} = Jc, so

(3.1.10)

Sr(wF�J
,Gm × AJ

c × A1)

=
∑
w∈F

×
qr

∑
x∈F

(J′)c
qr

(Θ ◦ TrFrq/Fq )(wF�J ′(x))
∑

xj∈Fqr

(Θ ◦TrFqr/Fq )(wxnj−1xj).

Summing the innermost sum on the right side of (3.1.10) over xj ∈ Fqr counts

with multiplicity qr the number of zeros ofwxnj−1 with w ∈ F×
qr , where xj−1∈Fqr

is fixed. If xj−1 �= 0, then there are no such zeros and the inner sum is zero.

Therefore, letting J ′′ = J ∪ {j − 1, j} (with indices taken modulo n),

(3.1.11) Sr(wF�J
,Gm × AJ

c × A1) = qrSr(wF��J′′ ,Gm × A(J′′)c × A1).

Replacing J by J ′′, we iterate the argument and reduce to the case where

#Jc ≤ 1, completing the proof.

With Lemma 3.1.7 in hand, we can now conclude as with the Dwork family:

since F (x) is nondegenerate and convenient with respect to S = {xn}, the proof
of Theorem 2.2.1 yields a p-adic cohomology complex Ω• such that as in (2.2.10)

we have

P (qT ) = det(1− FrobT | Hn+2(Ω•)).
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By (2.2.3), we find that P (T ) is a polynomial of degree

degP =
nm

n+ 1
=
nn+1 + (−1)n+1n

n+ 1
.

In this way, we have shown that the characteristic polynomial of Frobenius

acting on middle-dimensional cohomology for the Klein–Mukai family can be

computed by its action on a cohomology group.

3.2. Common factors. We now identify factors in common for the Dwork

and generalized Klein–Mukai pencils � ∈ {Fn+1,F1Ln}.
The Picard–Fuchs equation defined by the action of the operator ψ ∂

∂ψ on the

unique nonvanishing holomorphic differential has rank n in both cases. After

a change of variables, this Picard–Fuchs equation is the differential equation

satisfied by the classical hypergeometric function

(3.2.1) ψ−1
nFn−1

( 1
n+1 ,

2
n+1 , . . . ,

n
n+1

1, . . . , 1
;ψ−1/(n+1)

)
[Kat72, Corollary 2.3.8.1].

Let S be the set of variables of F appearing in the Fermat (diagonal form)

piece of the defining polynomial F in either case. Then F is convenient with

respect to S. Suppose ψ ∈ Fq is such that Fψ(x) is nondegenerate with respect

to Δ∞(F ). Therefore, we have a p-adic complex Ω• such that (2.2.8)–(2.2.10)

hold.

We prove that for each fiber, the zeta functions in these two families have

middle-dimensional cohomology with a common factor of degree n determined

by action of the Frobenius on the ε(∂/∂ψ)-stable subspace containing the unique

holomorphic nonvanishing differential n-form. In both cases, the monomial

wx0x1 · · ·xn ∈ Ωn+2 corresponds to this n-form. For q = pr, let Qq be the

unramified extension of Qp of degree r.

Proposition 3.2.2: If p � (n + 1)dT and ψ ∈ F×
q is a smooth, nondegenerate

fiber, then the polynomials P�,ψ(T ) where � ∈ {Fn+1,F1Ln} have a common

factor Rψ(T ) ∈ Qq[T ] of degree n.

Proof. Viewed over a ring with derivation ∂/∂ψ, for all i the cohomologyHi(Ω•)
has an action by the connection

ε
( ∂

∂ψ

)
=

∂

∂ψ
− (n+ 1)γ0ψwx0x1 · · ·xn
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where γ0 is an appropriate p-adic constant. The monomial wx0x1 · · ·xn then

spans an ε(∂/∂ψ)-stable subspace of Hn+2(Ω•�), denoted Σ�. In both cases

� ∈ {Fn+1,F1Ln}, we have a Frobenius map Frob•� acting as a chain map on the

complex Ω• and stable on Σ�. As a consequence, we conclude that

P�(qT ) = det(1 − T Frob� | Hn+2(Ω•
�)) = det(1 − T Frob� | Σ�)Q�(T ).

Let Φ�(ψ) represent the Frobenius map Frob� restricted to Σ�. We appeal

to work of Dwork [Dwo69]. We find that in the sense of Dwork, there are

two Frobenius structures, both of which are strong Frobenius structures as a

function of the parameter ψ on the hypergeometric differential equation, cor-

responding to the two values of �. The hypergeometric differential equation

(over Cp, or any field of characteristic zero) is irreducible because none of the

numerator parameters {1/(n+ 1), . . . , n/(n+ 1)} differs from the denominator

parameter {1} by an integer [Beu08, Corollary 1.2.2]. As a consequence, the

hypotheses of a lemma of Dwork [Dwo89, Lemma, pp. 89–90] are satisfied, and

we have that the two Frobenius structures agree up to a multiplicative constant

c ∈ C×
p ; in terms of matrices,

ΦFn+1(ψ) = cΦF1Ln(ψ).

We now show that c = 1. Let ψ0 ∈ Fq be such that ψn+1
0 �= 1. Then the fiber

for each family at ψ = ψ0 satisfies F�,ψ0(x) = 0 and the defining polynomial

wF�,ψ0 (x) is nondegenerate. Let ψ̂0 be the Teichmüller lift of ψ0. We recall

section 2.3. Suppose that ψ0 is an ordinary fiber for both families. Then

Tr(ΦFn+1(ψ̂0)) = cTr(ΦF1Ln(ψ̂0)).

Without loss of generality, we may assume that c is a p-adic integer. Since the

two families have the same Picard–Fuchs differential equation, we obtain p-adic

analytic formulas for the unique unit root of Tr(ΦFn+1(ψ̂0)) by Jeng-Daw Yu

[Yu08], and for the unique unit root of Tr(ΦF1Ln(ψ̂0)) by work of Adolphson–

Sperber [AS16] (also proven by Miyatani [Miy15]). These formulas are given in

terms of the unique holomorphic solution of Picard–Fuchs (at ∞) so that the

formulas are the same, so the unique unit roots for the two families agree, and

this forces c ≡ 1 (mod q). Repeating this argument over all extensions Fqr with

r ≥ 1, we conclude similarly that cr ≡ 1 (mod qr). Taking r coprime to p, by

binomial expansion we conclude c = 1 as desired.

In the next section, we generalize this result and also prove that Rψ(T )∈Q[T ].
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4. Proof of the main result

We now prove the main theorem in the general setting of families of alternate

mirrors.

4.1. Hypergeometric Picard–Fuchs equations. To begin, we study the

Picard–Fuchs equation for the holomorphic form of an invertible pencil. We

use the structure of the Picard–Fuchs equation to identify a factor of the zeta

function associated to the holomorphic form, establishing a version of our main

theorem with coefficients defined over a number field. By work of Gährs [Gäh13,

Gäh11], we know that if two invertible pencils have the same dual weights, then

their Picard–Fuchs equations are the same. We now state her result and recast

it in a hypergeometric setting.

Let FA be an invertible polynomial, where qi are its dual weights and

dT :=
∑

i qi is the weighted degree of the transposed polynomial FAT . For

each ψ, let Hn(XA,ψ) be the de Rham cohomology of the holomorphic n-

forms on the complement Pn \ XA,ψ, and write the usual holomorphic form

on Pn as Ω0 =
∑n

i=0(−1)ixi dx0 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn. Then one

may use the Griffiths residue map Res : Hn(XA,ψ) → Hn−1(XA,ψ,C), whose

image is primitive cohomology, to realize the holomorphic form on XA,ψ as

Res(Ω0/FA,ψ). Systematically taking derivatives of the holomorphic form es-

tablishes the Picard–Fuchs differential equation associated to the holomorphic

form that Gährs computes via a combinatorial formulation of the Griffiths–

Dwork technique. We now state her result.

We first define the rational numbers

(4.1.1)

αj :=
j

dT
, for j = 0, . . . , dT − 1;

βij :=
j

qi
, for i = 0, . . . , n and j = 0, . . . , qi − 1.

Consider the multisets (sets allowing possible repetition)

(4.1.2)

ααα := {αj : j = 0, . . . , dT − 1};

βββi := {βij : j = 0, . . . , qi − 1}, βββ :=
n⋃
i=0

βββi.

The elements of the multiset ααα have no repetition, so we can think of ααα as a

set. Take the intersection I = ααα∩βββ. Note that all of these sets depend only on

the dual weights qi. Let δ = ψ d
dψ .
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Theorem 4.1.3 (Gährs): Let XA,ψ be an invertible pencil of Calabi–Yau

(n−1)-folds determined by the integer matrix A, with dual weights (q0, . . . , qn).

Then the following statements hold:

(a) The order of the Picard–Fuchs equation for the holomorphic form of

the invertible pencil is

(4.1.4) D(q0, . . . , qn) := dT −#I.

(b) The Picard–Fuchs equation itself is given by

(4.1.5)

( n∏
i=0

qqii

)
ψd

T

( ∏
βij∈βββ�I

(δ + βijd
T )

)
−

∏
αj∈ααα�I

(δ − αjd
T ) = 0.

Proof. Part (a) is due to Gährs [Gäh11, Theorem 2.8], and part (b) is a

slight reparameterization of variables of a result also due to Gährs

[Gäh13, Theorem 6].

The Picard–Fuchs equation can be written in hypergeometric form. Indeed,

if we change variables with

(4.1.6) z :=

(∏
i

q−qii

)
ψ−dT , θ := z

d

dz
= −(dT )−1δ,

we may rewrite the Picard–Fuchs equation as

(4.1.7)
∏

βij∈βββ�I
(θ − βij)− z

∏
αj∈ααα�I

(θ + αj) = 0.

As βi0 = 0 ∈ βββ for all i, we have 0 ∈ βββ � I, hence the Picard–Fuchs equation is

a hypergeometric differential equation. In particular, a solution is given by the

(generalized) hypergeometric function

(4.1.8) DFD−1

(
αi ∈ ααα� I

βij ∈ βββ � (I ∪∪∪ {0}) ; (
∏
iq

−qi
i )ψ−dT

)
,

where D = D(q0, . . . , qn) and I ∪∪∪ {0} is the multiset obtained by adjoining 0

to I.

Example 4.1.9: Consider a pencil XA,ψ of quartic projective hypersurfaces with

dual weights (1, 1, 1, 1). Then ααα = {0, 14 , 24 , 34} and βββ = {0, 0, 0, 0}. Since

I = {0}, the Picard–Fuchs equation is of the form

θ3 − λ
(
θ +

1

4

)(
θ +

1

2

)(
θ +

3

4

)
= 0,
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which is a hypergeometric differential equation satisfied by the hypergeometric

function

(4.1.10) 3F2

( 1
4 ,

1
2 ,

3
4

1, 1
;ψ−4

)
.

Proposition 4.1.11: The Picard–Fuchs equation given in Equation (4.1.7) is

irreducible.

Proof. This differential equation has parameters such that αi − βjk �∈ Z for

all i, j, k, for the following reason: the elements of ααα and βββ are already in

[0, 1), so two differ by an integer if and only if they are equal; and whenever

two coincide, they are taken away by the set I (noting the elements of ααα are

distinct). Therefore, the differential equation is irreducible [Beu08, Corollary

1.2.2].

4.2. Group invariance. In this section, we show that the subspace of coho-

mology associated to the Picard–Fuchs equation for the holomorphic form is

contained in the subspace fixed by the action of a finite group. This group

arises naturally in the context of Berglund–Hübsch–Krawitz mirror symmetry.

Throughout, we work over C.

We begin by establishing three groups that are useful when studying invertible

potentials and prove a result about the invariant pieces of cohomology associated

to them. Let FA be an invertible polynomial. First, consider the elements of

the maximal torus Gn+1
m acting diagonally on Pn and leaving the polynomial

FA invariant:

(4.2.1) Aut(FA) := {(λ0, . . . , λn) ∈ Gn+1
m : FA(λixi) = FA(xi)} ⊆ GLn+1(C).

Write A−1 = (bij)i,j ∈ GLn+1(Q) and for j = 0, . . . , n let

ρj = (exp(2πib0j), . . . , exp(2πibnj));

then ρ0, . . . , ρn generate Aut(FA).

Next, we consider the subgroup

(4.2.2)
SL(FA) :={(λ0, . . . , λn) ∈ Aut(FA) : λ0 · · ·λn = 1}

=Aut(FA) ∩ SLn+1(C)

acting invariantly on the holomorphic form, and the subgroup

(4.2.3) JFA := 〈ρ0 · · · ρn〉
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obtained as the cyclic subgroup of Aut(FA) generated by the product of the

generators ρj . Then JFA is the subgroup of Aut(FA) that acts trivially on XA.

We now describe Berglund–Hübsch–Krawitz mirrors explicitly. Consider a

group G such that JFA ⊆ G ⊆ SL(FA). Then we have a Calabi–Yau orb-

ifold ZA,G := XA/(G/JFA). The mirror is given by looking at the poly-

nomial FAT obtained from the transposed matrix AT and the hypersurface

XAT ⊂WPn(q0, . . . , qn), where qi are the dual weights.

As above, Aut(FAT ) is generated by the elements

ρTj := (exp(2πibj0), . . . , exp(2πibjn)).

We define the dual group to G to be

GT :=

{ n∏
j=0

(ρTj )
sj :

n∏
j=0

xj
sj is G-invariant

}
⊆ Aut(FAT ).

Since JFA ⊆ G ⊆ SL(FA), we have JF
AT

⊆ GT ⊆ SL(FAT ) [ABS14, Proposition

3, Remark 3.2]. Moreover, JF
AT

is generated by the element

(4.2.4) JT := (exp(2πiq0/d
T ), . . . , exp(2πiqn/d

T )).

Thus, we obtain a Calabi–Yau orbifold

ZAT ,GT := XAT /(G
T /JF

AT
).

Berglund–Hübsch–Krawitz duality states that ZA,G and ZAT ,GT are mirrors.

Proposition 4.2.5: Let XA,ψ be an invertible pencil of Calabi–Yau (n − 1)-

folds determined by the integer matrix A. Then for all ψ such that XA,ψ, we

have

(4.2.6) dimCH
n−1
prim(XA,ψ,C)

SL(FA) ≥ dT −#I.

Proof. We have dimCH
n−1
prim(XA,ψ,C)

SL(FA) ≥ dT −#I since the Picard–Fuchs

equation is SL(FA)-invariant.

In certain cases, we have equality. We can compute dimCH
n−1
prim(XA,C)

SL(FA)

in the following way. Let

QFA :=
C[x0, . . . , xn]

〈∂FA/∂x0, . . . , ∂FA/∂xn〉
be the Milnor ring of FA, i.e., the quotient of C[x0, . . . , xn] by the Jacobian

ideal. A consequence of the Griffiths–Steenbrink formula [Dol82, Theorem 4.3.2]



688 C. F. DORAN ET AL. Isr. J. Math.

is that if JFA ⊆ G, then the G-invariant subspace of the Milnor ring viewed as

a C-module, (QFA)
G corresponds to the cohomology Hn−1

prim(XA,C)
G.

Example 4.2.7: Let FA =
∑n

i=0 x
n+1
i be the defining polynomial for the Fermat

hypersurface XA ⊆ Pn. Here, SL(FA) = (Z/(n + 1)Z)n where an element

(ξ1, . . . , ξn) ∈ SL(FA) acts by

(ξ1, . . . , ξn) · (x0, . . . , xn) �−→ (ξ1 · · · ξnx0, ξ−1
1 x1, . . . , ξ

−1
n−1xn−1, ξ

−1
n xn).

Note that in order for
∏
i x

ai
i ∈ QFA to be SL(FA)-invariant, it must satisfy the

equalities a0 − ai ≡ 0 (mod n+ 1) for all i. Thus the only SL(FA)-invariant

elements of the Milnor ring are the n elements (x0 · · ·xn)a for 0 ≤ a < n. Note

that n = dT −#I, or the order of the Picard–Fuchs equation for this example,

so equality holds in (4.2.6).

4.3. Frobenius structure for the subspace associated to the holo-

morphic form. In this section, we will study a subspace Wψ ⊂ Hn+2(Ω•
�,ψ)

generated by the connection acting on the holomorphic form. The dimension

of this subspace is equal to the order of the Picard–Fuchs equation. It will in

the end correspond to a factor

Rψ0(qT ) := det(1 − FrobT |Wψ)|ψ=̂ψ0

of the zeta function for XA,ψ0, where XA,ψ0 is a nondegenerate and smooth

member of the pencil. We prove in this section that there is a Frobenius struc-

ture on Wψ by examination of the unit root.

Let K = k(ψ) where k is an algebraically closed field of characteristic 0. Let

D := ∂/∂ψ be the standard derivation on K. The space Hn+2(Ω•
�,ψ) is a dif-

ferential module that is finite-dimensional over K with connection ∇ := ∇(D).

Consider the submodule Wψ ⊆ Hn+2(Ω•
�,ψ) obtained by repeatedly applying ∇

to the holomorphic form defined by the monomial ξ0 = wx0x1 · · ·xn. Then Wψ

is a ∇-stable subspace with cyclic basis ξ0, . . . , ξN−1, with ξj = ∇j(ξ0), so that

∇

⎛
⎜⎜⎝

ξ0
...

ξN−1

⎞
⎟⎟⎠ = GT

⎛
⎜⎜⎝

ξ0
...

ξN−1

⎞
⎟⎟⎠
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where

G =

⎛
⎜⎜⎜⎜⎝
0 . . . 0 gN−1

1 . . . 0 gN−2

...
. . .

...
...

0 . . . 1 g0

⎞
⎟⎟⎟⎟⎠ ,

with gi ∈ K.

In the theory of Dwork, the Frobenius structure on the differential equation

arises in the dual theory. Say Kψ is dual to Hn+2(Ω•
�,ψ) and let W ∗

ψ be dual to

Wψ . It is a differential module overK with connection ∇∗ satisfying the pairing

D(ξ, ξ∗) = (∇(D)ξ, ξ∗) + (ξ,∇∗(D)ξ∗)

for ξ ∈ Wψ , ξ
∗ ∈ W ∗

ψ . Via the dual basis, we obtain the connection acting on

the dual basis ∇∗ on W ∗
ψ :

∇∗

⎛
⎜⎜⎝

ξ∗0
...

ξ∗N−1

⎞
⎟⎟⎠ = −G

⎛
⎜⎜⎝

ξ∗0
...

ξ∗N−1

⎞
⎟⎟⎠ .

A horizontal section

ζ∗ =

N−1∑
i=0

Ci(ψ)ξ
∗
i

under ∇∗ has coefficients {C0(ψ), . . . , CN−1(ψ)} which satisfy the differential

equation

D(C0(ψ), . . . , CN−1(ψ)) = (C0(ψ), . . . , CN−1(ψ))G.

Note that in our case, working with a cyclic basis C0(ψ) is a solution of the

scalar differential equation Ly = 0 where L = DN −∑N−1
i=0 gi(ψ)D

i.

By Proposition 4.1.11, the operator L is irreducible.

Proposition 4.3.1: W ∗
ψ contains no nonzero, proper ∇∗-stable differential

submodule.

Proof. This proposition is proven by Sabbah [Sab05, Theorem 2.4]; for com-

pleteness, we provide an argument here. Suppose M∗
0 were such a nonzero,

proper ∇∗-stable differential submodule of dimension r, 0 < r < N . We will

show that if such a proper submodule existed, then the Picard–Fuchs operator

L(D) has a proper factorization in the noncommutative polynomial ring K[D]

and the Picard–Fuchs equation would necessarily be reducible, contradicting

Proposition 4.1.11.
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Without loss of generality we may assume M∗
0 has a cyclic basis

{γ∗0 ,∇∗γ∗0 , . . . , (∇∗)r−1γ∗0}.
Choose elements δ∗r , . . . , δ∗N−1 ∈ W ∗

ψ so that the set

{γ0,∇γ0, . . . ,∇r−1γ0, δr, . . . , δN−1}
is the dual basis for Wψ . Then we can write the connection matrix for W ∗

ψ in

the form

∇∗

⎛
⎜⎜⎜⎜⎝

γ∗0
...

(∇∗)r−1γ∗0
δ∗j

⎞
⎟⎟⎟⎟⎠=−H

⎛
⎜⎜⎜⎜⎝

γ∗0
...

(∇∗)r−1γ∗0
δ∗j

⎞
⎟⎟⎟⎟⎠ , where H :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 hr−1 ∗
1 · · · 0 hr−2 ∗
...

. . .
...

... ∗
0 · · · 1 h0 ∗
0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where {hi}r−1
i=0 ⊂ K. We consider a horizontal section

r−1∑
i=0

Bi(∇∗)iγ∗0 +

N−1∑
i=r

Biδ
∗
i ,

for some Bi(ψ) ∈ K so that D(B0, . . . , BN−1) = (B0, . . . , BN−1)H , and

D(B0, . . . , Br−1) = (B0, . . . , Br−1)

⎛
⎜⎜⎜⎜⎝
0 · · · 0 hr−1

1 · · · 0 hr−2

...
. . .

...
...

0 · · · 1 h0

⎞
⎟⎟⎟⎟⎠ .

So the entries {B0, . . . , Br−1} are dependent over K. We now can rewrite this

horizontal section in terms of our original dual basis

r−1∑
i=0

Bi(∇∗)iγ∗0 +

N−1∑
i=r

Biδ
∗
i =

N−1∑
i=0

Ai(∇∗)iξ∗i ,

for some Ai ∈ K. Note that A0 must be a solution of the Picard–Fuchs differ-

ential equation. There exists some nonsingular matrix A over K so that

(γ∗0 , . . . (∇∗)r−1γ∗0 , δ
∗
r , . . . , δ

∗
N−1)

T = A(ξ∗0 , . . . , ξ
∗
N−1)

T .

Using this change of basis, we can see that

(B0, . . . , BN−1)A = (A0, . . . , AN−1)

where

Ai = DiA0,
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since
∑
i=0 Ai(∇∗)iξ∗i is a horizontal section. This gives a non-trivial homo-

geneous relation among A0, . . . , D
N−1A0; thus, A0 satisfies a lower order dif-

ferential equation defined over K. Using the usual argument via the division

algorithm in the noncommutative ring K[D] we conclude that the Picard–Fuchs

operator has a non-trivial right factor in K[D] which contradicts the irreducibil-

ity of the Picard–Fuchs equation.

Lemma 4.3.2: Let ψ ∈ P1 be such that XA,ψ is nondegenerate and smooth.

Then there exists a strong Frobenius structure on W ∗
ψ .

Proof. We recall section 2.3. Suppose that Xψ is ordinary, a condition that

holds for all but finitely many ψ ∈ Fp. Then there is a unique unit root of the

characteristic polynomial of Frobenius acting on Hn+2(Ω•
�,ψ), and this yields a

unique unit root eigenvector η0 up to scaling. The same holds for the dual space

Kψ of Hn+2(Ω•
�,ψ) with unique unit eigenvector η∗0 . We claim that η∗0 ∈ W ∗

ψ.

Assume for the purposes of contradiction that η∗0 �∈ W ∗
ψ . Then we may take

as a basis for Kψ a set containing η∗0 and the cyclic basis {(∇∗)iω∗
0}N−1
i=0 for

W ∗
ψ as in (2.3.6). Let A∗ be the matrix of q−1-Frobenius in this basis. Since

η∗0 is a unit eigenvector, the diagonal coefficient of A∗ corresponding to η∗0 is

nonzero modulo p (and the other coefficients of this column are zero). But by

(2.3.7), the diagonal coefficient of A∗ for ω∗
0 is nonzero modulo p because Xψ

is ordinary. Therefore A∗ has rank at least 2 modulo p, and this contradicts

Lemma 2.3.3.

So now let η∗0 ∈ W ∗
ψ be the unit root eigenvector, unique up to scaling and

defined on the ordinary locus U ⊆ P1 where U is the complement of the union

of {0, 1,∞} and the supersingular locus for the given pencil XA,ψ. Then writing

Frob for q−1-Frobenius

Frob η∗0 = uη∗0 ,

where u ∈ K is a unit on the locus U . Frobenius commutes with the connection

∇∗, so

Frob(∇∗η∗0) = ∇∗ Frob η∗0 = u(∇∗η∗0) +D(u)η∗0 ,

which implies that Frobenius is stable on the submodule that is generated by the

cyclic basis given by {(∇∗)iη∗0 | i ∈ Z≥0}, but this is W ∗
ψ by Proposition 4.3.1.

Hence, for each choice of pencil indexed by � the Picard–Fuchs equation has a

strong Frobenius structure in the sense of Dwork [Dwo89].
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4.4. Proof of main result. In this section, we prove our main result. We

will make use of the following lemma.

Lemma 4.4.1: Let X be a projective variety over Fq and let G be a finite

group of automorphisms of X = X ×Fq Fq stable under Gal(Fq/Fq). Then the

following statements hold:

(a) The quotient X/G exists as a projective variety over Fq.

(b) Let � �= p be prime and suppose gcd(#G, �) = 1. Then for all i, the

natural map

H i
ét(X/G,Q�)

∼−→ Hi
ét(X,Q�)

G

is an isomorphism.

Proof. See Harder–Narasimhan [HN75, Proposition 3.2.1] (with some extra de-

scent).

Our main result (slightly stronger than Theorem 1.2.3) is as follows:

Theorem 4.4.2: Let XA,ψ and XB,ψ be invertible pencils of Calabi–Yau

(n − 1)-folds in Pn. Suppose A and B have the same dual weights (qi)i. Then

for each ψ ∈ Fq such that gcd(q, (n+ 1)dT ) = 1 and the fibers XA,ψ and XB,ψ

are nondegenerate and smooth, there exists a polynomial Rψ(T ) ∈ Q[T ] with

D(q0, . . . , qn) ≤ degRψ(T ) ≤ dimCH
n−1
prim(XA,ψ,C)

SL(FA)

such that Rψ(T ) divides PXA,ψ (T ) and PXB,ψ (T ).

Proof. Let F�,ψ(x) be invertible pencils, corresponding to matrices � = A,B

with the same weights. Then by Theorem 4.1.3, the Picard–Fuchs equations of

order D(q1, . . . , qn) are the same. Suppose that the two pencils have a common

smooth fiber ψ ∈ Fq.

We follow the construction of cohomology in Adolphson–Sperber [AS08], with

a few minor modifications. We assume their base field Λ1 is enlarged to treat

ψ as a variable over Qp(ζp) with (unit) p-adic absolute value, so that Λ1 has

∂/∂ψ as a nontrivial derivation. Then the construction of the complex Ω•
ψ is

unchanged as are the cohomology spaces Hi(Ω•
ψ). Then [AS08, Theorem 6.4,

Corollary 6.5]

P�,ψ0(qT ) := det(1 − FrobT | Hn+2(Ω•
�,ψ))|ψ=̂ψ0

,

where ψ̂0 is the Teichmüller lift of ψ0.
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The connection

ε
(
ψ
∂

∂ψ

)
= ψ

∂

∂ψ
− dTψx0x1 · · ·xn

acts on Hn+2(Ω•
�,ψ). By work of Katz [Kat68], the associated differential equa-

tion is the Picard–Fuchs equation.

For each invertible pencil determined by a choice of �, as in section 4.3, we

have a subspace Wψ obtained by repeatedly applying the connection to the

monomial wx0x1 · · ·xn corresponding to the holomorphic form. By Lemma

4.3.2, we obtain a strong Frobenius structure on this differential module. By

construction, the associated differential equation is the hypergeometric Picard–

Fuchs equation, and this equation is independent of � by Theorem 4.1.3. By

Proposition 4.1.11, this differential equation is irreducible. Under the hypothesis

that p � (n + 1)dT , there is a p-integral solution to this differential equation.

Then by a result of Dwork [Dwo89, Lemma, pp. 89–90], the respective Frobenius

matrices Φ�,ψ0 acting on W differ by a p-adic constant. As in the proof of

Proposition 3.2.2, the same unique unit root at a smooth specialization implies

that this constant is 1.

At the same time, the subspace

Σ�,ψ := Hn+2(Ω•
�,ψ)

SL(FA)

invariant under SL(FA) is stable under the connection and has an action of

Frobenius. The group SL(FA) preserves the holomorphic form, so Wψ ⊆ Σ�,ψ.
Let

(4.4.3)
Rψ0(qT ) := det(1− FrobT |Wψ)|ψ=̂ψ0

,

S�,ψ0(qT ) := det(1− FrobT | Σ�,ψ)|ψ=̂ψ0
.

We have shown that

Rψ0(T ) | S�,ψ0(T ) | P�,ψ0(T )

with Rψ0(T ) independent of �. Since P�,ψ0(T ) ∈ Q[T ], as it is a factor of the

zeta function, we know immediately that Rψ0(T ) ∈ K[T ] for K a number field,

which we may assume is Galois over Q by enlarging.

Next, we apply Lemma 4.4.1: the characteristic polynomial of Frobenius via

the Galois action on Hn−1
ét (XA,ψ0 ,Q�)

SL(FA) is equal to S�,ψ0(qT ). Therefore

S�,ψ0(qT ) ∈ Q�[T ] for all but finitely many �, and so is independent of � and it

also belongs to Q[T ]. Now let

R′
ψ0
(T ) := lcmσ∈Gal(K/Q) σ(Rψ0)(T )
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be the least common multiple of the polynomials obtained by applying

Gal(K/Q) to the coefficients of Rψ0 . Then R′
ψ0
(T ) is still independent of �,

by Galois theory R′
ψ0
(T ) ∈ Q[T ], and R′

ψ0
(T ) | S�,ψ0(T ) | P�,ψ0(T ) is a factor

of the zeta function and

dT −#I = degRψ0(T ) ≤ degR′
ψ0
(T ) ≤ degS�,ψ0(T ) = Hn−1

prim(XA,ψ,C)
SL(FA)

as desired.

Corollary 4.4.4: With hypotheses as in Theorem 4.4.2, suppose that the

common dual weights are (q0, . . . , qn) = (1, . . . , 1). Then

degRψ(T ) = n.

Proof. First note that D(1, . . . , 1) = n. By Example 4.2.7, we know that for

the Dwork pencil, we have the equality

D(q0, . . . , qn) = dimHn−1
prim(XA)

SL(FA).

By applying Theorem 4.4.2 to first obtain the common factor Rψ(T ) and then

applying Theorem 4.4.2, we then have that Rψ(T ) ∈ Q[T ] and is of degree

D(1, . . . , 1) = n.

In particular, by a straightforward calculation, if the invertible pencil consists

of only Fermats and loops (no chains), then the dual weights are (1, . . . , 1) and

Corollary 4.4.4 applies.

Remark 4.4.5: It is also possible to argue for a descent to Q[T ] of a common

factor of degree dT −#I purely in terms of hypergeometric motives—without

involving the group action—as follows. First, we need to ensure that the trace

of Frobenius on the subspace of p-adic cohomology cut out by the hypergeomet-

ric Picard–Fuchs equation is given by an appropriately normalized finite field

hypergeometric sum: this is implicit in work of Katz [Kat90, §8.2] and should

be implied by rigidity [Kat90, §8.10], but we could not find a theorem that

would allow us to conclude this purely in terms of the differential equation.

In such a situation, by an elementary observation (found in Beukers–Cohen–

Mellit [BCM15, p. 3]), these hypergeometric sums are defined over Q if and

only if the polynomials

gααα :=
∏

αi∈ααα�I
(x− e2π

√−1αi), gβββ :=
∏

βij∈βββ�III
(x− e2π

√−1βij )

belong to Z[T ]. This statement can be shown directly.
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We show this invariance first for the polynomial gααα. Let ri = gcd(qi, d
T ) for

i = 0, . . . , n. Consider the set

K = {k : k > 1 and k | dT and k � ri for all i = 0, . . . , n}.
Then ααα� I = {j/k : k ∈ K, gcd(j, k) = 1} so

(4.4.6) gααα =
∏
k∈K

Φk(x)

where Φk(x) ∈ Z[T ] is the kth cyclotomic polynomial, as desired.

A similar argument works for gβββ . Let rij = gcd(ri, rj) for i, j = 0, . . . , n. For

each i = 0, . . . , n, let

Ki = {ki : ki | qi and ki � ri}∪∪∪ {kij : kij | ri and kij | rij for some j < i}.
Then

βββ � I =

n⋃
i=1

{0}∪∪∪
n⋃
i=0

{j/ki : ki ∈ Ki and gcd(j, ki) = 1}.

Hence

(4.4.7) gβββ = (x− 1)n
n∏
i=0

∏
k∈Ki

Φk(x) ∈ Z[T ].

Remark 4.4.8: There is yet a third way to observe a common factor purely in

terms of group invariance using a common cover by a Fermat pencil (of larger

degree): see recent work of Kloosterman [Kl17].

4.5. Unit roots and point counts. If X is a smooth Calabi–Yau variety,

the polynomial PX(T ) appearing in the zeta function of X has at most one root

that is a p-adic unit. This root is called the unit root. We have already used

the unit root implicitly to compare zeta functions. We may also use the unit

root directly to extract arithmetic information about an invertible pencil from

AT . This yields a simple arithmetic relationship between different invertible

pencils with the same dual weights.

Proposition 4.5.1: Let FA(x) and FB(x) be invertible polynomials in n + 1

variables satisfying the Calabi–Yau condition. Suppose AT and BT have the

same weights. Then for all ψ ∈ Fq and in all characteristics including when

p | dT , either the unit root of XA,ψ is the same as the unit root of XB,ψ, or

neither variety has a nontrivial unit root. Thus, the supersingular locus is the

same for both pencils.
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Remark 4.5.2: In the case of non-smooth, non-supersingular fibers, Adolphson–

Sperber [AS16] describe what is meant here by the unit root and show that

then the unit root is given by the same formula as in the smooth case. Dwork

noted the possibility of a meaningful unit root formula for varieties that are not

smooth [Dwo62].

Proof. In the case where p divides dT we replace dTψ in the given families by

ψ in order to obtain a nontrivial pencil. Adolphson–Sperber [AS16] provide

a formula for the unit root using A-hypergeometric functions. The lattice of

relations used to compute the A-hypergeometric functions is determined by the

dual weights, and the character vector is the same in both families. Thus,

the unit root formula is the same in both cases. More precisely, in the case

of smooth fibers, the middle dimensional factor has a unique unit root which

occurs in the common factor Rψ(T ) described above. It is given by a p-adic

analytic formula in terms of the series defined above. The Hasse invariant is

determined by the reduction of the A-hypergeometric series solution mod p.

This proves the identity of the supersingular locus in cases where the weights

agree.

Remark 4.5.3: In the case that ψ ∈ F×
q yields a smooth member of the pencil

XA,ψ, the result of Proposition 4.5.1 can also be obtained fromMiyatani [Miy15,

Theorem 2.9], where the unit root is nontrivial precisely when a formal power

series defined using the hypergeometric parameters appearing in Equation 4.1.8

is nonzero. Miyatani also gives a formula for the unit root when it exists and

XA,ψ is smooth, in terms of the same hypergeometric power series. As we have

already observed, the hypergeometric parameters depend only on the weights

of AT or BT .

Proposition 4.5.1 implies a relationship between point counts for alternate

mirrors, reminiscent of Wan’s strong arithmetic mirror symmetry [FW06],

[Wan06].

Corollary 4.5.4: Let FA(x) and FB(x) be invertible polynomials in n + 1

variables satisfying the Calabi–Yau condition. Suppose AT and BT have the

same weights. Then for any fixed ψ ∈ Fq and in all characteristics (including

p | dT ) the Fq-rational point counts for fibers XA,ψ and XB,ψ are congruent as

follows:

#XA,ψ(Fq) ≡ #XB,ψ(Fq) (mod q).



Vol. 228, 2018 ALTERNATE MIRROR CALABI–YAU FAMILIES 697

Proof. The formula is true vacuously when the fiber is supersingular (there is

no unit root). Otherwise, the unit root controls the point count modulo q.

The congruence result given here is weaker of course for smooth fibers than

the result given earlier on common factors, Theorem 4.4.2 above. It is possible

that the common factor result for the piece of middle-dimensional cohomology

invariant under the respective group actions does extend meaningfully to fibers

that are not smooth as well. Computations in [Kad04, Kad06, CDRV01] show

that a factor of the zeta function associated to the holomorphic form can be

identified for singular fibers of the Dwork pencils of quartics and quintics, as well

as for a certain family of octic Calabi–Yau threefolds in a weighted projective

space. We expect there will be a common factor (for families with the same

dual weights) for singular fibers in the case of K3 surfaces, since the unit root

in this case should govern the relevant factor (using the functional equation and

the fact that the determinant of Frobenius is constant).

5. Quartic K3 surfaces

We now specialize to the case of n = 3, i.e., K3 surfaces realized as a smooth

quartic hypersurface in P3.

5.1. Pencils of K3 surfaces. The invertible pencils in P3 whose Berglund–

Hübsch–Krawitz mirrors are hypersurfaces in finite quotients of P3 are listed

in Table (5.1.1). We list the group of symplectic symmetries SL(FA)/JFA ,

which act nontrivially on each projective hypersurface and fix its holomorphic

form, in the third column.

(5.1.1)

Family Equation for XA,ψ Symmetries

F4 x40 + x41 + x42 + x43 − 4ψx0x1x2x3 (Z/4Z)2

F2L2 x40 + x41 + x32x3 + x33x2 − 4ψx0x1x2x3 Z/8Z

F1L3 x40 + x31x2 + x32x3 + x33x1 − 4ψx0x1x2x3 Z/7Z

L2L2 x30x1 + x31x0 + x32x3 + x33x2 − 4ψx0x1x2x3 Z/4Z× Z/2Z

L4 x30x1 + x31x2 + x32x3 + x33x0 − 4ψx0x1x2x3 Z/5Z

Recalling Example 4.1.9, we observe that each of these five pencils has the

same degree three Picard–Fuchs equation for the holomorphic form, and that

after a change of variables, this equation is the differential equation satisfied by
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the classical hypergeometric function

(5.1.2) 3F2

( 1
4 ,

1
2 ,

3
4

1, 1
;ψ−4

)
.

The main result of this section is the following theorem.

Theorem 5.1.3: Let � ∈ F = {F4,F2L2,F1L3, L2L2, L4} signify one of the five

K3 families in Table (5.1.1). Let q = pr be a prime power with p �= 2, 5, 7 and

let ψ ∈ Fq be such that ψ4 �= 1. Then X�,ψ is a smooth, nondegenerate fiber of

the family �.
Let P�,ψ,q(T ) ∈ 1 + TZ[T ] be the nontrivial factor of Z(X�,ψ/Fq, T ) of de-

gree 21. Then the following statements hold:

(a) We have a factorization

P�,ψ,q(T ) = Q�,ψ,q(T )Rψ,q(T )

in Z[T ] with degQ�,ψ,q = 18 and degRψ,q = 3.

(b) The reciprocal roots of Q�,ψ,q(T ) are of the form q times a root of 1.

(c) The polynomial Rψ,q(T ) is independent of � ∈ calF .

Remark 5.1.4: In future work [DKSSVW], we study these families in more de-

tail: we describe a further factorization of Q�,ψ,q(T ) related to the action of

each group, and we identify each of these additional factors as hypergeometric.

The polynomials P�,ψ,q(T ) have degree 21 and all of their reciprocal roots α

satisfy |α| = q, by the Weil conjectures. By a direct calculation in the computer

algebra system Magma [BCP97], when p �= 2, 5, 7 and ψ4 �= 1, the fiber X�,ψ
is smooth and nondegenerate. Parts (a) and (c) of Theorem 5.1.3 now follow

from Theorem 1.2.3 and the Picard–Fuchs differential equation computed in

Example 4.1.9.

We now prove Theorem 5.1.3(b). For all � ∈ F , the trace formula (2.2.10)

asserts that

P�,ψ,q(T ) = det(1− FrobT | H4(Ω•
�)).

We now analyze the unit root. In section 2.3, we saw that there is at most

one unit root of P�,ψ,q(T ). If there is no unit root, then the K3 surface X�,ψ is

supersingular over Fq, and Theorem 5.1.3(b) follows by the Tate conjecture for

K3 surfaces. Thus, we need only analyze the case where there is a unit root.
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Proposition 5.1.5: Suppose P�,ψ,q(T ) has a unit root u(ψ). Then the recip-

rocal zeros β = β� of P�,ψ,q(T ) other than u(ψ) and the root q2/u(ψ) all have

the form β = qζ where ζ is a root of unity.

Proof. We know that β is an algebraic integer which, by Deligne’s proof of the

Riemann hypothesis, has the form β = qζ with ζ an algebraic number with

complex absolute value |ζ|∞ = 1. By the functional equation ββ′ = q2, so that

for any prime � �= p, we have that β (and ζ) are �-adic units. Since we are

considering now only ordinary fibers ψ, the first slope of Newton agrees with

the first slope of Hodge. It then follows for every β a reciprocal zero of P�(t)
other than the unit root u(ψ), we have ordq(β) ≥ 1. As a consequence, ζ is a

p-adic integer. This proves ζ is an algebraic integer. From the product formula

|ζ|p = 1. We have shown that |ζ|v = 1 for all places v of Q. By Dirichlet’s

theorem, this implies ζ is a root of unity.

Before concluding this section, we consider the remaining invertible quartic

pencils in P3. We may use methods similar to the analysis of Theorem 5.1.3 to

relate two pencils of K3 surfaces whose equations incorporate chains.

(5.1.6)

Family Equation for XA,ψ Symmetries

C2F2 x30x1 + x41 + x42 + x43 − 12ψx0x1x2x3 Z/4Z

C2L2 x30x1 + x41 + x32x3 + x33x2 − 12ψx0x1x2x3 Z/2Z

Let ♣ ∈ G = {C2F2,C2L2} signify one of the two K3 families in Table (5.1.6).

The dual weights for these families are (4, 2, 3, 3). LetX♣,ψ be a smooth member

of ♣, and assume gcd(q, 6) = 1. Let P♣,ψ(T ) ∈ 1 + TZ[T ] be the nontrivial

factor of Z(X♣,ψ, T ) of degree 21 as in (1.2.2). Then by Theorem 4.4.2 we have

a factorization

(5.1.7) P♣,ψ(T ) = Q♣,ψ(T )Rψ(T )

in Z[T ] with 6 ≤ degRψ ≤ 7 and Rψ(T ) is independent of ♣ ∈ G. However,

we pin this down in the next subsection, and show in fact that degRψ = 6 (as

expected), with degQ♣,ψ = 15. The reciprocal roots of Q♣,ψ(T ) are of the form
q times a root of 1 from a similar argument as in Proposition 5.1.5.

Together, Theorem 5.1.3 and Equation (5.1.7) give a complete description

of the implications of Theorem 1.2.3 for invertible pencils of K3 hypersurfaces

in P3; the remaining three pencils, classified for example by Doran–Garavuso

[DG11], are each described by matrices with distinct sets of dual weights.
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5.2. Discussion and applications. By Tate’s conjecture, a theorem due to

work of Charles [Cha13], Madapusi Pera [Per15], and Kim–Madapusi Pera

[KP16], the Néron–Severi rank of a K3 surfaceX over Fq is equal to one plus the

multiplicity of q as a reciprocal root of P (T ) [vanL07, Corollary 2.3], and this

rank is even. (The extra “one” corresponds to the hyperplane section, already

factored in.) Thus Theorem 5.1.3(b) implies that each X�,ψ has Néron–Severi

rank over the algebraic closure Fq at least 18+1 = 19, so at least 20 because it is

even. Similarly, each X♣,ψ has Néron–Severi rank over Fq at least 14+ 1 = 15,

thus 16 because it is even.

By comparison, in characteristic 0 we can inspect the Néron–Severi ranks as

follows. Theorem 5.1.3 implies that the subspace in cohomology cut out by

the Picard–Fuchs equation is contained in the SL(FA)-invariant subspace and

it contains H2,0. Consequently, as observed by Kloosterman [Kl17], this implies

that the SL(FA)-invariant subspace in H2
ét(XA,ψ) contains the transcendental

subspace: indeed, one definition of the transcendental lattice of a K3 surface

is as the minimal primitive sub-Q-Hodge structure containing H2,0 [Huy16,

Definition 3.2.5].

For the five pencils in Table (5.1.1) with dual weights (1, 1, 1, 1), we conclude

that the generic Néron–Severi rank is at least 22 − 3 = 19; but it cannot be

20, because then the family would be isotrivial, so it is equal to 19. Similarly,

for the two pencils in Table (5.1.6), the generic Néron–Severi rank ρ is at least

22− 7 = 15: but the divisor defined by

x1 = 0, x22 = ix23

for either choice of i2 = −1 is SL(FA)-invariant, so the generic Néron–Severi

rank ρ is in fact at least 16. Now a specialization result due to Charles [Cha14]

shows that the rank over Fq is always at least ρ and is infinitely often equal to

ρ if the rank is even and infinitely often ρ + 1 if the rank is odd. By the first

paragraph of this section, we conclude that the generic Néron–Severi rank of

these two pencils is exactly 16.

The complete Néron–Severi lattice of rank 19 for the case of the Dwork pencil

F4 is worked out via transcendental techniques by Bini–Garbagnati [BG14, §4].
It would be interesting to compute the full Néron–Severi lattices for the remain-

ing four plus two families; Kloosterman [Kl17] has made some recent progress

on this question and in particular has also shown (by a count of divisors) that

the generic Néron–Severi rank is 16 for the C2F2 and C2L2 pencils.
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We conclude by a discussion of some applications of Theorem 5.1.3 in the

context of mirror symmetry. Let Yψ be the pencil of K3 surfaces mirror to

quartics in P3 obtained by taking the quotient of F4 by (Z/4Z)2 and resolv-

ing singularities. It can be viewed as the minimal resolution of the complete

intersection [NS01, dAMS03]

Z(xyz(x+ y + z − 4ψw) + w4) ⊆ P4.

A computation described by Kadir [Kad04, Chapter 6] shows that for odd

primes and ψ ∈ Fq with ψ4 �= 1,

(5.2.1) Z(Yψ, T ) =
1

(1− T )(1− qT )19(1− q2T )Rψ,q(T )
.

This calculation combined with Theorem 5.1.3 yields the following corollary.

Corollary 5.2.2: There exists r0 ≥ 1 such that for all q = pr with r0 | r and

p �= 2, 5, 7 and all ψ ∈ Fq with ψ4 �= 1, we have

Z(X�,ψ/Fqr , T ) = Z(Yψ/Fqr , T ).

In other words, for all ψ ∈ Fq with ψ4 �= 1, not only do we have the strong

mirror relationship

#X�,ψ(Fqr ) ≡ #Yψ(Fqr ) (mod qr)

for all � ∈ F and r ≥ 1 (see Wan [Wan06]), but in fact we have equality

#X�,ψ(Fqr ) = #Yψ(Fqr )

for all r divisible by r0. Accordingly, we say that the zeta functions

Z(X�,ψ/Fq, T ) for all � ∈ F and Z(Yψ/Fq, T ) are potentially equal, that is,

equal after a finite extension.

In addition, quite concretely, Elkies–Schütt [ES08] find an elliptic fibration

on the mirror Yψ that allows us to obtain more information about the factor

Rψ,q(T ). Via a Shioda–Inose structure, Yψ corresponds to the abelian surface

E × E′ where E,E′ are elliptic curves with j-invariants j, j′, where

jj′ = (μ+ 144)3, (j − 1728)(j′ − 1728) = μ(μ− 648)2,

and μ = 256ψ4. The curves E,E′ are 2-isogenous, and so are parametrized by

the modular curve X0(2)/〈w2〉. It follows that letting
aψ,q = q + 1−#E(Fq), a′ψ,q = q + 1−#E′(Fq),
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then

aψ,q = ±a′ψ,q.
By factoring

1− aψ,qT + qT 2 = (1− αψ,qT )(1− βψ,qT )

we have

(5.2.3)
Rψ,q(T ) =(1− qT )(1− (a2ψ,q − 2q)T + q2T 2)

=(1− qT )(1− α2
ψ,qT )(1− β2

ψ,qT ).
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