
Article
Receptor Quaternary Orga
nization Explains
G Protein-Coupled Receptor Family Structure
Graphical Abstract
Highlights
d Systematic analysis of 60 Rhodopsin-family GPCRs reveals

that most are monomers

d Rhodopsin-family root ancestor GPCRs are also monomers

d Across families, rates of receptor diversification correlate

with stoichiometry

d Skewed family structure suggests dimerization increases

receptor ‘‘fitness density’’
Felce et al., 2017, Cell Reports 20, 2654–2665
September 12, 2017 Crown Copyright ª 2017
http://dx.doi.org/10.1016/j.celrep.2017.08.072
Authors

James H. Felce, Sarah L. Latty,

Rachel G. Knox, ..., Steven F. Lee,

David Klenerman, Simon J. Davis

Correspondence
dk10012@cam.ac.uk (D.K.),
simon.davis@imm.ox.ac.uk (S.J.D.)

In Brief

The quaternary organization of

Rhodopsin-family GPCRs is

controversial. Felce et al. show that 60

receptors are mostly monomeric. They

propose a simple explanation for the

remarkable asymmetry in GPCR family

structure, i.e., that it is underpinned by

the lineage expansion of monomers

rather than dimers.
Data and Software Availability
GSE102461

mailto:dk10012@cam.ac.uk
mailto:simon.davis@imm.ox.ac.uk
http://dx.doi.org/10.1016/j.celrep.2017.08.072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.08.072&domain=pdf


Cell Reports

Article
Receptor Quaternary Organization Explains
G Protein-Coupled Receptor Family Structure
James H. Felce,1 Sarah L. Latty,2 Rachel G. Knox,1 Susan R. Mattick,1 Yuan Lui,1 Steven F. Lee,2 David Klenerman,2,*
and Simon J. Davis1,3,*
1Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine,

University of Oxford, Oxford OX3 9DS, UK
2Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
3Lead Contact
*Correspondence: dk10012@cam.ac.uk (D.K.), simon.davis@imm.ox.ac.uk (S.J.D.)

http://dx.doi.org/10.1016/j.celrep.2017.08.072
SUMMARY

The organization of Rhodopsin-family G protein-
coupled receptors (GPCRs) at the cell surface is
controversial. Support both for and against the exis-
tence of dimers has been obtained in studies of
mostly individual receptors. Here, we use a large-
scale comparative study to examine the stoichio-
metric signatures of 60 receptors expressed by a
single human cell line. Using bioluminescence reso-
nance energy transfer- and single-molecule micro-
scopy-based assays, we found that a relatively small
fraction of Rhodopsin-family GPCRs behaved as
dimers and that these receptors otherwise appear
to be monomeric. Overall, the analysis predicted
that fewer than 20% of �700 Rhodopsin-family re-
ceptors form dimers. The clustered distribution of
the dimers in our sample and a striking correlation
between receptor organization and GPCR family
size that we also uncover each suggest that receptor
stoichiometry might have profoundly influenced
GPCR expansion and diversification.
INTRODUCTION

G protein-coupled receptors (GPCRs) are organized into six

main families: the Glutamate, Rhodopsin, Adhesion, Frizzled,

Secretin, and Taste2 families (Fredriksson et al., 2003). A striking

feature of GPCR family structure is the overwhelming dominance

of the Rhodopsin (class A) family, which comprises >80% of all

human GPCRs and a similar fraction of the GPCRs expressed

by other vertebrates (Fredriksson and Schioth, 2005). GPCRs

all consist of a core of seven transmembrane (TM) a helices

joined by six interhelical loops of variable length. The loops

combine with the N and C termini forming, respectively, an extra-

cellular region that, together with the TM region, creates the

ligand-binding site and a cytoplasmic region that interacts with

secondary signaling components, e.g., G proteins. The organi-

zation of the TM region is strikingly similar across all GPCRs

for which structures have been obtained and is stabilized by a

conserved network of interactions between topologically equiv-

alent residues (Venkatakrishnan et al., 2013). The most signifi-
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cant structural variation between GPCRs is restricted to the

ligand-binding regions, and the parts of the receptors involved

in signal transduction are typically much more highly conserved

(Katritch et al., 2012), allowing similar conformational changes to

accompany receptor activation (Deupi and Standfuss, 2011).

Several studies of isolated GPCRs (Bayburt et al., 2007; Ernst

et al., 2007; Kuszak et al., 2009; Leitz et al., 2006; Whorton

et al., 2007) convincingly show that signal transduction can

occur on the scale of single, autonomous receptors, consistent

with GPCRs forming 1:1 complexes with G proteins (Rasmussen

et al., 2011).

Without question, the most contentious aspect of GPCR

biology concerns their quaternary structures. This is not an insig-

nificant issue, as homo- or hetero-oligomer formation offers,

e.g., a simple explanation for a wealth of pharmacological data

implying that receptors engage in ‘‘cross-talk’’ (although other

explanations are possible; Chabre et al., 2009; Tubio et al.,

2010) and new opportunities for pharmacological intervention.

Whereas several small families of GPCRs comprise receptors

whose large N- and C-terminal domains are known to effect

dimerization, e.g., the Glutamate (class C) receptors (Gurevich

and Gurevich, 2008b), there is no consensus regarding the

‘‘typical’’ quaternary structure of the largest group of GPCRs,

i.e., the Rhodopsin family. It was initially thought that

Rhodopsin-family GPCRs are generally monomeric, but the

more prevalent view now (Pétrin and Hebert, 2012; Pfleger and

Eidne, 2005) is that these receptors form transiently associating

or stable dimeric and oligomeric complexes, with implications

for their signaling behavior (the cases for and against oligomeri-

zation have been summarized by Bouvier and Hebert [2014] and

by Lambert and Javitch [2014]). The first applications of reso-

nance energy transfer (RET)-based assays seemed to precipi-

tate this shift in thinking, but these assays are prone to difficulties

in distinguishing genuine interactions from chance co-localiza-

tions, and the interpretation of some early studies is disputed

(Chabre et al., 2009; Chabre and leMaire, 2005; Felce and Davis,

2012; James et al., 2006). More recently, single-molecule

measurements have failed to demonstrate constitutive oligomer-

ization in transfected and native cells (Cai et al., 2017; Hern et al.,

2010; Jonas et al., 2015; Kasai et al., 2011; Latty et al., 2015;

Nenasheva et al., 2013), with one exception (Calebiro et al.,

2013). Equally, lattice contacts in GPCR crystals tend to argue

against dimeric interactions, and, where putative dimers have

been observed, the proposed interfaces were not conserved
ight ª 2017
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(Huang et al., 2013; Manglik et al., 2012; Salom et al., 2006; Wu

et al., 2010). It remains a possibility, however, that dimeric

Rhodopsin-family GPCRs exist, but only rarely (e.g., Gurevich

and Gurevich, 2008a). With few exceptions (e.g., Calebiro

et al., 2013), differences in receptor behavior have not been

reported in individual studies, although systematic, comparative

analyses of GPCR organization have not been undertaken.

Of the RET-based approaches for studying GPCR stoichiom-

etry, which still represent the highest resolution (<10 nm) in situ

assays, bioluminescence RET (BRET) is the most widely used,

because it is relatively straightforward and uncomplicated by

photobleaching and photoconversion effects confounding

Förster RET-based measurements. We have established three

BRET-based assays (types-1 to -3; Felce et al., 2014; James

et al., 2006), each indicating that human b2-adrenergic receptor

(b2AR) andmouse cannabinoid receptor 2 (mCannR2) aremono-

mers. Here, we report a systematic analysis of the stoichiometry

of 60 Rhodopsin-family GPCRs using two of these assays and a

single-molecule fluorescence-based assay (Latty et al., 2015).

We found (1) that a small fraction of Rhodopsin-family GPCRs

formed authentic dimers and that these receptors were other-

wise monomeric, (2) that dimers comprised closely related

phylogenetic clusters, (3) that these receptor clusters did not

share ligand or G protein selectivity outside the clusters, and

(4) that even closely related receptors could have different stoi-

chiometries. These findings suggest a simple explanation for

the remarkable asymmetry in GPCR family structure, i.e., that it

is underpinned by the lineage expansion of monomers rather

than dimers.

RESULTS

BRET Assay Sensitivity
The BRET assays used in this study are described in detail else-

where (Felce et al., 2014; James et al., 2006). Briefly, in type-1

BRET experiments (James et al., 2006), the ratio of acceptor- to

donor-tagged proteins is varied at constant expression,

resulting in a hyperbolic relationship between energy transfer

efficiency (BRETeff) and acceptor:donor ratio for dimers (the prin-

ciples of the assays are illustrated in Figure S1A). For monomers,

as confirmed for type-1 receptors of knownstoichiometry (James

et al., 2006), BRETeff is effectively independent of this ratio above

acertain threshold.Stoichiometry is indicatedbyR2values for the

data fitted to monomer versus dimer models (Figures S1B and

S1C). In type-3 BRET assays, untagged ‘‘competitor’’ receptors

reduce BRETeff for dimers, but not monomers, for a range of

expression levels (Figure S1A), with stoichiometry confirmed by

the likelihood (pdiff) thatBRETeff is affectedby thecompetitor (Fig-

ure S1D; Felce et al., 2014). These assays are complementary

insofar as type-1 assays are not prone to false-dimer artifacts

but could, in principle, give false-monomer results in cases of

higher order oligomerization or very weak dimerization, whereas

type-3 assays avoid false-monomer results but could produce

false-dimer signals, e.g., when the addition of competitor

proteins causes the clustering of tagged receptors to be relaxed,

reducing effective density (Figure S1A). Concordant data

obtained with these assays, therefore, afford confident assign-

ment of receptor stoichiometry.
We undertook a systematic exploration of Rhodopsin-family

GPCR stoichiometry using both type-1 and -3 BRET assays.

By focusing on the set of GPCRs expressed by HEK293T cells,

the host cell typically used for BRET assays (Pfleger and Eidne,

2005), we could characterize receptor behavior in its native

cellular milieu. The choice of cell line precluded the use of

type-2 assays reliant on observations made at very low expres-

sion levels (James et al., 2006), because this type of analysis

would have been complicated by the presence of untagged,

native receptors. As reported previously (e.g., Barak et al.,

1997), C-terminal tagging of two example GPCRs (i.e., human

b1-adrenergic receptor [b1AR] and b2AR) with GFP and Rluc

did not alter their responses to agonists (Figure S2A). The sensi-

tivity of the type-1 and -3 BRET assays was first tested using an

inducible system for generating dimers. The monomeric recep-

tor CD86 was fused to the FK506-binding protein (FKBP),

allowing the bivalent FKBP ligand AP20187 to induce various

levels of receptor dimerization (Figures S2B and S2C). Type-1

and -3 BRET assays detected dimers comprising as few as

20% of the total receptor population (Figures S2D–S2F and

S2I–S2Q); similar data were obtained for induced b2AR dimers

(Figures S2D, S2G, S2H, and S2R–S2Z). For simplicity, we here-

inafter refer to two classes of receptors: ‘‘dimers’’ (R20%dimer-

ization) and ‘‘monomers’’ (<20% dimerization).

Two Types of Rhodopsin-Family GPCR Behavior
HEK293T-cell-expressed GPCRs were identified by mining the

Universal Protein Resource (UniProt) database (www.uniprot.

org) and comparing the results to gene expression data gener-

ated by deep sequencing (RNA sequencing; RNA-seq) of the

HEK293T cell transcriptome. mRNA encoding 65 Rhodopsin-

family GPCRs was detected in HEK293T cells (Data S1, ‘‘Recep-

tors’’), with assignment of receptors to the Rhodopsin family

based mostly on published phylogenetic analyses (Fredriksson

et al., 2003). These receptors comprised a cross-section of

Rhodopsin-family GPCRs, with a diverse range of physiological

functions and ligands, although some important receptor

families were not represented, e.g., the dopamine receptors,

and some receptors may only exist at the RNA level in

HEK293T cells. Transient transfection of GPCRs in the form of

GFP fusion proteins in HEK293T cells gave expression levels

of �100,000 per cell (Data S1, ‘‘BRET Experiments’’), as deter-

mined by flow-cytometric analysis. This included expression

on intracellular membranes, consistent with many GPCRs

residing mostly in internal membranes until stimulated to traffic

to the cell surface (e.g., Brismar et al., 1998; Hein et al., 1994).

These expression levels were 1–2 orders of magnitude higher

than that of native receptors (e.g., Hegener et al., 2004; Nena-

sheva et al., 2013), avoiding interference of the assays by

homo- and heteromeric interactions with native receptors.

Of the 65 receptors, 60 had sufficiently good trafficking and

expression characteristics to allow BRET analysis (Figure S3;

Table S1). Type-1 and type-3 BRET analysis of 57 of the 60

GPCRs yielded concordant data suggesting that Rhodopsin-

family GPCRs exist in two stoichiometric states. Representative

datasets for the monomeric lysophosphatidic acid (LPA) and

dimeric sphingosine-1-phosphate (S1P) receptors are shown in

Figures 1A–1C. The R2 and pdiff values are plotted in Figure 1D,
Cell Reports 20, 2654–2665, September 12, 2017 2655
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Figure 1. Two Stoichiometric Classes of Rhodopsin-Family GPCRs Revealed by Type-1 and -3 BRET Assays

(A) Type-1 BRET data for HEK293T-cell-expressed S1P and LPA receptors as representatives of two stoichiometric classes ofRhodopsin-family GPCRs.Optimal

fits of the data are shown as a solid line for a dimer model, and as a broken line for a monomer model.

(B) Type-3 BRET data for the LPA receptors, revealing monomeric behavior consistent with the type-1 analysis. Data collected in both the absence and presence

of competitor proteins are shown as filled and empty circles, respectively. A single fit of all data is shown as a solid line.

(C) Type-3 BRET data for the S1P receptors, revealing dimeric behavior consistent with the type-1 analysis. Data fits are shown as solid lines (no competitor) and

broken lines (with competitor).

(legend continued on next page)
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and absolute values are given in Data S1 (‘‘BRET Experiments’’).

The results of the analysis, arranged according to Rhodopsin-

family substructure, are shown schematically in Figure 1E. For

each type-1 assay, total receptor expression was independent

of [GFP]/[Rluc] (Data S1, ‘‘BRET Experiments’’) as required by

the method (Figure S1A). In this assay, the maximum energy

transfer efficiency (BRETmax) correlated with stoichiometry (i.e.,

typically higher for dimers than for monomers) and, to a lesser

extent, with total expression level (Figure S4A; Data S1, ‘‘BRET

Experiments’’). In the type-3 assay, all dimers gave significantly

non-zero projected y-intercepts, whereas, for the monomers,

the y-intercepts were not significantly non-zero (Figure S4B;

Data S1, ‘‘BRET Experiments’’). It needs to be noted, however,

that the ab initio interpretation of BRETmax and the y-intercepts

is not straightforward. BRETmax does not directly report the

extent of dimerization and is, instead, determined by many

factors, including receptor density, clustering, and subunit

geometry. The type-3 assay y-intercept is also subject to con-

founding effects arising from high expression. Therefore, while

consistent with our assignments, these metrics were not used

to assign stoichiometry to individual receptors.

Of the 60 receptors investigated, 46 exhibited monomeric

behavior in both assays, indicating that they were either wholly

monomeric or formed dimers at levels below the sensitivity of

the assays. Eleven receptors behaved as dimers in both assays.

Two receptors, C5R1 and DP2, yielded data that could not be

easily assigned to either form of behavior, possibly due to dimer-

ization at levels near the sensitivity limits of the assays. Only one

receptor, LTB4R1, yielded conflicting data in the two assays,

perhaps due to high-order oligomerization, which cannot be

unambiguously excluded by the type-1 assay but is readily de-

tected in type-3 assays. LTB4R1 was the only receptor for which

data suggestiveofhigh-orderoligomerizationwasobtained,and it

is unclear whether it is a bona fide oligomer and/or whether other

Rhodopsin-family GPCRs can form high-order oligomers. The

monomeric and dimeric populations exhibit no obvious differ-

ences in either ligand- or G protein specificity (Figures 1F and

1G). Moreover, the stoichiometric assignments do not correlate

with C-terminal domain length (Figure S4C), implying that the

cytoplasmic domains did not impose donor-acceptor separation

distancesgreater than theRET-permissive radius (10 nm), leading

to the false identification of monomers. Conversely, dimerization

is not explained as an artifact of poor trafficking or expression,

since the fraction of dimers did not correlate with apparent traf-

ficking behavior (Figure S4D). Similarly, although heterodimeriza-

tion with native GPCRs and/or TM proteins could conceivably

restrict homodimerization, this seems very unlikely at the high

levels of receptor expression used for BRET assays. For the
(D) R2 (type-1 assay) and pdiff (type-3 assay) values for Rhodopsin-family GPCRs.

the region of high R2 and low pdiff. C5R1 and DP2 (pink) are ambiguous, becaus

assays. LTB4R1 (green) is the only receptor to yield conflicting results in the two

(E) Outcomes for all Rhodopsin-family receptors investigated. A gradient (from m

shown in the key. The inner circle gives the type-1 assay result; the outer circle gi

tree (Fredriksson et al., 2003).

(F) Known ligand preferences of the monomeric and dimeric receptors.

(G) G protein selectivity of the monomers and dimers.

See also Figures S1, S2, S3, and S4, and Data S1 (‘‘BRET Experiments’’).
dimers,weareunable to speculate about thestrengthofdimeriza-

tion, as our analysis produces binary outcomes (i.e., fits that are

closer to either a monomer or dimer model); however, a range of

dimer stabilities could reasonably be expected. Models of partial

dimerization could, in principle, be fitted to our data but would not

be informative within the confidence limits of the assay.

Single-Molecule Analysis
To further confirm that Rhodopsin-family GPCRs exist in more

than one stoichiometric state, we used single-molecule cross-

color coincidence detection (SMCCCD; Latty et al., 2015).

Briefly, candidate GPCRs were transiently expressed in Chinese

hamster ovary (CHO) K1 cells under the control of a weak pro-

moter to ensure approximately physiological, i.e., low levels of

expression. Unlike HEK293T cells, CHO K1 cells do not express

homologs of any of the receptors studied using SMCCCD (Bay-

cin-Hizal et al., 2012), thereby avoiding interference with the sin-

gle-molecule analysis. Constructs consisting of the receptor

fused with a C-terminal HaloTag or a SNAP-tag were co-ex-

pressed and then labeled with HaloTag-TMR Ligand and

SNAP-Cell 505 Star. This allowed individual receptors to be

localized each in one of two colors, and the degree of co-local-

ization to be compared to the known monomeric and dimeric

controls, CD86 and CD28, respectively. Coincidence values

represent the fraction of HaloTag-labeled receptors that localize

to within 300 nm of a SNAP-tag labeled receptor, presented as

the mean for all cells analyzed. The principle of the method is

summarized in Figure S1A.

Receptors exhibiting contrasting behavior in the BRET assays

were selected for the SMCCCD analysis: both the S1P receptor

3 (S1P3) and a2C-adrenergic receptor (a2CAR) behaved as

dimers, whereas LPA receptor 1 (LPA1) and b1-adrenergic re-

ceptor (b1AR) exhibited monomeric behavior. Consistent with

the BRET analysis, in the single-molecule assay, S1P3 and

a2CAR exhibited above-background levels of cross-color coinci-

dence characteristic of dimers, whereas the LPA1 and b1AR

receptors exhibited monomer control levels of cross-color coin-

cidence (Figure 2; Table S2). The measured coincidence level

was considerably higher for S1P3 than for a2CAR, however,

which was only slightly higher than that for the monomer control,

CD86. It is, therefore, possible that, at physiological expression

levels, a2CAR is only a weak dimer. We cannot formally exclude

the possibility that the coincidence observed in this assay is the

product of indirect receptor co-localization rather than direct

physical association, given that our observations are diffraction

limited to a resolution of �300 nm, �60-fold larger than the

hydrodynamic diameter of most GPCRs. However, this would

not be consistent with the results of the BRET assays.
Monomers are indicated in blue; dimers are indicated in red. Dimers cluster in

e they lie near the boundary for monomer versus dimer identification in both

assays, possibly due to high-order oligomerization.

onomer, in blue, to dimer, in red) is colored according to the R2 and pdiff values

ves the type-3 assay result. Receptor relationships are shown as a divergence
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Figure 2. Single-Molecule Microscopy Confirms the Existence of Two Stoichiometric Classes of Rhodopsin-Family GPCRs

(A) Representative actual data (top) and reconstructed spot detection (bottom) for transfected HaloTag-labeled (red) and SNAP-tag-labeled (green) proteins

expressed in CHOK1 cells. Scale bars, 5 mm. LPA1, S1P3, b1AR, and a2CARwere expressed as C-terminal SNAP-tag- and HaloTag-fusion proteins for two-color

labeling.

(B) Cross-color coincidence values forGPCRs investigated using SMCCCD. S1P3anda2CARexhibit levels of coincidence significantly higher than that for the strict

monomer, CD86, but lower than that for the covalent dimer, CD28. Coincidence values for both LPA1 and b1ARwere not significantly higher than that for CD86. The

data confirmed the observations made using BRET. Error bars indicate mean ± SE. *p < 0.05; **p < 0.01; ***p < 0.005 (two-tailed t test of difference to CD86).

See also Table S2.
Dimerization of S1P3 via TM Helix 4
The contrasting behavior of the otherwise closely related LPA

and S1P subgroups allowed coarse mapping of the dimerization

interface. In preliminary experiments, three LPA1/S1P3 chi-

meras were generated with various contributions from each

receptor (Figure S5A), and these expressed well enough for

BRET analysis (Figure S5B). Type-1 BRET analysis of the chi-

meras indicated that the presence of the N-terminal domain,

TM helix 1, intracellular loop (IL) 1, and TM2 of S1P3 (‘‘chimera

1’’) were not sufficient to induce LPA1 to form dimers, whereas

the inclusion also of extracellular loop (EL) 1, TM3, IL2, and

TM4 (‘‘chimera 2’’) resulted in chimera dimerization (Figure S5C;

Data S1, ‘‘BRET Experiments’’). Including additional S1P3

domains had no further effect on receptor stoichiometry

(‘‘chimera 3’’; Figure S5C). This suggested that the sequence

motifs mediating interaction in S1P3 are likely predominantly

located within the EL1, TM3, IL2, and TM4 regions. The contribu-

tions of these regions to S1P3 dimerization were further

dissected using reciprocal swaps of the individual domains (Fig-

ure 3A). Type-1 and type-3 BRET assays identified TM4 as the

principal site of dimerization, since the transfer of LPA1 TM4 to

S1P3 partially abrogated S1P3 dimerization (Figures 3B and

3C), and transfer of S1P3 TM4 induced LPA1 dimerization (Fig-

ures 3D and 3E; Data S1, ‘‘BRET Experiments’’).

Correlation of GPCR Family Size and Stoichiometry
Our analysis reveals that most Rhodopsin-family GPCRs ex-

pressed by HEK293T cells are monomers. The phylogenetic

distribution of the dimers that we have identified appears to

be non-random, however. Of the eleven dimers, seven are

closely related to other dimers (Figure 1E), forming clusters:

the S1P receptors S1P2, S1P3, and S1P5; the histamine recep-

tors H1R and H2R; and the leucine-rich repeat-containing
2658 Cell Reports 20, 2654–2665, September 12, 2017
receptors LGR4 and LGR5. In addition to reinforcing the

BRET-based assignments, these data suggest that the evolu-

tionary appearance of dimers might be rare and episodic. More-

over, the contrasting stoichiometries of the large Rhodopsin

family and the small Glutamate family (Gurevich and Gurevich,

2008b) are suggestive of there being a correlation between pre-

dominantly dimeric behavior and restricted family size. To test

whether stoichiometry correlates with GPCR family size, we

examined the Frizzled GPCRs, which appeared contemporane-

ously with Rhodopsin-family GPCRs but comprise only 11

receptors, and Taste2 GPCRs, which emerged and separated

from the Rhodopsin family just �300 million years ago but

already comprise more than 28 members (Nordstrom et al.,

2011) exhibiting significant diversification (Kim et al., 2005).

Seven Frizzled and four Taste2 HEK293T-derived GPCRs

expressed well enough for BRET analysis (Figure S3). In type-

1 and -3 assays, the Frizzled receptors all behaved as dimers,

whereas the Taste2 receptors exhibited only monomeric

behavior (Figure 4; Data S1, ‘‘BRET Experiments’’), suggesting

that fast-diverging receptors might generally be monomeric

and that receptors exhibiting less diversification are more often

dimers. Chimeric receptors in which the N-terminal, C-terminal,

and TM domains of a Frizzled (FZD10) receptor and a Taste2

(TAS2R19) receptor were recombined implicated the N- and

C-terminal regions of FZD10 in its dimerization, rather

than the TM region (Figures S5D–S5F; Data S1, ‘‘BRET

Experiments’’).

Stoichiometry of Rhodopsin-Family Root-Ancestor
GPCRs
The Rhodopsin family is thought to have emerged �1.3 billion

years ago from the cAMP GPCR family (Nordstrom et al.,

2011), which was subsequently lost from vertebrates. We
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Figure 3. S1P3 Dimerization Is Mediated

Primarily by Interactions Involving TM4

(A) Schematic representation of the S1P3/LPA1

chimeras studied, indicating the contributions of

the S1P3 (red) and LPA1 (blue) sequences. TM

helices are arranged from 1 to 7, left to right.

(B) Type-1 BRET analysis of S1P3 chimeras con-

taining LPA1 domains. The data indicate that all of

the constructs formed dimers, with SLT4 exhibit-

ing the worst fit to a dimer model, suggesting

weaker dimerization. For SLT4, the fit to a mono-

mer model is also shown (broken line).

(C) Type-3 BRET analysis of S1P3 chimeras con-

taining LPA1 domains, confirming the findings of

the type-1 analysis.

(D) Type-1 BRET analysis of LPA1 chimeras con-

taining S1P3 domains. Only LST4, with the TM4

domain of S1P3, formed detectable dimers.

(E) Type-3 BRET analysis of LPA1 chimeras con-

taining S1P3 domains, confirming the findings of

the type-1 analysis.

See also Figure S5 and Data S1 (‘‘BRET Experi-

ments’’).
examined the stoichiometry of three root-ancestor, non-verte-

brate cAMP family GPCRs in type-1 and type-3 BRET assays.

CrlC and CarB are from Dictyostelium discoideum, and a recep-

tor we call CLP (cAMP-like receptor in Paramecium) is the sole

cAMP-like GPCR expressed by Paramecium tetraurelia. We

expect that, because the two species are evolutionarily distant

(D. discoideum belongs to the amoebozoans, and P. tetraurelia

belongs in the chromalveolata kingdom), similarities in their

behavior will likely reflect the properties of cAMP GPCRs gener-

ally. All three cAMP-family receptors exhibited monomeric

behavior in the two BRET assays (Figures 5A–5D; Data S1,

‘‘BRET Experiments’’).

DISCUSSION

The stoichiometry of Rhodopsin-family GPCRs has been very

contentious. Part of the controversy has centered on how

best to implement RET measurements in studies of these re-

ceptors (Bouvier et al., 2007; James and Davis, 2007; James

et al., 2006; Salahpour and Masri, 2007). Acquired in differently

formatted assays, BRET data were used, for example, to sup-

port claims that b2AR is an obligate dimer (Angers et al., 2000;

Mercier et al., 2002; Ramsay et al., 2002) or that it is constitu-
Cell Reports
tively monomeric (Felce et al., 2014;

James et al., 2006). Rhodopsin-family

monomers and dimers were never iden-

tified in any single study, however, leav-

ing open the formal possibility that

these assays are incapable of detecting

both types of behavior. Here, using two

complementary BRET-based assays,

we identified multiple examples of

Rhodopsin-family GPCRs, each exhibit-

ing one of two distinct types of behavior,

one characteristic of substantive dimers
and the other characteristic of monomers. For pairs of mono-

mers and dimers identified in the BRET assays, we observed

the same type of behavior in a third, orthogonal single-molecule

fluorescence-based assay. For one of the dimers, we tenta-

tively identified the core of the dimerizing interface as TM helix

4 of the receptor. These data, therefore, strongly suggest that

Rhodopsin-family GPCRs comprise both monomers and

dimers, with the more ‘‘typical’’ behavior being that of a mono-

mer. Although we cannot draw direct conclusions regarding

ligand-induced dimerization from these data, we anticipate

that the observed resting-state behavior of the monomers likely

reflects a general tendency toward constitutive monomeric

behavior. Similarly, whether the dimers we detect can also

heterodimerize with closely related monomeric or dimeric re-

ceptors, as has been claimed for CXCR4 (e.g., Contento

et al., 2008), remains to be determined.

Our analysis indicates that as many as 20% of the �700

Rhodopsin-family receptors may form dimers, distributed in

discrete clusters across the family (Figure 5E). We did not

attempt to measure the strength of dimerization, and it is

unclear what fraction of these receptors, if any, dimerize

constitutively rather than transiently. S1P3, which, at very

low expression levels in the SMCCCD assay, produced a
20, 2654–2665, September 12, 2017 2659
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Figure 4. Fizzled- and Taste2-Family GPCRs Comprise Monomers and Dimers, Respectively

(A) Type-1 BRET analysis of seven Frizzled and four Taste2 receptors. The Frizzled receptors all formed dimers, whereas the Taste2 receptors behaved as

monomers.

(B) Type-3 BRET analysis of the FZD1, FZD2, and FZD10 receptors, confirming the findings of the type-1 analysis.

(C) Type-3 BRET analysis of FZD5 and FZD9.

(D) Type-3 BRET analysis of FZD7 and SMO.

(E) Type-3 BRET analysis of the Taste2 receptors.

(F) Results of the Frizzled and Taste2 receptor assays summarized as in Figure 1E.

See also Figure S5 and Data S1 (‘‘BRET Experiments’’).
coincidence signal indistinguishable from that of our covalent

dimer control, CD28, seems to be a good candidate for consti-

tutive receptor homodimerization, however, as does CXCR4,

given the very high BRETmax measured in our type-1 assay.

On the other hand, the BRET measurements were performed

under conditions of very high expression, and it is possible

that, due to the effects of mass action, a smaller fraction of

Rhodopsin-family GPCRs dimerize at lower levels of physiolog-

ical expression. This behavior seems to be exemplified by

a2CAR. In the BRET experiments, a2CAR exhibited clear-cut

dimeric behavior, but only marginally higher levels of co-asso-

ciation than our control monomer, CD86, at the more physio-

logical expression levels of the SMCCCD experiments. For

the large set of receptors we sampled using BRET, we are,

therefore, likely to have identified the upper limit of the fraction

that form dimers. That only one receptor, LTB4R1, gave data

suggestive of higher order oligomerization implies that such

structures could be very rare.
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Our observations are, nevertheless, strongly at odds with the

notion that Rhodopsin-family GPCRs form constitutive dimers.

It is noteworthy that, of 26 receptors reported previously to be

dimers, often in multiple publications (Table S3), 21 behaved

as monomers in our assays. Our data are in closer agreement

with the increasing number of single-molecule microscopy

experiments that have failed to identify constitutive dimers in

most cases (AbdAlla et al., 2001; Hern et al., 2010; Jonas

et al., 2015; Kasai et al., 2011; Kuszak et al., 2009; Latty

et al., 2015; Nenasheva et al., 2013). The present data also

argue against a general model of allosteric regulation of

GPCR homodimers founded, principally, upon pharmacological

analysis. Instead, cooperative effects observed between recep-

tors could arise from indirect cross-talk between monomers.

Such effects could be caused in vitro by limiting GTP levels

and in vivo by competition between receptors for shared G pro-

teins, each of which could affect ligand binding (both mecha-

nisms are discussed in more detail by Chabre et al., 2009).
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Figure 5. Root Ancestor cAMP-Family Receptors

Behave as Monomers in Type-1 and -3 BRET Assays

(A) Type-1 BRET analysis of three cAMP-family receptors.

(B) Type-3 BRET analysis of CarB and CLP.

(C) Type-3 BRET analysis of CrlC.

(D) Results of the assays summarized as in Figure 1E.

(E) Modeled lineage tree for theRhodopsin family, highlighting

the episodic nature of gain-of-dimerization events. The tree

shows all non-olfactory Rhodopsin-family GPCRs along with

their subfamilies and clusters (Fredriksson et al., 2003).

Colored branch endpoints indicate receptors investigated in

this study: red for dimers, blue for monomers, pink for C5R1

and DP2. Receptors on gray branches were not investigated.

Nodes are colored according to their predicted stoichiometry

assuming the spontaneous emergence of dimers. The distri-

bution of Rhodopsin-family dimers suggests that R 7 inde-

pendent gain-of-dimerization or stabilization-of-dimerization

events have occurred during the evolution of this family of

receptors.

(F) Evolutionary model of GPCR family expansion in which

dimers (red) are constrained in their diversification compared

tomonomers (blue). Receptors carrying deleteriousmutations

aremarkedwith a cross. These receptors either are lost during

natural selection or degrade into pseudogenes over time.

Relationships between receptors are represented as a simple

lineage tree.

See also Data S1 (‘‘BRET Experiments’’).
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Similarly, our observation that the dimerization of Frizzled re-

ceptors appears to be mediated by specialized domains

outside the TM region offers new support for the notion that

the formation of stable dimers requires greater binding

energies than can often be generated by the TM region alone,

as also suggested elsewhere (Gurevich and Gurevich, 2008b).

Interestingly, two of the Rhodopsin-family GPCR dimers identi-

fied here (LGR4 and LGR5) have large extracellular domains

similar in structure to those of the Frizzled receptors. For the

other Rhodopsin-family dimers, it is more likely that dimeriza-

tion relies only on TM region contacts, as suggested here for

S1P3, implying that these types of receptors, at best, interact

only transiently.

Several of our observations would be explained by the rare,

episodic appearance of Rhodopsin-family dimers during verte-

brate evolution (Figure 5F): (1) that the dimers comprise a small

fraction of GPCRs; (2) that they form small, closely related

phylogenetic clusters; (3) that these receptors do not share

ligand- or G protein selectivity outside the clusters; and (4)

that closely related receptors can have different stoichiome-

tries. The infrequency and distribution of the dimers seem to

mirror a striking correlation between stoichiometry and

GPCR family size also suggested by our data. Despite all

appearing contemporaneously �1.3 billion years ago, the

dimeric Frizzled and Glutamate receptor families contain only

11 and 22 members, respectively, whereas there are now

>700 predominantly monomeric Rhodopsin-family receptors

(Nordstrom et al., 2011). Similarly, having split from the

Rhodopsin family just �300 million years ago (Nordstrom

et al., 2011), it seems telling to us that there are >28 mono-

meric Taste2 receptors and only three Glutamate-family Taste1

dimers (Chandrashekar et al., 2000; Nelson et al., 2001),

bearing in mind that both groups of receptors perform the

same physiological function.

Why, then, are Rhodopsin-family GPCRs so dominant among

extant vertebrates, and why are the numbers of putative dimers

so low? Assuming that the root ancestor of theRhodopsin-family

GPCRs was monomeric, as our limited analysis of the cAMP-

family GPCRs seems to imply, we suggest that at least

three forces helped shape Rhodopsin-family receptor evolution.

First, the functional autonomy of Rhodopsin-family monomers

(e.g., Bayburt et al., 2007; Kuszak et al., 2009; Leitz et al.,

2006; Whorton et al., 2007), allied with an intron-less mode of

gene duplication that would have preserved this functionality,

might have favored a classical birth-and-death mechanism of

family expansion (Nei and Rooney, 2005). Second, the cylindri-

cally arranged TM domains, which form deep pockets that

bind mostly small ligands, could have allowed very fast func-

tional diversification. Finally, dimerization might have increased

the ‘‘fitness density’’ of receptors whose functions depend on

dimerization, constraining the capacity of families of dimers,

such as the Frizzled andGlutamate receptors, to diverge (Makino

and Gojobori, 2006). This is because, following gene duplication,

any ‘‘new’’ receptor would potentially interfere with the function

of the ‘‘parent’’ receptor until the capacity for physical interac-

tions was lost, as proposed for other receptor systems (e.g.,

Fraser et al., 2003; Makino and Gojobori, 2006). The paucity of

Rhodopsin-family dimers could reflect the frequency of sponta-
2662 Cell Reports 20, 2654–2665, September 12, 2017
neous gain-of-dimerization events if dimerization, per se, does

not confer functionality.

EXPERIMENTAL PROCEDURES

Quantification of HEK293T Transcriptome

cDNA was generated by reverse transcription of total mRNA harvested from

HEK293T cells and sequenced using high-throughput RNA-seq (Illumina).

Individual sequences were mapped and quantified using TopHat and

Cufflinks software (Center for Computational Biology, Johns Hopkins Univer-

sity). Output fragments were then assigned as encoding GPCRs by reference

to the Universal Protein Resource (www.uniprot.org).

BRET Vector Construction

GPCR genes were cloned into the pGFP2 N3 (PerkinElmer), pRluc N3

(PerkinElmer), and pU (described in Felce et al., 2014) vectors for BRET exper-

iments. Genes were amplified from cDNA generated from HEK293T cells by

PCR using oligonucleotide primers binding the 50 and 30 sequences of either

the open reading frame (ORF) or UTRs, or in two stages whereby the 50 and
30 halves of the ORFwere amplified independently and then used as a template

for generating a chimeric full-length product. All oligonucleotide primers used in

this study and the cloning route adopted for eachRhodopsin-familyGPCRgene

aredescribed inDataS1 (‘‘RPrimers’’ and ‘‘Non-RPrimers’’). In some instances,

the full-length sequence of the gene of interest was synthesized directly

(GeneArt, Invitrogen). cDNA encoding b1AR was obtained from Robert Lefko-

witz (Duke University) in the form of a FLAG-ADRB1 pcDNA3 construct (Tang

et al., 1999) from Addgene (plasmid #14698). This was used as a template for

full-length PCR amplification as described earlier. Candidate cAMP-family

receptors were synthesized directly using GeneArt and amplified using primers

given in Data S1 (‘‘Non-R Primers’’). All amplifiedGPCR genes were cloned into

the N3 BRET vectors by digestion at the flanking restriction endonuclease sites

indicated in Data S1 (‘‘R Primers’’ and ‘‘Non-RPrimers’’). The 30 terminal restric-

tion site used in most cases was BamHI, leading to encoded proteins with a

linker sequence of GDPPVAT between the C terminus of the GPCR and the

N-terminal sequence of GFP2 or Rluc. Subsets of constructs contained linker

sequences ofGVPRARDPPVAT (12 receptors) or KLAVPRARDPPVAT (2 recep-

tors), owing to differences in restriction site used; linker sequences are given in

Data S1 (‘‘R Primers’’ and ‘‘Non-R Primers’’). The choice of linker seemed to

have no bearing on observed receptor stoichiometry (Figures S4E and S4F).

FKBP-tagged CD86 and b2AR constructs were prepared by amplifying

FKBP cDNA from the pC4-FV1E vector (Ariad) using oligonucleotide primers

50-TAGTAGGGATCCAGGAGTGCAGGTGGAAACCATC-30 and 50-CTACTAG
GCTCCCCCTCCAGCTTCAGCAGCTCCACGTCG-30. The amplified product

was then ligated between CD86- or b2AR-encoding cDNA and sequences

encoding GFP2 or Rluc in N3 BRET constructs previously described by James

et al. (2006), using a BamHI restriction site.

Chimeric Receptor Cloning

Chimeras of the S1PR3/LPAR1 and FZD10/TAS2R19 genes were generated

using multiple overlapping PCR reactions using primers given in Data S1

(‘‘Non-R Primers’’). Full details are provided in the Supplemental Experimental

Procedures.

Confocal Microscopy

Surface expression of GPCRs fused to GFP was assessed using confocal mi-

croscopy. HEK293T cells were transfected 24 hr after plating onto microscope

coverslips, with 1 mg pGFP2-GPCR DNA per 6 3 105 cells, using GeneJuice

(Novagen) as per the manufacturer’s protocol. Cells were fixed using PBS/

4% paraformaldehyde for 10 min. Coverslips were then mounted onto glass

slides using VectaShield mounting medium (Vector Laboratories) and imaged

using a Zeiss LSM-780 inverted confocal microscope under an oil-immersed

603 objective lens, with excitation laser light typically at 488 nm. Images

were collected at the midpoint of the cell using a 515-nm ± 15-nm emission

filter and manipulated minimally to improve the signal-to-noise ratio.

Receptors were assessed qualitatively for cellular distribution and assigned

an expression category (Table S1). Protein aggregation was identified by the

http://www.uniprot.org


presence of non-uniform accumulations of GFP fusion protein with fluores-

cence intensities and z-plane distributions greater than that expected of

protein retained in internal membranes (Zhang et al., 2005). Typically, such

aggregates would be the brightest objects in the field of view. Proteins with

expression profiles assigned to either category F or category G were not

progressed to pRluc and pU expression, or to subsequent BRET analysis.

Type-1 and -3 BRET Assays

Type-1 and -3 BRET assays were performed on all GPCRs with adequate sur-

face expression according to confocal microscopy. Type-1 BRET was

performed as described previously (James et al., 2006) on HEK293T cells tran-

siently transfected with BRET pairs of the target gene. Additional details are

provided in the Supplemental Experimental Procedures. BRETeff and

GFP:Rluc ratios were measured 24 hr post-transfection for the majority of

receptors. Some GPCRs were insufficiently well expressed to give reliable

data after 24 hr and so were, instead, assayed after 48 hr. GPCRs assayed

after 48 hr were: AT1, CCR11, GPER, NPY1R, OR4D1, and PAR1. Each recep-

tor was tested in at least three independent experiments until a sufficiently

broad range of GFP:Rluc ratios was assayed.

Type-3 BRET assays were performed as described previously (Felce et al.,

2014) in HEK293T cells transiently transfected with BRET pairs of the target

gene along with competitor or blank pU expression vector. In all instances,

a 2:1 ratio of pU:(pGFP2+pRluc) was used to ensure an excess of competitor

over labeled protein (an equivalent expression of proteins from pGFP2, pRluc,

and pU vectors was demonstrated previously; Felce et al., 2014), and a 12:1

pGFP2:pRluc ratio was used to ensure measurable levels of BRET. In most

cases this was achieved by transfecting 6 3 105 cells with 1 mg pU,

0.462 mg pGFP2, and 0.038 mg pRluc. In cases of low receptor expression,

these amounts were increased to 2 mg pU, 0.924 mg pGFP2, and 0.076 mg

pRluc. Increases in DNA were required for 5-HT2B, AT1, B2, CCR11, EDNRA,

GPER, NPY1R, OR4D1, OXER1, and PAR1. Data were collected from a mini-

mum of three independent experiments.

For BRET analysis of FKBP-tagged inducible dimers, cells were incubated

for 45 min at room temperature in the presence of various amounts of

AP20187 inducer in PBS prior to the assay. Amounts of inducer required to

achieve various levels of dimerization were calculated from the relationship

between inducer concentration and BRETeff for CD86FKBP (Figure S2B). The

required concentrations were: 0% dimerization, 0 nM; 10% dimerization,

35 nM; 20% dimerization, 85 nM; 30% dimerization, 145 nM; 40%, 225 nM;

50%, 335 nM; and 100%, 5 mM. The statistical methods used to analyze the

BRET data are described in the Supplemental Experimental Procedures.

Vector Construction for SMCCCD

C-terminally SNAP-tag- and HaloTag-labeled LPA1, S1P3, b1AR, and a2CAR

were expressed by subcloning the respective genes from pGFP2 into pHRI-

SNAP-tag and pHRI-HaloTag vectors, as described previously (Latty et al.,

2015), usingMluI and NotI restriction sites. In both pHRI vectors, expression is

under the control of the ecdysone-dependentminimal promoter so that expres-

sion is limited to�2,000–4,000 receptors per cell. CD86- and CD28-expressing

vectors for SMCCCDwere describedpreviously (Latty et al., 2015). All receptors

analyzed with SMCCCD contained a short Gly-Asp-Pro sequence between the

C terminus of the receptor and the N terminus of either SNAP-tag or HaloTag.

SMCCCD Analysis

CHO K1 cells were transfected with receptor-expressing constructs for

SMCCCD analysis as described elsewhere (Latty et al., 2015). DNA ratios

and post-transfection incubations required to achieve 100–1,000 HaloTag

spots per cell and SnapTag:HaloTag ratios between 1:1 and 6:1 are indicated

in Table S2. Receptor labeling, fixation, and data collection were performed as

described previously (Latty et al., 2015).
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